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Worst-case examples for Lasserre’s measure–based hierarchy

for polynomial optimization on the hypercube
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Abstract

We study the convergence rate of a hierarchy of upper bounds for polynomial optimization
problems, proposed by Lasserre [SIAM J. Optim. 21(3) (2011), pp. 864 − 885], and a related
hierarchy by De Klerk, Hess and Laurent [SIAM J. Optim. 27(1), (2017) pp. 347 − 367]. For
polynomial optimization over the hypercube we show a refined convergence analysis for the
first hierarchy. We also show lower bounds on the convergence rate for both hierarchies on a
class of examples. These lower bounds match the upper bounds and thus establish the true
rate of convergence on these examples. Interestingly, these convergence rates are determined
by the distribution of extremal zeroes of certain families of orthogonal polynomials.

Keywords: Polynomial optimization; Semidefinite optimization; Lasserre hierarchy; extremal
roots of orthogonal polynomials; Jacobi polynomials
AMS classification: 90C22; 90C26; 90C30

1 Introduction

We consider the problem of minimizing a polynomial f : Rn → R over a compact set K ⊆ R
n.

That is, we consider the problem of computing the parameter:

fmin,K := min
x∈K

f(x).

We recall the following reformulation for fmin,K, established by Lasserre [12]:

fmin,K = inf
σ∈Σ[x]

∫

K

σ(x)f(x)dµ(x) s.t.
∫

K
σ(x)dµ(x) = 1,

where Σ[x] denotes the set of sums of squares of polynomials, and µ is a signed Borel measure
supported on K. Given an integer d ∈ N, by bounding the degree of the polynomial σ ∈ Σ[x] by

2d, Lasserre [12] defined the parameter:
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f (d)

K
:= inf

σ∈Σ[x]d

∫

K

σ(x)f(x)dµ(x) s.t.
∫

K
σ(x)dµ(x) = 1, (1)

where Σ[x]d consists of the polynomials in Σ[x] with degree at most 2d.
The inequality fmin,K ≤ f (d)

K
holds for all d ∈ N and, in view of the identity (1), it follows that

the sequence f (d)

K
converges to fmin,K as d → ∞. De Klerk and Laurent [2] established the following

rate of convergence for the sequence f (d)

K
, when µ is the Lebesgue measure and K is a convex body.

Theorem 1.1. [2] Let f ∈ R[x], K a convex body, and µ the Lebesgue measure on K. There exist
constants Cf,K (depending only on f and K) and dK ∈ N (depending only on K) such that

f (d)

K
− fmin,K ≤ Cf,K

d
for all d ≥ dK. (2)

That is, the following asymptotic convergence rate holds: f (d)

K
− fmin,K = O

(

1
d

)

.

This result was an improvement on an earlier result by De Klerk, Laurent and Sun [5, Theo-
rem 3], who showed a convergence rate in O(1/

√
d) (for K convex body or, more generallly, compact

under a mild assumption).

As explained in [12] the parameter f (d)

K
can be computed using semidefinite programming, as-

suming one knows the (generalised) moments of the measure µ onK with respect to some polynomial
basis. Set

mα(K) :=

∫

K

bα(x)dµ(x), mα,β(K) :=

∫

K

bα(x)bβ(x)dµ(x) for α, β ∈ N
n,

where the polynomials {bα} form a basis for the space R[x1, . . . , xn]2d of polynomials of degree at
most 2d, indexed by N(n, 2d) = {α ∈ N

n :
∑n

i=1 αi ≤ 2d}. For example, the standard monomial
basis in R[x1, . . . , xn]2d is bα(x) = xα :=

∏n
i=1 x

αi

i for α ∈ N(n, 2d), and thenmα,β(K) = mα+β(K).
If f(x) =

∑

β∈N(n,d0)
fβbβ(x) has degree d0, and writing σ ∈ Σ[x]d as σ(x) =

∑

α∈N(n,2d) σαbα(x),

then the parameter f (d)

K
in (1) can be computed as follows:

f (d)

K
= min

∑

β∈N(n,d0)

fβ
∑

α∈N(n,2d)

σαmα,β(K) (3)

s.t.
∑

α∈N(n,2d)

σαmα(K) = 1,

∑

α∈N(n,2d)

σαbα(x) ∈ Σ[x]d.

Since the sum-of-squares condition on σ may be written as a linear matrix inequality, this is a
semidefinite program. In fact, since the program (3) has only one linear equality constraint, using
semidefinite programming duality it can be rewritten as a generalised eigenvalue problem. In
particular, f (d)

K
is equal to the the smallest generalised eigenvalue of the system:

Ax = λBx (x 6= 0),
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where the symmetric matrices A and B are of order
(

n+d
d

)

with rows and columns indexed by
N(n, d), and

Aα,β =
∑

δ∈N(n,d0)

fδ

∫

K

bα(x)bβ(x)bδ(x)dµ(x), Bα,β =

∫

K

bα(x)bβ(x)dµ(x) for α, β ∈ N(n, d).

