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We introduce a new model of congestion games that captures several extensions of 
the classical congestion game introduced by Rosenthal in 1973. The idea here is to 
parameterize both the perceived cost of each player and the social cost function of the 
system designer. Intuitively, each player perceives the load induced by the other players by 
an extent of ρ ≥ 0, while the system designer estimates that each player perceives the load 
of all others by an extent of σ ≥ 0. For specific choices of ρ and σ , we obtain extensions 
such as altruistic player behavior, risk sensitive players and the imposition of taxes on the 
resources. We derive tight bounds on the price of anarchy and the price of stability for 
a large range of parameters. Our bounds provide a complete picture of the inefficiency of 
equilibria for these games. As a result, we obtain tight bounds on the price of anarchy and 
the price of stability for the above mentioned extensions. Our results also reveal how one 
should “design” the cost functions of the players in order to reduce the price of anarchy. 
Somewhat counterintuitively, if each player cares about all other players to the extent of 
ρ = 0.625 (instead of 1 in the standard setting) the price of anarchy reduces from 2.5 to 
2.155 and this is best possible.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Congestion games constitute an important class of non-cooperative games which was introduced by Rosenthal in 1973 
[19]. In a congestion game, we are given a set of resources from which a set of players can choose. Each resource is 
associated with a cost function which specifies the cost of this resource depending on the total number of players using it. 
Every player chooses a subset of resources (from a set of resource subsets available to her) and experiences a cost equal to 
the sum of the costs of the chosen resources. Congestion games are both theoretically appealing and practically relevant. 
For example, they have applications in network routing, resource allocation and scheduling problems.

Rosenthal [19] proved that every congestion game has a pure Nash equilibrium, i.e., a strategy profile such that no player 
can decrease her cost by unilaterally deviating to another feasible set of resources. This result was established through the 
use of an exact potential function (known as Rosenthal potential) satisfying that the cost difference induced by a unilateral 
player deviation is equal to the potential difference of the respective strategy profiles. In fact, Monderer and Shapley [17]
showed that the class of games admitting an exact potential function is isomorphic to the class of congestion games.
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Table 1
An overview of our (tight) price of anarchy and price of stability results for certain values of ρ and σ . Here h(1) ≈ 0.625 (see Theorem 2 for a formal 
definition). The respective references where these bounds were established first are given in the column “Ref.”; an asterisk indicates that this result is new.

Model Parameters PoA Ref. PoS Ref.

Classical ρ = σ = 1 5
2 [8] 1.577 [4]

Altruism (1) σ = 1, 1 ≤ ρ ≤ 2 4ρ+1
1+ρ [5,6]

√
3+1√

3+ρ−1
[∗]

Altruism (2) σ = 1, 2 ≤ ρ ≤ ∞ ρ + 1 [6] – –
Risk neutral-players σ = ρ = 1

2
5
3 [18] 1.447 [∗]

Wald’s minimax σ = 1
2 , ρ = 1 2 [3,18] 1 [∗]

Constant universal taxes σ = 1, ρ = h(1) 2.155 [4] 2.013 [∗]
Uniform affine CG – ∞ [∗] 2 [∗]

One of the main research directions in algorithmic game theory focuses on quantifying the inefficiency caused by selfish 
behavior. The idea is to assess the quality of a Nash equilibrium relative to an optimal outcome. Here the quality of an 
outcome is measured in terms of a given social cost objective (e.g., the sum of the costs of all players). Koutsoupias and 
Papadimitriou [14] introduced the price of anarchy as the worst-case ratio between the social cost of a Nash equilibrium and 
the social cost of an optimum. Anshelevich et al. [1] defined the price of stability as the ratio between the best social cost of 
a Nash equilibrium and the social cost of an optimum.

In recent years, several extensions of Rosenthal’s congestion games were proposed to incorporate aspects which are not 
captured by the standard model. For example, these extensions include risk sensitivity of players in uncertain settings [18], 
altruistic player behavior [5,6] and congestion games with taxes [4]. We elaborate in more detail on these extensions in 
Section 2. These games were studied intensively with the goal to obtain a precise understanding of the price of anarchy.

In this paper, we introduce a new model of congestion games, which we term perception-parameterized congestion games, 
that captures all these extensions (and more) in a unifying way. The key idea here is to parameterize both the perceived cost 
of each player and the social cost function. Intuitively, each player perceives the load induced by the other players by an 
extent of ρ ≥ 0, while the system designer estimates that each player perceives the load of all others by an extent of σ ≥ 0. 
The above mentioned extensions reduce to special cases of our model by choosing the parameters ρ and σ accordingly.

We illustrate our model by means of a simple example; formal definitions of our perception-parameterized congestion 
games are given in Section 2. Suppose we are given a set of m resources and that every player has to choose precisely one 
of these resources. The cost of a resource e is given by a cost function ce that maps the load on e to a real value. In the 
classical setting, the load of a resource e is defined as the total number of players xe using e. That is, the cost that player i
experiences when choosing resource e is ce(xe). In contrast, in our setting players have different perceptions of the load 
induced by the other players. More precisely, the perceived load of player i choosing resource e is 1 +ρ(xe − 1), where ρ ≥ 0
is some parameter.2 Consequently, the perceived cost of player i for choosing e is ce(1 +ρ(xe − 1)). Note that as ρ increases 
players care more about the presence of other players. In addition, we introduce a similar parameter σ ≥ 0 for the social 
cost objective, i.e., the social cost is defined as 

∑
e ce(1 + σ(xe − 1))xe . Intuitively, this can be seen as the system designer’s 

estimate of how each player perceives the load of the other players.
Despite the fact that we deal with a more general class of congestion games, we manage to derive tight bounds on 

the price of anarchy and the price of stability for a large range of parameters ρ and σ . Our bounds provide a complete 
picture of the inefficiency of equilibria for these perception-parameterized congestion games. As a consequence, we obtain 
tight bounds on the price of anarchy and the price of stability for the above mentioned extensions. While the price of 
anarchy bounds are (mostly) known from previous results, the price of stability results are new. As in [4–6,18], we focus on 
congestion games with affine cost functions.

Our results We prove the following bounds on the price of anarchy (PoA) and the price of stability (PoS) of pure Nash 
equilibria in affine congestion games for a large range of parameters (ρ, σ) (specified below):

PoA ≤ max

{
ρ + 1,

2ρ(1 + σ) + 1

ρ + 1

}
and PoS ≤

√
σ(σ + 2) + σ√

σ(σ + 2) + ρ − σ
. (1)

We prove that these bounds are tight for general affine congestion games. Further, for the special case of symmetric network 
congestion games we show that the bound of (2ρ(1 + σ) + 1)/(ρ + 1) on the price of anarchy is asymptotically tight. In 
contrast, for this case we derive a better (tight) bound on the price of stability for σ = 1 and ρ ≥ 0. An overview of the 
price of anarchy and the price of stability results that we obtain from (1) for several applications known in the literature is 
given in Table 1; see Fig. 1 for an illustration of our PoA bound. The connection between these applications and our model 
is discussed at the end of Section 2.

In light of the above bounds, we obtain an (almost) complete picture of the inefficiency of equilibria (parameterized by ρ
and σ ). For example, see Fig. 2 for an illustration of the price of anarchy for σ = 1. Note that the price of anarchy decreases

2 In general, the perception parameter ρ might be player-specific. Here we focus on the homogeneous player case and leave the heterogenous case for 
future work (see concluding remarks).
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Fig. 1. The bound ρ + 1 holds for ρ ≥ 2σ ≥ 1. The bound (2ρ(1 + σ) + 1)/(1 + ρ) holds for σ ≤ ρ ≤ 2σ . Basically, this bound also holds for h(σ ) ≤ ρ ≤ σ , 
but our proof of Theorem 2 only works for a discretized range of σ (hence the vertical dotted lines in this area). The function h is given in Theorem 2.

Fig. 2. Lower bounds on the price of anarchy for σ = 1. The bounds (4ρ + 1)/(ρ + 1) and ρ + 1 are also tight upper bounds. The dotted horizontal line 
indicates the lower bound following from [5, Theorem 3.7]. The bound 4/(ρ(4 − ρ)) is a lower bound for symmetric singleton congestion games given in 
the proof of Theorem 7. A tight bound for 0 < ρ ≤ h(1) remains an open problem.

from 5
2 for ρ = 1 to 2.155 for ρ = h(1) ≈ 0.625. The price of anarchy for ρ = h(1) was first established by Caragiannis et 

al. [4]. Note that our bounds imply that the price of anarchy is in fact minimized at ρ = h(1) (see also Fig. 2). In particular, 
this shows that the bound of (4ρ + 1)/(ρ + 1) proven in [6] for 1 ≤ ρ ≤ 2 continues to hold for h(1) ≤ ρ ≤ 1. This nicely 
bridges the results in [4] and [6].

2. Our model and applications

In this section, we first formally introduce our model of congestion games with parameterized perceptions (Section 2.1). 
We then show that our model subsumes several other models that were studied in the literature as special cases (Sec-
tion 2.2).

2.1. Perception-parameterized congestion games

A congestion game � is given by a tuple (N, E, (Si)i∈N , (ce)e∈E), where N = [n]3 is a (finite) set of players, E is a (finite) 
set of resources (or facilities), Si ⊆ 2E is a set of strategies of player i, and ce : R≥0 → R≥0 is a cost function of facility e. 
Given a strategy profile s = (s1, . . . , sn) ∈ ×iSi , we define xe as the number of players using resource e, i.e., xe = xe(s) =
|{i ∈ N : e ∈ si}|. We also call x = (xe)e∈E the load profile of s. If Si = S j for all i, j ∈ N , the game is called symmetric. For a 
given graph G = (V , E), we call � a (directed) network congestion game if for every player i there exist si, ti ∈ V such that Si
is the set of all (directed) (si, ti)-paths in G . An affine congestion game has cost functions of the form ce(x) = aex + be with 
ae, be ≥ 0. If be = 0 for all e ∈ E , the game is called linear.

