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Asymptotic Expansions%

Part III. THE SUM FORMULA OF EULER

Chapter I. REAL VARTABLES
Section 1, FIRST FUNDAMENTAL IDENTITY
The purpose of this chapter is to write the sum
S =f{A+1) +FfA+2) + .0 + £(B) ,

where A and B are real numbers such that B — A is a positive integer, in
another form involving integrals. To that end I let ?]ﬁx) =x - % and I
introduce the periodic function TPi(x) with period 1 which is equal to
?lﬁx) = x = % in the open interval (0,1) and which has the value zero for

integral wvalues of x,

THEOREM 1, Let = and (3 be real and assume 0 20 €1, If £(x) is

continuously differentiable in the interval

min (A +< , B+ P, A+06)Ex% mx(A+x,B+@,B+8) ,

then

B+ (3
(1.1) s = f f(x)ax + ¢,(1 -PF)E(B +@) - ¢,(1 ~o)f(a +X) - R,

A+exX

*part T (Enveloping Series) and Part IT (Transformation of an envelop~
ing series into a convergent series) consist of notes made by John H. Gay
and Thomas E. Kurtz of lecturss given by J.G. van der Corput at National
Bureau of Standards, Los Angeles, California, Summer Session 1951 (U.S. De-

partment of Commerce, National Bureau of Standards, INA 51~-8; June 28,1951).
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where

A+O B+
By = f ¢, +1 - x)f1(x)dx + f Y (B +1-x)f(x)dx +
A+ed A+Q

B+
+ ¢ (B +1-x)f(x)dx .
B+@
I call (1.1) the first fundamental identity.,
Remark: It is true that the definition of R, involves ©, but in reality
the remainder is independent of @, as long as © lies in the interval
061, In fact, in the open interval 0 < & < 1 the derivative of R,

with respect to € is equal to

¢(1 - 0)fr(a+ 0) + Y, (1-0)£(B +6) - 1|{L(B +1=-4~-08)P1(a +8) -~

- (1 -0)fi(B+8) =0 ,

by the definition of the periodic function 141'1(::)0 The remainder R, which
is a continuous function of © in the closed interval (0,1) is therefore in
that whole interval independent of ©.

In many cases the parameters & and (® can be chosen in such a way that
the integral and the two following terms on the right hand side of (1.1)
possess simple values.,

In the special case that  and (3 belong to the open interval (0,1),

the formula takes the form

B+(3
& f f(x)dx + ’\]Il(l-:-(d)f(B+ B) - 'tp‘.l(j__o()f(A+O<J—R1,

Aok
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where
B+ (3
Ry = / 'l.|f1(B+1—-x)f’(x)dx "
A+ A
In this case the formula does not involve the linear polynomial Cfl(x), but
only the periodic function 'l|f1(x) s
Proof: Since Rl is independent of © in the interval O £p% 1, we may as—

sume in the proof that 0 <® <1, Integrating by parts we obtain, since ﬂ_(x) =

A+ A+O
R | Aeri-0i@ s [

A+at A+l
B+6 B+9

& ‘lp’l(B + 1 - x)f(x) + f £(x)dx
A+Q A+8
B+f3 B+(3

+ ?I(B + 1 - x)P(x) + L/. f(x)ax
B+8 B+@

The three integrals together furnish
B+/3

f £(x)dx .

A+

Since '\P'l (B+ 1~ x) makes a jump 1 if x passes a point B + 1 - m,

where m is an integer, we obtain (See note on page I,1,l)
B+6
| W (B+1-x)2(x) = Wi(1-0)EB+0) - Y (1-0)a+o) -1,

A+6
[

where

T=2f(B+1-m 3
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the last sum is extended over the integers m such that
A+0<B+l-m<B+86 ,

so that B + 1 = m runs through the values A + 1, A +2, «-- , B, This
shows that T = S. Evaluating the two other integrated parts and using the

relation
‘\'I’rl(l - 9) = (fl(l - Q) 3
the result after cancellation is

B+
Ry = £(x)ax - ¢ (1 - =)E(A + &) + ¢, (1 - B)(B+ B) -5 ,

A+

which implies (1.1).

Note to page I,1,3. In fact, we have for each integer m

v, @

+
-
1
5,
IR
!
A
-

as X <B+1 -m tends to B+ 1 - m, and
YV, (B+1-%) »35 ,

as x> B+1~-mtends to B +1 - m,
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Section 2, THE SECOND FUNDAMENTAL IDENTITY
The next problem is to write the remainder RJ.’ occurring in the first

fundamental identity, in another form, To that end I introduce the poly-

nomials th(x) (h 2 2) uniquely defined by

b
o
°

1
¢i(x) = ¢, 4(x) amd l/ @ p(x)ax =
' )

Then

w0

(2.1) ¢ (0) = @h(l) for h = 2,3, °*°

Since

1 1
P,01) = Py0) = [ Py0ax =[x = Pax =0
(o} 0

and for h = 3

1
P - Pp(@ = [ f G =0
e}

Let \[fh(x) be the periodic function with period 1 which is equal to th(x)
in the closed interval (0,1); it follows from (2,1) that such a periodic
func tion exists.

The first few polynomials CPh(x) are given by the following table.
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1]

"

[}
el o

*

1!4’1(}:)
2L5f2(x) =z -2 4z
BLQB(X) © - %xz + %‘x.

1)) ==t =2+ -

51‘?5(:{) -5 - gxh+ §x3 - :BL T

619 ((x) = L =3+ :g.,xh - %xz * -}?_'fé

1 G =xT -5 B - B 4

Bipg(x) = x0 -l + B L Teh o B2 I,
- 91 (x) = x - g'XS + bx! - 25};?+ 2 - %x.
101,00 = 0 - 57+ Bl - e sl - 2P 4 2

Iliﬁ”ll(x) = xll - %_1_}(10 + -565x9 - 11}57 + 11x” - -21::3 + o

x12 - 6x11 + Ii.l:~f.::l'0 - %éxg + 223:6 - %B—xb' + 5}{2 - 01

1219 5(x)

The second fundamental identity is as follows:

THEOREM 2. Let o and (3 be real and 0 50 £ 1, Suppose that f(x) is

continuously differentiable in the interval

min(A+A ,B+ B ,A+0)ExEmax A+ ,B+ 3 ,B+0)

and Let
A+B B+@ )
R (£) = / G, (& + 1 - 0)E(x)ax + /’ Y.(B + 1 - 0)f(x)dx +
A+oh A+©
B+/3

+ f CPh(B + 1 - x)f(x)dx .
RB+6
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Then
Bp(£) = =@ (1 = BIE(B + B) + Gppg (1 - R)E(A + ) + Ry, (£1)

Proof's (fv) - Rh(f) can be written as a sum of three terms. The first

Ry

of these three terms is

A+0
f {ff’h+1(ﬂ + 1 =-x)f' (%) + (rl'lﬂ.(p‘ + 1 - x)f(x) }dx =

A+ e
= @11 - e)f (A + Q) - Cf’h+l(1 - K)E (A + )

The second of these three terms is

B+©
/ {ilfhﬂ_(}a +1 - x)f1(x) + V;ﬂ(g +1 - x)f(x)} dx =

A+Q

= Y, 1-0s@+6) - Y, (1-0)r(a+0)

and finally the last of these three terms is

B+f3

/ {@hﬂ(B +1 - x)f'(x) + CF}‘H]_(B +1 - x)f(x)} dx =
B+0 '

- PG -B)IEB+R) - P (1-0)E(BO) .

Consequently, since

\[fhﬂ_(l =) = thﬂ_(l - 0) ¥
we get the required rcsult

R .o(f") = R(f) = P12 -B8)B+ B) - P, (L =-K)a +=xX) .
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Section 3., THE SUM FORMULA OF EULER

THEOREM 3. Let A and B be arbitrary real numbers such that B3 = A is a2

positive integer. Let of and (3 be real and 0 £ 6 €1, Then the sum

g =f(A+1) + f(A+2) + -c0 + £(B)

]

where f(x) is h times (h 2 1) continuously differentiable in the interval

min (A+& ,B+ @ ,A+0)ExSmax A+ ,B+ @ ,B+8)

can be written as

B+ /3 h~1
s = [ ), ¢,0-0:0 0
Kbk 5=0
(3.1)
h-1 (s),
where
A+O B+0 '
R, = o/p Gl 1 - x)f(hEX)dx + J/ y,B+1- xjf(h)(x)dx +
A+ A A+8
B+/3
¥ f ¢, +1-0:P e .
B+

(sum formula of Euler’)

%’Ihe sum formula of Euler in this general form can be found in the

doctor's thesis of Duncan, Stanford 1952,
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In many cases the parameters o and (3 can be chosen in such a way that
the terms, occurring in the expansion for S, take a simple form. In the
special case that « and (3 belong to the closed interval (0,1), the sum

formila of Euler taskes the form

BHR h-1
g = I f(x)dx + Z Cfs+1(1 —ﬂ)f(s)(B + [:j) -
o Ca
(38)
- hglcf (1 -2 (4 +o0) - R
s+l h *
s=0

in which the remainder term

B+(3
Ry, = j Y, (B+1- )£ (x)dx
A+
does not involve the polynomial C?h(x), but only the periodic function qfhﬁx)

The special case h = 1 of the Euler sum formula has already been proved
in §1. The sum formula follows for h 2 2 from §2, since theorem 2 of that

section furnishes for s = 1,2, *°» , h -1

B “%Q=“¢yﬂ1-m5@m+ﬁ)+%ﬂu~dH“%A+«)