(4)
For more details, see [12, 5]. In particular, if the basis {bα} is orthonormal with respect to the
measure µ, then B is the identity matrix, and f (d)

K
is the smallest eigenvalue of the above matrix

A. For further reference we summarize this result, which will play a central role in our approach.

Lemma 1.2. Assume {bα : α ∈ N(n, 2d)} is a basis of the space R[x1, . . . , xn]2d, which is or-
thonormal w.r.t. the measure µ on K, i.e.,

∫

K bα(x)bβ(x)dµ(x) = δα,β. Then the parameter f (d)

K
is

equal to the smallest eigenvalue of the matrix A in (4).

Under the conditions of the lemma, note in addition that, if the vector u = (uα)α∈N(n,d) is
an eigenvector of the matrix A in (4) for its smallest eigenvalue, then the (square) polynomial
σ(x) = (

∑

α∈N(n,d) uαx
α)2 is an optimal density function for the parameter f (d)

K
.

Related hierarchy by De Klerk, Hess and Laurent

For the hypercubeK = [−1, 1]n, De Klerk, Hess and Laurent [3] considered a variant on the Lasserre
hierarchy (1), where the density function σ is allowed to take the more general form

σ(x) =
∑

I⊆{1,...,n}
σI(x)

∏

i∈I

(1 − x2
i ) (5)

and the polynomials σI are sum-of-squares polynomials with degree at most 2d − 2|I| (to ensure
that the degree of σ is at most 2d), and I = ∅ is included in the summation. Moreover the measure
µ is fixed to be

dµ(x) =

(

n
∏

i=1

√

1− x2
i

)−1

dx1 · · · dxn. (6)

As we will recall below, this measure is associated with the Chebyshev orthogonal polynomials. We
let f (d) denote the parameter1 obtained by using in (1) these choices (5) of density functions σ(x)
and (6) of measure µ. By construction, we have

fmin,K ≤ f (d) ≤ f (d)

K
.

De Klerk, Hess and Laurent [3] proved a stronger convergence rate for the bounds f (d).

Theorem 1.3. [3] Let f ∈ R[x] be a polynomial and K = [−1, 1]n. We have

f (d) − fmin,K = O

(

1

d2

)

.

1We drop the dependence on K which is implictly selected to be the box [−1, 1]n.
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Contribution of this paper

In this paper we investigate the rate of convergence of the hierarchies f (d)

K
and f (d) to fmin,K for

the case of the box K = [−1, 1]n. The above discussion raises naturally the following questions:

• Is the sublinear convergence rate f (d)−fmin,K = O
(

1
d2

)

tight, or can this result be improved?

• Does this convergence rate extend to the Lasserre bounds, where we restrict to sums-of-squares
density functions?

We give a positive answer to both questions. Regarding the first question we show that the conver-
gence rate is Ω(1/d2) when f is a linear polynomial, which implies that the convergence analysis
in Theorem 1.3 for the bounds f (d) is tight. This relies on the eigenvalue reformulation of the
bounds (from Lemma 1.2) and an additional link to the extremal zeros of the associated Cheby-
shev polynomials. We also show that the same lower bound holds for the convergence rate of the
Lasserre bounds f (d)

K
when considering measures on the hypercube corresponding to general Jacobi

polynomials.
Regarding the second question we show that also the Lasserre bounds have a O(1/d2) con-

vergence rate when using the Chebyshev type measure from (6). The starting point is again the
reformulation from Lemma 1.2 in terms of eigenvalues, combined with some further analytical
arguments.

The paper is organised as follows. In Section 2 we group preliminary results about orthogonal
polynomials and their extremal roots. Then, in Section 3.1 we analyse the convergence rate of the
Lasserre bounds f (d)

K
when f is a linear polynomial and, in Section 3.2, we analyse the bounds f (d).

In both cases we show a Ω(1/d2) lower bound. In Section 4 we show a O(1/d2) upper bound for
the convergence rate of the Lasserre bounds f (d)

K
, and this analysis is tight in view of the previously

shown lower bounds.

Notation

We recap here some notation that is used throughout. For an integer d ∈ N, R[x]d denotes the set of
n-variate polynomials in the variables x = (x1, . . . , xn) with degree at most d and Σ[x]d denotes the
set of polynomials with degree at most 2d that can be written as a sum of squares of polynomials.

We use the classical Landau notation. For two functions f, g : N → R+, the notation f(n) =
O(g(n)) (resp., f(n) = Ω(g(n)), f(n) = o(g(n))) means lim supn→∞ f(n)/g(n) < ∞ (resp.,
lim infn→∞ f(n)/g(n) > ∞, limn→∞ f(n)/g(n) = 0), and f(n) = Θ(g(n)) means f(n) = O(g(n))
and f(n) = Ω(g(n)). We also use this notation when f, g are functions of a continuous variable x
and we want to indicate the behavior of f(x) and g(x) in the neighbourhood of a given scalar x0

when x → x0. So, f(x) = O(g(x)) as x → x0 means lim supx→x0
f(x)/g(x) < ∞, etc.

2 Preliminaries on orthogonal polynomials

In what follows we review some known facts on classical orthogonal polynomials that we need for
our treatment. Unless we give detailed references, the relevant results may be found in the classical
text by Szegö [16] (see also [8]).

