
Computational Techniques for Assessing Power Grids with
Wind Energy and Storage

by

Debarati Bhaumik

i



This work is part of the Industrial Partnership Program (IPP) “Computa-
tional sciences for energy research” of the Foundation for Fundamental
Research on Matter (FOM), which is part of the Netherlands Organiza-
tion for Scientific Research (NWO). This research program is co-financed
by Shell Global Solutions International B.V. The research work was car-
ried out at Centrum Wiskunde & Informatica (CWI), the Dutch national
institute for mathematics and computer science.

© Copyright by Debarati Bhaumik, 2018. All Rights Reserved

ii



Computational Techniques for Assessing Power Grids with
Wind Energy and Storage

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel

op woensdag 30 mei 2018, te 10:00 uur door

Debarati Bhaumik

geboren te Surya Sen Nagar W Bengal, India

iii



Promotiecommissie

Promotores:
prof. dr. D.T. Crommelin Universiteit van Amsterdam
prof. dr. A.P. Zwart Technische Universiteit Eindhoven

Overige leden:
prof. dr. ir. J.E. Frank Universiteit Utrecht
prof. dr. ir. B. Koren Technische Universiteit Eindhoven
prof. dr. M.R.H. Mandjes Universiteit van Amsterdam
prof. dr. R. Núñez Queija Universiteit van Amsterdam
prof. dr. J.H. van Zanten Universiteit van Amsterdam

Faculteit:
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

iv



To my parents
Ma, Baba.. this is for you!

v





Acknowledgements

To begin with, I would like to thank my supervisors Bert Zwart and Daan
Crommelin who have provided me with their incessant ideas and guidance
throughout this PhD journey. Without Daan’s patience, when I made
mistakes and his motivations, when I felt directionless this thesis would
not have seen the light of day. I still vividly remember my first day in
Amsterdam when he came to pick me up at the airport.

I would like to acknowledge Stella Kapodistria and Barry Koren for
their collaboration and support which lead to the last two chapters of
this dissertation. I am grateful to Benjamin Sanderse for helping me out
whenever I had questions regarding solving PDEs.

Starting this PhD gave me a new life in Amsterdam with many friends
and some dear friends. From initial days of my PhD life, Wander, Keith,
Nick, and Jesse thank you for tolerating all my questions and for being
there for me. You were the first friends I made in this city. I miss the
(in)appropriate lunch discussions we used to have. I would like to remem-
ber Zsolt, my first officemate who was always there to help me out. Bart,
Anne, Ki Wai, Prashant, Laurent, Nada and Duda thanks for being very
helpful colleagues.

Emma, Teresa, and Sangeetika, you girls have a very special place in
my life. Thank you for tolerating all my rants and spending hours on my
life problems.

One person who has constantly helped and supported me during my
PhD will be Willem Jan. Be it guiding me in writing codes, solving
technical issues or just being there as a friend, he was always there and

vi



still is.
Alex, thanks for working with me from cafes at any time of the day

and week during my thesis-writing phase. Your help for making the cover
page of this thesis is much appreciated.

The best officemate one can have, Krzysztof Bisewski. Well you are
much more than an officemate to me but had it not been this PhD I would
have never met you. You have always been there teaching me probability,
Markov processes, how to properly write math notations and what not.
You are one of the closest people I have in this city.

Finally, I would like to remember my life-lines who kept me sane during
my PhD. Tirthankar Banerjee, words are not enough to describe you.
Without you on the other side of Skype, I can’t even imagine how I could
have managed my life and PhD in Amsterdam. My mother, without her
I wouldn’t even have known about this PhD offer. Maa, this thesis is as
much yours as it is mine. My father, Baba knowing that you are there
eased me during stressful times.

vii



Summary
Computational techniques for assessing power grids with wind
energy and storage

The electricity sector is going through a rapid transition in the energy
landscape. The global share of distributed renewable energy sources like
solar panels and wind power for energy generation is on the rise. Even
though this transition to renewable energy sources is beneficial for redu-
cing global CO2 emissions, the intermittent nature of solar and wind power
makes their integration into the electricity grid a highly challenging task.

For reliable operation of the electricity grid, the balance between power
generation and demand should be maintained continuously. The intermit-
tent nature of wind and solar power disrupts the power balance of the grid.
Such power imbalances may lead to frequency fluctuations, voltage limit
violation, line current limit violations and power losses in the grid; hence
straining the grid. Therefore to ensure reliable operation, grid operators
occasionally need to curtail either renewable power generation or power
demand. Curtailment of renewable power generation incurs economic los-
ses to the producers, whereas curtailment of power demand is undesirable
as our society has become highly dependent on a reliable power supply.

Various measures are deployed for mitigating the adverse effects of the
unpredictable renewable power injections into the grid. These measures in-
clude energy storage, demand response for end-users and optimal dispatch
of distributed generators. Computational methods and tools can assist in
making decisions and taking measures for mitigating the adverse effects
of renewables into the grid. These tools include quantitative probabilistic
reliability assessment methodologies for the grid, accurate forecasting me-
thods for predicting potential stability threats posed by renewable energy
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to the grid, and formulating stochastic models for wind and solar power
for estimating grid reliability indices.

In this thesis we formulate mathematical models and develop various
computational techniques to assess reliability of power grid integrated with
wind power and energy storage devices. The adverse effects of unpredicta-
ble wind power can be mitigated by incorporating energy storage devices
into the grid. Hence, we focus on operation and placement of batteries
into the distribution grid for reliable operation.

For assessing reliability of power grids various grid reliability indices
exist. In this thesis the aim is to assess reliability of power grids integrated
with wind power generation and energy storage by estimating and mini-
mizing the probability of occurrence of events which can strain the grid.
Hence, we need to estimate probabilities of events whose occurrence is
rare. The conventional Monte Carlo estimator becomes computationally
inefficient for estimating such small probabilities. To reduce the computa-
tional workload of the conventional Monte Carlo estimator, we use the
splitting technique for rare-event simulation in this thesis.

In this thesis we have developed various stochastic models which can
represent the intermittency and unpredictability of wind power. Such mo-
dels can be used to generate surrogate time-series of wind power injections
to estimate power grid reliability indices and to study statistical proper-
ties of power grids integrated with wind power. We have developed a wind
speed model using Ornstein-Uhlenbeck processes and have formulated mo-
dels for wind farm power output using Hidden Markov Models.

Micro-grids powered by wind energy and supported with energy stor-
age devices can be modeled by Markov-modulated fluid queues. The cumu-
lative distribution function of the first passage (hitting) time of a Markov-
modulated fluid queue follows a first order advection-reaction hyperbolic
partial differential equation. We propose to solve this hyperbolic partial
differential equation using different numerical integration schemes in this
thesis.
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Samenvatting
Computationele technieken voor het beoordelen van elektrici-
teitsnetten met windenergie en opslag

De energiesector maakt momenteel een snelle transitie door. Decentrale
hernieuwbare energiebronnen zoals wind en zon vormen een steeds gro-
ter deel van de globale energievoorziening. Hoewel deze transitie naar
duurzame bronnen bijdraagt aan het verlagen van de wereldwijde CO2-
uitstoot, leidt de onvoorspelbaarheid van hun beschikbaarheid tot grote
uitdagingen bij de integratie in het elektriciteitsnet.

Voor de betrouwbaarheid van het elektriciteitsnet moeten productie
en verbruik voortdurend in balans gehouden worden, maar de verander-
lijke natuur van wind- en zonne-energie verstoort deze balans. Derge-
lijke verstoringen kunnen leiden tot spanningsfrequentieschommelingen,
overschrijding van spannings- of stroomlimieten, of stroomuitval. Om be-
trouwbaarheid te garanderen, moeten beheerders daarom soms de opwek-
king of het verbruik van energie beperken. Echter, beperking van energie-
opwekking leidt tot economisch verlies bij de producenten, en beperking
van verbruik is onwenselijk in onze samenleving die sterk afhankelijk is
geworden van betrouwbaar beschikbare elektriciteit.

Er worden verschillende middelen ingezet voor het beperken van de na-
delige kanten van onvoorspelbare vermogensinjecties, zoals energie-opslag,
vraagregulatie bij eindgebruikers, en optimale inzet van decentrale gene-
ratoren. Computationele technieken kunnen besluitvorming ondersteu-
nen rond het beperken van de nadelige effecten van duurzame energie
in het energienet. Deze technieken omvatten kwantitatieve stochastische
betrouwbaarheidsbeoordeling van het energienet, nauwkeurige voorspel-
lingen van potentiële instabiliteit veroorzaakt door hernieuwbare ener-
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gieproductie, en formulering van stochastische modellen voor wind- en
zonne-energie om betrouwbaarheidsindices te schatten.

In dit proefschrift formuleren we wiskundige modellen en ontwikkelen
we computationele technieken om de betrouwbaarheid van elektriciteits-
netten met geïntegreerde windenergie en energie-opslag te beoordelen. De
negatieve effecten van de onvoorspelbaarheid van windenergie kunnen be-
perkt worden door energie-opslag in het net op te nemen. Daarom richten
we ons op gebruik en plaatsing van accu’s in het distributienet voor een
betrouwbare energievoorziening.

Er bestaan verscheidene maten voor de betrouwbaarheid van een ener-
gienet. In dit proefschrift is het doel om de betrouwbaarheid van ener-
gienetten met geïntegreerde windenergie en energie-opslag te beoordelen
door de kans op gebeurtenissen die het net overbelasten te schatten, en
die vervolgens te minimaliseren. We moeten hiervoor kansen schatten
van zeldzame gebeurtenissen (‘rare events’). Conventionele Monte Carlo-
simulaties zijn computationeel inefficiënt bij het schatten van dergelijk
kleine kansen. Om de rekentijd van de Monte Carlo-simulatie te beperken,
gebruiken we de zogeheten ‘splitting’-techniek voor ‘rare event simulation’
in dit proefschrift.

In dit proefschrift hebben we stochastische modellen ontwikkeld die het
variabele en onvoorspelbare karakter van wind-energie kunnen beschrij-
ven. Zulke modellen kunnen gebruikt worden om surrogaat-tijdreeksen
van windenergieproductie te genereren, om aan de hand daarvan betrouw-
baarheidsmaten te schatten en statistieken te bestuderen van energienet-
ten met geïntegreerde windenergie. We hebben een windsnelheidsmodel
ontwikkeld gebruikmakend van Ornstein-Uhlenbeck-processen, en wind-
energieproductiemodellen geformuleerd aan de hand van Hidden Markov-
modellen.

Micro-energienetten met windturbines ondersteund door accu’s kun-
nen gemodelleerd worden aan de hand van Markov-gemoduleerde vloei-
stofmodellen. De cumulatieve verdelingsfunctie van de ‘first passage’ van
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een Markov-gemoduleerd vloeistofmodel volgt een eerste orde advectie-
reactie hyperbolische partiële differentiaalvergelijking. In dit proefschrift
stellen we een oplossing van deze hyperbolische partiële differentiaalverge-
lijking voor gebruikmakend van verschillende numerieke integratiemetho-
den.
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Chapter 1

Introduction

The necessity for reducing the carbon footprint to fight global climate
change got strengthened by the 2015 Paris Agreement of the United Na-
tions Framework Convention on Climate Change (UNFCCC). 195 UN-
FCCC countries have signed the agreement and 165 among them have
ratified it to keep the global average temperature rise well below 2 de-
gree Celsius and to pursue efforts to limit the temperature increase to 1.5
degree Celsius above pre-industrial levels [8, 9]. Many governments have
implemented new policies and targets for renewable energy. In particular,
the electricity (power) sector is experiencing a predominant transition in
the energy landscape.
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Chapter 1 1.1. The advent of renewables into the power grid

1.1 The advent of renewables into the power

grid

Biomass, hydropower, geothermal energy, wind and solar energy are exam-
ples of renewable energy sources. Among these, hydropower and geother-
mal energy have been well-established as sources of energy. Figure 1.1
shows the global share of renewable energy production at the end of 2016.
A quarter of the total global electricity consumption was met by renew-
able energy sources [7]. It can be seen from Figure 1.1 that hydropower is
by far the leading contributor of renewable power.

Non-renewable electricity

75.5%

Renewable
electricity

24.5%

Hydropower

16.6%

Bio-power

Solar PV

1.5%

2.0%

Ocean, CSP and geothermal power

0.4%

Wind power

4.0%

Figure 1.1: Global estimated share of renewable energy production at end
of 2016. Source [7].

Current government policies such as subsidy on PV panels and net
metering, steep fall in prices of solar PV and wind power technologies
have accelerated the integration of solar PV panels and wind power into
the power grid. For example, 161 GW of renewable power was added to
the total global renewable power generating capacity in 2016. Solar PV
accounted for almost half of the share of 161 GW, whereas wind power
constituted one third of the share. By the end of the same year, the total
global renewable power generating capacity went up to 2017 GW [7].
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Chapter 1 1.2. Power grid reliability and renewables

1.2 Power grid reliability and renewables

In an electricity grid the power demand and production should be bal-
anced at all times. The frequency of the oscillations of the alternating
current in the electricity grid serves as the indicator of this power bal-
ance between production and demand and its nominal value is 50 Hz in
Europe, see Policy 1 of [2]. The value of the frequency falls below 50 Hz
when power production is greater than power demand and vice-versa. Un-
der normal conditions this frequency can fluctuate between 49.9 and 50.1
Hz. However, the maximum possible dynamic frequency deviation from
the nominal value is 0.8 Hz (see Policy 1 of [2]). Hence, it is the work of
the grid operators to maintain this frequency in the acceptable range by
balancing the power consumption and demand in the grid. Along with the
frequency regulations, for maintaining grid stability the nodal voltages of
the grid should also be kept within acceptable limits. Voltages mostly are
controlled by balancing the reactive power of the grid [61]. Therefore, the
active and reactive power generation and demand need to be balanced for
reliable and secure grid operations.

Traditionally, power is balanced in the grid using dispatchable power
sources. Generators such as coal or nuclear power plants provide a steady
and reliable power supply to the base-load power demand of the grid.
For peak-hours power demand (morning and evening peaks) fast-ramping
power sources like natural gas and hydro power are used. Thus, the grid
operators maintain grid stability and security by performing various ancil-
lary services like scheduling (day ahead) and dispatch (real time) of power
generators, voltage and frequency control [132].

Grid reliability is jeopardized in various ways. Examples are natural
calamities like storms, lightning, earthquake and so on; technical reasons
like component failure, short circuit, component aging, etc and human
errors [36, 61]. Such events can cause cascading failures in the grid leading
to blackouts (see Chapter 13 of [61]).

The uncertain nature of power consumption can also disrupt the power

3



Chapter 1 1.3. Mitigating grid reliability risks

balance of the grid. Typically the aggregated power consumption profile
at one node of the grid can be predicted to a certain extent. However,
developments like the increase in electric vehicles (EVs) makes power con-
sumption stochastic in nature by creating large power demand at uncertain
locations, durations and times. Such large power demands may lead to
frequency fluctuations, nodal voltage limit violations and power losses in
the grid [51, 57, 78].

Like uncertainty in power consumption, uncertainty in power gener-
ation due to variable renewable energy sources like wind and solar chal-
lenges the secure and reliable operation of the grid [111, 145]. In order
to balance the power demand and generation in the grid, the operators
curtail renewable energy sources when there is over-production of renew-
able power [75]. Such curtailments lead to undesirable economic losses to
the renewable energy producers and the grid operators. For example, ac-
cording to a news article in January 2015, a sudden influx of wind power
cost the grid operator 13 million euros in order to keep the grid stable
in Germany [17]. Hence, it is important to mitigate over-production or
curtailment of renewable power both for reliable operation of the grid and
for minimizing economic losses of power producers.

1.3 Mitigating grid reliability risks

The adverse consequences of variable power injection by renewables into
the grid can be mitigated by various measures. We discuss some of these
measures in this section. Demand response is one measure where the end-
user is encouraged to change their power consumption pattern in response
to electricity pricing initiated by the grid operator in order to achieve
monetary profit for both parties or when grid reliability is jeopardized
[148, 162]. Another measure is optimal dispatch of distributed generators
in the distribution grid [52, 112]. For the planning of dispatch of conven-
tional generators, incorporating chance constraints into the conventional
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Chapter 1 1.3. Mitigating grid reliability risks
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Figure 1.2: Global battery storage integration in the grid by (a) capacity
and (b) chemistry. Source [153].

optimal power flow method mitigates risks due to increased penetration
of renewables in the grid [31]. Given the stochastic nature of renewable
power it is of great importance to develop quantitative probabilistic re-
liability assessment methodologies for the grid. Such methods help in
planning, expansion, and operation of the grid integrated with renewable
generation [36, 109, 163].

Energy storage plays an important role in mitigating variability in
the grid by shaving peaks of intermittent renewable power injections [56,
154, 180]. Battery energy storage will likely play an important role for
accommodating further integration of renewables in the distribution grid
[153]. Figure 1.2 shows the increase in the global battery storage capacity
in the grid over 2008 - 2016. Integration, placement, and operation of
battery energy storage to enhance the reliability of the distribution grid
is one of the main topics of this thesis.

Along with the above mentioned measures, accurate probabilistic fore-
casting methods can help in predicting potential threats to stability posed
by the intermittent renewable power injection into the grid [179]. However,
for planning and expansion of the grid integrated with renewable energy
sources, formulation of stochastic models for wind and solar power is of
great relevance. Such models can be used for e.g. generating surrogate
time series of power injections to estimate power grid reliability indices.
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Chapter 1 1.4. Aim and plan of the thesis

To this end, several stochastic models are presented in this thesis.

1.4 Aim and plan of the thesis

The aim of this thesis is to formulate mathematical models and to develop
computational techniques which facilitate reliability analysis of power grids
integrated with wind power and energy storage devices. This thesis fo-
cuses on the reliable operation of the power grid which can in general be
disrupted by the intermittent nature of wind power. Adverse effects of
wind power variability can be mitigated by incorporating energy storage
devices into the grid. Hence we investigate how to operate and place en-
ergy storage devices into the power grid for reliable operation of the grid.
We also develop simple stochastic models for wind power which can be
used to study statistical properties of power grids and to estimate grid
reliability indices.

Chapter 2 briefly summarizes various methodologies and concepts which
are used in this thesis to develop different computational techniques and
models for assessing reliability of power systems integrated with wind en-
ergy and storage. In this chapter we present the power flow equations
and discuss grid constraints, grid reliability indices, Monte-Carlo simu-
lation, as well as the splitting technique for rare-event simulation. The
basic concept of hidden Markov models which are used for modeling wind
park power output is presented in this chapter. Finally, we briefly discuss
Markov-modulated fluid queues and hyperbolic partial differential equa-
tions which are used to estimate the probability distribution of the first
passage (or hitting) time of a storage device getting empty.

In Chapter 3 we perform an overall assessment of a single domestic
household powered by a wind turbine and supported by an energy storage
device. The aim is to investigate the best operation mode of the storage
device such that the occurrence of large power spills (excess or overpro-
duction) can be minimized. A sudden influx of large power excess into the
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grid jeopardizes the stability of the grid by creating voltage imbalances
and current overloads, hence it is important to minimize their occurrence.
For estimating the small probability of large power spills, we use the split-
ting technique for rare event simulation for reducing the workload of the
conventional Crude Monte Carlo probability estimator. Simulation results
show that the ramp constraints imposed on the charging/discharging rate
of the storage device play a pivotal role in mitigating large power spills.
It is observed that by employing a new charging strategy for the storage
device large power spills can be minimized further. We show that there
exists a trade-off between reducing the large power spills versus reducing
the average power spills. This chapter is based on [29].

In Chapter 4 we develop a computational technique to optimize the
placement of storage devices in the network with stochastic generation
and demand such that the power network can be made more reliable. We
use the probability of a line current violation as the reliability index of
the network and find the optimal storage position so that this probability
is minimal. We use the simulated annealing algorithm to minimize this
probability under the variation of storage locations and capacities in the
network, keeping the total storage capacity constant. For estimating the
small probabilities of line current violations we use splitting. As an illus-
tration, we apply our method to the IEEE-14 bus network. This chapter
is based on [28].

In Chapter 5, which is based on [27], we investigate to what extent the
power output of wind farms can be modeled with discrete stochastic mod-
els (Markov chains). Such models have a rather simple structure, thereby
facilitating theoretical analysis and simulations of power grids integrated
with wind farms. We investigate the merits of modeling power output with
straightforward Markov chains as well as Hidden Markov Models (HMMs).
The parameters of these models are inferred from measurement data from
multiple turbines in a wind farm. We use these models both for indi-
vidual turbine output and for total aggregate power output of multiple
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turbines. When modeling individual turbine output, the hidden process
in the HMM is instrumental for incorporating the correlations between
output of different turbines. Accounting for these correlations is impor-
tant for correctly capturing the upper quantiles (90%, 95%, 99%) of the
distribution of the aggregate power output of the entire wind farm. We
show that despite their simple structure, discrete stochastic models are
able to reproduce important features of the power output of wind farms.
This opens up possibilities to use and analyze these models with methods
and techniques from the field of queueing theory which is the topic of
Chapter 6.

In Chapter 6 we study different numerical methods to estimate the
cumulative distribution of the first passage (or hitting) time of a buffer
being empty. The rate at which the buffer is filled/drained is modulated
by a continuous time Markov chain (CTMC). Such Markov-modulated
fluid queue models can be used to model micro-grids integrated with wind
park and energy storage devices. The distribution function of the first
passage time follows a hyperbolic partial differential equation (PDE). For
systems with large state spaces (of the CTMC), we explore different nu-
merical integration schemes to solve the PDE efficiently and compare this
method with the existing Laplace Stieltjes transform inversion method.
This chapter is based on [30].

8



Chapter 2

Overview of methodologies

In this chapter we give an overview of existing methodologies that have
been used in this thesis to develop computational techniques and models
for assessing reliability of power systems integrated with wind energy and
storage.

2.1 Power flow equations

For planning of future expansions of power systems and to determine
in which operational state (normal, emergency or restorative) the grid is
operating, grid operators need to compute the line power flows (or current
flows) and the nodal voltages for a specific generation and load profile of
power injections. These computations are done by solving the so-called
power flow equations. These equations are steady-state solutions of a
dynamic system [77]. The power flow equations can be modeled using the
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non-linear Alternating Current (AC) model and the linear Direct Current
(DC) model. Extensive analysis of the power flow equations can be found
in the literature [53, 77]. We shall briefly discuss both the AC and DC
models in this section. We provide a detailed derivation of the power flow
equations in Chapter 4.

AC power flow equations: The topology of a power grid can be de-
fined by an undirected graph G = (N , E), where N := {1, 2, . . . , N} is the
set of nodes (also known as buses) and E is the set of edges (also called
lines). The line from node i to j is denoted by (i, j). The presence of
energy storage components such as inductors and capacitors in the power
grid gives rise to sinusoidal (or complex) line currents and nodal voltages.
For computing these line currents and nodal voltages the AC power flow
equations needs to be solved. The AC power flow equations in polar form
∀i ∈ N are given by [77],

Pi =
N∑
k=1

|Vi||Vk|(Gi,k cos(θi − θk) +Bi,k sin(θi − θk)) (2.1)

and

Qi =
N∑
k=1

|Vi||Vk|(Gi,k sin(θi − θk)−Bi,k cos(θi − θk)). (2.2)

In the above equations Pi ∈ R is the active power injected (or extracted)
at the i-th bus, Qi ∈ R is the reactive power injected (or extracted) at
the i-th bus, |Vi| ∈ [0,∞) is the voltage magnitude and θi ∈ (−π, π] is the
voltage angle of bus i. Gi,k and Bi,k are the conductance and susceptance
of line (i, k) ∈ E , respectively. We discuss the AC power flow equations in
more detail in Chapter 4.

DC power flow equations: The DC power flow equations can be seen
as a linear approximation to the AC power flow equations [77] and are
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given by
Pi =

∑
k

Bi,k(θi − θk) ∀i ∈ N . (2.3)

In this thesis we use the DC power flow equations to calculate line current
flows in Chapter 4. We give a more detailed derivation of the DC power
flow equations and line current flows in that chapter.

