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Asymptotic Expansions* 

Part III. THE SlIJM FORMULA OF EULER 

Chapter I. RF..AL VARIABLE3 

Section 1. FIRST FUNDAMENTAL IDENTITY 

The purpose of this chapter is to write the sum 

S = f(A + 1) + f(A + 2) + • • • + f(B) 
' 

where A and B are real numbers such that B - A is a positive integer, in 

another form involving integrals. To that end I let 'f i (x) 02 x - t and I 

introduce the periodic function 1Jf1 (x) with period 1 which is equal to 

q>1 (x) = x ·-tin the open interval (O,l) and which has the value zero for 

integral values of Xo 

1 t nd A b al d 0 ~- " 1'_ lo THEOREM o Le · o<.. ~ \..~ ~ ~ an assume 1::1 If f (x) is 

continuously differentiable in the interval 

min (A + o< 9 B + (j, A + 9) t x ~ max (A + o< , B + (3 , B + 9) 
' 

then 

B+~ 

(lol) S = f f(x)dx + Cf>1 (1 -(3)f(B r(3) - £j' 1 (1-o<.)f(A + o<.) - Ri 
' 

A+o<. 

*Part I (Enveloping Series ) and Part II (Tr~sformation of an envelop

ing series into a convergent series) consist of notes made by John H. Gay 

and Thomas E. Kurtz of l ectures given by J.G. van der Corput at National 

Bureau of Standards , Los Angel es, California, Summer Session 1951 (U.S. De

partment of Commerce, National Bureau of Standards, INA 51-8; June 28,1951). 



where 

J
.A.+9 

'f 1 (A + 1 - x)f' (x)dx + 

A+-< 
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J
BfG 

1f' 1 (B + 1 - x)f• (x)dx + 

A~ 

I
B+ <3 

+ Cf 1 (B + 1 - x)f 1 (x)dx 0 

B+G 

I call (lol) the first fundamental identityo 

Remark: It is true that the definition of Ri involves G, but in r eality 

the remainder is independent of 9, as long as 9 lies in the interval 

L ~ 

0 = ~ "' 1 o In fact, in the open interval 0 < 9 < 1 the derivative of Ri_ 

with respect to 0 is equal to 

by the definition of the periodic function 1{' 1 (x) o !he remainder R_i, which 

is a continuous f unction of 9 in the closed interval (O,l) is therefore in 

that whole interval independent of ~o 

In many cases the parameters o( and ~ can be chosen in such a way that 

the integral and the two following terms on the right hand side of (lol) 

possess simple valueso 

In the special case that o< and ~belong to the open interval (O,l), 

the formula takes the form 

s ::! J
B+~ 

f (x)dx + "'{[ l (1 ~ (3 ).f(B + (3) - 'If l (1 - o< )f(A. + o< ) - Hi , 
A+o< 



where 

B+(.> 

Ri_n J °o/1(B+l-x)f t (x)dx 0 

A+ol-.. 

(III,I,1,3) 

In this case the formula. does not involve the linear polynomial Cf 
1 

(x), but 

only the periodic function 1V 1 (x) o 

Proof: Since 11_ is independent of Q in the interval 0 ~ 9 ~ 1, we may as-

sume in the proof tba t 0 < 9 < lo Integr ating by parts we ob~n, since f'J.. (x) = 

A+9 

Ri = I 
A+Q( 

B+G 

+ I 
A+Q• 

B+/3 
+ I 

B+9 

A+G 

Cf 1 (A + 1 - x)f(x) + J f(x)dx 

A+ot-

B+9 

1Jf 
1 

(B + 1 - x) f(x) +/ f (x)dx 

A+G 

B+(3 

cp
1 

(B + 1 - x)f(x) + f f (x)dx .. 
B+G 

The three integrals together furnish 

B+(3 f f(x)dx • 
A+~ 

Since V 1 (B + 1 - x) makes a jump l if x passes a point B + l - m, 

where m is an integer~ we obtain (See note on page I,1,4) 

B+9 

I '¥1 (B + 1 - x)f(x) = "\V 1 (1 - 9)f(B + 9) - "\l11 (1 - 9)f(A + Q) - T , 

A+Q 
I 

where 

T • i f(B + 1 - m) 0 , 
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the last sum is extended over the integers m such that 

A+Q<B+l-m<B+Q 
' 

so that B + 1 - m runs through the values A + 1, A + 2, • • • , B. This 

shows that T = s. Evaluating the two other integrate<:! parts and using the 

relation 

, 

the result after cancellation is 

B+(3 

Ri_ = J f(x)dx - <fl (1 - °'- )f(A + o<) + (f1 (1 - (3)f(B + (3) - S 

A+o< 

which implies (lol). 

Note to page I,1,3o In fact, we have for each integer m 

1 V 1 (B + 1 .,. x) -+ - 2 

as x < B + 1 - m tends to B + 1 - m, and 

If l (B + 1 - x) ~ ~ , 

as x > B + 1 - m tends to B + 1 - m. 

' 

' 
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Section 2 o THE SECOND FUNDAMENTAL IDENTITY 

The next problem is ;to write the remainder 11_, occurring in the first 

fundamental identity, in another form. To that end I introduce the poly

nomials Cf h(x) (h ~ 2) uniquely defined by 

1 

Cf h(x) = <?h-l (x ) ani J cp h(x)dx = 0 • 

0 

Then 

(2 .1) 

since 

l 1 

<p2 (1) - <f 2(o) = J 'f1 (x)dx 2 f (x - ~)dx = 0 

0 0 

~ 

and for h = 3 
1 

<fh(l) - (}>h (O) = J 'fh-1 (x )dx = 0 • 
0 

Let "\V h(x) b e the periodic f unction with period 1 which is equal to 'f h(x) 

in the closed interval (O,l); it follows from (2.1) that such a periodic 

func tion exists • 

The first few polynomials ~ h (x) are given by the following table. 



1 
.lt(f1(x) = x - 2· 

2 1 
2 ~er 2(x) = x - x + 'b. 

i 3 2 1 . 
3 tlf 3(x) = X- - 2x + ~x. 

4 - i 2 1 .L.t<f 4(x) = x - ZX- + x - 30 • 

(o - 5 5 4 5 i 1 
5 l T 5( x) - x - 2X + 3X- - b x. 

6 5 54 12 1 
6 t'f 6 (x) = x _ - 3x + ~ - 2x + 42 • 

- 7 7 6 7 5 7 i 1 
7tCf 7(x) -x -2x +~x -bx:' +bx. 

8 7 14 6 7 4 2 2 1 
8 tcp 8 (x) = x - Lx + 3 x - 3x + ~x - 30. 

CD 9 9 8 7 21 ~ ~ 3 
9t19(x) = x - 2x + 6x - ~X'+ 2-x:' - rox· 

10 9 15. 8 6 4 3 2 5 
J..O tCf 10 (x) = x - 5x + 2x - 7x + 5x - 2x + bl). 

11 11 10 55. 9 1 5 i 1 i 5. 
ll to/11 (x) = x - 2 x +bx - llx + l1x - 2-r + r,x. 

(ITI,I,2,2) 

· l2t'f 12(x) = xl2 - 6xll + 11.xlO - ¥x8 + 22x6 - ¥x4 + 5x2 - 2~§5. 

The second fundamental identity is as follows: 

THEOREM 2. Let o1... am (3 be real and 0 ~ 9 ~ 1. Suppose that f(x) is 

continuously differentiable in the interval 

min(A + of\ , B + (3 , A + 9) ~ x ~ max (A + °'-. , B + (3 , B + 9) 

and l et 

A+9 

Rii(f) = I 
A+o4-

B+9 

(f h (A + 1 - x)f(x)dx + J 'f'h(B -+' 1 - x)f(x)dx + 

A+9 

B+f3 

+ J Cfh(B+l- x)f(x)dx. 

B+9 
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Then 

Proof: ~+l (ft) - ~(f) can be written as a smn of three tenns. The first 

of these three terms is 

A+Q 

/ { Cf h+l (A + 1 - x)f' (x) + Cf ~l (A + 1 - x)f(x) }a.x = 
A+o< 

!he second of these three terms is 

B+9 

J { "o/ h+l (B + 1 - x)f 1 (x) + Y ~+l (B + 1 -· x)f{x)} dx = 
A+Q 

= 'fl h+l (1 - 9) f (B + 9) - "\ff h+l (1 - 9) f (A + 9) 

and finally the last of t hese three terms is 

B+~ J { cph+l(B + 1 - x)f 1 (x) + 'fh+l(B + 1 - x)f(x)} dx = 
B+f> 

02 Cf h+l (1 - (3) r (B + (3) - <f h+l (1 - 9) r · (B + 9) • 

Consequently, since 

we get the required rosult 

R,..,,.,(fr) - R,..,(f) = cp\.,_,_,(1- ~)f(B + ~) - Cf,.,.,(1-o()f(A +o<) • 



(III,I,3,1) 

Section 3. THE SUM FORMULA OF EULER 

THEOREM 3. Let A and B be arbitrary real numbers such that B - A is a 

positive integer. Let « and (J be real ~ 0 ~ Q ~ 1. 'Ihen the sum 

s ~ f(A + 1) + f(A + 2) + OOO+ f(B) 
' 

where f (x) is h times (h ~ 1) continuously differentiable in the interval 

min (A + °" , B + (3 
L L 

, A + 9) = x = max (A + o<. , B + (3 ' B + Q) 

can be written as ------
B+~ h-1 

s = J f(x)dx + I 
s=o 

~ (1 - ~ )f(s)(B + (3) 
I s+l r<J 

A+o.. 
(3.1) 

where 

A+G B+G 

~ = J Cfh (A + 1 - x)f'(h~x)dx + J 1Jf h(B + 1 - x)f(h) (x)dx + 

A+~ A+9 

B+~ 

+ J <f h(B + 1 - x)f(h)(x)dx • 

B+9 

(sum formula of Euler*) 

*'Ille sum formula of Euler in this general form can be found in the 

doctor's thesis of Duncan, Stanford 1952. 
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In many cases the parameters o< and ~ can be chosen in such a wcry that 

the terms, occurring in the expansion for s, take a simple form. In the 

special case that o< and ~ belong t o the closed interval (O,l), the sum 

fornrula of Euler takes the form 

(3 .2) 

B+(.> h 1 

S = r f(x)dx + ~ Cfs+l(l -(J)f(s)(B + (3) -
x+c( s-o 

h-1 ( ) 
- Z Cf s+l(l - c{)f s (A+ o<) - Rh , 

s=o 

in which the remainder term 

B+0> 

~ = I If' h (B • 1 - x)f(h) (x)dx 

A+o< 

does not involve the polynomial Cf h (x), but only the periodic ftmction 1f" h (x) 

The special case h = 1 of the Euler sum formula has already been proved 

in 11. The sum formula follows for h ~ 2 from §2, since theorem 2 of that 

section furnishes for s = 1,2, •·• , h - 1 

R R = - ~ (1 - f-l)f(s) (B + ~) + (J) (1 - o<)f( s) (A + o<) 
s - s+l ls+l I" •s+l :J 

so that 
h-1 

R- - R = Z (R - R ) -= 
--.1 -·n s=l s s+l 

~ ~ () 
- Z 'f (1 -(.3)f(s)(B +fa)+ Z 'f (1 - ~ )f s (A+°'-) 

5~ sB s~ sB 

Solving this for Ri. and substituting it into (1.1) we get (J.l)o 

From the sum formula of Euler it follows immediately that the remainder 

~ is independent of Q in the interval 0 ~ G ~ 1. 
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It is easy to find an upper bound for the absolute value of the remain-

der. The polynomial <f h(x) is uniquely defined by h and its absolute value 

possesses therefore between 1 - g · and 1 - o\ an upper bound which depends 

only on h and ~, and not on e, since 9 is bounded. Thus lfh(A +. l - x) I has 

between A + ~ and A + Q an upper bound which depends 011.ly on h and o<.. • 

Similarly I <fh (B + 1 - x) I possesses between B + G and B + /3 an upper bound 

which depends only on h and (3 o Finally the absolute value of the periodic 

function 1lf h(x) is l ess than a suitably chosen number which depends only on 

h. It is therefore possible to find a rrumber eh depending. only on h, ~ and 

/3 such that in the remainder Rh each f actor Cf h (A + l - x), Cf h (B + 1 - x) 

and 1Jf h (B + 1 - x) is in absolute value ~ Ch. Consequently 

ma.x(A+ol, B+ (J, B+9) 

111, I L eh J lr(h) (x) ldx • 

min(A+"', B+ ~, A+Q) 

This result is often sharp enough, if we are only interested in the 

order of magnitude of the remainder . In the f ollowi.ng section we deduce 

sharper inequalities for the remainder tenno 

The polynomial Cf h (x)(h = 1,2, · • •) has the following property: 

(3 .3) 

This is evident for Cf 1 (x) = x - ~. If h ~ 2 and if the formula has al

ready been proved with h - 1 instead of h, then t he two sides of (3.3) 

have the same derivative, so that their differe~e is a constant and 

this constant is equal to ~ero, since both cp h (1 - x) and Cf h (x), inte

grated from x = 0 to x = 1, yield zero by t.li e d.efinition of rJ (x) given 
1n 

on P. (III .L2 ~lL 
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For h ~ 2 we have by (2.1) (Jlld (3.3) 

and 
' 

so that <f h(O) = 0 for each odd h> 1. 

The polynomials ht qh(x)(h ~ 1) can be written as 

(3.4) h ' m (, ) _ h _ !(h) h-1 + (h)R_ h-2 _ (h)B h-4 + 
•r h x - x 2 l x 2 -ix 4 2x 

(h) h-6 (h) h-8 
+ 6 B3x - 8 B4x + •• • ' 

where the last term is a constant or l inear in x and where the coefficients 

B1
, B2, •••denote suitably chosen numbers, called the numbers of 

Bernoulli. I n fact, t he special case h = 1 follows from 'f1 (x) = x - ~· 
~ 

Suppose that h = 2 and that the formula has alreaey been proved f'or h - 1 in-

stead of ho 

The deri va ti ve of the ri gbt hand side of (3 .4) , di vi.ded by h, is equal 

to 

h-1 l(h-1) h-2 x - - x + 2 1 ' 

so that the two sides of' (3.4) possess the same derivative . Their diff e·r-

ence is therefore a constant. If h i s an odd number.> 1, both sides 

vanish f or x = o, so that they are equal for all'!• If' h is an even mnnber, v; 

choose the number of Bernoulli B~h such that the two sides of (3.4) assume 

the same value at x = o, so that they also poss-ess in this case the ·same . 

value for all x. 



From (3 o4) it follows that 

(3 .5) 
= (-)k-1 1\: 

(2k)t 

(III,I,3 ,5) 

Taking in thoorem 3 o<. = fJ = 0 end cI:ioosing for A and B integers , we 

get the following r esult for the sum 

I BI 
s = E f(n) , 

n=A 

where t he prime indicates that the t erms with n = A and with n = B are 

counted onl y half . 

TiillOREM 4. If A ~ B denote integer s with A < B and if f (x) i s 2k 

times (k ~ 1) continuously differentiable in t he interval A f: x ~ B, then 

where 

"'r ( 2k) T 2k( -x)f (x)dx o 

If f(x) i s 2k + 1 times continuously differentiabl e in the interval 

J:; ~ 
A = x = B, we can write rk al so in t he form 

~e r esults follow immediatel y f rom (3 .1), .if we choose ~ = f3 = 0, for 

then the contribution to the right hand side of (3 .1) furnished by the 

terms with s = 0 is equal to 

Y l (l) f(B) - "f l (l)f(A) = ~f(B) - · ~f(A ) 
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'Ihe first few Bernoulli numbers are* 

B ,,.. 174611 • 
lO 330 ' 

B = 8553103 • 
13 6 ' 

B 861581.U.276005 • 
15 = 14322 , 

B _ 2577687858367 . 
17 - 6 ' 

B - 2929993913841559 • 
19 - ' 

B = 1520097643918070802691 • 
21 . 1806 ' 

B ,,,, 596451111593912163277961 • 
23 282 ' 

B 49.!:b 57205°2i.D.079648212477525 
25 = ; 

B , _ 854513 • 
11 - 138 ' 

B = 23749461029 • 
14 870 ' 

B _ 7709321041217 • 
16 - :>.Lo ' 

B = 691 • 
6 2730 , 

B _ 43867 • 
9 - 798 , 

B ,,,, 236.364091 ; 
12 2730 

B _ 26315271553053477373 : 
18 - - 1919190 ~ 

B = 261082718496449122051 • 
20 13530 ' 

B = 27833269579301024235023 • 
22 690 ' 

B _ 5609403368997817686249127547 ; 
24 - 46410 . 

*see Tables of the Higher Mathematical Functions, computed and corn-

piled mid er the direction of Harold T. Davis, II , p . 230, The Pri ncipia 

Press , I nco; Bloomington, I ndiana. 



B _ 80116571813548995734792499.1853 ,· 
26 - 1590 

B 29149963634884862421418123812691 • 
27 ~ 798 ' 

B 2479392929313226753685415739663229 • 
28 = 7 ' 

B _ 84483613348880041862046775994036021 • 
29 - 4 ' 

B 1215233140483755572040304994079820246041491 
30 "" . $6786730 ° 

(III,I,3,7) 

Let us show now th'at the periodic f unctions "\f' h(x) (h = 1,2,•••) 

possess the property 

(3.6) ' 

in particular 

• 

The last identity i s obvious for x .,, 0 and for x = t , since \V 1 (0), 

\If 1 (i) and \If 1 (1 ) vanish . I n the interval 0 < x < t we have 

If 1 (x) + ljf 1 (x + ~ ) - '4f 1 ( 2x) = (x - ~) + x - (2x - ~) = o 

and in the interval t < x < 1 we obtain 

1 1 ~ 

\If 1 (x) + 1V 1 (x + 2) - 1f 1 (2x) = (x - ~) + (x - 1) - (2x - ~) = O • 

The periodic functi on "\lf 1 (x) therefore · satisfies the r equir ed r ela-

tion. 
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If h ~ 2 and if .(J.6) has been proved with h - 1 instead of h, then the two 

sides of (3 0 6) have the same derivatives, so that their difference is a constar 

and this constant is equal to zero, since each of the functi ons 1V' h(x), 

\f h (x + ! ) and If h ( 2~) , integr ated from x = 0 to x == 1, y'"leld ~ero by the 

definition of 1V h(x) and c:.fh(x) . '.Ihls establishes the proof of (3.6). 

Letting x "" O in that identity we obtain 

0 

Therefore, o/ h(! ) = 0 for odd val ues of hand it follows from (3 .5) that 

(3. 7) 
1 1 k 1 Bk 

S'2kC~) ... lf 2kC~) = (-) <1 -22k-I) (2kH .. 

Taking a<= (3 = ! in (3 .2) we ob tain therefore, 

THEOREM 5.. I f A and B ~ integers with A < B a nd if f(x) is 2k times 

(k ~ 1) continuously differentiable in the interval A + ! ~ x ' B + !_, then 

B B+! 
L r(n) = l f (x)dx + 

~ n=A+l 

+ ~ (-)s (1 _l1) 
s•l 22s-

2 

Bs {r (2s-l) (B + ~) _ f(2s-l) (A + ~)} _ _,Pk , 

(2s) ! 

where 

11( ( 2k) 
1 2k(-x)f (x)dx • 

If f (x) is ( 2k + 1 ) times continuously differentiable , f' k may be writ ten 

as 

) I f (2k+l) . 
·'t' 2k+l(-x)f (x)dx • 



Section 4o SOME PROPERTIES OF THE FU~ TIONS 

Cfh(x) At-ID tfY h(x) 
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In the interval 0 < x < ! the polynomial <j'2k-l (x) is negative for odd 

values of k ~ 1 and positive for even values of k ~ 2 o To begin with, 

Cf\ (x) = x - ! is negative in that intervalo Suppose that k ~ 2 and that we 

have proved the property already for k - 1 instead of k o Let us consider first 

the case in which k is odd o Then the function q2k-l (x) has a positive second 

derivative er 2k-3(x)' so that its first derivative is monotonically increasing. ' 

Furthermore, since Cf 2k-l (x) takes the value zero at x = 0 and at x = !, the 

derivative Cf~k-l(x) is negative at x = 0 and posi tive at x = ~' so that 

'f 2k_1 (x) itself is negative between 0 and~. 

In the case that k is even, the function qi2k_1 (x) has a negative second 

derivative arrl therefore a monotonically decreasing first derivative which is 

positive at x = 0 arrl negative at x = ~' so that qi2k_1(x) is positive between 

0 and ~. 

Since q2k-l (x) is the derivative of cp2k(x), we have in the interval 

~ L 1 
O=x=2 

and 

Consequently, it follows from (3e5) and (3.7) that we have in the interval 

~ 41!! 1 
O-x=2 
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(4.1) Bic ~ (-)k-1 ro
2
k(x) L ~ 

(2k)! ' (~k)t 

and 

(4.2) 0 

These results imply that the numbers of Bernoulli are positive • From 

the formula 

(4.3) 

proved in (3.3) i t fol l ows t hat the formulas (4ol) and (4 o2) hold in the 

whole interval 0 ~ x ~ 1. 

I n this way we find an upper bound for the absolut e value of the poly

nomial Cj'2k(x) in the interval 0 ~ x ~ 1. To obtain an upper bound on t he 

whol e real axis.SI we prove for h ~ l · 

(4.4) 
h-1 

qh (x + l ) - Cf h (x) = ch::1n • 

This identity is obvious for cp 
1 

(x) = x - t . If h ~ 2 and if the i dentity 

has already been proved for h - l instead of h, then the two s ides of (4.4) 

have the same derivative, so that their differ ence i s a constant . This 

differ ence is equal to zero at x = 0 and therefore ident ically equal to 

zero., 
~ 

This result shows that fer each x = 0 

(4.5) L 1 2k 
l<f2k(x ) I= (2k)t ( Bk + x ) • 
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~is formula follows in the interval 0 ~ x ~ 1 from (4.J.). If 

x ~ l and if the inequality has already been proved for x - l instead of x, 

then 

~ l 2k 
I <f 2k (x - 1) I = (2k)! (Bk + (x - 1) ) 

and therefore by (4.3) 

~ (~-1)2k-l 
I q> 2k(x)j = I <f 2k(x - l) I + (2k-l)! 

L 1 2k (x-1) 2k-l 
= (2k) t (Bk + (J.C - l) ) + (2k-l) t 

L l ( 2k) 
(2k)t Bk+ x ' 

since 

x 
x2k - (x - 1)2k = 2k j u2k-l du ~ 2k(x-l)2k-l 

x-1 

Combining (4 .. 5) and (4.3) we fin:i for x ~ 1 

(4.6) 

It i s easy to write the p eriodic functions lf h(x) as sums of Fourier 

Series. We have namely for each real x and for k ~ 1 

(4. 7) 'llf ( ) = (-)k '; 2 sin 211'mc 
T 2k-l x 2k 1 

n=l ( 21T'n) -

and 

(~ .8) 
CD 'Jf 

2
k(x) = (-)k-1 Z 2 cos 211' rrx: 

n=l (211"n) 2k 



(4.9) 

For k = 1 the first formula takes the form 

00 

1: 
n=l 

sin 2n1fx 

rrn 

(III ,I, 4,4) 

0 

Since 1.Jf 1 (x) has the period 1 and since lJf 1 (
 0) = 0, it is sufficient to 

prove this identity in the open interval 0 < x < 1. The right hand side of 

(4.9) is the imaginary part of 

1 --11 

oo n 
z ~ 

n=l n ' 
21'f ix 

where z = e • 

This series converges a t all points z f 1 lying on or inside the unit circle 

and represents there t he branch of the function ,;;, log (1 - z) which assumes 

21f'ix 
the value zero at z = 0. For z = e and O < x < 1 the imagmary part 

1 of ~ log (1 - z) is equal to 
1T 

1 1 
::;:?' arg (1 - z) = x - 2 , 

which yields (4.9). 

Integrating this identity repeatedly we obtain (4.8) arrl (4.7), since 

all occurring expressions, integrated from zero to 1, give zero. 

Combining (4.8) for x = 0 and (3 o5) we obtain 

(4.10) 2 
1\: ::s (2 tr)2k 

(2k)! ~ (2k) 

In this report ~ (s) denotes alweys the 7.eta func lion of Riemann, which is 

defined i n the half plane Re s > 1 by 

J (s) ,,. 
00 1 z 

n=l ns 
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This result shows that Bk is large for l ar ge k, namely gr eater than 

2 ( 2k) t , since ! (2k) > 1. On the other hand we have for real s > 1 
(21J')2k 

so that 

(4.11) 

00 

s<s)<1+ ~ 
n=2 

n 

J 
n-1 

~ = 1 + 
us 

R < 2 (2k)t • 2~~l 
-k (21T)2k 

/' u -s du = i + A ,,, ~ 
S-.L S-.L ' 

1 

fork ~ 1 • 

From (4.7) and (4.8) i t follows that for h ~ 2 and for 0 ~ x ~ 1 

(4.12) 1ro (x)I ~ 2 f(h) • 
Th ( 2 1f)h 

Precisely as (4.5) and (4.6) were proved, we find ther·efore for h ~ 1 

(4.13) l<f' (x) I~ 2 J(h) + x~ 
h <2 1T)h nr for x ~ 0 

and 

(4.14) I ro (x) I s 2 i(h) + (1-x)h 
I h ( 2 71}fi hl for x ~ 1 ; 

the case that his even gives the formulas (4.5) and (4.6). 
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Section 5o ON THE REMAINDER TERM 

In this section we deduce bonnds for the remainder tenn occurring in 

the sum fonnula of Eulero 

THEOREM 6. If o< and ~ lie :in the closed interval (O,l) ~ if the 

(2k)th derivative (k ~ 1) of f(x) is continuous and either always~ 0 ~ 

always ~ 0 :in the interval A + ~ ~ x ~ B + ~, then the sum --- ---
S 2 f(A + 1) + f( A + 2) + • 0 • + f(B) 

can be written as ------
B+(3 · 2k-l 

s = ; f(x) dx + r 
A+ o< s=o 

2k-l 

-[ 
S"'O 

and 

(5 .1) 

a (l-(3)f(s)(B + ~) -
1 s+l ,~ 

. ~ 9 ~ 1 
k • 

Remark: The condition that f( 2k)(x) is in the interval A+~~ x ~ B +(3 

either always ~ 0 or always ~ 0 may be replaced by t he weaker condition 

that in the interval 0 ~ u < 1 the sum 

*)~in t nis fo~mula corresponds to -R2k in (3.2). 
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Z f( 2k) (n + u) 
n 

extended over the integers n such that A + « ~ n + u < B + (3 , does not 

change its sign. Note t hat t he range of n depends on u o 

Proof: In (3.2) we found for S the re quired expression with the remainder 

B+~ 1 

Hie = - J "f 2k(B + 1 - x)f (2k) (x)dx = - j 
A+« o 

lf 
2
k(B - u) Z f( 2k) (n + u)du 

n 

~ ~ E 
Since the sum Z is always "' 0 or always ~ o, there exists a number ~ such t ha1 

n 

1 

Ric"' - V 2k( ~) J Z f (
2
k)(n + u)du 

n 
0 

B+~ 

"' - If 2k ( ~) J f(2k) (x)dx 

A+r.i< 

• 

According to (4.1) we can write 

,,( ( ~ ) ( )k-1 1\ 
Y 2k ~ = - Gk (2k)t ' 

where gk satisfies the inequalities (5.1). This completes the proof. 

If at l east one of the numbers o< and ~ lies outside the closed inte~ 

val (O,l), the remainder ~k' occurring in theorem 3 of section 3, contains 

at least one of the integrals 

~Q ~~ 

j <f2k(A + l - .x)f( 2k)(x)dx and J q 2k(B + 1- x)f( 2k) (x)dx , 

A+o< B+.G 
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which do not involve the periodic ftmctio~ v 2k' but the polynomial er 2k. 

To obtain an upper bound for the absol ute values of these integrals , we may 

apply the inequalities 

I <f 2k(x ) I £. 1 (Bk + x2k) 
(2k)1 for x ~ O 

and 

L. 
for x = 1 , 

obtained in (4.5) and (4.6) . 

Let us now consider special cases in which o<. = (3 = 0 or o<. = (3 

Choosing oi.. "' (5 = 0 we obtain· 

"' 1. 2 . 