We consider families of univariate polynomials {pk(x)} (k = 0, 1, . . . , d), that satisfy a three-term
recursive relation of the form:

xpk(x) = akpk+1(x) + bkpk(x) + ckpk−1(x) (k = 1, . . . , d− 1), (7)

4



where p0 is a constant, p1(x) = (x − b0)p0/a0, and ak, bk and ck are real values that satisfy
ak−1ck > 0 for k = 1, . . . , d− 1. If we set c0 = 0 then relation (7) also holds for k = 0).
Defining the k × k tri-diagonal matrix

Ak :=

















b0 a0 0 · · · 0
c1 b1 a1 0

0
. . .

. . .
. . .

... ck−2 bk−2 ak−2

0 0 · · · ck−1 bk−1

















, (8)

one has the classical relation:




k−1
∏

j=0

aj



 pk(x) = det(xIk −Ak)p0 for k = 1, . . . , d, (9)

which can be easily verified using induction on k ≥ 1 and the relation (7) (see, e.g., [11]). Therefore,
the roots of the polynomial pk are precisely the eigenvalues of the matrix Ak in (8).

Recall that the polynomials pk (k = 0, 1, . . . , d) are orthogonal with respect to a weight function
w : [−1, 1] → R, that is continuous and positive on (−1, 1), if

〈pi, pj〉 :=
∫ 1

−1

pi(x)pj(x)w(x)dx = 0 for all i 6= j.

We denote by p̂k := pk/
√

〈pk, pk〉 the corresponding normalized polynomial, so that 〈p̂k, p̂k〉 = 1.
As is well known, if the polynomials pk are degree k polynomials that are pairwise orthogonal

with respect to such a weight function then they satisfy a three-terms recurrence relation of the
form (7) (see, e.g., [8, §1.3]). Of course, the corresponding orthonormal polynomials p̂k also satisfy
such a three-terms recurrence relation (for different scaled parameters ak, bk, ck).

By taking the inner product of both sides in (7) with pk−1 and pk+1 one gets the relations
ck〈pk−1, pk−1〉 = 〈pk, xpk−1〉 and ak〈pk+1, pk+1〉 = 〈pk+1, xpk〉, which imply ck〈pk−1, pk−1〉 =
ak−1〈pk, pk〉 and thus ak−1ck > 0. Moreover, when considering the recurrence relations associ-
ated with the orthonormal polynomials p̂k, we have ak−1 = ck for any k ≥ 1, i.e., the matrix Ak in
(8) is symmetric. We will use later the following fact.

Lemma 2.1. Let {p̂k} be orthonormal polynomials for the measure dµ(x) = w(x)dx on [−1, 1],
where w(x) is continuous and positive on (−1, 1), and assume they satisfy the three-terms recurrence
relation (7). Then, the matrix

(

〈xp̂i, p̂j〉 =
∫ 1

−1

xp̂i(x)p̂j(x)w(x)dx

)k−1

i,j=0

(10)

is equal to the matrix Ak in (8). In particular, its smallest eigenvalue is the smallest root of the
polynomial pk.

5



Proof. Using the recurrence relation (7) we obtain

〈xp̂i, p̂j〉 = 〈aip̂i+1 + bip̂i + cip̂i−1, p̂j〉

=















ai if j = i+ 1
bi if j = i
ci if j = i− 1
0 otherwise.

Hence the matrix in (10) is equal to Ak and the last claim follows from (9).

It is also known that the roots of pk are all real, simple and lie in (−1, 1), and that they interlace
the roots of pk+1 (see, e.g., [8, §1.2]). In what follows we will use the smallest (and largest) roots
to give closed-form expressions for the bounds f (d)

K
and f (d) in some examples.

We now recall several classical univariate orthogonal polynomials on the interval [−1, 1] and
some information on their smallest roots.

Chebyshev polynomials

We will use the univariate Chebyshev polynomials (of the first kind), defined by:

Tk(x) = cos(k arccos(x)), for x ∈ [−1, 1], k = 0, 1, . . . . (11)

They satisfy the following three-terms recurrence relationships:

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x) − Tk−1(x) for k ≥ 1. (12)

The Chebyshev polynomials are orthogonal with respect to the weight function w(x) = 1√
1−x2

and

the roots of Tk are given by

cos

(

2i− 1

2k
π

)

for i = 1, . . . , k. (13)

Jacobi polynomials

The Jacobi polynomials, denoted by {Pα,β
k } (k = 0, 1, . . .), are orthogonal with respect to the weight

function
wα,β(x) := (1 − x)α(1 + x)β , x ∈ (−1, 1) (14)

where α > −1 and β > −1 are given parameters. The normalized Jacobi polynomials are denoted

by P̂α,β
k , so that

∫ 1

−1(P̂
α,β
k (x))2wα,β(x)dx = 1.

Thus the Chebyshev polynomials may be seen as the special case corresponding to α = β = − 1
2 .

Likewise, the Legendre polynomials are the orthogonal polynomials w.r.t. the constant weight
function (w(x) = 1), so they correspond to the special case α = β = 0.

There is no closed-form expression for the roots of Jacobi polynomials in general. But some
bounds are known for the smallest root of Pα,β

k , denoted by ξα,βk , that we recall in the next theorem.

Theorem 2.2. The smallest root, denoted ξα,βk , of the Jacobi polynomial Pα,β
k satisfies the following

inequalities:
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(i) ([7]) ξα,βk ≤ −1 + 2(β+1)(β+3)
2(k−1)(k+α+β+2)+(β+3)(α+β+2) .