2.2 Operational constraints of the grid

The power grid can operate in three states, namely the normal, emergency
and restorative state [11]. The grid operates in the normal state when the
generators in the grid supply sufficient power to satisfy all demand without
violating any operational constraints. These constraints are [36]:

1. Transmission line constraints
For the normal state operation of the grid the modulus of active
power flowing through all the transmission lines should not exceed
its given (line-specific) maximum at any time t, i.e.,

|Pi,j(t)| ≤ Pmax
i,j ∀(i.j) ∈ E . (2.4)

Similarly, the line current flowing through the lines should not exceed
its given maximum at any time t,

|Ii,j(t)| ≤ Imax
i,j ∀(i.j) ∈ E . (2.5)

Violation of the active power or line-current constraints leads to
generation of excess heat in the transmission lines, depending on
the material and thickness of the lines. Hence these violations can
lead to physical damage of the transmission line due to overheating.
The grid operators need to keep the temperature of each of the
transmission lines Ti,j(t) bounded all the time:
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Ti,j(t) ≤ Tmax
i,j . (2.6)

However, the constraints posed in (2.4) or (2.5) are stricter than
(2.6) as there exists a time lag between the change in temperature
in the lines and change in line current [121, 164]. We will focus on
line-current constraints (2.5) in Chapter 4.

The frequency regulations require the voltage angle difference
between bus i and bus j to stay within their limits [46],

θmin
i,j ≤ θi − θj ≤ θmax

i,j , ∀(i, j) ∈ E . (2.7)

2. Nodal constraints
Along with the transmission line constraints the voltage (magni-
tude), and the reactive power at each of the i nodes (or buses) must
be maintained within their prescribed limits for all time t [102],

V min
i ≤ |Vi(t)| ≤ V max

i , (2.8)

and

Qmin
i ≤ Qi(t) ≤ Qmax

i , (2.9)

where |Vi(t)| is the voltage magnitude and Qi(t) is the reactive power
at the i-th node of the grid. A violation of the nodal voltage con-
straint can lead to damaging of electrical devices connected to the
node.

Hence, grid operators must ensure these constraints are satisfied at all
times for normal operation of the grid. In this thesis we focus on assessing
the probability of maintaining the normal operational state of the grid.
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2.3 Grid reliability indices

Reliability of the power grid is defined as the ability of the grid to sup-
ply power to all the loads without violating any operational constraints
discussed in Section 2.2 [6, 32]. Reliability of the power grid comprises of
two aspects - adequacy and security. Adequacy is "the ability of the elec-
tric system to supply the aggregate electrical demand and energy require-
ments of the customers at all times" and security refers to "the ability of
the electric system to withstand sudden disturbances such as electric short
circuits or unanticipated loss of system elements". These definitions are
taken from [6].

The reliability of the power grid is estimated by grid reliability indices
which can be categorized as relating to the frequency, duration, probability
and extent of grid constraint violations [125, 163]. The traditional grid
reliability indices are based on consumer satisfaction [3, 125]:

• System Average Interruption Frequency Index (SAIFI): average num-
ber of interruptions experienced per customer over a prescribed in-
terval of time.

• System Average Interruption Duration Index (SAIDI): average dura-
tion of interruptions for the customers who experienced interruptions
over a prescribed interval of time.

• Customer Average Interruption Frequency Index(CAIFI): average
frequency of interruptions for those customers who experienced in-
terruptions.

• Customer Average Interruption Duration Index (CAIDI): average
time required to restore the service.

• Loss of Load Probability (LOLP): probability that the peak demand
will exceed the available power generation in a given interval of time.
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• Loss of Load Expectation (LOLE): expected number of days in a year
when the daily peak demand exceeds the available power generation.
It is closely related to LOLP.

Various other reliability indices are defined in [3]. Note that the indices
mentioned above are based on curtailment of load (or power demand).
However, given the new energy landscape of distributed renewable gen-
eration, part of the consumers have become prosumers. Hence, it is also
important to study the curtailment of power generation as producers incur
economic loss by generation curtailment.

This thesis is concerned with assessing reliability of power grids inte-
grated with wind power generation and energy storage. Hence we aim to
estimate and minimize the probability of occurrence of events (depend-
ing on the problem we are solving in Chapters 3 and 4) which can lead
to grid operational constraint violations (see Section 2.2). Let A be the
event leading to grid constraint violation in time interval [0, T ]. In this
thesis we wish to efficiently estimate the probability of occurrence of A,
i.e, P(A).

2.4 Rare event simulation

One of the main topics of this thesis is to estimate probabilities of events
which lead to grid constraint violations with an aim to minimize such
probabilities. Hence, we need to calculate the probability of events whose
occurrence is unlikely. Such events are called rare events. In this section
we briefly discuss the computational inefficiency of crude Monte Carlo
estimation for rare events and the splitting technique for rare event sim-
ulations.

2.4.1 Monte Carlo Simulation

Monte Carlo (MC) simulation is a very robust method for estimating prob-
abilities when these probabilities are not available analytically [136]. For
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Crude Monte Carlo (CMC) simulation, the stochastic system is sampled
M times and for each sample it is verified whether the event of interest A
has occurred in that sample or not.

Let (Ω,F ,P) be a probability space and A ∈ F be the rare event of
interest. The probability of occurrence of A is defined as γ := P(A). If A
is a rare event then the value of γ is small. The CMC estimator of P(A)

is given by [135]

γ̃ :=
1

M

M∑
j=1

1{A occurs in sample j}, (2.10)

where 1{·} is the indicator function which takes value 1 if the expression
in the parenthesis is realized else it takes value zero. The variance of the
CMC estimator using M samples is given by

Var(γ̃) =
γ(1− γ)

M
, (2.11)

and hence the squared relative error of the CMC estimator (2.10) is given
by

SRE(γ̃) :=
Var(γ̃)

γ2
=
γ(1− γ)/M

γ2
=

1− γ
γM

. (2.12)

Hence for fixed M , the SRE diverges as γ → 0. Therefore the CMC esti-
mate becomes unreliable when γ is small unless one uses very large values
of M to obtain an acceptable SRE. For example, to estimate probabilities
smaller than 10−4 one needs M & 106 CMC samples for achieving SRE
≈ 0.01.

2.4.2 Splitting technique

To reduce the computational workload for estimating γ in case γ << 1,
rare-event simulation techniques are used. The main two types of rare-
event simulation techniques are importance sampling and splitting [135].
We use the splitting technique in Chapters 3 and 4 and we shall discuss
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it briefly in this section. For details on importance sampling please see
[135].

In splitting, the sample paths of the stochastic processes involved are
split into multiple copies at various levels of the importance function till
the rare event set is reached [69]. The importance function measures the
distance to the rare-event set. The probability γ is decomposed into the
product of several conditional probabilities which are less computationally
intensive to estimate than γ itself. To make this feasible, the splitting
technique is primarily used for Markov processes.

The most important challenge for splitting is to find an appropriate
importance function, φ, which assigns importance values to the state of a
n-dimensional vector-valued Markov process X(t) with state space X ⊆
Rn, i.e., φ : X −→ R. We choose the importance function such that
φ(X(0)) = 0. Let Sφ,L be the rare event set defined in terms of φ, as
Sφ,L := {x ∈ X : φ(x) ≥ L}. We are interested in the rare event

A = {∃t ≤ T : X(t) ∈ Sφ,L}. (2.13)

For the splitting technique we split the interval [0, L] into m sub-intervals
with boundaries 0 = l0 < l1 < · · · < lm = L. We define Tk = inf{t > 0 :

φ(XXX(t)) ≥ lk} as the time of hitting the k-th level and Hk = {Tk < T} as
the event that the k-th level is hit during [0, T ]. Therefore, γ = P(Hm)

and P(H0) = 1. As Hm ⊂ Hm−1 ⊂ · · · ⊂ H1 ⊂ H0, we have

γ = P(A) =
m∏
k=1

P(Hk|Hk−1) =
m∏
k=1

pk,

where pk := P(Hk|Hk−1) = P(Hk)/P(Hk−1). Each pk is estimated sep-
arately by generating independent sample paths from the distribution of
the entrance state Gk−1 := (Tk−1,XXX(Tk−1)) conditioned on Hk−1 at the
threshold level lk−1. The empirical distribution Ĝk is an estimate of the
entrance distribution Gk. Thus we can proceed recursively, replacing Ĝk−1

for Gk−1 and estimate pk at each level k, by the proportion of level hits
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p̂k = Rk/Nk−1 for all Rk > 0, (2.14)

in which Rk is the number of sample paths where Hk occurs and Nk is the
total number of sample paths started at level k. How Nk is chosen depends
on which variant of splitting is deployed. Hence we get the estimate of γ
as the product

γ̂ =
m∏
k=1

p̂k. (2.15)

Computing each of the non-rare conditional probabilities p̂k for k = 1, . . . ,m

is computationally less intensive than estimating γ̂ directly as in CMC. We
will use the splitting technique in Chapters 3 and 4. We discuss different
variants of splitting in Chapter 3.

2.5 Wind power modeling

For maintaining a reliable power supply, as well as for future power system
planning and daily system operation it is of great importance to study the
statistical properties of power systems integrated with intermittent wind
power generation. In order to do so, it is important to develop stochastic
methods for modeling power output, as stochastic models enable one to
represent the intermittency and unpredictability of wind power. These
models can be used for e.g. generating time series of power injections to
estimate power grid reliability indices [93].

Stochastic models to simulate wind power generation can be developed
in two ways: (i) model the wind speed and employ a separate model (e.g.
a wind power curve (WPC)) to obtain power output from wind speed and
(ii) model the power output directly. We present a literature review of
these approaches in Chapter 5.

In Chapter 3 we first model wind velocities in the zonal (east-west)
direction and the meridional (north-south) direction, as two 1-d Ornstein-
Uhlenbeck (OU) processes. The wind speed is obtained by taking the
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Euclidean-norm of these two OU processes. The wind speed then is trans-
lated to wind power by a WPC.

An OU process {Xt, t ≥ 0} is a mean reverting, stationary, Gaus-
sian, Markovian stochastic process which satisfies the following stochastic
differential equation [91],

dXt = θ(µ−Xt)dt+ σdWt. (2.16)

In the above equation µ > 0 is the long term mean of the process, θ > 0

is the mean reverting rate, σ > 0 is the volatility term and {Wt, t ≥ 0} is
a Brownian motion.

In Chapter 5 we directly model the wind power output instead of
first modeling wind speed and then wind power using a WPC. In that
chapter, we model wind farm power output with simple Markov chain
models. In order to do so we use a Hidden Markov Model (HMM) where
the wind turbine power output is modeled as a stochastic process (Markov
chain) that depends on the state of a so-called hidden process. The hidden
process is a discrete-time Markov chain and is not observed; hence the
name hidden process. Interpreting this hidden process depends on the
application. We speculate that in the case of wind power generation, the
hidden process may include the meteorological conditions to which the
wind turbines are subjected.

A standard HMM consists of a collection of random variables {X1, . . . ,

XT , Y1, . . . , YT}. The stochastic process {Yt, t = 1, . . . , T} is the ob-
served (continuous or discrete) process and {Xt, t = 1, . . . , T} is the hid-
den process which is a discrete-time Markov chain with discrete state
space M. Under the standard HMM formalism for a given set of ob-
servations (y1, . . . , yT ), the stochastic processes {Xt, t = 1, . . . , T} and
{Yt, t = 1, . . . , T} are governed by the following stochastic matrix AAA and
set of emission distributions BBB respectively [37, 130],
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Figure 2.1: Schematic diagram of the standard HMM described in (2.17)

Ai,j = P(Xt+1 = j|Xt = i),

Bi(yt) = P(Yt = yt|Xt = i),
(2.17)

∀i, j ∈M. For t = 1, the initial distribution ofX1 is given by πi = P(X1 =

i). A schematic diagram showing the dependence of the random variables
{Xt, Yt, t = 1, . . . , T} of the HMM described by (2.17) is presented in
Figure 2.1.
In Chapter 5 we discuss in more detail the hidden Markov model we use
to model power output of a wind farm and parameter estimation of the
model. Figure 2.2 shows the schematic diagram of the HMM model we
present in Chapter 5.

2.6 Markov-modulated fluid queue

A Markov-modulated fluid model (or queue) is a mathematical model
that describes the fluid level in a buffer (or storage device) which is being
filled and emptied for exponentially distributed random periods. These
periods are generally related to the state of a continuous-time Markov
chain (CTMC) [16, 115]. Such models find application in various fields
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Figure 2.2: Schematic diagram of the HMM model for modeling wind
power as used in Chapter 5.

of research, for example in dam theory [117], telecommunication networks
[16, 60, 142], transportation systems [122], modeling forest fires [152], ruin
probability [19, 23], video streaming [41, 170], and other fields of queuing
theory [141].

In Chapter 6 we apply the Markov-modulated fluid queue model to
micro-grids powered by a wind park and supported with energy storage
devices. A micro-grid is a localized group of interconnected distributed
energy sources and loads which is connected to the centralized grid. It
can operate in two modes, namely the grid-connected mode and the au-
tonomous island-mode [157]. For autonomous operation of such micro-
grids in island-mode it is important to study the probability of the energy
storage device (buffer) running empty.

2.6.1 Hyperbolic partial differential equations

The cumulative distribution function of the first passage (or hitting) time
of a buffer (modulated by a CTMC) being empty follows a first order
hyperbolic partial differential equation, more specifically, an advection-
reaction partial differential equation (PDE) [119]. We discuss the model
in detail in Chapter 6. In this section we will briefly describe hyperbolic
PDEs.
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Hyperbolic PDEs find application in various physical systems like wave
motion, and advective transport of chemical species [85, 106]. A simple
time-dependent linear first order hyperbolic PDE with one space dimen-
sion is given by

∂U (x, t)

∂t
+A

∂U(x, t)

∂x
= 0, (2.18)

where U ∈ Rn is an n-dimensional vector. Each component of the vector
generally represents some unknown physical quantity like temperature,
pressure, velocity etc. A is a n × n real matrix. The above equation is
hyperbolic if the matrix A has real eigenvalues and n linearly independent
eigenvectors.

2.6.1.1 Advection-reaction PDE

We will see in Chapter 6 that the cumulative distribution function of the
first passage time of the Markov modulated buffer being empty follows an
advection-reaction PDE. Such PDEs are commonly used to model physical
systems with different chemically reacting species being advected by a fluid
flow. They have the following form (see Chapter 17 of [106])

∂U (x, t)

∂t
+A

∂U(x, t)

∂x
= ψ(U(x, t)). (2.19)

In the above equation U(x, t) may represent concentrations of various
chemically reacting species which needs to solved for, A is the coefficient
matrix (determined by the advective velocity) and ψ(U(x, t)) is called the
source or reaction term. In the problem we consider in Chapter 6, UUU(x, t)

denotes a vector of cumulative distribution functions of the first passage
time of a Markov modulated buffer being empty. This is discussed in more
details in Chapter 6.

In Chapter 6 we deploy various numerical integration schemes for solv-
ing the advection-reaction PDE. These schemes are well established in the
scientific computing discipline, however their use in the field of queueing
systems is new.
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Chapter 3

Mitigation of large power spills
by an energy storage device in a
stand-alone energy system

3.1 Introduction

Integration of intermittent renewable sources of energy like solar and wind
power into the electric grid has increased in recent times. The depletion of
the exhaustible resources of energy and the strive for a carbon-free future
will enhance the usage of these renewable sources more. The unpredictable
nature of the renewable energy sources lead to intermittent power gener-
ation. This makes the integration of renewable energy sources into the
power grid a highly challenging task.

For stable or reliable operation of power systems the voltage and fre-
quency of the grid should be maintained within acceptable limits. The
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stability should be maintained within the timescale of seconds [4]. Large
scale integration of distributed variable energy sources like PV arrays and
micro-generator wind turbines can jeopardize the demand and supply bal-
ance of the grid due to sudden injection or deficit of power [4, 105]. An
instantaneous or sudden influx of power challenges the reliability of the
grid, and grid operators frequently resort to curtailment of renewable en-
ergy sources in order to maintain grid stability [13, 55, 64, 75]. Such
curtailments lead to economic losses for the involved energy producers.
Therefore, it is important to minimize such sudden influx of renewable
power into the grid.

To improve the practical efficiency of intermittent renewable energy
and to minimize the need of drastic actions (like using expensive fast
ramping generators) for ensuring reliable operations of the power grid,
local storage of excess power can be an important tool. The energy storage
device acts as buffer energy source. It stores energy when there is over-
generation of power, and delivers the stored energy to the system when
there is under-generation of power.

Stand-alone systems with renewable generations like solar photovoltaic
(PV) and wind supported with battery storage have been investigated in
great detail with respect to the PV-wind generation sizing, performance,
battery storage sizing, efficiency, optimization, system cost and reliability
indices in [21, 24, 59, 107, 113, 128, 146, 167, 174, 175, 181]. [172] investi-
gated the feasibility of replacing diesel generation entirely with solar PV
and wind turbines supplemented with energy storage by characterizing the
load-shedding probabilities. [143] recommended a model to optimize the
sizes of battery capacity and PV generator for stand-alone PV system us-
ing two optimization criteria, the loss of power supply probability (LPSP)
reliability criterion and energetic cost for economic evaluation. [45] ana-
lyzed loss of power supply (LPS) and LPSP for sizing the PV generators
of stand-alone PV systems. [34] presented a simulation model for the reli-
ability evaluation (loss of load expectation and loss of energy expectation)
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of small stand-alone wind energy conversion systems with respect to bat-
tery size, charging (discharging characteristics), wind speed, wind turbine
characteristics etc. [48] devised a mathematical methodology to predict
loss of load probability (LLP) for sizing stand-alone photovoltaic systems.

In this chapter we focus on large power spills caused by wind power,
i.e. on instances where the power generation is substantially larger than
the locally consumed power so that there is a large excess. This excess of
power either is lost or must be fed to the grid. The former situation leads
to economic losses to the wind energy producers and the latter situation
may cause problems in the grid such as voltage imbalances or current over-
loads. In this study we investigate a stand-alone single domestic energy
system with a local micro-generator wind turbine supplemented with a
battery. We aim to answer: How can we efficiently quantify the Probabil-
ity of Large Power Spills (PLPS) for a stand-alone energy system model?
We present a computational methodology to do so. Using this method-
ology, we compare different battery switching strategies and their impact
on PLPS. We analyze a single domestic household because many such
households make up a part of a distribution grid and an instantaneous
influx of large power from geographically correlated households powered
by wind can lead to severe damage to the grid. Also, this analysis of a
single household serves as a prototype for bigger systems such an energy
island or a region of the grid with high penetration of renewable energy
sources.

We use a simple energy balance method for the switching (charg-
ing/discharging) of the battery, i.e., when there is excess power generation
the battery is charged and when there is deficit of power it is discharged.
Such a simple switching strategy of the storage device has been considered
in many previous studies on energy systems with renewable generations
supplemented with storage devices, e.g. [34, 39, 45, 48, 65, 128, 143, 167,
172].

To this end, we devise models for simulating the wind speeds and
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power demand such that the invariant probability densities of the data
generated by the models are comparable to the data from measurements.
With these models for power generation and demand, we analyze how the
ramp constraints, the imposed maximal charging/discharging rates on the
storage device affects the probability of large power spills. We define a
strategy for charging the storage device to reduce the probability of large
power spills further. Finally, we study the effect of the ramp constrains
and the new charging strategy on the average power spilled in a given time
interval of interest. It is expected that the new scheme for charging the
storage device will increase the average power spill. We find that there
exists a trade-off between reducing the probability of large power spills
and reducing the average power spilled by the system.

The probability of occurrence of large power spill is small. The Crude
Monte Carlo (CMC) probability estimator is robust but becomes com-
putationally expensive for small probabilities. To reduce the workload of
CMC we use the splitting technique for rare-event simulations in our study
[135]. We use a variant of the splitting technique called the Fixed Num-
ber of Successes (FNS) proposed by [15] for calculating the probability of
large power spills. [165] used FNS to estimate electrical grid reliability in.
It is of great relevance to find an appropriate importance function for the
splitting technique, as it plays the most significant role in the efficiency of
splitting [68]. We formulate an appropriate IF for our hybrid stochastic
power system described above.

In Section 3.2 we describe the system, the storage model, problem
description and the stochastic models for power generation and demand.
Section 3.3 provides details of the splitting technique and the appropriate
importance function for the problem. Section 3.4 presents the simulation
results showing how the probability of large power spills vary with the
battery parameters and charging strategy. In this section we also compare
the CMC and FNS computation time. Section 3.5 concludes the chapter.
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3.2 System setup

In the single domestic power system with stochastic wind power generation
and demand, a battery is incorporated as a storage device in order to
reduce large power spills. Let P (t) be the power mismatch between the
wind power generation and demand (load) defined as

P (t) := W (t)−D(t), (3.1)

where W (t) is the wind power generated and D(t) is the power demand
at time t. P (t) > 0 implies there is excess of power in the system and can
be used to charge the energy storage device and P (t) < 0 denotes paucity
of power in the system and the storage device needs to be discharged.

3.2.1 The storage model

Let us consider a battery as the energy storage device in the power system.
The state of the battery at time t is given by B(t) and it has a maximum
storage capacity Bmax. For any storage device there will be bounds on the
rate at which it can be charged or discharged known as ramp constraints
[26]. The ramp constraints are denoted as δ and β such that δ < 0 and
β > 0. Losses occur during charging and discharging the battery which
depends on the efficiency parameters, αc and αd of the battery, where
αc, αd ∈ [0, 1]. The battery is modeled according to

dB

dt
= Ḃ(t) := (αc1{P (t)>0} +

1

αd
1{P (t)<0})P (t), for t ∈ [0, T ] (3.2)

,
with the battery constraints, namely the ramp and capacity constraints
imposed on it

δ ≤ Ḃ(t) ≤ β where δ < 0 < β,

0 ≤ B(t) ≤ Bmax ∀ t ∈ [0, T ].
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T is the time length of 24 hours. 1{·} is the indicator function which
takes value 1 if the expression in the parenthesis is realized else it takes
value zero. Thus, in principle, the battery is charged when P (t) > 0 and
discharged if P (t) < 0 unless the battery constraints are met.

In our computational experiments, time is discretized into N = T
∆t

time steps, where ∆t is the time step of integration. The battery state is
updated according to the Euler scheme

B(t+ 1) = min(Bmax, max(0, B(t) + ∆B(t))), (3.3)

where
∆B(t) := min(β, max(δ, αP (t)))∆t, (3.4)

for t = 0, . . . , N − 1 and α = αc1{P (t)>0} + 1
αd
1{P (t)<0}. B(0) is the initial

state of the battery. If the battery is fully charged, B(t) = Bmax, it will
only discharge if P (t) < 0. Otherwise if P (t) > 0 it remains at Bmax and
vice-versa for the empty state of the battery, i.e., when B(t) = 0.

3.2.2 Power Spill

Let P̃ (t) be the amount of power getting absorbed or delivered by the
battery,

P̃ (t) =



P̂ (t) if 0 < B(t) < Bmax,

P̂ (t) if B(t) = Bmax and P (t) < 0,

P̂ (t) if B(t) = 0 and P (t) > 0,

0 otherwise,

(3.5)

where P̂ (t) = min(β,max(δ, αP (t))) and α = αc1{P (t)>0} + 1
αd
1{P (t)<0}.

Let us define the residual power as

F (t) := P (t)− P̃ (t). (3.6)

When F (t) > 0, power spill occurs: there is more power production than
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demand and the battery cannot absorb all the excess power because of
the battery constraints, i.e., either the battery is completely charged or it
cannot charge fast enough due to the ramp constraints. Note that power
spill can also occur when P (t) is large and αc < 1.

3.2.3 Problem description

We are interested in calculating the probability of large power spills in the
system over a time length T , i.e.,

P( sup
t∈[0,T ]

{F (t)} ≥ F ∗), (3.7)

where F ∗ > 0 is the large power spill threshold.
To make an overall assessment of the integrated system we compare

how this probability varies for various values of Bmax, the ramp constraints
and for different battery charging schemes.

3.2.4 Modeling power mismatch P (t)

As discussed earlier we model the stochastic power mismatch P (t) from
(3.1) by modeling the wind power W (t) and the power demand D(t).