THEOREM 7 . Let A and B b e integers wl th A < B and let the ( 2k) th 

derivative of f (x) be continuous and either alwa;y:s ~ O or always e 0 in the 

interval A ~ x :; B. Let 

B I 

SI = [ f(n) 
' n=A 

the prime irrlicating that~ terms with n = A and n = B ~ counted only 

half. Then 

B k-1 . 

(5.2) s' -J f(x)dx + L (-)s-1 c~:)l (r'2s-l) (B) - f(2s-l) (A) ) + rk 

A s=l 

and 

(5.3) , 
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where 

0 ~ gl fi 2 .;. 1 
k 22k- l • 

Remark: For the proof it is sufficient to apply the preceding theorem 

·with 

. 
' 

, 

so that we obtain (5.3) with g~ = 1 - ek. 

The remainder has in theorem 7 the same sign as the first neglected 

term and is in absolute value at most equal to twice that term. 

If we know moreover that f( 2k+2)(x) is continuous and definite in the 

interval A ~ x ~ B and that this derivative has the same sign as the (2k) th 

derivative, then 

(5o5) ( )
k-1 Bk 

rk = - {2k)l + rk+l ' 
• 

where rk+ 1 has the same sign as 

(-)k Bk+l (f (2k+l) (B) _ f(2k+l) (A)' 
{2k+2)1 ') ' 

so that the two tenns occl.lrring on the right hand side of (5.5) possess 

opposite signs . From (5.3) it follows therefore that Q~ = 1 - p, where 

..\. 
p = o, so that 

.. O ~ g' E 1 
. k • 

In this case the remairrler term rk has therefore the same sign as the first 

neglected term and is a fraction of that term. · 
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The condition that f( 2k)(x), resp ectively f( 2k+2)(x) is either always~ O 

or always ~ O in the interval A ~ x ~ B ma;y- be replaced by t he weaker con

dition that in the interval. 0 ~ u < 1 the stnn 

B-1 B-1 L f(2k) (n + u) 
' 

respectively L f( 2k+2)(n + u) 

n=A n=A 

~ ~ 
is either always = 0 or always = 0. 

The choice °' = !'3 = ~ yields 

THEOREM 8. I f A and B ~integers with A< B and i f t he (2k)th deriva

tive of f (x) is continuous and either always ~ 0 or always ~ 0 in the inter

val A + ~ ~ x ~ I3 + ~, ~ 

and 

' 

where 

Remark: For the proof it is sufficient to apply theorem 6 with 

,. f, • (.{) (!) frCZk.~J) (B + 1) -f(2k-l) (A + 1~) + R. 
k 12k 2· .\ 2 2~ -·k ' 
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so that we obtain (5c6) with Q~ = (\ + l...: 2~-'i· 
2 

The remainder has also in theorem 8 the same sign as the first neg-

lected term and is in absolute value at most equal to that term multiplied 

by 2 
1 

- 2k ! • 2 -

I f we know moreover that f ( 2k+2 ) (x) is continuous and has definite sign 

in the interval A ~ x ~ B and that this derivative has the same sign as the 

(2k)th derivative, then 

(5. 7) 

where .f"k+l has the same sign as 

k+l 1 Bk+l (-) (1 ~ -~) 
2.:::k+l (2k+2) l 

fr(2k+l) (B + !) _ f(2k+l) (A + ~)\ \ 2 2; ' 

so t hat the two terms occurring on the right hand side of (5o7) possess oppo

site signs. From (5.6) it follows therefore that 

g* 1 1 
k ~ - 22k-l - p ' 

where p ~ 0, so that 

0 ~ g* ~ 1 - 1 
k 22k-·l 

In this case the remainder term ..f k has therefore the sa.re sign as the 

first 113glected term and i s a fraction of that term. 

Of course also in this theorem the condition that f( 2k) (x), and 

r( 2k+
2)(x)ha'l.e definite and identical signs, can be replaced by a weaker 

condition . 
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The preceding theorems in this section contain the condition that a 

certain sum is either always ~ 0 or always ~ 0 . If we do not know whether 

this condi ti.on is satisfied or not , we can often apply the following 

theorem, which gives however in general weaker resultso 

THEOREM 9o Suppose that A. and B ~real, that B - A is~ positive 

integer, that 0 ~ o< ;; 1 and that f(x) is 2k times (k ~ 1) continuously 

~ ~ 

differentiable in the interval A + o<. = x = B + o<. • Let 

S = f(A + 1) ·+ f(A + 2) + • •• + f(B) 0 

Then 

B+o< 2k-l ~ ) 
S ::i: J f(x)dx + L Cf s+l (1 - ~ ) f(s) (B + 0(.) - f( s ) (A + ~ ) 

A+o< s=o 

(5~8 ) 

' 

where ~ denotes a suitably chosen number lying between A + a<.. and B + OC 

Moreover we have 

B+o< 2k- l ~ 

S • j f(x)dx + L <p s+l (1 - o<) ~(s) (B + o<) - f(s) (A + o< ) 

A+!'( s=o 

( 5.9 ) 
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where S 
2 

denotes also a suitably chosen number lying be tween A + oe.. and 

B + o< • 

Proof. According to (3 .• 2) we have · 

where 

B+~ 

R2k = J 'tf' 2k(B + l - x)f(2k) (x) 

A+o< 

• 

Letting A= 0 or ~ we find therefore 

il:1k = v 2k( A) { f(2k-l) (B + 0( ) - f(2k-l) (A + o( ) } 

B+O\ 

+ J {'If 2k(B + l - x) - , 'If 2k( /t)} £(2k) (x) 

A+~ . 

The factor If 2k (B + l - x) - \.f 2k ( A) is always ~ 0 or always ~ 0 .by 

(4.2),so that 

B+« J {lf 2k(B + 1 - x) - IP" 2k( /\)} f(2k) (x)dx 

A+ct.. 

B+..C. 

= f(2klcf) I { 11' 2k(B + l - x) - 'ljf 2k(;\)} dx 

A+r:.< 
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where f denotes a suitably chosen rrumber lying between A + ~ and B + o< • 

Consequently the required identities follow from 

.. 
k-1 Bk \f 2k(O) = (-) (2k)t and 
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Section 60 ON THE ASYMPTOTIC BEHAVIOR OF A SUM; CONSIDERED AS A 

FUNCTION OF THE NUMBER OF TERMS 

Cons ider a sum 

S = f(A + 1) + f(A + 2) + 0 •• + f(B) 
' 

wher e A is a fixed r eal number and where B is a var~able such that B - A is 

a large posi tiv.e integer o We want to know the behavior of S f'or very 

large values of B - A. 

THEOREM 10 . Let A and B be real such that B - A is ~ positive integer. 

~ 0 ~ (3 ~ 1. Suppose that f(x) is 2k times (k ~ 1) continuously differ

entiabl e fo:r: x ~A such tha t f( 2k)(x) i s for x ~ B + ~ either always~ 0 

L (2k-l) ( ) EE alwal.~ = 0 and tha ~ f x tends _!",o ~ ~ x approaches infinity . 

Then 

(6.1) 

where 

B+(j 

S = J f(x)dx + c 

A 

2k- l 

+ L <p s+l (1 - (J )f(s) (B + (J) 
s=o 

arrl where c is ~ suitably chosen number which i s i ndependent of B and f' 

(it ~ depend~ A and EE the choice of the function f) . If the re exists 

a positive integer k such that the conditions hold for each integE!t' 
- 0 - -- -- . -- -- -- _ ___,..__. 

k ~ k
0 

then the number c is _also independent of k for k ~ k
0

• 
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Remarlc: The condition that r(2k)(x) is for x ~ B + fS either always 

~ 0 or always ~ 0 may be replaced by the weaker condition that in the inter-

~ 

val 0 "" u < 1 the sum 

extended over the integers n ~ B + f.J does not change its sign. 

Proof. Precisely as in the pr oof of theorem 6 we find for Q > P ~ B + f3 

where 9k satisfies the inequalities ( 6 .2). The right hand side tends to 

zero, as P and Q approach infini fy , so that the integral 

ro J o/ 2k(B + 1 - x) r(2k) (x)dx 

B+/l 

exists by the Cauchy criterion and can be written in tile 1oi"Ill 

(-)k gk Bk f(2k-l)(B + A) 
(2k)! fv ' 

where 9k s atisfies t he inequalities (6.2). 

Formula (3 .2), occurring in theorem 3, applied with o< "" 0, yields 

therefore the required result, where 

2k-l 

( 6 .3) c = - \' <f ( 1 - ~) f ( s) 1-J s+l 
(A) 

s=o 

ro J 1Jf 2k(A + 1 - x)f( 2k) (x)aX 

A 
• 
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Finally we must prove that this number is independent of k for k ~ k , 
0 

if the conditions hold for each fixed integer k ~ k
0

• It follows from the 

second fundamental identity, proved in thoorem 2 of section 2, that 

00 

~ ~k(A + 1 - x)f( 2k)(x)dx 

A 

• %k+l (1 - o<)f(2k) (A) + f '1'2k+l (A + l - x)f(2k+l) (x)dx 

A 

00 

+ J 't'2k+2 (A + 1 - x) f ( 2k+
2

) (x) dx 

A 

Substi tuting this r esult :into (6 .3) we find that c does not change its value, 

if k is r eplaced by k + 1 . 

Remark: The constant c can be calculated by means of (60.3) . It can 

also be calculated by means of (6.1), for if Bis sufficiently large, the 

r emainder term i n that formula is very small. 

Taking (j = 0 we obtain 

THIDREM 11. Let A and B > A be integers and suppose that f(x) is 2k - - - - -- -
times (k ~ 1) continuously differe~tiable for x ~ A sooh that f'( 2

k) (x) is ----... -- -
for x ~ B either always ~ 0 or always~ 0 and that f{ 2k- l)(x) t ends to 
- - ---
~ ~ x approac~~ infinity . Then 

B B 

Lf(n) = j f(x)dx + c + %r(B) 

n=A A 

k- 1 
+ L (-)s-1 

s=l 

Bs rC2s-l) (B) 
("2"s)t 
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• I 
~ Qk = 1 + Qk and therefore 

Remark.: The remainder has the same sign as the first neglected term 

and is in absolute value at most equal to twice that termo If we know 

(2k+2)( ) . f ~ moreover that f x is or x = B continuous and def~nite with the same 

sign as the (2k)th derivative, then 

' 
so that in that case the remainder is a fraction of the first neglected tenn. 

The co?dition that r(2k)(x), and r(2k+2 )(x) are of definite and the same 

sign in the interval A fix ~ B may be replaced by the weaker condition that 

in the interval 0 ' u < 1 the furetion 

00 00 L f(2k)(n + u) 
' 

and L f(2k+2)(n + u) 

n=B n=B 

are definite and of the same signo 

Example: For large positive integers B the sum 

s = 
B 2 
l Vn log n 

n=l 

possesses the asyll\)totic expansion 

l. In 2 c + - VD log B + 
2 ' 
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where c, o<s' (3
8

, Os denote suitably chosen constants. The assertion 

means that for each positive integer k 

whi;lre 11c is for large integers B at most of the same order of magnitude as 

B3/2-2k log2B. 

This result follows immediately from the preceding theorem, since 

has the property that 

B 

],_ 2 
f(x) = x2 log x 

(604) J f(x)d.x = ~ B3/ 2(3 log2 B - 4 log B + ..§_) 
9 3 

1 

and for h ~ l 

16 - -27 

(h) 1 h 2 . 
f (x) :: x~ ( f h log x + O"fi log x + '!;'h) 

' 
which satisfies the assumptions of theorem ll for sufficiently large x. 

(6 • .5) 

This last fornrula holds for h = 1, that is 

f '(x) :: ~x-i (log2 x + 4 log x) 
2 

and can be proved by mathematical irrluction. 

Formula (604) shows that 

' 
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2 8 16 
0( = - ; Bo = - - . do=~ 0 

0 3 9 ' 

From (605) and f = f2 it follows that 

a(l 
1 ; ~l = ~ . 1'1 ::0 0 =~ ' 

Choo sing (3 = ~ we find 

THIDREM 120 Let A and B > A be integers and suppose that f(x) is 2k 

times (k ~ 1) continuously; differ enti able f or x ~ A such that f( 2k) (x) is 

~ 1 . _::. £ 2k-1) ( ) 
for x = B + 2 either always = 0 ~ always .= 0 and that f x tends to 

~ ~ x approaches infinity. Then 

B 
Z f(n) 

n=A 
f(2s-1) (B + ~) 

where 

0 ~ Q* ~ 2 1 
- k -

2
2k-I 

Remark: The remainder has the same sign as the first neglected term 

and is in absolute val ue at most equal to twice that term. I f we know 

that f ( 2k+2)( ' · f ~ B l t• d d r· ·t ·th th moreover XJ is or x = + 2 con 1nuous an e 1n1 e wi e 

same sign as the ( 2k) th deri va ti v·e, then 

' 
so that in that case the remainder term is a fraction of the first neg-
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Section 7o ON THE SUM OF CONSECUTIVE INTEGERS 

RAISED 'IQ THE SAME POWER 

THEOREM 13. ~ each positive integer n and each positive integer h 

we have 

l n-1 h-l 
I m = 

m•o 
(h-1) ! 

and ~ generally 

1 n-l h 1 
(h-l)! m~o (m + w) - = <fh(n + w) - 'fh(w) 

Proof. We have proved in (4.4) 

h-1 
x ,.. <f h ,x + 1) - c:p h(x) 

(h-l)t 
• 

Applying this formula with x = 0, 1, • ·: , n - 1 and adding we obtain the 

firs t r equired result. Using the fonnula with x = w, w + 1, • • • , w + n - 1 

and a dding, we find the second r equired result . 
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Section 8. ON THE INITIAL SEGMENT OF THE HARMONIC SERIES 

THEOREM 14. For each positive integer n 

• 
. . . 1 1 B:i_ 1 B2 1 

+ - = log n + O + 2ri - 2 2 + -r.- -r; -
n n n 4 n4 

••• 

1 + R_ 
2k-2 -1<: ' n 

where the remainder ~ has the ~ ~ ~ and is ~ fraction of the first 

neglected term. Here O denotes ~ suitably chosen constant, called the £2!1-

stant of Euler. 

This result follows immediately from the remark added to theorem 11, 

applied w.i.. th 

since 

satisfies 

A= 1 
' 

B = n , 
1 f (x) ~ -
x ' 

1 f(2s-l)( ) __ (2s-l)t 
(2s) t x - 2s = -

(2s)t x 
the requirements in tha t. remark. 

1 

2 2s sx 

The remainder is in absolute value at most equal to 

. l\ 1 <: 2 ( 2k) 1 1 

°2'K ~ ~ (2'1()2k ~ 

according to (4.11). For instance, taking n = 4 and k = 4 the remainder 

is in absolute value less than 

2 8t 1 < 10-6 
7 (2'T1)"S 4S ~ 
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so that this choice of n and k gives the value of the constant of Euler with 

an error < 10-6 • 

In the s rune way we obtain 

THEOREM l~.. If 0 < w ~ 1 ~ have for each i nteger n 

1 1 1 1 w + w+ l + • • • + w+n == log ( w + n) + C + 2 ( w+n) 

-i= 1 + ~ • 1 • .. • + ( - ) ( k -1 ) ~=~ 1 + ~ 
(w+n)2 4 (w+n.) 4 - (w+n)2k-2 . 

where the r emainder Hi<:~ the ~ sign~ and i s !: f r action of t he first 

negl ected tenn. ~ C denotes !: suitably: chosen number which depends ~ w 

but is irrlependent of n. This constant can be calculated~ follows . 

From the Weierstrass' canonical fonn of the gannna functi on 

w rcw) = rcw + i) = e-rw ft- (1 + li)-1 ew/ h , 
h=l 

where Q' denotes the constant of Euler, it follows, taking the logarithmic 

deri vative, that 

! + r ' (w) = - 1 + ~ (1 - 1J 
w rCw) h=l h 'fi+WJ 

so t hat 

n-1 1 
.Z 'h+W - log n = 

h=o 
l: ! - log n 

(
n-1 ) 
h=l h 

t ends as n ~ oo to 

O' + (- -Y - r '(w)) = - r '(w) 
rCw) rCw) 

since i t follows from theorem 14 that 

lim (n~l ~ - log j = a . 
n --'> oo h=l 

' 

' 
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Consequently the number c, occurring in theorem 15, has the value -r'(w) rcw) 
Of course, in the special case w = 1 this constarrt is equal to - r'Cl) 

and therefore equal to the constant of Euler. 



Section 9. ON THE FORMULA OF STIRLINJ 

THEOREM 16. For each positive int eger n 

1 B:i_ 1 B2 1 
log n t = ( n + ~) log n - n + ~ log 2 1( + ~ - - ;"":T. -

J. •t: n 3 •4 r? 

k 
+ • • • + E-1) 

B k-1 .. 
(2k-3)(2k-2) 

l + H_ 
2k-3 -"k , 

n 
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where the remainder I\ ha s the same s i gn as and is a fraction of the first 

neglected tenn. 

Proof. Applying the remark added to theorem 11 with 

we obtain 

and 

so that 

(9 .1) 

A = 1 , B = n and f (x) "' log x , 

n J f( x) dx • n log n - n + l 

l 

1 1 f(2s-l) ( ) 
(2s)t x 

(2s-2)t 
= ( 2s)t x2s-l • 2s-l ' (2s-1)2s x 

~ 1 B2 1 
log n t = ( n + ~) log n - n + c + ~ - - ~ -

J.· ~ n .:> •4 r? 

. ( ~)k '. Bk-1 .. 
+ .••• ·~ " ..... 1.' 

( 2k-3) ( 2·k-:-2'): 
1 

2k-3 + ~ ' n 
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possesses the property that its derivatives of the order 2k and 2k + 2 have 

the same sign for x ~ o, if 

(s + 2k) (s + 2k + 1) ~ 0 

Consequently, if we choose the positive integer k either~ - ! s or 

~ - !s - !, these tl>{o derivatives have the same sign, so that, according to 

the remark added to theorem 7, the remainder rk in (11.2) has the same sign 

as the first m glected t enn and is a fraction of that term. 

i.. 

If s = -p , where p denotes an integer :s o, then the remainder rk in 

(11.2) vanishes fork~! (p + 1). In that case we find for S(-p,w) a 

polynomial inn + w. Since \(-p,w) is independent of n, we can choose 

n = o, so that 

- (p + 1) f (-p,w) = .J>+l - ! (P + l).J' 

B 
+ (p + 1) L, (-)q-1 ~ p(p-1) •• •(p-2q+2) wP-2q-l 

l~~~(p-1) q (2q-l)i 

= .J>+l - !(p + l).J' + 
1 (p + ).J>-2q-l 

)""' (-)q- B 
~ q 2q 

l~q~(p-1) 

= (p + 1) ! ~p+l (w) 

according to (3.4). 
~ 

In this wcry we find for each positive w • l and for 

h . !Ii.= 0 eac integer p 

(11.3) 
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Choosing w :: 1 we obtain in particular that ~ (s) vanishes for s ,,. -2, -4, • · • 

by the first formula on (III,I,J,4), that ~(O) =-~and that for each 

positive integer k 

= - ( k 1\: 
< 2k - i, 1 er 2k i, = < - , '2K 

according to (3.S). 
~ 

To prove that (ll 0 J) holds not only for 0 < w = 1, but for all positive 

w, we note that according to (4.4) 

pl ~p+l (w + 1) - pt <f p+l (w) = ~ 

and that for Re s > 1 

ics,w) - f(s,w + 1) 

so that the formula 

00 

= z 
n=o 

1 

(nf-w) s 

Scs,w) - !<s,w + 1) 

00 

z 1 

n=o (n+w+l)s 

-s = w 

1 
- - ' ws 

holds in the whole complex s-plane, the point s = 1 excepted, in particular 

S (-p,w) - f (-p,w + 1) = ~ • 

Therefore, if (11 0 3) holds for a given value of w, it also holds for 

w+ 1, w+ 2, etc. 
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Chapter II 

SOME GENERAL REMARKS ON ASYMPTOTIC EXPANSIONS 

Section 1 e DEFINITION OF AN ASYMPTOTIC SERIES 

Let w be a real or complex number belonging to an unbounded set .n. 

such that J w I ~ 1 for each element w of il. Each mnnber and each func tion, 

occurring in this section, may depend on W • If they do not depend on W, 

they are said to be fixed. Each nwnber and each function is supposed to be 

defined for all elements w of fl.. Two rrumbers are called asymptotically 

equal, in symbols a rv b, if for each fixed real rrumber q the product 

I w I q I a - b I is bounded for all elements w of Sl. For instance 

e - I <A> I + e -JfWl sin o> rJ 0 

If a and b depend not only on ll) but also on othe r parameters and the 

product ICA>lqla - bi is bounded uniformly in these parameters, then a aid b 

are said to be asymptotically equal uniformly in these parameters. For in-

stance 

-log2 jwj 
e sin x A.J 0 -

uniformly in the real variable x. We have also 

-uJ2 
e x rJ ·O 

. 10 ' ~ 10 
uniformly in x in the interval -10 = x = 10 , but the relation does 

not hold u:iiformly in x,. if x runs through the whole r eal axis. 
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'!he notion of asympwtical equality is reflexive (each number is asymp

totically equal to itself), conunutative (a rv b implies b rv a) and transitive 

(if a l'V b and b ~ c, then a rv c) • 

An asymptotic series is a series a
0 

+ ~ + • • • , for which it is possible 

to find a sequence of fixed mnnbers q
0

, q1 , • • • , such that qh _,. oo as 

h ~ oo and that for each fixed integer h ~ 0 the product jw 1%1~1 is 

bounded for all elements o> of D. o Examples: 

.(J:) h t 
2: 

h=o Ji 
. 
' 

(h log IW l),h 

wv1i 

I call q
0

, Q:J_, • • • the exponents belonging to the asymptotic series. 

It is always possible to choose these exponents in such a way that 

Clo ~ Q_i, ~ • 0 0 • In fact, the rnnnber Ilb' defined as t he smallest of the num

bers qh, %+l' • • 0 is a fixed number which tends to infinity as h ~ oo, 

where~s l'°ltniilahl is bounded, so that we can choose as exponents the numbers 

L .L. 

Ilb which possess the property m
0 

= ID:i. = 0 • 0 .. 
Let aQ + a1 + 0 • 0 be an asymptotic series with monotonic non- decreasing 

exponents 'lo' q1 , •. • • A number s is called the asymptotic ~ of that 

series if for each fixed integer h ~ 0 the product 

is bounded for all elements U) of n. 
This sum is not uniquely defined, for if s is the asymptotic sum of an 

asymptotic series, then each number which is asymptotically equal w s, is · 
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also an asymptotic sum of that series o Conversely, two numbers, which are 

the asymptotic sums of the same asymptotic series are asymptotically equal. 

Therefore an asymptotic series does not defiD3 a single number, but only a 

certain class of numbers which are all asymptotically equalo 
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Section 2. SOME PROPER ms OF .ASYMPTOTIC SERIES 

THIDREM 1. Each asymptotic series possesses ~ asymptotic ~· 

Proof: Consider an asymptotic series with monotonic non-decreasing exponents 

• • • so that , 
(h = 0' 1, •.• ) 

for conveniently chosen fixed number eh. 

I choose a positive integer H ~ o, depending on CJJ, such that H tends 

to infinity as I()) I ~ oo , but so slowly that 

To show that 

s =a +a. + ···+a.. 
0 i tt-1 

is the asymptotic sum of the series, I must show for each fixed integer 

h ~ 0 that 

where ~ denotes a suitably chosen fixed number. 

There exists a fixed number k ~ h such that ~ ~ qh + 1 and tpere 

exists a fixed . mnnber '"'( such that H > k for each element W of Q with 

lo.> I ~ 0. For the elements w of n with 1 ~ lw' < 1 I have 
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-q 1-q -q 

~ ( c 0 + cl + " • b + CH-1) I uJ I 0 ~ I w I . 0 ~ ~ eh I w r h 

and 

for suitably chosen fixed number eh o For the elements w of .0 with I w I ~ t 

I have H > k > h, so that 

-C\i 
~(eh+ ooo + <i<-1+1) lu.>I 

This completes the proof .. 

0 • 

Conversely, a series with an asymptotic sum is an asymptotic series o 

More precisely: 

THEOREM 2 o Suppose that ~ series a
0 

+ ~ • • • has the property that it 

is possible to ~ ~ number s ~moreover fixed exponents ~' Cl:L' .... ~ 

~ qh tends to infinitz ~ h ___, 00 ~ that for each fixed integer h ~ o* 

the Eroduct 

is bounded for all elezoonts w of Sl. Then the series a
0 

+ ~ + 

asymptotic series o 

• 
0 

• is an 

- - - - ~ - ..l - - - --
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Proof: If ~ denotes the smallest of the oo numbers qh and %+1' the 

products 

and 

are bounded, so that, subtracting, also I wl~J~I is bounded~ Here~ is 

fixed and tends to infinity as h ~ oo, so that the series · a
0 

+ a:i_ + • • • is 

an asymptotic series. 

'IHEOREM 3. (~ theorem) • If 

and 

then 

+ ••• 

t fV b + b + OOO 

0 1 

Proof: Let ~' ~' • • • be the exponents belonging to the first asymptot ic 

series and let p
0

, Pi' • 0 • be the exponents belonging to the s econd series. 

Let ~ be the smallest of the two numbers qh and ph. Then 

and t - (b 0 + bl + • • • + bh-1) ' 

and therefore also 
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-~ 
are at most of the same order of magnitude as I WI • This completes the 

proof . 

THEOREM 4o The asymptotic ~ of an asymptotic series is independent 

of the order of the terms of the series *) 
& 

Proof: Let s be the asynptotic sum of a.Ii asymptotic series a
0 

+ Cti + ~ • • o 

Without loss of generality we may suppose that the exponents ~' cq, 

belonging to that series are monotonic non-decreasing. Suppose that 

b
0 

+ b1 + ••• contains the same terms as a
0 

+ Cti + • 0 0 , but in another order. 

We must show that b
0 

+ b1 + • • • is an asymptotic series with the same asymp

totic sum. 

~<-) Let bh "" ~. If h ~ co , then ~ ~ co • Since 

q 

I wl 11i l~I = 

is bounded for each fixed integer h ~ 0 and for each elenent· u:, of n ' the 

series b 
0 

+ b
1 

+ 0 0 0 is asymptotic o If k denotes the largest integer ~ 0, 

depending on h, such that the system ~' ~' • • 0 
, nh-l contains the intege~s 

o, 1, • • • , k - 1 ., then k ~ oo as h ~ oo. '.!he difference 

can be written as a sum of at most h terms am with m ~ k, so that each of 

these terms is at most of the same order of magnitude as I w ,-'4<:. We know 

that 

*)we as sume that I\, is a f ixed integer~ O for each fixed integer h ~ o. 
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~~ 

is also at most of the same order of magnitude as l"'I ; therefore that is 

also the case with 

This completes the proof o 

00 00 

0 

The double series E Z ahk is said to be ~toti~ if the series 
h=o k=o 

ordered according to non-decreasing values of h + k, is asymptotic and the 

asymptotic sum. s of the last series is called the asymptoti c sum of the 

double series, in notation 

00 00 

Srv ~ l ahk. 
h=o k"'o 

A similar definition of course is possible for triple series , and so on . 

'!he fallowing theorem is immediately clear . 

ntroRm .50 A double series 

is asymptotic if and only if it is possibl e to find fixed numbers ~ with 

~ property that qhk t ends to infinity ~ at l east ~ of the integers h 

and k ~proaches infinity arxl ~ the property~ 
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-q 
lwl hk l~I 

is bounded for ~ pair~ fixed integers h ~ 0 and k ~ 0 and for each 

element w .£!: .ft • 

If the double series is asymptotic,, it is possible to choose these ex--

ponents ~ ~ that the inequality 

" qhk IZI 0.. '11,K 

holds (1) g h + k < H + K 
,(. 

( 2) if h + k = H + K and h .. H. 

'IHEOREM 6. If 

and if for each fixed integer h 

then 

00 00 

s rV 2: z bhk , 
h=o k=o 

provided that the double series is asymptotic. 

Remark~ This last condition is not superfluous o For instance for 

w ~ 2 

and 

1 
w-1 

00 1 
rv 2: :::li 

h=l U) 



(III,II,2, 7) 

1 1 
;;n=l-1+~ ' 

but the double series 

ro 2 
z z bhk ' h=l k=o 

where 

bhO = 1 . b = -1 . bh2 
1 , 

hl ' =~ ' 
is not asymptotic. 