(ii) ([6]) ξα,βk ≥ F−4(k−1)
√
∆

E , where

F = (β − α) ((α + β + 6)k + 2(α+ β)) ,

E = (2k + α+ β) (k(2k + α+ β) + 2(α+ β + 2))

∆ = k2(k + α+ β + 1)2 + (α + 1)(β + 1)(k2 + (α+ β + 4)k + 2(α+ β)).

The smallest roots ξα,βk of the Jacobi polynomials Pα,β
k converge to −1 as k → ∞. Using the

above bounds we see that the rate of convergence is O(1/k2).

Corollary 2.3. The smallest roots of the Jacobi polynomials Pα,β
k satisfy

ξα,βk = −1 + Θ

(

1

k2

)

as k → ∞.

Proof. The upper bound in Theorem 2.2(i) gives directly ξα,βk = −1 + O
(

1
k2

)

. We now use the

lower bound in Theorem 2.2(ii) to show ξα,βk = −1+Ω
(

1
k2

)

. For this we give asymptotic estimates

for the quantities E,F,∆. First, using the expansion
√
1 + x = 1 + x

2 − x2

8 + o(x2) as x → 0 we
obtain √

∆ = k2
(

1 +
α+ β + 1

k
+

(α+ 1)(β + 1)

2k2
+ o

(

1

k2

))

.

Second, using the expansion 1
1+x = 1− x+ x2 + o(x2) as x → 0 we obtain

1

E
=

1

4k3

(

1− α+ β

k
− 4(α+ β + 2)

k2
+ o

(

1

k2

))

.

Combining these two relations gives

4(k−1)
√
∆

E =
(

1− 1
k

)

(

1 + α+β+1
k + (α+1)(β+1)

2k2 + o
(

1
k2

)

) (

1− α+β
k − 4(α+β+2)

k2 + o
(

1
k2

)

)

= 1 + C
2k2 + o

(

1
k2

)

,

where we set C = (α+ 1)(β + 1)− 8(α+ β + 2)− 2(α+ β)(α+ β + 1)− 2. Finally, using

F

E
=

(β − α)(β + α+ 6)

4k2
+ o

(

1

k2

)

,

we obtain
F − 4(k − 1)

√
∆

E
= −1 +

1

k2

(

(β − α)(β + α+ 6)

4
− C

2

)

+ o

(

1

k2

)

,

where the coefficient of 1/k2 can be verified to be strictly positive, which thus implies the estimate

ξα,βk = −1 + Ω(1/k2).

It is also known that Pα,β
k (x) = (−1)kP β,α

k (−x). Therefore the largest root of Pα,β
k (x) is equal

to −ξβ,αk = 1−Θ(1/k2).
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3 Tight lower bounds for a class of examples

In this section we consider the following simple examples

min

{

n
∑

i=1

cixi : x ∈ [−1, 1]n

}

, (15)

asking to minimize the linear polynomial f(x) =
∑n

i=1 cixi over the box K = [−1, 1]n. Here ci ∈ R

are given scalars for i ∈ [n]. Hence, fmin,K = −∑n
i=1 |ci|. For these examples we can obtain

explicit closed-form expressions for the Lasserre bounds f (d)

K
when using product measures with

weight functions wα,β on [−1, 1], and also for the strengthened bounds f (d) considered by De Klerk,
Hess and Laurent, which use product measures with weight functions w−1/2,−1/2. These closed-form
expressions are in terms of extremal roots of Jacobi polynomials.

3.1 Tight lower bound for the Lasserre hierarchy

Here we consider the bounds f (d)

K
for the example (15), when the measure µ on K = [−1, 1]n is a

product of univariate measures given by weight functions.
First we consider the univariate case n = 1. When the measure µ on K = [−1, 1] is given by a

continuous positive weight function w on (−1, 1), one can obtain a closed form expression for f (d)

K

in terms of the smallest root of the corresponding orthogonal polynomials.

Theorem 3.1. Consider the measure dµ(x) = w(x)dx on K = [−1, 1], where w is a positive, con-
tinuous weight function on (−1, 1), and let pk be univariate degree k polynomials that are orthogonal
with respect to this measure. For the univariate polynomial f(x) = x (resp., f(x) = −x), the pa-
rameter f (d)

K
is equal to the smallest root (resp., the opposite of the largest root) of the polynomial

pd+1.

Proof. Let p̂0, . . . , p̂d+1 denote the corresponding orthonormal polynomials, with p̂i = pi/
√

〈pi, pi〉.
Consider first f(x) = x. Using Lemma 1.2, we see that f (d)

K
is equal to the smallest eigenvalue

of the matrix A in (10) (for k = d + 1), which coincides with the matrix Ad+1 in (8), so that its
smallest eigenvalue is equal to the smallest root of pd+1.
Assume now f(x) = −x. Then f (d)

K
is equal to λmin(−A) = −λmax(A), which in turn is equal to

the opposite of the largest root of pd+1.

Recall that ξα,βd+1 denotes the smallest root of the Jacobi polynomial Pα,β
d+1 and that the largest

root of Pα,β
d+1 is equal to −ξβ,αd+1.

Corollary 3.2. Consider the measure dµ(x) = wα,β(x)dx on K = [−1, 1] with the weight function
wα,β(x) = (1 − x)α(1 + x)β and α, β > −1. For the univariate polynomial f(x) = x (resp.,
f(x) = −x), the parameter f (d)

K
is equal to ξα,βd+1 (resp., to ξβ,αd+1) and thus we have

f (d)

K
− fmin,K = Θ(1/d2).