3 Given a positive integer n, we use [n] to refer to the set {1, . . . , n}.
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We introduce our unifying model of perception-parameterized congestion games with affine cost functions. For a fixed 
parameter ρ ≥ 0, we define the cost of player i ∈ N by

Cρ
i (s) =

∑
e∈si

ce(1 + ρ(xe − 1)) =
∑
e∈si

ae[1 + ρ(xe − 1)] + be (2)

for a given strategy profile s = (s1, . . . , sn). For a fixed parameter σ ≥ 0, the social cost of a strategy profile s is given by

Cσ (s) =
∑
i∈N

Cσ
i (s) =

∑
e∈E

xe(ae[1 + σ(xe − 1)] + be). (3)

We refer to the case ρ = σ = 1 as the classical congestion game setting (with cost functions ce(x) = aex + be for all e ∈ E and 
social cost function C(s) = ∑

i Ci(s).)
A strategy profile s is a pure Nash equilibrium if for all players i ∈ N it holds that Cρ

i (s) ≤ Cρ
i (s′

i, s−i) for all s′
i ∈ Si , where 

(s′
i, s−i) denotes the strategy profile in which player i plays s′

i and all the other players their strategy in s.
The price of anarchy (PoA) and the price of stability (PoS) of a game � are defined as

PoA(�,ρ,σ ) = maxs∈NE Cσ (s)

mins∗∈×iSi Cσ (s∗)
and PoS(�,ρ,σ ) = mins∈NE Cσ (s)

mins∗∈×iSi Cσ (s∗)
,

where NE = NE(ρ) denotes the set of pure Nash equilibria with respect to the player costs as defined in (2). For a collection 
of games H,

PoA(H,ρ,σ ) = sup
�∈H

PoA(�,ρ,σ ) and PoS(H,ρ,σ ) = sup
�∈H

PoS(�,ρ,σ ).

Unless stated otherwise, our results refer to the class of perception-parameterized congestion games with affine cost func-
tions; we therefore drop the parameter H below.

Rosenthal [19] shows that every congestion game admits an exact potential function, i.e., a function � : ×iSi → R such 
that for every strategy profile s, for every i ∈ N and every s′

i ∈ Si :

�(s) − �(s−i, s′
i) = Ci(s) − Ci(s−i, s′

i).

More specifically, given a congestion game � with arbitrary cost functions (c̄e)e∈E , the Rosenthal potential (see [19])

�(s) =
∑
e∈E

xe∑
k=1

c̄e(k) (4)

is an exact potential function.
In particular, for every fixed parameter ρ ≥ 0 the Rosenthal potential (4) with cost functions as defined in (2), i.e.,

c̄e(x) = ce(1 + ρ(x − 1)) = ae[1 + ρ(x − 1)] + be,

is an exact potential function for the corresponding perception-parameterized congestion game. As a consequence, pure 
Nash equilibria always exist for these games.

2.2. Applications

We review various models that fall within our model of perception parameterized congestion games introduced above 
(for certain values of ρ and σ ).

Altruism [5,6]. We can rewrite the cost of player i as

Cρ
i (s) =

∑
e∈si

(aexe + be) + (ρ − 1)ae(xe − 1).

The term (ρ − 1)ae(xe − 1) can be interpreted as a “dynamic” (meaning load-dependent) tax that all players using resource 
e have to pay. For 1 ≤ ρ ≤ ∞ and σ = 1, this model is equivalent to the altruistic player setting proposed by Caragiannis et 
al. [5]. Chen et al. [6] also study this model of altruism for 1 ≤ ρ ≤ 2 and σ = 1.4

4 The equivalence between the altruism model in [5] and our model is immediate; the equivalence between the altruism model in [6] and the model in 
[5] (and thus also our model) is proven in [6].
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Universal taxes [4]. We can rewrite the cost of player i as

Cρ
i (s) =

∑
e∈si

ρaexe + (1 − ρ)ae + be.

Dividing by ρ gives that s is a Nash equilibrium with respect to Cρ
i if and only if s is a Nash equilibrium with respect to

T ρ
i (s) = Cρ

i

ρ
=

∑
e∈si

(
aexe + be

ρ

)
+

∑
e∈si

1 − ρ

ρ
ae.

That is, s is a Nash equilibrium in a classical congestion game in which players take into account constant resource taxes of 
the form τ (ρ) · ae , where τ (ρ) = (1 − ρ)/ρ . Caragiannis, Kaklamanis and Kanellopoulos [4] study this type of taxes, which 
they call universal tax functions, for ρ satisfying τ (ρ) = 3

2

√
3−2. They consider these taxes to be refundable, i.e., they are not 

taken into account in the social cost, which is equivalent to the case σ = 1. Note that the function τ : (0, 1] → [0, ∞) with 
τ (ρ) = (1 −ρ)/ρ is bijective. That is, there is a one-to-one correspondence between universal taxes with τ (ρ) ∈ [0, ∞) and 
spiteful behavior with ρ ∈ (0, 1]; this relation is also mentioned by Caragiannis et al. [5].

Risk sensitivity under uncertainty [18]. Nikolova, Piliouras and Shamma [18] consider congestion games in which there is 
a (non-deterministic) order of the players on every resource. A player is only affected by players in front of her. That 
is, the load on resource e for player i in a strict ordering r, where re(i) denotes the position of player i, is given by 
xe(i) = |{ j ∈ N : re( j) ≤ re(i)}|. The cost of player i is then Ci(s) = ∑

e∈si
ce(xe(i)). Note that xe(i) is a random variable if the 

ordering is non-deterministic. The social cost of the model is defined by the sum of all player costs

C
1
2 (s) =

∑
e∈E

1

2
aexe(xe + 1) + be

which is independent of the ordering r.5 Note that the social cost corresponds to the case σ = 1
2 in our framework. Nikolova 

et al. [18] study various risk attitudes towards the ordering r that is assumed to have a uniform distribution over all possible 
orderings. In particular, they consider players who are risk-neutral and players who apply Wald’s minimax principle. In the 
risk-neutral setting the cost of a player is defined as the expected cost under the ordering r, which corresponds to the 
case ρ = 1

2 in (2). Intuitively, this can be interpreted as that players expect to be scheduled in the middle on average. In 
contrast, when players apply Wald’s minimax principle they adopt a worst-case perspective, i.e., each player assumes that 
she is scheduled last on all the resources; this corresponds to the case ρ = 1.

Approximate Nash equilibria [9]. Suppose that s is a Nash equilibrium under the cost functions defined in (2). Then, in partic-
ular, we have

C1
i (s) ≤ Cρ

i (s) ≤ Cρ
i (s′

i, s−i) ≤ ρC1
i (s′

i, s−i)

for any player i and s′
i ∈ Si and ρ ≥ 1. That is, we have C1

i (s) ≤ ρC1
i (s′

i, s−i) which means that the profile s is a 
ρ-approximate equilibrium, as studied by Christodoulou, Koutsoupias and Spirakis [9]. In particular, this implies that any 
upper bound on the price of anarchy, or price of stability, in our framework yields an upper bound on the price of stability 
for ρ-approximate equilibria for the same class of games.

Uniform affine congestion games. Let A′ denote the class of all congestion games � for which all resources have uniform costs 
c(x) = ax + b, where a = a(�) and b = b(�) satisfy a ≥ 0 and a + b > 0. Note that we allow b to be negative here. The class 
of affine congestion games with non-negative coefficients as defined above is contained in A′ since every such game can 
always be transformed6 into a game �′ with ae = 1 and be = 0 for all resources e ∈ E ′ , where E ′ is the resource set of �′ . 
Without loss of generality, we can assume that a + b = 1 (since the cost functions can be scaled by 1/(a + b)). The cost 
functions of � ∈ A′ can then equivalently be written as c(x) = ρx + (1 − ρ) for ρ ≥ 0. This is precisely the definition of 
Cρ

i (s) (with ae = 1 and be = 0). In particular, if we take σ = ρ (and thus Cρ(s) = ∑
i∈N Cρ

i (s)), we have

PoA(A′) = sup
ρ≥0

PoA(A,ρ,ρ) and PoS(A′) = sup
ρ≥0

PoS(A,ρ,ρ),

where A denotes the class of affine congestion games with non-negative coefficients.

The structure of the paper is as follows: In Section 3 we present our bounds on the price of anarchy for perception-
parameterized congestion games. In Section 4 we give the bounds on the price of stability. Finally, in Section 5 we comment 
on the implications of our results on the models mentioned above and derive some additional insights.

5 In every ordering there is always one player first, one player second, and so on.
6 This transformation can be done in such a way that both the PoA and the PoS of the game do not change; see, e.g., [6, Lemma 4.3] for a proof.
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3. Price of anarchy

In this section, we present our bounds on the price of anarchy; see Fig. 1 for an illustration. We first start with the 
simpler proof of the ρ + 1 bound (Section 3.1) and then turn to the more involved proof of the (2ρ(1 + σ) + 1)/(ρ + 1)

bound (Section 3.2). Both bounds are shown to be tight for affine congestion games. For the latter bound, we prove that it 
is asymptotically tight even for the special case of symmetric network congestion games (Section 3.3).

We need the following technical lemma.

Lemma 1. Let ρ, σ ≥ 0 be fixed. If there exist α := α(ρ, σ) ≥ 0 and β := β(ρ, σ) > 0 such that for all non-negative integers x and y
the inequality

(1 + ρx)y − ρ(x − 1)x − x ≤ −β(1 + σ(x − 1))x + α(1 + σ(y − 1))y (5)

holds, then PoA(ρ, σ) ≤ α/β .

Proof. Without loss of generality, we may assume that ae = 1 and be = 0 for all resources e ∈ E (see, e.g., [6, Lemma 4.3]). 
Let s be a Nash equilibrium with respect to the cost functions Cρ

i (s) and let s∗ be a minimizer of Cσ (·). Further, let x and 
x∗ be the load profiles for s and s∗ , respectively.

We have∑
i

Cρ
i (s) =

∑
e

ρ(xe − 1)xe +
∑

e

xe

=
∑

e

ρ[1 − σ + σ ](xe − 1)xe + ρxe − ρxe +
∑

e

xe

= ρ
∑

e

[1 + σ(xe − 1)]xe + ρ
∑

e

(1 − σ)(xe − 1)xe − xe +
∑

e

xe

= ρCσ (s) + ρ
∑

e

(1 − σ)(xe − 1)xe + (1 − ρ)
∑

e

xe.

By rearranging terms, we obtain

ρCσ (s) =
∑

i

Cρ
i (s) + ρ(σ − 1)

∑
e

(xe − 1)xe + (ρ − 1)
∑

e

xe

≤
∑

i

Cρ
i (s∗

i , s−i) + ρ(σ − 1)
∑

e

(xe − 1)xe + (ρ − 1)
∑

e

xe

≤
∑

e

[1 + ρ(xe − 1 + 1)]x∗
e + ρ(σ − 1)

∑
e

(xe − 1)xe + (ρ − 1)
∑

e

xe

=
∑

e

[1 + ρxe]x∗
e + ρ(σ − 1)(xe − 1)xe + (ρ − 1)xe

=
∑

e

[1 + ρxe]x∗
e + ρ[1 + σ(xe − 1)]xe − ρ(xe − 1)xe − xe

=
∑

e

[1 + ρxe]x∗
e − ρ(xe − 1)xe − xe + ρCσ (s)

≤ −βCσ (s) + αCσ (s∗) + ρCσ (s).