S
so that
h-1
Ry =By = s?il (Rg - Rgyp) =
i h-1
- 2 Fen - BB+ ) + El‘fsq(l o)+ &)
s= o=

Solving this for R; and substituting it into (1.1) we get (3.1),

From the sum formula of Euler it follows immediately that the remainder

Rh is independent of © in the interwval O €9 £,
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Tt is easy to find an upper bound for the absclute value of the remain-
der. The polynomial th(x) is uniquely defined by h and its absolute value
possesses therefore between 1 - © and 1 —e% an upper bound which depends
only on h and « , and not on ©, since @ is bounded. Thus [‘fh(ﬂ +1 - x)| has
between A + & and A + 8 an upper bound which depends only on h and <% .
Similarly ](fh(B + 1 - x)| possesses between B + 6 and B + /3 an upper bound
which depends only on h and ﬁ., Finally the absolute value of the periodic
function '{Fh(x) is less than a suitably chosen number which depends only on
h. It is therefore possible to find a mumber Ch depending. only on h, & and

3 such that in the remainder R, each factor ¢, (A + 1 - x)y, P (B+1- x)

h
and ’lP'h(B +1 =-x) is in ‘absolute value £ Cp e Consequently

max(A+d, B+ @, B+0)
< (h)
R % ¢, /'|f () |ax :
min{A+e, B+ @, A+6)
This result is often sharp enough, if we are only interested in the
order of magnitude of the remainder. In the following section we deduce

sharper inequalities for the remainder term,

The polynomial th(x)(h = 1,2,-+*) has the following property:

(3.3) P L-% = ()¢ .

This is evident for Cfl(x) =% -%. If h 22 and if the formula has al-

ready been proved with h - 1 instead of h, then the two sides of (3.3)
have the same derivative, so that their difference is a constant and
this constant is equal to zero, since both @, (1 x) and CPh(x), inte-
grated from x = 0 to x = 1, yield zero by the definition of Cfn(x.) given

onP, (II1.I.2.1)-
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For h = 2 we have by (2.1) und (3.3)
¢,(1) = 4,00 and @) = ()¢ (0) ,

so that ?’h(O) = 0 for each odd h> 1,

The polynomials h! ({h(x)(h 2 1) can be written as

(3:l) hig,(x) = o - %(?)xh-l + (Ig)Bj_xh'2 - (]ﬁ)Bth"’LL *

(Dm0 - (im0 e

where the last term is a constant or linear in x and where the coefficients

B,, *°* denote suitably chosen mumbers, called the numbers of

Bl? 22
1

Bernoulli, In fact, the special case h =1 follows from ¥;(x) =x - 5.

Suppose that h = 2 and that the formula has already been proved for h - 1 in-
stead of h,
The derivative of the right hand side of (3.h), divided by h, 1s equal

to
B SO (DB e s (- 119 (0 = (- DG

so that the two sides of (3.l) possess the same derivative, Their differ-
ence is therefore a constant. If h is an odd number > 1, both sides

vanish for x = 0, so that they are equal for all x. If h is an even number, w
choose the nuber of Bernoulli B—%‘n such that the two sides of (3.l) assume
the same value at x = O, so that they also possess in this case the same

walue for all X.
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From {(3.h) it follows that

Taking in theorem 3 & = B =0 =md choosing for A and B integers, we
get the following result for the sum
i B ]
s=3, f(n) ,
n=A
where the prime indicates that the terms with n = A and with n = B are

counted only half,

THEOREM L. If A and B denote integers with A < B and if f(x) is 2k

times (k ¥ 1) contimously differentiable in the interval A £ x £ B, then

B k B .
v= for(x)dx (-)s L s [p2s-1) gy | p(2871) cr
S { (x)dx + ;2:1 TEY { (A)} .

where

B
n- /[ ¥ (=0 e
A

If f(x) is 2k + 1 times continuously differentiable in the interval

11N

4
x = B, we can write r; also in the form

A X

1'k=f ¥ g 02 e
A

These results follow immediately from (3.1), if we choose @ = (3 =0, for
then the contribution to the right hand side of (3.1) furnished by the

terms with s = 0 is equal to

Y. (W@ - Y (De) = 32(8) - 52(A)
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The first few Bernoulli numbers are%

1, .l .
Bl = '6 2 B2 = 36 ] B3 - E 3
1, g . 69

Bl!- = 3-(5 5 B5 e -6-6 s B6 m,?B s
B =1 o = 3017 p . L3867 .

7 8° 8~ 510 ° 9~ "798 ?
B = L7LOIL , B = 85513 p = 23636091
10 ~ 330 2 11 138 °? 15 ® 2730 °
B = 8553103 | B. o= 237L5L61029

13 6 d ' 1k 870 g
B = 8615811276005 L, = 7709321011217

15 11,322 g 16 510 ?
. = 2577687858367 , B. . = 26315271553053477373 |

17 5 : 18 1315150
B = 29299939138L1559 5 = 261082718L96L19122051

19 5 ’ 20 13530
B, - 15200976L3918070802691 5 o 27833269579301024235023

21 1806 22 490 ?
B, = S26LSI111593912163277961 p.. = 5609L033689978176862L91275L7 3
23 282 2l T8I0
B, - L95057205 2m0796u8212h77525

*See Tables of the Higher Mathematical Functions, computed and com-

piled under the direction of Harold T. Davis, IT, p. 230, The Principia

Press, Inc.; Bloomington, Indiana.
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_ 801165718135L8995734792199.1853 |

B 1550

B = 2911,996363188L8621,21118123812691 ,

27 790 ?

5. - 2L79392929313226753685115739663229

28 870 ’

B = 81,,836133188800418620,6775991036021 |

29 ~ 354 g
_ 12152331L0L8375557204030L9910798202L60L1L9T
30 56786730 '

Let us show now that the periodic functions ﬁ.l!h(x) (h=1,2,ee°)

'possess the property

1=h
(3.6) Yo+ Wolx+g) =2 Y (2x)
in particular

Wix) + Yoz + %) = Y, (2x) .

The last identity is obvious for x = 0 and for x = %, since ‘l]fl(O),

\Irl(%) and Wl(l) vanish. In the interval O < x < % we have

Yq(x) + Vol + %) - Y,(ex) = (x - %) +x - (2x - %) =0

and in the interval ¥ <x < 1 we obtain

Vo (x) + Wl(x+]§')- 1}'1(2:{)=(x-%)+(x-l)—(2x-§)=0 ;

The periodic function “Lp'l(x) therefore satisfies the required rela-

tion.
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If h 2 2 and if (3.6) has been proved with h ~ 1 instead of h, then the two
sides of (3.6) have the same derivatives, so that their difference is a constar
and this constant is equal to zero, since each of the functions 'Llfh(x),

Yy (x + %) and Y, (2x), integrated from x = 0 to x = 1, yleld zerc by the
definition of Y ,(x) and ¢fy(x). This establishes the proof of (3:6) s

Letting x = O in that identity we obtain
.3 = ¥,(@ == Yo .
Therefore, ¥, (3) = 0 for odd values of h and it follows from (3.5) that
; B
€ 1 k k
(3 07) ?21{(?) i L}{zk(‘z) (") (1 "E’Q‘E‘:I) W o

Taking == (® = % in (3.2) we obtain therefore,

THEOREM 5. If A and B are integers with A € B and if f(x) is 2k times

a
(k = 1) continuously differentiable in the interval A + % £x&B+ %, then

B

B
Z f(n) = / fx)dx +
n=A+1 5

e

where
Fom [ Vpenef® @ .
A+g
If £(x) is (2k + 1) times continuously differentiable, /£ may be written
B3

fk = ‘qrzk.p.l(-x)f(qu“l) (x)d:x .

.1
Az
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Section i, SOME PROPERTIES OF THE FUNC TIONS

¢ (x) 2 Y (x)

In the interval 0 < x < % the polynomial Cf2k-n1(X) is negative for odd
values of k ® 1 and positive for even values of k Z 2, To begin with,
Cfl(x) = x - & is negative in that interval. Suppose that k 2 2 and that we
have proved the property already for k - 1 instead of k. Let us consider first
the case in which k is odd. Then the function ?Ek_l(:{) has a positive second

derivative Cf’2k__3(x), so that its first derivative is monotonically increasing.

Furthermore, since q’zk_l(x) takes the value zero at x = 0 and at x = %, the

i

derivative qék_l(x) is negative at x = 0 and positive at x = 5, so that
CFZk—l(x) itself is negative between 0 and 3.

In the case that k is even, the function @, -(x) has a negative second
derivative and therefore a monotonically decreasing first derivative which is
positive at x = O ard negative at x = 5, so that [‘?21{—1(]{) is positive between
0 and 3.

Since QEk—l(X) is the derivative of szk(x), we have in the interval

£ P4
-_-.x=—%—

0
Por(3) B (x) & &, (0) if Kk is odd

and

1.

P, (0) q?k(x) (PZk(%') if k is even .

Consequently, it follows from (3.5) and (3.7) that we have in the interval

& o 2

0-x£3
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1
(b - (1 - ;zm) o 6 O 00 £ iy
and
X p 1 By
(L.2) 0 &) {CFEI«:(X) - 772150)} - ( "2‘2‘"@) k)T °

These results imply that the numbers of Bernoulli are positive. From

the formula

proved in (3.3) it follows that the formulas (L.l) and (L.2) hold in the
whole interval 0 € x €1,

In this way we £ind an upper bound for the absolute value of the poly-
nomial C?ak(x) in the interval O € x E 1, To obtain an upper bound on the

. Y
whole real axis, we prove for h =1

xhﬂl
(L) Gplx+ 1) = @) = vy -

nw

This identity is obvious for cpl(x) =x -%, If h®2 and if the identity
has already been proved for h -~ 1 instead of h, then the two sides of (L)
have the same derivative, so that their difference is a constambt. This
difference is equal to zero at x = 0 and therefore identically equal to
ZET0 o

This result shows that fr each x = O

ky .