3.2.4.1 Wind power generation W (t)

Earlier studies have shown that the Rayleigh distribution (a special case
of Weibull distribution with shape parameter equal to 2) arises from the
wind speeds if the wind vector components along the zonal (east-west)
direction, u and the meridional (north-south) direction, v are taken to
be individually independently Gaussian distributed with zero means and
equal standard deviations [47]. As mentioned in [116], the probability
density function for the wind speed obtained from these assumptions can
be suitable globally but in general they are not true locally. We generalize
the assumptions by taking u and v as independent (no cross-correlation)
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and Gaussian with non-zero means (µu and µv respectively) and different
standard deviations (σu and σv respectively). µu and µv are the aver-
age wind velocities in the zonal and the meridional direction respectively.
σu and σv are the standard deviations along the wind component direc-
tions. To get realistic values for the means and standard deviations of
the wind velocity components, we use hourly wind data from KNMI [5].
The KNMI data consists of hourly measurements throughout 2013 of wind
velocity at a height of 10 m at the Schiphol airport in the Netherlands.
The Gaussian processes for the wind velocities are modeled as two 1-d
Ornstein-Uhlenbeck processes,

dU(t) = ΘU(MU − U(t))dt+ ΣUdWU(t), (3.8)

and
dV (t) = ΘV (MV − V (t))dt+ ΣV dWV (t), (3.9)

where MU = µu and MV = µv; ΣU =
√

2ΘUσu, and ΣV =
√

2ΘV σv.
WU(t) and WV (t) are Wiener processes. Note that the above described
model is similar to the model for wind velocities in [116], however we
neglect the surface drag force terms here. The values of Θu and Θv are
to be determined later (see section 3.2.4.3). The simulated wind speed is
given by

Ws(t) =
√
U2(t) + V 2(t). (3.10)

From Figure 3.1 we observe probability density function of the wind speed
data generated from the model is in reasonable agreement with the KNMI
measurement data. Note from Table 3.1, the mean and the variance of the
simulated data are reproduced well compared to the KNMI data, however
the skewness is underestimated by the simulated data compared to the
KNMI data.
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Figure 3.1: Comparing the probability density functions of KNMI mea-
surement data and simulated wind speed data.

Mean Variance Skewness
KNMI data 4.97 7.09 0.92

Simulated data 5.04 6.86 0.61

Table 3.1: Comparing the first three moments of KNMI data and simu-
lated data for wind speed.

The power produced by a wind turbine is a function of wind speed and
can be modeled by the following wind power curve [110, 118],

W (t) =


WRP

[Ws(t)−WCI

WRS−WCI

]
if WCI ≤ Ws(t) ≤ WRS,

WRP if WRS < Ws(t) < WCO

0 otherwise.

(3.11)

Here, WCI is the cut-in wind speed at which the turbine starts to generate
power. Wind speeds below this threshold are not sufficient enough to exert
torque for rotating the blades of the wind turbine. WRS is the rated wind
speed at which the turbine produces its rated power WRP . The rated
power is the maximum power a wind turbine can produce. For the above
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Figure 3.2: Frequency histogram plot of the wind power produced for
WCI=2 m/s, WCO=18 m/s, WRS=10 m/s and WRP= 1100 W.

prescribed wind power curve, the wind power is a linear function of wind
speed between the wind speeds WCI and WRS. WCO is the cut-out wind
speed at which the turbine shuts down for safety reasons. Above the
cut-out wind speed the turbine needs to be shut down to avoid physical
damage to the turbine rotor. Between wind speeds WRS and WCO the
wind turbine produces its rated power WRP . In our study we consider a
micro-generator domestic wind turbine with WRP = 1100 W, WCI = 2
m/s, WRS = 10 m/s and WCO = 18 m/s.

From the frequency histogram plot of wind power based on simulated
wind speed data in Figure 3.2 we observe that there exist an upper and
a lower bound on the power produced because of the physical restrictions
on the wind turbine. The peak at zero is due to the turbine output being
zero and the higher wind power peak is due to the turbine output being
WRP .

3.2.4.2 Power demand D(t)

In this section we will discuss the modeling of the power demand D(t).
The bar plot in Figure 3.3 shows the frequency histogram of the power
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demand (measurement data) of a typical household for one year [1]. We
observe that there exist two peaks in the histogram plot, one peak is at 230
W and the other is peak at around 500 W. We model the power demand
by the following SDE which mimics these peaks,

dD(t) = −V
′(D(t))

c
dt+

1√
c
dWD(t), (3.12)

where V (D(t)) is the so-called potential function for D(t), WD(t) is the
Wiener process and c is a constant to be determined later (see Section
3.2.4.3). The relation between the time invariant probability density ψ(D)

and the potential function V (D(t)) for (3.12) is given by

ψ(D) = ψ0 exp(−V (D)), (3.13)

where ψ0 is a normalization constant. The potential function V (D) was
obtained from the density distribution of the measurement power demand
data by inverting (3.13):

V (D) = − logψ(D) + logψ0. (3.14)

In order to obtain an expression for the potential, a 6th order polynomial
was fitted on the values of V (D) calculated from (3.14). In order to avoid
ill-conditioned values for the polynomial constants, the demand data was
re-scaled by a factor of 100 and re-centered by 300 W, i.e., Dre-scaled =
D−300

100
.

Figure 3.3 shows the comparison of the probability density function of
the simulated data and frequency histogram of the measurement data for
power demand. Note to construct the frequency histogram plot of the
measurement data in Figure 3.3, we have scaled the data back again. We
can see that our power demand model captures the 230 W and 500 W
peaks reasonably well. However, the demand model does not capture val-
ues greater than 600 W. This is because of the order of the polynomial
chosen for V (D(t)). In this model we neglect the periodicity in the switch-
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i ai

1 0.1977
2 -1.1643
3 1.9195
4 0.6014
5 -3.2804
6 0.5133
7 -5.3003

Table 3.2: Polynomial constants for V (D) ≈
∑7

i aiD
7−i.
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Figure 3.3: Comparison of the measurement data (frequency histogram
bar plot) and the simulated data (probability density function in red line)
for the yearly electricity consumption of a typical household.

ing related to power demand consumption pattern and consider random
switching between these peaks.

3.2.4.3 Auto-correlation function (ACF)

The choice of ΘU ,ΘV and c for (3.8), (3.9) and (3.12) is done in such a
way that all the simulated data decorrelate at a comparable time with the
KNMI wind data (see Figure 3.4). To achieve this, we take ΘU = ΘV =
0.025 and c = 2.
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Figure 3.4: Comparing the ACF of the simulated wind and demand data
with KNMI wind speed data.

3.2.4.4 Power mismatch

The power mismatch between the generation and demand is given by
P (t) = W (t)−D(t). We observe four maxima in the frequency histogram
plot of power mismatch in Figure 3.5. These maxima occur when the
power generated W (t) is minimum or maximum and the 230 W or 500 W
peaks of power demand D(t) occur.

From the wind and demand models discussed in this section we calcu-
late the probability of large power spills (3.7) when a battery is incorpo-
rated into the system.
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Figure 3.5: Frequency histogram plot of power mismatch between power
generation and power demand.

3.3 Splitting technique for rare event simula-

tions

In our model we are interested in estimating probabilities of large power
spills when a battery is incorporated in a power system with stochastic
power generation and demand. It is expected that the probability of large
power spills will be small when a battery is incorporated in the system.
The Crude Monte Carlo (CMC) estimations of these small probabilities
will become computationally very expensive.

3.3.1 A review of the splitting technique

We now give a brief review of the rare event simulation technique [135].
As discussed in Section 2.4.1 of Chapter 2, the CMC estimation becomes
computationally expensive when the value of the probability under consid-
eration, γ is small. To reduce the computational workload for estimating
small values of γ we use the splitting technique for rare event simulation
[69]. In splitting, the sample paths of the stochastic processes involved
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are split into multiple copies at various levels of the importance function
till the rare event set is reached [69]. The importance function measures
the distance to the rare-event set. As discussed in Section 2.4.2 of Chap-
ter 2 in splitting, probability γ is decomposed into the product of several
conditional probabilities which occur more easily and are hence less com-
putationally intensive to calculate. Hence we get the estimate of γ to be
(see (2.15) of Chapter 2),

γ̂ =
m∏
k=1

p̂k, (3.15)

where m is the number of sub-intervals the importance function valued
between [0, L] is divided into, and

p̂k = Rk/Nk−1 for all Rk > 0. (3.16)

In the above equation, Rk is the number of sample paths that have hit
the k-th level before the end time T and Nk is the total number of sample
paths launched at level k. Nk depends on which variant of splitting is
deployed. Please see Section 2.4.2 of Chapter 2 for more details on splitting
technique.

3.3.1.1 Variants of splitting

We briefly discuss the three main variants of the splitting technique:

• Fixed Splitting: Each of the sample paths that has entered level
k is resampled exactly Ck ≥ 1 times where Ck is fixed [69]. Hence,
the total number of sample paths launched from level k becomes
Nk = CkRk. Note that both Nk and Rk are random now. Using
(3.16) we get,

p̂k =
Rk

Ck−1Rk−1

for k = 1, . . . ,m, (3.17)

where C0 = 1 and R0 = N0. The disadvantage of this method is
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that paths might not hit the next level leading to a wrong estimate
γ̂ = 0. This can happen if the levels are not chosen optimally.

• Fixed Effort: Nk, the number of samples path launched from level
k is kept fixed. Resampling for the next level k+ 1 is done Nk times
by random sampling with replacement of the Rk paths that have
reached level k. The conditional probability estimates are given by,

p̂k =
Rk

Nk−1

for k = 1, . . . ,m. (3.18)

This method too suffers from path explosion and extinction problem.

• Fixed Number of Successes (FNS): This variant of splitting
has been developed by [15]. For this case the number of sample
paths that reaches level k, i.e, Rk is kept fixed and the resampling
with replacement from k− 1 level is done till Rk sample paths have
reached (or crossed) level k.

The unbiased estimator of the rare-event probability is given by,

γ̂ = p̂k =
m∏
k=1

Rk − 1

Nk−1 − 1
for k = 1, . . . ,m. (3.19)

As Rk is kept fixed, this method does not suffer from path explosion
or extinction. We will use this variant of splitting technique in this
chapter and in Chapter 4.

The unbiased estimator for the variance Var(γ̂) is not known for the
FNS method. However, under the assumption that the conditional
hitting probability does not depend on the entrance states of the
previous stage, i.e., P(Hk|Hk−1, (Tk−1,X(Tk−1))) = P(Hk|Hk−1),

(∀(Tk−1,X(Tk−1)), ∀k), the squared relative error of γ̂ can be bounded
by

SRE(γ̂) ≤
m∏
k=1

( 1

Rk − 2
+ 1
)
− 1. (3.20)
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Figure 3.6: The phase space of B(t) and P (t), where Bmax = 1500 Wh,
F ∗ = 850 W and β = 200 W. Rare event region 1 : B(t) ≥ 1500 W and
P (t) ≥ 850 W. Rare event region 2: 0 ≤ B(t) ≤ 1500 and P (t) ≥ 1050
W.

In the description above X(t) in a n-dimensional Markov process,
Tk is the time of hitting the k-th level and Hk is the event that the
k-th level is hit during the time interval [0, T ] (see Section 2.4.2 of
Chapter 2 for more detailed definitions).

3.3.2 Importance function for the stochastic domestic

power system

The importance function plays a pivotal role in the efficiency of splitting
[68]. In this section we present an appropriate importance function for
the stochastic power system with a battery incorporated. We define the
importance function, φ as the distance of the system from the rare event
sets in the phase space of the state of battery B(t) and the power mismatch
P (t).

For formulating the importance function, we define three `1 (or Man-
hattan) distances from the rare event sets (see Figure 3.6) as
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R1(P (t), B(t)) = a1(F ∗ − P (t)) + a2(Bmax −B(t)),

R2(P (t), B(t)) = a2(Bmax −B(t)),

R3(P (t), B(t)) = a3(F ∗ + β − P (t)),

where, a1 = 1/F ∗, a2 = 1/Bmax and a3 = 1/(F ∗ + β). We define the
importance function as

φ(B(t), P (t)) =



−min(R1(P (t), B(t)), R3(P (t), B(t)))

if P (t) < F ∗,

−min(R2(P (t), B(t)), R3(P (t), B(t)))

if P (t) ≥ F ∗.

(3.21)

The negative sign makes φ an increasing function in its arguments.
Figure 3.6 depicts the level sets of the importance function φ and the

rare-event sets in the phase space of the battery state B(t) and the power
mismatch P (t). Power spill occurs when P (t) > 0 and the battery cannot
absorb all the excess power because of the battery constraints, i.e., either
the battery is completely charged or it cannot charge fast enough due to
the ramp constraints. As discussed in Section 3.2.3, our problem is to
find the probability of large power spills, i.e., when F (t) ≥ F ∗, where
F ∗ > 0. Rare event region 1 occurs when the battery is charged to its
maximum capacity Bmax and P (t) ≥ F ∗. Rare event region 2 occurs
when the battery cannot absorb all the power available to it because of
the ramp constraints imposed on it and the residual power left is spilled.
This happens when P (t) ≥ F ∗ + β.

For splitting, we construct the levels sets of the importance function φ
such that it depicts the distance of the system state from the rare event
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sets. From (3.7) and (3.21) we have

γ̂ := P( sup
t∈[0,T ]

{F (t)} ≥ F ∗) = P( sup
t∈[0,T ]

{φ(B(t), P (t))} ≥ 0).

3.4 Results and Discussion

In this section, we discuss how the probability of power spills (beyond a
threshold) varies with the battery size, ramp constraint imposed on the
battery and for dimportance functionferent charging scheme of the battery.
We integrate (3.2), (3.8), (3.9), and (3.12) using forward Euler integration
scheme with time step ∆t = 0.01 hours and T = 24 hours. For all the
calculations we take the initial state of the battery B(0) = Bmax/2 and
P (0) = -65 W. For simplicity we use δ = −β and the efficiency parameters
αc = αd = 1, as it does not add any new character to the structure of the
model [26]. We calculate the probability of power spills greater than 850
W, i.e., F ∗ = 850.

For performing FNS we first calculate the number of levels m by the
pilot run such that p̃k is nearly equal to the optimal value of popt ≈ 0.2032

[15]. We follow the procedure prescribed in Chapter 6 of [163]. For the
pilot run we use Rk = 50 ∀k. For the final run we calculate Rk from (3.20)
such that the SRE (γ̂) ≤ 0.01. In order to obtain an accurate estimate
of the probabilities, FNS is repeated n ≥ 30 times (suggested by [67]) to
calculate the mean of the estimator

ˆ̄γn :=
1

n

n∑
i=1

γ̂i. (3.22)

We are interested in the squared relative error of the mean given by

SRE(ˆ̄γn) :=
1

n
SRE(γ̂i). (3.23)

To obtain the value of n we first repeat FNS 30 times, and it is repeated
further until the SRE(ˆ̄γn) ≤ 0.005.
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Figure 3.7: Probability of large power spill versus ramp constraint with
F ∗=850 W and T= 24 hours for various storage capacities.

3.4.1 PLPS for different values of Bmax and β

We study the effect of the ramp constraint β on the probability of large
power spills ˆ̄γn for various battery capacities Bmax. Figure 3.7 shows how
ˆ̄γn varies with β for various values of Bmax. We observe that ˆ̄γn reduces
with β till an optimal value β∗ where it is minimal, then again increases
and becomes constant. This means that, either a very fast or a very slow
charging/discharging battery accounts for more large power spills. A very
fast charging/discharging battery will get to its maximum capacity very
soon; hence won’t be able to store any excess power generated which will
account for the large power spills. On the other hand, a very tightly
constrained battery (small β) cannot absorb all the excess power in the
system and power is spilled.

In terms of the phase space (see Figure 3.6), for small values of β the
system hits the rare event region 2 and for β > β∗ the system hits rare
event region 1.
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We observe that for very small values of β there is no effect of the
battery size Bmax on the ˆ̄γn. This is because when the battery is very
restricted it never gets charged to its maximum capacity, hence Bmax does
not affect the probabilities. As β approaches β∗ we see the effects of Bmax:
it reduces ˆ̄γn, which is expected. The larger the value of Bmax, the longer
it will take the battery to reach region 1. When β is very large the effect of
Bmax becomes negligible because the battery reaches it maximum capacity
very fast and any excess power in the system greater than F ∗ lead to large
power spills.

3.4.2 PLPS for different battery charging strategies

In order to reduce the large power spills further, we employ a different
charging strategy for the battery. A fraction of the battery 1−ε is reserved
for absorbing only those values of excess power which are greater than a
threshold, where 0 ≤ ε ≤ 1. In our case we take the threshold same as the
power spill threshold F ∗. The battery is charged till :

1. εBmax if P (t) < F ∗

2. Bmax if P (t) ≥ F ∗.

The amount of power absorbed/ delivered by the battery is

P̃ (t) =



0 if B(t) = εBmax and 0 < P (t) < F ∗,

0 if B(t) = Bmax and P (t) > 0,

0 if B(t) = 0 and P (t) < 0,

P̂ (t) otherwise,

where P̂ (t) = min(β,max(γ, αP (t))) and α = αc1{P (t)>0} + 1
αd
1{P (t)<0}.

We compare the probability of large power spills ˆ̄γn for different ε.
Figure 3.8 shows ˆ̄γn versus β with Bmax = 1500 Wh, F ∗ = 850 W and

T = 24 hours for various values of ε. We observe that as the value of ε
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Figure 3.8: Probability of large power spill versus ramp constraint β with
Bmax=1500 Wh, F ∗=850 W and T= 24 hours for various values of ε.

reduces, that is, as we reserve the battery more for larger fluctuations in
P (t), ˆ̄γn decreases. This happens because of the reserved space accessible
to the battery only for absorbing the large values of P (t). We observe
similar response of the system to β as Figure 3.7. From Figure 3.8 we
observe that the minimum value of ˆ̄γn drops by a factor of 1000 from ε =
1 to ε = 0.9. So, the more we reserve the battery for large power mismatch,
the lower will the probability of large power spills ˆ̄γn become.

3.4.3 Average power spill

In the previous section 3.4.2 we observe that, if we reserve the battery
for larger fluctuations in the net power mismatch, i.e., as ε decreases,
the probability of large power spills ˆ̄γn goes down drastically. But this
increases the probability of small power spills. In this section we examine
the time average of power spilled by the system over 24 hours versus β for
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Figure 3.9: Average power spill power spill versus ramp constraint β with
Bmax = 1500 Wh, F ∗ = 850 W and T = 24 hours for various values of ε.

different values of ε

〈[F (t)]+〉T =
1

T

∫ T

0

[F (t)]+dt, (3.24)

where [x]+ := max(0, x).
Figure 3.9 shows the average power spill over a 24 hours of time interval

versus β with Bmax = 1500 Wh and F ∗ = 850 W for different ε. We
observe that, the more we reserve the battery for the large values of P (t),
the higher the average power spill becomes. This happens because, when
the battery state reaches εBmax it can further charge to its maximum
capacity only if P (t) ≥ F ∗ and net power generated P (t) < F ∗ is spilled.
Hence, we observe increased average power spill.
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β CMC FNS

γ̄n 1.81×10−2 1.81×10−2

40
CPU time(s) 1×103 1.24 ×102

γ̄n 3.61×10−4 3.60×10−4

75
CPU time(s) 2.55×104 4.33 ×102

γ̄n 7.11×10−5 7.12×10−5

85
CPU time(s) 1.51 ×105 5.52 ×102

Table 3.3: Comparing the computation time for CMC and FNS for Bmax=
1500 W, ε= 0.8, F ∗= 850 W and n=30. γ̄n is the mean of the probability
estimator for the estimation methods used.

3.4.4 CMC versus FNS

We compare the computation time for CMC and FNS probability estima-
tor such that the squared relative error for both the methods are compara-
ble, i.e, SRE(γ̃) ≈ SRE(γ̂i). Table 3.3 compares the computation time of
CMC and FNS for few values of the probability of large power spill. The
CPU time of FNS includes the pilot runs. As the value of the probability
of large power spills goes down the time gain of FNS over CMC becomes
more profound. The simulations are performed using MATLAB 2012b on
an Intel Core 2.50 GHz.

3.5 Conclusion

In our assessment for finding the best design to operate the storage device
in a single domestic power system with wind generation for the simple
switching strategy of the battery, we observe that the ramp constraints
imposed on the battery play a major role in mitigating the large power
spills. We find there exists an optimal value of the ramp constrains for
which occurrence of large power spills is minimal. We also find that a
fast charging/discharging battery increases the probability of large power
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spills. Increasing the storage capacityBmax reduces the probability of large
power spill only when the battery operates around the optimal values of
the ramp constraint β.

We employed a different charging scheme to the battery where a certain
part of it is reserved only for absorbing large values of excess power in the
system. We found that the probability of large power spills goes down
significantly with the reserve level (see Figure 3.8). But this charging
scheme comes with a trade-off. The more we reserve the battery for larger
fluctuations in the excess power generated, the higher the average power
spill becomes, as depicted in Figure 3.9. It should be noted that there is a
nominal increase in the average power spill with ε, whereas the probability
of the large power spills decreases drastically with ε.

We formulated the importance function for the FNS splitting technique
used to calculate the probability of large power spills for our system. Ta-
ble 3.3 shows the time efficiency of FNS over CMC. The time gain of FNS
over CMC becomes more evident as the probability of interest becomes
smaller.
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A computational method for
optimizing storage placement to
maximize power grid reliability

The strive for reducing carbon footprints and a carbon free future has
rapidly increased the usage of renewable energies in power grid. Renew-
able energy sources like photo-voltaic (PV) arrays and wind turbines are
unpredictable in nature, which lead to intermittent power generation. The
integration of intermittent renewable energy sources into the electrical
power grid challenges the grid reliability.

However, grid reliability can be enhanced by incorporating energy stor-
age devices (batteries) in the grid. The energy storage device acts as buffer
by storing excess energy generated and delivering power when there is en-
ergy deficiency. The peak-shaving benefit of batteries have been studied
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long back in 1981 by [176]. [24] developed a probabilistic method to study
the ability of energy storage to increase penetration of intermittent energy
sources in power grids.

Recent studies have investigated storage placement in the power grid
under the framework of optimal power flow in [12, 40, 49, 70, 72, 124,
150, 161]. [72] minimized the hourly social cost using a market-based
probabilistic optimal power flow with energy storage integration and wind
generation. [70] proposed a solution strategy to solve the optimal control
problem to investigate the effects of different energy storage capacities on
generation costs and peak-shaving. However, they have neglected uncer-
tainties due to fluctuations in demand and intermittency in generation.
To study the energy storage dispatch and placement problem in power
network with wind generation, [150] proposed a risk-mitigated optimal
power flow framework. [40] studied optimal placement of large-scale en-
ergy storage in power grids using semidefinite relaxation of AC optimal
power flow. [124] proposed a method to model the storage devices under
the framework of DC optimal power flow.

In this chapter we focus on the optimal storage placement in a power
grid for reliable operation of the grid. We model the line currents in the
grid according to the DC power flow equations and consider the Probabil-
ity of Line Current Violation (PLCV) as the reliability index of the grid.
PLCV calculates the probability that one of the lines in the grid has been
overloaded, i.e., one of the line currents has exceeded its allowed maxi-
mum. These line current violations lead to physical damage to the lines
because of the eventual temperature overload (see Section 2.2 of Chapter
2).

Given the distribution of the stochastic processes of the uncertain
power injections and the total storage installation size, we aim to find
the optimal placement of the storage devices in the grid such that the
PLCV is minimal. In order to do so, we use the Simulated Annealing
algorithm to minimize the PLCV in the configuration space of different
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storage sizes and locations. We resort to simulated annealing because the
configuration space of different storage locations and capacities is very
large and the quantity we wish to minimize (the PLCV) is not guaran-
teed to be convex. [159] have briefly discussed using simulated annealing
for optimal storage placement in power grid to minimize generation cost.
Our study focuses on minimizing a cost function which is a rare-event
probability.

For reliable operation of the power grid, PLCV should be small. The
conventional Crude Monte Carlo (CMC) method is robust but becomes
very inefficient for estimating small probabilities. To increase the effi-
ciency we use the splitting technique for rare-event simulations [135]. We
use a variant of splitting called the Fixed Number of Successes (FNS)
proposed by [15]. [165] used FNS to estimate electrical grid reliability.
The efficiency of splitting is highly dependent on the importance function
used [68]. We develop an appropriate importance function for our prob-
lem. We verify numerically that our importance function works well. A
theoretical analysis would be interesting but is beyond the scope of this
research work. Note that this is non-trivial since the power injections in
the grid are not diffusion processes due to the buffers (storage devices),
and as such, our setting does not fit in the framework of [166].

To the best of our knowledge, the combination of rare-event simula-
tion with simulated annealing has not been carried out before. [147] used
splitting to estimate the probability of large-scale blackout in power net-
work, which is embedded within a higher level optimization technique to
minimize the probability subjected to a budget constraint. We apply our
method to the IEEE-14 bus test case grid. The uncertain power injections
are modeled as Ornstein-Uhlenbeck processes. Given a fixed total storage
instalment capacity, we find the optimal storage locations and capacities
at each nodes of the grid such that the PLCV is minimal. The total
fixed storage installation capacity reflects financial/physical constraints.
We start from different initial configurations of the storage locations and
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capacities to check the convergence of simulated annealing to the final
storage configuration.