Proof: If <lo' cq, ··· denote the monotonic non-decreasing exponents b elong

ing to the asymptotic s eries a
0 

+ a1 + • • • , thm the remainder lli!' defined by 

H-1 
s= Z ~+~, 

h"'O 

is at most of the same order of magnitude as jwj-'41. 

denote the mono tonic non-decreasing expon ents belong-

ing to the asymptotic series bhO + bbl + • • • , then the remainder vhK, de-

f ined by 

K 

ah = k:~ bhk + vh,K ' 

-C\ifc 
is at mos t of t he same order of magnitude as I w I ; the prime indicates 

that the term with k = K may be omittedo 'Ille choice allows us to write any 

i nitial s um of t he original double series as 

H-1 S-h 

In this way we find that 

Z Z' b 
h=o k=o hK 

H-1 H-h H-1 

s - Z Z ' bhk = 1ly-r + Z vh,H-h 
h=o k=o h=o 

-rH 
is at most of the s arn:e order of magnitude as I w I , where rH i s the 

smallest of the numbers qH and qh H-h(h = O,l, •••, H - 1). This number 

' - ..L.--..l- L- ..: -PO:- ..! +-- - - TT '- - . .. t......: -"" _ _ ..._..., -+-- ""'""'- ----" 
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then 

THIDREM 7 . (Product 'Iheorem) • If 

00 . 

s l'V z ~ 
h""O 

and 

00 00 

s t "-' 2: 2: 
h=o k=o 

Proof: From the first of the relations (2 .1) it follows that 
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since there exists a fixed. number <lo such that t is at most of the sama order 

of magnitude as I u) I _<lo. In the same way it follows from the second of the 

relations (2.1) that 

'Ihe assertion follows now from the preceding theorem, since the double 

series is asymptotic. F or , if ph and qh denote the exponents belonging 

to a
0 

+ ~ + • 00 and b
0 

+ b1 + 00
• , then ah bk is at most of the same order 

-ph-<\: 
of magnitude as I w I , where ph + ~ tenqs to infipi ty, as at l east 

one of the integers hand k approaches infinity o 

A series may be convergent and at the same time asymptotic, but in 

that case its sum is not recessarily its asymptotic sumo For instance, 

let 

l 
a =-----

n (n+l) (n+2) 
min 

' 
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so that 

' 

where N is · the smallest integer ~ log ju.11 • In that case 

~ +1 
s ,., L,_; an 1r+'! 

o~ <log f<4>1 

is the sum of the convergent series a
0 

+ ~ + • 0 0 • If s were the asymptotic 

sum of this asymptotic series, then, since the -exponent ~ belonging to this 

series is:> l for sufficiently large h, there would exist a fixed integer h 

such that s - (a
0 

+ ••• + ah_1 ) i s at most of the same order of magnitude as 

l~I · But for sufficiently large !WI we have log lwl > h, so that 

h-1 
s - 2: 

n=o 

0 

This gives a contradiction, since N!l has the same order o.f magnitude as 

l 1 
of lwl· I I 

, therefore larger than the order 
log W 

The following theorem, however, shows that the sum of a convergent 

asymptotic series is under general conditions also its asymptotic sum. 

THEOREM 8 o Suppose the bounded function s 'of w ~ be written ~ the 

~ of 2: convergent series 

Suppos e that there exists four numbers E < o, A > o, c > o, and y, 

independent of W and n such that 



I an I ~ c A n I u> 10 -n £ • 

Then s is ~ the asymptotic ~ of the asymptotic series. 

Proof: If 1 ~ lw I < (2 -l) 2/c , then 
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is bounded for each fixed integer h ~ 0 and therefore in absolute value 

~ t-1-hf, = C I W I 2 , where C denotes a suitably chosen fixed number. If 

I w I ~ ( 2 A y2/~ ' then 

h-1 
Is - l 

n=o 

00 

= I i ~I 

~ = c 

L = c 

~ = c 

n=h 

~ ).n l"'lo·~eJu>l-ine 
n=h 

1 
-./ ih oo \ n lw 1-zne 1w10-:a en~ A 

lwf"-~hE ~ 2-n 
n=h 

< 2c I"° j1~hE 
so that we get an asymptoti .:; series with exponent s Clri = ~h E - 0. 

'Ihis completes the proof. 

THEOREM 9. If~ bounded function s of w can be written~ the~ 

of ~ convergent power series 

00 h 
s = l "'h u 

h=o 

with fixed coefficients and if there ex:ists ~ fixed positive number E. such 

c 
that I"' I I u I is bounded for all elements w of . .n , then s is also the 



(III,II,2,11) 

asymptotic ~of the ~ymptotic power serieso 

~: The assertion is evident, if u = 0 for each element w of ..n. • Sup

pose therefore that u assumes a value v f 0 for at least one element u> of 

.n. The power series in question converges for u = v, so that 

for suitably chosen number c which is in:iependent of W and h. Consequently, 

since 

' I .t: I 1- E jU 09 C W , I hi .& . h t ,-hi 1-hE 
we get -f hu = c G 1v (,f) 

so that the required r esult follows from the preceding theorem. 

'IHIDREM 10. Suppose that ~ bounded function s of w ~ be written as 

the ~ of the convergent power series 

00 h 
s = z oh u 

h=o 

with fixed coefficients. Suppose moreover that u poss esses !:!! asymptotic 

expansion 

' 

with positive exponents ~ that uh possesses, according to the product 

theorem (theorem 7), for each positive in1'eger h ~ asymptotic expansion 

Then 

00 

z (-'hk 
k=o 

• 

CD 00 

s ,-.J l l 4 h (3hk • 
h=o k=o 
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Proof: Let ~' Q:i_, •·• _be the monotonic non-decreasing exponents of the 

series @
0 

+ ~l + • • • • Then ~ is positive and according to :ie defini

tion of an asymptotic sum, applied with h • o, the product I w I 0 lul is 

bounded, so that we can apply the preceding theorem with e "' <lo• Consequmtly_ 

00 . 

s N 2: 0 h Uh • 
hao 

According to theorem 6 this gives the required result, provided that the 

double series 

is asymptotic. In the expansion 

u l'V ~10 + f311 ...... 

the exponents are ~ • <\:; in 

u
2 

rv f320 + <321 + •• • 

the exponents are therefore 

in 

k 
, where ~2k • 2: (31n <31,k-n , 

n-o 

u3 
/IJ f330 + (331 + ·•• 

the exponents are 
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and for any fixed positive integer h the exponents in 

Uh IV (3h0 + (3hJ_ + (3h2 + • • • 

are 

qhk = min ( qk]_ + ~2 + • • • + q11i) , where k1 + k 2 + • • • + kh = k • 

'lherefore, since r h is fixed, 

is bounded. It still remains to show that ~ tends to infinity, as h + k 

approaches infinity. To that end I prove for any fixed number t 

~ 

Clrik = t , 

if at least one of the two subscripts h and k is large enough. From the 

above definition of qhk it follows that 

so that the required inequality holds if h ~ .i. . If h < .!.. , then at l east 

<io <lo 

one of the h m.nnbers kl' 0 
• • , kn' whose sum is equal to k, is equal to t, 

where 1. is the smallest integer ~ ~ k. Then 

if k, and therefore also 1., is large enough. 

Exarrple: Suppose u possesses an asymptotic expansion 

with positive exponents . 

Urv A +(3 +••• 
<"'o 1 

• u 
Then e also possesses an asymptotic expansion 
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u e AJ°" +o<. + • •• 
0 1 • 

00 h 
~.s we ha ire seen this expansion for e u = Z ~. can be found in a 

h=-o n:. 

formal way, so that I can define the terms of that expansion by th e formal 

identity 

This gives first o< = 1. 
0 

= 0(0 + o(l A+ o<.2 A2 + ••• • 

Tu.king the formal derivative with respect to A , we obtain 

so .that we obtain for h ~ 0 

Thus we find 

' 

• 

• 

This is not the only, and even not always the best, asymptotic expan-

. f u sion or e • We get another expansion if we define its terms by means of 

the formal identity 

In this case we obtain the relation 

O(' 1 + 2 o(2 A + 3 o< 3 A 2 + ••• = 

' 
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which gives 

o(o = 1 ; o<l = (30 ; o<2 .. t ~ 2 
; o<3 = ~ ~3 

+ f1 , 
and so on. 

'.mEOREM ll • If 

and 

for each fixed integer h ~ 0 , 

then 

~ ~ therefore replace each tenn ~ of ~ asymptotic series Ez: 

~ tem which is asymptotically equal to ah. 

Proof: By the definition of the asymptotic sum of an asymptotic 

series it is possible to find fixed mnnbers <iii which tend to infinity 

as h ~ oo such that 

is boundedo Since ~ and~ (0 ~ k ~ h - 1) are asymptotically equal, 

the products 

are also bounded, so that 

is bounded. Consequently s is the asymptotic sum of the asymptotic 

series b
0 

+ b1 + ••• . • 
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THEOREM 12. ~ g be~ fixed positive integero IT 

~(z)(h = 0,1,2 , •• ·) denotes~ function of z which is at least g 

times differentiable in~ given interval j 9.! in~ given region j 

( j may depend .?!! w) such that the series 

00 

z 
h 2 0 

(n = 0,1, ••• , g) 

are asymptotic, uniformly in z, then there exists ~ function s(z) 
• 

which i s g times differentiable in j such that for n = O,l, • • • , g 

uniformly: in z. 

/n) (z) tv ~ a (n) (z) 
h=o h 

Remark : Therefore not only does the function s(z) itself possess 

an asymptotic expansion, but also its lst,2nd, 000 , g-th derivatives, 

and the expansions for the derivatives are obtained cy differentiating 

the original expansion term by term . 

Proof: The proof is similar to that of theorem lo Since '; . aii.n) (z) 
h=o 

is asymptotic, we know for h ; 0 and 0 s n 9 g 

(2 0 2) , 

where c~n) and Clri,n are independent of W and z; if n is given, the 

numbers qh tend to infinity monotonically as h ~ oo o 
,n 

I choose an i nteger H ~ o, dependent on u.> but not on z, which 

tends to infinity as I (J) I ~ oo but so slowly that 

H-1 
z 

h:.-io 
for n = 0,1, 00 0 

, g 0 
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It is clear that the sum 

s(z) = a
0

(z) + ~(z) + 0
•

0 + 8IJ_1 (z) 

is g times differentiable.T-0 show that s(z) also possesses the other 

required property, we must prove for n = 0,1, • 0 0 
3 g and for each 

fixed integer h ~ 0 that 

(2.J) s(n) (z) - (a~n) (z) + • •• + ati (z)) ; ~n) jw 1-qh,n ' 

where ~n) denotes a suitably chosen number which is independent of 

Wand z. 

From the fact that C\cn ~ oo as k ~ oo it follows that there 

exists a fixed m.1rrll:>er k > h steh that '4ai ~ C?im + 1. From the fact 

that H ~ oo as !WI ~ oo it follows that there exists a fixed number 

D such that H > k for each element U) of n with 1w I ~ O' 0 

. . 

For the elements w of n with 1w I ~ T we have that 

(2.4) fi t~n) + ••• + efi'.'.i) ju> 1-qon 

s ~n) lu>l•qh,n 

and 

la~n)(z) + • •• + ~~i(z) I ~ (e~n) + ... + ~~i) jwj-'\in 

~ ~~n) jw 1-qh,n 
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for suitably chosen fixed number C~n) 0 In this case we obtain there

fore the required inequality (2e3)o 

that 

( 2 .5') 

For the elements w of n with I w I ~ 1 we have H > k > h, so 

s(n)(z) - ~~n)(z) + ••• + a~~i(z)) = la},nl(z) + ••• + ~~i<• 

~ l~n)(z) + • • • + ~~i(z) I+ l~n)(z) + ••• + ~~i(z)I 

f,.(n) + ••• + (n)) lo) 1-qhn + lCn) + ••• + (n)) IW ,-qhn-
\ch 

0k-l \ck 0H-l 

Consequently the inequality (2o3) holdf also in this case o This estab-

lishes the proof. 

THEOREM 13. ~ .~(z)(h = 0,1, 0 
• 

0
) is irxlefinitely differentiable 

with respect to z in! given int~rval j ~ in ! given region j (j ~ 

depend ~ w) and if for each fixed integer n ~ 0 ~ series 

is asymptotic uniformly in z, then there exists ~ f'tmction s(z) which 

is irxlefinitely differentiable in j such that for each fixed integer 

~ 
n=O 

' 

uniformly in z. 
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Proof: The inequality (2o2) holds for each fixed integer h ~ 0 and 

each fixed integer n ~ 0 , where c~ n) and qhn are independent of w and 

z-' if n is given:1 the rnnnbers CJim. tend monotonically to infinity as 

h-+ oo. 

I choose an integer H ~ o, dependent on u> but not on z, which 

tends to infinity as I w I ~ oo, but so slowly that*) 

H- 1 (n) .I. j ·''I 
Z eh "" """ 

h=o 
for n ~ 0,1, 000 

, H - 1 0 

It is clear that the sum 

is indefinitely differentiableo To show that s(z) also possesses the 

other required property, we must prove that the inequality (2o3) holds 

for each fixed integer h ~ 0 and each fixed integer n ~ O, where C~n) 

denotes a suitably chosen number which is independent of W and z o 

' 
Note that in the rest of the proof h and n are fixedo 

There exists a fixed number k > h satisfying the inequality 

<Jim ~ CJim. + 1 and there exists a fixed number 0 such that H > k and 

H > n for each element w of n with lu> I ~ Oo We find the 

*)In the proof of the preceding theorem the range of n was 

from 0 to go It is not allowed to replace here g by oo, since c~n) 

may tend to infinity as n ~ oo and so we have no ass.urance of the 

existence of an integer H ~ 0 such that (2 0 6) holds for all integers 
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inequalities (2e4) 9 and therefore also (2e3) for the elements u> of .0.. 

with lwl ~ Oo For the elements w of n with 1w I> 7 we have 

H > k > h and H > n , so that the formula (2 .5) and therefore also 

(2o3) are trueo 1his completes the proof e 

THEOREM 14e Consider the sum 

:S-,1 
s = :t r(n) 

n=A 

where A~ B ~integers with B >A; the integer A is assumed to be 

finiteo B ~be infinite, but in that~ the series S is assumed to 

be convergento Assume that it is possible•to find positive numbers 

p(n) (for A ~ n < B) such that 

{207) f(n) N ~ + ~ + prn} p\ri} prnj o oe 0 (A ~ n < B) 

uniformly i n n 9 and that - ---

where 0 and m denote suitably chosen positive fixed numbers o 

Under thes~ conditions 

00 

SN k~o 8ic 
B..-1 

where sk = L ~ 
n=A 

0 

' 

if B
1
is infinite,~ suppose that this series convergeso 

Proof : Let ~.11 CIJ.' 0 0 0 be the monotonic non-decreasing exponents be

longing to the asymptotic series occurring on the right hand side of 

(2e 7) o Then we have for A ~ n < B and for each fixed integer h ~ 0 

f(n) = ~o + anl + ••o + 3n,h-l + p(n)rn,h ' 
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eh and '41. indicating numbers independent of w and n. Then 

I h-1 I IB-1 h-1 B-1 I 
s - E 6ic = L: f c n) - L r ank 

k=o n=A k=o n=A 

L 

, 

where qh - m ~ oo as h ~ oo. Consequently S is the asymptotic sum 

of the series s
0 

+ s1 + 0 0 
• , which therefore is an asymptotic series. 

Of course a similar theorem holds for integrals instead of sums. 

Example. Let us show t hat for large positive values of W 

~ -n ( n) 1 ~ -n 1 ~ 2 -n 
"" e log 1 + ~ "' w /J ne - - L.I n e 
~o o 2W2 o 

, 

where the coefficients can easily be calculated by the formula 

00 h -n h r n e = (-) 
w•o Gdh 1 v 7.1i -t 

dt 1-e t=l 
• 

We know 
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where 

2 
log(l + ~) =:}, - 2:~ + • • • :t" 

h-1 
n + i:t (n) 

(h-l)nh-1 -·h ' 

here eh is a suitably chosen number depending on h but not on n and c.o. 

Then 

~ n ~ 
e-2 log(l + (.L)) N e 2 

(
n n

2 
n3 ) 

--~+:-:-:3+•·· 
w 2~ 3u> ' 

unifonnly inn for n = 0,1,2, • ·• • · Applying theorem 1 4 with 

B = oo , p(n) = ~ e 2 

' 
fixed m > 0 , 

we obtain the required result. 



(III,Il,3, 1) 

Section 3: On certain analytic functions 

2 
Let a

0 
+ ~ (z - z

0
) + a2(z - z

0
) + ••• be a formal power series 

in z - z
0 

and let R be a positive riumber; the coefficients ~ and the 

rrumber R may depend on w. If it is possible to find for each fixed 

integer h ~ 0 a fixed number eh such that 

(3 .1) . (h = 0,1, • • • ) , 

then the power series is said to possess an asymptotic radius ~ R. 

Note that the asymptotic radius itself is not defined. If the numbers 

eh can be chosen independently of certain parameters, then the power 

series is said to possess an asymptotic radius ~ R uniformly in these 

parameters ! If a power series possesses an asymptotic radius ~ R, 

it possesses also an asymptotic radius ~ C R, where C denotes an arbi-

trary fixed number, since (3.1) implies 

(h -= 0,1, ••. ) • 

where eh eh is again fixed. 

A power series in z· - z· with asymptotic radius ~ R is asymptotic 
0 

for all number z which satisfy the inequality 

(3.2) , 

where C and 'Y denote arbitrary fixed positive rrumbers, since for 

these values of z 

I~ (z - zo)hl; eh R-h eh 1w1-ho Rh 

=eh eh lwl-h o , 



(IIl,II,3,2) 

where h 0 ~ oo as h ~ oo o 

The formal derivatives of the power series are 

' 

etc. and are obviously also asymptotic for the values of z, satisfying 

( 3 . 2). According to theorem 13 of the preceding section it is therefore 

possible to construct a f unction s(z) which is analytic a t t he points 

z satisfying (J.2) such that 

s' (z) rv ~ n-1 
/J. na. ( z - z ) 

1 
n o 

n:: 
; 

' 
etc. 

A function s(z) with these properties is said to b e generated by 

the power series o The analytic fln'lctions s (z) is not uniquely defined 

by the power series, for if s(z) possesses the required properties, 

then so· does also for instance s(z) + e-u>t(z), where t(z) is an ar-

bitrary fixed f unction of zj which is analytic at z
0

o 

If the co efficients ah i n the power series are fixed , the asymp

totic radius is ~ L In this case it i s useful to distinguish two 

cases, according to whether the radius of convergence of the power 

series is positive or zero . If the power series has a positive 
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radius of convergence, it possesses a sum s(z) which, according to 

theorem 9 in the preceding section, satisfies the relations (3.3) at 

the points z subject to (3.2), so tha~ the power series generates 

this function s(z) with asymptotic radius ~ 1. This function is the 

sum of a convergent power series with fixed coefficients and is there-

fore independent of (J), that is, the value s(z) is independent of OJ if 

z is given. Therefore each function s(z) , which is independent of l.A.) 

and analytic at a given point zo, is generated with an asymptotic 

radius ~ 1, by the corresponding power series a + a,., (z - z ) + 0 
• 

0 

0 ~~.L 0 

of which s(z) is the sumo 

Let us now consider a power series a + a..(z - z ) + • • •with 
0 .l 0 

fixed coefficients whose r adius of convergence is equal to zero (the 

asymptotic radius is of course~ 1). 'Ibis power series generates a 

function s(z) which is analytic at z
0

• It is impossible that this 

function s(z) be independent of W. For let us suppose that a fixed 

function s(z) satisfies the relations (3o3) for the points z subject 

to (3.2). Choosing z = z we would obtain 
o' 

s(z
0

) l'V 0ta
0 

, s•(z
0

) l'V lt~ , s 11 (z
0

) AJ 2 !~, ••• 

Since these numbers are fixed, we get s(h)(z
0

) == hlah (h ~ 0,1, 

so that the power series 

' co h 00 r ah(z - z ) = ~ 
h=o 

0 
h::.o 

s(h)(z ) 
o (z - z )h _ _,h,_t.--- 0 

0 

• 0 0 ) 

would represent the function s(z) which is analytic at z
0

• In this 

case the power series would have a positive radius of convergence, 

contrary to the hypothesis. 

' 



For instance the power series 

00 r (-)n nt zn 
Il"'O 

(III,II,J,4)' 

has an asymptotic radius ~ 1 and a r adius of convergence = o, so that 

it generates a flUlction of z which is analytic at the origin; this 

function is necessarily dependent on w., But in the sector 

(3o4) z " 0 
0 

' 
. - 11 + E < arg z < 11" - E 

where E denot es an arbitrary fixed positive number < f, the integral 

(3$) ljl (z) = f ' 
0 

-u 
e du 
l+zu 

represents a function of z which is analytic in the above mentioned 

sector o Moreover the formula 

(3
0
6) ~ (h)(z) .N ~ (-)n n~ n(n = 1) 000 (n _, h + 1) zn-h 

n=h 

holds for each fixed integer h ~ 0 and for each point z which satisfies 

the inequalities (3 . 2) with R "" 1.11 and (3 .. 4) o The power series 
00 n n · 
Z (-) ntz generates the function l.11 (z) in the considered sector n_=o T 

with asymptotic radius ~ 1. As we see, this generated function is 

independent of Wo 

To prove (3e6) we riote that 

~ (h) (r) "' (-)h hi u e 
---du 1

00 h - u 

o (l+zu)h+l 

in the specified sector and we use the following lemmao 
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LEMMA o Suppose 

- 1( + €. <: arg w < 1l' - ~ 

and let o( be real. Put 

(1 + w )cJ. = i + ti) w + •. • + (:1f m-1 + Rm • 
Then~~ for each integer m ~ 0 

• .lo 
ifo<==m 

and 

if o(~m , 

where cm(o<..) denotes~ suitably chosen number, depending~ m ~ <>(, 

~ not ~ w and € o 

Proof o For any function f( t) which is m times continuously differen

tiable on the segment (O, w ) we have 

f'(O) f(:m-l)(O) 
f(w) "" f(O) + l~ W + eoo + (m-1) t m-1 + R 

w m ' 

where 

R - 1 Jw (w - t)m-l f(m)(t) dt, 
m - (m-1) ! .. 

0 

The formula for the remainder term can be verified by integration by 

parts .. 

Q( 

The particular case f(t) ~ (1 + t) gives 
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and 

!!,,, ~ ( ~) m J" (w - t)n>-l (l + t)"' -m dt s 

0 

1 

~ ( ~) m ../"- J (1 - u)m-l (1 + uw)°' -m du 

0 

The argument of w and therefore also the argument of t lies be

tween - 11"' + E: and 'T'( - i • This implies that ll + t I is at least 

equal to sin €, for if t lies on or to the right of the imag:inary 

axis, the distance ll + t I between ~l and t is ~ 1 ~ sin €; other

wise the distance between -1 and t is at least equal to the length of 

the perpendicular drawn from "'."l to the hal.fline fonned by the points 

with argmnent = -1-r + € 3 so that jl + t.f ~ sin £ .. 

hence 

In the case that o( ~ m we find therefore 

ll + uw le><. -m ~ (sin € )o< -m ~ 

IR,,,I ~ I (;:;) 1 m l~lm (sin e: )°'-m ( (1 - u)m--l du 

= I(~) I (sin € )o( -m lwlm • 

~ . 
In the case that 0< ~ m we use the fact that 

fl + uwJ ~ l + luwl ~ l + lwl 

hence 

fl + uwlC't'~m ~ (1 + lwf) o<-m o 
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The last side is 

' o<-m = 2 if lwl ~ 1 · 

and 

if lwl ~ 1 , 

so that 

Consequently 
b 1 

I~ Im j (I .,;. u)m-l du 
. 0 

This completes the proof of the lemma .. 

Now we return to the J>l'OOf of (3.,6) ., If z satisfies the inequali

ties (3.,4), then using the preceding lemma, applied with w = zu and 

with 0( = - h - 1 , we find that 

J
oo 

't' (h) (z) = (-)h h t 

0 

h-u 
ue d 

(l+zu)h+l u 

is equal to 

(-)h h ! f' uhe-u { x ti;;-9 ,k,}< + R,.(u)} du ' 

0 

where 
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since o< = - h - 1 < m o 

From 

. c-h-1> h:, k = ( )k h 9 (h+l) (h+2) • • • (h+k) 
-

0 kt 
= (-)k (h'.rk) t 

kt 

it f ol'.lows that 

where 

ljf (h) (z) = :l { (-)h+k (h~~)! zk ~co uh+ke-u du}+ ( 

m+h-1 
:s !; (-)n ni n(n - 1) 0 00 (n ~ h + 1) zn-h + R: 
n~ ' 

00 

1(1 ~ ht cm(-h-1) (sin £)-h-l- m lz lm f uh+m e-u du 

0 

= M (h + m) ! c (-h-1) (sin t: )-h- l-m {z)m 0 

m 

This implies (3 0 6) for each fixed integer h ~ 0 and for each 

point z in the sector - 1T' + £ < arg < 11' - € which satisfies the 

• inequality (3e2), so that the power series Z (-)n nt zn generates 

the fixed function o/(z) in the c.onsidered sector with asymptotic 

radius ~ l., But V (z) is not the only analytic fixed function 

which is generated by the power series in the said sector with 
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asymptotic radius ~ 1. 

_]. 
-z 2 

To show this, we consider the function e 

which is analytic in the region i.n question; the nth derivative can 
_i 1 

be written as z-3/2n e-z 
2 

p(z2 ), where p(w) is a polynomial in w. 
~ -z 2 

For ail z in the considered sector s~h that f z I ~ 1, the factor e 

has an absolute value which is so small that it is possible to find 

for each fixed real q a fixed number c such that 

For the points z in the considered sector which satisfy (3.2) the nth 
~ -z 2 • 

derivative of e is therefore asymptotically equal to zero, so that 
-4 · 

formula (3.6) remains true if VCz) is replaced by 'f1" (z) + e-z 
2

• 

Nevertheless, sometillles we may define uniquely an analytic func-

tion by means of a power series with fixed coefficients am r adius of 

convergence = 0 and by using an additional condition, for example, the 

condition that the function satisfy a differential equation or a 

Laplace integral. For i nstance the formal derivative of the power 

· oo n n 2 series Z ( - ) n ! z , mu1 tiplied by z is 
0 

00 n+l ~ (-)n n~ nz 
00 

= - ~ (-)nf-1 (n + l)! zn+l 
0 

so that it is natural to introduce the inhomogeneous linear differ-

ential equation 

z2 /( ' (z) + (1 + z) .X(z) = 1 0 



' 
' 
' 
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The solutions of this differential equation have the form 

)((z) ~ 'JJ (z) + i el/z 

where a is an arbitrary constant and where 1JT ( z ) denotes the func

tions defined by (3 o5) o If a f o .9 the fur.c tion }:'( z) is not generated 

in the considered sec tor by the powe:r series z: (- )n n~ zn o Conse

quently 'qJ (z) is the only solution of the inhomogeneous differential 

equations which is generated in the consi dered sector by the power 

series in question o 

Up till now we have al ways assumed t ha t z
0 

lies in the finite 

z-planei however we c an also take z
0 

at i nfi nity ., In that case we 

consider the power series Z~ an - n z If it is possible to find for 

each fixed integer n ~ O a f i xed i nteger e.,_ s uch tha:t ... 

(n "" O ,1$ 0 o o ) 

oo -n 
then we say that the power series Z0 an z possesses ~ asymptotic 

radius ~ Ro If the coeffi .cient e n can be chosen i ndependently of one 

or more parameters, then we say that the power series possesses· ~ 

asymptotic radius ~ R$ uni.foajy i!! the se parameters. 

oo -n 
Suppose Z0 an z possesses an asymptotic radius R . For the 

points z wi. t h 

(3 0 7) 

where c and a denote arbitrary fixed positive numbers, we can c on-

struct, according t o t heor em 13 i n the preceding section , an analytic 
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fl.lllction s(z) such that 

S(h)(z) N (-)h r n(n + 1) 00 • (n + h - 1) 
n=o 

for each fixed integer h ~ 0., We sgy that the power series zg:' anz-n 

generates this analytic furx:tion s(z) with asymptotic radius ~ Ro 

Sometimes we restrict ourselves to a sector defined by 

c< < arg z < ro In that case we construct a fl.lllction s(z) which is 

analytic for the points z lying in that sector and satisfying Oo ?) 

such that (3.,8) holds for each fixed integer h ~ Oo It is possible 

that the coefficients ah are fixed, that the power series 'Z g' an z -n 

diverges everywhere and that nevertheless this function s(z) is inde

pendent of W o For instance, replacing in (3 .5) z by z -i, and dividing 

both sides by z, we see that the power series 

generates the function 

-u e 
-du 
ttf-Z 

W:i. th asymptotic ractl. us ~ l ,in the sector - 11 + € < arg z < 1'( - E. .. 
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Section 4o Rules of' calculations with respect 

to the asymptotic radius 

THEOREM 15 o If both the power series Z~ ~(z - z
0
)n ~ 

Z~ (z - z ) have an asymptotic radius ~ R, then the sum series 
on o -- -------

Z 00
( a~ + b ) (z - z )n and the product series Z 00 Pn (z - z )n, when 

o ~n n o -- o o -

Pn = a0
bn + ~bn-l + " 0 0 + ~b0 also have ~ asymptotic radius ~ Ro 

Proof: We know 

and 

9 
when e n and en are suitably chosen fixed numbers " Then 

and 

which establishes the proof. 