(L5) | Por ) | € ooyy (B + %



This formula follows in the interval O £
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x £ 1 from (Lol). If

% 21 and if the inequality has already been proved for x - 1 instead of x,

then

1o =) | & miyp B+ (- 1)

and therefore by (L.3)

21{)

Z (x_1)2k—1
|':ng(x)|= I?gk(x -1 + =T
2k—-1
£ o (& * - DT+ Loy
= TZ‘]T;')_' (B + =)
since
2K (- 1)K - /‘ B O e
x-1
Combining (L.5) and (L.3) we fimd for x £1
(L.6) H"Zk(x)l (B, + (1 - S

It is easy to write the periodic functions Wh(x) as sums of Fourier

Series. We have namely for each real x and for k 2]

o0

(L.7) ) = (_)k y 2 sin 297 nx
Yol n=l (247m)2< L

and

(4.3) ‘\P’Ek(x) = (=YL czn 2 cos 21rnx

n=1 (21 n) K
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For k = 1 the first formula takes the form

® .
(L9) ‘Llfl(x) - _ 3 5inZ2nmx .
n=1 mwn

since Y ,(x) has the period 1 and since Y, (0) =0, it is sufficient to
prove this identity in the open interval 0 < x <1, The right hand side of

(L.9) is the imaginary part of

00 N i
b =, where z = ez'“‘lX &

s
3
T p=2 ®

This series converges at all points z # 1 lying on or inside the unit circle

and represents there the branch of the function # log (1 - z) which assumes

enix
e

the value zero at 2 =0, For z = and 0 < x € 1 the imaginary part

of ?-‘];- log (1 - z) is equal to

el oy

-gj‘?-arg 1L-3)=x-

which yields (L.9).

Integrating this identity repeatedly we obtain (L4.8) and (L.7), since
all occurring expressions, integrated from zero to 1, give zero,

Combining (L.8) for x = 0 and (3,5) we obtain

= 2 i
(L.10) By o (k)1 § (k) .
In this report §(s) denotes always the 7eta function of Riemann, which 1s
defined in the half plane Re s > 1 by
o

Sr= 2 = .

n=1l n
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This result shows that B, is large for large k, namely greater than

k
2 (2K , Since K(?k):> 1, On the other hand we have for real s>» 1
(21)
- [e9)
du -8 _ 1l __s
3(5)<l+nf2f ;E-l+f u d'll"'l"'—s-:j: ;'I 9
-1 1
so that
ooy A2ENL 2K >
(h.11) B < 2 o my fork =1 .

From (L.7) and (L.8) it follows that for h 2 2 and for 0 € x % 1

z 2 §(n)

Precisely as (Lo5) and (L.6) were proved, we find therefore for h 21

h
(11.13) lq’h(x)lé%é%%%*% for x 2 0
and
h
(1.10) 14, (0 | & ?23 @ Lo rexta

the case that h is even gives the formulas (L,5) and (L.6).
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Section 5, ON THE REMAINDER TERM

In this section we deduce bounds for the remainder termm occurring in
the sum formula of Euler,

the closed interval (0,1) and if the

5

THEOREM 6. If < and @ lie

)th

(2% derivative (k 2 1) of f£(x) continuous and either always 20 or

[

11

xS+ @,thenthe sum

always £ 0 in the interval A + X

S=7f(A+ 1)+ (A +2) + eo0 + £(B)

can be written as

B+@ - 2k-1 )
S = / f(x)ax + Z Cfsﬂ(l—@)f(s)(g + 3) -
A+t s=0
2k=1
- E qs-i—]_(l - d)f(s)(ﬂ + X))+ Rk s
5=0
where*)
B
B = OF o ooy @V + p) - BN v o)
and
1 L £
(5.1) = <1";2-1-c_-i) .=gk_1 .

Remark: The condition that f(zk) (x) is in the interval A + & £x €3 +/3

either always ® O or always £0 may be replaced by the weaker condition

£

that in the interval 0 = u €1 the sum

*)Rp- in this formula corresponds to =R, in (3.2).
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2 f(2k)(n + 1)
n

extended over the integers n such that A + « €n +u <B + (4 , does not
change its sign. Note that the range of n depends on u.

Proof: In (2.2) we found for S the required expression with the remainder

B+ 1
R, =~ f ¥, (B+1 - )£ %) (x)ax = -f Yo (B=-u) 2 £ (0 + w)aw
A+ 0 "

Since the sum Z is always 20 or always £ 0, there exists a number § such tha:
o

1
- Yo ( £) f if(zk)(n + u)du

o]

Py

B+

ﬂ_xy,zk(g)‘/‘ 2025 () ax

Adel
== Yo ?){f(Zk'l’(B I «)} :

According to (L.1) we can write

B
-quk( § ) T (-)k_lgk 't"zlkc‘)'f 3

where 6, satisfies the inequalities (5.1). This completes the proof.

k
If at least one of the numbers « and (3 lies outside the closed inter—
val (0,1), the remainder R, , occurring in theorem 3 of section 3, contains

at least one of the integrals

A+D B3 |
f (fgk(A +1- X)f(2k)(x)dx and f q2k(B B F x)f(Zk) (x)dx
Gid B+0
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which do not imvolve the periodic fumction '\[fzk, but the polynomial Ty .

To obtain an upper bound for the absolute values of these integrals, we may

apply the inequalities

1P ()| € Bpyp (B + ) forx Fo
and
| @ ()| £ -@—%—,- (B + 1-0% forxfi,

obtained in (L.5) and (L.6) .

Let us now consider special cases in which & =

Choosing ¢ = (3 = 0 we obtain

&

L}

Ooro\=(3=%.

THEOREM 7. Let A and B be integers with A < B and let the (2k)th

derivative of f(x) be continuous and either always

interval 4 £x 2 B, TLet

Bl
=Z f(n) ,

n=A

the prime indicating that the terms with n = A and n

half. Then
B k-1 B

(5:2) s’ =j £(x)dx + Z(-)S‘l-@g)— (f(zs"l)(B)
A —

and

2 0 or always £ 0 in the

= B are counted onlx

g(2s71) (A)> "

(5.3) - (F e ok (f(zk‘l)(s) - f(2k'1)(A)> ;
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where

(Sch) 0 k_2';’mn

Remark: For the proof it is sufficient to apply the preceding theorem

with
o =0 ; (2k-1) (2x-1)
= = 3 rk = q’zk(O) f (B) = f (A) + Rk L

so that we obtain (5.3) with Gi = ] - ek.

The remainder has in theorem 7 the same sign as the first neglected
term and is in absolute value at most equal to twice that temm.

If we know moreover that f(2k+2)(x) is contimuious and definite in the
irrbemra‘.l.. A% x £ B and that this derivative has the same sign as the (2k)t'h

derivative, then

B <
(5.5 m= O oy (f(Zk"l)(B) - £(Z-1) m) L

where th si
re Ty,.q has the same sign as

e (f@k*l) (5) - f(2k+1)(A)) ;

7)1

so that the two terms occurring on the right hand side of (5.5) possess
opposite signs, TFrom (5.,3) it follows therefore that 9;{ = 1 - p, where

p'; 0, so that

Ih

0£e' £1 .

1
"
In this case the remainder temm Iy has therefore the same sign as the first

neglected term and is a fraction of that temrm.
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The condition that f(ZR) (x), respectively f(2k+2) (x) is either always 2 0
or alwgys £ 0 in the interval A= x £ B may be replaced by the weaker con-

dition that in the interval O £ u < 1 the sum

B-1 B~1 .
Z f(Zk) (n+u) , respectively z f(2k+2)(n + u)
n=A4 n=A

=

is either always = 0 or always E 0.

The choice X = (3 = %‘ yields

THEOREM 8, If A and B are integers with A <B and if the (Ek)th

tive of f(x) is continuous and either always 20 or always £ 0 in the inter-

deriva-

k-1 B

. B _
(5.6)  Fre = (V8 oy (f(zk-l)(B + 1 - g2y o 1)) ,

where

Remark: For the proof it is sufficient to apply theorem 6 with

wm s i G Clozk%).(f(&m 5+ P-sADan + %9+ Ry s
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: 5 * oA
so that we obtain (5.6) with 6, =6 *+ 1 ;ﬁ{

The remainder has also in thecrem 8 the same sign as the first neg=-

lected term and is in absolute value at most equal to that term multiplied

by 2 - =gy

2
(2x+2) s 4 - .
If we know morecver that f (x) is continuous and has definite sign
in the interval A £ x € B and that this derivative has the same sign as the

(2x) th derivative, then

B
(5.7) 2y = (--)k(l _ ?%q) '(Tllz'ﬂ: f(2k—l>(B + %) - f(2k-1) (a + %)) * Bsy

where £ .4 has the same sign as

3

B
k+1 1 k+1 (2k+1) I (2k+1) 1,
U Ul il G U

so that the two terms occurring on the right hand side of (5.7) possess oppo-

site signs., From (5.6) it follows therefore that

2 1
where p ® 0, so that
£gtgq 2L
T A

&
In this case the remainder term /k has therefore the same sign as tﬁe
first neglected term and is a fraction of that term.
Of course also in this theorem the condition that f(zk} (x), ond
f(2k+2)(x) hawe definite and identical signs, can be replaced by a weaker

condition.,
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The preceding theorems in this section contain the condition that a
certain sum is either always ® O or always £ 0. If we do not know whether
this condition is satisfied or not, we can often apply the following
theorem, which gives however in general weaker results.