In Section 4.1 we discuss the power flow equations and the stochastic
processes used to model the net power generation and the storage model.
Section 4.2 defines the problem. Section 4.3 introduces the simulated an-
nealing algorithm and its various aspects used in the problem. Section 4.4
provides details of the importance function used for the problem. Section
4.5 presents the simulation results showing how SA algorithm along with
FNS minimizes PLCV efficiently for the given IEEE-14 bus test case grid.
Finally we conclude in Section 4.6.

4.1 System setup

The topology of the power grid can be defined by a graph G = (N , E),
where N := {1, 2, . . . , N} is the set of nodes (also known as buses) and E
is the set of edges (also called lines). In this chapter we solve the direct
current (DC) power flow equations for calculating the line currents.

4.1.1 Power flow equations

In this section we discuss both the alternating current (AC) power flow
equations and the DC power flow equations. The DC power flow equations
can be seen as a linear approximation to the AC power flow equations [77].
In order to derive the power flow equations we first define the following
quantities:

• Admittance matrix: Let yi,j ∈ C be the admittance of the line
(i, j) ∈ E , and yi,i is the admittance-to-ground at bus i ∈ N . If
(i, j) /∈ E , then yi,j = 0. The admittance matrix Y ∈ CN×N is given
by

Yi,j = |Yi,j|eiαi,j =

−yi,j if i 6= j,∑
k yi,k if i = j.

(4.1)
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The row sums of Y are zero and it is a symmetric matrix. The
conductance matrix G and the susceptance matrix B are the real
and imaginary parts of the admittance matrix YYY , respectively, such
that Yi,j = Gi,j + iiiBi,j. In order to avoid confusion we will denote
the imaginary unit as iii.

• Bus voltages: Let VVV = (Vi, ∀i ∈ N ) be the vector of bus voltages.
In polar form it is given by

Vi = |Vi|eiiiθi , (4.2)

where |Vi| ∈ [0,∞) is the voltage magnitude and θi ∈ (−π, π] is the
voltage angle of bus i.

• Line current flow: Let Ii,j ∈ CN×N , ∀(i, j) ∈ E be the current
flowing in line (i, j) from node i to j and is given by Ohm’s law,

Ii,j = yi,j(Vi − Vj). (4.3)

• Bus current injections: Let III = (Ii ∈ C, ∀i ∈ N ) be the vector of
bus current injections which are given by Ohm’s law and Kirchoff’s
current law,

III = Y VY VY V . (4.4)

• Complex nodal power: Let Si ∈ C be the complex power injected
at node i and is given by

Si = Pi + iiiQi, (4.5)

where the real part Pi ∈ R is called the active power. The imaginary
part Qi ∈ R is called the reactive power.
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4.1.1.1 AC power flow equations

Let SSS = PPP + iiiQQQ ∈ CN be the vector of nodal complex power injections.
The AC power flow equations are given by

Si = ViI
∗
i ∀i ∈ N . (4.6)

Using Ohm’s law (4.4) the above equation (4.6) can be written as
∀i ∈ N

Si = Vi

N∑
k=1

Y ∗i,kV
∗
k . (4.7)

Substituting (4.1) and (4.2) in (4.7) we get

Si =
N∑
k=1

|Vi||Yi,k||Vk|(cos(θi − θl − αi,k) + iii sin(θi − θk − αi,k)). (4.8)

Comparing the real and the imaginary part we obtain the AC power flow
equations in polar form ∀i ∈ N

Pi =
N∑
k=1

|Vi||Vk|(Gi,k cos(θi − θk) +Bi,k sin(θi − θk)) (4.9)

and

Qi =
N∑
k=1

|Vi||Vk|(Gi,k sin(θi − θk)−Bi,k cos(θi − θk)). (4.10)

4.1.1.2 DC approximations

Under DC approximation the following assumptions are made:

1. |Vi| = 1, ∀i ∈ N .

2. The voltage phase angle differences across a transmission line are

52



Chapter 4 4.1. System setup

small, i.e, ∀(i, j) ∈ E , we have sin(θi−θj) ≈ (θi−θj) and cos(θi−θj) ≈
1.

3. The resistive components of each line are ignored, i.e., Yi,j = iiiBi,j.

4. The real power flow across lines are significantly larger than the
reactive power flow, i.e., Pi,j >> Qi,j ∀(i, j) ∈ E . Hence the reactive
power is ignored.

These assumptions reduces the AC power flow equations into

Pi =
∑
k

Bi,k(θi − θk) ∀i ∈ N , (4.11)

known as the DC power flow equations. For any line (i, j) ∈ E , the line
current Ii,j flowing from i→ j is given by the Ohm’s Law

Ii,j = Yi,j(Vi − Vj) = Bi,j(θi − θj). (4.12)

Conventionally, one bus in the grid is taken to be reference bus and is
called the slack bus. Typically it is designated to node 1 in the grid and
its voltage angle is set to be zero, θ1 = 0 and P1 = −

∑N
j=2 Pj.

4.1.2 Power Generation

We interpret every non-slack node as a single household which has stochas-
tic generation G(t) and demand D(t) at time t and produces net power
P (t) := G(t)−D(t). We model the net power generation at the i-th non-
slack node Pi(t) as discretized Ornstein-Uhlenbeck (OU) processes which
are in fact AR(1) processes,

∆Pi(t) = βi(µi − Pi(t))∆t+ σi∆Wi(t) for i = 1, . . . N − 1. (4.13)

where µi is the long term mean, βi is the mean reverting term, σi is the
volatility term andWi(t) denotes the Wiener process of the ith OU process.
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The values of these terms are determined later in section 3.4. Modeling
power injections as OU processes have been suggested by [165, 166].

4.1.3 Storage Model

We consider the storage devices (batteries) to be co-located with the
stochastic non-slack nodes and are charged/discharged locally by the net
power produced at each node. Let Bi(t) be the level of energy stored in
the battery at time t at the i-th non-slack node, and it has a maximum
capacity Bmax

i . The batteries are updated according to

Bi(t+ ∆t) = Bi(t) + pB
i (t)∆t ∀t ∈ [0, T ], (4.14)

where pB
i (t) is the power flowing in/out of i-th the battery, ∆t is the length

of the time step and T is the time horizon of interest. The batteries are
bounded by their corresponding capacity and total installation capacity
constraints

0 ≤ Bi(t) ≤ Bmax
i and

∑
i

Bmax
i = Btot ∀t ∈ [0, T ]. (4.15)

Let PB
i (t) be the power generated by the i-th battery and is given by

PB
i (t) = −pB

i (t). This is because, pB
i (t) > 0 implies the battery is getting

charged and it is consuming power and pB
i (t) < 0 implies the battery is

discharging and is generating power.

4.1.3.1 Switching of the Battery

The battery charging/discharging depends on the power flowing in/out of
the battery pB

i (t) which is given by

pB
i (t) =


Pi(t) if 0 ≤ Xi(t) ≤ Bmax

i

(Bmax
i −Bi(t))/∆t if Xi(t) > Bmax

i

−Bi(t)/∆t if Xi(t) < 0.

(4.16)
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whereXi(t) = Pi(t)∆t+Bi(t) for i = 1, . . . , N−1. Xi(t) is the energy level
of the battery at time t without any constraints imposed. Hence the bat-
tery charging/discharging is dependent on the net power generated by the
stochastic non-slack buses and the state of the battery. The above equa-
tion (4.16) ensures that (4.15) is true. To keep the storage model simple we
neglect the ramp constraints, the imposed maximal charging/discharging
rate on the storage device in this study (see Section 3.2.1 of Chapter 3).

4.2 Problem description

Our aim is to find the optimal battery locations and capacities at each
node to ensure a reliable operation of the grid. We consider the Probability
of Line Current Violation (PLCV) as the reliability index of the power
grid. PLCV is defined as the probability that any one of the line currents
violate its given line constraint maximum at any time t ∈ [0, T ], i.e,

γ := P{∃(i, j) ∈ E : sup
t∈[0,T ]

|Ii,j(t)| ≥ Imax
i,j }. (4.17)

In the above equation Ii,j is the current flowing between nodes i and j and
Imax
i,j > 0 is the maximum current carrying capacity the edge connecting
nodes i and j.

To solve the optimal storage (battery) placement problem and calcu-
lating PLCV we use a novel combination of two algorithms namely the
simulated annealing algorithm and the splitting technique for rare-event
simulations, respectively, discussed in the subsequent sections.

4.3 Simulated annealing algorithm

We wish to find the optimal location and capacities of the battery in the
grid such that PLCV is minimal. We do not expect PLCV to be convex.
Also, the configuration of space of battery locations and capacities to grow
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exponentially with the number of nodes in the grid. To overcome these
problems we use the simulated annealing (SA) [160] algorithm to minimize
PLCV.

Simulated annealing is a metaheuristic algorithm designed to approx-
imate the global optimum of a given function. The main aim of the algo-
rithm is to perform a local search in the solution space XXX of the problem
to minimize a desired cost function f(XXX). Annealing is a physical process
of heating a solid to very high temperature, then it is cooled by slowly low-
ering the temperature of the solid for eliminating point defects. It should
be noted that there is no hard guarantee to find the global optimum using
SA. The SA algorithm is based on the following search principle :

1. Start with an initial solution and consider it as the best solution
XXXbest. Initialize Tc, the temperature of the acceptance probability of
a bad solution .

2. Randomly select a new solution XXX∗ in the neighborhood of the pre-
viously obtained best solution.

3. If the new solution is better than the previously found best solution,
i.e, if ∆E = f(XXX∗) − f(XXXbest) < 0, then consider the new solution
as the best solution XXXbest = XXX∗.

4. If not, i.e, ∆E = f(XXX∗) − f(XXXbest) > 0, then accept the new bad
solution as the best solution with a probability exp(−∆E/Tc).

5. Slowly cool the temperature of the acceptance probability (decrease
Tc).

6. Repeat from 2 until the stopping criterion is reached.

The cooling law has to be chosen carefully to allow the algorithm suffi-
ciently explore the region around the initial guess. If the cooling is too
fast, the system will get stuck in the nearest local minimum and the algo-
rithm may not converge. If the cooling is too slow, the algorithm spends a
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lot of time in useless explorations which slows down the process. Usually,
an exponential decrease is considered for the cooling by multiplying the
current temperature with a constant, i.e. T new

c = κT old
c where 0 < κ < 1.

4.3.1 Cost Function: log(γ)

In this study we want to minimize γ (PLCV (4.17)) in the battery locations
and capacities configuration space. The values of γ’s are typically small
and while minimizing can go down to ∼ 10−5− 10−7 or smaller depending
on the total installation capacity of the battery. The acceptance probability
of the bad solution not only depends on Tc but also on the difference of the
function values for the new solution and the previously found best solution
∆E = γ(XXX∗) − γ(XXXbest). As the γ’s are very small, their differences
are also small hence the acceptance probability becomes large and the
algorithm accepts too many bad solutions and might never converge. So,
instead of minimizing γ we minimize log(γ) such that ∆E = log(γ(XXX∗))−
log(γ(XXXbest)) does not take very small values and the algorithm does not
accept too many bad solutions.

4.3.2 Random Moves in Battery Configuration Space

We evaluate γ for different battery locations and capacities in the SA
algorithm and then minimize log(γ). To move randomly in the solution
configuration space, we randomly select two non-slack nodes (i, j) ∀ i ∈
N /{1} and ∀ j(6= i) ∈ N /{1}. Then exchange mB blocks of battery
unit ∆B between the two chosen nodes such that conditions in (4.15) are
satisfied. Initially we start the algorithm by exchanging mB = NB blocks
of the battery unit and gradually reduce mB till it is equal to 1. The
gradual reduction of mB depends on the decrease of γ. As the value of
γ reduces by a factor of 10, mB is decreased by ∆m. This ensures that
when the desired minimum is reached the system does not jump out of the
minimum. The values of ∆B, NB and ∆m will be discussed in subsequent
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sections.

4.3.3 Stopping Criterion for SA

We enforce three simultaneous stopping criteria for SA algorithm:

1. The number of iterations, niter, exceeds a pre-defined threshold value,
nmax, i.e., niter ≥ nmax.

2. The difference between niter and the number of solutions the algo-
rithm has accepted, na, exceeds a maximum value, nd, i.e., niter −
na ≥ nd.

3. The improvements in γ have reached a desired minimum, ε, i.e.,
γmin = maxnm |γna − γna−nm| ≤ ε, where γna is γ for the accepted
iteration na.

If any of the stopping criteria is true the algorithm stops.

4.4 Importance function for splitting technique

In our model we are interested in estimating PLCV and then minimize the
logarithm of PLCV. It is expected that PLCV will take very small values
during minimization. The Crude Monte Carlo (CMC) estimations of these
small probabilities will become computationally very expensive and thus
we use the splitting technique for rare-event simulations. In particular we
use the FNS variant of splitting proposed by [15]. For details on splitting
technique see Section 3.3 of Chapter 3.

The efficiency of splitting is significantly determined by the importance
function [68]. We take the maximum of the ratio of the absolute value of
line currents and their respective maximum line current capacity as the
importance function φ. This makes φ an increasing function in [0,1] and
it is given by

φ(Ii,j(t)) := max
(i,j)∈E

|Ii,j(t)|
Imax
i,j

. (4.18)
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At time t, for any (i, j) ∈ E if |Ii,j(t)| ≥ Imax
i,j implies φ(Ii,j(t)) ≥ 1,

signifying that the rare event is hit, i.e., one of the line currents has
exceeded its line capacity. φ → 1 corresponds to approaching the rare
event set. A similar importance function was used by [165].

4.5 Simulation results

In this section we apply the SA algorithm and FNS to find the optimal
storage position in a power grid by minimizing PLCV.

4.5.1 Simulation Parameters

We first discuss the different parameters chosen for our simulations. For
the OU processes (4.13), we consider all the long term mean terms µi to
be zero, which implies on an average at each non-slack node the power
demand is compensated by the local power generation. The mean revert-
ing terms θi = 1 + (i − 1)/(N − 2) for i = 1, . . . N − 1 increases from
1 to 2 with i. The volatility terms σi are calculated from the long-term
standard deviations of the OU process std(Pi(t)) = σi/

√
2θi. The values

of std(Pi(t)) will be discussed in the subsequent sections. Currently, we
only consider uncorrelated OU processes for our assessment.

We perform our simulations for T = 24 hours and ∆t = 0.01 hours.
The initial state of the batteries are taken as Bi(0) = Bmax

i /2 ∀i ∈ N /{1},
i.e, they are half-filled.

For performing FNS we first calculate the number of levels m by the
pilot run such that p̃k is nearly equal to the optimal value of popt ≈ 0.2032

[15]. For the pilot run we use Rk = 50 for all k. For the final run we
calculate Rk from (3.20) such that the SRE(γ̂) ≤ 0.03. In order to obtain
an accurate estimate of the probabilities, FNS is repeated n = 30 times
(suggested by [67]) to calculate the mean of the estimator, ˆ̄γn := 1

n

∑n
i=1 γ̂i.

The squared relative error of the mean computed from the n samples is
SRE(ˆ̄γn) := 1

n
SRE(γ̂i).
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Figure 4.1: IEEE-14 bus line diagram showing the bus numbers and line
connections. Bus 1 is the slack bus.

For SA we take initial temperature Tc = 1 and κ = 0.99. For the
stopping criterion we take nmax = 1000, nd = 300 and ε = 10−7.

4.5.2 IEEE-14 Bus Test Case

In Figure 4.1 the line diagram of the IEEE-14 bus test case is shown. We
test our algorithm for different scenarios for the IEEE-14 bus test case.
The different scenarios being different maximum current carrying capacity
of the lines Imaxi,j ∀ (i, j) ∈ E and different standard deviations std(Pi(t))

of the OU processes of the non-slack nodes and total installation capacity
of storage Btot. We use the MATPOWER package [182] of MATLAB for
the topological details (admittance matrix) of the IEEE-14 bus test case
grid. However, the maximum line current carrying capacity is not set by
the test case. We will discuss the values of the maximum line current
carrying capacities in the subsequent sections.
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4.5.2.1 Example 1

For this case the values of Imaxi,j ∀ (i, j) ∈ E were obtained by simulating
a long time-series, T=104 hours, for the system. The maximum value of
line currents attained from the time-series run was taken to be the allowed
maximum of each lines. For the std(Pi(t)) we use the net power injections
at each non-slack node from MATPOWER, the values range from 1 to 95
p.u. (where p.u. is per unit value of the quantity of interest).

We start from different random initial configurations (cases 1-4) of the
battery locations and capacity to minimize log(γ). The total installation
capacity of storage Btot = 13000 p.u. For the random movement of the
algorithm in the battery configuration space (section 4.3.2) we take the
battery unit ∆B = 100 p.u., the initial number of blocks exchanged NB =

5 and ∆m = 1.
From Figure 4.2a we observe that γ has reduced by roughly a factor

of e10. In Figure 4.2b we compare the initial and final configurations
of the battery position and capacities. It is observed that for all the
cases in the final configurations about 35 percent of Btot is placed at bus
3. One plausible reason for this final configuration can be the fact that

std(P3(t))∑14
i=2 std(Pi(t))

= 0.365. We note that the final battery sizes at all the other
nodes (apart from 3) are different for all the four cases and are not as
consistent as node 3. Notwithstanding, for all four cases γ is reduced to
very small values, see Figure 4.2a.

In Figure 4.3 we compare the accepted configuration solutions with the
total configuration solutions the algorithm has searched for (from case 3).

4.5.2.2 Example 2

In this example, we take all the non-slack nodes to be similar , i.e., all
the OU processes have same standard deviations std(Pi(t)) = 10 p.u.
∀ i ∈ N /{1}. Unlike Example 1 we randomize the Imaxi,j . To do this, we
perform a long time series run, T=104 hours, for the system to calculate
the maximum current flown through each lines, and multiply them with
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(b) Initial and the final configuration of the battery.

Figure 4.2: Figure 4.2a plots log(γ) versus the number of accepted solu-
tions for different starting configuration of battery locations and capacities
with Btot = 13000 p.u. (Example 1). Figure 4.2b Compares the initial
and the final configuration of the battery locations and capacities for four
different initial states from Figure 4.2a.

uniform random numbers between [0.5, 1] to obtain Imaxi,j . We take the
battery unit ∆B = 12.5 p.u., the initial number of blocks exchanged
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Figure 4.3: log(γ) versus the number of accepted solutions and total num-
ber to solutions the SA algorithm searched for (Case 3 of Example 1).

NB = 8 and ∆m = mB/2 (see Section 4.3.2).
Figure 4.4a shows the minimization of log(γ) for four different initial

configurations (Case 5-8). We find that γ is reduced by a factor of e4. By
comparing the initial and final configurations of the battery locations in
Figure 4.4b, we find that buses 3, 8 and 10 require each around 15 percent
of Btot for all the cases for this minimization.

4.5.2.3 Example 3

In the example we make all the non-slack nodes and connection lines
equivalent to study the effect of number of connections at nodes on the
optimization. To do so, we take std(Pi(t)) = 10 p.u. ∀ i ∈ N /{1} and
Imaxi,j = 50 p.u. ∀ (i, j) ∈ E . We take the battery unit ∆B = 12.5 p.u.,
the initial number of blocks exchanged NB = 8 and ∆m = mB/2 (section
4.3.2). Figure 4.5a shows the optimization of log(γ) for various cases (Case
9 - 12), where each case represents a different starting configuration. The
initial and final configurations of the battery placement is shown in Figure
4.5b. Notice for Case 11 when the batteries are placed equally at the non-
slack buses the SA algorithm is not able to minimize log(γ) further. This
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(b) Initial and the final configuration of the battery.

Figure 4.4: Figure 4.4a plots log(γ) versus the number of accepted solu-
tions for different starting configuration of battery locations and capacities
with Btot = 2600 p.u. (Example 2). Figure 4.4b Compares the initial and
the final configuration of the battery locations and capacities for four dif-
ferent initial states from Figure 4.4a.

hints towards the fact that equally placing the batteries at the non-slack
buses is near optimal solution to the problem. Equal battery placement
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Figure 4.5: Figure 4.5a plots log(γ) versus the number of accepted solu-
tions for different starting configuration of battery locations and capacities
with Btot = 2600 p.u. (Example 3). Figure 4.5b Compares the initial and
the final configuration of the battery locations and capacities for four dif-
ferent initial states from Figure 4.5a.

being the near optimal solution shows that number of connections at nodes
is not important for minimizing log(γ).
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Figure 4.6: log(γ) versus Btot. The error bars represents 95 percent con-
fidence interval of log(γ).

We now investigate how log(γ) varies with Btot. In order to do that
we place the batteries equally at the non-slack buses. We do this because,
Figure 4.5a suggests that equally placing the batteries at the non-slack
buses is near the optimal solution of the problem. Figure 4.6 shows a
linear relation between log(γ) and Btot.

Finally we study the effect of Btot on the final configuration of battery
locations and capacities. We compare the final configurations for Btot =

1300 p.u. and 2600 p.u. For both the cases we start from equally placing
the batteries at the non-slack buses and start the optimization from a lower
temperature Tc = 0.05. We do this because equal battery placement is
already near the optimal solution. We repeat the optimization 10 times for
different Btot and take an average for presenting the final configurations
in Figure 4.7. Doubling Btot does not affect the final configuration of the
batteries, it almost doubles the size of batteries at the final configuration
as shown in Figure 4.7.
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Figure 4.7: Comparing the initial and the final configuration of the battery
locations and capacities for Btot = 1300 p.u. and 2600 p.u.

4.6 Conclusion

For finding the optimal storage placement to enhance power grid reliabil-
ity we use a novel combination of two computational techniques namely
Simulated Annealing and the Splitting technique for rare-event simulation.
To best of our knowledge this combination has not been used before. We
use simulated annealing to minimize the reliability index, PLCV (γ), of
the grid. We find that for very small values of γ, SA might not converge,
however this problem disappears if we use log(γ) instead of γ as the cost
function in SA. In order to calculate the small values of γ’s we use FNS
splitting technique for rare-event simulation.

We apply our method to the IEEE-14 bus grid for three different ex-
amples. In example 1 we have different nodal power injections and line
current maxima. For this example we find that at the final configuration
(after the minimization), bus 3 has 35 percent of Btot. In example 2 we
keep the nodal power injections to be similar and find that at the final
configuration buses 3, 8 and 10 each get 15 percent of Btot.

For example 3 we keep all the nodal power injections and the line
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current maxima to be similar. For this we find that equal placement of
the batteries at the non-slack nodes is the near optimal solution, which
suggests that the number of connections to a node does affect the reliability
of the power grid. We also find that the log(γ) decreases linearly with
Btot. Finally we examine if Btot has an effect on final configuration of the
battery locations and capacities. We observe that it does not affect the
final configuration.
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Hidden Markov models for wind
farm power output

The necessity to reduce carbon footprints has led to a need for integrating
renewable energy sources like wind turbines and photo-voltaic arrays into
the power grid. Being unpredictable in nature, these renewable energy
sources inject power intermittently into the grid, thereby challenging the
reliability of the power grid. The reliability of power systems that incor-
porate wind farms has been studied extensively (e.g. [58, 83, 92]). For
maintaining a reliable power supply, as well as for future power system
planning and daily system operation it is of great importance to study the
statistical properties of power systems with intermittent, renewable power
generation. In order to do so, it is important to develop stochastic methods
for modeling power output, as stochastic models enable one to represent
the intermittency and unpredictability of wind and solar power. These
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models can be used for e.g. generating time series of power injections to
estimate power grid reliability indices such as loss of load probability [95].

In this chapter, we focus on the power output of wind farms, in par-
ticular on the occurrence of high levels (corresponding to high quantiles)
of wind farm power output. Wind farms are the largest source of inter-
mittent renewable energy worldwide, and assessing the upper quantiles of
their power output is relevant for e.g., planning, management, operation
and grid reliability assessment [144]. Various approaches have been pro-
posed to model wind farm power output, summarized briefly below. The
stochastic models resulting from these approaches are useful for simula-
tion, however their theoretical properties are complex and often partly
unknown, making them less suitable for theoretical analysis. This was
also reported in [120], in which the authors discuss the use of discrete-
time Markov chains (DTMCs) to model the wind speed. For the above
mentioned reasons, we propose, in this study, a class of stochastic models
(discrete Markov chains) that are able to accurately capture the distri-
bution of the power output, and are also simple enough to be amenable
to analysis and to Monte Carlo simulation. In particular, the theoretical
methods and techniques from the field of queuing systems (such as com-
munication networks) provide a rich set of tools that can be employed
for analyzing power systems when using these simple stochastic models
[119, 149]. Such tools are useful for model-based risk and reliability stud-
ies.