Remark: It is clear that the corresponding result holds for the 

power series 

00 -n 
Z~ z 
0 

00 -n 
and Z bn z " 

0 

THE.OREM 16 " .!£ z:
0 
~ zm had ~ asymptotic radius ~. l ~ . 

. oo n ~ 

the formal series z '°' Zn=l bn w has ~ asymptotic radius = R, then 

the formal expansion of 
I 

(4.1) 

gives ~ power series in w with asymptotic radius ~ Ro 
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Proof~ We know tha. t 

and 

where c and c' are fixedo The formal power series in w, given by 
m n 

(4ol) has therefore the majorant 

' 

where eh is fixede The formal power series in w therefore possesses 

an asymptotic radius ~ R. 

THmREM 17 e If s(z) is generated Ez the power series Z~ ~ zn 

~ asynptotic radius ~ 1 and if z = z(w) is generated in~ sector 

°' < arg w < p ~ the power series z r bn wn with asymptotic radius 

~ = R, then the formal expansion of 

according to ascending powers of w gives ~ power series in w which 

generates ~ function s(z(w)) in the interval o( < arg w <.~with 

asymptotic radius ~ R. 

Proof: Let Z~dhwh be the formal power series given by (4.2). Accord

ing to the preceding theorem, this power series possesses an asymptotic 

radius ~ R, so that the power series is asymptotic for the points w 

satisfying the inequality 
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where C and 7 denote arbitrary fixed positive numbers. According to 

theorem 6 of section 2 of this chapter we obtain 

00 h 
s(z(w)) ,-v l: dh w 

h=o 

for the points w which ·l ie in the s ector o< < arg w < (3 and satisfy 

inequality ( 4 a3 ) o 

Since the formal derivative of Z~ dri wh also possesses an asymp

totic radius ~ R, we obtain in the same manner as above 

d 
00 h 1 

~ s ( z ( w) ) ru r hn. w ~ 
uw h~l Il 

for the points w which lie in t he sector o( < arg w < (3 and satisfy 

inequality ( 4 .,3) o 

In the same way we obtain the similar result for the n-th deri va

tive of s(z(w) ) w:i.th respect to W.:i where n denotes a fixed integer ~ O. 

This completes the proof o 

'lHEOREM 18., _!! a
0 

+ a:i_ z + 0 0 
• is ~ power series in z w.i. th ~ 

totic radius ~ R, ~ the s ubstitution z "" wk, where k is ~ fixed 

positive . ~nteger, transforms t he power series into the power series 

~oo kh . 0 th t ti d 0 :i.. Rl/k _ a.. w in w wi asymp o c ra ius = o 

=o ~n - - ---------- ---
oo kh oo n 

Proof: Let Zh=o ah w "" Zn=o bn w , and therefore 

that 

b = { .;p , if n i s divisible by k 

n O otherwise " 

For each fixed integer n ~ 0 there exists a fixed number Cn such 
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That follows immediately from the definition of the numbers bn' if n 

is not divisible by k. If n is divisible by k, we obtain by (3.1) 

, 

where we choose Cn = Cno This establishes the proof'. 

'K 

THEOREM 19 o I f k is ~ fixed positive integer, if ~ denotes a 

number r 0 which is independent ~ z (it may depend 2.!! w) ~ if the 

power series 

has 2!! asymptotic radius ~ R, then 

:ii. 
has ~ asymptotic radius = R if I ~- I ~ l and 2E asymptotic radius 

~ I A ,-l/k R if IA I ~ 1., 

Proof~ From (3.1) it follows that 

and therefore 

~ -n 
= c R n 

and 

~ l 
::i. 

and n = k 
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Let us give an exampleo The same example will be treated in 

Part IV, Chapter I, Section 2 as an application of the method of 

asymptotically enveloping series. 

Put 

am 

1 2 
A( z) = log (1 + z) - z + 2 z 

A(z,u) • (1 + u) A (1!.:9 + (1 - u) A(~~~)- A(z) - A(-z) 

where -1 < u <lo Let m be positive. Then 

(1 + u)(l + u + z)-l em A(z,u) 

is generated by a power series 

00 

~ (1 + u) o k ( u) zk 
k=o 

with an asymptotic radius ~ R, uniformly in m and u, where 

if 

if 

mu(l - u2) ~ 1 

mu(l - u2) ~ 1 .. 

The coefficients --Yh(u) are determined by 'Q
0
(u) = (1 - u)T, 

where T = (1 - u2)-l and by the recurrence relations, valid for 

k ~ 0 
' 
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(k + l) Yk+l = {<2k + l)u - 1} TOk + { kT + (k - 1) }r k-l 

+ { - Lmu T + 1 - (2k - 3)u } T ok_2 

+ {2<1 - T
2

lm - (k - 2) T }rk-J 

+ 4u(T - l)T m Dk-4 + 2(T - l)T m Dk-5 ; 

where 1"-1,.. 7'-2 = 7'-3 ·= 1'-4 = D -5 = o. 

Remark: From the recurrence relations it follows that ?" k(u) can 

be writ ten as a polynomial in T, 'Iil and m o The numbers 1
0

, 71 , and 

1' 2 are iniependent of m; r 3' 1' 4 and 1'5 are linear polynomials in m; 

"f 6' 1'?' "la are polyno!nial in m at most of the second degree; ~d so 

ono In general , 1' k is a polynomial in m of a degre'e which is at most 

1/3 ko From 

2 u2 l-(1-u2) 
Tu =:--2= 2 =T-1 

1-u 1-u 

it follows that 1' k(u) can be written as ,f'k + uo-k, where .f'k and o-k 

are polynomials in T and m; consequently Ok(u) + 1k(-u) = 2 fk is a 
2 

u 
polynomial in T and m, therefore a polynomial in T - 1 = ~ and m; 

1-u 
the degree in m is at most equal to 1/ 3 ko 

. z3 z4 
Proof: The function A(z) possesses the expansion j - 4 + ... 

' so 

that A(z;u) has an e:>.'Pansion of the form 

oo zh { (-)h-1 1 (-)h-1 + 1} 

i#3 n (l+u)h-1 - (1-u)h-l -
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The expression between the braces can be wr:j tten as a f r action 

whose ·denominator is equal to (1 - u2)h-l and whose nmnerator is a poly-

nomial in Uo We see that this polynomial vanishes for u = o, so that 

A(z,u) has an expansio? of the form 

00 

(4 .. 6) l: 
h=3 

, 

where Ah(u) is a polynomial in Uo From the fact that u lies between 

-1 and 1 it follows that jA.h(u)I is less than a suitably chosen number 

which depends only on h., 'Ihe power series, occurring in (4.6), has 

h f . ~l 2 nif . t ere ore an asymptotic radius = - u , u ormly in u. 

According to theorem 19, applied with k = 3 and A = mu(l - u 2) 

the power series 

possesses an asymptotic radius ~ R, unifo:r,-mly in m and u, where R is 

defined by (4o4); this power series generates the function m A(z , u)o 

According to theorem 17, applied with 

00 00 m 

r m = z = ~ 
z 

~ z e 
m ~ 

m=o m""o 

the function em A( z, u) is also generated by the corresponding power 

series with asymptotic radius ~ R, uniformly in u ., 

The function (1 + u)(l + u + z)-l is generated by the power 

series 1 - r!u + 000 with asymptotic radius~ 1 + u, therefore with 

asymptotic radius ~ 2 (1 + u ) ~ 1 - u2 ~Ro Consequently the pr<;>duct 
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(1 + u)(l + u + z)-l • em A(z,u) 

is generated by the corresporrling power series w.i. th asymptotic radius 

~ R, uniformly in m and u. 

Finally we must deduce the recurrence relations between the coeffi-

cients Dk = $k(u) o To that end we use the formal relation 

(4. 7) • 

We have 

1 z2 
A' (z) = l+z - 1 + z = l+z , 

so that the derivat ive of A(z,u) with respect to z is equal to 

- A ' ( z) + A ' (-z) 

z2 = -_,....,..---
(l+u) (l+u+z) 

Z
2 2 2 

z + z 
(1-u) (1-u-z) - l+z 1-z 

= -
(4u+2z)z2 2z3 Z 
2 2 + :-2' = 2 2 2 

(1-u )(1-(u+z) ) 1-z (1-u )(1-z )(1-(u+z) ) ' 

where 

0 

Taking the formal derivative with respect to z of both sides of 

(4.7) we get the formal relations 

m em li(z,u) lb.A - (1 + u) ~ k7k zk-1 + ~ (k + l)rk zk ' 
-WZ- - k=o k=o 

hP.Tif'A 



where 

y = (1-z2)(1~ ( u+z)
2) .., 

l +u+z 

(III,II,4,9) 

2 2 3 
= (1 ~ z ) (1 - u - z) = (1 - u) - z - (l - u)z + z • 

Comparing the coefficient s of zk on both sides we obtain for k ~ 0 

m { - 4u7'k-2 + (-4u2 + 2u4)0k-3 + 4u30 k-4 + 2u2d k-5 ] 

= (1 - u
2i{ci- - u)(k + 1) ( c1 + ulok+l + o0- k ( c1 + u)-g'k + 'dk-1) 

- (1 - u)(k - 1) (<1 + u) O k-l + 7 k-2) + (k- 2) ~1 + u)J'k- 2 + :r k-J))} 

In this way we find ~or (k + 1)(1 ~ u2)
2d k+l a linear combination of 

Pk' ?'k-l' 1"k-2 ~ 1'k-3$ fk-4 and fk-5 • In this linear combination 

the coefficient of J'k is 

- (1 - u
2

) { (k + 1)(1 - u) - k(l + u)} =- + (1 - u~~2k + l)u - 0 ; 
the coefficient of O'k-l is 

the coefficient of 1 k- 2 is 
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- 4 m u - (l - u
2

) E (l - u)(k - l) + (k - 2)(1 + u~ 

= - 4 m u + (l - u
2

) ~ - (2k - 3) 0 ; 
the coefficient of f"k-J is 

(-4u2 + 2u4)m - (1 - u2)(k - 2) = 2 (<1 - u2)2 - i) m - (k - 2)(1 - u2) 

the coefficient of rk-4 is 4u3m = 4u { 1 - (1 - u
2
)} m and the coeffi

cient of r k-5 is 2u
2
m "" 2 {1 - (1 - u

2
)} m. In this way we know the 

required . recurrence relations between the coefficients -Ok• 

; 



> 
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C:hapter III. ON LIMITS MODULO A GIVEN CLASS OF FUN:: '!'IONS 

Secti.on l., DEFINITION OF LIMITS MODULO 

A GIVEN CLASS OF FUN'.':TIO~ 

The theorems i n the first chapter hav·e the disadvantage that 

the-y involve a function which is supposed to possess in a given inter-

v-al a derivative f:;i' e:.:.rta.:!.n order which is very· small in that interval. 

Th:!.s condition is satisfied only in special cases e For instance!) 

even in a simple sum such as 

L cot 
J~n~W 

where w denotes a l arge positive nmnberll this condition is not 

1l" 'll' 
satisfieds since t.he funct.:ion cot w-~ and also its derivatives are 

large in the neighbor hoOO. of the origin . It is true that we can 

wri:te the sum in question as 

' 

:in whi ch the last sum has been calculated in Section 8 of the first 

chapter, whereas the f irst sum sati.s.fies the required condition, 

th 1l':.t uJ • 
since the h derivative of cot - - - is at most of the same 

I.A> 11 z 



*' -h ~ ~ 1 
order of magnitude as u> in the interval 0 = x :: 2w and there-

fo!'e very small for suff:i,ciently large u) o It is also true that a 

similar device can b e applied in many other cases. But, apart from 

the simplest cases 9 the calculations become so complicated, that 

this method is practically inapplicable o To avoid these complica-

tions I introduce a generalized concept of limit, namely that of the 

limit modulo a given class of functions. 

Let T be a point set lying on the real axis or in the complex 

plane. Let a be a given limi. t point of that set (a may be infinite) • 

Let M(a) be a set of functions g(t) which are defined at all points 

t of T in the neighborhood of a such that, if g(t) belongs to M(a), 

then M (a) contains all functions c g( t), where c denotes a constant, 

and if two functions belong to M(a), then M(a) al so contains their 

sums. Such a set of functions M(a) is called a modulus. It follows 

from t.his definition that a modulus which contains g(t) also contains 

~g(t) and their smn which is identically equal to zero, so that each 

modulus M(a) contains the function which is identically equal to zero. 

*)siree the function cot 11' u - 'fflu is analytic at the origin, 

the derivatives dn (cot 1( u - ~) are bounded near the origino 
dun ,1u 

But then if 1.:t "" !"~ 
w 

dh ·11' x £J) 1 
dxh (cot 7' - 1f'X) e 'W1i 

which proves our statement. 
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We call the limit point. a of T an ordinary point with r espec t to 

M(a) under the following conditions : if M(a) contains a function 

g(t) such that g(t) tends to a finite limit A, in the ordinary sense 

of 11 limit1
' 9 as t in T tends to a in an arbi"l;rary way, then this limit 

ia equal to zero . If the real point a is an ordinary point with res-

pect to a modulus M( a.) and the point set T contains onzy real numbers 

t > a, then we call a + an ordinary point with respect to the modulus; 

in that case we denote the modulus by M( a+) • If the r eal point a is 

an ordinary point with r espect to a modulus M( a) and T contains only 

:i.•eal numbers t < a, then we call a- an ordinary point with respect to 

the modulus; in that case we denote the modulus by M(a-)., 

Let us now consider the definition of the limit of a function 

f(t) as t~ a!' with r espect to a given modulus M( a) . suppose that a 

is an ordinary point with respect to that modulus and suppose that the 

modulus contains at least one f~tion g(t) such that f(t) - g(t) tends 

to a finite limit A, i n the ordinary s ense of "limit" , as t in T 
I 

tends to a in an arbitrary waye In that case we call A the limit of 

f ( t), modulo M(a) as t -? a, and we write 

or 

1'. "" l:im f ( t) 
t ~a 

r(t) ~"A (M(a)) 

(M(a)) 

as t ~a 

Thi s limit, modulo M(a) , if it exists, is uniquely defined; 

for if M(a ) contains t he functions g(t) and h(t) such that 



f(t) ~ g(t) tends to a fini..te l imit A as t ~ a and f (t) = h(t) 

tends to a finite limit .A ' as t ~ a (where "limit11 is defined in the 

ordinar.r wgy) 3 then the function g( t) - h.( t) .9 belonging to M(a), tends 

to the finite limit A e - A as t -9 a., This limit is equal to zero, 

since a is an ordinary point with respect t o M(a); co:nsequent.ly 

) =: ) ,?o 

If f ( t) tends to a finite limit. A as t ~ a in the ordinary 

sense c,f 111.:i:m.i:t.'1 , it tends to ). with respect to any modulus, for 

which a is an ordinary po:!nt.9 since that modulus contains a function 

g( t) which is identically equal to zero and f( t) ~ g (t) ~ A. , as 

t i n T tends to ao Conversely 9 if f( t) ~ "A with r espect to any 

modulus 'for whfr~h a is an ordinary point foen f(t) ~ A with respect 

to the modulus whose fumtions a.re identically equal to zero and there

fora f( t) :in the ordinary sense of "limit" tends to a finite limit ).... 

as t -.) a. We see that the previou...::; definition of limit modulo a 

certain modulus is a generalization of the usual concept o 

A rrodul.us with at least one ordinary point does not contain a 

function which is identical ly equal. to a non-zero content; for 

exarr~le , a modulus with at least one ordinaTy point can therefore 

not contain both log t and log 2t., for then it would also contain 

log 2t <J log t "" log 2 .. 

I f f( t) and r*( t) possess the limits A and ~* modulo M(a), 

as tin T tends to a 9 then c f(t) ~ c ). and f(t) + .r*(t) -7 .A + A* 

modulo M(a) 3 for M(a) contains two functions g( t) and g* ( t) such 
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cthat f'(t) •G g(t) -) A and r*(t) - g*(t) ~ ) * i n the ordinary sense, 

so that c f(t) ~ c g(t ) ~ c Ii and (f( t ) + r*( t )) - (g(t) + g*(t)) ~ 

'\ + } * 
I\ /\ ' (all l imits taken :in the ordina:ry sense) where c g(t) and 

g(t) + g*(t) belong to the modulus M(a) . 

It is not certain, however, that the product f( t ) r:t·( t) tends tA> 

a fini. te lim:i.t modulo M(a) o Furthermore, even i f f( t ) r*( t ) tends to 

a finite limit modulo M(a), this l inri. t is not ~ecessarily equal to 

t he product A A -~ o For instance, let M( oo) be the modulus formed by 

the functions c t , mere c is an arbitrary constant. Then infi nity is 

an ordinary point with respect to this modulus, for if et tends to a 

finite l i mit A, as t approaches infinity, then c = 0 and therefor e 

A == 0 0 Then we hmre as t ~ oo (in the ordinary sense) , the 

functions t, sin ~ and ~ tend to 0 M( ot») • However, t sin ~ has no 

finite limit, modulo M( co), since it is impossible to find a constant 

c such that ·t sin~ - et tends to a finite l imit, as t ~ oo . Further

more the produc t t • ~ = 1 has the limit 1 and not zero. 

Exampleg If M(oo) consists of t he f unctions c log t, where c is 

an arbitrary constant, t hen 

I
t, 

r t41: 1 

I write i n this c ase 

(' 
1 

d.x - = 0 x 
(M( oo)) 

(M( oo)) 
' 



or, simply 

r~ 
1 

dx 
- = 0 x 

(III, I II,1,6) 

recognizing, of cour~e, that this is with respect to the modulus M(a:>)o 

If M* ( oo) is the modulus formed by the functions c log 2t, where 

c is an arbitrary constant, then we have rodW.o M*( a:>) 

f' ~ -- l og 2 and 

1 

since 

{" 
1 
2 

dx 
- = 0 x ' 

log t - log 2 t ~ ~ log 2 and lag t - log ~ - log 2 t = O 

The limit with respect to a certain modW.us may therefore depend 

an the modW.us., 

Suppose that 

~ "" li.m f( t) 
t....+ (X) 

exists wi"th respect to a certain modulus M( a:>), for 'Which infinity is 

an ordinary point. Then the lim.i t of f ( t) , as t ~ oo, exists with 

respect to any modulus W( oo), which contains all furetions belonging· 

to M( oo) and for which infinity is an ordinary point; this limit 

modulo M*( oo) is also equal to /.. o For M( oo) and t herefore also 
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M*(CD) contains at least one function g(t) such that f(t) - g(t) tends 

to A 9 in the ordinary sense .ll as t in T approaches infinity o Of 

course, the existenc e of the limit of f(t), as t ~ oo,- modulo M* (oo) 

does not guarantee the existence of the limit modulo M( oo) o There

f ore, if we have constructed a certain modulus M(oo) 9 for which infinity 

is an ordinary point, then it is useful to add to this irodulus as many 

functions as possible, provided that infinity is also an ordinary 

poin·i:; for the new modulus ]fE-( oo), which we construct in the described 

way . 
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Secti.::m 2 . CONSTRUCTION OF CERTAIN MODULI 

Let L( o:;) be t he modulus formed by the functions g( t) which can 

b e wr:i.tten as a linear conibi nat :i.on of product s 

"\ ... t, v 
0 

. ofl 
T~ 

.1. 

where h denotes an arbitrary· integer ~ 0 9 where the exponent s are real 

such t l:i..a t at least one of t hem .is different from zero and where finally 

t !!': t 
D 

and (k ~ 0) e 

To s how that :Lnfirri t y is an ord.inaF.f point with respect to t:bis 

modulus~ we consi de:r t wo p:roducts 

0 0 0 

(\.~ 
t "" b. and 

Suppose (3
0 
~ ?f ,::) :lf' (3

0 
~ /

0
, we suppose (31 ~ 1

1
; if 

(3 "" o ar.d ~l "" o..,, , then we assume (J2 ~ 7.2, and so on; 
0 0 . ~ 

finalJ.y we as sume that if {!>
0 

"-' /'
0 

, • ' • , f3h~l "' 7 h-1' then 

('Jh > 1 h. '!hen the fjrsi.; pr oduct is of higher order of magnitude 

than the s econd product' that means that the first product divided 

b.f t he s econd product t ends to infinity as t ~ ro . 

An arbitra:r:y f unctiori g( t) of L{ co) is a linear combination of 

a fi nite number of t erms of t he form ( 2 .1). If at least one 

of the eoefi'i.cients occurring in that l inear combinati"i:m is 

different f rom zero!l then the r esult of the preceding para~ 

gr aph impl ies t.ha.t the c onib:i.nation contains a t erm u of 
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highest order of magni t11de ., This term u tends to infinity or to zero 

as t approa~hes infinit;y. If u ~ 0, then g( t) tends to zero as 

t ~ oo. If u ~ oo, then g( t) also tends to infinity as t ~ ro • 

Consequently, in this case, if g(t) tends to a fini te lirrd.t, this 

l imit is equal to zero. On the other hand, if each coefficient in the 

linear combination g( t) i.s equal to zero, then g( t) is identically 

~qual to zero, whie h implies that the lim.it to which g ( t) tends is also 

equal to zero . Consequently infinity is an ordinary point ·with respect 

to L(ro) . 

Consider a modulus M( co) whose func tions are defined on a set T, 

which contains arbitrarily large values of t, but such that each 

element t is posit:ivejj let infinity be an ordinary point of 

I-1( 00). This modulus generates a modulus M(-oo) (for which -oo is an 

ordinary point) 9 a modulus M(a+) (for which a+ is an ordinary point) 

and a modulus M(a~) 9 (for which a- is an ordinary point); here a 

denotes an arbitrary real firrite mnuber . We define M(-oo) as the 

modulus formed by the functions g(- t), defined for -t i n T. We de

fine M(a+) as the modulus formed by the functions g(t:a)' defined 

f l . T f "" all or E-i in ' i n y we define M(a- ) as the modulus formed by the 

flm.ctions g(a~), defined f l . T or~ in • Here g(t) denotes an arbi-

trary function belonging to N( co). All the moduli, generated in this 

wa:y by the original. modulus M( oo) are said to be equivalent. For 

instance all the logarithmic moduli 1( oo) 3 L(~oo ) , L(a+) and 

L(a-), where a is an arbitrary real number, are equivalent. 
.~ 
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~ample : To prove that t he integral 

.1 = r VX+'I l og (x + 2) dx 

1 

modulo L( oo) exists, we may write by expanding the integrand 

v5C"'-+J: log (x + 2) = xl log x + log x + _g_ + r(x) 
1 1 

2 x2 x 2 

where r(x) is integrable in the ordinary wgy from 1 to ex>& 

We have modulo L( oo) 

3 3 

' 

]"" } log x dx = 
1 

11I11 · - t log t ·- t + ~ = ~ , . {2 ~ ~ ~ 4} I. 

t~oo 3 7 9 

and 

f 00 x-i l og x dx 

1 

{ 
.l. 1 } = lim 2 t 2 log t - 4 t 2 + 4 = 4 

t-)>OO 

J"' x~ dx = l:im [ 2 t~ - 2} = - 2 
1 t-+ oo ' 

so that 

(X) 

I = - ¥1 + j r (x) dx 

l 

We see that the introduction of the logarithmic moduli enables 

us to generalize considerably the notion of integrals. Let us con-

sider f or i nstance the i ntegral 
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1
13 4 

(x + x2)- 3 log Ix ! dx , 

where -1 < o< < (3 o '!here is a dif fi cul t.Y if the closed. interval 

(o< , (3) contains the origino If f3 > o, i n the interval 0 < x ~ (3 , 

we can write 

4 4 
(x + x2)- 3 log lxl = x- 3 log x + r(x) , 

where r (x) is integrable in the ordinary way from zero to (3, so that 

we obtain modulo L(O+) 

0 
JA 4 ;(j 

Ix ) dx = x- j log x dx + r(x) dx ; 
0 0 

1(3 - g 
(x + x2) 3 log 

the first integral on the right hand side is modulo L(O+) equal to 

1 1 

- 3 (J - :3 log (3 - 9 (3 - 'j • 

I f o< < 0 ~ then we have in the interval o( ~ x < 0 

4 4 
(x + x2)- 3 log lxf = x- 3 log (-x) + r(x) 

' 
where r(x) is integrable from ~ to zero. Then we obtain modulo L(O-) 

Jo 4 1 l l o 
(x + x2) ~ 3 log lxl dx = 3 c><. - 3 log (- o<) + 9 el.- 3 + r(x) dx 

~ ~ 

In the case -1 < ~ < 0 < (?> we find thus 



h 1 
2 - 3 - 3-

x ·) l og Ix! dx = = 3 (3 log 

1 l 
+ 3 o< = 3 log ( ~ o< ) + 9 0( - 3 + 

(III , III,2,5) 

1 

(J - 9 (3- 3 + 

t he integral on the left hand side is taken with respect to the modul i 

Lf O+) arrl Lf ~J-) ' ' , 

Similarly we can calculate the integral in question also for 

c< ~ -1, but then we must use the moduli L(-1+) and L(-1-). 

The remairrler of this section is devoted to the construction of 

an important new modulus ,and to that end we first introduce the con-

cept of "hyperpolynomials11
• 

The functions f (x) "" x3/ 2 has the property· that 

f(x + h) "" x3/'l. (1 + ~) 312 "" -:)12 + ~ x~ h + E (;x:,h) 

where e (x~h) tends f or zero, if his f ixed and x tends to i nfinity. 

'fill.ere exists therefore a polynomial in h 

of which the coefficients (but not the degree) depend on x such that 

f(x + h) ~ p (h) tends to zaro as x ~ oo, provided that h is fixedo 
x 

We cal l a fu:ncti.on with this pr operty a hyperpol ynomial; more pre-

cisel y: a !zyperpo~omial i s a function f (x) which is defined for 

each suffid.ent ly l arge positive x with the property that i t is pos

sible to find a polynomial px(h) in h, of which the coefficient s but 

not the degree may depend on x 3 such that for each fixed h 



f (x + h) - p (h) x 

tends to zero as x approach es infinity . 

The following properties are immediately clear: 

1 . A polynomial is a hyperpolynomi alo 
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2. A function whi c<h tends to zero as x approaches infinity, 

is a hyperpolynomial .. 

3 o A hyperpolynomial, multi plied by a constant, is a hyper~ 

polynomial . T.b.e sum of two hyp erpolynomials is a byperpolynomial. 

4. If there exists an integer k ~ O such that the k-th 

derivativ~ of f (x) exists for sufficiently l arge x and 

f(k ) (x) ~ 0 as x ~ oo 
' 

then f (x) ~s a rr3perpolynomial . 

The proof is easy. We have 

f(x + h ) "" f (x) + E f' (x) + • • 0 + hk-l , f(k-l) (x) + ~ f(k) ( f ) 
1 (k - l)~ kt .) ' 

where ( lies between x and x + h. If h is fixed and x tends to infinity, 

then S also approaches infinity, so that the last term tends to zero. 

This shows that f (x) is a hyperpolynomial . 

As particular case we find t hat each function belonging to the 

1.cgari thmic modulus L( oo) defined by (2 .1) is a hyperpolynomial. 