In particular, f (d)

K
= − cos

(

π
2d+2

)

when α = β = −1/2.

Proof. This follows directly using Theorem 3.1, Corollary 2.3, the fact that the largest root of Pα,β
d+1

is equal to −ξβ,αd+1, and the closed form expression (13) for the roots of the Chebyshev polynomials
of the first kind.

8



We now use the above result to show f (d)

K
− fmin,K = Ω(1/d2) for the example (15) in the

multivariate case n ≥ 2.

Corollary 3.3. Consider the measure dµ(x) =
∏n

i=1 wαi,βi
(xi)dxi on the hypercube K = [−1, 1]n,

with the weight functions wαi,βi
(xi) = (1 − xi)

αi(1 + xi)
βi and αi, βi > −1 for i ∈ [n]. For the

polynomial f(x) =
∑n

l=1 clxl, we have

f (d)

K
≥
∑

l:cl>0

clξ
αl,βl

d+1 +
∑

l:cl<0

|cl|ξβl,αl

d+1 ,

and thus f (d)

K
− fmin,K = Ω(1/d2).

Proof. Assume f (d)

K
=
∫

K
(
∑n

l=1 clxl)σ(x)dµ(x), where σ ∈ R[x1, . . . , xn]2d is a sum of squares of

polynomials and
∫

K
σ(x)dµ(x) = 1. For each l ∈ [n] consider the univariate polynomial

σl(xl) :=

∫

[−1,1]n−1

σ(x1, . . . , xn)
∏

i∈[n]\{l}
wαi,βi

(xi)dxi,

where we integrate over all variables xi with i ∈ [n]\{l}. Then we have
∫ 1

−1
σl(xl)wαl,βl

(xl)dxl = 1.
Moreover, σl has degree at most 2d and, as it is a univariate polynomial which is nonnegative on
R, it is a sum of squares of polynomials. Hence, using Corollary 3.2, we can conclude that

∫ 1

−1

xlσl(xl)wαl,βl
(xl)dxl ≥ ξαl,βl

d+1 ,

∫ 1

−1

(−xl)σl(xl)wαl,βl
(xl)dxl ≥ ξβl,αl

d+1 .

Combining with the definition of f (d)

K
we obtain

f (d)

K
=

n
∑

l=1

cl

∫ 1

−1

xlσl(xl)wαl,βl
(xl)dxl ≥

∑

l:cl>0

clξ
αl,βl

d+1 +
∑

l:cl<0

|cl|ξβl,αl

d+1

and thus f (d)

K
− fmin,K ≥∑l:cl>0 cl(ξ

αl,βl

d+1 + 1) +
∑

l:cl<0 |cl|(ξ
βl,αl

d+1 + 1) = Ω(1/d2).

3.2 Tight lower bound for the De Klerk, Hess and Laurent hierarchy

In this section we consider the hierarchy of bounds f (d) studied by De Klerk, Hess and Laurent [3],
which are potentially stronger than the bounds f (d)

K
since they involve the wider class of density

functions in (5). Their convergence rate is known to be O(1/d2) ([3], recall Theorem 1.3).
For the example (15) we can also give an explicit expression for the bounds f (d) and we will show

that their convergence rate to fmin,K is also in the order Ω(1/d2), which shows that the analysis in
[3] is tight.

We first treat the univariate case, in order to introduce the main ideas, and then we extend to
the multivariate case.

Theorem 3.4. For the univariate polynomial f(x) = ±x, we have

f (d) = min{ξ−1/2,−1/2
d+1 , ξ

1/2,1/2
d },

the smallest value among the smallest roots of the Jacobi polynomials P
−1/2,−1/2
d+1 and P

1/2,1/2
d . In

particular, we have f (d) − fmin,K = Θ(1/d2).
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Proof. Consider first f(x) = x. We first recall how to compute f (d) as an eigenvalue problem.

By definition, it is the minimum value of
∫ 1

−1 x(σ0(x) + σ1(x)(1 − x2))w−1/2,−1/2(x)dx, where

σ0 ∈ Σ[x]2d, σ1 ∈ Σ[x]2d−2 and
∫ 1

−1
(σ0(x) + σ1(x)(1 − x2))w−1/2,−1/2(x)dx = 1. We express the

polynomial σ0 in the normalized Jacobi (Chebychev) basis {P̂−1/2,−1/2
k } as

σ0 =
d
∑

i,j=0

M
(0)
ij P̂

−1/2,−1/2
i P̂

−1/2,−1/2
j

for some matrixM (0) of order d+1, constrained to be positive semidefinite. Based on the observation
that (1 − x2)w−1/2,−1/2(x) = w1/2,1/2(x), we express the polynomial σ1 in the normalized Jacobi

basis {P̂ 1/2,1/2
k } as

σ1 =

d−1
∑

i,j=0

M
(1)
ij P̂

1/2,1/2
i P̂

1/2,1/2
j

for some matrix M (1) of order d, also constrained to be positive semidefinite. Then, we obtain

f (d) = min{〈A−1/2,−1/2
d ,M (0)〉+ 〈A1/2,1/2

d−1 ,M (1)〉 : Tr(M (0)) + Tr(M (1)) = 1, M (0) � 0,M (1) � 0},

where A
1/2,1/2
d and A

−1/2,−1/2
d−1 are instances of (10) defined as follows:

Aα,β
d :=

(∫ 1

−1

xP̂α,β
h (x)P̂α,β

k (x)wα,β(x)dx

)d

h,k=0

for any α, β > −1 and d ∈ N. Since strong duality holds we obtain

f (d) = max{t : A−1/2,−1/2
d − tI � 0, A

1/2,1/2
d−1 − tI � 0} = min{λmin(A

−1/2,−1/2
d ), λmin(A

1/2,1/2
d−1 )}.