For developing stochastic models to simulate wind power generation,
two choices that must be faced are (i) whether to model the aggregate wind
farm output, or model output from individual turbines, and (ii) model the
power output directly, or model the wind speed and employ a separate
model (e.g. a wind power curve (WPC)) to obtain power output from wind
speed. The latter approach, mapping wind speed to the power output, is
employed and investigated in e.g. [10, 33, 62, 74, 82, 87, 93, 137, 138, 178].
Such indirect models do not effectively capture the stochasticity of the
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power output for a given wind speed [96]. In the context of our study, it
must be noted that [76] and [120] applied discrete time Markov chains to
model the wind speed.

The direct modeling of power output is considered by e.g., [50]. In
that study, a limited autoregressive integrated moving average (LARIMA)
model is used for the modeling of the individual wind turbine power,
and a multivariate-ARIMA model is used for the modeling of the cross-
correlations between the produced power for different parts of the wind
farm. Furthermore, [126] and [139] use discrete-time Markov chains for
modeling power output of an individual turbine, similar to what we pro-
pose in this study. These studies do not consider the aggregate power of
a wind farm however.

Regarding the first choice, in order to model the joint or the aggregated
power output of a wind farm, the output of individual wind turbines in
a farm cannot be considered independent as the wind speed driving the
turbines is correlated. This correlation has been taken into considera-
tion in [35, 104, 108, 127, 171], where models for correlated wind speeds
are combined with WPC models. These approaches, are oftentimes too
complicated to be used for simulations, and for theoretical studies con-
cerning the design and the planning of power grids. Another interesting
approach that can be deployed for the short-term forecasting of the joint
or the aggregated power output is that of deep neural networks (DNNs).
In [94], DNNs are used to model wind speed and, in [129], DNN based
on meta regression is used for wind power forecasting. DNNs require a
trove of available data for training and an concrete understanding of the
system at hand so as to carefully choose the type of the neural network.
Moreover, DNNs have a very complicated structure which is not suitable
for theoretical analysis. For all aforementioned reasons, in our study the
focus is on the modeling of the power output of wind farms using simple
stochastic models that can be used for simulations, and for theoretical
studies concerning the design and planning of power grids.
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In this study, we directly model the wind farm power output (cf.
choice (ii)) using discrete Markov chains. In particular, we assess the
accuracy of such simple stochastic models in fitting the upper quantiles
(90%, 95%, 99%) of the observed power output of a wind farm. These
models are directly developed from power output measurement data of
individual turbines from an existing on-shore wind farm. We utilize time
series data of the measured power output from six individual turbines in
the same wind farm. Furthermore, we obtain our models through statis-
tical inference, i.e. in a data-driven modeling. One advantage of inferring
models directly from the measured power output is that they then reflect
various factors that have an impact on the power generation: not only the
variability of the wind speed, but also e.g., curtailing (deration) of wind
turbines, shut-down of turbines for maintenance or other operational pur-
poses, wear and tear of equipment, etc.

Large power injections from a wind farm into the transmission grid
through a single grid connection point may lead to voltage or current
overloads in the grid, jeopardizing its reliability. Simple tractable wind
power generation models facilitate the reliability analysis of transmission
grids [166]. Hence we focus on accurately modeling the upper quantiles
(90%, 95%, 99%) of the power output of a wind farm.

Regarding the issue whether to model individual turbine output or
aggregated power output (cf. choice (i)), we consider both approaches
in this study. With the microscopic approach we model the individual
wind turbine output while aiming to account for the dependencies (e.g.
correlations) of output of different turbines. By summing their outputs
at equal times, we can study the aggregate power output and its upper
quantiles. This approach is flexible, as it is easy to consider the impact of
adding more turbines or shutting down turbines (e.g. for maintenance).
By contrast, with the macroscopic approach we directly model the aggre-
gate wind power produced by multiple turbines (e.g. all turbines in the
wind farm). It lacks the flexibility of the microscopic approach, however
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there is only one scalar quantity (the aggregate power output) to model
with the macroscopic approach instead of multiple quantities. In this
approach we infer the model from the summed, measured output of the
individual turbines. Clearly, this summed output automatically reflects
the correlation between different turbines.

The stochastic models we use in our study are discrete-time Markov
chains with finite state spaces. Wind power output is generally a contin-
uous variable, therefore we have to discretize the state space to be able to
use finite-state Markov chains. We do so by defining N discrete levels (or
states) of power output and assigning a measurement in continuous space
to its nearest-by discrete level. We investigate the effect of this discretiza-
tion (with varying N) on the probability distribution of the aggregate
power output, in particular on the upper quantiles of this distribution.

A Markov chain model is characterized by the matrix of transition
probabilities between the N states (the stochastic matrix). The basic
model we consider is a straightforward Markov chain with a single N ×N
stochastic matrix. We refer to this model as the discrete-time Markov
chain (DTMC). In the microscopic approach, each turbine has its own
DTMC. In the macroscopic approach, there is a single DTMC for the ag-
gregate output. We also consider a more general model than the DTMC,
a model which alternates over time between different stochastic matrices
(in random fashion). This is the so-called hidden Markov model (HMM).
The HMM has a hidden process (whose state is not observed) that is itself
a finite-state Markov chain (say with M states). The observed process
depends on the hidden process, in the sense that the transition probabil-
ities of the N -state observed process depends on the state of the hidden
process (thus, the observed process has M different stochastic matrices,
each of size N × N). One can view the HMM as a Markov-modulated
Markov chain.

How to interpret the hidden process of an HMM (e.g. in physical
terms) depends on the application. We hypothesize that in our case of
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wind power generation, the hidden process represents primarily the mete-
orological conditions to which the wind turbines are subjected (see [66, 79]
for an example of HMMs used in meteorology). These conditions are cor-
related in space and time, resulting in correlations between power output
of geographically close turbines (e.g. turbines in the same wind farm).
Modeling with an HMM, in which different turbines experience the same
hidden state, enables one to account for these correlations. To the best of
our knowledge, modeling with a single hidden process for multiple output
processes in the HMM formalism has not been used before. In [86], one
of the implemented approaches uses the Viterbi algorithm to estimate the
parameters of a simple HMM from pseudo-measurements (with determin-
istic wind power generation and load patterns) and concludes based on
simulations that this approach increases prediction accuracy. In contrast
to the models under consideration in this chapter, the authors, in [86],
mention that simple DTMC yields the least reliable results compared to
the HMM.

The chapter is organized as follows. In Section 5.1, we discuss post
processing of the original measurement data and the inherent correlation
between the wind turbines in the farm. Section 5.2 describes discretization
of the measurement data. In Section 5.3, we discuss the DTMC model and
compare results with the measurement data. We discuss the HMM model
and the expectation-maximization (EM) algorithm for estimating HMM
parameters, and we compare results obtained from the HMM model with
the measurement data. In Section 5.4 we present result of the macroscopic
approach. We present some conclusions in Section 5.5. Finally, in the
appendix, details of the EM algorithm are given.

5.1 Description of the data

For our analysis we use data from wind turbines from an on-shore wind
farm in the Netherlands. The farm consists of 16 wind turbines, and we
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have data from 6 of them for the period of April 1, 2016 to September 12,
2016. The wind turbines are of the type ETW Directwind 900/52 model.
The data is obtained through the Supervisory Control and Data Acquisi-
tion (SCADA) of the wind turbines. For this wind farm, the measurements
are stored as 20-minutes averages.

5.1.1 Post processing data

The data includes several variables besides wind power (turbine state, ro-
tor speed, wind speed, wind direction, rotations per minutes, etc). How-
ever, we only use the wind power data. Furthermore, since we are inter-
ested in the aggregate output of all turbines together, we use only complete
cases, i.e. only the time instances for which we have simultaneously data
from all six wind turbines. This results in 8673 data points with aligned
time stamps. We call this post-processed data the measurement data. We
denote by Pw

t the t-th (time-ordered) datapoint of the power output of
turbine w, with w ∈ W = {1, . . . ,W} andW = 6. The measurement data
for turbine w is denoted P w = [Pw

1 , . . . , P
w
T ] with T = 8673. Note that T

represents the number of complete cases.

5.1.2 Analysis of measurement data

We first study the individual wind turbine power data. Figure 5.1 shows
histograms of the measurement data for all the turbines. Notice that
P 6 has the highest probability mass at the right tail. This is because
turbine 6 is located at a corner of the farm next to the water, hence it
experiences uninterrupted wind and produces more power compared to
the other turbines.

The peak at 200 kW (see Figure 5.1) is caused by operational deration,
i.e. a purposeful reduction of the power output of a wind turbine with
the objective to prolong the remaining useful lifetime of the turbine. We
include the data corresponding to operational deration instances, because
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Figure 5.1: Histogram of wind power data for the six wind turbines.

w 1 2 3 4 5

Correlation coefficient 0.886 0.909 0.929 0.916 0.954

Table 5.1: Correlation between P 6
t (power of turbine 6) and Pw

t , w =
{1, . . . , 5} (power of turbines 1-5).

their inclusion makes the measured data more realistic (as deration is a
common practice in the wind power industry) and renders the modeling
more challenging.

It is expected that the power output of the different turbines (at equal
times, i.e. zero time lag) is highly dependent. This is due to the geographic
proximity of the turbines, resulting in the generation of power outputs
being dependent due to similar environmental conditions. In Table 5.1,
we present the correlation coefficients (linear dependency) for the power
output between turbine 6 and the other turbines. Note that, as expected,
these correlation coefficients are very high, but also that they are smaller
than 1 and thus not fully correlated.
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5.2 Discretized measurement data

We denote by Gt =
∑6

w=1 P
w
t the total (aggregated) power produced by

the six turbines together at time t, t = 1, . . . , T . Let G = [G1, . . . , GT ]

be the time series of Gt from the measurement data. The values in G lie
in the interval [−26.3, 5342.89] kW. Note that the negative values of G
correspond to consumption of power by the wind turbines for performing
internal functions like blade-pitch control, sensors, hydraulic breaks, etc.

In Section 5.2.1, we discuss the discretization of the support of P w. In
order to differentiate the variables with the discretized (binned) support
from the original variables with the continuous support, all notation will
be adapted to have a tilde when referring to the discretized measurements,
e.g., we denote by P̃w the discretized t-th measurement of power output
of the w-th turbine. In the sequel, we sketch the discretization procedure
and in Section 5.2.2, we compare the distributions as well as the 90%, 95%

and 99% quantiles of the original data and the discretized.

5.2.1 Equidistant power levels and thresholds

To bin the support of P w we define N levels, whose values are denoted by
Bk, k = {1, . . . , N}. In order to produce these values, we first consider the
entire power support [0, PR], where PR is the rated power of the turbines
(the theoretical maximum power the turbines can produce). For the wind
farm under consideration PR = 900 kW. Secondly, we equidistantly divide
[0, PR] in N levels. More concretely, this procedure produces N−1 thresh-
olds, say Bthres

k = Bk+Bk+1

2
, with Bk =

[
k−1
N−1

]
PR, k = {1, . . . , N}. Based

on the above procedure, the measurement data are binned according to

P̃w
t =



B1, if Pw
t < Bthres

1 ,

Bk+1, if Bthres
k ≤ Pw

t ≤ Bthres
k+1 ,

for k = 1, . . . , N − 2, and

BN , if Pw
t > Bthres

N−1 ,

(5.1)
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for t = 1, . . . , T and w ∈ W . We use the same {Bk} and {Bthres
k } values

for all turbines. We would like to note that depending on the modeling
objective (here it is mainly to capture the tail distribution of the wind
power output), one could consider other approaches for the discretization
of the data besides equal width, see [98] for a recent survey in discretization
techniques.

5.2.2 Comparing measurement power with binned mea-

surement power

In this section, we analyze the effect of the discretization on the total
power output distribution. We do so by comparing the distribution and
the 90%, 95% and 99% quantiles of the continuous, G, and discretized
data, G̃, varying the numbers of the bins, N .

5.2.2.1 Empirical distribution function (EDF) comparison

We compare the EDFs ofG and G̃. For a vector of data Z = [Z1, . . . , ZT ],
the EDF is defined as F (z) = 1

T

∑T
t=1 1(Zt ≤ z). The EDF of G̃ with

N = 2, 5, 100 is shown in Fig. 5.2a–5.2c, together with the EDF of G.
Note that, for N = 5 (Fig. 5.2b), the right tails match well. It is to be
noted that for N = 5 the EDFs do not match for smaller values of the
support. However for large N , the EDFs match over the entire support
(see Fig. 5.2c).

5.2.2.2 Quantile comparison

To compare the 90%, 95% and 99% quantiles ofG and G̃, we first compute
the corresponding threshold values (denoted G∗) for the continuous data
G. We define

γP :=
1

T

T∑
t=1

1(Gt > G∗), (5.2)

where 1(·) is the indicator function, and compute the value of G∗ given
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Figure 5.2: Comparing EDFs of the total power G and its binned coun-
terpart G̃, for different numbers of bins N .

γP . We find G∗ = 2210.6 kW for γP = 0.1, G∗ = 2819.8 kW for γP = 0.05

(95% quantile) and G∗ = 4411.3 for γP = 0.01 (99% quantile).
Using the same values forG∗, we compute the fractions from the binned

data G̃ with N bins, i.e. we compute γ(N)

P̃
= 1

T

∑T
t=1 1(G̃t > G∗). As

expected, γP = lim
N→∞

γ
(N)

P̃
, this is illustrated in Fig. 5.3. Furthermore, we

find that for N = 5 the relative error, RE =
|γP−γ

(N)

P̃
|

γP
× 100 (in %), equals

1.3%, 0.69% and 11%, for the 90%, 95% and 99% quantiles, respectively.
Hence, for studying the tail distribution (represented by the 90%, 95% and
99% quantiles) it is sufficient to choose N = 5, however, if the objective
is to fit the entire distribution N should be chosen larger or the binning
approach implemented in Section 5.2.1 should be appropriately changed.
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Figure 5.3: Comparing γ
(N)

P̃
for different quantile thresholds, G∗, with

number of power levels N .

5.3 Discrete Markov models for the micro-

scopic approach

In this section we model the individual wind turbine power output with
simple Markov models that are discrete in both time and space. We
consider two models, the Discrete Time Markov Chain (DTMC) model and
the more general Hidden Markov Model (HMM). The model parameters
are inferred from the binned measurement data for individual turbines,
P̃ w. We assess how well these models are capable of reproducing the
distribution (in particular, the 90%, 95% and 99% quantiles) of G̃.

We model the binned wind power of individual wind turbines as stochas-
tic processes {Y w

t , t = 1, . . . , T} with state space N = {B1, . . . , BN} and
w ∈ W . We assume all µ, ν ∈ N and w ∈ W in the subsequent text
unless otherwise mentioned. Also note that in this chapter all vectors are
assumed to be row vectors.

5.3.1 Discrete time Markov chain model

In the microscopic DTMC framework, we model each wind turbine with
an independent DTMC. This model has been used for modeling the wind
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N Quantile γ̄
(5)

P̂MC
± σ(γ

(5)

P̂MC
) RE (%) − log L̂ × 10−4 AIC ×10−4 BIC ×10−4

90% 6.67× 10−3 ± 4.23× 10−5 93.33
5 95% 3.01× 10−4 ± 7.12× 10−6 99.39 3.4465 6.9218 7.0236

99% 1.70× 10−8 ± 2.14× 10−8 99.99

Table 5.2: Comparing γ(N)

P̃
and γ(N)

P̂MC
for different quantile thresholds, G∗,

for N = 5.

power of an individual turbine in [126]. Let Lwµν be the one-step transition
probability from Bµ to Bν for wind turbine w. We estimate the elements
of the stochastic matrix Lw for all the wind turbines (w = 1, ...,W ).

5.3.1.1 Maximum Likelihood Estimation for Markov chain

To estimate Lw we use the maximum likelihood estimator [123]. Given a
series of observation Y w

t for t = 1, . . . , T , the elements of this estimator
are

L̂wµν =

T−1∑
t=1

1(Y w
t = µ)1(Y w

t+1 = ν)

T−1∑
t=1

1(Y w
t = µ)

. (5.3)

5.3.1.2 Quantile fraction and EDF comparison

After estimating the values of (Lw) for all six wind turbines we generate
surrogate wind power timeseries, denoted P̂ w

MC, from the DTMC model.
Let ĜMC

t be the total power obtained by summing the surrogate timeseries,
i.e. ĜMC

t =
∑6

w=1 P̂
w
t,MC.

The fraction of time ĜMC
t is greater than the quantile thresholds, G∗

(see Section 5.2.2.2) is given by γ(N)

P̂MC
= 1

T

∑T
t=1 1(ĜMC

t > G∗).We generate

100 realizations of P̂w
MC with T = 107. From these realizations we compute

the mean γ̄(N)

P̂MC
and standard deviation σ(γ

(N)

P̂MC
).

In Table 5.2 we present results for N = 5. We find that γ(5)

P̂MC
highly under-

estimates γ(5)

P̃
. Even though the standard deviations are of the same order
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as the means, the values are highly underestimated. We recall (see Table
5.1) that the wind power from the turbines are positively correlated to
each other. The microscopic DTMC model is unable to capture this cor-
relation, leading to strong underestimation of γ(N)

P̂MC
for different quantiles.

We also tabulate the relative error of γ(N)

P̂MC
and γP , RE =

|γP−γ̄
(N)

P̂MC
|

γP
× 100

(in %). Note that the RE is almost 100% for all the three quantiles.
In order to comment on the best model fit for the given set of mea-

surement data we compare the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC) statistic values. The AIC and
the BIC value of a model is given by [44]AIC = 2p− 2 log L̂,

BIC = p log T − 2 log L̂,
(5.4)

where p is the number of free parameters in the model, L̂ is the maximized
value of the likelihood function for the parameter values λ̂ for the data set
y, i.e., L̂ = P(λ̂|y), and T is the number of observations in data set y.
We will compare the AIC and BIC values of the DTMC model with the
Hidden Markov model described in next section.

We also notice from Figure 5.4 that the EDFs of the total power pro-
duced by the wind farm from measurement data and binned measurement
data are not comparable to DTMC model. The DTMC model is unable
to capture the shape of the right tail of the EDFs.

5.3.2 Hidden Markov model

In the previous section, we found that a summation of independent DTMCs
does not accurately capture the high quantiles of the total power produced
by the wind farm. A main reason is that it neglects the dependency
between the wind turbine power outputs (see, Table 5.1, for the linear
dependency measurement). In this section we present a more general
model, where the individual wind turbine power output is still discrete
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Figure 5.4: Comparing EDFs of the total power produced by the wind
farm for data sets Pw, P̃w and P̂w

MC, ∀w ∈ W for N = 5.

and Markovian in nature but is also dependent on a hidden Markov pro-
cess. Such a hidden Markov process captures the information regarding,
e.g., meteorological conditions, that affect the individual wind turbines in
the wind farm and in turn affect the total power output of the wind farm.
This process is not fully known or observed, therefore it is referred to as
hidden [131]. Note that such a model offers a flexible framework that
can integrate different layers of complexity (by accounting for the joint
state description of all the turbines in the park) and of information for
the spatio-temporal dynamics (environmental and geographic conditions)
captured in the hidden process, this surpasses the capabilities of copula
modeling [127].

5.3.2.1 Individual stochastic modeling (matrix) per turbine

Let {Y w
t , t = 1, 2, . . .}, w ∈ W , denote the binned wind power out-

put of the individual wind turbines at time t, with state-space N =

{B1, . . . , BN}. In the HMM framework we assume that the stochas-
tic process {Y w

t , t = 1, . . . , T} depends on a sequence of hidden states,
{Xt, t = 1, . . . , T} with state space M = {1, . . . ,M}. More specifically,
the processes {Y w

t , , t = 1, . . . , T} ∀w ∈ W , are governed by the stochastic
matrices Lw,i =

(
Lw,iµν

)
µ,ν∈N whenever {Xt, t = 1, . . . , T} is in state i. The
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transition probabilities of {Xt, t = 1, . . . , T} are given by the stochastic
matrix A = (Aij)i,j∈M. Thus,Lw,iµν = P

(
Y w
t+1 = ν|Y w

t = µ,Xt+1 = i
)

Aij = P
(
Xt+1 = j|Xt = i

)
.

(5.5)

For t = 1, the distribution of X1 is given by πi = P(X1 = i) and those of
Y w

1 by ρw,iµ = P(Y w
1 = µ|X1 = i). Note that if M = 1 the model simplifies

to the DTMC model described in Section 5.3.1.
Our goal is to estimate the parameters of the above mentioned model,

λ = (π,ρ,A,L) where π = (πi)i∈M ,A = (Aij)i,j∈M ,ρ =
(
ρw,iµ

)w∈W,i∈M
µ∈N

and L =
(
Lw,iµν

)w∈W,i∈M
µ,ν∈N . In order to do so we will use the expectation-

maximization algorithm for HMMs [54], see also [80].

5.3.2.2 Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm is a general method for
finding the maximum-likelihood parameter estimates of an underlying dis-
tribution given a data set which has incomplete values [38, 54, 71, 89].
Given the sequence of observations for all the wind turbine power out-
puts, y = [y1, . . . ,yW ] where yw = [yw1 , . . . , y

w
T ] = [P̃w

1 , . . . , P̃
w
T ], our goal

is to estimate the parameters of the model, λ. In order to do so we will
maximize the joint likelihood function for the model given the complete
data set of the output processes and the hidden process.

Likelihood function For a given model λ, the joint likelihood func-
tion for the model given the complete data set is the joint probability
distribution for the observation and the hidden state sequences

L(λ|y,x) = P(Y = y,X = x|λ). (5.6)

An expression for P(Y = y,X = x|λ) is given in Appendix 5.A, see
(5.16).
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The EM algorithm for parameter estimation of HMM given a set of
observations is known as the Baum-Welch (BW) algorithm [25]. The
EM algorithm first finds the expected value of the complete data set log-
likelihood with respect to the hidden data set X = x given the observed
data Y = y and the current parameter estimates, in the expectation-step,
i.e.,

Q(λ, λk) = E
[
P(Y = y,X = x|λ)|Y = y, λk

]
=
∑
x∈MT

log(P(Y = y,X = x|λ))P(Y = y,X = x|λk), (5.7)

where λk is the current set of parameters estimates used to calculate the
expectation Q and λ is a new set of parameters. A key element of the EM
algorithm is to optimize λ in order to increase Q. A detailed discussion
of expression (5.7) is given in [37]. The maximization-step determines the
next iterate λk+1 by maximizing the expectation Q, i.e.

λk+1 = argmax
λ

Q(λ, λk). (5.8)

The maximization step guarantees that L(λk+1|y,x) ≥ L(λk|y,x). The
expectation and maximization steps are repeated until the desired conver-
gence is reached. For literature on the convergence of the EM algorithm,
see ([90, 169, 173]).

5.3.2.3 Parameter estimation

In this section we present expressions for the parameter estimates λ given
the observed data y and the hidden sequence x = [x1, . . . , xT ]. For conve-
nience we will denote λk, the old parameter set, as λ′ and the next iterate
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of the parameter set λk+1 as λ. The parameter estimates are given by

π̂i = P(Y=y,X1=i|λ′)
P(Y=y|λ′) ,

Âij =

T∑
t=2

P(Y=y,Xt−1=i,Xt=j|λ′)

T∑
t=2

P(Y=y,Xt−1=i|λ′)
,

ρ̂w,iµ = 1(Y w
1 = µ),

L̂w,iµν =

T∑
t=2

1(Y wt−1=µ)1(Y wt =ν)P(Y=y,Xt=i|λ′)

T∑
t=2

1(Y wt−1=µ)P(Y=y,Xt=i|λ′)
.

(5.9)

A detailed derivation of the expressions of the expectation function and
the parameter estimates can be found in Appendix 5.B.