THEOREM 9., Suppose that A and B are real, that B- A is a positive

integer, that 0 % % £ 1 and that f(x) is 2k times (k = 1) continuously

&

£

dif ferentiable .:_LE the interval A + & x =B+ «, Let

S=rf(A+ 1)+ £(a+2)+ «oo+£(B) o

Then
B+ o 2k=1
s= [ fme ) $,01-%) (f(s)(s s o) -2l s o«))
A+l 5=0
B \
(5.8) + (—)k"1 m%—ﬁ (ﬁ‘a"]) (B +64) fﬂ*’l’ (A + ot ))

B 5
+ ()% (B - A) "(E;%T. £(2) ¢ &

where fl denotes a suitably chosen mmber lying between A + < and B + &,
Moreover we have

B+ ek-1

S = / f(x)dx+Z ﬁas+1(1_qg)<f-(5)(3+ ) _f(S)(A+o<)>
A+ s=0

(5.9)  + (=)0 = —y) oy (£ v o) - ey )

B =
* (—)k—1(1 e :%)(B - A) T?%Ti- f(2k)( 52)

2



(111,1,5,8)

where §2 denotes also a suitably chosen number lying between A + 4 and
B+ «,

Proof. According to (3.,2) we have

B+ /3 2k—1
S = / £(x)dx + Z Fo1d =) {f(S)(B e R Y f(s)(A +o¢)}- By »
A+ s=0
where
Brel
Ry = [ W+ 1- 0P
Aex

Letting A=0 or %‘ we find therefore

Roe = W o () {f(ek‘"l)(B pot) - £V )}

B+ &

+ / {VZk(B +1-x) - Yo 71)} f(2k)(x)
Atk :

The factor 'lv-zk(_B +1 = X) = WZk(A) is always = O or always < 0 by

(L.2), 50 that

B+ &

f{q{ 2k(B +1 - :XZ) - wzk(h)} f(2k)(x)dx
Avet
B+<t
= f(2k)(f) / {1|I2k(B +1=x) - 1|f2k(1)} dx
A+

== By -0 Yl
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where fi denotes a suitably chosen mumber lying between A + <4 and B + & .

Consequently the required identities follow from

-1 Bk P
Yo = OF oy md Y@ = OFQ - =) Ty
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Section 6, ON THE ASYMPTOTIC BEHAVIOR OF A SUM; CONSIDERED AS A

FUNCTION OF THE NUMBER OF TERMS

Consider a sum

-

S=f(A+ 1)+ £f(A +2) + eoe + £(B}) ,

where A is a fixed real number and where B is a variable such that B = A is
a large positive integer. We want to know the behavior of 5 for very
large values of B - A,

THEOREM 10. Let A and B be real such that B - A is a positive integer.

Let 0 € B £ 1, Suppose that £(x) is 2k times (k ® 1) continuously differ-

iy

entiable for x 2 A swh that f(Zk) (x) is for x 23+ /3 either always = 0

2%~
or always € 0 and that f("l“ 1)(}:) tends to zero as x approaches infinity.

Then

B+f3 2%k-1 ‘

s=f tarror ) g0 -mee - p)

A 5=0

(6.1)
B
+ ()Mo ooty £, 6y,
where
£8 1

k

6,2 - e [ o i
(6.2) ( Qak_])

ard where ¢ is a suitably chosen number which is independent of B and @8

(it may depend on A and on the choice of the function f). If there exists

a positive integer ko such that the conditions hold for each integer

k 2 ko then the number ¢ is also independent of k for k 2 ko'
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Remark: The condition that f(zk)(xj is for x 2 B + (@ either always

20 or always € 0 may be replaced by the weaker condition that in the inter-
val 0 £ u <1 the sum

z f(zk)(n + 1)

n

extended over the integers n = B + (® does not change its sign.

Proof. Precisely as in the proof of theorem 6 we find for Q > P 2+ [°

g B
[ ¥ r1-0:B9 000 - F e oy (f(z"““l)(a) - f(ek‘”l)(P))
B

where GL satisfies the inequalities (6.2). The right hand side tends to

zero, as P and Q spproach infinity, so that the integral

(e8]
[ ¥+ 1 - 0 ma
Be/3

exists by the Cauchy criterion and can be written in the foim

B
o gy £ 5V )

where O, satisfies the inequalities (6.2).

k
Formula (3.2), occurring in theorem 3, applied with e = 0, yields

therefore the required result, where

2k=1 @
(63) ¢ == Y Fn -0t @ - L Wptr1-0: e

s=0 A



g

iy

Finally we must prove that this number is independent of k for k ko’
if the conditinns hold for each fixed integer k E ko’ It follows from the

second fundamental identity, proved in theorem 2 of section 2, that

00
[ ¥+ 1 - 06
A

& cp2k+1(1 —d)f(Zk)(A) N f’ov?kﬂ(}\ +1 - X)f(2k+1)(x)dx
A
= q)zk+j(l)f(2k)(}\) + Cf2k+2(1)f(2k+1)(A}
m o
4'Jr Yorapld + 1 - 022 (yax
A

Substituting this result into (6.3} we find that ¢ does not change its value,
if k is replaced by k + 1,

Remark: The constant ¢ can be calculated by means of (6,3). It can
also be calculated by means of (6.1), for if B is sufficiently large, the
remainder term in that formula is very small.

Taking (3= 0O we obtain

THEOREM 11. Let A and B> A be integers and suppose that £(x) is 2k

times (k ® 1) contimously differentiable for x = A such that £(2%) (x) is
(2k-1)

for x ® B either always = O or always £ 0 and that f (x) tends to

zero as x approaches infinity. Then

= B k-1
B

§ £(n) =f £lx)dx + ¢+ %‘f(B) + E (_)S—l : Lf(as_l)(B)

n=A A = (Zs)

B
11 k f(2kﬂl) (B)

L]

k=1
O O 1y

2
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where GL =1 % Gk and therefore

_1_.,ég'§2

221{—1 k °

Remark: The remainder has the same sign as the first neglected term
and is in absolute value at most equal to twice that term. If we know
moreover that f(2k+2) (x) is for x = B contimous and definite with the same

sign as the (2) ¥ derivative, then

1

251{—1 =8 =1,

)
N

so that in that case the remainder is a fraction of the first neglected temm,
The condition that £(2K)(x), and £(%*2)(x) are of definite and the same
sign in the interval A £ x €3 may be replaced by the weaker condition that

in the interval 0 # u <1 the function

00 210 @ ( )
2k 2k+2
E £ %0+ u) and .;- £ (n + u)
n=B n=B

are definite and of the same sign,

Example: For large positive integers B the sum

b 2
S= Z vnlog'n
n=1

possesses the asymptotic expansion

2 2

®
B+ 2 B / 2_28(9'.5 log

¢ + =B log
2 s=o

B + ﬁslogB-i- ?/s) 5
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where ¢, _, (3;, 7 denote sultably chosen constants. The assertion

means that for each positive integer k

k=1

= 1 2 3/2=28 2 '
S-c+-§\/]§1og B+S§__0B (dslog B+ﬂslogB+'B/S)+Rk,

where R‘k is for large integers B at most of the same order of magnitude as
B3 /2-2k logeB,

This result follows immediately from the preceding theorem, since

5 a2
f(x) = x° log” x

has the property that

B
_ 2.3/ 2 8, _ 16
{03 !f(x)dx_()s (310g° B~ Llog B+ 3) - 2

and for h 2 1

2

1 .
f(h)(x) = x° h( f’h log” x + o3 log x + ’Uh) 5

which satisfies the assumptions of theorem 11 for sufficiently large x.

This last formula holds for h = 1, that is

(645) fi(x) = %x—% (log2 x + L log x)

and can be proved by mathematical induction,

Formula (6.L) shows that
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2 . _ 8 _ 16
R LA
From (6,5) andlgg = %? it follows that
R T =1 . =
Tl Gy =% 3 7 =0 .

i
Choosing (3= 5 we find

THEOREM 12, Let A and B> A be integers and suppose that f(x) is 2k

times (k = 1) contimiously differentiable for x = A such that fczk)(x) is

for x 2 B + %’ either always 20 or always é O and that f2k--1) (x) tends to

zero as X approaches infinity. Then

ws)
l\JTl—'

k=1 o s
2 £(n) = [ ﬁﬁ&+c+5%}456~;ﬁ%)ﬁﬁ4%3+§

s
A

+ (¥ & T;§77 (2L (p 4 3

3

where

o
i
©
wA
118
no
]
n
T
.

Remark: The remainder has the same sign as the first neglected term

and is in absolute value at most equal to twice that term, If we know

o)
moreover that f(2k+a)(x) is for x = B + L continuous and definite with the

2
. th : ;
same sign as the (2k) derivative, then

% £ 1

%= 1-zEr -

so that in that case the remainder term is a fraction of the first neg-

it

o
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Section 7. ON THE SUM OF CONSECUTIVE INTEGERS

RAISED TO THE SAME POWER

THEOREM 13. For each positive integer n and each positive integer h

we have

n-1

1 1
7y 2 = (n) - (0)
To=1)T - m Pnln) = Gy

and more generally

n-1

TE%ijT ng (m + w)h-l » 7£(n + W) - Th(w) .