Remark: The product at two hyperpolynomials is not always a 
., 

r.cyperpolynomial . For exampl e, let f(x) = i if x is rational and 

f(x ) = 0 if x is i :r:".:-at i onal. Ther. x and f(x) are hyperpolynomials. 
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If their product were a r.ryperpolynornial, then there would exist a 

polynomial px(h) in h such that (x + h) f(x + h) - px(h) would tend 

to zero as x appro8.ches inf'init"fo Suppose now that x is a rational 

number tending to infinityo If h is a fixed irrational numbers 

(x + h) f(x + h) ~ 0 9 so that p (h) ~ O. Therefore, for each fixed x 
irrational m.m1ber hs each coefficient o:i px(h) would tend to zero, as 

the rational mmiber x approaches infinity. Then px(h) would tend to 

zero 9 not only for each fixed irrational h but also for each fixed 

rational mnnber h. This is impossible sinc8 for each rational number h 

(x + h) f (x + h) "" 1, so that. 1 ·- Px (h) tends to 0 and the ref ore 

pX(h) to lo 

Consider a set K formed by periodic functions with the same 

period and satisfying the following conditions~ if 11.. (x), • 0 
• 9 ps(x) 

denote functions belonging to K and if i t is possible to find constants 

c1, • •• 9 ~s such that 

c1 p1 (x) + • 0 
• + c p (x) s s 

::!.s equal to a constant for all x, then this constant is equal to zero. 

Let. N( o:c-) be the set formed by all functions of the form 

where s ~ o, whece ;i'(x) denotes a function belonging to L( oo) 9 the 

logarithmic modulus at infinity, where p1 (x) 9 ° 00 
, ps (x) are 

periodic functions belonging ·t;o K and where g
1 

(x), • 0 0 g (x) are 
s 
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ey-perpolynomials .. We shall prov·e faat N( oo) is a modulus for which 

infini ty is an ordina.iy point.o 

Proof u It 1.s clear that N( oo) is a modulus o To nrove that oo is an 

ordinary point of this modul;µs we assume 

' 

as x 4 oo, where A denotes a finite numbero Under this assmnption 

We must know that ).. = 0 o 

Wit.hout. l oss of generality we may suppose that t he periodic func-, 

tion P:L (x), , P~(x) a.re linearly independent, for otherwise it is 
1:> 

possible to write at least one of those functions, say p
8

(x) as a 

linear combination of the s - l other functions, 

' 

whence c 0 0 
• c are constant s; in this case we have 

1' S·~l 

J'(x) • :t~ p _ (x) [ g~ (x) + c~ g3(xl~ A ' 

where go--(x) + c o- gs (x) (a-· ::: 1, 00 0
, s ~ 1) are hyperpolynornials, 

so that the above expression may be wri tten in the form of (2 .,2) wit.h 

s replaced by s w 1 . Therefore, applying the principle of mathematical 

induction we ma.y assume for each s ~ 0 that :ill the periodic ftmc tions 

of ( 2 .. 2) are linearly independent e 

All the functions belonging to the set K possess the same positive 

period a ., From (2.,2) it follows for each fixed integer m 
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as x "' oo 

Since i(x), g1 (x), 000 , g
8

(x) are hyperpolynomials, we can find 

polynomials 1x (m) ~ g1.x(m) ~ • • • , g
5
x(m) i.n m whose coefficients (bu·t; 

no·t. the degrees) depend on x, such that 

t(x + ma) - ~(m) ~ 0 

and 

(2 05") go- (x + ma) - g (m) -+ 0 o--x (o-- = 1, 0 0 e ' s) 

as x -) oo . Thes e limit rela ti.ons hold for each real fixed m. 

In t his way we find for each fixed i nteger m 

(2 .6) as x ~ co 

where 

1tr (m) .,, t (m) -+· p
1

(x) gl: (m) + •. 0 + p (x) g (m) rx x :x: s me 

T'ni s function "Jlx (m) is a pol ynomial in m, ·)f which the degree q is 

i ndependent of x 9 so that we can write 

'llf (m) "" a (x) + a, (x)m + • • • + a (x) mq •x o ~ q 

In particular "f( ( 0) ,., a (x) tends to A a s x ...+ co, so that 
x 0 

y(m) ~ a..(x)m + eo o +a (x)mq 
- .l. • q 
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t ;;;:ids to zero as :x: ~ oo for each f ixed positive integer me It is 

possible to write each coefficient ah(x) (1 ~ h ~ q) as a l i near 

c ombination of y(l)~ y(~), 000 
, y(q), in which the coefficients ar e 

independent of x.. Sin-~e yh(m) -+ 0 as x ~ oo we find therefore 

arn(:x:) ~ O fo2• 

'Ihis result implies that formula (2.6) holds for each fixed real 

number m. Combining this with (2 .4) and (2 o5) we see that formula 

(2o3) is true for each fixed real number mo Replacing x by x - ma 

and letting ma ::: ·-u, we obtain for each r eal fixed u 

as x ~ oo 

It; is sufficient to show that it i s possible to let x tend to 

i nfinity in such a way that~ 

·v(x) ""' j;i(x) ~ ). I + jg1 (x) I + • • 0 + jg
5

(x) I 

./jends to zeroo For i n that ca.se the function :i(x), belonging to the 

logari tJmrl.c modulus L( ro) tends to the f inite limit A so that this 

limii,;.'las we have previously seen, is equal J;o zero., It i s therefore 

sufficient to deduce a contradiction from the as sumption t;b.at v (x) 

possesses a positive lower bound of x tends t c infinity in a certain 

wg;y .. With this assumption, we have for each real fixed u 

i(x)- A gl (x) g (x) 
v-(x) + Pi (x + u) + • • • + p (x + u) vCx) ~ 0 

v(x) s 

(2 .,8) 

as x ~ oo 0 
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From the definition of y(x) it follows t ha t each of the numbers 

;z'.(x)~ ). 
·v(xJ and 

g q-(x) 

V'(XJ ( o- == 1, · · • , s) 

:..s in absolute value ~ 1 and t..Yie;refore bounded. Consequently, it i s 

possible to let x tend to infinity in such a WEJY that 

( 2 9) i(x)- A. -} 
• . v"'{"X) c and 

and t.hat 

g<:%" (x) 
VZXT-+ co-

' 

(o- = 1, · • · , s) 

where c c • • • c and ~ denote ' suitabl y chosen constants, which 
' l ' , s ~ 

are of course independent of Uo Now it foll ows from (2 .,8) since 

p
0

(x + u) '"' p
0
(x - a [ ~ ] + u) that 

and from the definit ion of v(x) and (~ .. 9) 9 t hat 

le i + le I + • •• + le I ~ l s 

(2.10) 
ltCx)- >- I 

= lim - v(x ) + lim 
x~oo x"""*oo 

+ •• • + lim 
x~oo 

Since this result holds for each real u we have for each real x 
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According to the conditions imposed. on t t:.e set K to which the p eri.od.i.. 1.~ 

functions p1(x), 00 • , ps(x) belong, this constant -c is equal to 

zero . From (2.10) it would follow that at least one of the coeffi-

cients c1 ,c2, oo• , c
5 

is different ·from zero, contraiy to the 

hypothesis that the periodic functions Pi (x), 0 • 0 , p
8

(x) are 

linearly independent. 'lhis contradicts the assumption that •:(x) has 

a positiv-e lower bound if x tends to infinity in a certai.Il weyo Con-

sequentl:y' it is possible to let x. t end to infinity in such a way that 

v(x) ~ 0 so that according t.o (2 . 7) ;l(:.d ~ A and therefore 

"A ~ o. 

This completes the p1•oof • 

I denote by P( co) the modulus formed by the functions of the 

f'om 

f(x) == ;t(x) + p
1 

(x) g1 (x) + 0 
• • + p s(x) g

5 
(x) 3 

where i(x) is a function belonging to the logarithmic modulus L(oo) 

at infini:tty, where g1 (x), • • • , gs (x) are b:yperpolynomials and where 

p .. (x)' 
. I.. 

... , ps(x) are functions with the period 1, which are inte-

grable from 0 to 1 such that 

1 1 p ~ (x) dx n O 

0 

(o-- = l · · · s) 

Infinity is an ordinary point fo:r this modulus P ( oo), for if 

we choose the constants c1 , ••• • c , c such that fo? all x 
- s 



+ ••• + c p (x) = c s s ' 

(III,III,2,lJ) 

then we find by integrating with respect to x from zero to 1, that 

c = o, so that the modulus P( oo) is only a submodulus of the 

modulus N( oo), treated above. 
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Section. 3. ON MODULI CONS'IRUCTED BY IN'i'mRAT.I:ON, 

SUMMA 'ITON AND PASSING TO THE LIMI,T 

In the preceding section we have constructed a modulus P(oo) of 

which L( oo) is a subset and for which infinity is an ordinary point. 

To show that there exist other extensions of the logarithmic modulus 

L ( oo) with the same property we give first a simple example.; 

!X~le~ The functions v( t) of the form 

(3 .l) v(t) = )'(t) + "J. it t~ dt + 02 j\-~ v'IOgt dt , 

2 2 

where i.( t) denotes an arbitrary function belonging to L( oo) and where 

~l and ©2 are arbitrary constants, form a modulus I( oo), for which 

infinity is an ordinary point • 

To prove this we must show that, if a function v(t) of the form 
' 

(3ol) tend.s to a finite limit in the ordinary- sense as t -> oo, this 

l:inrl.t is ·equal to zer oo Integrating by parts we obtain 

v( t) "" i(t) -i" 1. t .E 8ii (log t) - + rm (t) J/2 {m-l 1/2 h } 
heo 

where ~ and ~ denote constants ., O, where Cm is a constant and 

where rm(-t) and r.;_"k ( t) are at most of the order (log t)1/ 2-m o 
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The funct..io:n ;2'.( t) 9 which belongs to L( ~-:o ) 3 can be written for 

sufficiently large 'fJ as a finit e sum of terms cf the for-m 

Q( °' ""-( . o( 

(3 .,2) e t 0 (l og t) 1 (lng log t) 2 
0 0 .. ( l og 0 0 • log t.) h e 

Since the number of t hes e t erms is f'ini.t.e we can choose m so large 

that their swa "/..( t ) contai ns neither a term of the .fo:rm 

3/ 2 3/2-m+l 1/2 3/ 2dtt1.+l ~l t· (log t} ' · nor a term of the f orm. 02 t (log t) ., 9 

where 'If i and rt 2 a.re c onstants -f 0 o For this choice of m we obt ain 

where the funct i on J1.Ct) » belonging to L(oo), can be written as a sum 

of terms of the form (3 0 2) , whic h certainly contains the terms 

~ ~l t 3/ 2 (l og t)3/ 2-m+l and 'b ' 1/2 (1 t)J/ 2-m+l e2 m-1 i;. og " 

Therefore v(t) is f or large val ues of t ur.ibounded i f c1 f 0 and also 

i.f r.:
1 

s CJ . ~2 f. 0., Since v( t ) t ends t o a .finite l:Un:it 9 we have 

therefor e c1 "" c2 "" OS> so t hat v(t) "";i(t) belongs to the modulus 

L( oo) .. As infinity is an ordinary point for this modulus ., the limit 

to which y( t) tends as t ~ oo 9 is equal to zero o This shows that. 

infinity is an ordinary poi nt for the modulus I ( oo) o 

Remark ~ Repl acing t by ~ we obtain t hq.t the functions v( t) of 

the form 



i 

J -3/2 r--y v(t) = t(t) + c~ t \llog ~ dt + c2 
t 

l.. r t ~ hog ! !t ' 

t 

where t(t) denot es an arbi trary function belonging to L(O+) and where 

c1 and c2 are ar~itra:cy" constants, form a modulus I(O+), for which 

O+ is an ordinary point . 

we 'Ma.E,plz the modulus I (O+) to ~ following integration. If f(x) 

is conti nuous in the interval 0 ~ x ~ 1 and twi ce differentiable at 

~e. origin, then the integral 

t £'5/2 ~ f(x) dx 
0 

~st~ with respect~ this modulus I(O+) . 

For we can write 

f( x) o f( O) + x f 9 (0) + x2 r(x) 

where r(x) is bounded and we have modulo I(O+) , as o -) o, 

l . 1 

[ x- 512 A og ~ f(x) dx "" f(O) 1 x-5/2 Aog ~ dx 

i & £. 

1 1 

+ r' (0) i x.-312 
/log k dx + 1 x-

1
/

2 /log~ r(x) dx 
s [ 
l 1 

-+r(o) 1 x->!2 qdx +r' (o) 1 x-312 q dx 
2 2 

1 

+ J :<~ Jiog ~ r(x) dx • 
0 
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1 

v(t) = ;z'(t) + c1 f2 

t-3/ 2 ~ dt + c2 
t 

Ji 1£;1 -"2" 1 t og t dt , 

t 

where t(t) denotes an arbi t rary function belonging to L(O+) and where 

c1 and e2 are a rbi trary constants, form a modulus I(O+), for which 

O+ is an ordinary point . 

· we ' apply the modulus I(O+) to the following integration. If f'(x) 

is conti rruous in the interval 0 ~ x ~ 1 and twice differentiable at 

the origin, ~ the integral 

t x-512 ~ I(x) dx 

0 

exists with respec t to this mo~ I( O+) • 

For we can write 

f(x) = f(O) + x f 1 (0) + x2 r(x) 

where r(x) is bounded and we have modulo I( O+) ~ as o ~ 0, 

1 1 J x-512 Aog ~ f(x) dx = f(6) 1 x-5/2 Aog ~ dx 

& b 

1 1 

i 3/2 r-1 1 1
1
2 r--f. + f '(O) X- \/log ; dx + X- I \11.og i r(x) dx 

6 x £ 

1 1 

~f(O) 1 x-512 ~dx+r'(o)1 x-312 ~ dx 

2 2 

f 
1. 

+ x~Aog ~ 
0 

r(x) dx • 



w~ can generalize considerably the obt ained result by introducing a set 

U( oo) f ormed by one or more (possibly i ni0initely) man;v fm;tctions of 

the form 

CJ cJ) 
0( 0 D(l o( 2 o(k 

·t; (log t) (log log t) • • 0 (log 0 • • log t) 

that ls.9 of the f orm 

whe:t"e t
0 

"" t and t.n+l "" l og th and where k is the same integer ~ 0 for 

all functions belonging to U( oo)., We assume that i n each function be-
' 

1,onging to U( ro) the expone11ts o<
0

,, °"l' 0 
• 

0 
, =< k satisfy the following 

inequalities~ 

~ 
i .f ""<

0 
""'-1, then o< 1 "" = l 0 

' 
if o( 

0 
"" 0( 1 ~ = i · 9 then o< 2 ~ ~

 1 ; and so on j 

finally.9 0 . 0 .9 then °' k ~ - 1 

Let p be a positive number such that. tk exists and is positive 

f or t ·~ p o Let I( oo) be t he set fonned by all functions of the form. 

(Jo5) v(t) "" t,( t) i
t 

u"'" 
p 

(x) dx ~ 

wher e s deno·l:.es an arbitrary integer~ 0 3 where uo--(t)(O"= 1, 000 
, s ) 

denotes an arbitrary function belonging to U(oo) and where 

0 
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c t7" (o-- l5l 1, 0 0 0 
9 s) are arbitrary constants.; we assume that 7'.'( t) 

is an arbitrary linear combination of terms of the form 

(3 06} t (Oo (log t ) ~ 1{1og log t) (3 2 
0 • 0 (log 0 0 e log t) (J r ' 

which tend to infinity as t --? oo o 

Infinity is not necessarily an ordinary point for this modulus 

I ( ro) » for if U( oo) consists only of the fmction t 3/ 2 and if p > o, 

then the function 

t 
- ~ if /2 + J x3/2 dx - - j ;12 

p 
' 

whic:h is a constant r 0 .9 can not belorig to a modulus f or which infinicy 

is an ordinary point~ .. Therefore we introduce the additional condition 

that I( oo) ' does not contain a function which is equal to a constant 

I 0 o I n this way we obtain 

THEOREM lo _Suppose~ each function belongi1!& to I( oo) which 

~ identicalq equal 't£ ~ constant is equal to ~.. Then infinitz 

is ~ ordinary point for the modulus I( oo) o 

Proo£ o We must show& if a function ' ~ t) of the form (3 .5) 

tends to a .f:i.ni te l imit A 9 :in the usual sense, as t ~ oo, then 

A ~ 0 o We · know that ;i( t) is a linear combination of terms of the 

.form (3.,6) 9 which tend to infinity, as t ~ OO o 

Consequently ~ is a linear combination of terms of the form 
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where 

· ~ 
then 1i = - 1 $ 

:;,,, 
then y2 "' - l ; 0 0 " 

finally 3 if o 
0 

= o 1 = • 0 0 = -r ,., - 1 r 
~ 

then r r+ 1 "" ~ 1 

In this way we f i nd that 

c an be -wrliten as ·a linear combination of t erms of t he form 

.. 0" 

where t he inte~e:ri t is chosen ~ k and ~ r + l,; the exponents 

f o.9 713 ° 0 0 
9 '% satisi''y the inequalities 

~ 
,,..,,- ei - 1 ° if Y

0 
,,_,, - 1 Q 0 . . s 0 

(3 .,8) if 0 0 
"" O' 

1 
~ = 1 3 then 0 2 ~ = 1 ; 0 0 0 3 

finally 9 i f -0 
0 

f£! o
1 

~ " 0 0 = ~-1 = - l, then t,, ~ - l 
't 

Choosing a numb~ q ~ p such that t~ i s defi ned and positive 

f.or t ~ q, we obtain for t ~ q 

.. 



t J ..-'(t) 

q 

;t 

dt. ~ ;l'(t} - ;l'(q) + o-~l e,,. J u,,..('t) d't 

q 

s 
Sol t< t) + I: 

& 0!!1 

where 

s Jq 
\11 8 t<q> ·f> r c u (-c) 
o l C' !f1'"' 

0- !!) 

p 

d~ (} 

We have supposed thai~ v{i:-) tends t.o a finite limit A ·s in the 

usual sense .9 as t =~ oo o Therefore 

(J .. 9) as t ~ oo 0 

This :implies that T/ (t.) is i dentically equal to zeroo For other

wise: the linear combination whit"\h repr·es ents v ' (t) contains a term of 

highest order of the f onn 

0 0 0 

when:: the const.ant coefficd.en~ ~ is different from zero and wher.e the 

exponents satisfy the ineq1Ja-1itie:s 0 08) o Then 

D ( ) 'J" 0 '/{ l ~/(,· 
,,,. t e !] t ·r,_ . " .. " t't' 

0 -:I. 
·~ f(t) 

where f(t) is of smaller order of magnitude t han (3o7) o In t hat 

case the integral 
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0 00 x t''( dx . 'G , 

where x
0 

:::s x and ~+l t'.l: log ~would increase indefinitely according 

to the inequalities (308) , whereas 

would be of smaller order of magnitude, so that 

t f v'(x) dx 

q 

would be an unbounded funct i on, contrary to (3e9)o 

Consequently vv(t) is identically equal to zero, so that v(t) is 

a constante Si nce t his ftmction belongs to I(a:>), it is by hypothesis 

equal to zero$ 'so that also its limit A is equal to zeroe 

This completes the proof o 

This set u(CP) of terms of the form (Jo3) yields, not only the 

modulus I( oo) containing i ntegrals, but also a certain modulus S( oo) 

which involves sumso To that end we choose a positive integer p 

such that ~ exists and is positive for eacl:: integer t ; p., Let the 

m9dulus s( oo) be formed ·by the functions v( t), defined for all 

i ntegers t ~ p 3 of the fonn 

s t 
v (t) = ;,i(t ) + c-~l co- n~p uc1"'(n) , 
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wher e ;t.(t) is an arbitrary linea:r· combination of terms of t he form. 

(Je6) which t end t o i nfinity as t -7 cn 9 where s denotes an arbitrary 

in·teger ~ 0 9 where uCl"'(t) ( Cl'" "'1,2, 000 
, s ) denote arbitrar.r func

tions belonging to U ( oo) and where c ~ (a- .., 1, • • 0 
, s) are a.rbi trary 

constants e In t he same way as above we prove 

THEOREM 2. Suppose that each function belonging to S( oo) which 

is id.enpically equal ~.2 ~ ~onstant is equal to ~ e Then infini t;r is 

~ or dinary poirrt for the £l~ulus S( oo ) o 

For instarice the fum tions 

' 

where ;t( t) denotes an arbitrary f unction belonging to L( co) and where 

c1 and c2 are arbi t rary constants, form a modulus S( oo) for which 

infinity is an ordi nary point. The s eries 

00 1 r n2 J,logii f(n) 
n~2 

converges with respect to this modulus i f f ( ~) is twice differentia

bl e at the points x ~ 0 in the neighborhood of the origin. 

To construct other moduli for which infinity is an ordinar-3 

point , we consider a set 'T of ·which i nfinity i s a limit point., Fur

thermore we introduce a set V( oo) formed by one or more (possibly 

i nfinitely many) functions v(t) which are defined for each element t 

of the given set T and which possess the two following properties: 



(III, III,3,10) 

1 . The set V(c.c) does not contain a function which tends to a 

finite lim.i t -fo ., 

2 .. For any two different functions belonging to V( oo) the abso-

lute value of the quotient tends either to infinity or to zero as t 

in T approaches infinity~ 

THEOO.EM 3 . Conside1: .each function n( t) which ~ be written ~ .! 

~.i.near ~rnbina_!ion of El: finite number .9! functions belonging to V( oo). 

J1E-es~ functi~~ form~ modulus N( oo) fo~ which infinity is ~ ordinary 

:,eoint;. 

P1•oof ., I f n( t) is not i dentically equal to zero, we can -wr:i.te 

n(t) in the fonn 

where 

e. I o 1 

s 
n(t) - I; CO"' VO" (t) 

<r"'l 

and 
v c-( t) 
~----> 0 
v
1 
(t) 

(2 ~ s ~ s) 

as t in T tends to infinity o Ther·efore 

n(t) 

whera the expression between braces tends to 1 as t in T approaches 

infi nity o If n( t) tends to a .finite limit i\ s as t in T approaches 

infinity, t hen also c1 v1 ( t) -.., A • In that case v1 ( t ) tends t.o a 

finite limit..!. and this limit is equal t o zero according to the 
cl 
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condit ion 1 .imposed on the set. V( oo) .. Cons&quently ). "" 0 _9 so t hat 

infinity :Ls an ordinary· point wit h r espect to the modulus N( oo) . 

We obtain a m11Ch more general result by introducing the set 

W( t ) formed by the functions w( t) ·which can be written for each ele-

ment t of T as the sum of a convergent series 

00 

w(t) e }.: eh vh (t) , 
h=o 

where the functions vh(t) (h ~ 0,1, ••• ) belong to V(oo) ; we assurne 

-~ 
that fo:r each fixed integer h "' 0 

and t.ha1·, 

is for large t at most of the sane order of magnitude as vh( t) ., 

THEOREM 4o Lat M( oo) ?e ~modulus~~~ the furctions 

s 
m(t) 2 n(t) + L: 

O"'""l 
w (t) 

0-

wher~ n( t) is ~ arbi tracy _function belonging to the modulus N( oo) 

define~ i12 the preced.i.ng theorem,_~ s is ~ arbitrary int eger ~ 0 

and wh~ w1 
( t) _, w2( t) , • • • , w

8
( t) denote arbitrary functions 

belonging to W{ oo) .. 
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Then infinity~~ ordinary _Eoint with r espect to tlae modulus 

M( oo)o 

Proof., We must show t hat, if a £'unction m(t) of the form (3 .,10) 

tends to a fini.te limit as t in T tends to infini fy, then thi.s limit 

:i.s equal to zero . The special case s = 0 is treated in the preceding 

theorem, s ince in that case m(t) ~ n(t) belongs to N(oo)o We may 

therefore assume that s ~ 1 and that we have already- obtained the 

required r esult in the cases in which s is replaced by a smaller inte

ger ~ 0" We shall deduce a contradiction from the as.rumption that 

m( t) tends to a finite limit f. 0 9 as t in T approaches infinity . 

We know that the function n(t) belonging to N( oo) can be written 

as a linear combination 

(J .,11) 

of d.i.fferent functions belong:i.ng to V{oo). We know also that wcr'(t) 

0 0 0 , s) is the sum of a convergent series 

00 

wo--(t) .., E co-h vo-h (t) 9 

h "'O 

'Where the functions v o-h(t) belong ·co V(oo), such that for each 

fixed in tege1• h ~ 0 

(3 .,13) 

and that 
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:ts at most of' the same order of magnitude as vo-h(t) . Let Zi(t) be 

the function of highest order occurring among the functions denoted by 

. 
:i 

v (t) (J ~ O"' ~ s) 
0-0 - • 

The right hand side of (3 ol0) contains at least one t erm which is equal 

to t.h.e funct1.on .21_ ( t ) mul tip1ied by a constant . I f "{ Zi ( t) denot.es 

the total contribution of all these t erms t 0 the right hand side of 

(3 ,J.O) » then 

(3 .,J.5) • :ii 

here n:i,(t) i s t he linear combination occUl'."ring in (3.,ll) apart f r om the 

possible term which involves z.
1 

( t),; in the same ~gy wo>-
1 

( t) is' the sum 

of the convergent series occurring in (3.12) apart from the possible 

term which involves 21. ( t) " 

Because we have cane?elled the t erm of highest order, we know 

that 

and 

as t in T approaches :i.rlfinity. The constant 0 occurring i n (J .. l~) 

is equal to zer•o 3 for otherwise we would have 



{ 

~(t) s 
m.C t) "" r 'Ii < t) i + J + E 

1 /"Zl ( t o- &<l 

where t he expr ession between br aces i.;ends to l.~ from the fact that 

m( t) tends to a finite l im.i t -f 0 9 it would follow that the function 

z1 ( t) belonging to V( oo) would also t end to a finite limit f 0 9 as t 

in T approaches infi ni t y .9 contrary to the hypothesi.s that V( co) does 

not contain a function which tends to a finite limit 'I Oo Consequently 

"( .,, o:i so that 

s 
m(t) "" n:i_(t) + r W0"-1 (t) • 

O"""l 

In other wordsg formula (3 ol O) remains true if we cancel on the right 

hand side all t erms which contain z1(t) as factoro 

We can repeat this argument by i ntroducing the function z2( t) which 

is t he .function ,i 2:1 ( t
) of highes t order occurring among the functions 

denot ed by 

0 

3 
..,. ( t) 
- o 

0 

' 
4. ~ 

v - ( t) (1 12 O"' ,.. s ) 
O"' l. 

0 

Precisely as above we obtain 

0 

:J 

n2(t) i s t he l inear combination occurring in (3oll) apart from the 

possi ble terms which i nvolve z.
1 

( t) or z
2 

( t); furthermore wa-'2( t) i.s 

t he sum of the convergent series occurring in (3.,12) apart from the 

possible terms which involve z1(t) or z2(t)., Thus we have cancelled 

the terms which involve ~1 ( t ) or 2\2( t ) o 



Continuing in this wey we define ~( t ) for each positfare integer 

k as the function f zh ( t) (h "" 1.112 .1> • 
00 

3 k - 1) of highest order 

occurring among the functions denoted by 

v ). ( t) (1 ~ .A ~ 1.) 0 

3 

~ 
; 0 ::: h < k ) .. 

Then 

m(t) ""' ~(t) + 

r~c( t) is the linear combination occurring i.1 (3 .11) apart from the 

possible te:rms which ir1voJ:ve one of the functions zh ( t)(h = 1 3 2 .9 ° 0
" , k), 

wher-ea.B wo-k(t) is the s'Uro. of t he convergent series occurring in (J .J.2) 

apart from the possible t erms which involve one of the furetions 

Let us now examine t he b ehavior as k ~ oo of the t erms on the 

right. ha.rid side of f'ormuJ.a ( 3 .16) • 'Ib that end we write 

where the l ast s.:i:~ contai:ns the t erms such t hat v,_(t) is of the same or 

higher order than at least one of t he functi ons zk(t) (k ~ l) ; the 

sum ~Y contains the functions vA( t) which are of smaller orde:t' of 

magnitude than each fnn.ction. 2k( t) (k ~ 1) ., Then we have for s'Uffi

ciently l arge k 

l\(t) s 
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since all. of the terms of z" (and only these tenns) have been can-

celled . 