5.3.2.4 Parameter estimates in terms of forward-backward equa-
tion

For calculating the estimates in (5.9) it is convenient to introduce the so-
called forward backward variables αi(t), βi(t), ∀i ∈ M ([37], [131]). For
lack of space we have dropped the random variable Y terms in front of
the y terms,

αi(t) = P(y1
1, . . . , y

1
t , . . . , y

W
1 , . . . , y

W
t , Xt = i|λ′),

βi(t) = P(y1
t+1, . . . , y

1
T , . . . , y

W
t+1, . . . , y

W
T |Xt = i, y1

t , . . . , y
w
t , λ

′).

(5.10)
These variables are computed recursively (see Appendix 5.C) and the nu-
merical effort grows linearly in T . Using (5.24) and (5.25), the expressions
in (5.9) in terms of forward-backward equations becomes,
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π̂i = αi(1)βi(1)∑M
j=1 αi(1)βi(1)

,

Âij =

T∑
t=2

αi(t−1)Â′ij

[ W∏
w=1

L̂′w
j,ywt−1y

w
t

]
βj(t)

T∑
t=2

αi(t−1)βi(t−1)

,

L̂w,iµν =

T∑
t=2

αi(t)βi(t)1(Y wt−1=µ)1(Y wt =ν)

T∑
t=2

αi(t)βi(t)1(Y wt−1=µ)

.

(5.11)

The detailed derivations of the terms are given in Appendix 5.D.

Re-scaling forward backward equations From (5.10) we see that
as t increases the values of αi(t) and βi(t) become very small. Hence,
the terms in (5.11) diverge when computed numerically. To avoid this
numerical problem we normalize the values of the forward and backward
equations ᾱi(t) = αi(t)∑M

i′=1 αi′ (t)
,

β̄i(t) =
βi(t)·

∑M
i′=1 αi′ (t)∑M

i′=1 αi′ (T )
.

(5.12)

5.3.2.5 Stopping criterion for the EM algorithm

We enforce two simultaneous stopping criteria for the EM algorithm:

1. The number of iterations, ni, exceeds a predefined threshold value,
nmax, i.e., ni ≥ nmax.

2. The improvements in λ have reached a desired minimum, ε, i.e.,
∆λmin = maxnm |λni − λni−nm | ≤ ε, where λni is λ for the iteration
ni.

If any one of the stopping criteria is true the algorithm stops.

5.3.2.6 Quantile and EDF comparison

Given the binned measurement data (P̃ w) and a choice for the number
of hidden states (M), we estimate the parameters of the HMM using
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M Quantile γ̄
(5,M)

P̂HMM
± σ(γ

(5,M)

P̂HMM
) RE (%) − log L̂ × 10−4 AIC ×10−4 BIC ×10−4 p

90% 0.0993± 0.0030 0.6857
7 95% 0.0468± 0.0020 6.5061 2.4534 5.1179 5.643 1056

99% 0.0045± 0.0004 55.421

90% 0.1013± 0.0036 1.3336
8 95% 0.0547± 0.0023 9.3667 2.4193 5.8016 5.9404 1215

99% 0.0082± 0.0005 18.232

90% 0.1011± 0.0032 1.1512
9 95% 0.0517± 0.0020 3.2605 2.4011 5.0776 6.0500 1376

99% 0.0114± 0.0060 13.127

90% 0.1268± 0.0050 26.887
10 95% 0.0633± 0.0028 26.496 2.4117 5.1312 6.2190 1539

99% 0.0076± 0.0005 24.654

Table 5.3: Comparing γ(N,M)

P̂HMM
for different quantile thresholds, G∗, with

γP for N = 5 for different number of hidden states M .

(5.11). We generate surrogate wind power output, denoted P̂ w
HMM, from

the HMM. The corresponding total power surrogate timeseries is ĜHMM
t :=∑6

w=1 P̂
w
t,HMM. We calculate the fraction of time ĜHMM

t is greater than the
quantile thresholds, G∗ (see Section 5.2.2),

γ
(N,M)

P̂HMM
=

1

T

T∑
t=1

1(ĜHMM
t > G∗). (5.13)

After estimating the HMM parameters we generate 100 independent re-
alizations of P̂w

HMM of length T = 105, and compute the fraction γ
(N,M)

P̂HMM

for each of these realizations. The mean and standard deviation of these
100 fractions are denoted γ̄(N,M)

P̂HMM
and σ(γ

(N,M)

P̂HMM
) respectively. For the stop-

ping criterion of the EM algorithm (see Section 5.3.2.5) we take nmax =

104, nm = 100 and ε = 10−6.
In Table 5.3 we compare γ̄(N,M)

P̂HMM
for different quantile thresholds, G∗, with

γP for N = 5 and different number of hidden states M . We tabulate the

relative error of γ̄(N,M)

P̂HMM
and γP , RE =

|γP−γ̄
(N,M)

P̂HMM
|

γP
× 100 (in %). Note that

for M = 9 the RE is smallest for all the three quantiles.
From Table 5.3 we observe that the smallest value of − log L̂ and AIC

is for M = 9. However the BIC value grows with M as the penalty term
for the BIC test is higher than the AIC test (see (5.4)). However by
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Figure 5.5: Comparing EDFs of the total power produced by the wind
farm for data sets Pw, P̃w and P̂w

HMM, ∀w ∈ W for N = 5,M = 9.

comparing the quantile fraction values, − log L̂ and the AIC test we can
conclude that for N = 5, the optimal number of hidden states is M = 9.

Also note from Table 5.2 that − log L̂, AIC and BIC values are much
higher for the DTMC model compared to the HMM model. The DTMC
model is a special case of the HMM model with M = 1.

In Figure 5.5 we compare the EDFs of the total power from the mea-
surement data G, the discretized measurement data G̃ and the HMM
timeseries ĜHMM, for N = 5 and M = 9. It can be seen that the HMM
model is able to reproduce the right tail of the EDF. This is consistent
with table 5.3, which shows that the 90%, 95% and 99% quantiles are
correctly reproduced by the HMM with N = 5 and M = 9.
We would like to note, that if the objective would be to fit the entire
distribution without drastically increasing the values of N and M , then
we propose to use a moment matching based fitting method, see, e.g., [81]
and the references therein.

5.3.3 Same stochastic modeling (matrix) per turbine

In (5.5) we define separate stochastic matrices for each wind turbine
(indexed by w). For this model set up the number of parameters is
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p = M2 + MWN2 − MN − 1. For example, for N = 5,M = 9 and
W = 6, the number of parameters to be estimated is p = 1376; which is a
rather high number.

In this section we consider a model set up in which the same (set
of) stochastic matrices is used for each of the wind turbines. Thus, the
transition probability matrix of each power output process {Ytw} depends
on the hidden state but not on the turbine index w, i.e., the matrix Lw,i

in (5.5) is now independent of w. This reduces the number of parameters
of the model. We study the trade-off between reducing the number of
parameters of the model with − log L̂, AIC and BIC values and compare
them with values in Table 5.3. Following the definition of the HMM model
in Section 5.3.2.1 we assume that the individual wind turbine power output
processes {Ytw}, are governed by matrices (Li) and A as follows:Liµν = P

(
Y w
t+1 = ν|Y w

t = µ,Xt+1 = i
)

Aij = P
(
Xt+1 = j|Xt = i

)
.

(5.14)

The initial distribution of Y w
1 is given by ρiµ = P(Y w

1 = µ|X1 = i). The
details of the parameter estimates are given in Appendix 5.E.

The number of parameters to be estimated for this model are p =

M2 + MN2 −M − 1. We follow the same procedure as Section 5.3.2.6
to estimate the quantile fractions, denoted γ

′(N,M)

P̂HMM
for this model. The

mean and the standard deviations of the 100 estimates of γ′(N,M)

P̂HMM
are given

by γ̄′
(N,M)

P̂HMM
and σ(γ

′(N,M)

P̂HMM
) respectively. From Table 5.4 we find that for

M = 9 we obtain the smallest value of − log L̂ and AIC. We also get good
estimates of the quantile fractions for M = 9.

Comparing the values of − log L̂, AIC and BIC in Table 5.3 and Table
5.4 we find that− log L̂ is slightly lower for the former. This implies having
different stochastic matrices (as in (5.5)) for different wind turbines fits the
given data better than having the same stochastic matrices (as in (5.14)).
However for the model described in (5.5) we have more parameters to
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M Quantile γ̄′
(5,M)

P̂HMM
± σ(γ

′(5,M)

P̂HMM
) RE (%) − log L̂ × 10−4 AIC ×10−4 BIC ×10−4 p

90% 0.1009± 0.0031 0.940
7 95% 0.0497± 0.0018 0.689 2.4936 5.0304 5.1830 216

99% 0.0075± 0.0006 25.24

90% 0.1025± 0.0029 2.532
8 95% 0.0532± 0.0019 6.369 2.4766 5.0041 5.1844 255

99% 0.0126± 0.0009 25.45

90% 0.0987± 0.0032 1.243
9 95% 0.0517± 0.0020 3.391 2.4724 5.0040 5.2132 296

99% 0.0108± 0.0060 8.116

90% 0.0984± 0.0043 1.562
10 95% 0.0522± 0.0027 4.313 2.4729 5.0038 5.2087 339

99% 0.0076± 0.0008 1.728

Table 5.4: Comparing γ′(N,M)

P̂HMM
for different quantile thresholds, G∗, with

γP for N = 5 for different number of hidden states M along with − log L̂,
AIC and BIC values.

estimate compared to the model in (5.14). For N = 5,M = 9 we have
1376 parameters for (5.5) and only 296 parameters to estimate for (5.14).
We find that the AIC and the BIC values in Table 5.4 for model (5.14)
are lower than in Table 5.3 for the model described in (5.5).

5.4 Results of the Macroscopic approach

In the microscopic approach studied in Section 5.3, we modeled the in-
dividual wind turbine power output processes with DTMC and HMM
models, with the aim to model the high quantiles of the distribution of
the total power produced by all turbines together (G). As discussed in the
introduction, a different approach is to model G directly. Here, the mea-
surement data of G is discretized (see first paragraph of Section 5.2), and
modeled with DTMC and HMM models. We refer to it as the macroscopic
approach, and study it in this section.

We binG in a similar way as we bin the individual wind turbine power
output (see Section 5.2.1). Let N be the total number of power bins the
total power output of the wind farm can produce power. We divide the
bins in an equidistant way between [0, 6×RP ], we do this because we have
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data from 6 wind turbines in the wind farm. We follow the same procedure
as (5.1) for Gt for t = 1, . . . , T and obtain the binned measurement total
power produced by the wind farm data series Ĝ. Note that Ĝ is different
from G̃ in Section 5.2 because the value of the power bins are different in
this case.

For notational clarity we define new quantile fractions given the quan-
tile thresholds G∗, γG = 1

T

∑T
t=1 1(Gt > G∗),

γ
(N)

Ĝ
= 1

T

∑T
t=1 1(Ĝt > G∗).

(5.15)

G∗ are the same quantile thresholds set at 2210.6, 2819.8 and 4411.3 kW
for 90%, 95% and 99% quantile respectively as in Section 5.2.2.2. Note
that γG = γP from Section 5.2.2.2. We find that for N = 15 the relative
error (RE) for the quantile estimates between γG and γ(15)

Ĝ
are 0.9227%,

5.7604% and 4.5977% respectively for the quantiles 90%, 95% and 99%

respectively. Hence we will set the number of bins required to capture
the high quantiles of the distribution of the total power produced by the
binned measurement data at 15 bins, i.e., N = 15.

5.4.1 Quantile fraction comparison

Given the observation of the binned measurement total power produced
by the wind farm data Ĝ = [Ĝ1, . . . , ĜT ] we first estimate the DTMC and
the HMM model parameters. We generate surrogate data series of the
total power produced by the wind farm, Ḡ from the model parameters.
Let γ(N,M)

Ḡ
= 1

T

∑T
t=1 1(Ḡt > G∗) be the fraction of time the total power

produced by the wind farm obtained from the Markov models be greater
than G∗ threshold. Note that whenM = 1 we have the DTMC model and
forM ≥ 2 we have the HMM model. We generate 100 realizations of Ḡ of
length T = 104. Then we calculate the mean and the standard deviations
of γ(N,M)

Ḡ
from the 100 realizations, γ̄(N,M)

Ḡ
and σ(γ

(N,M)

Ḡ
) respectively.
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In Table 5.5 we compare the quantile fraction values for different
number of hidden states M . We also tabulate the relative error RE =
|γ̄(N,M)

Ḡ
−γG|

γG
× 100 (in %). In order to find the best model fit we also com-

pare the values of − log L̂, AIC and BIC. Note that the DTMC model, i.e.
M = 1, can capture the quantile fractions very well, however the values
of − log L̂, AIC and BIC are much higher compared to the M ≥ 2 cases.
DTMC is a very robust model for capturing the invariant distribution
however it fails to capture the time correlation in the data set which is
captured by the HMM model (M ≥ 2). For M = 5 we have the lowest
value for − log L̂. However we find that the AIC and the BIC values in-
crease with M for M ≥ 2. We do not see a minimum in the AIC value for
this this case as seen in Table 5.3 and Table 5.4 for M = 9.

Recall from the model in Section 5.3.3 for the best model fit there
were 296 parameters to estimate, whereas here the number of parameters
is larger when M ≥ 2, see Table 5.5. Furthermore, note that we cannot
compare the − log L̂, AIC and BIC values of the model in Table 5.5 with
the models in Table 5.3 and Table 5.4 because the former uses the ob-
servation data set Ĝ (directly discretizing G) and the later two uses P̃ w

(obtained from discretizing the individual wind turbine power output).

5.5 Conclusions

In this chapter we studied how discrete Markov chain models can be used
to model the power output of a wind farm. Such models have a rather sim-
ple structure, making them suitable for theoretical analysis. Despite their
simplicity, they are able to reproduce the distribution of the wind farm
power output, as demonstrated in this study. Of particular interest are
the upper quantiles (90%, 95%, 99%), which can be accurately captured
with the Markov chain models studied here.

We considered two approaches. In the microscopic approach, described
in Section 5.3, the power output of individual turbines was modeled with
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M Quantile γ̄
(15,M)

Ḡ
± σ(γ

(N,M)

Ḡ
) RE (%) − log L̂ × 10−4 AIC ×10−5 BIC ×10−5 p

90% 0.0984± 0.0042 1.569
1 95% 0.0469± 0.0025 6.302 6.2738 1.2590 1.2738 210

99% 0.0096± 0.0008 4.216

90% 0.1067± 0.0101 6.717
2 95% 0.0509± 0.0060 1.788 1.0129 0.2116 0.2435 451

99% 0.0110± 0.0024 9.918

90% 0.1055± 0.0111 5.572
3 95% 0.0512± 0.0073 2.409 0.9983 0.2132 0.2613 680

99% 0.0107± 0.0021 6.488

90% 0.1173± 0.0128 17.37
4 95% 0.0567± 0.0076 13.34 0.9852 0.2152 0.2796 911

99% 0.0101± 0.0021 0.487

90% 0.0988± 0.0102 1.154
5 95% 0.0475± 0.0057 5.095 0.9761 0.2181 0.2989 1144

99% 0.0101± 0.0022 0.507

90% 0.1004± 0.0113 0.387
6 95% 0.0471± 0.0065 5.850 0.9793 0.2234 0.3209 1379

99% 0.0096± 0.0020 4.597

90% 0.1026± 0.0099 2.594
7 95% 0.0505± 0.0063 0.866 0.9708 0.2265 0.3407 1616

99% 0.0113± 0.0025 13.07

Table 5.5: Comparing γ(N,M)

Ḡ
for different quantile thresholds, G∗, with

γP for N = 15 for different number of hidden statesM along with − log L̂,
AIC, BIC and number of parameters of the model, p.

Markov chains, and subsequently summed to obtain the total power out-
put. With the most straightforward type of Markov chain model (the
DTMC model, see Section 5.3.1), the correlation between different tur-
bines could not be taken into account, leading to strong underestimation
of the upper quantiles. With the more general HMM (Section 5.3.2) we
were able to account for these correlations, resulting in a faithful repro-
duction of the upper quantiles. Both the HMM and DTMC models were
inferred from timeseries data of the power output of wind turbines in the
same wind farm.

With the macroscopic approach, we directly modeled the aggregate
(summed) output of all turbines, see Section 5.4. In this approach, both
the DTMC model and the HMM were able to capture the upper quantiles
well. However, the HMM performed much better in terms of the log-
likelihood of the estimated models.
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Besides the log-likelihood of the estimated models, we also computed
the Akaike and Bayesian information criteria (AIC and BIC), to take into
account the number of model parameters (and, for BIC, amount of data)
when judging the quality of fitted models. In the microscopic approach,
the HMM in which all turbines had the same set of stochastic matrices
(Section 5.3.3) performed most favorable in terms of AIC and BIC. This is
due to the smaller number of parameters needed in these models compared
to the HMM with different sets of stochastic matrices for the different
turbines. The HMM from the macroscopic approach also required more
parameters than the HMM from the microscopic approach with the same
set of stochastic matrices (as described in Section 5.4).

The microscopic approach has the advantage of flexibility, as it is easy
to add or leave out individual turbines in the analysis of the total wind
farm power output (e.g. to account for temporarily shutting down turbines
for maintenance). The macroscopic approach is more straightforward to
apply, because there is only a single scalar quantity to model, rather than
multiple quantities (one for each considered turbine) as in the microscopic
approach. However, the macroscopic approach required more parameters
(as discussed above), and lacks the flexibility of the microscopic approach.

In the microscopic approach, the DTMC model was not able to account
for correlations in the output of different turbines. However, we were
able to capture these correlations with the HMM due to the inclusion
of the hidden process in these models. The hidden process can reflect,
for example, the meteorological conditions that the turbines experience,
conditions that are spatially correlated and that can lead to correlations
between power output of different turbines.

In this study we have shown that simple discrete Markov chain mod-
els are able to reproduce the distribution of wind farm power output, in
particular its upper quantiles. Due to their simple structure, these models
are amenable for theoretical analysis using methods from e.g. the field of
queueing theory. We will report on such analysis in the following chapter.
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Appendix

5.A EM algorithm

Likelihood function For a given model λ = (π,ρ,A,L), the joint
probability distribution for the observation and the hidden state sequences
is given by

P(Y = y,X = x) = P(Y 1
1 = y1

1, . . . , Y
1
T = y1

T , . . . , Y
W

1 = yW1 , . . . , Y
W
T = yWT ,

X1 = x1, . . . , XT = xT )

= P(Y 1
1 = y1

1, . . . , Y
W

1 = yW1 , X1 = x1) ·
T∏
t=2

P(Y 1
t = y1

t , . . . , Y
W
t = yWt ,

Xt = xt|Y 1
t−1 = y1

t−1, . . . , Y
W
t−1 = yWt−1, Xt−1 = xt−1)

= P(X1 = x1) ·
W∏
w=1

P(Y w
1 = yw1 |X1 = x1) ·

T∏
t=2

[
P(Xt = xt|Xt−1 = xt−1)·

W∏
w=1

P(Y w
t = ywt |Y w

t−1 = ywt−1, Xt = xt)
]
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= πx1

W∏
w=1

ρw,x1

yw1

T∏
t=2

[
Axt−1xt

W∏
w=1

Lw,xtyt−1yt

]
. (5.16)

The above equation can be factorized because of the Markovian properties
in (5.5).

5.B Parameter estimation derivations

Expectation function for HMM model Using (5.6) and (5.16), the
expectation function (5.7) can be expanded as

Q(λ, λ′) =
∑
x∈MT

(
log πx1

)
P(Y = y,X = x|λ′)

+
W∑
w=1

[ ∑
x∈MT

(
log ρw,x1

yw1

)
P(Y = y,X = x|λ′)

]
+
∑
x∈MT

( T∑
t=2

logAxt−1xt

)
P(Y = y,X = x|λ′)

+
W∑
w=1

[ ∑
x∈MT

( T∑
t=2

logLw,xtywt−1y
w
t

)
P(Y = y,X = x|λ′)

]
. (5.17)

Since the parameters we wish to optimize can be independently factorized
into explicit terms as shown in the equation above, we can optimize each
term individually using Lagrange multipliers.

First term, πi The first term of (5.17) can be written as∑
x∈MT

(
log πx1

)
· P(Y = y,X = x|λ′)

=
M∑
i=1

∑
(x2,...,xT )∈MT−1

(log πi) · P(Y = y, X1 = i,X2 = x2, . . . XT = xT |λ′)
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=
M∑
i=1

(log πi) · P(Y = y, X1 = i|λ′).

Using Lagrange multiplier γ and the constraint that
∑M

i=1 πi = 1, we set
the derivative equal to zero, i.e.,

∂

∂πi

( M∑
i=1

(log πi) · P(Y = y, X1 = i|λ′)− γ(
M∑
i=1

πi − 1)
)

= 0.

Taking the derivative and using
∑M

i=1 πi = 1 we get γ = P(Y = y|λ′) and
for πi we get,

πi =
P(Y = y, X1 = i|λ′)

P(Y = y|λ′)
. (5.18)

Second term, ρw,i The second term of (5.17) has a sum in w. We solve
for the the wth term inside the sum,

∑
x∈MT

(
log ρw,x1

y1
w

)
P(Y = y,X = x|λ′) =

M∑
i=1

(log ρw,iyw1
)P(Y = y, X1 = i|λ′).

We have M constraint equations
∑N

µ=1 ρ
w,i
µ = 1, as i ∈ M. Hence we

have M Lagrange multipliers. Setting the derivative to zero and using∑N
µ=1 ρ

w,i
µ = 1, we get

ρw,iµ =
1(Y w

1 = µ)P(Y = y, X1 = i|λ′)
P(Y = y, X1 = i|λ′)

= 1(Y w
1 = µ). (5.19)

Third term, A The third term of (5.17) can be written as

∑
x∈MT

( T∑
t=2

logAxt−1xt

)
P(Y = y,X = x|λ′)
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=
T∑
t=2

M∑
i=1

M∑
j=1

(logAij)P(Y = y, Xt−1 = i,Xt = j|λ′).

We have M constraint equations
∑M

k=1 alk = 1, as l ∈ M. Hence we
need M Lagrange multipliers. Setting the derivative to zero and using∑M

k=1 alk = 1, we get

Aij =

T∑
t=2

P(Y = y, Xt−1 = i,Xt = j|λ′)

T∑
t=2

P(Y = y, Xt−1 = i|λ′)
. (5.20)

Fourth term, Lw,i We solve for the wth term inside the sum of the
fourth term of (5.17),

∑
x∈MT

( T∑
t=2

logLw,xtywt−1y
w
t

)
P(Y = y,X = x|λ′)

=
T∑
t=2

M∑
i=1

(logLw,iywt−1y
w
t

)P(Y = y, Xt = i|λ′).

Solving for Lw,iµν using the Lagrange multipliers we get,

Lw,iµν =

T∑
t=2

1(Y w
t−1 = µ)1(Y w

t = ν)P(Y = y, Xt = i|λ′)

T∑
t=2

1(Y w
t−1 = µ)P(Y = y, Xt = i|λ′)

. (5.21)

5.C Forward Backward variable recursion

derivation

Forward equation Here we will derive the recursion for the forward
variables. For simplicity we drop the λ′ term for now. From (5.10) we
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have for t = 1,

αi(1) = P(y1
1, . . . , y

W
1 , X1 = i)

= P(y1
1|y2

1, . . . , y
W
1 , X1 = i) · P(y2

1, . . . , y
W
1 , X1 = i)

= ρ1,i

y1
1
· · · ρW,i

yW1
· πi.