Here the first inequality holds because s is a Nash equilibrium, the second inequality follows from the definition (2) and the 
last inequality holds because of (5). We conclude that βCσ (s) ≤ αCσ (s∗), which proves the claim. �

We remark that our upper bounds on the price of anarchy of perception-parameterized congestion games can alterna-
tively be proven by adapting the smoothness framework of Roughgarden [20] appropriately; similarly as in [6].

3.1. First PoA bound

We establish the following tight bound on the price of anarchy:

Theorem 1. We have PoA(ρ, σ) ≤ ρ + 1 for 1 ≤ 2σ ≤ ρ and this bound is tight.
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Note that the bound itself does not depend on σ , only the range of ρ and σ for which it holds. For the altruism model 
of Caragiannis et al. [5] (corresponding to σ = 1 and ρ ≥ 2) this bound is known to be tight for non-symmetric singleton 
congestion games (i.e., all strategies consist of a single resource). Here we only prove tightness for general congestion games, 
but our construction is significantly simpler.

Proof of Theorem 1. By Lemma 1 it is sufficient to show that inequality (5) holds with β = 1 and α = 1 +ρ . Thus, we have 
to show that

(1 + ρx)y − ρ(x − 1)x − x ≤ −(1 + σ(x − 1))x + (1 + ρ)(1 + σ(y − 1))y.

By rearranging terms, we obtain

[y + σ y(y − 1) − xy + x(x − 1)]ρ + σ [y(y − 1) − x(x − 1)] ≥ 0. (6)

We first show that [y + σ y(y − 1) − xy + x(x − 1)] ≥ 0 for all σ ≥ 1
2 . It suffices to show this claim for σ = 1

2 , since y(y −
1) ≥ 0 for all y ∈ N. We have

y + 1

2
y(y − 1) − xy + x(x − 1) = 1

2

[(
x − y − 1

2

)2

− 1

4
+ x(x − 1)

]

and this last expression is clearly non-negative for all x, y ∈ N (since the quadratic term is always at least 1
4 ).

It now suffices to show (6) for ρ = 2σ , since we have shown that the expression is a non-decreasing affine function of 
ρ , for every fixed σ ≥ 1

2 . Substituting ρ = 2σ and dividing (6) by σ , we get the equivalent statement

2 [y + σ y(y − 1) − xy + x(x − 1)] + [y(y − 1) − x(x − 1)] ≥ 0 (7)

which we will show to be non-negative for all non-negative integers x and y and σ ≥ 1
2 . Again, it suffices to show the 

statement for σ = 1
2 . The statement in (7) is then equivalent to(

x − y − 1

2

)2

− 1

4
+ y (y − 1)

which is clearly non-negative for all x, y ∈ N.
To see that the bound is tight, consider the following game on four resources with two players: Player A has strategies 

{{1}, {2, 4}} and player B has strategies {{2}, {1, 3}}. Resources e = 1, 2 have cost function ce(x) = x and resources e = 3, 4
have cost function ce(x) = ρx. The optimum s∗ = ({1}, {2}) has cost 2, whereas the Nash equilibrium s = ({2, 4}, {1, 3} has 
cost 2(1 + ρ). �
3.2. Second PoA bound

We next prove our (2ρ(1 + σ) + 1)/(ρ + 1) bound on the price of anarchy. We first establish the upper bound for 
different ranges of parameters ρ and σ .

Theorem 2. We have

PoA(ρ,σ ) ≤ 2ρ(1 + σ) + 1

ρ + 1
(8)

for

1. 1
2 ≤ σ ≤ ρ ≤ 2σ , or

2. σ = 1 and h(σ ) ≤ ρ ≤ 2σ , where h(σ ) = g(1 + σ + √
σ(σ + 2), σ) is the maximum of the function

g(a,σ ) = σ(a2 − 1)

(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)
.

Further, there exists a function 	 = 	(σ) (specified in the proof below) satisfying that for every fixed σ0 ≥ 1
2 : if 	(σ0) ≥ 0, then the 

bound in (8) also holds for all h(σ0) ≤ ρ ≤ 2σ0 .

We need the following technical lemma in the proof of Theorem 2:

Lemma 2. Let σ ≥ σ ∗ := 1
2 be fixed. Then for every (x, y) ∈N

2 \ {(1, 0)}, we have

f1(x, y,σ ) := 2y(y − 1)σ 2 + [x2 + 2y2 − 2xy − x]σ + [x2 − xy + 2(y − x)] ≥ 0.
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Proof. Note that 2y(y − 1) ≥ 0 for all y ∈N. Furthermore,

x2 + 2y2 − 2xy − x = (x − y)2 + y2 − x ≥ (x − y)2 + (y − x) ≥ 0

for all (x, y) ∈ N
2 because a2 − a ≥ 0 for all a ∈ N. Thus f1(x, y, σ) is non-decreasing and it suffices to prove the statement 

for σ ∗ = 1
2 .

We need to prove

1

2
y(y − 1) + 1

2
[x2 + 2y2 − 2xy − x] + [x2 − xy + 2(y − x)] ≥ 0

⇔ y(y − 1) + x2 + 2y2 − 2xy − x + 2x2 − 2xy + 4(y − x) ≥ 0.

By simplifying we obtain

3x2 + 3y2 − 4xy + 3y − 5x ≥ 0 ⇔ 2(x − y)2 + x(x − 5) + y(y + 3) ≥ 0.

The last inequality clearly holds for all pairs (x, y) with x ≥ 5. For x = 4, we find 2(4 − y)2 − 4 + y(y + 3) ≥ 0 which is true 
for y ≥ 1, and for y = 0 it can be verified by inspection. For x = 3, we find 2(3 − y)2 − 6 + y(y + 3) ≥ 0 which is true for 
y ≥ 2, and for y ∈ {0, 1} it can be verified by inspection. For x = 2, we find 2(2 − y)2 − 6 + y(y + 3) ≥ 0 which again holds 
for y ≥ 2, and for y ∈ {0, 1} it can be verified by inspection. For x = 1, we find 2(1 − y)2 − 4 + y(y + 3) ≥ 0 which holds for 
y ≥ 1. For y = 0 the inequality does not hold, but this is the case (x, y) = (1, 0) which we explicitly excluded in the claim. 
For x = 0, the inequality holds. �

We now give the formal proof of Theorem 2.

Proof of Theorem 2. We first show that inequality (5) of Lemma 1 holds for the functions α(ρ, σ) = (2ρ(1 + σ) + 1)/(1 +
2σ) and β(ρ, σ) = (1 + ρ)/(1 + 2σ). That is,

(1 + ρx)y − ρ(x − 1)x − x ≤ − 1 + ρ

1 + 2σ
(1 + σ(x − 1))x + 2ρ(1 + σ) + 1

1 + 2σ
(1 + σ(y − 1))y. (9)

Multiplying both sides by (1 + 2σ), we obtain

(1 + 2σ) [(1 + ρx)y − ρ(x − 1)x − x] ≤ −(1 + ρ)(1 + σ(x − 1))x + (2ρ(1 + σ) + 1)(1 + σ(y − 1))y,

which we rewrite as f1(x, y, σ)ρ + f2(x, y, σ) ≥ 0, where

f1(x, y,σ ) = −(1 + σ(x − 1))x + 2(1 + σ)(1 + σ(y − 1))y + (1 + 2σ)((x − 1)x − xy)

= 2y(y − 1)σ 2 + (−(x − 1)x + 2(y − 1)y + 2y + 2x(x − 1) − 2xy)σ + (−x + 2y + (x − 1)x − xy)

= 2y(y − 1)σ 2 + [x2 + 2y2 − 2xy − x]σ + [x2 − xy + 2(y − x)]
and

f2(x, y,σ ) = −(1 + σ(x − 1))x + (1 + σ(y − 1))y + (1 + 2σ)(x − y)

= σ y(y − 1) − σ x(x − 1) + 2σ(x − y)

= (
y2 − x2 + 3(x − y)

)
σ .

We first consider the case (x, y) = (1, 0). In this case, we do no have f1(x, y, σ) ≥ 0. Substituting the values for x and y, we 
obtain −ρ + 2σ ≥ 0, which is true if and only if ρ ≤ 2σ .

Case i). Suppose 1
2 ≤ σ ≤ ρ ≤ 2σ . For the pair (x, y) = (1, 0), the inequality is true if and only if ρ ≤ 2σ . For all other 

pairs, we have f1(x, y, σ) ≥ 0, and hence

f1(x, y,σ )ρ + f2(x, y,σ ) ≥ f1(x, y,σ )σ + f2(x, y,σ )

meaning that is suffices to show that f1(x, y, σ)σ + f2(x, y, σ) ≥ 0. Dividing by σ , this is equivalent to

2y(y − 1)σ 2 + [x2 + 2y2 − 2xy − x]σ + [x2 − xy + 2(y − x)] + (
y2 − x2 + 3(x − y)

) ≥ 0

⇔ 2y(y − 1)σ 2 + [x2 + 2y2 − 2xy − x]σ + [y2 − xy + (x − y)] ≥ 0.

Again, we see that the terms before σ 2 and σ are non-negative for all x, y ∈ N (see proof of Lemma 2). Thus, if the 
inequality holds for some σ ∗ , then it holds for all σ ≥ σ ∗ . We take σ ∗ = 1

2 . Multiplying the resulting inequality by 2, we 
obtain
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y(y − 1) + [x2 + 2y2 − 2xy − x] + 2[y2 − xy + (x − y)] ≥ 0

⇔ x2 + 5y2 − 4xy − 3y + x ≥ 0

⇔ (x − 2y)2 + y(y − 3) + x ≥ 0.

The latter inequality holds for all y /∈ {1, 2}. For y = 1, we find (x − 2)2 − 2 + x ≥ 0. The inequality clearly holds for all x ≥ 2, 
and for x ∈ {0, 1} it can be verified by inspection. For y = 2, we find (x − 4)2 − 2 + x ≥ 0. This is again clearly true for x ≥ 2, 
and can be checked by inspection for x ∈ {0, 1}.