If ea'ch given t erm in the series Z co-h vo-h has the property 

that v~h is of the same or higher o~der than at least one of the 

f"Linc tions 21<:( t ) (k ~ 1) 9 then 

(J ol 7) li:m w k(t) .., 0 
k~oo ""· 

sinc e a1.1 the term8 are cancelled . Otherwise there exists an integer 

q""~ 0 such that v
00

h(t) :i.s for h ""0 31 3 ° 00
, q~-1 of the same or 

higher order than at least one of the functions 21:( t) (k ~ 1) ~ whereas 

v uh ( t) is for h ~ qo-of smaller order of magnitude than each func tion 

~k(t) (k ~ l)o In that case we find 

(3 .18) 

since the terms (and only the terms) with k < qo- have been cancelledo 

I,et z* denote the sum extended over the positive integers c- ~ s f or 

which formula (3ol8) holds; the other positive integers o- ~ s 

satisfy formula ( 3 ol 7) 0 If 

the numbe"t• oi' cancelled terms i .s greater than the right hand side of 

(3e19), so that it is :impossible that t he sum z* is extended over all 

0 t 0 
• t ~ posJ.. · :.tve lll egers a-- "" so This smn contains therefore at most s - 1 

terms ., 



'Tu.king in (3 .. 16) the limit as k 4> oo we obtain 

m(t ) "" f v CA. v).(t) + t w~ ( t) ' A""l O"'"'l 

where 

" 

Thus we have written m{ t) in a form similar to the ori gir,al form 

(3 .10) 9 but in such a way that s is replaced by the number of terms 

./;> h * . .:.. 
O.l. t e sum Z and ther-efore by an integer "' 0 which is less than s .. 

According to our induction hypothesis it i s :impossible that this 

function m(t) tends to a finite limit 'f Oo This gives the required 

~ont.radictiono 

We will proceed to give t hree applications of the last. theor emo 

THEOREM ) o ~ V( oo) ~ the set formed by the functions 

(J .,20) 

h k . . . t ~ 0 d h t t d +- l +-
w ere ~ .!! ~ in .eger ,,, an w: er-e 

0 
'"' ~ -h+l ::: og '11" 

Furthermor!:: we assume 

o( ~ 0 g rr o( "" 0 t hen o( ~ 0 3 if' o(. .,, o( "" 0 • then o< ~ 0 ° 
0 " = O ll -1 - 0 1 "- 2' 

(3.21) 
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Choose the p ositive numb~ p ~ ~ge that '\ is E,osi.t~ i'a.t" 

t ~ p., Let W( oo) be the set formed by the i'uncti011s w(t) which can be 
. ~ --. - ~- --- -- ·- - --
writ ten ~ t ~ p ~ ~ ~ 2.£.. .'.! convergent series 

_'!!~ fo~ each ~Titege.! :b.. ~ 0 the coefficient eh i s !!- constant, and 

whe~ th~ funct :ion.'3 vh( t ) (h = 0 .91.~ 

_!.hat for eac~ fixed integer> h ~ 0 

and that 

0 0 0 ) belong to V( co) o We assume 

is fo.! large t at~ of _the~ orde!: of ma.gni tude ~ vh( t) o 

Then the functions ------
s 

(3 022) m( t) "" t( t) + r w O"' ( t) 
cr ""l 

(t ;; p) 

whe~ ;l'.(t) ~ ~ arbi traE! function. belong:ing to the logarithmic 

modti.1.us L( oo) 9 ' ~ s is~ .arbi trary: integer~ 0 and~ 

w1 ( t) 9 w2( t) 9 ° • 0 s w~} t) .denote arbi tr~ functions belonging to 

W( ex>) .ll form! modulus for which infini't;y is ~ ordinary Eoin't:: .. 

Pro~ . We must show that, if a function of the fonn (3 o22) 

·tends to a finite limit ,\ as t ~ co, this limit is equal to zero 0 
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We can write ;i(t) .., n(t) + r(t)~ where n(t) is a linear combination 

of a finite m.nnber of terms each belonging to V( oo) and where r(t) ~ 0 

as t ....j> oo o We know t herefore that 

s 
n(t) + }: wO"(t) ~ f.. as t ~ co 

C"'"l 

The absolute value of the quot ient of two different functions be-

longi ng to V( oo) t ends to infinity or zero as t ~ oo o Also, since 

each function in V(oo) tends to infinity as t -, oo, we may now apply 

the Theor"em 4, -which gives A "" 0 o The ref ore the functions of the 

fonn m(t) form a modulus for which i nfinity is an ordinary pointo 

Example ~ Suppose ex and b ar e real and o< is not an i nteger 

~ 

"" 0 ~ '.lhen the functions 

m(t) ,., ;i(t) 
1 1 ~ 

+ ~ t 2 (1og log t ) sin -~ + c2 (t + b) 
yiOgt 

where 1,(t) is an arbitrary f unction of L( oo) and where c1 and c2 are 

arbitrary constants 3 form a modulus, for which infinity is an ordinary 

point. For we ha,re 

1. 
t 2 (l og l og t) 

00 1. 
sin . 1 .., 't" ( _) h , t 2 log log t 

-~ l.J hf.1/2 v.i.og t h=o (2h+l) Hlog t) 

and 

Ct+ b)ot.. 1£1 ,,_E < ~) t °" - h + r(t) 
0"" h<ll( 

where r(t) ~ 0 a s t ~ CX> o 



The function 

belongs to L( oo) and we have 

(3.,2.3) m( t) "" ii ( t ) + w1 ( t) + r( t) 

where 

1 
w1 (t) ~ c1 t 2 (log l og t) 

. l' sin---
/i'Ogt 

J- )h 
(2h+l)! 

1 

t 2l og log t 
(l~g t)h+l/2 " 

. (TII,III,3 ,20) 

The set V( oo) mentioned i n the preceding theorem contains the functions 

i M 
t 2 (log t)- 2 log log t, (h ra 0 1 2 o • •) 

' ' ' 
and for each fixed integer h ~ 0 

J. 

t2log log t 
(log t) q+l/2 

I 

J. 

. t2 log log t 
is at most of the sama order of magnitude as _ h+l/~ , so that 

(l.og t) 

t he conditions of the preceding theorems are satisfied . 

I'f m(t) tends to a f inite limit A. as t ~ oo , it follows from 

Oo23) and r(t) _, o that ti (t) + w1 (t) tends also to A and accord

int to the preceding theor ems this limit is equal to zero. Consequent-

ly infi nity is an ordinary point with respect to the modulus formed 

by the functions m(t)o 
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6 
~ . 

THEOREM o Let k be !!: given int.eger = 0 and let p be 2: ~ positive 

!:lo 
number such that x. > 0 for x = p ; here x = x and x.+l = log x. o 

------ K - - o - --n n 

~ V( oo) be 2: set f .o'rmed ....El functions of the form 

(3 024) 
/ 

where 0 is ~ arbitrary: constant and~ (30~ (31 , 0 
• • , t3k ~ 

arbitr ary real numbers satisfying the following inequaJi ties: 

A ~ -1 ° if (S :::: ~l then ~l ~ -1,; if~ = (J1 = -1 then (3,2 ~ -1 
'Vo ' - 0 ~ - - 0 ' - ' 

o o o finally if A = (J.1 "" o 0 o = (3.k ,.. - 1 then P, ~ -1 
' ' - c-o -1 ' - k 

We assume that V( oo) does ~ contain two different functions 

(3 .,26) 

such that 

(3 .,,,(3* 
0 0 

* A (J-){-
(31 ,.. (31 ' 

0 

• 

0 

' 1-k .. k 0 

Let W( en) ~ the set formed by all functions w( t) which for 

t ~ p ~ be writ t en ~ the ~ of ~ convergent series 

0 
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where for ~ integer h ~ 0 ~ coefficient eh is ~ constant and 

~the functions vh(t) (h"" 0,1 ••• )belong to V(oo); ~assume 

that for each fixed integer h ~ 0 

ast°'oo 

and that 

is for large t at ~ of th~ ~ order of magnitude ~ vh ( t) • 

Let M( oo) be the modulus formed £z the functions of the form 

~ n(t) is ~ arbitrary linear combination of a finite nUmber of 

functions belonging ~ V ( oo) ; furthermore s is an arbitrary integer 

~ 0 and w ( t) (o- = 1, • • e s) denote arbitrary functions belonging 
- 0-

Under thes•e condi ti.ons i nfinity is ~ ordinary point with respect 

to M( oo). 

Proof: From the inequalities (3e25) it follows that for x ~ p 

~k.:.. 
0 0 0 ~ = - 1 

OO O~ 

' 
so that 

t t 

J f->o ~1 ~k ~ J -1 ~1 · -1 
x

0 
X]_ o o • :l<Jc dx: "" x

0 
X]_ • • o Xi<: dx: 

p p 

t 

~ I ~+l 
p 
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and the last side increases indefinitely as t ~ OOo Consequently 

each function v(t) in V(oo) approaches infinity as t.....,. OOo Arry pair 

of different functions v(t) and v* (t) belonging to V(oo) has the 

property that their quotient tends to infinity or to zero as t ..,.. oo o 

This follows from the fact that the f'unctions v(t) and v*(t), defined 

in (3 024) and (3 .. 26) have the propert.v that v( t) tends to infinity as 
v~-( t) 

t -+ oo in each of the cases: 

· t h · (t) d * (t) f. d th t · h · · v*(t) in ere anging v an v we in a i n eac remaining case v( t) 

tends to infinity. 

I t may noiv1 be observed that 'lheorem 6 i9 a corrollary of Theorem 4 .. 

Examp~: For q > 1 the integral 

co 
I ,.., J x:'J/2 

q 

l/.W (log x) e g x cbc 

exists with respect to this modulus M( oo) 3 if we choose V( oo) in such 

a way that it contains the functions 

t 

vh(t) = J ,,312 (log x)l-h dx 

p 

(h = 0 ,1, 0 0 0 ) 0 
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Then M( oo ) contains the integral 

1t 3/2 l /log x ~ 1 kt '~/2 1-h ~ 1 
x (log x )e dx = L -

1 
r (l og x ) dx= '-' -, vh (t) 

P h=o h . P h=oh· 

so that this integral tends to zero modulo M( co ), as t ~co. In 

this way we find 

I= ~p x312 (log x)el/log x dx (M(co)) 

Applying the s ame argument with sununation instead of integra-

tions we find 

THEOREM 7. Let k be ~ given integer ~ 0 and let p be ~ posi-

tive i nteger such that I\> 0 for each integer n E p; here n
0 

= n 

and nh+ 1 = log nh. 

Let V(co) be ~ set formed El functions of the form 

(3 . 27) 
(Jk 

.. . I\ (t integer ~ p) 

where f is ~ arbitrary constant and where (3
0

, (31 , (\ ~ ar-

bitrary real numbers satisfyi ng the inequalities (3.25). We assume 

that v(ro) does not contain two different functions (3.27) and 

(3.28) 

(3* 
~k 

Let W(co) be the set formed ~ all funct i ons w( t) which ~be 

written for each integer t ~ p as the ~ of ~ convergent series 
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where each ~denotes~ constant and where the functions vh(t) 

(h = 0, 1 · • •) belong to V( co); we assume t hat for each fixed in

teger h ~ 0 

~ the integer t ~ co 

and that 

w(t) - c v (t) - c v (t) - ··· - c v (t) 
0 0 1 1 h-1 h- 1 

is for large integers t at most of the ~ order of magnitude as 

vh ( t) . 

Let M( oo) be the modulus fonned by the functions of the fonn 

s 
m(t) = g(t) + [ wa-.(t) 

cr=l 
(t integer ~ p) ; 

here g(t) is an arbitrary linear combination of a finite rmmber of 

functions belonging to V(co); furthennore sis~ arbitrary integer 

~ 0 and w
00

(t) (o- = 1, · · • ,s) denote arbitra!:Y functio~ belonging to 

W(oo) . 

Under these conditions infinity is ~ ordinary point with~-

spect to M( oo). 

Example: The series 

[ n3/2 (log n) el/log n 
n=2 

is convergent with respect to this modulus M(co), if we choose the 

set V(oo) in such a way that it contains the functions 

t L n3/2 (log n)l-h (h = 0' 1, 0
•• ) 

n=p 
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Section 4o INTIDRATION BY PAR'IS 

In the theory of integration the most important rules of calcula-

tion are those of the integration by parts and of the substitution of 

a new i ntegration variable ., In this section we show that the method 
' 

of integrati ng by parts can be applied also in the theory of integra-

tion with respect to given moduli.. For the integrals occurring in 

ordinary analysis the method of i ntegrating by parts can be formulated 

as follows: 

If f (x) and g(x) are con~irruously differentiable in the open in

terval a < x < b (a mgy be -oo and b may be oo), then 

b b 

(4 .. l)f f(x)g'(x)dx = lim f (v)g(v) ~ l:il!l f(u)g(u) -1 r ' (x)g(x) dx , 
J V<b U>a 
a v:-> b u°'a a 

provided that the three terms on the right hand side exist; then the 

in~egral on the left exists and is equal to the right hand Side. 

In the theory of the integrals wit h respect to given moduli we 

obtain the following similar theorem .. 

THJroREM Bo Suppose; that f(x) and g(x) ~ continuously differen

tiable in the~ interval a< x < b (a~ be - oo ~ b ~be +oo). 

Ass'Uille that 

lim f (v) g(v) 
v<b 
V->b 

exists 1'rith respect to ~ given modulus M(b-) for which b- ~.§:!!EE:'" 

dina:tz point and ~ 



lim f{u) g(u) 
u .> a 
u-)>a 

(ITI,TII,4,2) 

exist.s with respec;~ to ~ ~iven modulus M( a+) for ~ a+ is ~ ~

~ pointo Finallz ~ assume that the integral 

b J f '(x) g(x) dx 

a 

exists modulis M(a+) an~ M(b-)o Under these conditions the integral 

exists modul:l,.s M(a+) and M(b-o ) and satisfies fornrula (4ol) modulis 

M(a+) and M(b-)o 

Proof o '!he proof is simpleo We have for a < u < v < b 

~v J f(x) g'(x) dx m f(v) g(v) - f (u) g(u) 

u 

- ;:. (x) g(x) dx 

u 

Taking the limits modulis M(b- ) and M(a+) of the three tenns on the 

right as v tends to b and u t ends tp a, we f i nd the required r esulto 

The application of the limits modulo a given ciass of functions 

enables us to generali ze considerably some well- known f ormtllae 

' 
occurring in calculus. 

THIDREM 9o Suppose 

c( > 0 0 

' 
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ff - f < arg e < f,~ (J ' be~ real number, but if arg E = ~ {.-, 

~as S\Jille (J < ·o< - 1. Let m be ~ i nteger ~ 0. 

Then ~ integral 
' 

00 

I = J xl' (log x )m 

0 

~ 
~ex 

e dx 

exists modulo L( O+) o Furthermore, if' - (3 +l· is not an integer ~ 0, 
- o( - - - _ _....,,__ 

~~have modulo L(O+) 

I ~ ~~mm { ~ r (f:J) E - c::i} . 
In the~ that - (3;l i s equal to an integer k ~ o, ~ define 

~~follows : 

{4oJ) Joo -·1-ctk 
·I= x 

0 

o< k 
m - E'X m' E 

(log x) e 1 dx <= • m+'l Ikm 
o( 

Then fork ~ 0 · 

(-)k . 1 1 1 
~o ""kT' ( .... log € - 1' + i + 2 + • • • .+ k) ' 

. ~ 

where 0 denotes the constant or · Euler, and ~ m = 0 

(4..5) 

I .,. _E_ (dm+l. E-s r(s)) 
orn (m+ 1) ! dsm+l 

s==l 

:: 
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~nd finalll Ilml !_or k ~ 1 and m ~ 1 is a linear combination of r
00

, 

I 0p r02 , • · • , I
0111

,r10,r20 ., • • • , Iko. 'Ihe coefficients in this 

linear combination ~ determined El_ the recurrence relation 

k I ~ I ~ T.. (k ~ 1, m -~ 1) 
km k,m-1 K:-1,m 

Remarke As we can see from (4 .. 4) and (4..5) the two values ob-

tained for I are t.he same, namely 
00 

- log € ~ 7f 

since r '<1> 
' 

We will divide the proof i nto 5 parts, as follows; 

Io · Investigation of t~e behavior of I at the upper limit, oo. 

II. Behavior of the integral at O" for - (3;l~ O; that is, (3 > -1. 

III . Behavior of the integral at 0 for f.> ~ -1, that iss 

- ~ ~ 0 and - (3+ 1 not an integer. There are two subc as es: 
~ ' o( 

Ai m ·= 0 !U, m 11!! 1. 

IV. Behavior of the integral at 0 for (3 = -1, that is 

- ~+l = 0 "" . 
V.. Behavior of the integral at 0 for (3 < -1, that is - /3;l > o, 

(3+1 
and - --;;-- an integer.. We have again two subcases: 

!.l m"'O 

!J The integral I converges in the usual sense at infinity, 

since the substitution x o< = y gives 
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(4. 7)100 x (l (log x)m .- ex°'.Jx Q ;-..1 Joo /J,;;_1 -l(log y)m .- €y dy ; 

1 ex l 

the last integral converges, since we have a ssumed either 

11' 11" 
- "2"" < arg € < 2 thus Re € < 0 

' 

in which case b ecause of the e-(Re € )y factor the integral converges, 

or 

and (S+l - l < 0 
0( 

in which case we use the fact that the integrals 

f 00 X,Cy) cos Ay ay and [ ):'(y) sin ,\y ay 

1 1 

C\ r eal 'f 0) erist in the usual sense' if x <Y) is continuous and t ends 

. . 
monotonically to zero for sufficiently' large y as y ~ oo o 

II ol IT (3> - 1, the i ntegral I converges in the usual sense at 

the orig:i,n also_, so that, in that case th'e integral I exists in the 

usual sense . Thus the convergent integral 

is equal to 

and taking t he partial derivative m times with respec t to /3 we find 
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'Ihi.s gives the required r esult i n the case t hat (3 > - 1,,' 

III. J Suppose t hat (3 ~ 1 and that ~ (3: 1 is not an i nteger ~ 0. 

In t his part m we shall prove that the assertion holds for (3 under 

the assumption that we have already proved the a ssertion for (3 + """' 

instead of (3 , so that 

00 . 

(4.8) f x f.1+"(1og x)m .-Ex°' 

0 

modulo L(O+) if (3 ~ ~l and - @:.! is not an integer ~ 0. Then the as
o<. 

sertion will hold for each real (3 ~ -1 for which - @:l is not an 

integer~ 0. 

To show this we introduce t he smallest positive integer h such 

that (3 + d.. h > -1, and since the asserti on has been proven for 

~ > -1, the asse~ion holds if f3 is replaced by (0 + o< h. Using 

(4.8) with (3 + o< replaced by (3 + c1._ h 9 we see that the assertion 

holds if f3 is replaced by ( (.3 + o< h) = o< = (3 + o< (h-1) (notice 

that (J + o<(h-1) § -1) o Using (4 .. 8) again, but now with 

(J + c1o.. (h - l) instead of (3 + o< , we s ee that the assertion holds 

if (3 is replaced by (3 + 0( (h - 2).. Continuing i n this way w~ 
1 

notice that the assertion holds 'if (3 is replaced by (3 + ""'h or 
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(3 + « (h - 1) or (3 + o<. (h - 2), 0 
• 

0 
3 or (3 + o< and therefore 

finally fo~ (d - o( (h - h) =: (3 e 

Now we must prove the assertion under the assumption (4e8). 

Since - f:'.!: is not an integer ~ 0 3 the number f3 + 1 is differ

ent from zero,o Integrating by parts we obtain that 

dx (.)+l 

is modulo L(O+) equal to 

I =~ ,., +...1. 
/, 

00 
I cJ.. 

m -Ex +l 

0 

(log •x) e x !'l + 

[" (4.9) +~ x (3+o< (log x)m e- E' xo< dx 
(3+1 

o. 

m [~ x f3 (log x)I!Fl - Ex""' 
dx .., (H·l e 

' 
0 

provided the terms on the right hand side exist modulo L(O+) , which we 

shall prove presently o If m = 0 the last term does not occur. 

Al Let us consider first the special case in which m = 0 o 

'.Ihen by (4.9) I assumes the form 

~ E x ~ (J+ 1 E: o< 
e x + (3+1'. ' l 

o-
~ 

where the last term is equal to 
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Now we shall show that the integrated part is equal to zero and to 

show that, we wrl. te 

-E xo( (3 +1 
e x 

as 

(4ol0) /3+l+o<.h ( ) x +rx 

where r(x) ~ 0 as x -t 0 o Since each exponent (J + l + =< h 'is differ

ent from zero, the right hand side of (4.10) tends to zero modulo 

L(O+) as x-) Oo Moreoyer 

= €x<>< · f3 +l 
e x 

tends to ze.!"o i.n the ordinary sense as x ~ oo~ that is obvious if 

- f.< arg E 

have assumed 

< 'f but; it is also true if arg c = ; Jf-, 
~ ~ 11 d fi+l 0 t . t ~ · 0 
1- "" = an ~ 7" is no an in eger = , so 

since we 

that· (d is 

different from -1 and therefore less than -lo Consequently the ·inte

grated part is equal to zero, so that modulo L(O+) 

J
oo p -E'xc< 

x e 

0 
( 

/3+~+1 

cix "" ~ • 1- I ~ + 1) E -~ 
(3+ J.. o\ o(. 

" 

This gives the required result for m ::ii 0 .. 
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~ Now we treat the case m ~ 1 under the assU!Tll?tion that we 

have already proved the required restilt with ·m - l instead of m, so 

that modulo L(O+) 

We apply again formula (4.,9) and observe that the integrated part 

is again equal t o zeroo Usi ng (4)3) and (4oll) we obtain 

0 

We have 

and therefore, according to the rule of LeibnizUs 

~~:m (} r( e:+1) E -~) ~ ~:: :';. ~ r (r::i) E - ~;+i) + 

({ r(~) E _ /J+;+i) · 
Substituting this value we obtain 

I"" 2.~ {l... r(e.+1:) E -~} , 
'Of.:) m 0( 0( 

which completes the proof in the case ·that ~ ~ is not an i nteger ~ 0 0 
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I 

IV o l Now we pass to the proof i n the case that /3 = - 1 9 there-

f5 +'l fore ~ - = 0 0 'Ihen we have rnodW.o 1(0+) 
o<. 

I IS lim 
~-)O 

dx = 

. 1 
"" -:::-;:-or mi-.J. 

°' 

00 

J ~l ( )m -E. y y log y e ey = 

"~ 

1 ... _ 
m+l 

o( 

Her.e 

lim { 
S~o 

(C>\log b)m+l 
m+l -

Joo (log y)mt-l e-fy dy} . 
~""' 

o<.. 

( ....,logr)m+l = E:S ( 1 c-)lllfl ( 1 c)m+l 
"' b e ::: o(, og o ·-r ~ . og o 

the las t tenn tends.9 i n the usual sense, to zero as f; ~ 0 and the 

firs t term on t he r i ght hand side tends modulo L(O+) to zero, so that , 

modulo L (Of. ) .9 

€ l oo , )mrl =Ey 
I , "" - mfi {log y e dy ,. 

(m+l)o<. 
0 

For .each points with Res > 0 we have 

00 

=s re ) 1 s=l - € y c ·s &'] y e dy , 

0 

and therefor e 

dmrl(E ~s r (s)) 
' dsm+l 1

00 

s- 1 m+l - E 
s y (log y) e Y dy , 

0 
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soi that 

s=l 

'!hus we have found the required result in the case (3 = -1, making use 

of the remark added to the theorem in the case f3 = -1, m = 0 o 

Vo I !.l Now we treat the case that m = 0 and (8 = -1 - O{ k.11 

where k is a positive integer. Si.nee the cas e k = 0 has already been 

treated in part III we may assume that the assertion has already been 

proved in the case m = 0 for k - 1 instead of k. If k is replaced by 

k - 1 , then (3 = -1-otk is replaced by 

- 1 - <>4\(k - 1) = f3 + 0( ' 

so that we may use the f~rmula 

mod'Ulo L(O+) o Applying (4o9) with m == 0 we obtain 

(4.,13) 

00 

I i / ~e-xo( f3+1 ax 
a (:i+'I /,., e X 

0 1
00 
. <><. 

EC>( (3 +~ - ex dx 
+ - x e 

{3+1 
0 

0 

In this case the last term has the value 
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since k /3+1 =---
~ 

We apply (4.J.O) to the integrated part of (4 .. 13), but 

now the sum, occurring in that formula, contains a term with h = k, for 

which the exponent (3 + 1 + 0( h is equal to zero , so that modulo 1 ( O+) 

as x ~ O " 

The inte~rated part in (4ol3) is therefore equal to 

' 

so that 

I = - ~ + - -, - log € 1 ( € )k ( )k € k ( 
o< k ~k k& o< ' 

which gives the required r esult for k ~ l , m = 0 e 

BI Finally we consider the case in which both - /3 +l "" k and m 

"' 
are positive integers o We again use formula (4 .. 9) .. The integrated 

part is again equal t o zero, for applying for mula (4o10) we obtai.n 

( )m -fxu.. j->+l \\ ( - E-)h (l+l+<><h( )m ( )( )m 
log x e x "" L.J .,Q.~ x log x + r x log x , 

L L. ~+l Il~ 
o=h""-~ 

""'" 

wher~ r(x) (log x)m =-1 0 as x ~ 0 and where the sum does not contain 

a term which is constant so that the s'tilm t ends t o zero modulo L(O+) 

as x -..i; 0.. Formula (4 .. 9) tells us therefore that according to the 

definition of ~ given in the statement of the theorem 

k 
m ~ E 
-~ Ikm -
o( 

Eo< 
(3 +1 

k=l 
mtE m 

0 

m+l 1k~1,m - 73+! 
~ 

(m-1) t <2 k 
O(,m ~sm-1 ' 
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hence 

I ==- 1 L +! r 
lan k -k~l,m k k,ffiao>l 

This shows that Ik for k ~ 1 and m ~ 1 is a linear combination of r0~, ,m "-' 

r01:I02 , ••• , Iom' 11._0,r20, e• • , ~o · This completes the proof 0 

Another case where we apply the generalized limit i s in establish-

i ng (modulis L(O+) and L(l-)) the formula 

11 xP-1 (1 - x)q~l. dx: "" r(p) [(q) 

o r (p+q) 

which is valid for each pair of complex numbers p and q, provided 

t hat neither p nor q is an integer~ O. The formula is well !mown 

for Re p > 0 and Re q > 0. We' may suppose that we have proved the 

f ormula already in the case t hat p + q is replaced by p + q + 1, so 

that, 

Jl ,.P-1 (l - x)q-1 dx ~ Jl XI' (l - x)q-1 dx + r r1 (l - x )q dx 

0 0 0 

"' r (p) r<s) C;e+q) 
r(p+q+1) 0 

Thus if the formula holds for p + 1 and q i t holds for p and q, 

and if it holds for p and q + 1 i t also holds for p and qo By 
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repeating this process we see that the formula holds for each p and q 

which are not integers ~ o, since it holds in the case where Re p > 0 

and Re 1 > Oo 

We have calculated (III , III,2,page 3) the integral 

I • /

00 

Vim: log (i + 2) dx 

1 

0 

We can also ev~uate this integral as followso Since 

(x + 1)3/ 2 log (x + 2) :o x:312 log x + ~ x1/ 2 + E (x) 
' 

where€ (x) tends to zero as x approaches infini fy, we have modulo L( oo) 

(x + 1 )3/ 2 log (x + 2) ~ O asx~oo 

so that integrating by parts we find 

J
oo 

2 3 2 ' 2 
I ~ - ) 0 2 / log 3 - 3 

1 

(x+1) 3/ 2 
x+2 dx o 

From 

3/2 I I (x+l) ~ ( + l)l 2 _ ( + l)- 1 2 + 
x+2 x x ~~~~ 

(x+2)Vx+l 

1 

and 

1/2 (x + 1) ~ 0 as x 4' oo (L( oo)) 

it follows therefore that 
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I := 2 • 2 3/2 log 3 + _!i9. • 23/ 2 .. # 
J j 

21/2 - _g loo dx 
3 (x+2)v'x+l 

1 

dx 

(x+2)v'X+l 

Let us now give some examples involving the modulus P( oo) defined 

on (III,III,2,12) o 

THEOREM 10 " ~~ the hyperpolynomial g{x) is k ti~e~ (k ~ 0) 

cont:i:nuously differentiable for x ~ a such that 

0 

~ x<x) be~ bou~ed i ntegrable function with period lo 

integral 

j 00 

/t (x) g{x) dx 

2. 