Proof. We have proved in (L.k)

h-1
p 4

(h=-1)1

=y x+1) - Py .

Applying this formula with x =0, 1, °°7 , 0 = 1 and adding we obtain the
first required result. Using the formula with x =w, w + 1, *e* ,wt+tn-

and adding, we find the second required result.
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Section 8., ON THE INITTAL SEGMENT OF THE HARMONIC SERIES

THEOREM 1li, For each positive integer n

By 1 B
i

1 1
+E+ooo+ 2‘!‘—5-;1-1—1—'5'

=
SIS

=logn+Y + %E

=

' B
k-1 “k=l 1
==

where the remainder R, has the same sign as and is a fraction of the first

neglected term., Here 3’denotes‘g suitably chosen constant, called the con-

stant of Euler.

This result follows immediately from the remark added to theorem 11,

applied with

1
A=1 , B=n , Bx} =2
since
1 (2s-1) (2s-1)1 T
f (X)E— - e
s)t (ot = 25x§s

gatisfies the requirements in that remark.

The remainder is in absolute value at most equal to

S By g c.2_ () 1
’212‘117512 ’Zk——I(zqf)zk 12K

according to (l.11). For instance, taking n = L and k = li the remainder

is in absolute value less than

-6

<o
o2
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so that this choice of n and k gives the value of the constant of Euler with

6

an error <10 .
In the same way we obtain

THEOREM 13. If 0 < w £ 1 we have for each integer n

T%+TT?"_.'I+-.n-1}-;1.,_.:::.;.1-_-]_c;g(1,.,1'+n_)-l--()+ ’::;4'11
e N N S SENNRPN R ¢ By 1, g
2 (w+n) T (w+n) B (w+n) = ’

where the remainder Ry has the same sign as and is a fraction of the first

neglected term., Here C denotes a suitably chosen number which depends on w

but is independent of n. This constant can be calculated as follows.

From the Weierstrass' canonical form of the gamma function

#PG) = NCw+1) =¥ T Q + ml g/n
h=1 -

where 7 denotes the constant of Euler, it follows, taking the logarithmic

derivative, that

1, M'(w) _ _ ool & R
= + T‘W = -7 + hfl £~ ”
so that
n-1 n~1 n-1
1 1 1 1 1
A ._—-logn: E——logn 3 - - i
h=o h¥w =1 5 'W h=1 (h i
tends as n = oo to
Fe) __ [

T = - r'(Wj T r‘(W)

since it follows from theorem 1l that
=1

1im z
n - oo\ h=1

- log n = .

=
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-M(w)

Consequently the number C, occurring in theorem 15, has the value T=Tﬁ7~ .
Of course, in the special case w = 1 this constant is equal to - [™(1)

and therefore equal to the constant of Euler.



(III,I,9,1)
Section 9, ON THE FORMULA OF STIRLING

THEOREM 16. TFor each positive integer n

B 1 B

1ogn'.=(n+%) 1ogn-n+%log2ﬂ+mﬁ—m§

B
k k=1 - 1
MRS ¢ =) 6= = A S
where the remainder Rk has the same sign as and is a fraction of the first
neglected term.

Proof. Applying the remark added to theorem 11 with

A=1 , B=n and £f(x) = log x ,
we obtain
n
f f(x)dx =nlegn-n+1
1
and
1 f(ZS"'l) (X) - (25-‘2)’. - 1
(Zs]1 (2s)t x?’s—l (2s=1)2s xo51
so that
1 1 B2 1
log n! = (n + 3) 10gn-n+c+mﬁ—m—n§

(9.1)

+ ....+--(~l')km%{%%m —2]12:.3""1?1{ ’
s
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possesses the property that its derivatives of the order 2k and 2k + 2 have

the same sign for x = 0y 4f

(s +2k) (s +2k +1) =0

ny

Consequently, if we choose the positive integer k either
<

£ - %s - 1, these two derivatives have the same sign, so that, according to

s or

(]

.

the remark added to theorem 7, the remainder ry in (11.2) has the same sign
as the first neglected term and is a fraction of that term.

If s = -p, where p denotes an integer = 0, then the remainder r in
(11.2) vanishes for k = % (p + 1). In that case we find for §(-p,w) a

polynomial in n + w. Since §(—p,w) is independeht of n, we can choose

n =0, so that

~(p+ 1) §(pyw = P L L(p WP

+ (p + 1) Z (_.)Q‘lg_g p(p=1) °= *(p=2q+2) -2l

1252 (p-1) (21
p + 1\ _p-2g-1
e SRR LA IO w
py q \ 2q

1=q=z(p-1)
= (p + 1)! @p+1(W)

according to (3.4). In this way we find for each positive w %=1 and for

each integer p =0

(11.3) §(~p,w) = - pt Cfp_,_.l(w) .
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Choosing w = 1 we obtain in particular that §(s) vanishes for s = -2, =L, =-*
by the first formula on (IIT,I,3,L), that §(0) = =% and that for each

positive integer k

fa-20) == (& -1)1 §p (1) = (-)¥ ;ﬁ.

according to (3.5).
To prove that (11,3) holds not only for 0 <w = 1, but for all positive

w, we note that according to (L.l)
PLgouy (W+ 1) =Pt Py (W) =P

and that for Re s> 1

' g 2 1
S(s,w) - f(s,w+1) = 32 — - —
n=o (m+w) n=o0 (n+w+l)

-tk
o
so that the formula
§(s,w) - S(sw+1) =w?
holds in the whole complex s-plane, the point s = 1 excepted, in particular
.§ (-p,w) = §(=pyw +1) =w

Therefore, if (11,3) holds for a given value of w, it also holds for

w+ l, w+ 2, ete,
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Chapter II

SOME GENERAL REMARKS ON ASYMPTOTIC EXPANSIONS

Section 1, DEFINITION OF AN ASYMPTOTIC SERTES

Let W be a real or complex number belonging to an unbounded set SL

i

such that |w| 2 1 for each element w of {1, Each number and each function,
oceurring in this section, may depend on W. If they do not depend on &J,
they are said to be fixed. Each number and each function is supposed to be

defined for all elements w of L., Two mumbers are called asymptotically

equal, in symbols a ~ b, if for each fixed real mumber q the product

|w|%a - b| is bounded for all elements w of fl. For instance

- W -q/IwI
eaI I+e sin W ~0

If a and b depend not only on w but also on other parameters and the
product |w|%|a ~ b| is bounded uniformly in these parameters, then a mud b

are said to be asymptotically equal uniformly in these parameters. For in-

stance

~log?| W]
e sinx ~ 0

uniformly in the real variable x, We have also

L
uniformly in x in the interval —1010 =x £ 1010 , but the relation does

not hold uniformly in x, if x runs through the whole real axis.
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The notion of asymptotical equality is reflexive (each number is asymp-
totically equal to itself), commutative (2 ~ b implies b ~ a) and transitive
(if a~ band b ~ ¢, then a ~ ¢).

An asymptotic series is a series a, *aq + eoo , for wnich it is possible

to find a sequence of fixed numbers Qs dqs °°° s such that q, =>® as
h => oo and that for each fixed integer h = O the product |@ Itha,hl is
bounded for all elememts w of )., Examples:
@ 5 h
Z hE’ o z (h log ]w l)
== i
h=0 w h=0 w\/ﬁ

I call dgs s °°° the exponents belonging to the asymptotic series.
Tt is always possible to choose these exponents in such a way that
4y € %\ € ... , In fact, the number m,, defined as the smallest of the num-—
bers Ops Gpags °°° is a fixed mumber which tends te infinity as h -» oo,
whereas |w |mh|ah| is bounded, so that we can choose as exponents the numbers
1 & S ouo
m, which possess the property m, = my .
Let a.Q * gy B oeee be an asymptotic series with monotonic non-decreasing

exponents Aoy Fs °°° . A mumber s is called the asymptotic sum of that

series if for each fixed integer h 2 0 the product

q
0] P | 5= (ay *+ay + oo+ apq)]

is bounded for all elements w of Y.
This sum is not uniquely defined, for if s is the asymptotic sum of an

asymptotic series, then each mumber which is asymptotically equal to s, is
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also an asymptotic sum of that series. Conversely, two numbers, which are
the asymptotic sums of the same asymptotic series are asymptotically equal.
 Therefore an asymptotic series does not define a single number, but only a

certain class of numbers which are all asymptotically equal,
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Section 2, SOME PROPERTIES OF ASYMPTOTIC SERIES

THEOREM 1. Each asymptotic series possesses an asymptotic sum.

Proof: Consider an asymptotic series with monotonic non-decreasing exponents

dgs Gqs *°° 4 SO that
‘ ol h
la.h|=ch| ‘ (=0, 1y =)

for conveniently chosen fixed number Cy e
T choose a positive integer H ¥ 0, depending on W, such that H tends

to infinity as |wW| = o ,but so slowly that

118

z el #|¥]
heo B

To show that

S=a0+al+u-o+a_H_l

is the asymptotic sum of the series, I must show for each fixed integer
h 2 0 that
Z ~q
o = (3 + o * 2] = 0y (@]
where Cy denotes a suitably chosen fixed number.
There exists a fixed mumber k > h such that g = g, + 1 and there

exists a fixed number ]{ such that H > k for each element W of Q1 with

|w| - Y . For the elements w of £ with 71 £ w] < 7 I have
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“Agq

L) +c

)
g
[e]
Q
+
Q
|.-l
£
T
-!.-

g1 1€1

1-q, .