For deriving the recursion relation, we have

αi(t) = P(y1
1, . . . , y

1
t , . . . , y

W
1 , . . . , y

W
t , Xt = i)

=
M∑
j=1

P(y1
1, . . . , y

1
t , . . . , y

W
1 , . . . , y

W
t , Xt−1 = j,Xt = i)

=
M∑
j=1

P(y1
t |y1

1, . . . , y
1
t−1, . . . , y

W
1 , . . . , y

W
t , Xt−1 = j,Xt = i)·

P(y1
1, . . . , y

1
t−1, . . . , y

W
1 , . . . , y

W
t , Xt−1 = j,Xt = i)

= L1,i

y1
t−1y

1
t
· · ·LW,i

yWt−1y
W
t
· P(y1

1, . . . , y
1
t−1, . . . , y

W
1 , . . . , y

W
t−1, Xt−1 = j) · Aji

=
M∑
j=1

αj(t− 1)Aji[
W∏
w=1

Lw,iywt−1y
w
t

]. (5.22)

Backward equation From (5.10) we have, βi(T ) = 1. For the backward
recursion we have,

βi(t) = P(y1
t+1, . . . , y

1
T , . . . , y

W
t+1, . . . , y

W
T |Xt = i, y1

t , . . . , y
W
t )

=
∑

{xt+1,...,xT }∈MT−t

P(y1
t+1, . . . , y

1
T , . . . , y

W
t+1, . . . , y

W
T , Xt+1 = xt+1, . . . ,

XT = xT |Xt = i, y1
t , . . . , y

W
t )

=
∑

{xt+1,...,xT }∈MT−t

P(y1
t+2, . . . , y

1
T , . . . , y

W
t+2, . . . , y

W
T , Xt+2 = xt+2 . . . ,

XT = xT |Xt+1 = xt+1Xt = i, y1
t , . . . , y

W
t , y

1
t+1, . . . , y

W
t+1)·
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P(y1
t+1|Xt+1 = xt+1, Xt = i, y1

t , . . . , y
W
t ) · · ·

P(yWt+1|Xt+1 = xt+1, Xt = i, y1
t , . . . , y

W
t , y

1
t+1, . . . , y

W−1
t+1 )·

P(Xt+1 = xt+1|Xt = i)

=
M∑
j=1

P(y1
t+2, . . . , y

1
T , . . . , y

W
t+2, . . . , y

W
T , |Xt+1 = j, y1

t+1, . . . , y
W
t+1)·

P(y1
t+1|Xt+1 = j,Xt = i, y1

t , . . . , y
W
t ) · · ·P(yWt+1|Xt+1 = j,Xt = i,

y1
t , . . . , y

W
t , y

1
t+1, . . . , y

W−1
t+1 ) · P(Xt+1 = j|Xt = i)

=
M∑
j=1

Aij[
W∏
w=1

Lwj,ywt−1y
w
t

]βj(t+ 1). (5.23)

5.D Expressions in terms of Forward-Backward

equations

In order to re-write (5.9) in terms of forward-backward equations, we first
write the following in terms of the forward-backwards equations. Note for
lack of space we are dropping the random variable Y term in front of the
y terms.

P(Y = y, Xt = i) = P(y1
1, . . . , y

1
T , . . . , y

W
1 , . . . , y

W
T , Xt = i)

= αi(t)βi(t). (5.24)

P(Y = y, Xt−1 = i,Xt = j) = P(y1
1, . . . , y

1
T , . . . , y

W
1 , . . . , y

W
T , Xt−1 = i,Xt = j)

= P(y1
t , . . . , y

1
T , . . . , y

W
t , . . . , y

W
T , Xt = j|y1

1, . . . , y
1
t−1, . . . , y

W
1 , . . . , y

W
t−1,

Xt−1 = i) · P(y1
1, . . . , y

1
t−1, . . . , y

W
1 , . . . , y

W
t−1, Xt−1 = i)

= αi(t− 1) · P(y1
t , . . . , y

1
T , . . . , y

W
t , . . . , y

W
T |y1

1, . . . , y
1
t−1, . . . , y

W
1 , . . . , y

W
t−1,

Xt−1 = i,Xt = j) · P(Xt = j|Xt−1 = i)

101



Chapter 5 5.E. Estimates for same one-step transition matrix model

= αi(t− 1)Aij · P(y1
t+1, . . . , y

1
T , . . . , y

W
t , . . . , y

W
T |y1

1, . . . , y
1
t , . . . , y

W
1 , . . . , y

W
t−1,

Xt−1 = i,Xt = j) · P(y1
t |y1

t−1, Xt = j)

= αi(t− 1)Aij[
W∏
w=1

Lwj,ywt−1y
w
t

]βj(t). (5.25)

5.E Estimates for same one-step transition

matrix model

The parameter estimates for this model are given by

π̂i = αi(1)βi(1)∑M
j=1 αi(1)βi(1)

,

Âij =

T∑
t=2

αi(t−1)Â′ij

[ W∏
w=1

L̂′j
ywt−1y

w
t

]
βj(t)

T∑
t=2

αi(t−1)βi(t−1)

ρ̂iµ = 1
W

W∑
w=1

1(Y w
1 = µ), and

L̂iµν =

T∑
t=2

[αi(t)βi(t)
W∑
w=1

1(Y wt−1=µ)1(Y wt =ν)]

T∑
t=2

[αi(t)βi(t)
W∑
w=1

1(Y wt−1=µ)]

.

(5.26)

The recursions of the forward-backward equations are given by ∀w ∈
W , ∀i ∈M 

αi(t) =
∑M

j=1 αj(t− 1)Aji[
W∏
w=1

Liywt−1y
w
t

],

βi(t) =
∑M

j=1 Aij[
W∏
w=1

Ljywt−1y
w
t

]βj(t+ 1),

(5.27)

with initialization αi(1) = πi ·
W∏
w=1

ρiyw1 and βi(T ) = 1.
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Chapter 6

Computing first passage times
for Markov-modulated fluid
models using PDE schemes

6.1 Introduction

A Markov-modulated fluid model (or queue) is a mathematical model
which describes the fluid level in a buffer (or storage device) which is
being filled or emptied for exponentially distributed random periods [16,
115]. The rate at which the buffer is filled or emptied depends generally
on the state of a continuous-time Markov chain (CTMC) known as the
background process [140] or environment process [99, 119]. Given this
state, the rate is deterministic. A CTMC as environment process is the
most common, however other environment processes like white noise and
Ornstein-Uhlenbeck process have also been studied [99].
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Fluid queues are used to approximate discrete queueing models for dam
theory [117], telecommunication networks [16, 60, 114, 142], transporta-
tion systems [122], modeling forest fires [152], ruin probability [19, 23],
video streaming [41, 101, 170], and more [141].

Steady state analysis of fluid queues is covered in detail in the litera-
ture, see e.g. [18, 99, 134]. In this chapter we are interested in the transient
behavior of the Markov-modulated fluid queue, in particular the distribu-
tion of the first passage time defined as the first time the buffer empties.
Mean first passage times for fluid queues have been studied by [20, 100].
In the literature the common approach involves derivation of first passage
times from Laplace-Stieltjes transforms (LST) [43, 63, 119, 133].

The motivating application for this chapter is that of power grids and
renewable energy. For energy sufficiency and reliability of micro-grids
powered by wind farms, incorporation of energy storage devices is of great
importance. Hence, for reliable power delivery, as well as for scheduling
and planning purposes in micro-grids it is relevant to study the probability
of energy storage devices running empty in a given time interval. The
storage device running empty implies there is insufficient power in the
micro-grid and it needs to be fed by different energy sources or loads needs
to be shed. In order to quantify the probability of the micro-grid being no
longer self sufficient, we wish to apply the Markov-modulated fluid queue
to micro-grids powered by wind energy and supported with energy storage
devices. To this end we consider a continuous-time version of the hidden
Markov model for wind farm power output discussed in Chapter 5.

In [119] it was proven that the cumulative distribution function of
the first passage time of a Markov-modulated fluid queue model follows a
hyperbolic partial differential equation (PDE). In [119] the PDE is solved
using LST and eigenvalue theory. However, for practical purposes and
applications it is also important to invert the LST solution back to the
time domain. However, this involves spectral decomposition of a matrix of
size of the state space of the CTMC and numerical inversion of the LST,
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leading to cumbersome and expensive computations, thereby limiting the
applicability of the method. Hence, in this chapter we propose methods
to numerically solve the PDE directly, without using the LST. Our focus
is on cases with large cardinality of the state space of the CTMC, as this
is relevant in the context of micro-grids (see Chapter 5).

Numerical integration of hyperbolic PDEs has been studied extensively
in the literature [85, 106, 151]. The PDE central to this chapter is a 1-
dimensional (1-D) coupled advection-reaction PDE [85, 106]. We propose
to use first and second order upwind space discretization schemes and
different (explicit and implicit) time integration schemes in this chapter.
These schemes are well established in scientific computing disciplines but
have not been used in the field of queueing theory. We compare results
from numerical integration of the PDE with Monte Carlo simulations to
assess the accuracy. We find that the PDE schemes can efficiently and
accurately compute the first passage time distribution and they can be
applied to large state space systems. We also compare our PDE approach
with the LST method proposed in [119].

In Section 6.2 we describe the system setup, buffer model, first passage
time distribution and the PDE for the distribution function. In Section
6.3 we propose different integration schemes for solving the PDE under
consideration. In Section 6.4 we briefly present the LST method proposed
by [119]. In Section 6.5 we compare results of the different PDE integra-
tion schemes. We compare the PDE schemes with Monte Carlo simulation
results. For systems with a small state space of the CTMC, we also com-
pare the PDE schemes with the LST method. The chapter finishes with
a brief conclusion in Section 6.6.

6.2 System setup

Let {Z(t), t ≥ 0} be a CTMC on a finite state space S with generator
matrixQ = (qαβ)α,β∈S . The steady state probability distribution of {Z(t)}
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is denoted by π = (π1, . . . , πS), where S = |S|. Let rα be the net input
rate with which the level of fluid in the buffer increases or decreases when
the CTMC is in state α. Let B(t) be the fluid level in the buffer at time
t. The dynamics of the fluid level is given by

dB(t)

dt
=


rα if 0 ≤ B(t) ≤ Bmax and Z(t) = α,

max(rα, 0) if B(t) = 0 and Z(t) = α,

min(rα, 0) if B(t) = Bmax and Z(t) = α.

(6.1)

Bmax is the maximum fluid storage capacity of the buffer. Clearly, the
fluid level increases when rα > 0 and B(t) < Bmax, and decreases when
rα < 0 and B(t) > 0. Furthermore, B(t) ∈ [0,Bmax] ∀t. When rα = 0 the
fluid level in the buffer remains unchanged.

6.2.1 First passage time distribution

We are interested in computing the distribution of the first passage (or
hitting) time, i.e, the first time the buffer empties given that it started
with some initial fluid level x at time t = 0. In order to do so, we define
a random variable T which denotes the first time the buffer empties,

T := inf{t > 0 : B(t) = 0}. (6.2)

The distribution function of T given the initial fluid level in the buffer
x, i.e., the probability that the buffer empties before time t given that it
started with initial fluid level x is defined as,

J(x, t) := P(T ≤ t|B(0) = x). (6.3)

We are also interested in finding the minimum value of the initial fluid
level in the buffer xmin such that the buffer empty probability is smaller
than pempty, i.e.,
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xmin = min{x : J(x, t) < pempty}. (6.4)

A similar problem of finding xmin has been studied in [42] for a Markov-
modulated video streaming model. However, the analysis in [42] is focused
on the case with only two states (S = 2).

In the literature, slightly different variants of the above mentioned
distribution function (6.3) are used depending on the initial conditions. A
joint probability distribution of the buffer being empty before time t and
the state of the CTMC at time T conditioned on the initial states of the
buffer and the CTMC is defined in [119, 177]:

Hαβ(x, t) := P(T ≤ t, Z(T ) = β|B(0) = x, Z(0) = α), (6.5)

∀α, β ∈ S, x > 0 and t ≥ 0. In [22, 88], a probability distribution of T
conditioned on the initial state of the buffer fluid content and the CTMC
is proposed:

Kα(x, t) := P(T ≤ t|B(0) = x, Z(0) = α) =
S∑
β=1

Hαβ(x, t), (6.6)

∀α ∈ S, x > 0 and t ≥ 0. If we assume that the CTMC starts in sta-
tionarity, i.e. P(Z(0) = α) = πα, ∀α ∈ S, we can compute the original
probability distribution of T given in (6.3) from (6.6) by

J(x, t) =
S∑
α=1

παKα(x, t). (6.7)

Hence, in this chapter we focus on solving for Kα(x, t) which follows the
following backward equation (see [119] for the proof) ∀α ∈ S and ∀x, t > 0,

∂Kα(x, t)

∂t
− rα

∂Kα(x, t)

∂x
=

S∑
β=1

qαβKβ(x, t). (6.8)
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The initial and boundary conditions are given by:

• Kα(x, 0) = 0 ∀x > 0, ∀α ∈ S.

• Kα(0, 0) =

1 ∀{α : rα ≤ 0},

0 ∀{α : rα > 0}.

• Kα(0, t) = 1 ∀{α : rα ≤ 0} and ∀t > 0.

• Kα(Bmax, t) follows an ordinary differential equation (ODE) at this
boundary (when the buffer has reached Bmax), i.e.,
dKα(Bmax, t)

dt
=

S∑
β=1

qαβKβ(Bmax, t) ∀{α : rα > 0} and ∀t > 0.

6.3 PDE schemes

In this section we summarize different PDE schemes for numerically in-
tegrating the PDE in (6.8). Direct numerical integration for solving this
PDE has not been deployed before in the field of queueing systems. The
PDE in (6.8) is a hyperbolic PDE, more specifically an advection-reaction
PDE with one space dimension [85, 106]. In general, advection-reaction
PDEs represent different chemically reacting species that are being ad-
vected by a fluid flow.

For numerical integration of the PDE, the continuous space and time
domains are discretized. The error of the numerically integrated solution
of the PDE depends on the discretization scheme used. In this section
we discuss different space and time integration schemes. We present two
upwind space discretization schemes, namely the first order upwind and
the second order upwind scheme. We present different time integration
schemes for integrating the PDE, including one that is appropriate if the
PDE is stiff (when the time step length gets highly restrictive leading to
high computational cost for numerically integrating the PDE).
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Figure 6.1: Spatial discretization for first order upwind scheme.

6.3.1 First order upwind scheme for spatial discretiza-

tion

In this section we discuss the space discretization scheme for the PDE in
(6.8). As the PDE is an advection-reaction equation we use the simplest
first order upwind finite difference scheme [85].

In our problem the space variable corresponds to the initial fluid level
in the buffer. We discretize the interval [0, Bmax] using n equidistant grid
points with spacing ∆x = Bmax/(n − 1). The grid points are given by
{x1 = 0, x2, x3, . . . , xn = Bmax} with xp = (p−1)∆x for p = 1, . . . , n. The
schematic representation of the grid point spacing and positions is shown
in Figure 6.1.
We discretize the space first keeping the time constant. This will give us
a set of coupled ordinary differential equations (ODEs). The first order
upwind discretization scheme for the p-th space point is given by,

dKp
α

dt
=


rα
∆x

(Kp
α −Kp−1

α ) +
S∑
β=1

qαβK
p
β ∀{α : rα ≤ 0},

rα
∆x

(Kp+1
α −Kp

α) +
S∑
β=1

qαβK
p
β ∀{α : rα > 0},

(6.9)

for p = 2, . . . , n−1. In the above equation, Kp
α := Kα(xp) for p = 1, . . . , n.
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The above equation can be written in a much more compact vectorial form.
Let K = [K1

1 , . . . , K
n
1 , . . . , K

1
S, . . . , K

n
S ]T , then (6.9) can be written as

dK

dt
= AK, (6.10)

where A is a matrix whose elements are determined by the space dis-
cretization and the boundary conditions. The structure of matrix A is
given in Appendix 6.A. Note that (6.10) is a set of linear ODEs and can
in principle be solved by

Kq+1 = e(A∆t)Kq. (6.11)

In the above equation Kq := K(tq) and tq+1 − tq = ∆t. In this chapter
we divide the time interval [0, t] using m time discretization points with
spacing ∆t = t/(m − 1). The q-th time point is given by tq = (q − 1)∆t

for q = 1, . . . ,m.
Computing the exponential of the matrix A in (6.11) will be compu-

tationally very expensive as the size of the matrix is (nS) × (nS), hence
it can be large. In the subsequent sections we describe efficient numerical
time integration schemes.

6.3.1.1 Time integration schemes

In this section we discuss two different time integration schemes. The first
is the explicit 4th order Runge-Kutta (RK4) scheme and the second is the
implicit 2nd order backward differentiation formula (BDF2) scheme that
is more suitable for stiff problems.

Explicit RK4 scheme: For numerical time integration, the integration
time step ∆t needs to be specified. In case of a hyperbolic PDE discretized
with a finite difference scheme, for numerical stability of explicit time inte-
gration schemes, it is necessary that the Courant-Friedrichs-Lewy (CFL)
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condition is satisfied [85, 106]. For our problem the CFL condition yields

∆t ≤ min
α

∣∣∣∣∆xrα
∣∣∣∣ ∀α ∈ S. (6.12)

Given ∆x must choose ∆t such that it satisfies the above condition. We
deploy the explicit RK4 scheme:

Kq+1 = Kq +
∆t

6
[p1 + 2p1 + 2p3 + p4], (6.13)

where

p1 = AKq,

p2 = A[Kq +
∆t

2
p1],

p3 = A[Kq +
∆t

2
p2],

p4 = A[Kq + ∆tp3].

The RK4 scheme is 4th order accurate, i.e. the local error is O(∆t4). The
computational complexity of the RK4 scheme along with the first order
upwind scheme is O(mnS2). Note that A is a sparse matrix with O(nS2)

nonzero elements.
The computational cost of an explicit scheme such as RK4 can become

high in case of stiffness. In that case, using an implicit time integration
scheme is beneficial. A system of ODEs is said to be stiff if the time step
length for explicit schemes becomes very restrictive (i.e., very small) due
to stability requirements rather than accuracy requirements [103]. For the
system under consideration here, stiffness can occur if some of the rates rα
(or qαβ) have different orders of magnitude. To overcome this problem we
resort to the implicit time integration scheme discussed in the following
paragraph.
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Implicit BDF2 scheme: The backward differentiation formula (BDF)
is a family of implicit schemes for integrating ordinary differential equa-
tions. The k-th order BDF scheme uses k previous time step approxi-
mations of the solution for computing the present approximation of the
solution. We use the 2nd order BDF (BDF2) scheme which is given by
[155]

Kq+1 =
4

3
Kq − 1

3
Kq−1 +

2

3
∆t[AKq+1]. (6.14)

The method is implicit, and to compute Kq+1 given Kq,Kq−1 a system
of linear equations needs to be solved. This makes the method computa-
tionally expensive. However, the method being implicit in nature there
is less restriction on ∆t for stability [155]. In order to solve the system
of linear equations in (6.14) we use the LU decomposition method (worst
case complexity O((nS)3) [73]) implemented in MATLAB . In practice
the sparsity of the matrix will reduce the computational complexity of the
LU decomposition, however the degree of reduction is complicated to as-
sess because it depends on the sparsity pattern. The complexity of BDF2
with first order upwind scheme becomes O(mn2S2 + (nS)3), where m is
the number of time discretization points and n is the number of space
discretization points.

6.3.2 Second-order upwind scheme using flux limiters

In Section 6.3.1 we described the method of solving the PDE (6.8) using
the first order finite difference upwind space discretization scheme. The
drawback of the this scheme is that the error in the solution is O(∆x).
In order to achieve higher order accuracy in the numerically integrated
solution of the PDE one can use higher order schemes. Hence, in this
section we discuss the second-order upwind scheme for space discretization
which has a global error O(∆x2).

The second order upwind scheme leads to oscillations around discon-
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tinuities in the solution domain. In our problem the distribution function
in (6.6) has jumps, leading to discontinuities in the solution. These jumps
occur because there is a positive probability that the CTMC starts and
remains in a state with negative rate (rα < 0) for any finite amount of time
and hence there is a positive probability that the buffer hits zero exactly
at time |xrα|, where x is the initial fluid level in the buffer. To limit the
values of the spatial derivatives to realistic values around discontinuity of
the solution, the concept of flux limiters is used.

6.3.2.1 Second order upwind

The PDE in (6.8) is spatially approximated on cell-centered grid points
xp (see Figure 6.2) by the semi-discrete conservation form [84]

dKp
α(t)

dt
− 1

∆x
[F p+1/2
α (t)− F p−1/2

α (t)] =
S∑
β=1

qαβK
p
β(t), ∀α ∈ S. (6.15)

In the above equation, Kp
α(t) is the continuous-time approximation of

Kα(xp, t) at the grid point xp = (p− 1
2
)∆x for p = 1, . . . , n, where n is the

number of cell centered grid points. F p+1/2
α is the numerical flux at the

right vertex of the pth cell and it is the approximation to the analytical
flux at cell vertex xp+1/2 = 1

2
(xp+1+xp) for p = 1, . . . , n−1. The boundary

vertices are x1/2 = 0 and xn+1/2 = Bmax.
For the second order upwind scheme the numerical flux is given by [84]

F p+1/2
α =

rα[3
2
Kp
α − 1

2
Kp−1
α ] ∀{α : rα ≤ 0},

rα[3
2
Kp+1
α − 1

2
Kp+2
α ] ∀{α : rα > 0}.

(6.16)

For other higher order (for example third and fourth order) discretization
schemes, see [84].
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Figure 6.2: Cell-centered grid discretization for second order upwind
scheme.

6.3.2.2 Positivity of the second order upwind scheme

As mentioned earlier the second order upwind scheme suffers from oscil-
lations around discontinuities in the solution domain. It implies that the
scheme can lead to negative values in the numerical solution. This is un-
wanted as we are approximating a distribution function whose values must
lie in [0, 1]. In this section we give an explanation for this behavior of the
scheme. We follow [84] closely in this section.

The positivity rule says that for any non-negative initial solution (kpα(t0) ≥
0, ∀p) the solution Kp

α(t) which evolves in time remains non-negative
∀t ≥ t0. A scheme is positive if and only if ∀p and ∀t ≥ t0 [84],

Kp
α(t) = 0, Kp′

α (t) ≥ 0, ∀p′ 6= p =⇒ dKp
α(t)

dt
≥ 0. (6.17)

The above (6.17) means that if the solution at any cell p′ 6= p increases,
then the solution in cell p should also increase or remain the same. It
should be noted that the first order upwind scheme (see Section 6.3.1)
satisfies this rule. For the second order upwind scheme we plug in the
values of the numerical fluxes from (6.16) into (6.15) and we get ∀{α :
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rα < 0}

dKp
α(t)

dt
=
|rα|
2∆x

[−Kp−2
α (t) + 4Kp−1

α (t)− 3Kp
α(t)] +

S∑
β=1

qαβK
p
β(t). (6.18)

From above we can see that the coefficient ofKp−2
α (t) is negative and hence

when Kp−2
α (t) increases

dKp
α(t)

dt
decreases. Therefore, the positivity rule

in (6.17) is not satisfied by the second order upwind scheme. The q-terms
in the above equation pose no problems for the positivity rule because of
the structure of the Q matrix, i.e the non-diagonal terms of the matrix
are non-negative. Analogous arguments show that the positivity rule is
also not satisfied for dKp

α(t)
dt

∀{α : rα ≥ 0}.

6.3.2.3 Flux limiters

We have seen in the previous section that the second order upwind scheme
does not preserve non-negativity of the time evolving solution. To ensure
non-negativity of the solution we apply the flux limiter method. The
expression for the flux with the limiter is given by

F p+1/2
α =

rα[Kp
α + 1

2
φp+1/2(Kp

α −Kp−1
α )] ∀{α : rα ≤ 0},

rα[Kp+1
α + 1

2
φp+1/2(Kp+1

α −Kp+2
α )] ∀{α : rα > 0},

(6.19)

where φp+1/2 := φ(fp+1/2). Here φ is a non-linear function called the
limiter function, and fp+1/2 is related to the adjacent fluxes. Both φ and
f will be specified later in this section. The limiter is applied such that the
solution remains non-oscillatory in the discontinuous part of the solution
and in the smooth part the higher order scheme is applied [84, 106]. Note
that with φ = 0, we get the first order upwind scheme. We show that the
flux limited expression in (6.19) preserves positivity of the semi-discrete
scheme in (6.15). For {α : rα < 0} we get from (6.19) and (6.15)
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dKp
α

dt
= −|rα|

∆x
[(Kp

α −Kp−1
α ) +

1

2
φp+1/2(Kp

α −Kp−1
α )− 1

2
φp−1/2(Kp−1

α −Kp−2
α )]

+
S∑
β=1

qαβK
p
β. (6.20)

Let fp−1/2 =
Kp
α −Kp−1

α

Kp−1
α −Kp−2

α

and assuming fp−1/2 6= 0, i.e., Kp
α −Kp−1

α 6= 0

we get from (6.20),

dKp
α

dt
= −|rα|

∆x
[(1 +

1

2
φp+1/2)− 1

2

φp−1/2

fp−1/2

](Kp
α−Kp−1

α ) +
S∑
β=1

qαβK
p
β. (6.21)

Applying the positivity rule in (6.17) to (6.21), we find that the term in
the square bracket in the above equation should be non-negative and this
leads to

φp−1/2

fp−1/2

− φp+1/2 ≤ 2. (6.22)

If fp−1/2 = 0, i.e., Kp
α − Kp−1

α = 0, then (6.20) leads to Kp
α(t)
dt

> 0 if
φp−1/2 = 0. Hence, we assume that φp−1/2 = 0 if fp−1/2 ≤ 0. Also
assuming 0 ≤ φp−1/2, φp+1/2 ≤ δ, for any constant δ > 0, then (6.22) is
satisfied if φp−1/2 ≤ 2fp−1/2. Hence, φp−1/2 and φp+1/2 can be expressed as
functions of fp−1/2 and fp+1/2. Thus we have,

φ(f) = 0 for f ≤ 0,

φ(f) ≤ 2f for f > 0, and

φ(f) ≤ 2 for f > 0.