:nodule P( oo) exists o 

Then the 

Proof. 'Ihe assertion is obvious fork= o, so that I may suppose 

~ 
that k "' lo Integrating k times by parts we obtain for t > a 
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Here Xi (x) , 2(x)1 ° • • are defined by 

x 

X l (x) = l X ( u) du + •1 

and 

(h ~ 2) 
' 

where we determine the const ants cl'c2 • • • such that 

1 1 X h{x) dx " o 
0 

(h ~ 1) • 

Then -X1(x> ,-x_2(x) , 0 00 ~~ k(x ) s atisfy t he conditions occurring 

i n the definition of P( oo) , so that the integral 

loo A (x) g(x) dx 

modulo P( oo) exists and i s equal to 

THEOREM 11. Let m be~ i nteger ~ Oo rr s I o and r 1, then - - -

00 

(- }m ~(m}(s) = ~ \j{(x) (x-s logm x)' dx , 

0 
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where the integral is taken modulis P( oo) and L( O+) o This formula 

~ 
holds also in the ~ s = 0 , m = 1 o In order for ~ formula to 

hold in the ~ s "" m = 0 the right hand ~ (which is then equal to 

zero) must be repla.c ed El -~e The formula holds also for s = 1 if 

(- )m ! ( m) ( s) is replaced ~ 0 - 1 when m = 0 (where -:( is the constant 

of Euler)~...2 (-l)m ~(m) (s) is replaced !?z 

~ 
when m = 1 0 

Remarko Since the zeta function of Riemann has a simple pole 

at the point s = 1 with residue 1, this function possesses in the 

neighborhood of that point an expansion of the form 

1 °1 c2 2 
S ( s) = s-1 + c 

0 
+ ]_ t ( s - 1) + ~ ( s ·- l) + 

In this expansion c is the constant of Euler o We have 
0 

lim ( (-)m ~(m)(s) - m~ ) = (-)m c 
s~l (s-l)m+l m ' 

in particular 

lim 
S---)1 (~ ( s) - _1-_) = c = 

s~l o 0 

0 0 0 
0 

For the proof we first consider the half plane Re s > lo Then 

according to the first fundamental identity in the theory of the sum 

f o:rmula of Euler 
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00 
= r n-s logm n 

n=l 

c 9 + J 00 

x-s log"' x dx + 100 

Yi (x) (x-s logm x) ' dx ~ 
1 1 

where 9 "' t if m = 0 and 9 e 0 if m > 0 o Moreover for 0 < b <. 1 

/

1 1 

x-s logm x dx: + J 'Vi (x)(x~s logm x) ' dx 

6 i . 

1 

::rf d("'Jf(x) x-s logm x) = 9 ~ (~ - t) ~-s logm b 
b 

Subtracti!'1g we obtain 

• 

00 00 

(-)m ~ (m) (s) ""1 x~s logm x dx + J 'tJ{ (x) (x-s l ogm x)' dx 

$ ()' 

+ ( S - i) b -s logm b • 

The first term on the right hand side is equal to 

_ 61-s .!_og & _ m log & + .• eo + (-)m mt l , · { m m-1 } 
1-s (l-s)2 (l- s)m+f 

hence 

(4..15) 
00 

+ j tti (x) (x- s loglll,:}' dx + ( S - !) ~ -s logm S • 

:r 
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Let us now prove that the integral 

00 

r1 = J ~ (x)(x -s logm x) ' dx 

s 
represent~ a fUlilction which is analytic in the whole c omplex s-plane. 

It is evident that 1i_ denotes a function of s which is analytic in the 

half plane Re s > l., Integrating by parts we obtain 

00 

1i • - %<£)(b-s logm ~)' - r2 , where r 2 - [ 'lJ'2(x)(x""" logm x)" dx , 

'f 

where r2 represents a function of s which is analytic in the half 

plane Re s > o, so that also the function denoted by I 1 is analytic 

in that half plane. Furthermore 

00 

r2 = - 'lj(!) ( ~-s logm b ) " - r
3 

, where r3 = [ ~ (x) (x-6 logm:x) "'dx • 

'!he function denoted by r 3 and therefore also those d~noted by r 2 and 

r1 are analytic in the half plane Re s > ~lo Con tinuing in this WCIY" 

we see that the function represented by :s_ is everywhere analytic. 

The other terms in (4ol5) represent functions of s 3 which are 

analytic for each s r 1, so that that formula holds, not only in the 

half plane Re s > ls but in the whole complex s -plane, the point 

s ... 1 excepted .. 

Taking now the limit modulo L(O+) as b ~ 0 in (4.J5), we find, 

for s r 1, 
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(- )m ~(m)(s) ~ /"' \fi(x)(x-• logmxJ' dx , 

0 

provided that in the special case s = m = 0 the right hand side is 

augmented with 

l:im ( ) - t) 
i--o 

To find the required result for s = 1 we notice that the first 

tenn on the right hand side of (4.15) is equal to 

Here 

(-)mt-1mt 

(1-s)m+-l 

( ) r m+l-h 
cl-a = e l -s l og o= '\' 1 ( )k k c ( )m+l-h 
IJ i.J k1' 1 - s log o + l - s rh , 

kaso 

where r h "" 0 as s -) 1., The first term on the right hand side of 

(4.15) can therefore be written as 

(_ ,m+l m•o m ( )h h h m+l-h ( ) k_ k E ~ t (1 = s) log b E l-s -log b + r , 
Ci-s)m+-l h=o 0 k"'<> k! 

(were r ~ 0 as s ~ 1) 

,.. r ' 

the dash indicating that the term with h = n = m + 1 does not occur. 



(III,IlI,4,21) 

Here 

ht (- )h (~) = 1 for n 03 0 

"" (l - l)n = O "- "" for 1. = n "' m 

= (1 - l)m+l - (-)m+l = (- )m for n = m + l • 

The first term on the right hand side of (4o~) is therefore equal to 

( .:.. )'m+ 1m 1 l 1 m+ 1 r + 
(1-s)m+l - m+l og o r o 

Thus formula (4ol5) assumes for ae· s > l the form 

(-)m ~· (m) ( ) mt l 1 m+l r + r 
J s - (s-l)m+l "" - m+! og " 

00 

+ l 'tJ. (x)(x - s loif' x)' 
l -s m 

dx + ( b - 2) S log ~ e 

If the number s, of which the real part is greater than 1, tends 

to 1, then r ~ 0 and we find for each fixed integer m ~ 0 

lim (<=)m y(m) (s) mi ) 1 1 m+l ~ 
~l l ~ (s-l)m+l = - m+l og 

00 

+ 1 'o/i (x)(x-l logm x)' dx + ( S - i) $ -l logm ~ 
s 

0 

If & _, 0 9 the las t term tends, modulo L(O+), to 1 if m = 0 

and to zero if m ·~ 1., Pass:ing to the limit moduio L(O+) we find 

therefore 
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provided that in the special case m = 0 the right hand side is augmented 

by lo This complet~s the pr oof o 

Remarks o For 1 < s < 2 we find t~eref ore by integration by parts 

~(;s) ,,.; 100 

'fi_(x) x•-l dx ~ - (s - 1) f 00 '!':! (x) x•- 2 dx 

0 0 

0 

'!he last integral converges o According to fonnula (408) in part III, 

Chapter I, Section 49 

00 

~ (x) m 2 l,i 
nm:l 

cos 2rrnx: 
(2'fl"n)2 

where the series converges uniformlyo Therefore 

' 

~.\-~2. = - 2(s - 1) ~ 
s rr-:1 

00 . 

1 J (cos 2 7( n x) xs-2 dx 
(21l'n)2 

0 

a - 2(s ~ 1) r. 1 i f 00 (cos y) y~~ di 
n~ · (21\" n) +s 

0 

::I -2(s - l) (2 'll")-l~s s (1 + s) I r (s - 1) sin¥ 0 

In this way we find for l < s < 2 the functional equation of 

the zeta function 

(4.16) ~ (-s) = - 2(2 n,-1-s s (1 + s) r<s + 1) sin¥ 0 

Of course this formula holds for each complex s ! -1, since 

both sides represent analytic functions of s 0 
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provided that in the special case m = 0 the right hand side is augmented 

by 1 o This complete.s the pr oof o 

Remarks o For 1 < s < 2 we find th,erefore by integration by parts 

~(;s) ~ 100 

'l)_(x ) x•-l dx = - (s - 1) /" 'J'2 (x) x•- 2 dx , 

0 0 

'lhe last integral. converges o According to formula (408) in part III, 

Chapter Is Section 4, 

00 

'f'2 (x) m 2 }; 
ll""l 

, 

where the series converges unifo~ o Therefore 

~(-sL = - 2(s - 1) ~ 
s ~1 

00 . 

1 J (cos 2 'ii' n x) xs-2 
dx 

(21l" n)2 
0 

= - 2(s - l)~ 00 1 l f 00 (cos y) y~-2 ey. 
' ( ) +s n 211' n 

0 

CS -2(s - 1) (2 'll}-l-s 5 (1 + s) 1 r (s - 1) sin¥ O 

In this wgy we find for 1 < s < 2 the functional equation of 

the zeta function 

(4.16) ~ (-s) = - 2(211')- l-s s (1 + s) r<s + 1) sin¥ 0 

Of course this formula holds for each complex s ! -13 since 

both sides represent analytic func·tions of s 0 
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Section 5 o ON THE SUBSTITUTION OF A NEW INTEGRATION VARIABLE 

In this section ~e make some remarks about the substitution 

of a new integratinn variableo 

Let 9J'(x) be a monotonic, non-decreasing function with continuous 

derivative in the interval a ~ x <b. Let ~(a) = o< and let (J denote 

the limit to which 0(x) tends as x ~b. Then, as is well known~ 

Jb f(IJ(x}) ~'(x) 
a 

provided that the last integral exists; in that case the first integral 

exists also and has the same value. 

To generalize this result, it is nec essary to introduce a 

modulus M(b~) for which b- is an ordinary point and a modulus M( ~ - ) 

for which (3- is an ordinary point. We suppose that these two moduli 

are equivalent. In section 2, page 2, we have already given the 

definition of two equivalent ' moduli, which implies that, if M(b-) is 

formed by the functims g( t), then M({J-) is formed by the functions 

xc-c), where 

x<~) = g(t + b - (3) if b and (3 are finite 

= g('t) if b = (3 ::: 00 

= g(-L) if b = oo and R is finite 
(3-~ , -

= g(b ~ ~) if b is finite and (3 = oo. 

For instance, if b and (3 are finite and the corresponding 

equivalent modulus M( oo) is fonned by the functions G( t'), then 
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accordi~ to the definition given in Section 2 the modulus M(b-) is 

formed by the functions G (J:t) and M(C-'-) is formed by t he functions 

G ( ~0 3 which implies t he relation b:t = (3 
1~ t , hence t , = "'C + b - ~ 0 

THEOREM 120 Let ~(x) be ! monotonic non=decreasi~ function wit.h 

continuous derivative!!!~ .[!_ven ·interval· a~ x < bo ~ o( = ~(a) 

and let (3 denote the~.!:~ 'Which ~(x) tends as x ~ bo Let 

(5 ol) 
t "" 'l: 

t ~ -1...., 
(3 ~--r; 

t::: b = 1 r. 

g b and (3 are finite' 

if b = (3 ...., oo, 

if b = oo ~ (j i s finite, 

if b is finite and (3 = co 

~~' if 7: < (3 tends to (3 , then t <. b tends to b, ~ t :hat ~( t) 

tends~ (5 o 

Under these condition~ 

b ~ 

() .2) 1 f (~(x)) ~ · (x) dx ~ 1 f(y) dy + 

a ~ 

!3< t) 

L f(y) dy ' 

Erovided that the integral and the limit, occurring on the right 

hand side, exist modulo M ( (3 - h then the integral on the left hand 
-~~ -- -----
side exists with respect .to~ equivalent modulus M(b-a) and is 

equal to the right hand side o 

Proof o We have for a < t < b 
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j t /~(t) 
f(~(x)) ~ 1 (x) dx e f(y) dy 

a 0( (5 o3) 

]

'?;' l~(t) 
="' f(y) dy + f(y) dy • 

It follows from the hypothesis that the last side tends to A., modulo 

M( ~...:.) , as 1::' < (3 tends to (3, where A denotes the right hand side of 

(5 o2) a Consequently M((.3 - ) contains a function X ('L) such that 

'C ~(t) 1 t(y) ay + 1 r(y) ay - x_Ct) ~ ). 
't' 

(in the usual sense) as '"C < (3 tends to (3 o From (5 ol) it follows 

that)'._( ?:) i s a function g(t)' oft and since M((3-) and M(b-) are 

equivalent, g(t) belongs to the modulus M(b-)o 

From (5 o3 ) and (5o4) it follows that 

~ r(~(x)) ~'(x) dx - g( t ) ~A 
a 

(in the usual sens e) as t < b tends to b s so that the integral 

J b f (~(x)) ~· (x) dx 

a 

exists modulus M(b-) and is equal to A. o This completes the proof' o 

In a similar way we find : 

THEOREM 13 o Let ~(x) be ~ monotonic non-decreasin~ f unction 

with~ continuous derivative in~ given i nterval a< x ~ b o ~ 

(3 ... ~(b) ~ ~ o( denote the limit to which ~(x) tends ~ x ~ ao 



Let 

t "'"t 

l 
t""

o( - '{'; 

Under these conditions 
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g a~ Ol ~finite, 

if a <:.? o< .., - oo; 

if a "" - oo and o( is finite 

if a is finite and o< "' - oo 

l
b 1(3 ~(t) 

f(~(x)) !3' (x) dx = f(y) dy - -r-l~o<.1 f(y) dy a 

a ~ t"'~o<. 1i' 

provid~ that the integral and the limit, occurring on the right hand 

side, exist modulo M(<A +) ; then the integral,£!": the l eft hand side 

exists w.i th respect to the equivalent modulus M(a+) ~ is equal .!:£ 

the right ~ side .. 

'IHEOREM 14 0 Let ~(x) ~ ~ monotonic non-increasing function 

with 2: continuous . derivative ~E ~ given. interval a~ x < bo ~ 

°" "" f3( a) and let. (J denote the limi. t to which ~ (x) tends as x ~ b o 

Put 

t"" l 
1: ~ (3 

1 t,,. b + -r 

if b ~ (J ~finite 

ifb=-f3 "" 00 

if b ~ OO· and (J is finite 

i f b is finite ~ (-> :s - oo .. 



Under these condi.t..ions 

b J~ 1 f(!li(x)) Ill' (x) dx = f (y) 

a a<. 

~(t) 

I f(y) dy ~ 
t"' 

provided that the integral and the limit:, occurring ~ the right hand 

side, exist modulo M( (3 +); then the integral ~ the left hand side 

exists with respect to the equivalent _!!!Odul us M(b-) ~ is ~qual to the 

right hand ~ideo 

THEOREM 15 o Let !i}'(x) be in a given interval a < x ~ b a monotonic 
_....., - ~ - -=--- ----

E_on=incr~sing f uncti on with continuous derivative . Put f3 = ~(b) and 

let o< denote the l:im:i.t to which ~ (x) tends ~ x -+ a o I>ut 

t ,,. ~1-
t' ~ o( 

t "" a + ! 
']; 

Under these condi t :i.ons 

if a~ o< ~finite, 

i.f <>< "' -a '"" oo 

if a. = -oo and o< is finite 

if a :is finite and o<. =i oo 

b p ~(t) f :r(!li(x)) Ill ' (x) dx = 1 :r(y) ity - .?P'°' 1 f(y) dy , 

a lo( 1; -h< -i; 

provided that the integral and the limt t, occurring ~ •the right 

hand side, exist modulo M( "'( -); then the integral ~ the ,!eft hand 

side exists wi.th respect to the equivalent modulus M(a+) and is 

equal to _!.he fight hand s ide. 
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In the following examples of 'lheorems 12-15 we use the logarith-

mic moduli. 

00 100 00 J ~= ~=[ ~+ 
1 1 2 

21: 

lim [ ~ 
't' ~00 y 

(; 

00 =! r + log 2, modulo L( oo) 

2 

which is obvious anyway since 

Moreover 

Also 

00 co 12 dx Cix dx J x- J x= x=1og2 
1 2 1 

0 

l 1 2 

1~ = ! ~ = 1~-
0 0 0 

l:im 12-i: .9Z 
't > 0 y 
'{;' --¥0 

r 
-1 

(, 

2 

~ 1 ~ -log 2, modulo L(O+) 

0 

0 

dx Jo -2dx _ /
2 

x "" -2x - -
=l 0 

~-r 
0 

2t' 

.Sr+ lim j .SI 
Y T> O Y 

f"--'><> 't 

2:z + log 2, modulis L(O-) and L(O+) . 
y 



and f inal:ty 

-·l 

die J 2dx 
x "" -=~ 

- oo 

~y 

(III,III ,,5' :J ?) 

r ~ -- log 2, modulis L(-ocy and L(oo) o 

2 

For· the calculation of the integral 

]"" ,,P-1 (1 + x)-p-q dx , 

(JI 

where p and q denote arbitrary complex number-s such that neither of 

them is equal to an integer ~ 0:1 we divide the path of i ntegration 

by a positive number a into two parts and we apply the transformation 

y !B ~(x) ~ £x , so that x ::.1 ~ 

According to Theor em 12 we hav-e 

~( t) 

lim 1 ~1(1 - y) q-l dy ' 
r~1 

1: 

where 

0 

3 
l t 1 

t. "' r:-..- and f3( t) "" l+t "" 2~7t , 

provided the integral and limit exist with respect to some modulus 

M(l- ) for 'Which 1- is an ordinary pointo We will find that L(l- ) 

possesses this property·~ 
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We have 

.. 

If the positive integer h is large enough, the remainder r(l - v) 

tends to zero as v-+ o. Consequently, we have 

where r(y) -? 0 as y ~ 1 for sufficiently large h. '!hen the integral 

(5 .5) 

can be written as 

-~ ( 1 -1:) q { ( 2 -(; ) ~q - 1} 
+ (~l) ~ (l - i')q+-1 {<2 - 't')q+l - 1} + ••• 

(2-~)-l 

+ Cl'J;ll ,ih (1 - 't)q+-h { (2 - t )q+-h - l} + 1 r(y) dy 

= ao (1 - t) q + ~ (1 - t) q+ 1 + • • e + 

(2-t)-l 

+ p('t) + 1 
b 

r(y) dy , 

?;' 

where p (t) ~ 0 as 7:--!)> lo Since none of the exponents 

q, q+l, O OO q+h i s equal to zero, integral (5.S) tends to zero, 
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modulo L(l-), as 1J ~ l., Consequently /
00 

x.P-1 (1 + x)-p-q ·ax exists 
a 

modulo L( oo) and 

00 1 J xP-1 (l + x)--irq dx = 1 i'-1 (1 - y)<r1 dy 

a °' 

In a similar way we find modulo L( O+) 

a Jo<. J xl'""1 (1 + x)-p-q dx = yP-l (l - y)q-l dy , 

0 0 

therefore modulis L(O+) and L(oo) 

1°' ,rl (1 + x)-p-q dx = 11 ;yP-1 (l - y)q-1 dy = 

0 0 

according to formula (4 .. 4) in the preceding section., 

As a last example we consider the integral 

00 

I = J x2P-1 (1 + x2) - p-q dx , 

0 

r<P> r(q) 
rcp+q) 

where neither p nor q is an integer ~ 0., Applying 'Iheorem 12 with 

the substitution y "" x.2 ·we get for positive a 
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for 0( t), the upper limit of the last integral is equal to t.2 = 1::
2 

since -r: = t .. 

The integrand in the last integral can be written as 

_,_l _,_2 _,_h-1 ( ) ac;r "l -t· ~y "l + o •• + ~y "l • + r y . ., 

If h is sufficiently large 

'li'2 L r (y) dy -+ O as 1: ~ oo 

1!' t2 
Since all the integrated terms l ~ y-~(k+l) dy (k = O,l • · · h) 

belong to t he l ogarit hmic modulus L( oo), the last term in (5 .. 6) is 

equal to zero and 

I ,., } loo yP"-1 (1 + y)-p=q dy 
1 2 

r-' 

In a similar way we f i nd modulo 1(0+) 

~ a J x2P--1 (1 + x2)-p-q dx • ~ J r 1 (1 + y)-p--q dy • 

0 0 

Therefore modulis L( O+) and L ( oo) 

00 

I mi J y!'-1 (1 + y)mp=q dy = r (p) r (q) 
2 r(p+q) 

0 

where the last equali ty follows from the pr evious result o 

' 
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The general:lzed limits can be also used in the theory of series o 

For instance let us evaluate modulo L( oo) 

~. 

where 0 < w ,,., 1 

That means that we must calculate 

t 1 

h~l (h=l+w) s 
(L(oo)) 

If s is equal to an integer ~ 0 9 then according to Part III, Chapter I , 

Section 7 9 Theorem 13 9 'the sum 

is equaJ. to a polynomial in t, in which the constant term is equal to 

zero o This polynonrial 9 therefore 9 belongs to L( oo), so that 

1 
-==O 
(h-l+w)s 

(L( oo)) 

for each integer s ~ 0 o Let us now consider the case in which s is 

not an integer ~ l o According to Part m , Chapter I, Section ll, 

formula (11 ol)' we have 

--1-- e S(s,w) + g(t) + R 
(h-l+w) 8 
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where g(t) has the form 

g( t) -s+l -s ~s-m = ao t + a:i_ t + o o o + am+l t 

If m is sufficiently large, the remainder R tends to zero as 

t ~ OOo Since none of the exponents - s + 1, ~s, 0 0 0 
, ·= s - m is 

equal to zero, g( t) belongs to L( oo) o Consequently 

00 

z; 
h=1 (h-l+w) 5 

1 (L( oo)) 

for 0 < w ~ 1, if s is not an integer~ lo 
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Section 6 o ON THE SUM FORMULA OF EULER IN THE THEORY 

OF THE MODULO LIMI'IB 

Let us start with 

N JN JN J
1 

f'(n) - ~ f'(l) ~· ~ f(N) = f(x) dx ~ . 'Yi (x) f 
1 (~) dx s 

1 l 

where N is an i.nteger > 1 and where f(x) 'denotes a function which is 

continuously diff'erentiable for x > 0 . Here 'lf Cx) is the function 

with period 1 which is equal to zero at x = 0 and which is equal to 
' 

x ~ ~ in the interval 0 < x < 1 o For each mnnber & between 0 and 

1 we find 

11 Jl 11 (, J 
8 

r(x) dx + 
8 

"!{ (x) r' (x) dx ... 
8 

a\ 'Vi (x) r(xJ "" 

~ '+{(1-) r(1) - 'ii (S) r(o) '°' ~r(1) ~ (& - ~) r(&) • 

Subtracting we obtain 

£ f'(n) - ~f(N) - IN f(x) die ~ (ii - ~) :r(&) + t 1Ji {x) f'' (x) die • 

n:::l &" S 

Let us now assume tha·t we have for f' (x) a form.al expansion 



Th.en we w.t".i ·i.;e 

so tha·t 

k~l 

fv(x) ~ ~ 'gh(x) + Gk(x) 3 

h'"'O 

(III, III , 6, 2) 

N 1 JN -E £(n) ~ :; .f(N) ~ f(x) dx - (£ - ~) f(b) "' 
n~l ' ~ 

Taking the limit modulo P( oo) as N ~ oo and the limit modulo L( O+ ) 

as 6. ~ 0, we obtain 

f r .t'(n) ~ ~ lim f(N) = Joo f(x) dx = 
n~l N->oo 

0 

\ lim (. - ~) r(A) • 1:1 f 00 \l{(x) gh(x) dx + ~ ' l $~ heo 
0 

where 

provided of course t.hat t hese limits exis't 3 moduli s P( do) and L(O+). 

In this wa:y we obtain the following theoremg 

'.IHFDR.EM 16. Sup_E~s~e; that f(x) _?.s ,£9~tinuouslJ:: dif~erentiable 

for :x: > Oo Let 



0 

Then formula (6.J.) hol ds ,, if the terms in that relation~ with 

respect to ~ moduli P~ oo) and L(O+) . 

R~iqarks: 1. If f(x) depends . not only on·x but also <man un-

bounded variable w and the series 

i.s asymptotic , then the functiop. 

( 6 ~2) ~ f(n) - ~ l im f( N) - f00

r(x) dx; ~ lim (5 - ~) f(6) 
nt;3l ~oo 

0 
6-+o 

i s asymptotically equal to 

(603) 

under the conditions o:f Theorem 9o 

2 o If under the conditions of Theorem 9 the remainder 

R...K tends to zero as k ~ 00 3 then expression (602} is equal to the 

sura of the converge~t series (603). 
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Sec tion 7 .. NEU'IRALIZERS 

The application of the sum formula of Euler, given in the preced-

ing section, leads to int egrals of t he form 

J
en 

0 

'+5_ (x) g(x) dx 

Sometimes it is necessary to divide such an integral into two parts 

t J 'If (x) g{x) 'l{(x) g(x) dx , 

0 

where t > 0 o If the integral ( 7 .,1) converges at infinity i n the 

usual sense, the integral 

(7 o2) 

00 j 'l{ (x) g(x) dx 

t 

tends to zero as t ·-+ oo, but poss:i.bly very slowly and perhaps too 

slowly for our purpose. If the integral (7ol) does not converge at 

infinity in the ordinary sense$ but onJ..y with respect to a certain 

given modulus M( oo), then the integral (7o2) does not even tend to 

zero as t ~ oo ,; :i.t may happen that small changes in the l ar ge 

number t produce very large changes in the value of t h e integral 

(7.2). To overcome the difficulties whic h are consequences of this 

phenomenon we introduce a neutralizer .. Let n be a given integer ~ 0. 

vfe call N(u) the neutralizer of the nth order, if -- - -· - - -
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(7.3) 

N(u) :: 0 
L.. 

for u = 0 

~ 

f o!' u = 1 

,,. c J u vn(l - v)n dv in the interval 0 ~ u ~ 1 
0 

where the constant c is chosen such that N(l) = 1, hence 

(2n+l)t 
c := ----nlni 

' 

' 

'Ihis function N( u) is everywhere, therefore also at the points u = 1 

a.r+d at the origin,, r..t times differentiable and satisfies the relations 

(1 ~ h ~ n) 

The identity 

N( u) + N(l - u) "" 1 

is evident for u ~ 1 and also for u ~ 0 3 and in the interval 0 ~ u ~ 1 

we have 

so that 

N(l ~ u) ""' c 

l 

N(u) + N(l - u) ~ c ~ vn (1 - v)0 dv • N(l) • 1 
0 

0 

This identity (7 $) enables us to divide the integraJ_ (7 ol) into two 

parts as f ollows 



Joo 2t ( ) 
(7 06) \f{(x)g(x) d.11: "'J. \J{_(x)g(x) N \.2 - ~ 

0 0 
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dx + j"' ~(x)g(x)N(~ -Y dxJ 

t 

notice tha·O N (2 - '£) • O for x ~ 2t and that N(~ ~ ~ ~ 0 f'or 

x ~ t. 

In this way we obtai.n instead of the integral (7 .,2), which :ts 

difficult to handlej the integral 

00 J 'JiCxJ g(x) N (i -~ dx , 

t . 

whose absolute value :ls, as we shall see3 tmder general conditions 3 

small for large t and for suitably chosen n., In other words, the 

function N ( ~ - ~ neutralizes a'Lmos·O completely the inf'luence of' t, 

provided that · t is large enough and that n is conveniently chosen. Let 

u s begin with a simple ex.ample o 

THEOREM 17. te·t. t be a positiV'e ~ and let N(u) be the 

neutrali.zer of positi"V'~ order no Let g(x) be n + 1 t imes continuously 

~rentiable for x;:, t ~that f2_r h ~ 0 3 1, 000 
, n 

where K ~ p. denct:: numbers ~ 0 which are independent of Xo Assume 

moreover ~ ~ x ~ oo 

(h,., 0,1, •• 0 n) 

wit12 r espect to ~ .£._ertain ~:?lus M( ro), fo::: which infinity is an 

ordinarz point. Finallt !!_~ !3'llppose that th8 integral 
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comrerges in the ordinary-~ o Then the i .ntegral 

~modulo M( co) and satisfies the i nequality 

( 7o12) 

where c denotes ~ s uitably chosen nuniber which depends only on no 
- - n - -- -

Proof : I ntegrating by parts n + 1 times we f i nd modulo M( oo) 

notice that the integrated parts are equal to zero, s ince the cont ribu

tion of infinity is equal to ze1·0 according to (7 . 9) and the cont ri

but:i.on of t is equal to zero according to ( '7 .. 4) ~ 

In this formula 

:Jo 
I f x l!i:1 2t all t erms on the right hand side, the first term e xcept ed , 

are equal to zero, so that we obtain modulo M( oo) 



(III,III , 7 S) 

(?.13) 

+ ~1 f n:1\ t - h J2t "\fr (x) N(h) (~ - 1\ 
h
/J \ n ) Tn+2 t , Y 
i::J. t. 