- 1 ~qy
= |LO| =5 Cy |w]

g
—
do

(1]

and

"9 4 1 ~%
Iao+al+Q,D-}-ahnllé(co-}-cl'f‘000+ch-1)lu>| ézch lwl

for suitably chosen fixed number C,. For the elements w of £ with [« =Y

I have H> k > h, so that

|s = (a, +ag * oo tapg)l=lag+apy ¥ o0 2y |

£

= Iah + os0 + ak_1| + !ak + oeo + aH“1|

L h h
S (e, + oo ck_”1) |w | ¥ oy + oue t Cpq) ||

£ %

= (o * °°°"'ck_1+1) |w | §

This completes the proof,
Conversely, a series with an asymptotic sum is an asymptotic series.

More precisely:

THEOREM 2, Suppose that a series ay * ay cee has the property that it

is possible to find a number s and moreover fixed exponents Qs ql; ooo such

that q tends to infinity as h =% co and that for each fixed integer h 2 o*

_t_,IEEroduct
Gy
|@] ™= |s = (g, + a1+"°+ah_1)|

is bounded for all elements of £, Then the series a  + a * °°° is an

asymptotic series.
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Proof: If m, denotes the smallest of the two numbers Y, and %47 2 the

products

M

1O B |s - (a, * o+ ap )| amd @] s = (ag * ee b))l

are bounded, so that, subtracting, also |60|mhlah| is bounded. Here m is
fixed and tends to infinity as h = o, so that the series aj + a; *+ **° is

an asymptotic series.

THEOREM 3. (Sum theorem). If

SNao+al+o..

G o B, # By W oame

then

s+t~ (ao + bo) + (al + bl) + oeee

Proof: Let Qps G5 °°° be the exponents belonging to the first asymptotic

series and let Pos Pps °°° be the exponents belonging to the second series.

Let my be the smallest of the two numbers qy and Py - Then
s—(ao+al+..o+ah_l) and t-(bo+b1+--=+bh_l) ,
and therefore also

(s + t) - (ab * bo) - (ag + bl) -ttt T (ah—l ¥ bh—l)
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.

are at most of the same order of magnitude as |w[ . This completes the

proof .

THEOREM L, The asymptotic sum of an asymptotic series is independent

of the order of the terms of the series *)” '

Proof: lLet s be the asymptotic sum of an asymptotic series a  + a; il A
Without loss of generality we may suppose that the exponents Qys Xs °°°
belonging to that series are monotonic non-decreasing. Suppose that
b, ® bl + oeo contains the same terms as a  * a; + <°° , but in another order,
We must show that bo + 'bl 4 oo is an asymptotic series with the same asymp-
totic sum,
3 ;
Let by = Etho If h—> o, thenn => . Since
a. q
P

(@] P o] = [@] P a

n, |

is bounded for each fixed integer h 2 0 and for each element w of £ , the
series b _ + bl + eoo is asymptotic, If k denotes the largest integer 2 0,
depending on h, such that the system ny, TNy, cco p Ty 4 contains the integers

0,1, eco , k-1, thenk = o0 as h => oo, The difference

(bo + coo * bh—l) - (ao + soe + a’k—l)

can be written as a sum of at most h terms a with m ® k, so that each of
~ %

these terms is at most of the same order of magnitude as |w| ~. We know

that

S = (ao + ooe + a’k—l)

*)We assume that n, is a fixed integer 2 0 for each fixed integer h zo.
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qk; therefore that is

is also at most of the same order of magnitude as |w|

also the case with
Sm(bo+ o e o0 +bhﬂl)ﬁ

{s - (a, + ooo * a‘k-l)} - {(bo * oeo+ by 4) = (g, + oee akﬂl)} °

00
2 Z

This completes the proof,
00
The double series : . A is said to be asymptotic if the series
=0 =0

ao ¥ 301 * 210 Y32 Y a1 YA T3t ot s

ordered according to non-decreasing values of h + k, is asymptotic and the
asymptotic sum s of the last series is called the asymptotic sum of the

double series, in notation
00 00
S o z z a. .
h=0 k=0 bk

A similar definition of course is possible for triple series, and so on.

The following theorem is immediately clear.

THEOREM 5, A double series

(0 0] a0
2 I agy

h=0 k=0

is asymptotic if and only if it is possible to find fixed numbers Yie with

the property that Yye tends to infinity as at least one of the integers h

and k approaches infinity and with the property that




|w] ™ |
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is bounded for any pair of fixed integers h=0and k =0 and for each

element w of 0.

If the double series is asymptotic, it is possible to choose these ex-

ponents q, such that the inequality

-
9k © %H,x

holds (1) if h+ k <H + K

(2) if h+ k=H+Kand h %0,

THEOREM 6. If

B o hz=o %h
and if for each fi_xed integer h
00
B kio bhk ’
then
00 0
S e M

provided that the double series is asymptotic.

Remark: This last condition is not superfluous.

w =2
[0 0]
G%IN 2 ...].‘E
h=ll.\>

and

For instance for
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but the double series

® 2
5 % b
h=l k=0 D¢ °’

where

is not asymptotic.

Proof: If q , ¢, °°° denote the monotonic non-decreasing exponents belong-

ing to the asymptolic series B, ¥y F e then the remainder Uy defined by
H-1
s = 2 ay * Uy
h=0
is at most of the same order of magnitude as || %,
If Upos 3o °°° denote the monotonic non-decreasing exponents belong-

ing to the asymptotic series bhO + bh'j_ + e+ , then the remainder v, ., de-

fined by

= ! ]
"2 Pt Thx o

is at most of the same order of magnitude as Iw] th; the prime indicates
that the term with k = K mgy be omitted. The choice allows us to write any

initial sum of the original double series as

a8 B
h=o0 k=0 S
In this way we find that
S A
h=0 k=0 hie = U1 h=o0 Byh=n

=X
is at most of the same order of magnitude as |w| H, where Ty is the

smallest of the numbers gy and gy Huh(h =0,1, °** , H~ 1), This number
3

-~ dmmnAda ta L PSS e o TT . - L T e I S B ot o
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THEOREM 7. (Product Theorem), If

00 @
(2.1) s~ 2 o3y and bt~ 2B,
h=go k=0
then
fos) 00
st ~ Z Z a b -
h=o0 k=0 h "k

Proof: From the first of the relations (2.1) it follows that

st ru

since there exists a fixed number q, such that t is at most of the same order

%

of magnitude as |w| ~. In the same way it follows from the second of the

relations (2.1) that
@
ahtl’\.i Z ahbk o
k=0
The assertion follows now from the preceding theorem, since the double

series is asymptotic. For, if Py and qQy denote the exponents belonging

toaj +a; + eccand b, + by + oo+, then ay b is at most of the same order

P
of magnitude as |w | h™ %

; Where Pp * G tends to infinity, as at least
one of the integers h and k approaches infinity.
A series may be convergent and at the same time asymptotic, but in

that case its sum is not necessarily its asymptotic sum. For instance,

let

1 .
4 B o e TIAD 1,

D (1) (ne2) o]
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so that

- 1 _ 1 -
a4 = o w1

n=log |w| n=Tog |w|

where N is the smallest integer = log |w|. In that case

8 = E : 2 T W

0%n< log|w|
is the sum of the convergent series a + ey + eo0 , If s were the asymptotic
sum of this asymptotic series, then, since the exponent a, belonging to this
series is > 1 for sufficiently large h, there would exist a fixed integer h
such that s - (ao + eee + ah_]) is at most of the same order of magnitude as
-i%;-l. But for sufficiently large |w| we have log |®| > h, so that
° n;o n - n W +
h#n <Tog |w]

This gives a contradiction, since 'N?F:I has the same order of magnitude as

-
log|w|
The following theorem, however, shows that the sum of a convergent

, therefore larger than the order of -I-i——lne

asymptotic series is under general conditions alsc its asymptotic sum.

THEOREM 8, Suppose the bounded function s of w can be written as the

sumn of a convergent series

n=o

Suppose that there exists four numbers € < 0, A » 0, ¢> 0, and ¥,

independent of w and n such that
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lag| € ¢ A" [w]T7RE,

Then s is also the asymptotic sum of the asymptotic series.

Proof: If 1 = || < (2/1)2/E , then
5= (ag *a * *0r * o)

is bounded for each fixed integer h 2 0 and therefore in absolute value
L
<c [f-tv|T 2h& , where C denotes a suitably chosen fixed number. If

W] 2 (2M)E , then

h=-1 00
|s- 2 al|=1]2 anl
n=o n=h
00 ~ne —SmE
€.z A" |w|7’/‘°' loo| *
n=h '

1
< —1he ¥ )\ ~RnE
=c|w|12 nzéql lwl

ine ©  _
e |wP/—2hE z 2™
n=h

1;
<2 |w["HE

so that we get an asymptotic series with scxponentis - ine - 'b/.

This completes the proof.

THEOREM 9. If a bounded function s of w can be written as the sum

of a convergent power series

with fixed coefficients and if there exists a fixed positive number € such

that |w|% | u| is bounded for all clements w of L , then s is also the




o W gt )

asymptotic sum of the asymptotic power series.

Proof: The assertion is evident, if u = 0 for each element @ of L. Sup-
pose therefore that u assumes a value v # O for at least one element « of

fl. The power series in question converges for u = v, SO that

IThl E CIVl“h

for suitebly chosen number c which is independent of (W and h, Consequently,

since
;s £ - ~hE .
| ¢ jw”% , we get 17" Ze P v P ™
so that the required result follows from the preceding theorem.