Case ii). We now prove the second claim of the theorem. If (x, y) ∈ N
2 \ {(1, 0)}, then f1(x, y, σ) ≥ 0 by Lemma 2, 

meaning that f1(x, y, σ)ρ + f2(x, y, σ) is non-decreasing in ρ . From the proof of Lemma 2, it follows that f1(x, y, σ) = 0 if 
and only if (x, y) ∈ {(1, 1), (2, 1)} (which can be seen by checking all the cases). Note that this observation is independent 
of σ . For (x, y) ∈ {(1, 1), (2, 1)} it also holds that f2(x, y, σ) = 0, which implies that f1(x, y, σ)ρ + f2(x, y, σ) = 0 for 
every ρ . Therefore, we can focus on pairs (x, y) for which f1(x, y, σ) > 0. It follows that any ρ∗ for which

ρ∗ ≥ sup
x,y∈N: f1(x,y,σ )>0

− f2(x, y,σ )

f1(x, y,σ )

yields the inequality for all ρ ≥ ρ∗ . It is not hard to see that this supremum is indeed finite, for every fixed σ . It can be 
proved that f1(x, y, σ)ρ ′ + f2(x, y, σ) ≥ 0 holds for some large constant ρ ′ , which then serves as an upper bound on the 
supremum. For the pair (x, y) = (0, 1), we find − f2/ f1 = σ/(1 + σ), but we will see later that the supremum on the other 
pairs obtained is larger than σ/(1 + σ).

Note that by now, we can focus on pairs in {(x, y) : x ≥ 1, y ≥ 2}, since for all other pairs we have either proven the 
inequality or given − f2/ f1. That is, we are interested in

sup
{(x,y):x≥1,y≥2}

− f2(x, y,σ )

f1(x, y,σ )
. (10)

Note that f2(x, y, σ) = (
y2 − x2 + 3(x − y)

)
σ = (x + y − 3)(y − x) ≥ 0 if y ≥ x (using that x + y ≥ 3 for (x, y) ∈ {(x, y) :

x ≥ 1, y ≥ 2}). Hence, if y ≥ x we have − f2/ f1 ≤ 0, so these pairs are not relevant for the supremum (if it follows that the 
upper bound on the supremum for all other pairs is positive, which we will indeed see later). Therefore, we can focus on 
pairs with y < x.

We substitute x = ay for some (rational) a > 1. Note that

sup
a∈R>1

sup
y≥2

− f2(ay, y,σ )

f1(ay, y,σ )
(11)

provides an upper bound on (10). Using the identities above, we have

f1(ay, y,σ ) = [(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)]y2 − [(2 + σ)a + 2σ 2 − 2]y

− f2(ay, y,σ ) = [(a2 − 1)σ ]y2 + [3(1 − a)σ ]y

We determine an upper bound on the expression

− f2(ay, y,σ )

f1(ay, y,σ )
= [(a2 − 1)σ ]y2 + [3(1 − a)σ ]y

[(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)]y2 − [(2 + σ)a + 2σ 2 − 2]y

= [(a2 − 1)σ ]y + [3(1 − a)σ ]
[(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)]y − [(2 + σ)a + 2σ 2 − 2]

= αy + β

γ y − δ
(12)

for y ≥ 2. Elementary calculus shows that the derivative with respect to y of (12) is given by −(αδ +γ β)/(γ y − δ)2, which 
means the expression in (12) is non-decreasing or non-increasing in y. We have

αδ + γ β = (a2 − 1)σ [(2 + σ)a + 2σ 2 − 2] + 3(1 − a)[(1 + σ)a2 − (2σ + 1)a + 2σ(1 + σ)]
= (1 − a)σ

[
−(1 + a)((2 + σ)a + 2σ 2 − 2) + 3((1 + σ)a2 − (2σ + 1)a + 2σ(1 + σ))

]
= (1 − a)σ

[
(3(1 + σ) − (2 + σ))a2 + (2 − (2 + σ) − 2σ 2 − 3(2σ + 1))a + 2 − 2σ 2 + 6σ(1 + σ)

]
= (1 − a)σ

[
(2σ + 1)a2 − (2σ 2 + 7σ + 3)a + (4σ 2 + 6σ + 2)

]
= (1 − a)σ

[
(2σ + 1)a2 − (2σ + 1)(σ + 3)a + (2σ + 1)(2σ + 2)

]
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= (1 − a)σ (1 + 2σ)
[
a2 − (σ + 3)a + (2σ + 2)

]

= (1 − a)σ (1 + 2σ)

[(
a − σ + 3

2

)2

− 1

4
(1 − σ)2

]
. (13)

Before we can proceed, we need to prove the following claim.

Claim 1. The function x2 = (αx1 + β)/(γ x1 − δ) has a vertical asymptote at x∗
1 = δ/γ < 2.

Proof. It is not hard to verify that x2 has a vertical asymptote at x∗
1 = δ/γ . Note that since a > 1 we have δ > 0 for all 

σ ≥ 0. If γ < 0 then x∗
1 < 0. If γ > 0, we claim that x∗

1 < 2. This is equivalent to showing that

(2 + σ)a + 2σ 2 − 2 < 2(1 + σ)a2 − 2(2σ + 1)a + 4σ(σ + 1),

which holds if and only if

2(1 + σ)a2 − (5σ + 4)a + 2(1 + σ)2 = 2(1 + σ)

([
a − 5σ + 4

4(1 + σ)

]2

− 1

4

[
5σ + 4

2(1 + σ)

]2

+ (1 + σ)

)
> 0.

If now suffices to show that

−1

4

[
5σ + 4

2(1 + σ)

]2

+ (1 + σ) > 0.

But this is true for all σ > 0 and thus the claim follows. �
We can now conclude the proof of Theorem 2 by distinguishing three cases:

Case σ = 1. It follows that the expression in (13) is non-positive for all a > 1, which implies that −(αδ+γ β)/(γ y −δ)2 ≥
0 and hence − f2/ f1 is non-decreasing in y ≥ 2 for every a > 1 (using Claim 1). We obtain

lim
y→∞− f2(ay, y,σ )

f1(ay, y,σ )
= σ(a2 − 1)

(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)
=: h1(a,σ )

and maximizing this function over a ∈ R>1, we find the optimum

a∗(σ ) = 1 + σ + √
σ(σ + 2). (14)

Case 1
2 ≤ σ < 1. More generally, for any σ < 1 it holds that αδ + γ β ≤ 0 if and only if a /∈ (1 + σ , 2). In particular for 

every a /∈ (1 + σ , 2), we can then show that

sup
y≥2

− f2(ay, y,σ )

f1(ay, y,σ )
≤ lim

y→∞− f2(a∗ y, y,σ )

f1(a∗ y, y,σ )
(15)

with a∗ as in (14) using the same argument as in the case σ = 1. Claim 1 implies that if the expression (12) is non-
increasing in y, which is the case when a ∈ (1 + σ , 2), then the maximum value is attained in y = 2. That is, we 
are interested in the expression − f2(2a, 2, σ)/ f1(2a, 2, σ), and in particular, we want to show that the supremum over 
a ∈ (1 + σ , 2) does not exceed the right hand side of (15), i.e., the supremum over all a /∈ (1 + σ , 2).

Given the discussion above, it suffices to study

− f2(2a,2,σ )

f1(2a,2,σ )
= [(a2 − 1)σ ]2 + [3(1 − a)σ ]

[(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)]2 − [(2 + σ)a + 2σ 2 − 2]
= σ(2a2 − 3a + 1)

2(1 + σ)a2 − (5σ + 4)a + 2(1 + σ)2
=: h2(a,σ ) (16)

for a ∈ (1 + σ , 2). For a > 1, this expression is maximized for

b∗(σ ) = 1 + σ +
√

σ

(
σ + 1

2

)
, (17)

which in particular gives an upper bound for a ∈ (1 + σ , 2).
It now suffices to show that

	(σ) := h1(a
∗(σ ),σ ) − h2(b

∗(σ ),σ ) ≥ 0,
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since this implies that the supremum over a > 1 in (11) is attained at some a /∈ (1 + σ , 2). While unfortunately we lack an 
analytical proof of this inequality, it can be verified numerically (see also Fig. 4 in Appendix A).

Case σ > 1. Here we can use a similar reasoning as in the previous case. The only difference is that now the expression 
in (12) is non-increasing for a ∈ (2, 1 +σ), but this does not affect the above arguments because we maximize over all a > 1
when obtaining b∗(σ ). �

Numerical experiments suggest that 	(σ) is non-negative for all σ ≥ 1
2 . In Appendix A, we describe a procedure to verify 

this for σ ∈ [ 1
2 , σ̄ ] for any given σ̄ .7 We emphasize that for a fixed σ with 	(σ) ≥ 0, the proof that the inequality holds for 

all h(σ ) ≤ ρ ≤ 2σ is exact in the parameter ρ . The first two cases of Theorem 2 capture all price of anarchy results from 
the literature.

We now show that the bound in Theorem 2 is tight for arbitrary ρ, σ ≥ 0. To this aim, we generalize the lower bound 
construction of Christodoulou and Koutsoupias [8] for classical congestion games with ρ = σ = 1. This construction is also 
adapted in the risk-uncertainty model by Nikolova et al. [18] and the altruism model by Chen et al. [6].

Theorem 3. For ρ, σ > 0 fixed, there exists a linear congestion game such that

PoA(ρ,σ ) ≥ 2ρ(1 + σ) + 1

ρ + 1
.

Proof. We construct a congestion game of n ≥ 3 players and |E| = 2n resources. The set E is divided in the sets E1 =
{h1, . . . , hn} and E2 = {g1, . . . , gn}. Player i has two pure strategies: {hi, gi} and {hi+1, gi−1, gi+1}, where the indices appear 
as i mod n. The cost functions of the elements in E1 are ce(x) = x, whereas the cost functions of the elements in E2 are 
ce(x) = ρx.

Regardless which strategy player i plays, he always uses at least one resource from both E1 and E2, implying that 
Cσ

i (s) ≥ ρ + 1. This implies that

Cσ (t) =
∑
i∈N

Cσ
i (s) ≥ (ρ + 1)n (18)

for every strategy profile t , and in particular for a social optimum s∗ .
We will now show that the strategy profile s where every agent i plays its second strategy {hi+1, gi−1, gi+1} is a Nash 

equilibrium. We have

Cρ
i (s) = 2ρ[1 + ρ(2 − 1)] + 1 = 2ρ2 + 2ρ + 1.