(6.23)

From the conditions in (6.23) the limiter must be within or at the boundary
of the so-called Sweby’s TVD (total variation diminishing) domain (see
Fig. 1a of [156]). One gets the same results ∀{α : rα ≥ 0}.
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A wide range of limiters that fall in this TVD region has been proposed
in the literature, see [14, 168] for an overview and comparisons of different
limiters. For solving our problem we use the Koren limiter [97], given by

φ(f) = max(0,min(2f,
2 + f

3
, 2)). (6.24)

6.3.2.4 Time integration scheme

For time integration we cannot use RK4 scheme (see Section 6.3.1.1) with
the flux limited second order upwind scheme. This is because for RK4
scheme to satisfy the TVD conditions, the step size must be zero (see
equation (33) of [84]). Hence, we use the explicit 3rd order Runge Kutta 3b
(RK3b) scheme described and suggested in [84]. We describe the scheme
in this section. Let the space discretized Kα(x) is given by Kp

α := Kα(xp),
where p is the index of the space discretization point (see Section 6.3.2.1).
LetK = [K1

1 , . . . , K
n
1 , . . . , K

1
S, . . . , K

n
S ]T . Then we can rewrite the system

of equations (6.15) by expanding F p+1/2
α using (6.19) in the form

dK

dt
= A(K)K, (6.25)

where the matrix A(K) is a function of K because of the flux-limiter
(which is a function of K). As can be seen in (6.15) and (6.19), the ele-
ments of A(K) are determined by the second order space discretization,
the boundary conditions and the source terms. For details of the space
discretization see Appendix 6.B. Note that unlike the upwind scheme de-
scribed in Section 6.3.1 and (6.10) the matrix A now has to be evaluated
at each time step. This is because the flux limiter function φ needs to be
evaluated at every time step which changes the matrix A. The explicit
RK3b is given by

Kq+1 = Kq +
∆t

6
[p1 + p2 + 4p3], (6.26)
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where

p1 = A(Kq)Kq,

p2 = A(Kq + ∆tp1)[Kq + ∆tp1],

p3 = A(Kq +
∆t

4
[p1 + p2])[Kq +

∆t

4
[p1 + p2]],

where q is the discretized time index and the time discretization step size
∆t is chosen in such a way that the CFL condition in (6.12) is satisfied. We

take ∆t = 0.25×min
α∈S

∣∣∣∣∆xrα
∣∣∣∣. RK3b gives a total error O(∆t3). The com-

putation complexity of the scheme is O(nmS2), where as before, n is the
number of space discretization points, m the number of time discretization
points and S is the cardinality of the state space of the CTMC.

6.4 Laplace-Stieltjes transform method

In queueing theory the common approach to compute first passage times
for fluid queues is by the Laplace-Stieltjes transform (LST) [43, 63, 119,
133]. In this section we discuss briefly the LST method presented in [119]
for calculating (6.6). The starting point in [119] is the distribution function
defined in (6.5). The PDE satisfied by Hαβ(x, t), ∀{β : rβ < 0}, ∀α ∈ S
and ∀x, t > 0 is

∂Hαβ(x, t)

∂t
− rα

∂Hαβ(x, t)

∂x
=

S∑
γ=1

qγβHγβ(x, t), (6.27)

with appropriate boundary and initial conditions discussed in [119]. Note
that Hαβ(x, t) = 0, ∀{β : rβ > 0}, and ∀α ∈ S. Taking the LST,
H̃αβ(x,w) :=

∫∞
0
e−wtdHαβ(x, t), the vector H̃β = [H̃1β, . . . H̃Sβ] satisfies

the following ODE

R
dH̃β(x,w)

dx
= (wI −Q)H̃β(x,w), (6.28)
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where R = diag(r1, . . . rS). The following functional form is assumed

H̃β(x,w) = es(w)xΦ(w). (6.29)

Substituting in (6.28) we obtain

Rs(w)Φ(w) = (wI −Q)Φ(w), (6.30)

where s(w) is a scalar and Φ(w) is a vector that are both to be determined.
The above equation can be re-written as

(Q+ s(w)R− wI)Φ(w) = 0. (6.31)

Hence, the problem boils down to solving an eigenvalue problem, i.e., we
need to find the roots of ∆(s, w) = det(Q+ s(w)R−wI) = 0. Assuming
that the diagonal elements of R has no zeros, let sk(w) for k = 1, . . . , S be
the roots of ∆(s, w) and Φk(w) the corresponding eigenvectors. We have

H̃αβ(x,w) =
S∑
k=1

akβe
sk(w)xφkα(w), (6.32)

where φkα(w) are the elements of Φk(w). The coefficients akβ are obtained
from the following initial and boundary conditions ∀{β : rβ < 0}:

• H̃αβ(0, w) =

1 if α = β,

0 if α 6= β and rα < 0.

• H̃αβ(Bmax, w) =
∑
m6=α

qαm
−qαα+w

H̃mβ(Bmax, w), ∀{α : rα > 0}.

From the above boundary conditions we can obtain the full expression for
H̃αβ(x,w) from which we can obtain

K̃α(x,w) =
S∑
β=1

H̃αβ(x,w), ∀α ∈ S. (6.33)
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Finally to obtain Kα(x, t) as in (6.6) we need to numerically invert the
transformed solution K̃α(x,w).

Summarizing the LST method, first one needs to solve the eigenvalue
problem in (6.31), symbolically or numerically. Then one solves the system
of linear equation (6.32) for obtaining the coefficients akβ. Finally, for
applying the result to practical purposes, one must numerically invert the
LST to obtain the solution Kα(x, t) in the time domain.

6.5 Application and Results

The Markov-modulated fluid queues described in Section 6.2 can be ap-
plied to micro-grids powered with wind energy. In Chapter 5 we mod-
eled wind farm power output with discrete-time hidden Markov models
(HMM). We consider a continuous-time version (because time is a contin-
uous variable) of the HMM for the application of Markov-modulated fluid
queues to micro-grids. We found in Chapter 5 that for modeling wind
power accurately we need a very large state space, i.e., large value of S.
Hence, in this section we focus on approximating the first passage time
distribution of the buffer being empty as defined in (6.3) for large state
space systems (large values of S) using the PDE schemes discussed in the
previous sections.

We present results of various cases to compare the numerical integra-
tion schemes presented in Sections 6.3.1 and 6.3.2. We also compare the
numerical integration schemes with Monte Carlo (MC) simulations. Fi-
nally, we compare results with the LST method described in Section 6.4
(albeit for small S).

6.5.1 Results for first order upwind

In this section we show results obtained from the PDE scheme discussed
in Section 6.3.1 and compare with MC simulations. We perform the sim-
ulation on a Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz computer. In
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this section we denote the first order upwind scheme coupled with RK4
time integration as 1UP-RK4 and first order upwind scheme coupled with
BDF2 time integration as 1UP-BDF2.

6.5.1.1 S = 100

We start with results for number of states S = 100. We generate a Q ma-
trix for a birth-death process with qαα = −5, ∀α ∈ S, qα,α±1 = 2.5, ∀α ∈
S/{1, 100} and periodic boundary. The rates {rα}, ∀α ∈ S are randomly
sampled from a normal distribution, i.e. rα ∼ N (−50, 1002),∀α ∈ S. We
take Bmax = 5. First we compare J(3, t) calculated from the PDE scheme
with MC simulations. For this case we use the RK4 time integration
scheme described in Section 6.3.1.1. We also compare how the space and
time discretization steps ∆x and ∆t affect the solution. Note that from
the CFL conditions in (6.12) ∆x and ∆t have to be modified in tandem.

We take ∆t = 0.25×min
α∈S

∣∣∣∣∆xrα
∣∣∣∣ such that the CFL condition is satisfied.

In Figure 6.1 we plot the values of J(3, t) for the RK4 method and compare
with MC simulation results. For MC simulation we simulate the buffer
model described in (6.1) starting the buffer at B(0) = x = 3 until t = 1 for
1000 samples and then compute J(3, t) using the MC probability estimator
described in (2.10) of Chapter 2. The relative error on the MC estimates
is of the order 0.03 for 1000 samples.

Notice from Figure 6.1 as ∆x becomes smaller the 1UP-RK4 solution
gets more aligned with the MC solution. The smaller the space and time
discretization steps are, the better the solution becomes however it comes
with a computational effort as shown in Table 6.1 for t ∈ [0, 1]. Comparing
the CPU time of the MC simulation with the PDE scheme is not straight-
forward. This is because the PDE scheme gives us results for J(x, t) for
different values of initial buffer fluid content x ∈ [0, Bmax] at intervals of
∆x, on the other hand MC simulation computes J(x, t) for a single value
of x. MC simulation took 52 seconds for computing J(3, t) for the same
values of t as of 1UP-RK4 scheme.
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Figure 6.1: Comparing 1UP-RK4 scheme with MC simulations for differ-
ent ∆x values for S = 100.

∆x ∆t CPU time (s)

0.5 1.8× 10−4 0.07
0.1 8.9× 10−5 0.67
0.01 8.3× 10−6 160

Table 6.1: Comparing CPU time for different ∆x for the system described
in Section 6.5.1.1 for t ∈ [0, 1] and S = 100.

6.5.1.2 S = 200

In this section we present results for S = 200; all other parameters are kept
the same as in Section 6.5.1.1. We compare the values of J(3, t) computed
from the 1UP-RK4 scheme with MC simulation estimates. From Figure
6.2 we can see that for ∆x = 0.1 the 1UP-RK4 results match closely with
MC simulation results. As seen in Section 6.5.1.1 smaller values of ∆x will
lead to better alignment of results obtained from the PDE scheme with
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Figure 6.2: Comparing J(3, t) computed from the 1UP-RK4 scheme (with
∆x = 0.1) and MC simulations for S = 200.

S ∆t CPU time (s)

200 6.8× 10−5 3.3
1000 1.3× 10−4 50

Table 6.2: Comparing CPU time for different S for the systems described
in Sections 6.5.1.2 and 6.5.1.3 with t ∈ [0, 1] and ∆x = 0.1.

MC simulation estimates.
Table 6.2 tabulates the CPU time for estimating J(x, t) for t ∈ [0, 1] and
x ∈ [0, 5] for the 1UP-RK4 method. The MC simulation took 112 seconds
for computing J(3, t) for the same values of t as of the 1UP-RK4 scheme.

As we are also interested in finding xmin, i.e., the initial starting level
of the buffer so that the probability of it running empty before time t is
less than pempty (see (6.4)), using a numerical integration scheme readily
gives us the numerical solution to the problem. In Figure 6.3 we plot the
values of J(x, t) (color bar) for different x and t. From the plot xmin can
be estimated given pempty and t.
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Figure 6.3: Values of J(x, t) calculated using 1UP-RK4 scheme with ∆x =
0.1 and ∆t = 6.8× 10−5 for S = 200.

6.5.1.3 S = 1000

In this section we present results for S = 1000. We take ∆x = 0.1 and keep
the other variables the same as Section 6.5.1.1. In Figure 6.4 we compare
the values of J(3, t) with t ∈ [0, 1] obtained from 1UP-RK4 scheme with
MC simulation estimates and find that the solutions computed from both
the methods are in good agreement with each other. In Figure 6.5 we plot
the values of J(x, t) (color bar) for different x and t. Table 6.2 tabulates
the CPU time for estimating J(x, t) for t ∈ [0, 1] and x ∈ [0, 5] for the
RK4 scheme. MC simulation took 630 seconds to compute J(3, t) for the
same values of t ∈ [0, 1] as of the 1UP-RK4 scheme.

6.5.1.4 Solving stiff problems

In the previous cases, the values of the rates were such that ∆t ∼ 10−4.
We create stiffness in the PDE by setting one of the rates rα to −104

and keeping all the other rates similar as in Section 6.5.1.1. Furthermore,
we take S = 100, t ∈ [0, 1], ∆x = 0.1 and ∆t = 5 × 10−6, satisfying
the CFL condition, for the RK4 scheme. This time step is much smaller
than was used in Section 6.5.1.1, due to stiffness. It makes the RK4
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Figure 6.4: Comparing J(3, t) estimated from the 1UP-RK4 scheme (with
∆x = 0.1) and MC simulations for S = 1000.
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Figure 6.5: Values of J(x, t) computed using the 1UP-RK4 scheme with
∆x = 0.1 and ∆t = 6.8× 10−5 for S = 1000.

scheme computationally intensive, since the time interval t ∈ [0, 1] of
interest remains unchanged. We use the implicit BDF2 scheme (discussed
in Section 6.3.1.1), which allows us to take larger time steps.

We compare RK4 and BDF2 schemes in this section. We compare the
results for J(3, t) for both the schemes and with MC simulation results.
For the choice of ∆t for BDF2 scheme, we compare the sum squares error
of RK4 scheme with ∆x = 0.1 and MC simulation estimates for J(3, t)
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Time integration scheme ∆t Sum of squares error CPU time (s)

BDF2 1× 10−3 0.0034 15
RK4 5× 10−6 0.0035 48

Table 6.3: Comparing CPU time for BDF2 and 1UP-RK4 time integration
schemes with S = 100, ∆x = 0.1, Bmax = 5 and t ∈ [0, 1] for the stiff
problem.

with the sum of squares error of BDF2 scheme for different ∆t and MC
simulation estimates for J(3, t). We define the sum of squares error for
both the schemes as

ERK4 :=
mRK4∑
tRK4
q =1

(JMC(3, tRK4
q )− JRK4(3, tRK4

q ))2, and (6.34)

EBDF2 :=
mBDF2∑
tBDF2
q =1

(JMC(3, tBDF2
q )− JBDF2(3, tBDF2

q ))2, (6.35)

respectively. In the above equation tRK4
q is the q-th time integration point

of the RK4 scheme, mRK4 is the total number of time integration points of
the RK4 scheme, JMC(3, tRK4

q ) is the MC estimate for x = 3 and t = tRK4
q .

JRK4(3, tRK4
q ) is computed by RK4 scheme for x = 3 and t = tRK4

q . The
variables with superscript BDF2 are computed by the BDF2 scheme.

In Table 6.3 we compare CPU time needed to compute J(x, t) for both
time integration schemes for similar sum of squares error, and in Figure 6.6
we compare J(3, t) for these schemes. In Figure 6.6 we see that the BDF2
and RK4 schemes give accurate results when compared to the benchmark
MC simulations. However, RK4 is slower than BDF2, as can be seen in
Table 6.3.
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Figure 6.6: Comparing BDF2, 1UP-RK4 and MC results for S = 100,
∆x = 0.1, Bmax = 5 and t ∈ [0, 1] for the stiff problem.

6.5.2 Results for second order upwind

Here, we compare J(x, t) computed using the flux-limited second order
upwind scheme (see Section 6.3.2) with MC simulation. Note that in this
section we will denote flux-limited second order upwind scheme coupled
with RK3b time integration scheme as 2FLUP-RK3b. We keep all the
parameters same as in Section 6.5.1.1. We take ∆x = 0.1 and S = 100.
In Figure 6.7 we compare values of J(3.05, t) obtained from 2FLUP-RK3b
with MC simulation results. We present results for x = 3.05 in this section
due to the cell-centered grid discretization (see Figure 6.2). From Figure
6.7 we can see that the results computed from 2FLUP-RK3b are in good
agreement with MC simulation results.

6.5.2.1 Different parameter settings

We presented results of J(x, t) in the previous sections using the same
parameters as described in Section 6.5.1.1. We used a Q matrix for a
birth-death process which is sparse in nature. Therefore in this section
and the next we present results for non-sparse Q matrix. We generate
a random Q matrix (instead of a birth-death process) for the CTMC.
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Figure 6.7: Comparing values of J(3.05, t) obtained from 2FLUP-RK3b
for ∆x = 0.1 and S = 100 with MC simulation results.
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Figure 6.8: Comparing values of obtained from 2FLUP-RK3b for ∆x =
0.1, ∆t = 6 × 10−4 and S = 100 with MC simulation results for a non-
sparse Q matrix.

The non-diagonal elements of the Q matrix are uniformly sampled from
random integers between [0, 10]. We keep the other parameter the same as
in Section 6.5.1.1. In Figure 6.8 we take ∆x = 0.1 units and present results
for J(3.05, t). From Figure 6.8 we can see that the results computed from
2FLUP-RK3b are well aligned with MC simulation results.
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S Scheme ∆x Sum of squares error CPU time (s)

1UP-RK4 0.05 0.092 0.15
2

2FLUP-RK3b 0.5 0.087 0.29

1UP-RK4 0.05 0.001 20
50

2FLUP-RK3b 0.5 6.6× 10−4 22

1UP-RK4 0.05 0.0041 118
100

2FLUP-RK3b 0.5 0.0044 47

1UP-RK4 0.05 0.0075 583
200

2FLUP-RK3b 0.5 0.0079 94

Table 6.4: Comparing CPU time for different S for first order upwind
scheme and second order upwind scheme.

6.5.2.2 Comparing 1UP-RK4 and 2FLUP-RK3b schemes

In this section we compare CPU time of 1UP-RK4 scheme described in
Section 6.3.1 with 2FLUP-RK3b scheme described in Section 6.3.2.

The error for first order upwind space discretization scheme is O(∆x)

and for second order upwind space discretization scheme is O(∆x2). In
order to compare the CPU time of first order scheme with the second
order upwind scheme, we fix ∆x for the first order scheme and vary ∆x

for the second order scheme such that the sum of squares error (see equa-
tion (6.34)) of both the schemes compared to MC simulation are close to
each other. We calculate the sum of squares error at x = 3.25 for this
comparison.

The time discretization step size ∆t for both the schemes is computed

by ∆t = 0.25 × min
α∈S

∣∣∣∣∆xrα
∣∣∣∣, which satisfies the CFL condition in (6.12).

We keep the other parameters same as described Section 6.5.2.1 with non-
sparse Q matrix. We solve numerically for J(x, t) (see (6.3)) using both
the discretization schemes for increasing number of states S.
It can be seen from Table 6.4 that as the number of states of the system
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S increases the first order upwind scheme becomes more expensive and
implementing second order upwind scheme for achieving the same order
of error in the solution pays off. Since ∆x for the first order scheme is 10
times smaller than for the second order upwind scheme, we have 10 times
finer space and time discretization grid for the first order upwind scheme
compared to the second order upwind scheme.

6.5.3 Comparing results with LST method

In this section we compare values of Kα(x, t) ∀α ∈ S (see (6.6)) obtained
from LST method described in Section 6.4 with 1UP-RK4 (described in
Section 6.3.1) as well as with MC simulations. For the LST method we
first obtain the analytical expressions for K̃α(x,w) (see (6.33)) using the
symbolic toolbox of MATLAB and then numerically invert the transforms
using the method described in [158] to compute Kα(x, t).

6.5.3.1 Two state system, S = 2

We take S = 2, R = diag(−2, 1) and Bmax = 5. We take the generator
matrix Q for a birth-death process as explained in Section 6.5.1.1. The
space discretization step is set to ∆x = 0.01 and the time discretization
step to ∆t = 0.0025. In Figure 6.9 we present results for B(0) = x = 3

and find that all three methods are in good agreement with one another.

6.5.3.2 Three state system, S = 3

In this section, we take S = 3, R = diag(−2, 1,−0.5), and Bmax = 5.
Following the previous section, we use ∆x = 0.01 and ∆t = 0.0025. From
Figure 6.10 we find the results obtained from the three methods are in
good agreement to each other.
We find that for a small system with only two states, i.e., S = 2 the
LST method is computationally not very expensive. However for S = 3

our implementation of the LST method already becomes computationally
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Figure 6.9: Comparing the LST and PDE integration methods with MC
simulations for S = 2 and x = 3.
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Figure 6.10: Comparing the LST and PDE integration methods with MC
simulations for S = 3 and x = 3.

very intensive. It should be noted that we implemented a straightforward
method for solving the problem using the LST method. First we solve
the eigenvalue problem in (6.31) symbolically and then solve the system
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of linear equations for obtaining the coefficients in (6.32) symbolically.
Finally, we numerically invert the transforms. It is worthwhile to explore
whether the computations needed for the LST method (i.e., solving the
generalized eigenvalue problem in (6.31) and numerically inverting the
LST) can be carried out more efficiently. This exploration is however
beyond the scope of this chapter.

6.6 Conclusion

In this chapter we proposed PDE schemes to numerically compute the first
passage time distribution of a Markov-modulated fluid queue model. We
solved the one-dimensional coupled advection-reaction PDEs associated
with this problem using upwind space discretization schemes. To achieve
higher order accuracy in the space discretization we deployed the flux
limited second order upwind scheme. We compare the results of these
numerical schemes with MC simulation results.

For time integration of the PDE we used both explicit and implicit
schemes. We deployed explicit Runge-Kutta methods as well as the im-
plicit backward difference formula method for stiff problems. We studied
the computational efficiencies of these schemes. We also found that the
larger the system becomes (i.e., the larger S becomes), the second order
upwind scheme becomes computationally more efficient compared to the
first order upwind scheme. We find that results obtained with the PDE
schemes are in close agreement with the benchmark MC simulation results,
as well as with the results obtained (for small S) with the LST method.
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Appendix

6.A Space discretization matrix for first or-

der upwind scheme

The matrix A in (6.10) can be written as A = R̃+ Q̃+ Q̄, in which R̃ is
a block diagonal matrix given by R̃ = blkdiag(R̃1, . . . , R̃S), where

R̃α =
rα
∆x


0 0 0 0 . . .

−1 1 0 0 . . .

0 −1 1 0 . . .
...

...
...

... . . .

 ∀{α : rα < 0} and,

R̃α =
rα
∆x


−1 1 0 0 . . .

0 −1 1 0 . . .
...

...
...

... . . .

0 0 0 . . . 0

 ∀{α : rα > 0}.
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Furthermore, Q̃ = Q ⊗ Iq×q, where Iq×q is the identity matrix of size
q × q. The matrix Q̄ contains the discretization of the boundary condi-
tions for Kn,q

α for {α : rα > 0} and has dimensions equal to Q̃. The
elements of the matrix are given by Q̄nα,nβ = Q̃nα,nβ for {α : rα > 0} and
β = 1, . . . , S. All the other elements of matrix Q̄ are zero.

6.B Flux limited second order upwind scheme

We present the details of the flux limited second order upwind scheme here.
From (6.19) it can be seen that flux values for faces F 3/2

α and F n+1/2
α , ∀{α :

rα ≤ 0} cannot be defined by (6.19). Similarly, flux values for faces F 1/2
α

and F n−1/2
α , ∀{α : rα > 0} cannot be defined by (6.19). Hence we define

the fluxes for all the faces as follows:

• ∀{α : rα ≤ 0}
1. F 1/2

α is given by the boundary condition in Section 6.2.1.
2. F 3/2

α = 1
2
(K1

α +K2
α), i.e, the central scheme.

3. F p+1/2
α for p = 2, . . . , n− 1 is given by (6.19).

4. F n+1/2
α = (3

2
Kn
α − 1

2
Kn−1
α ), i.e., the second order upwind scheme

without limiters.

• ∀{α : rα > 0}
1. F 1/2

α = (3
2
K1
α − 1

2
K2
α).

2. F p+1/2
α for p = 1, . . . , n− 2 is given by (6.19).

3. F n−1/2
α = 1

2
(Kn

α +Kn−1
α ), i.e, the central scheme.

4. F n+1/2
α is given by the boundary condition in Section 6.2.1.

Note that in (6.19),the expression φp+1/2 = φ(fp+1/2) was still left unspec-
ified. As a convenience we repeat here how we specified them later in
section 6.3.2.3. As limiter φ we chose the Koren limited (6.24), and fp+1/2
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is defined as:

fp+1/2 =


Kp+1
α −Kp

α

Kp
α −Kp−1

α

∀{α : rα ≤ 0},
Kp−1
α −Kp

α

Kp
α −Kp+1

α

∀{α : rα > 0}.
(6.36)
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