' THEOREM 10. Suppose that a bounded function s of W can be written as

the sum of the convergent power series

oo
h
s= Z Y, U
h=oh

with fixed coefficients., Suppose moreover that u possesses an asymptotic

expansion

uNﬁO-I-@l"l"@z-lv-e- 5

with positive exponents so that uh possesses, according to the product

theorem (theorem 7), for each positive integer h an asymptotic expansion

Then

S r~ E E 1 @ o
h=0 k=0 B bk
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Proof: Let q , ¢, - be the monotonic non-decreasing exponents of the
series @ + @1 + e-e , Then q, is positive and according to the defini-
tion of an asymptotic sum, applied with h = 0, the product |w| [u] is
bounded, so that we can apply the preceding theorem with € = 9. Consequently
Q0
s NhZ‘. Tu o
=°
According to theorem 6 this gives the required result, provided that the
double series
0o 00
3 Yy, (g

h=o k=0

is asymptotic., In the expansion

u v @10 + (311+ oo

the exponents are G = G in

k

W (320 # (Byy * vo0 4, where PZk = nio ﬁln (Sl,k—n ’

the exponents are therefore
Qg = min (qkl + qkz) s where k; +k, =k ;
in
u3 2 ﬁ + p 4+ ooe
30 £

the exponents are

Qq, = min (q  + +q ) where k, +k, +k, = k
3% % T %, % Yy g
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and for any fixed positive integer h the exponents in

uhmph0+(5hl+ ﬁh?.-'- soo

qhk=min(qk1+qko+ -.o-[-qk'h) s Wherekl+k2+.--+kh=k N

Therefore, since Py is fixed,
W h
|| Ia’h u|

is bounded. It still remains to show that q tends to infinity, as h + k

approaches infinity. To that end I prove for any fixed number t

>
Gp™ b s

if at least one of the two subscripts h and k is large enough. From the

above definition of g it follows that

>

co that the required inequality holds if h . Ifh <-;9;, then at least

il
%
one of the h mmbers ky, <°° 5 kK, Whose sun is equal to k, is equal to Z,

where Y is the smallest integer 3 —19- k. Then

R
qhk e qI t 9
if k, and therefore also 7, is large enough.

Example: Suppose U possesses an asymptotic expansion

u v ﬂo+ ﬁl-l-oo.

with positive exponents. Then e® also possesses an asymptotic expansion
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eumdo'!":‘ + oo ”

1
W 00 uh
2s we have seen this expansion for e = hZ‘. f7 can be found in a
=!0 °

formal way, so that I can define the terms of that expansion by the formal
identity
.Xz 0w
o @o }\{bl *

= 2
—0(0'!'0{1}*‘0(2) + ° .

This gives first Xy = 1.
Taking the formal derivative with respect to A , we obtain

o{l-l- 20(2)4. 30<3A2+ o0 = (@o +2(31A + -oo)(o(o+ 0(1) + .-q) e

so that we obtain for h 2 0
d - o oe
(h +1) hel (h + 1)%0@»11 + h=<1(3h_1 % + 1o<h@° .

Thus we find

c=<1=(.30 5 o<2=%.p02+(3'1 5 o<3=%@>03+@0@1+(32 °

This is not the only, and even not always the best, asymptotic expan-

sion for e'. We get another expansion if we define its terms by means of

the formal identity

A+B. A3+ B +...
e@o ("}1 (52 =°<o+°‘17‘+c’(2 7\2-&---

In this case we obtain the relation

°(1+2°<2A +3d3 A2+ seo0 =

(B, +3 6, A% + 8 @, AL ce(en F Xy A Hoeee)



(111, 11.2.15)
which gives

A

0

Q
(1}
1._l
2
(]
(1]
o
R
N
fl
wj=

and so on.

THEOREM 11, If

SNao+aﬁ_+.D.

ay, bh for each fixed integer h 20 3

then

S by + by F oo

We may therefore replace each term a, of an asymptotic series by

a term which is asymptotically equal to a.

Proof: By the definition of the asymptotic sum of an asymptotic
series it is possible to find fixed numbers %Y, which tend to infinity

as h = oo such that

Q
Iu)ih ls—(ao+a,l+ ooo+ah_1)[

us

is bounded. Since a, and bk (0 £k % h =1) are asymptotically equal,

the products
9, '
|w] ™ (g - by)
are also bounded, so that
%
] & |s = (b + by + o== + b0 |

is bounded. Consequently s is the asymptotic sum of the asymptotic

ries + + ece
se bo bl .
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THEOREM 12, Let g be a fixed positive integer. If

ah(z)(h = 0,1,2, =°°) denotes a function of z which is at least g

times differentiable in a given interval j or in a given region jJ

(3 may depend on w) such that the series

00
2 2 ™(z) (n=01, «=,8)
h=o0

are asymptotic, uniformly in z, then there exists a function s(z)

which is g times differentisble in j such that for n = Qidy *5* 5 B

(2 (z) ~ %o algn) (z)
h=¢

uniformly in z.

Remarks Therefore not only does the function s(z) itself possess
an asymptotic expansion, but also its lst,2nd, --° g-th derivatives,
and the expansions for the derivatives are obtained by differentiating

the original expansion term by term.

00
Proof: The proof is similar to that of theorem 1, Since 2. '31(111)(2)
" h=0

is asymptotic, we know for h 20and 0€nég

(2.2) 2™ (2) & o) | B

/

where cz(ln) and o , ave independent of W and z; if n is given, the
numbers Qy tend to infinity monotonically as h =3 .
3
I choose an integer H 2 0, dependent on w but not on z, which

tends to infinity as |w| —> co but so slowly that

H=1
(n)
Z Cy

h=o

£ |wj forn=0,1, °°° , & o
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Tt is clear that the sum
s(z) = a (z) + a)(z) + *=° + ay 4(2)

is g times differentiable.To show that s(z) also possesses the other
required property, we must prove for n = 0,1, °°° , g and for each

fixed integer h = 0 that

—q
(2:3) £ c}(f) |w| Po?

2

s(n)(z) - (a(()n)(z) 4+ coo 4 a}gf:)l. (Z))

where Clgn) denotes a suitably chosen number which is independent of
W and z,

From the fact that G, —> ® 2as k => oo it follows that there
exists a fixed number k > h swch that %n 2 Gieer ¥ 1, From the fact
that H - o0 as |W| =» oo it follows that there exists a fixed number
¥ such that B > k for each element w of (L with |w |3 Y.

For the elements W of (L with |W| = Y we have that

1s() (2)| £ c(()n)mjl“"%n + oee + Cf({fj)_ |w|'qH—1,n

v (e o™
< %an) |w I“qh,n
and

L8

agn)(z) + wen * aéf%(z) (cgn) + o0 + éf%) |w|_q°n

—q
£ h
€36V w)
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(n)
h

for suitably chosen fixed number C."°, In this case we obtain there-

fore the required inequality (2.3).

For the elements w of () with |w| 2 Y we have H> k> h, so

that

.
S(H)(z) - agn)(z) 4+ eecs + a}gfj)_(z)) , = a}gn)(Z) L ag_l:)L(z

< aﬁn)(z) ¥ W % a’l:((-r-lj)_(z) + a'I(cn)(z) + ees *+ a,éﬂ(z)'

(2.5) <
s n A ; 2 "
e ) o () e )
& (clgn) FIg— +c§£3_+1) |c.-)|-hn i

Consequently the inequality (2,3) holds glso in this case, This estab-

lishes the proof,

THEOREM 13. If ay(z)(h = 0,1, --¢) is indefinitely differentiable

with respect to z in 2 given interval j or in a given region j (J may

depend on w) and if for each fixed integer n 2 0 the series

3 a?(ln)(Z)

h=0

is asymptotic uniformly in z, then there exists a function s(z) which

is indefinitely differentiable in j such that for each fixed integer

»

n=0

s(n)(z)m OZQ al(ln)(z) 5

h=o

uniformly in z. .
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Proof: The inequality (202) holds for each fixed integer h 20 and
(n)

each fixed integer n E 0, where ché and g, are independent of w and
73 if n is given, the numbers gy, tend monotormically to infinity as
h = o,

T choose an integer H 2 0, dependent on w but not on z, which

tends to infinity as |w] =» oo, but so slowly that'®)

| Bl oy . |
(2.6) hE o™ & |w|  for n =041y °°° H-1 .
=0

Tt is clear that the sum
s(z) = ay(z) + ay(z) + == ¥ ag_1(2)

is indefinitely differentiable. To show that s(z) also possesses the
other required property, we must prove that the inequality (2,3) holds
for each fixed integer h 2 0 and each fixed integer n E= 0, where Gﬁ?)
denotes a suitably chosen mumber which is independent of W and Z.
Note that in the rest of the proof h and n are fixed.,

There exists a fixed number k > h satisfying the inequality
Gy ¥ Gy + 1 20d there exists a £ixed mmber y such that H >k and

H > n for each element w of {1 with || 2 Y. We find the

%)In the proof of the preceding theorem the range of n was
from O to go It is mot allowed to replace here g by oo, since eéé)
may tend to infinity as n -3 go and so we have no assurance of the

existence of an integer H % 0 such that (2,6) holds for all integers

(14

n=0,
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inequalities (2,L), and therefore also (2,3) for the elements w of {1 '
with |w| £ 7. For the elements w of L1 with || > % we have
H>%k > h and H > n, so that the formila (2.5) and therefore also

(2,3) are true., This completes the proof.