0 

The per:i.odi~ function 'l!.i.2 (x.) is in absolute value less than a con
n . . 

venient number which depends only on n .o Moreover 0 ~ N ( ~ - 1) ~ 1, 

so that the first term on the right hand side of (?oJ.3) is at most 

equal to J multiplied by a coeffici ent depending only on n. The 

absolute vaJ.11e of N(h) ( ~ - ~ is also less than a suitabl y chosen 

m.:rmber which depends only on n, so that the sum Z occurring on the 

right hand side of (7 .,13) is in absolute value 

n+l 
6 t" 
"' c L 

h=o 

where c depends only on n . This gives the required result o 

The preceding theorem is very useful in the examination of asympto-

tic expansions, since in t.i-iat theory we generall y can choose n f ixed. 

But in the theory of convergent expansicnsit i s often necessary to 

choose for n a number which increases indefinitely; in such a case we 

must know a convenient upper bound for the coefficient c occurring 
n 

in the assert.ion of the preceding theorem ., We s hall give this upper 

bound in theorem 18 but first we formulate a lemma which shall be 

appl ied in the proof of theor em 18 . 
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LEMMA. We have in th~ interval 0 ~ u ~ 1 for each integer h 

which is ~ 0 and ~ n 

dhun(l-u)nl ~ h n- h (l )n-h ~ h '"'- 2n+2h 
11- = n u ~ u - n ~ 

du 

Proof . We know that 

where 

a~ k "" n(n - 1) • • • (n + 1 - k) n(n - 1) • • • (n + 1 - h + k) ; 

the sum. z1 is .extended over the integers k ~ 0 such that 

k ~ h ; 
,(., 

k = n ; 

it. 

The coefficient erk is a product of h positive factors, each "" n, so 

that 0 ~ o-k ~ nh and 

h n-h ( )n-h ( (• ))h 
"" n u 1 - u. u + 1 ·~ u 

• 

This completes t.he proof. 
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THEOREM 18 ., ,:tJnde_E, the conditions of Theorem 17 

I I 1 JG:, ( 4DJ1+1 I < J + -- · - + T 
12(2 'n')n 16(2 rf ):rJ. r .., 

Proo±: . From part III~ Chapter I :y Sectiou. 4, Page 3, f onnul.as 

(4o7) and (4~8) it follows that 

Consequently the first term on the right hand side of (7ol3) is in 

absolute value at most equal t.o 

since 0 ;; N( f, ~· i) .~ 1 9 

According to the preceding lemma, applied with h - 1 instead of 

h 3 we find in the interval 0 ~ u ~ l for h ~ 1,23 ° 0
• , n + 1 

• 

Her e 

(2n + 1) l ·2 •3 ° • 0 
( 2n) . --

n~nt 

~ (2n ~ 1) 
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therefore 

• 

Consequently the sum Z occurring in (? .13) is by (?08) in absol ute 

value at most equal to 

Kt. _ ,, __ _ 
16(211)n 

• 

Thi s result gives the required result o 

An important condi t.ion in the two preceding theorems is the 

inequality 

0 

I f a function g(x), the number hand a point x are given., how can we 

find two numbers K and p,, such that this inequaliilf holds? To that 

end the following theorems may be usefuJ .• 

THEDREM 19 lPrcduct Theorem.) . I f 

(h ~ 0 1 O OO n) 
' ' ' 

( h = 0 1 •• • n) 
' 3 ' 
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h21.9:, when Kh' Lh3 Ph .. anq 1111 ~ monotonic non-decreasing functions 

~ 0 of h, then t he E_roduct 

p{x) ~ g(x) -X Cx) 

sat.isfi~ th~ :inequali.tie.§ 

(7 .15 ) (h = O,l, ••• , n) 

and 

Proof. We have --
IP (h) (x) i "' I r (~) g(k) (x) x (h-k) (x) I 

k=o \ l 

~ ~· (h) K k L 11h-·k 
1
h k h Ph h h 

K"-"0 

THEOREM 20 (On.~ function of!!; function). Consider 

f(x) ~ X (g(x)) • 

(h = 1,2, ••• , n) • 

l dh~I ~ 
h t dyn ~ (h=O,l, Ooo 'n) ' 

• 
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:her~ y "" g(x). L~~ ~ ~~ tha_! Lh and ·yh(O ~ h ~ n) and 

h-1 ( ~ ~ ) . ·- l. = h = n. are monotom.c non-decreasing functions of he 
~ --

Then "the inequality --- . 

(7 .,18) 
t
f(h) (x) I ~ 

(h+l)~ 

1 

holds f o!' h ""' 0 an<! ~..£ for the positive integers h ~ n with 

~ t he othe:: positive i ntegers :h ~ n _!,here exists ~ smallest 

positive 2-!1-_!egE!!: q ( t his' integer is ~ h) such that 

for the~ i ntegern b. ~ have 

l lr(h) r. 'I ~ 2h h L q ,.~9 1.X; vh h a 
\.tl+ J o - • q 

Pr oo.f., We must prove the i nequalities (7 018) and (7 021) .for 

x "':x mder the assumption that the inequalities (7.,16) and (7.,17) 
Cl 

hold at x "" x • If we replace g(x) and -Y (y) by the polynomials 
I) I\ 

and 

where y 
0 

m g(x
0
), the func tion f (x) "' A (g(x)) i s replaced by a 

.£ 
polynomi al whose derivatives of order ,., h a t x = x

0 
are the same as 
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those of t he f unct i ons f (x) itself o Without l os s of generality we 

may therefore suppose tpat g(x) and )( (y) are polynomials of degree 

~ h . 

Proof . In this way we fi nd by (7 016) 

for the points x w.i'th Ix ~· x
0 
I vh "" t. For t hese poi.nts x we have 

f (x) "" x (g(x)) 

so that , accordi~ to (7.J. 7) , 

0 

Now we distinguish two c ases o 

l o Consider f irst the i nt eger h ,., 0 and t he posi tive integers 

h ~ n which satisfy inequality ( ? ,,19) . For h ""'0 the left hand 

side of (7 J.8) i s equal to 

according to (7 o.17), so t h at formula ( 7 018) holds for h ~ 0 at 

x ,., x o Consider now an integer h ~ n subject to (7..19) . Since~ 
0 ~~ 

(1 ~ k ~ n) is a monotonic non~increasing func tion of k, we have 



(k =: 1,2, 0
"

0 'h) o 

Multiplying we obta:in for k "' 0,1,, 0 0 0 
, h 

so that. 

I t follows t herefore from ( 7 ,.22) that 

lrCx) I ~ Cb. + i) 811 )~ 

for ·the points X l y ing on t he circle r With center x
0 

and radius iv . 
The pol ynomial .f(x) ..,, X (g{x)) s a tisf'ies t he identity 

(7.23 ) 1 (h) ( ) _ 1 l f(x) dx 
h~ .f XO - ~ ( )h+l ' r x-xo 

henc e 

which gives the required result (7ol8) at x = x
0

o 

2 o Let us now consider a posi tlve integer h ~ n which does not 

satisfy (7 ol9), so that 
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Tb.e smallest positive i nteger q with (7 020) is therefore E h., Then 

fork ~ 1,2$ O OO ' q - 1 

<l 

therefore 

fork~ 0,1, o oo , n 0 

For the points x on t he circle r we find therefore by ( 7 .,22) 

so that. it f'ollows from (7 .. 23) that 

.. 

This complet es the proof . 

Examples ., To find an upper bound for the absol ute value of the 

derivativ·es of 

f (x) .,, 

where x > 0 and o< > 0 3 we let 

a( 
g(x) <"1 € J:: 

~ 
Then we have for h ~ 1 

.:. Ex<>< 
e 

and X (y) ,,,, e~y 

~·i jg(h)(x) I ""~ je °' (O'. ~ 1) o o o (o< + 1 ~ h) lxoe-h , 

hence 
~{ lg(h) (x) I ~ I € I o(. x°'-h 
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if 0 < ~ ~ 1 o If o< ~ 1, we have 

lk - i - o( I ~ k o<- for k ~ 1 , 

hence 

cX. - 1 
• -2-- 0( +1-h ' ~ h 

oo o • • h ::O<. 

' 

so that in that case 

i I (h)< ) I .t:. r I h C>(-·h 
't:"1' g x := E o< x 
n~ 

Let L :=. I € I 0( x O{ o We can apply the preceding theorem with 

and w""i.t.h 

L ~ L 
h 

Furthermore 

-l 
and vh "" o< x 

so that we may choose in the preceding theorem 

• 

'lhe inequality (7.19) assumes here the form h ~ L* , where 

0 



:ii' 

if 

Consequently we find for the i ntegers h which are ~ 
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<G * 0 and 12 L 

• 

This result enables us to find an upper bo1md for the absolute 

values of the derivatives of the more general function 

' 

where 

o( > 0 and (3 real D 

We notice that 

(7 .,25) 

,h (3 (3 h 
I~~ I ·- I~< (j - i ) · · 0 < (3 + i - h) I x -

d.xh 

Combining this restil t with ( 7 .24) and applying the product theorem 

(theorem 18), we obtain fcir the D:itegers h which are ~ 0 and ~ t* 

Also the more general fmction. 

q(x) ~ x (.1 (log x) m -€XO( 
e 

0 
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where 

~ 

x = e 
' « > 0 ' (3 real , • .l> 0 m integer = 

can be treated in this way. If h denotes a positive integer, we have 

dh:J,og x _ + ( , , - h h.. t x 
- dxh. - - -'-i" 

and therefore for h ~ 0 

( 7 .27) dh'J.og xl ~ h ~h 
~n:-- ~ h x log x .. 

dx 

This g:ives fo:t• each positive i nteger m the inequality 

( 7 .,28) dh(log x)m ,/. hh h -h ( )m 
"" - m x log x • 

dxh 

To prove that, we may as sume that m ~ 2 and that we know already 

( 7 .29) 

the pr oduct theorem (Theorem 18) te1J.s us that (7 028) f ollows f rom 

(?o2?) and (?.29). 

Applying ·the product theorem and using the inequalities ( 7 .,25) 

and ( 7 .,28) we find for each integer h which i s ~ 0 and ~ L* 

( 7 o.30) e 

Applying the product theorem and using the i nequalities (7.25) 

and (7.,28) we find for x ~ e and for each integer h ~ 0 
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dh.(x (3 (~og x)~ I ~ (hm + h + I (31 )h :x: /3-h(l og x)m " 

dx 

Let us apply ·these results to find upper bounds for the absolut e 

v-alues of some integrals of the form 

{"'Vi_ (li:) g(x) N ( f - l) dx , 

'C 

We eonsi.der first the case i n which g(x) "" x (J (log x)m and 

:::. 
t. "" e . Accord:i.ng to i nequality (7 .Jl) the condition (? 08) occurring 

in Theorem 17 is satisfied, if we choose 

" 

Formula (7 .. 9) holds with respecr!; to the modulus P( ro) defi ned i n 

Section 2.. Applying Theorem 18 w~ obtain . 

( 7 .. 32) 

l{;(x) x (.J(log x)m N (~ - i) dx 

where 

< 1 
12(21T)n 

According to (7 .31), appl:i.ed with h .: n + 1., 

( mn<5'r I /3 0 "'1 ' 

" 
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Jg(ni-1) (x) J ~ ( (n + 1) (m + 1) + J f3 0 n+l x(S -n-l(log x)m ' 

so that 

here 

J
oo 

=n=l m 
J m "" x (J (log x) dx 0 

t 

Choosing n ~ (J + 2m + l and integrating by parts we obtain 

A =n tl- m m 
J = rs (log t) + n A J l m n- - ,., m= 

r=nc · . )m{ 1 1 1 
< t log t ~ + 2(n~ (1) + 22(n- (3)~ + ... } 

0 

This inequality is very sharp, if n is large and t is very largeo 
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00 

Section 8 o ON SUMS OF THE FORM L a( n) b(E- no<) o 

n""l 

The generalized limits, introduced in this chapter, are convenient 

f or the determination of the behavior of sums of the form 

00 
E a(n) b{E 11 a<) 

11""1 
0 

For the sake of simplicity we restrict ourselves here to the sums 

( 8ol) 
' 

(J m -€:x~ 
where f {x) ~ x (log x) e 0 

We suppose 

(8 o2) '"' > 0 $ (3 real 3 m is an integer ~ 0 9 -1i + p ~ arg E; ~ ! - p 9 

where p denotes a f i xed positi ve number ~ ~ o 

'JlIEOREM 22 0 If the condition (802) is satisfied, then S is for 
-- - -- o--

small !~ ues of I E: I ~mptotically equal to 

if = ~ i.s ~ ~ integer ~ 0 , and S 
0 

i s asymptotically equal to 

00 

+ r, 
hsio 
hfk 

h 
1li~ € h J ( - (3 = c( h) 

0 0 0 + ! ) 
k 
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g = ·..@._:l i .s equal to ~ integer k ~ O; here y denotes the constant 

of Eulero 

At the same time we give a proof of the following theorem • . 

THEOREM 2.3 o If the condition (802) is satisfied and m is a fixed -- ' - -- --
positi ve integer, ~Sm is for small values of r €I asymptoticall y 

equal to 

where the integrals, taken modulo L( O+), ~ calculated in the theorems 

9 ~ 11 in Section 4o 

Proof . If Re w ~ 0 then 
' 

]31 h w w 
e ·- hf 

h=o • 
(q = 0 , 1 , •.. ) 

so that 

is equal to 

... q;:_l 
.rq (x) L (= G)h ( (.i + 0<h (l )m) ' ( ) 

n1,"":'"" x og x + rq x 
hf;Jo 

where 

~ e xo( 
e 

dx. ' 
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(8 06) 

= 1:! lq x l3+ D1q-1 { c I /3 I + -< ql 11og xf" + m 11og xr-1} 

Applying Theorem 16 in Section 6 we obtain modulo L(O+·) 

00 

S :.1 J f(x) dx + lim ( h ~ !) f( b ) 
m o-->o 

0 

( 8 . 7) 

where 

00 

Rq = J 'lj_(x) rq (x) dx • 

0 

The expression 

and consequently 

(8 ... 9) 

except in the case in which m "" 0 and fJ + o( h = 0 or -1 for suitable 

:integer h ~ 0. In 'lheorem 23 the integer m is different from zero, 

so that (S - !) f(S) tends to zero modulo L(O+), hence 
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The proof of Theorem 23 is therefore establ i shed as soon as we have 

shown that the remainder IR I is fer each fixed integer q ~ 0 for 
q 

small values of I€ l at most of the same order of magnitude as I E (qo 

In Theorem 22 we have m = Oo Then formula (809) holds if 

/3 + o< h 1' 0 and f - 1 for each integer h ~ Oo I f there exists an 

integer t ~ 0 such that ~ + ~ t = o, then we have modulo L(O+) 

as b ~ Oo If ther e exists an integer k ~ 0 such that (3 + o< k = -1, 

then we have modulo L(O+) 

(Boll) 
k ( r - 12 , f c b ' ~ J- € > _ kt 0 as ~ ~ 0 

Finally, if there exist two integers 1. ~ 0 and k ~ 0 such that 

(3 + o< 1. = 0 and (3 + o< k "" -1~ then we have modulo L(O+) 

( S ~ 1) f( ~ ) ~ r ( o) i ~ € ) t + ( - f ) k 
2 ~ tt R! as X -7 0 

The special case m "' 0 of Theorem 11 i n Secti~n 4 gives 

- s r 11'1 ( x) x- s-l dx = J (s) 

0 

for s f 0 and s f l 

= 0 for s := 0 

= r - i for s = 1 

Therefore 
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cci c- <.;)h jc~ A - o( h) 
'"' }.; fi i . fv ' 

h::.::o 0 

if there does not exist an integer h ~ 0 for which (3 + o< h is equal 

to zero or ~l o If there exists an integer 1. ~ 0 such that f3 + 0< 1- = o, 

then we can choose q such that 1- < q and then 

the term wi.th h "" 1. on the right hand side of (8 .,13) must be cancelled. 

Finally, if there exists an integer k ~ 0 and < q such that r'?J + o( k = -- 1, 

then the term w:i t ,h h "" k on the right hand side of ( 8 0 13) 

must be replaced by (-k~ )~ ( 1 - 1)., 

'Ihus we find modulo L(O+) that 

lim { ~ - ~) f (8 ) + E1 (-it ( f3 + e< h) f 00 1f
1 

(x) x(3+Cl(h-l dx 

b ~o h=-o • 
(8.,14) 

0 

(- € )h y (- A - o( h) 
h! " 1~ 

if there does not exist an integer h ~ 0 such that (3 + 0( h = - 1; for 

i.f t here is an integer 1- ~ 0 and < q with (3 + o< t ~ o, then the term 

is given by l im ( b - ~) f ( $ ) o Formula ( 8 014) holds also if - ~ 
i~ ~ 

is equal to an i nteger k ~ o, but in that case the term with h = k on 

(- E)k 
the right hand side of ( 8 ..14) must be replac.~ed by k ~ ""/ o Con-

t , .. ,.. . f (3 +l • t . t ~ 0 th sequen .J...J, i - ~~is no an in eger ~ , en 
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and if - /3 +l is equal to an integer k ;; 0, and < q, than 
0( 

(8 .J.6) 
h k 

(.- G) {C- (3 - o< h) + -v (-E ) + R 
U C ht = • 0 kt q 0 

Consequently s not only the proof of Theorem 23.:1 but also that of 

Theorem 22 is established, as soon as we have shown that the remainder 

IR I i s for each f i xed integer q ~ 0 and for small values of IE I a t 
q 

most of the same order of magnitude as I E lqo It is even sufficient to show 

that for sufficiently l arge fixed i nteger s ~ q (fixed means here : 

independent of €) the remainder IR I is f or small values of I E I at 
s 

most of the same order of magnitude as I E lq, for it follows from 

(8 .7) that 

s-1 
R CM r 

q h::ctq 
(- G )h Joo¥ ( ) ~ (3 + ""h(l )m)' ·- 1 x x og x 

ht 
0 

dx + R s • 

We choose s so large that (3 + o( s > 0 o Since we are· only interested 

in the behavior of the sum Sm for small values of I € I we may suppose 

that I€ l <lo 
We divide R

5 
i.nt o two parts U + V • where 

s s-

(8.,17) 



and 

( 8 .J.8) 

where 

(8 .19) 

00 

V
8 
~ f Vi_(x) r

8
(x) N(~ - 1) dx , 

t 

(TII,III,8, 7) 

and where the order n of the neutralize!' N(u) is a sufficiently large 

fixed integer . For sufficient ly small J € I we have t ;} e. 

Applying (8 . 6) with s instead of q we obtain 

(8.20) lU
8

l ~ ':: ls <J (J J + <>< s + m) /
00 

xfl+o<s-l (log x)m dx 

t 

We have chosen s so large that (3 + o( s > 0, so that 

• 

In this proof c1 , e2, •• • c9 denote suitable numbers which are indepen

dent of € , t and x. In this way we have found 

for sufficiently large fixed number s. It is therefore sufficient to 

show that V is for given integer s and for suitably 
s 

chosen integer n at most of the same order of magnitude as IE lq• 

From the definition of r (x) it follows that 
q 

., 
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therefore 

where 

s-1 
r (x) = r ' (x) ~ :E 

s h=o 

~ (J+O(h)' 
\x (log x)m 

JOO I X 
W = 1Vi (x) f (x) N(t - l) dx o 

t ' 

j 

Applying ( 7 0 34) with (3 + o< h - 1 i nstead of (3 and with m and m - 1 

instead of m, we find 

['° 1(
1 

(x) (x (3 +o( h (log x)m) ' N('£ - 1) dx 

t 

if we choose the fixed integer n ~ (3 + c.< (s - 1) + 2m., Then the sum 

Z1 occurring in (8.,22), is in absolute value at most equal to 

if the fixed integer n is large enoughn The only thing we have to do 

now is to show t hat also W is for sufficiently large fixed integer n 

at most of the sane order of magnitude as I€ I q., 
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We have 

' 

where Ph(x) is a polynomial i n € x°' and l og x .; the degree in 

E xo< is ~ h and the degree in l og x is .g m.; this assertion is obviou~ 

for h = 0 and can be proved for h ~ l by means of the principle of 

mathematical inductione Thus we find for each fixed integer h ~ 0 and 

for x ~ e 

where 'rl ::s Re € ~ I € r sin p > 0 0 From 

l 

fsl2oe.t°" = 2<>( I e ,~ < 

it follows that in the interval t ~ x ~ 2t 

o( 

2 

Applying (7.13) with I= Wand g(x) = f(x) we obtain 

!WI <"" Joo x (J- n-1 (l + ( lelx°')n+l)(log x )m .-11xo< dx 

t 

+ c
6 

t ~~n (l og t)m 

< c5 It Jn+l Joo xf'+(O( - l)(n+l) (log x)m .- 71xo\ dx 

t 

' 

if n is sufficiently lar ge. 'Ibis inequality implies, if 0 < 0( < l, 



jw I < ea I e I q ' 

if t is sufficiently l argee If o( ~ 1 we wrlte 

for sufficiently large n e This completes the proof o 

In the preceding theorem we have found for Sm an a symptotic expan

sion, which is valid for small values of J e I.. This expans ion is, as 

we shall prove now, convergent (1) if 0 < ~ < 1 (2) if o<. = 1 and 

I€ I < 2 fl o To that end we examine the behavior for large values of 

h of the integral 

J
<.'O 

Ih ~ 1f'1 (x) 

0 

We have found in Theorem 11 in Section 4 that this integral i s equal 

to 

if (3 + or.. h is different from zero and 1., 
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The zeta ftmction of Riemann satisfies, as we have seen in f onnula 

{4ol6), t..~e functional equation 

t<~ s) "" - 2 (2 'ff) ~l~s J(l + s) r (s 40 1) sin¥ 0 

For s ~ l we have 

2 
0 < J ( s + 1 ) ~ J ( 2) ~ f and I sin ¥1~1 , 

so that 

1 r c~ s) I ~ ~ c21J")
1

=s rcs + 1) 0 

The series 

has therefore the majorant 

1 
12 

l € lh o<. h + 1) __ ,..._...._~ 
ht 

and this majorant converges (1) if 0 < 0( < 1 (2) if 0( = 1 and 

I E I < 2 'IT". This gives the required result in the particular case 

m = Oo In the general case m ~ 0 we write f (m) (- s) by means of the 

functional equation of the zeta function as a linear combination with 

constant coefficients of terms of the fonn 

(2 7t)~s J(g) (1 + s) r (j) (l + s) (~~~) -4!- ' 
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~ ~ 
where g + j = mo Consequently for s .., l 

i f (m) (- s) I ~ y ( 2 11)-s .E I r ( j ) (1 + s ) I 
J""O 

where 7 depends only on m. The series 

has therefore the majorant 

.f I r< J) c f;> + oc. h + i) I 
J=o 

Since also this majorant converges (1) if 0 < o< < 1 ( 2 ) if o< = 1 and 

I <: I < 2 1t, we find in this way the required result f or each integer 

We see evern if I E I < 2 f( and 0 < °' ~ 1, then the expansi on, 

obtained above for the sum S , converges uniformly i n e>< " 
m 

The question arises whether S is in these two cases the sum of 
m 

this convergent series o If we assume that - f < arg E < f , the 

reader finds the affirmative answer in 

'IEEOREM 24 • As surne m "f < arg E < f. Suppose either 

0 <. ex < 1 or o( == 1 ~ I e I < 2 1r. ~ (3 be real and l et m ~ ~ 

integer ~ Oo Then the sum 

where 
(J - t.xo< 

f(x) = x (log x)m e 
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~ be written ~ a sum of ! convergent series .:1 namely 

(8 024) 
-

A +l ,_ 
~ oo (- E)11 re 11;1) E <>( + L fit J (- (3 m ""h) 

n""o 

. f /3+l . t . t :::... 0 
1 - --;;( _:i.s ~ -~ _in_e_..g .... e_r "" 9 

• A. +l 
if'-~ 

o( 

+ i (-h~ )h .r (- (j - o( h) 
h~o 

hfk 

is equal to ~ integer k ~ 0, finally for m ~ l 

00 

I (3 m - fxce. 
Sm "" x ( l og x) e dx + 

0 

~ th!': .5::_r!tegral~ are taken modulo L( O+) o 

Pr-oo.f o We begin in the same way as in the proof of the preceding 

theorem, but now we must show that t he remainder R tends to zero as 
q 

q -><+ oo; in this argument e, 0( 9 f3 and m are supposed to be fixedo 

Let us treat first the case that 0 < 0( < 1 o We choose a number 

t depending on q such that 

t -~ 00 
t o< 

0 ·- 10 , q as 0 

Furthermore we defin e the order n of the neutralizer N(u) as the 

largest integer~ (m.~?)e - 1 $ so that n depends on q and tends to 

i nfinity as q ~ oo, even so rapidly t hat 
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.9 log t -) O 
n 

For sufficiently large q we have 

t::) e and 

as q ~ 00 0 

We divide again Rq into the two parts Uq + V q' where Uq is according 

to (8 06) , i n absolute value at most equal to 

o< q) llog xlm + mllog xlm- l} dx 

where Y is fixed o 

te>( 
From q °" 0 i t follows that Uq °' 0 as q ~ oo . 

Furthermore 

! CO 'Vi (x) f I {x) N(t - 1) dx 

t 

~-Joo - lr ' (x) I ax-+ o 
t 

as t ~ oo o It is therefore sufficient to show that 

l h Joo 
q- 5'!. ~ s ~h~ )~ Ih ' where Ih 12 '1"1 (x) r I (x) N(~ - 1) dx ' 

q h rco " t, 

tends to zero as q ~ oo, for then it follows from (8028) that V 
q 

and therefore also R "" U + V tends to zero as q "" oo. To t hat 
q q q 

end we apply inequality ( 7 034) with (3 + e< h - 1 instead of (3 . 

The sufficient condition 
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is satisfied for 0 ~ h < q and for suf'ficiently large q, since it fol-

lows from (8028) that then 

n ~ (3 + °' q+ 2m> (3 + oc h+ 2m 

We find therefore for 0 ~ h < q 

For sufficiently large q 

n+l~ jAJ 
/" 3 

hence 

(n+l)(m+l)+5n+ l ~I ~ (n+l)(m+7) ~ 1 
- t --...... t --= -e 

by the definition of no Consequently it follows from ( 8 030) and 

log IIh I < ( (3 + 0( q - 1) log 2t + m log log 2t - n - 1 < - ~ n 

for sufficiently large q., In this way we find 

L -k 00 
l""l =e2 I; 

q k=o 
I e lh .,, e I € I-~ ~ o 
h~ 

as q ~ 00 e This completes the proof for 0 < o( < 10 



'Ihe Stm!. S is a continuous fi.mc t ion of o< i n the interval 
m. 

0 < c.( ~ 1 and we hav·e seen that the expansion, obtained for Sm' con-

verges u.nifornily .in c< :if I € I < 21l" ~ so that~ the required formulas 

(8 .,2J), (8 024) and (8 025) hold also if 0\ ei l and I c; l < 2 'ff. 

It .is easy to see that the s eries Sm remains convergent if' the 

condi tlon ~ f < arg e < .f. is i•eplaced by 

(8 .,31) .~ arg € and (J < D( = 1 

and that t he sum Sm is a eontinuous function of E o Since the expan

sions9 obtained f1,,1 Sm9 converge miformly i n o< (1) if 0 < o( < l (2) 

if o( 5'l l and J r= I < '2 ·r( 9 we obtain finally 

THEOREM 25' . .Ass~e ( 8 .,31) ~ let m ~ !:E integer ~ 0 3 if ot "" 1, 

~ ~!:: th~ I~ I < 2 1T., ~'!~these conditions the formulas (8.24), 

( 8 . 25') and ( 8 .,26) .9 obtained in the preoeding t heorem, remain true 0 --·- - -- ---- -
In the chapters I 9 II and II we have no·t exhausted the theory of 

t he sum formula of Euler o Still many- other applications can be given, 

even in the domain of the real variables, and the Stml formula of Euler 

in the complex: plane has not been treated at all in these chapters o 

The reader can find an excellent exposition of this sum f ormula :ing 

W., Bo Ford9 Studies on Divergent Series and Summability , Michigan 

Science Ser1es, vol o ll, New York 3 The Macmillan Company, 19169 

XI + 194 pages (compare i n particUlar P o 1 ·-· 63o) 

September 159 19~2 
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