By Lemma 2.1, we have λmin(A
−1/2,−1/2
d ) = ξ

−1/2,−1/2
d+1 and λmin(A

1/2,1/2
d−1 ) = ξ

1/2,1/2
d and thus

f (d) = min{ξ−1/2,−1/2
d+1 , ξ

1/2,1/2
d }. The same result holds when f(x) = −x. Finally, by Corollary 2.3,

these two smallest roots are both equal to −1 + Θ(1/d2), which concludes the proof.

We now extend this result to the multivariate case of example (15):

Corollary 3.5. For the linear polynomial f(x) =
∑n

l=1 clxl, we have

f (d) ≥
(

n
∑

l=1

|cl|
)

min{ξ−1/2,−1/2
d+1 , ξ

1/2,1/2
d }

and thus f (d) − fmin,K = Ω(1/d2).

Proof. The proof is analogous to that of Corollary 3.3, with some more technical details. Assume
f (d) =

∫

K
(
∑n

l=1 xl)σ(x)dµ(x), where σ(x) =
∑

I⊆[n] σI(x)
∏

i∈I(1 − x2
i ), σI(x) is a sum of squares

of degree at most 2d− 2|I| and
∫

K
σ(x)dµ(x) = 1.

Fix l ∈ [n]. Then we can write

σ(x) =
∑

I⊆[n]\{l}
σI(x)

∏

i∈I

(1− x2
i ) + (1− x2

l )
∑

I⊆[n]:l∈I

σI(x)
∏

i∈I\{l}
(1− x2

i ).

10



Next, define the univariate polynomials in the variable xl:

σl,0(xl) :=
∑

I⊆[n]\{l}

∫

[−1,1]n−1

σI(x)
∏

i∈I

(1 − x2
i )

∏

i∈[n]\{l}
w−1/2,−1/2(xi)dxi,

σl,1(xl) :=
∑

I⊆[n]:l∈I

∫

[−1,1]n−1

σI(x)
∏

i∈I\{l}
(1− x2

i )
∏

i∈[n]\{l}
w−1/2,−1/2(xi)dxi,

σl(xl) :=

∫

[−1,1]n−1

σ(x)
∏

i∈[n]\{l}
w−1/2,−1/2(xi)dxi = σl,0(xl) + (1− x2

l )σl,1(xl).

By construction, we have

∫

K

xlσ(x)dµ(x) =

∫ 1

−1

xlσl(xl)w−1/2,−1/2(xl)dxl,

∫ 1

−1

σl(xl)w−1/2,−1/2(xl)dxl =

∫

K

σ(x)dµ(x) = 1.

Moreover, the polynomial σl,0 is a sum of squares (since it is univariate and nonnegative on R)
and its degree is at most 2d, and the polynomial σl,1 is a sum of squares of degree at most 2d− 2.
Hence, using Theorem 3.4, we can conclude that

∫ 1

−1

(±xl)σl(xl)w−1/2,−1/2(xl)dxl ≥ min{ξ−1/2,−1/2
d+1 , ξ

1/2,1/2
d }.

This implies that

f (d) =

∫

K

(
n
∑

l=1

clxl)σ(x)dµ(x) =
n
∑

l=1

cl

∫ 1

−1

xlσl(xl)w−1/2,−1/2(xl)dxl

is at least (
∑

l |cl|)min{ξ−1/2,−1/2
d+1 , ξ

1/2,1/2
d } and the proof is complete.

4 Tight upper bounds for the Lasserre hierarchy

In this section we analyze the rate of convergence of the Lasserre bounds f (d)

K
when using the

measure dµ(x) =
∏n

i=1 w−1/2,−1/2(xi)dxi on the box K = [−1, 1]n (corresponding to the Chebyshev

orthogonal polynomials). For this measure, it is known that the stronger bounds f (d) - that use a
much richer class of density functions - enjoy a O(1/d2) rate of convergence ([3], see Theorem 1.3).

We show that the convergence rate remains O(1/d2) for the weaker bounds f (d)

K
, which thus also

implies Thoerem 1.3.

Theorem 4.1. Consider the measure dµ(x) =
∏n

i=1 w−1/2,−1/2(xi)dxi on the hypercube K =

[−1, 1]n, with the weight function w−1/2,−1/2(xi) = (1− x2
i )

−1/2 for i ∈ [n]. For any polynomial f
we have

f (d)

K
− fmin,K = O(1/d2).