If some agent i deviates to its first strategy s′
i , we have

Cρ
i (s′

i, s−i) = ρ[1 + ρ(3 − 1)] + (1 + ρ(2 − 1)) = 2ρ2 + 2ρ + 1,

since there are then three agents using gi and two agents using hi . This shows that s is a Nash equilibrium. The social cost 
of this strategy s is

Cσ (s) = n(1 + 2ρ[1 + σ(2 − 1)]) = (1 + 2ρ(1 + σ))n. (19)

Combining (19) with (18) then gives the desired result. �
3.3. PoA lower bound for symmetric network congestion games

In this section, we show that the bound of Theorem 2 is asymptotically tight even for the special case of linear sym-
metric network congestion games. This improves a result for the risk-uncertainty model by Piliouras et al. [18], who prove 
asymptotic tightness for symmetric linear congestion games for their respective values of ρ and σ only. It also improves a 
result for the altruism model by Chen et al. [6], who show tightness only for general congestion games.

For the classical congestion game setting with ρ = σ = 1, Christodoulou and Koutsoupias [8] showed that for symmetric 
affine congestion games the bound of 5

2 on the price of anarchy is asymptotically tight. More recently, Correa et al. [10]
proved that the bound of 5

2 is tight for symmetric network affine congestion games. Our lower bound proof is a generaliza-
tion of their construction.

7 We are grateful to an anonymous reviewer for suggesting this procedure.
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Fig. 3. Illustration of the instance for n = 5. The dashed (blue) path indicates the strategy of player 2 in the Nash equilibrium. For every principal path, the 
first and last arc have cost (1 +ρ)x, and in between the costs alternate between ρx and x (starting and ending with ρx). The diagonal connecting arcs have 
cost zero. The numbers at the bottom indicate the layers. The bold (red) subpaths indicate the two deviation situations that are analyzed to prove that s is 
indeed a Nash equilibrium. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Theorem 4. For ρ, σ > 0 fixed, there exists a symmetric network affine congestion game such that for every ε > 0,

PoA(ρ,σ ) ≥ 2ρ(1 + σ) + 1

ρ + 1
− ε.

Proof. We construct a symmetric network linear congestion game with n players. We first describe the graph topology 
used in the proof of Theorem 5 in [10] (using similar notation and terminology). The graph G consists of n principal 
disjoint paths P1, . . . , Pn from s to t (horizontal paths in Fig. 3 with P1 and Pn being the topmost and bottommost paths, 
respectively), each consisting of 2n −1 arcs (and hence 2n nodes). With ei, j the j-th arc on path i is denoted for i = 1, . . . , n
and j = 1, . . . , 2n − 1. Also, vi, j denotes the j-th node on path i for i = 1, . . . , n and j = 1, . . . , 2n. There are also n(n − 1)

connecting arcs: for every path i there is an arc (vi,2k+1, vi+1,2k) for k = 1, . . . , n, where i + 1 is taken modulo n (the 
diagonal arcs in Fig. 3). For j ≥ 1 fixed, we say that the arcs ei, j for i = 1, . . . , n form the ( j − 1)-th layer of G (see Fig. 3).

The cost functions are as follows. All arcs leaving s (the arcs ei,1 for i = 1, . . . , n) and all arcs entering t (the arcs ei,2n for 
i = 1, . . . , n) have cost ce(x) = (1 +ρ)x. For all i = 1, . . . , n, the arcs ei,2k−1 for k = 1, . . . , n − 1 have cost function ce(x) = ρx, 
whereas the arcs ei,2k for k = 1, . . . , n − 2 have cost function ce(x) = x. All other arcs (the diagonal connecting arcs) have 
cost zero.

The feasible strategy profile t in which player i uses principal path Pi , for all i = 1, . . . , n has social cost Cσ (t) =
n(2(1 + ρ) + (n − 1)ρ + (n − 2)) = n((1 + ρ)n + ρ). A Nash equilibrium is given by the strategy profile in which every 
player k uses the following path: she starts with arcs ek,1 and ek,2, then uses all arcs of the form ek+ j,2 j , ek+ j,2 j+1, ek+ j,2 j+2

for j = 1, . . . , n − 1, and ends with arcs ek+n−1,2n−2, ek+n−1,2n−1 (and uses all connecting arcs in between).8 Note that all 
the (principal) arcs of layer j have load 1 is j is even, and load 2 if j is odd. The social cost of this profile is given by 
Cσ (s) = n(2(1 + ρ) + (n − 1) · 2 · ρ(1 + σ(2 − 1)) + n − 2) = n((1 + 2ρ(1 + σ))n − 2ρσ). It follows that Cσ (s)/Cσ (t) ↑
(1 + 2ρ(1 +σ))/(1 +ρ) as n → ∞. We now show that the above mentioned strategy profile s is indeed a Nash equilibrium.

Fix some player, say player 2, as in Fig. 3, and suppose that this player deviates to some path Q . Let j be the first layer 
in which P2 and Q overlap. Note that j must be odd. The cost Cρ

2 (s) of player 2, on the subpath of P2 leading to the first 
overlapping arc with Q , is at most

(1 + ρ) + j − 1

2
· [2 · [ρ(1 + ρ(2 − 1))] + 1] + ρ(1 + ρ(2 − 1)) = (1 + ρ)2 + j − 1

2
(1 + 2ρ(1 + ρ))

The subpath of Q leading to the first overlapping arc with P2 has Cρ
i (Q , s−i) as follows. She uses at least one arc in every 

odd layer (before the overlapping layer) with a load of 3 and one arc of every even layer (before the overlapping arc) with 
load 2, meaning that the cost of player i on the subpath of Q is at least

(1 + ρ)(1 + ρ(2 − 1)) + j − 1

2
· [(ρ(1 + ρ(3 − 1))) + (1 + ρ(2 − 1))] = (1 + ρ)2 + j − 1

2
· (2ρ + 1)(1 + ρ)

Since 1 +2ρ(1 +ρ) < (2ρ +1)(1 +ρ) for all ρ ≥ 0, it follows that the cost of player i on the subpath of P2 is no worse than 
that of the subpath of Q , when player 2 deviates from P2 to Q . It follows that it suffices to show that P2 is an equilibrium 
strategy in s with respect to deviations Q that overlap on the first arc e2,1 with P2. A similar argument shows that it also 
suffices to look at deviations Q for which Q and P2 overlap on the last arc e2,2n−1 of P2.

Now suppose that P2 and Q do not overlap on some internal part of P2. Note that the first arc of Q that is not contained 
in P2, say (v1, w1) must be in an even layer, and also that the last arc, say (v2, w2) (which is a connecting arc) is in an 

8 This is similar to the construction in [10, Theorem 5].
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odd layer (note that v1 �= s and w2 �= t w.l.o.g. by what is said in the previous paragraph). It is not hard to see that the 
subpath of Q from v1 to w2 contains the same number of even-layered arcs as the subpath of P2, and the same number 
of odd-layered arcs as the subpath of P2. However, the load on all the odd-layered arcs on the subpath of deviation Q is 3, 
whereas the load on odd-layered arcs in the subpath of P2 between v1 and w2 (in strategy s) is 2. Similarly, the load on 
every even-layered arc on the subpath of deviation Q is 2, whereas the load on ever even-layered arc in the subpath of P2
is 1. Hence the subpath of deviation Q between v1 and w2 can never be profitable. �
4. Price of stability

In this section, we present our bounds on the price of stability for pure Nash equilibria in affine congestion games. 
We first establish our upper bound and show that it is tight for general congestion games (Section 4.1). We then turn to 
symmetric network congestion games and derive improved bounds (Section 4.2).

4.1. PoS for general affine congestion games

Theorem 5. We have

PoS(ρ,σ ) ≤
√

σ(σ + 2) + σ√
σ(σ + 2) + ρ − σ

for σ > 0 and
2σ

1 + σ + √
σ(σ + 2)

≤ ρ ≤ 2σ

and this bound is asymptotically tight.

We need the following technical lemma.

Lemma 3. Let σ ≥ 0 be fixed. For all non-negative integers x and y we have(
x − y + 1

2

)2

− 1

4
+ 2σ x(x − 1) + (

√
σ(σ + 2) + σ)[y(y − 1) − x(x − 1)] ≥ 0.

Proof. The inequality is clearly true for all y ≥ x so we focus on the case y < x. By rewriting the inequality, we obtain

(1 + σ + √
σ(σ + 2))y2 − 2xy + (1 + σ − √

σ(σ + 2))x2

− (1 + σ + √
σ(σ + 2))y + (1 − σ + √

σ(σ + 2))x ≥ 0.

By multiplying both sides with 1 + σ − √
σ(σ + 2) (which is non-negative for all σ ≥ 0) and exploiting that (1 + σ +√

σ(σ + 2))(1 + σ − √
σ(σ + 2)) = 1, we obtain

y2 − 2
(

1 + σ − √
σ(σ + 2)

)
xy +

(
1 + σ − √

σ(σ + 2)
)2

x2

− y + (1 + σ − √
σ(σ + 2))(1 − σ + √

σ(σ + 2))x ≥ 0.

This is equivalent to((
1 + σ − √

σ(σ + 2)
)

x − y + 1

2

)2

+
(

1 + σ − √
σ(σ + 2)

)
([ 1 + σ − √

σ(σ + 2) ]−1) x − 1

4
≥ 0.

Define c := c(σ ) = 1 + σ − √
σ(σ + 2). Note that c(σ ) is a bijective function from R to [0, 1). Substituting c in the above 

inequality, we obtain for 0 ≤ c < 1 the equivalent formulation(
cx − y + 1

2

)2

+ c(1 − c)x − 1

4
≥ 0. (20)

For x = 0, the inequality reduces to ( 1
2 − y)2 − 1

4 ≥ 0 which is true for all y ∈N. For x = 1, we get the equivalent formulation 
(y − 1) (y − 2c) ≥ 0, which is clearly true for y = 1. For y = 0, it follows from the fact that c ≥ 0. For y ≥ 2 it follows from 
the fact that y − 2c ≥ 0 for all y ≥ 2, since 0 ≤ c < 1. This completes the case x = 1.

For x ≥ 2, we rewrite the expression (20) to

x(x − 1)c2 + 2x(1 − y)c + y(y − 1) ≥ 0. (21)

If y = 0, the expression in (21) is clearly non-negative for all x ≥ 2 and 0 ≤ c < 1. For y ≥ 1, note that g(c) = x(x − 1)c2 +
2x(1 − y)c + y(y − 1) is a quadratic and convex function for all fixed x and y. Therefore, in particular, for any x and y fixed, 
it suffices to show that the inequality holds for the minimizer of g , which is c∗ = (y − 1)/(x − 1) (which can be found by 
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differentiating with respect to c). Note that 0 ≤ c∗ < 1 by our assumption that y ≥ 1 and y < x (made at the beginning of 
the proof). Substituting implies that it suffices to show that

x(x − 1)(y − 1)2

(x − 1)2
+ 2x(1 − y)(y − 1)

x − 1
+ y(y − 1) ≥ 0.