It turns out that we can reduce the general result to the univariate quadratic case. In what follows
we consider first the special case when f is univariate and quadratic (see Lemma 4.2) and then we
indicate how to derive the result for an arbitrary multivariate polynomial f . A key tool we use for
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this reduction is the existence of a quadratic upper estimator for f having the same minimum as
f over K. In the quadratic univariate case we exploit again the formulation of f (d)

K
in terms of the

smallest eigenvalue of the associated matrix Ad in (16) (recall Lemma 1.2). This matrix Ad is now
5-diagonal, but a key feature is that it contains a large Toeplitz submatrix, whose eigenvalues can
be estimated by embedding it into a circulant matrix for which closed form expressions exist for
the eigenvalues. This nice structure, which allows a simple analysis, follows from the choice of the
Chebyshev type measure. We expect that a similar convergence rate should hold when selecting
any measure of Jacobi type, but the analysis seems more complicated.

4.1 The quadratic univariate case

Here we consider the case when K = [−1, 1] and f is a univariate quadratic polynomial of the form
f(x) = x2 + αx, for some scalar α ∈ R.

We can first easily deal with the case when α 6∈ (−2, 2). Indeed then we have

f(x) ≤ g(x) := αx+ 1 for all x ∈ [−1, 1],

and both f and g have the same minimum value on [−1, 1]. Namely, fmin,K = gmin,K is equal to
1− α if α ≥ 2, and to 1 + α if α ≤ −2. Therefore we have

f (d)

K
− fmin,K ≤ g(d)

K
− gmin,K = O(1/d2),

where we use Corollary 3.3 for the last estimate.

We may now assume that f(x) = x2 + αx, where α ∈ [−2, 2]. Then, fmin,K = −α2/4, which is
attained at x = −α/2. After scaling the measure µ by 2/π, the Chebyshev polynomials Ti satisfy

∫ 1

−1

Ti(x)Tj(x)
2

π
√
1− x2

dx = 0 if i 6= j, 2 if i = j = 0, 1 if i = j ≥ 1.

So with respect to this scaled measure the normalized Chebyshev polynomials are T̂0 = 1/
√
2 and

T̂i = Ti for i ≥ 1, and they satisfy the 3-terms relation:

xT̂1 =
1

2
T̂2 +

1√
2
T̂0 and xT̂k =

1

2
T̂k+1 +

1

2
T̂k−1 for k ≥ 2.

In view of Lemma 1.2 we know that the parameter f (d)

K
is equal to the smallest eigenvalue of the

following matrix

Ad =

(∫ 1

−1

(x2 + αx)T̂i(x)T̂j(x)
2

π
√
1− x2

dx

)d

i,j=0

.

Using the above 3-terms relations one can verify that the matrix Ad has the following form:
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Ad =







































1
2

α√
2

1
2
√
2

α√
2

3
4

α
2

1
4

1
2
√
2

α
2 a b c
1
4 b a b c

c b
. . .

. . .
. . .

c
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . c

. . .
. . .

. . . b
c b a







































, (16)

where we set a = 1/2, b = α/2 and c = 1/4.
Observe that if we remove the first two rows and columns of A then we obtain a principal

submatrix, denoted B, which is a symmetric 5-diagonal Toeplitz matrix. Now we may embed B
into a symmetric circulant matrix of size d+ 1, denoted Cd, by suitably defining the first two rows
and columns. Namely,

Cd =





































a b c c b
b a b c c
c b a b c

c b a b c

c b
. . .

. . .
. . .

c
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . c

c
. . .

. . .
. . . b

b c c b a





































.

Recall that the eigenvalues of a circulant matrix are known in closed form, see, e.g., [9]. In particular,
the eigenvalues of Cd are given by

a+ 2b cos(2πj/(d+ 1)) + 2c cos(2π2j/(d+ 1), j = 0, . . . , d, (d ≥ 5). (17)

By the Cauchy interlacing theorem for eigenvalues (see, e.g., Corollary 2.2 in [10]), we have

f (d)

K
= λmin(Ad) ≤ λmin(B) ≤ λ3(Cd),

where λ3(Cd) is the third smallest eigenvalue of Cd. As noted above the eigenvalues of Cd are
known in closed form as in (17) and this is the key fact which enables us to conclude the analysis.

Lemma 4.2. For any α ∈ [−2, 2], the third smallest eigenvalue of the matrix Cd satisfies

λ3(Cd) = −α2

4
+O

(

1

d2

)

.

Therefore, if f(x) = x2 + αx with α ∈ [−2, 2] then f (d)

K
− fmin,K = O(1/d2).
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Proof. Setting ϑj =
2πj
d+1 for j ∈ N, then by (17) the eigenvalues of the matrix Cd are the scalars

1

2
+ α cos(ϑj) +

1

2
cos(2ϑj) = cos2(ϑj) + α cos(ϑj) for 0 ≤ j ≤ d.

Consider the function f(ϑ) = cos2(ϑ)+α cos(ϑ) for ϑ ∈ [0, 2π]. Then f satisfies: f(ϑ) = f(2π−ϑ),
and its minimum value is equal to −α2/4, which is attained at ϑ = arccos(−α/2) ∈ [0, π] and 2π−ϑ.
Let j be the integer such that ϑj ≤ ϑ < ϑj+1. Then the smallest eigenvalue of Cd is λmin(Cd) =
min{f(ϑj), f(ϑj+1)} and its third smallest eigenvalue is given by λ3(Cd) = min{f(ϑj−1), f(ϑj+1)} if
λmin(Cd) = f(ϑj), and λ3(Cd) = min{f(ϑj), f(ϑj+2)} if λmin(Cd) = f(ϑj+1). Therefore, λ3(Cd) =
f(ϑk) for some k ∈ {j − 1, j, j + 1, j + 2}.

Using Taylor theorem (and the fact that f ′(ϑ) = 0) we can conclude that

λ3(Cd) +
α2

4
= f(ϑk)− f(ϑ) =

1

2
f ′′(ξ)(ϑ − ϑk)

2,

for some scalar ξ ∈ (ϑ, ϑk) (or (ϑk, ϑ)). Finally, f ′′(ξ) = −2 cos(ξ) − α cos(ξ) and thus we have
|f ′′(ξ)| ≤ 2+ |α|. Also |ϑ−ϑk| ≤ |ϑj+2 −ϑj−1| = 6π

d+1 . The claimed result now follows directly.

4.2 The general case

As a direct application we can also deal with the case when f is multivariate quadratic and separable.

Corollary 4.3. Consider the box K = [−1, 1]n and a multivariate polynomial of the form f(x) =
∑n

i=1 x
2
i + αixi for some scalars αi ∈ R. Then we have f (d)

K
− fmin,K = O(1/d2).

Proof. The polynomial f is separable: f(x) =
∑n

i=1 fi(xi), after setting fi(xi) = x2
i + αixi. Hence

its minimum over the box K is fmin,K =
∑n

i=1(fi)min,[−1,1]. Suppose σi ∈ Σ[xi]d is an optimal

density function for the bound fi
(d)

[−1,1]
and consider the polynomial σ(x) =

∏n
i=1 σi(xi) ∈ Σ[x]nd,

which is a density function over K. Then we have

f (nd)

K
− fmin,K ≤

∫

K

f(x)σ(x)dµ(x) =

n
∑

i=1

(∫ 1

−1

fi(xi)dµ(xi)− (fi)min,[−1,1]

)

= O(1/d2),

where we use Lemma 4.2 for the last estimate. This implies the claimed convergence rate for the
bounds f (d)

K
.

Assume now f is an arbitrary polynomial and let a ∈ K = [−1, 1]n be a minimizer of f over K.
Consider the following quadratic polynomial

g(x) = f(a) +∇f(a)T (x − a) + Cf‖x− a‖22,

where we set Cf = maxx∈K ‖∇2f(x)‖2. By Taylor’s theorem we know that f(x) ≤ g(x) for all
x ∈ K and that the minimum value of g(x) over K is gmin,K = f(a) = fmin,K. This implies

f (d)

K
− fmin,K ≤ g(d)

K
− gmin,K = O(1/d2),

where we use Corollary 4.3 for the last estimate. This concludes the proof of Theorem 4.1.

14



5 Concluding remarks

Some other hierarchical upper bounds for polynomial optimization over the hypercube have been
investigated in the literature. In particular, bounds are proposed in [4], that rely on selecting
density functions arising from beta distributions:

fH
d := min

(α,β)∈N(2n,d)

∫

K

f(x)xα(1 − x)β dx
∫

K

xα(1− x)β dx
,

where, K = [−1, 1]n, and (1 − x)β =
∏n

i=1(1 − xi)
βi for β ∈ N

n. These bounds can be computed

via elementary operations only and their rate of convergence is fH
d − fmin,K = O(1/

√
d) (or O(1/d)

for quadratic polynomials with rational data).
Other hierarchies involve selecting discrete measures. They rely on polynomial evaluations at

rational grid points [1] or at polynomial meshes like Chebyshev grids [14]. The grids in [14] are
given by the Chebyshev-Lobatto points:

Cd :=

{

cos

(

jπ

d

)}

j = 0, . . . , d.

In particular the authors of [14] show that minx∈Cn

d
f(x)− fmin,K = O

(

1
d2

)

, where

Cn
d = Cd × · · · × Cd ⊂ [−1, 1]n.

Note that |Cn
d | = (d+ 1)n, which is of course exponential in n even for fixed d.

The same O
(

1
d2

)

rate of convergence was shown in [1] for the regular grid (using d + 1 evenly
spaced points). We also refer to the recent work [15] where polynomial meshes are investigated for
polynomial optimization over general convex bodies.

Thus the Lasserre bound f (d)

K
has the same O

(

1
d2

)

asymptotic rate of convergence as the grid
searches, but with the advantage that the computation may be done in polynomial time for fixed
d.

Of course, the problem studied in this paper falls in the general framework of bound-constrained
global optimization problems, and many other algorithms are available for such problems; a recent
survey is given in the thesis [13]. The point is that the

methods we studied in this paper allow analysis of the convergence rate to the global minimum.
We conclude with some unresolved questions:

• Does the O
(

1
d2

)

rate of convergence still hold for the Lasserre bounds if K is a general convex
body? (The best known result is the O(1/d) rate from [2].)

• What is the precise influence of the choice of reference measure µ in (1) on the convergence
rate?

• Is is possible to show a ‘saturation’ result for the Lasserre bounds of the type:

f (d)

K
− fmin,K = o

(

1

d2

)

⇐⇒ f is a constant polynomial?

In other words, is O(1/d2) the fastest possible convergence rate for nonconstant polynomials?
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