Multiplying the expression with (x − 1) implies that it now suffices to show that

x(y − 1)2 − 2x(y − 1)2 + y(y − 1)(x − 1) ≥ 0

for all 1 ≤ y < x. This is always true since

x(y − 1)2 − 2x(y − 1)2 + y(y − 1)(x − 1) = −x(y − 1)2 + y(y − 1)(x − 1)

= (y − 1) [−x(y − 1) + y(x − 1)]

= (y − 1)(x − y)

≥ 0

whenever 1 ≤ y < x. This completes the proof. �
Our proof is similar to the approach used by Christodoulou, Koutsoupias and Spirakis [9] to upper bound the price of 

stability of ρ-approximate equilibria. However, for general σ the analysis is more involved. The main technical contribution 
is to establish the inequality in Lemma 3. The proof of the asymptotic tightness is also based on a construction given in [9]
to obtain a (non-tight) lower bound on the price of stability of approximate equilibria.

Proof of Theorem 5. Without loss of generality, we may assume that ae = 1 and be = 0 for all resources e ∈ E . Using this, 
we obtain that the cost of player i with respect to strategy profile s is

Cρ
i (s) =

∑
e∈si

(1 + ρ(xe − 1)) =
∑
e∈si

(xe + (ρ − 1)(xe − 1)).

By adapting Rosenthal’s potential function (4), we obtain that

�ρ(s) :=
∑
e∈E

xe(xe + 1)

2
+ (ρ − 1)

∑
e∈E

(xe − 1)xe

2

is an exact potential for Cρ
i (s). The idea of the proof is to combine the Nash inequalities and the fact that the global 

minimum of �ρ(·) is a Nash equilibrium.
Let s denote the global minimum of �ρ and s∗ a socially optimal solution. Further, let x and x∗ be the load profiles for 

s and s∗ , respectively. Similar to the proof of Lemma 1, by exploiting that s is a Nash equilibrium we obtain∑
e∈E

xe(1 + ρ(xe − 1)) =
∑
i∈N

Cρ
i (s) ≤

∑
i∈N

Cρ
i (s∗

i , s−i) ≤
∑
e∈E

(1 + ρxe)x∗
e .

The fact that s is a global optimum of �ρ(·) yields �ρ(s) ≤ �ρ(s∗), which reduces to∑
e∈E

ρx2
e + (2 − ρ)xe ≤

∑
e∈E

ρ(x∗
e )

2 + (2 − ρ)x∗
e .

If we can find γ , δ ≥ 0 and some K ≥ 1, for which(
0 ≤ )

γ
[
ρ(x∗

e )
2 + (2 − ρ)x∗

e − ρx2
e − (2 − ρ)xe

]
+ δ

[
(1 + ρxe)x∗

e − xe(1 + ρ(xe − 1)
]

≤ K · x∗
e [1 + σ(x∗

e − 1)] − xe[1 + σ(xe − 1)], (22)

then this implies that Cσ (s)/Cσ (s∗) ≤ K . We take δ = (K − 1)/ρ and γ = ((ρ − 1)K + 1)/(2ρ). It is not hard to see 
that δ ≥ 0 always holds. However, for γ we have to be more careful. We will later verify for which combinations of ρ
and σ the parameter γ is indeed non-negative. Rewriting the expression in (22) yields that we have to find K satisfying 
K ≥ f2(xe, x∗

e , σ)/ f1(xe, x∗
e , ρ, σ), where

f2(xe, x∗
e ,σ ) := (x∗

e )
2 − 2xex∗

e + (1 + 2σ)x2
e − x∗

e + (1 − 2σ)xe

f1(xe, x∗
e ,ρ,σ ) := (1 − ρ + 2σ)(x∗

e )
2 − 2xex∗

e + (1 + ρ)x2
e + (ρ − 1 − 2σ)x∗

e − (ρ − 1)xe.

Note that this reasoning is correct only if f1(xe, x∗
e , ρ, σ) ≥ 0. This is true because
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f1(xe, x∗
e ,ρ,σ ) =

(
xe − x∗

e + 1

2

)2

− 1

4
+ (2σ − ρ)x∗

e (x∗
e − 1) + ρxe(xe − 1)

is non-negative for all xe, x∗
e ∈ N, σ ≥ 0 and 0 ≤ ρ ≤ 2σ . Furthermore, the expression is zero if and only if (xe, x∗

e ) ∈
{(0, 1), (1, 1)}. But for these pairs the nominator is also zero, and hence the expression in (22) is satisfied for these pairs. 
We can write

f2(xe, x∗
e ,σ ) =

(
xe − x∗

e + 1

2

)2

− 1

4
+ 2σ xe(xe − 1)

and therefore f2/ f1 = A
A+(2σ−ρ)B , where

A =
(

xe − x∗
e + 1

2

)2

− 1

4
+ 2σ xe(xe − 1) and B = x∗

e (x∗
e − 1) − xe(xe − 1).

Note that if ρ = 2σ , we have f2/ f1 = 1, and hence we can take K = 1. Otherwise,

A

A + (2σ − ρ)B
≤

√
σ(σ + 2) + σ√

σ(σ + 2) + ρ − σ
=: K ⇔ A + (

√
σ(σ + 2) + σ)B ≥ 0.

The inequality on the right is true by Lemma 3.
To finish the proof, we determine the pairs (ρ, σ) for which the parameter γ is non-negative. This holds if and only if

(ρ − 1)K + 1 = (ρ − 1)

√
σ(σ + 2) + σ√

σ(σ + 2) + ρ − σ
+ 1 ≥ 0.

Rewriting this inequality yields the bound on ρ in the statement of the theorem. �
Note that Theorem 5 does not provide the bound of 2 for uniform affine congestion games stated in Table 1. The reason 

is that the bound in Theorem 5 with ρ = σ is only valid for σ ≥ 1
4 (because otherwise the lower bound on ρ is not 

satisfied). However, for 0 ≤ σ ≤ 1
4 the corresponding cost functions ce(x) = σ x + (1 − σ) have non-negative constants and 

thus the price of stability for classical congestion games applies (see [4]). As a consequence, we obtain

PoS(A′) = max

{
1.577, sup

σ≥1/4

{
1 + √

σ/(σ + 2)
}}

= 2.

We next provide a lower bound on the price of stability for arbitrary non-negative pairs (ρ, σ). The proof is similar to a 
construction of Christodoulou et al. [9] used to give a lower bound on the price of stability for ρ-approximate equilibria. 
The key difference is to tune some parameters in the proof with respect to the Nash definition based on the cost function 
Cρ

i (·) rather than the ρ-approximate Nash equilibrium definition.

Theorem 6. For ρ, σ > 0 fixed with ρ < 2σ , there exists a linear congestion game such that for every ε > 0

PoS(ρ,σ ) ≥
√

σ(σ + 2) + σ√
σ(σ + 2) + ρ − σ

− ε.

Proof. We describe the construction of Theorem 9 [9] (using similar notation and terminology). We have a game of n =
n1 + n2 players divided into two sets G1 and G2 with size resp. n1 and n2. Each player i ∈ G1 has two strategies: Ai and Pi . 
The players in G2 have a unique strategy D . The strategy profile A = (A1, . . . , An1 , D, . . . , D) will be the unique Nash 
equilibrium, and the strategy profile P = (P1, . . . , Pn1 , D, . . . , D) will be the social optimum.

We have three types of resources:

• n1 resources αi , i = 1, . . .n1, with cost function cαi (x) = αx. The resource αi only belongs to strategy Pi .
• n1(n1 − 1) resources9 βi j , i, j = 1, . . . , n1 with i �= j, with cost function cβi j (x) = βx. The resource βi j belongs only to 

strategies Ai and P j .
• One resource γ with cost function cγ (x) = x, that belongs to Ai for i = 1, . . . , n1 and to D .

The idea is to set the parameters α and β in such a way that A becomes the unique Nash equilibrium. For any strategy 
profile s, there are k players playing strategy Ai and n1 −k players playing strategy Pi in the set G1, for some 0 ≤ k ≤ n1. By 

9 The proof of Theorem 9 [9] contains a typo here: it says there are n(n − 1) resources of this type, instead of n1(n1 − 1).
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symmetry, it then suffices to look at profiles Sk = (A1, . . . , Ak, Pk+1, . . . , Pn1 , D, . . . , D) for 0 ≤ k ≤ n1. Furthermore, the first 
k players playing Ai all have the same cost, and also, the n1 − k players playing Pi have the same cost. We can therefore 
focus on the costs of player 1, denoted by Cρ

A (k), and that of player n1, denoted by Cρ
P (k). We have

Cρ
A(k) = β(k − 1) + β(1 + ρ(2 − 1))(n1 − k) + 1 + ρ(n2 + k − 1)

= (β − β(1 + ρ) + ρ)k + (−β + β(1 + ρ)n1 + 1 + ρ(n2 − 1))

= ρ(1 − β) · k + (1 − β − ρ) + β(1 + ρ)n1 + ρn2

and

Cρ
P (k) = α + β(n1 − 1 − k) + β(1 + ρ(2 − 1))k

= βρ · k + α + β(n1 − 1). (23)

We can set the parameters α and β such that Cρ
A (k) = Cρ

P (k − 1), meaning that Sk is a Nash equilibrium for every k (we 
will create a unique Nash equilibrium in a moment), that is we take

ρ(1 − β) = βρ and (1 − β − ρ) + β(1 + ρ)n1 + ρn2 = α + β(n1 − 1) − βρ.

Note that the −βρ term on the far right of the second equation comes from the fact that we evaluate Cρ
P (·) in k − 1

(remember that k denotes the number of players playing strategy Ai , so if a player would switch to Pi this number decreases 
by 1). Solving the left equation leads to β = 1/2. Inserting this in the right equation, and solving for α, gives

α = ρ

(
n1

2
+ n2 − 1

2

)
+ 1.

We emphasize that α, β > 0 for all ρ ≥ 0. In order to make A the unique Nash equilibrium, we can slightly increase α such 
that we get Cρ

A (k) < Cρ
P (k − 1) for all k (which means that Ai is a dominant strategy for player i). Note that this increase in 

α can be arbitrary small. We have

Cσ (A)

Cσ (P )
= n1

[
1 + σ(n1 + n2 − 1) + 1

2 (n1 − 1)
] + n2 [1 + σ(n1 + n2 − 1)]

n1

[
ρ(n1+1

2 + n2 − 1) + 1 + 1
2 (n1 − 1)

]
+ n2 [1 + σ(n2 − 1)]

.

Inserting n2 = a · n1 for some rational a > 0, and sending n1 → ∞ gives a lower bound of

f (a) = 2σ(1 + a)2 + 1

ρ(1 + 2a) + 1 + 2σa2

on the price of stability. Optimizing over a > 0 (this only works if ρ < 2σ ) gives

a∗ = −1

2
+

√
1

4
+ 1

2σ

and f (a∗) then yields the bound in the statement of the theorem. �
4.2. PoS bound for symmetric network congestion games

We derive improved bounds on the price of stability for the special case of symmetric network congestion games. 
Throughout this section, we focus on the case σ = 1.

Theorem 7. Let � be a linear symmetric network congestion game, then

PoS(�,ρ,1) ≤
⎧⎨
⎩

4/(ρ(4 − ρ)) if 0 ≤ ρ ≤ 1
4/(2 + ρ) if 1 ≤ ρ ≤ 2
(2 + ρ)/4 if 2 ≤ ρ < ∞.

In particular, if � is a symmetric congestion game on an extension-parallel10 graph G, then the upper bounds even hold for the price of 
anarchy. All bounds are tight.

10 A graph G is extension-parallel if it consists of either (i) a single edge, (ii) a single edge and an extension-parallel graph composed in series, or (iii) two 
extension-parallel graphs composed in parallel.
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For ρ ≥ 1, the bounds were previously shown by Caragiannis et al. [5] for the price of anarchy of singleton symmetric 
congestion games (which can be modeled on an extension-parallel graph).

Since any Nash equilibrium under the player cost Cρ
i (·) is in particular a ρ-approximate Nash equilibrium, we also obtain 

the following result.

Corollary 1. The price of stability for ρ-approximate equilibria, with 1 ≤ ρ ≤ 2, is upper bounded by 4/(2 + ρ) for linear symmetric 
network congestion games.

The remainder of this section is dedicated to the proof of Theorem 7. We will refer to strategy profiles as flows, since 
we can interpret symmetric network congestion games as a flow problem in which players each have to route one unit of 
unsplittable flow from a given source to a given target. To be precise, for a graph G = (V , E) and given s, t ∈ V , we write P
for the set of all simple s, t-paths (the common strategy set of the players). We denote f P as the number of players using 
path P ∈ P . We call f a feasible (unsplittable) flow if 

∑
P∈P f P = N , and with fe we denote the number of players using 

edge e ∈ E , that is, fe = ∑
P∈P :e∈P f P .

We use the following result due to Fotakis [11].

Lemma 4 (Fotakis [11]). Let � be a congestion game with cost functions de, and let � be an exact potential for �. An acyclic flow f
minimizes the potential function � if and only if

∑
e: fe>ge

( fe − ge)de( fe) −
∑

e: fe<ge

(ge − fe)de( fe + 1) ≤ 0

for every feasible flow g.

The following lemma gives inefficiency results for global minima of the potential function � (compared to any feasible 
flow). Since the local minima of � correspond to the Nash equilibria of the game �, it follows that the global minima of 
� are Nash equilibria. Furthermore, Fotakis [11] shows that every Nash equilibrium of a symmetric congestion game on 
an extension-parallel graph is a global minimum of the potential function �. In particular, this means that the inefficiency
results in Lemma 5 hold for the price of stability of symmetric network congestion games, and the price of anarchy of 
symmetric extension-parallel congestion games.

Lemma 5. Let � be a congestion game with cost functions de(x) = ae(1 +ρ(x − 1)), and let � be an exact potential for �. Let f be an 
acyclic flow minimizing the potential function �, then

Cσ ( f ) ≤
∑

fe>ge

ae [( fe − 1)(ρge + (σ − ρ) fe) + ge]

+
∑

fe≤ge

ae [( fe − 1)(ρge + (σ − ρ) fe) + (1 + ρ)ge − ρ fe] .

Furthermore, if h = h(ρ, σ) < 1 and k = k(ρ, σ) satisfy,

(x − 1)(ρ y + (σ − ρ)x) + y ≤ h · x[1 + σ(x − 1)] + k · y[1 + σ(y − 1)] (24)

for all non-negative integers x > y, and

(x − 1)(ρ y + (σ − ρ)x) + (1 + ρ)y − ρx ≤ h · x[1 + σ(x − 1)] + k · y[1 + σ(y − 1)] (25)

for all non-negative integers x ≤ y, then Cσ ( f )/Cσ (g) ≤ k(ρ, σ)/(1 − h(ρ, σ)).

Proof. We write de(x) = ae[1 + σ(x − 1)] + ae[(ρ − σ)(x − 1)] in the left summation, and obtain, using Lemma 4,

∑
fe>ge

feae[1 + σ( fe − 1)] ≤
∑

fe>ge

ae (ge[1 + ρ( fe − 1)] + fe(σ − ρ)( fe − 1))

+
∑

fe<ge

(ge − fe)ae(1 + ρ fe).

Applying the inequality, we find
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Cσ ( f ) =
∑

fe>ge

feae[1 + σ( fe − 1)] +
∑

fe<ge

feae[1 + σ( fe − 1)] +
∑

fe=ge

feae[1 + σ( fe − 1)]

≤
∑

fe>ge

ae [( fe − 1)(ρge + (σ − ρ) fe) + ge]

+
∑

fe<ge

ae [( fe − 1)(ρge + (σ − ρ) fe) + (1 + ρ)ge − ρ fe] +
∑

fe=ge

feae[1 + σ( fe − 1)]

=
∑

fe>ge

ae [( fe − 1)(ρge + (σ − ρ) fe) + ge]

+
∑

fe≤ge

ae [( fe − 1)(ρge + (σ − ρ) fe) + (1 + ρ)ge − ρ fe]

This completes the proof. �
We continue the proof of the upper bounds in Theorem 7 by showing the result in the statement for 0 < ρ ≤ 1. We 

define

h(ρ,1) = 1 − ρ + ρ2

4
and k(ρ,1) = 1

and prove the correctness of the resulting inequalities in (24) and (25) (see Lemma 6). The cases 1 ≤ ρ ≤ 2 and 2 ≤ ρ ≤ ∞
follow (indirectly) from Caragiannis et al. [5].11 The authors use a similar approach as here, but only show the inequality in 
Lemma 4 for Nash equilibria of symmetric singleton congestion games. Nevertheless, the remainder of the analysis carries 
over to our model.

Lemma 6. For any integers x, y ≥ 0 and any ρ ∈ (0, 1] we have, when x < y,

ρ · xy + (y − x) ≤ ρ2

4
x2 + y2,

and, when x ≥ y,

ρ · xy + (1 − ρ)(y − x) + (1 − ρ)x2 ≤
(

1 − ρ + ρ2

4

)
x2 + y2.

Proof. Let y = x + z, where z is a positive integer. Then we have

v(x, y) = ρ2

4
x2 + y2 − ρxy − (y − x)

= ρ2

4
x2 + (x2 + 2xz + z2) − ρx(x + z) − z

=
(

ρ2

4
+ 1 − ρ

)
x2 + (2 − ρ) xz + z(z − 1) ≥ 0,

since ρ ∈ (0, 1], x ≥ 0 and z > 0.
For the second inequality, it suffices to show that

w(x, y) = ρ2

4
x2 + y2 − ρxy − (ρ − 1)(x − y) ≥ 0

which can be seen by leaving out the term (1 − ρ)x2 on both sides of the inequality. We first treat the case y = 0. Then

w(x,0) = ρ2

4
x2 + (1 − ρ)x ≥ 0

since x ≥ 0 and ρ ∈ (0, 1]. For y ≥ 1, we write a = x/y (for sake of notation). We have

11 The model of Carigiannis et al. [5] is equivalent to our model under the transformation ρ = 1/(1 − ζ ), where ζ is the model parameter of [5]. That is, 
the range 1 ≤ ρ ≤ 2 corresponds to ζ ∈ [0, 12 ], and the range 2 ≤ ρ ≤ ∞ to ζ ∈ [ 1

2 , 1).
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w(x, y) = ρ2

4
x2 + y2 − ρxy − (ρ − 1)(x − y)

= ρ2

4
a2 y2 + y2 − ρay2 + (1 − ρ)(ay − y)

=
[

(ρa)2

4
− ρa + 1

]
y2 + (1 − ρ)(a − 1)y

=
[ρa

2
− 1

]2
y2 + (1 − ρ)(a − 1)y

=
[
ρx

2y
− 1

]2

y2 + (1 − ρ)

(
x

y
− 1

)
y ≥ 0,

since ρ ∈ (0, 1], y ≥ 1 and a ≥ 1. �
It remains to show tightness of the resulting bounds. For 1 ≤ ρ ≤ 2, consider an instance with two players and two 

resources with resp. cost functions c1(x) = x and c2(x) = (1 + ρ + ε)x where 0 < ε � ρ . Then the unique Nash equilibrium 
is given by (x1, x2) = (2, 0), and the social optimum by (x∗

1, x∗
2) = (1, 1). Sending ε → 0 gives the desired bound of 4/(2 +ρ).

For 2 ≤ ρ ≤ ∞, we can use the same instance as the for 1 ≤ ρ ≤ 2, with the only difference that c2(x) = (1 + ρ − ε)x. 
Then the social optimum is given by (x∗

1, x
∗
2) = (2, 0) and the unique Nash equilibrium by (x1, x2) = (1, 1).

For the case 0 < ρ ≤ 1, the lower bound is technically more involved.

Lemma 7. For every fixed (rational) 0 < ρ ≤ 1, and ε > 0, there exists a symmetric singleton congestion game for which the price of 
stability is greater than 4/(ρ(4 − ρ)) − ε .

Proof. We choose values of n and i so that

ρ = i

n − 1

where, without loss of generality, we may assume that i is even. We will construct a congestion game with n agents and 
1 + (n − i/2) resources. We let c0(x) = x and for e ∈ {1, . . . , n − i/2} we define

ce(x) = [(1 − ρ) + ρn + ε]x = [1 + i + ε]x, with 0 < ε � ρ.

A socially optimal profile s∗ is given by x∗
0 = i/2 and x∗

e = 1 for e ∈ {1, . . . , n − i/2}, resulting in

C1(s∗) =
(

i

2

)2

+
(

n − i

2

)
(1 + i + ε)

= ρ2

4
(n − 1)2 +

(
n − 1

2
ρ(n − 1)

)
[(1 − ρ) + ρn + ε]

= ρ2

4
(n2 − 2n + 1) +

(
(1 − ρ

2
)n + ρ

2

)
[(1 − ρ) + ρn + ε]

=
[
ρ2

4
+ ρ(1 − ρ

2
)

]
n2 +

[
−ρ2

2
+ (1 − ρ + ε)(1 − ρ

2
) + ρ2

2

]
n + ρ2

4
+ ρ

2
(1 − ρ + ε)

=
[
ρ

(
1 − ρ

4

)]
n2 +

[
(1 − ρ + ε)(1 − ρ

2
)
]

n + ρ

2

(
1 − ρ

2
+ ε

)
The unique Nash equilibrium is given by the strategy profile s for which x0 = n and xe = 0 for e ∈ {1, . . . , n − i/2}, since 

the perceived cost on resource e = 0 is then precisely (1 − ρ) + ρn, so no player can strictly improve its (perceived) cost by 
deviating to one of the other resources, which have cost (1 − ρ) + ρn + ε . The social cost of this equilibrium is n2, which 
implies that

C1(s)

C1(s∗)
= n2[

ρ
(
1 − ρ

4

)]
n2 + [

(1 − ρ)(1 − ρ
2 + ε)

]
n + ρ

2

(
1 − ρ

2 + ε
) → 1

ρ (1 − ρ/4)

as n → ∞ (note that this also means that i → ∞ since ρ is fixed). �
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5. Implications and additional insights

We discuss a few implications of our bounds for the applications mentioned above (see Section 2) and provide some 
additional insights.

Altruism [5,6]. For σ = 1, our bound (4ρ + 1)/(ρ + 1) reveals that the price of anarchy is increasing in ρ , which is coun-
terintuitive and not desirable especially in the context of altruism or taxes. A natural question that arises is whether there 
exist collections H of congestion games for which the price of anarchy is non-increasing as a function of ρ .

The next theorem gives a sufficient condition for a class of instances to have the property that the price of anarchy is 
non-increasing in ρ .

Theorem 8. Let H be a collection of congestion games. If PoA(H, 2, 1) = 1, then PoA(H, ρ, 1) is a non-increasing function for 1 ≤
ρ ≤ 2.

Intuitively, for ρ = 2 it can be shown that the social optimum becomes a Nash equilibrium under the player cost function 
Cρ

i (s), which implies that the price of stability is 1. Still it might happen that worse Nash equilibria arise as well. The 
condition PoA(H, 2, 1) = 1 restricts to cases where this does not happen. Even stronger, this condition ensures that all Nash 
equilibria become social optima; we say that the social optima are strongly enforceable. The above theorem thus states that if 
the social optima of the game with ρ = 2 are strongly enforceable, then the price of anarchy PoA(H, ρ, 1) is non-increasing 
in the range 1 ≤ ρ ≤ 2.

In a technical report, Singh [21] shows that the social optimum is strongly enforceable for symmetric network congestion 
games on series-parallel graphs. We can therefore conclude that the (altruistic) price of anarchy will be a non-increasing 
function of ρ . This is a remarkable result since, to the best of our knowledge, the classical price of anarchy is unknown (the 
best lower bound is given by Fotakis [11]).

Proof of Theorem 8. Suppose that PoA(H, ρ, 1) =: PoA(ρ) is not non-increasing, then there exist x < y ∈ [1, 2] such that 
PoA(y) > PoA(x). By using the assumption that PoA(2) = 1, we conclude that PoA(x) ≥ 1 = PoA(2) because the price of 
anarchy is always lower bounded by 1. Note that this also implies that y �= 2. This means that

max{PoA(x),PoA(2)} < PoA(y).

However, if we write y = γ · x + (1 − γ ) · 2 for some γ ∈ [0, 1], then Theorem 10.2 in [6] states that

PoA(y) ≤ max{PoA(x),PoA(2)}
which is a contradiction. �
Universal taxes [4]. Caragiannis et al. [4] show that the price of anarchy can be decreased to 2.155 through the usage of 
universal tax functions τ (ρ) = 3

2

√
3 − 2. This is a significant improvement of the price of anarchy bound of 5

2 for classical 
congestion games. Further, from [4, Theorem 3.7] it follows that the price of anarchy can never be better than 2.155 for 
0 ≤ ρ ≤ h(1). Note that the choice ρ = h(1) in fact provides the best price of anarchy as indicated in Fig. 2. On the other 
hand, our results show that the price of stability increases from 1.577 for classical congestion games to 2.013 for this 
specific set of tax functions.

Risk sensitivity under uncertainty [18]. We do not only re-obtain the price of anarchy results for risk-neutral players and players 
applying Wald’s minimax principle (worst-case players), but our results also give a tight bound for any convex combination 
(in terms of player costs) of risk-neutral and worst-case risk attitudes. Furthermore, we also obtain tight price of stability 
results for this model.

Approximate Nash equilibria [9]. For σ = 1 and 1 ≤ ρ ≤ 2, we obtain a bound of (
√

3 + 1)/(
√

3 + ρ − 1) on the price of 
stability. In particular, this also yields the same bound on the price of stability for ρ-approximate equilibria. This bound was 
previously obtained by Christodoulou et al. [9]. Conceptually our approach is different: We prove our bound by observing 
that every Nash equilibrium in our framework yields an approximate equilibrium. In particular, this gives rise to a potential 
function that can be used to carry out the technical details (namely the potential function that is exact for our congestion 
game).12

12 Nevertheless, the framework of Christodoulou et al. [9] is somewhat more general and might be used to obtain a tight bound for the price of stability 
of approximate equilibria (which is not known to the best of our knowledge).
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6. Conclusion

We introduced a new model of affine congestion games by parameterizing both the cost functions of the players and 
the social cost function. Our model encompasses several extensions of Rosenthal’s (classical) congestion games which were 
previously studied in the literature. We derived bounds on the price of anarchy and the price of stability which are tight 
for a large range of parameters ρ and σ . Our work reveals that tight bounds on the inefficiency of these extensions can be 
derived in a unifying manner. The study of such parameterized games seems particularly valuable if tight bounds can be 
derived.

A first natural extension of our model is to go beyond affine cost functions. Some of the connections between perception-
parameterized congestion games and other models revealed in this paper, continue to hold for more general cost functions 
(although not always as clean as for the affine case). Another natural direction for future research is to consider parameter-
ized versions of other fundamental games such as cost sharing games, utility games, network design games or auctions.

For non-atomic network routing games [22] several extensions which were recently studied in the literature can also 
be unified; in particular, there are close connections between the extensions considered in [2,7,9,12,15,16]. Similar to the 
viewpoint adopted here, these extensions can be viewed as network routing games where the cost functions of the players 
are suitably parameterized. In fact, many of these models incorporate (implicitly or explicitly) some scaled marginal tolls
into the cost functions of the players. Further, this also connects to the notion of approximate Nash equilibria (as in [9]). 
Several of these works find similar inefficiency bounds which can also be derived in a unifying manner by using these 
scaled marginal tolls.

In a recent work [13], we showed that the bound on the price of stability for symmetric network congestion games by 
Fotakis [11] also extends to a more general class of combinatorial congestion games, called polytopal congestion games. In 
particular, our results in Section 4.2 can also be applied to these games.

In this paper, we focused on the homogeneous player case because this is the setting addressed in most previous studies 
which we unify here. An interesting direction for future research is to consider heterogenous players. In this context, Chen 
et al. [6] derived a price of anarchy bound for their altruistic congestion games which depends on the extreme values of the 
parameter ρ used by players (with σ = 1).
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Appendix A. Numerical verification of non-negativity of �(σ ) as in Theorem 2

The plot in Fig. 4 shows our numerical verification of the inequality

	(σ) := h1(a
∗(σ ),σ ) − h2(b

∗(σ ),σ ) ≥ 0 (26)

used in the proof of Theorem 2 for the range 1
2 ≤ σ ≤ 2.

We next describe a procedure that can be used to verify this inequality for σ ∈ [ 1
2 , σ̄ ] for any fixed σ̄ .13 By solving a∗(σ )

in (14) for σ we obtain

σ = (a − 1)2

2a
and substituting this into h1(a∗(σ ), σ) we obtain a simplified function which only depends on a:

h1(a) = a(a − 1)2

a3 − a2 + 2a − 1
.

By taking the derivative, we can verify that this function is strictly increasing in the relevant range [ 1
2 (3 + √

5), 1 + σ̄ +√
σ̄ 2 + 2σ̄ ] (corresponding to the interval [ 1

2 , σ̄ ]). Note also that a∗(σ ) (as a function of σ ) is increasing in σ . As a conse-
quence, we conclude that h1 (as a function of σ and a∗(σ )) is increasing for σ ∈ [ 1

2 , σ̄ ].
Similarly, following the same line of arguments for h2, by solving b∗(σ ) in (17) for σ we obtain

σ = 2b2 − 4b + 2

4b − 3

and substituting this into h2(b∗(σ ), σ) we obtain a simplified function which only depends on b:

h2(b) = 4b2 − 7b + 3

4b2 − b − 1
.

13 We are grateful to an anonymous reviewer for this suggestion.
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Fig. 4. Numerical verification that h2(b∗(σ ),σ ) ≤ h1(a∗(σ ),σ ) for 1
2 ≤ σ ≤ 2 with step size 	 = 10−6.

By taking the derivative, we can verify that this function is strictly increasing in the relevant range[
3

2
+ 1√

2
,1 + σ̄ +

√
σ̄ (σ̄ + 1

2
)

]

(corresponding to the interval [ 1
2 , σ̄ ]). As before, b∗(σ ) (as a function of σ ) is increasing in σ and we conclude that h2 (as 

a function of σ and b∗(σ )) is an increasing function for σ ∈ [ 1
2 , σ̄ ].

We now argue that it is sufficient to check (26) for finitely many points in the interval [ 1
2 , σ̄ ] in order to conclude that 

(26) is true for all points in this range. We use the following simple observation.

Proposition 1. Let c ≤ d be given. Let p, q : [c, d] → R be two non-decreasing functions with the property that p(d) ≤ q(c). Then 
p(y) ≤ q(y) for all y ∈ [c, d].

Let ε > 0 and define yk = 1
2 + ε · k for k = 0, . . . , (σ̄ − 1

2 )/ε . If we can choose ε small enough so that h2(yk+1) ≤ h1(yk)

holds for all k = 0, . . . , (σ̄ − 1
2 )/ε , then we can use Proposition 1 to conclude that (26) is true for all y ∈ [ 1

2 , σ̄ ] (exploiting 
that h1 and h2 are strictly increasing). For the case σ̄ = 2 this follows from the numerical verification in Fig. 4.
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