THECREM 1L, Consider the sum

B~1
S= 3% f(n)
=

where A and B are integers with B > A3 the integer A is assumed to be

finite. B may be infinite, but in that case the series S is assumed to

be comvergent., Assume that it is possible'to find positive numbers

p(n) (for A € n <B) such that

(2.7) %}%N%-b%-b”. . (A% n <B)

uniformly in n, and that

B-1
E p(n) £ B/lem )

n=A

where Y and m denote suitably chosen positive fixed numbers,

Under these conditions

foe] B=1
Srs Y, 5 5 wheres = Y a.
k=0

=

if B is infinite, we suppose that this series converges.
e, Bl bk

Proof: Let Qys% s °°° be the monotonic non-decreasing exponents be-

longing to the asymptotic series occurring on the right hand side of

&

(2.7). Then we have for A £ n <B and for each fixed integer h 20

f(n) = ay, *ap + eee vy g +o(n y
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"%

ra
lrn;hl = Cy | ] s
Cy and %, indicating mumbers independent of w and n. Then
hi-:l Bil (n) h-z-:l Bil l
S - ] f n) — a
I k=o Sk\ n=A k=0 n=A B
Bz—:l ( (n) hil
= fin) - a
nA Xmo ¥
€ Bil (n)
n=A =L
- B-1 -(qy~m)
2 A £ h
=cpled] ngA p(n) = Yo, |@] )

where q, ~ | - o0 as h = o. Consequently S is the asymptotic sum

of the series s, * sy * °°°, which therefore is an asymptotic series.

Of course a similar theorem holds for integrals instead of sums.

Example, Let us show that for large positive values of W

[e0) 0 o0
E o2 1og(1 +£)~ ‘;‘L_J Ene"n_.,...l.;,_é 2 n2en
n=o0 o o}

where the coefficients can easily be calculated by the formula

00 h
T e = () (L S .
n=o dt™ 1=e £=1

We know
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2 h-1
n
1og(1 +_I..1.n) =.£1—— n -+ o-'i' = + (n) 9
o' T Spl (n-1)n"t n |
where
h

n

|Rh(n)| £ ch—w'ﬁ :

here cy is a suitably chosen number depending on h but not on n and W.

Then
i 1 2 3
2™ 1og(1 + =) v el (B _ B B+ e
w Pre) 20)2 ng ’

wniformly in n for n = 0,1,2, -+« . 'Applying theorem 1) with
—3n
B=ow , p(n)=e2 , fixedm>0 ,

we obtain the required result.
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Section 3: On certain analytic functions

2 .

Let a  + a; (z - zo) + az(z - zo) + o+ be a formal power series

in 2 - zo and let R be a positive number; the coefficients a, and the
mumber R may depend on w, If it is possible to find for each fixed

integer h 2 0 a fixed number Cy such that

-h

(2.2} lay | ¢, B (h=0,1, «=o) ,

then the power series is said to possess an asymptotic radius = R.

Note that the asymptotic radius itself is not defined. If the numbers
¢y, can be chosen independently of certain parameters, then the power

series is said to possess an asymptotic radius 2R uniformly in these

parameters: If a power series possesses an asymptotic radius = R,
it possesses also an asymptotic radius 2C R, where C denotes an arbi-

trary fixed mmber, since (3,1) implies
|ay] € e, ¢ (¢ B (h=0,1, =) .

where ¢, Ch is again fixed.
A power series in z - % with asymptotic radius 2 R is asymptotic
for all number z which satisfy the inequality -

(3.2) -z |%c |w|" TR ,

where C and 7y denote arbitrary fixed positive mumbers, since for

these wvalues of z

N

la, (2 - 2% % o BB P oo T B°

h =h
o C |w] f ’
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where hbr«-) oo as h —» .,

The formal derivatives of the power series are

2
a1+2a2(z—zo)+3a3(2~°z°) % sEs

2a, + 3+2aq (z - 2) + LwBah(z - 20)2 +oees

etc. and are obviously also asymptotic for the values of z, satisfying
(3.2), According to theorem 13 of the preceding section it is therefore
possible to construct a function s(z) which is analytic at the points
z satisfying (3,2) such that

~ ®

s(z) v 3 a, (z - zo)n D
n=g

) N

(3.3)

5 o, =1
st(z) rv 2 nan(z - zo) 5
n=1

Z T2
st (z) A E n{n - 1) ay (z - zo) , etca
L n=e

A function s(z) with these properties is said to be generated by
the power series. The analytic functions s(z) is not uniquely defined
by the power series, for if s(z) possesses the required properties,
then so does 2lso for instance s(z) *+ e-w“b(z), where t{(z) is an ar-
bitrary fixed function of z, which is analytic at 2z .

If the coefficients a in the power series are fixed, the asymp-
totic radius is 2 1. In this case it is useful to distinguish two
cases, according to whether the radius of convergence of the power

series is positive or zero. If the power series has a positive
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radius of convergence, it possesses a sum s(z) which, according to
theorem 9 in the preceding section, satisfies the relations (3.3) at
the points z subject to (3.2), so that the power series generates

this function s(z) with asymptotic radius ® 1. This function is the
sum of a convergent power series with fixed coefficients and is there-
fore independent of (W, that is, the value s(z) is independent of w if
2z is given. Therefore each function s(z), which is independent of O
and analytic at a given point z, is generated with an asymptotic
radius 2 1, by the corresponding power series a, * al(z - ZO) + B

of which s(z) is the sum,

Let us now consider a power series g, * al(z - zo) + °°* with
fixed coefficients whose radius of convergence is equal to zero (the
asymptotic radius is of course 2 1). This power series generates a
function s(z) which is analytic at z_. It is impossible that this
function s(z) be independent of W, For let us suppose that a fixed
function s(z) satisfies the relations (3.3) for the points z subject

to (3.2)., Choosing z = Z,, We would obtain

S(Zo) ~nJ O!:ao 9 S'(ZO} ~J ‘158,,1 s s"(zo) ~J 213.2 p ece o
Since these rumbers are fixed, we geb s(h)(zo) = hEah (h = 0,1, cco )’

so that the power series.

 ® @ s(h)(z ) h
Y alz -z = Y —pr— (2-5)
h=0 h=o0 °

would represent the function s(z) which is analytic at z_ . In this
case the power series would have a positive radius of convergence,

contrary to the hypothesis,
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For instance the power series

@
X (=) n1 "
n=o

has an asymptotic radius 21 and a radius of convergence = 0, so that
it generates a function of z which is analytic at the origins this

function is necessarily dependent on w . But in the sector
(3.k) z#0 3 -1+ € <argz <MW= €

where € denotes an arbitrary fixed positive number <52:, the integral

oo
=11
(3«5) .LP (Z) """/' %‘E du

represents a function of z which is analytic in the above mentioned

sector, Moreover the formula

(3.6) Y () (2) ‘i (=) 01 nln = 1) »oe (0= h +1) ™8
n=fj

holds for each fixed integer h 2 0 and for each point 2z which satisfies

the inequalities (3,2) with R = 1, and (3.4). The power series
ng;(-)n n!zn generates fhe function qf(z) in the considered sector
with asymptotic radius 21, As we see, this generated function is
independent of (),

To prove (3.6) we note that
oo
Y Py o () ny f “ﬁ% au
o}

(i+zu

in the specified sector and we use the following lemma,
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LEMMA, Suppose
- q + € Cargw <1 - &
and let « be real. Put

A oA Ve oh m--l
(1% wf™ = ()w+ +(mﬂl> *R .

Then we have for each integer m £l

|Rm|§@m(o<) (|-w|c=< + |w ]m) if <X = m

) E ¢, (%) (sin ™™ |w " if x€m |,

where cm(o() denotes a suitably chosen number, depending on m and X,

but not on w and €.,

Proof . For any function f£(t) which is m times contimously differen-

tiable on the segment (0, w ) we have

(m=1)
£1(0) v § wss m e (0) mel +R_,

Hoc) = £08) gt e n

where

W
R, = Tn_léfﬁ f (w = £)®L f(m)(t) at .

o}

The formula for the remainder term can be verified by integration by

parts,

The particular case £(t) = (1 + )™ gives

‘ (m-1)
£(0) =1 %9), () “Dsfmm_]_(?) (_)



(1I1,11,3,6)

m

W
R = (;) mf (w-t)FL L+ ) ™at =
o]

1
- (;‘1) mwmf (1 - u)mml (1 + w)™ ™ au
o
The argument of w and therefore also the argument of t lies be-
tween — M + € and T = € o This implies that |1 + t| is at least
equal te sin €, for if t lies on or to the right of the imaginary
axis, the distance |1 + t| between ~1 and t is ® 1 2 sin €3 other-
wise the distance between =1 and t is at least equal to thé length of
the perpendicular drawn from -1 to the halfline formed by the points
with argument = = ¥ + €, so that |[L+ | ® sin €,
In the case that = 2 m we find therefore
ch

|1 + ww M £ (sin ' i 3

hence

1
Ryl € 1(2) 1m 1? Gin ©%® [ -0 e
(o]

- l("r‘a) | (sin €)%7™ W™ .

In the case that 2 m we use the fact that

[T

11+ wr] €1+ uw] ST+ fu]

hence

L]

L+ w]™mE (s W
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The last side is

il
[

£ g5 if |w| €

and

it
[
w

2 PR LN if |w
so that

L+ m] ¥ ™ ec2™™ (1. + |w|°"m) .

Consequently

Rl £ 1 ()1 2™ (Lo ™) fil-uf’*l

G2 T W

This completes the proof of the lemma.
Now we return to the proof of (3.6). If z satisfies the inequali-
ties (3.lL), then using the preceding lemma, applied with w = zu and

with ¥ == h =1, we find that

Y (5) = ()8 ny f du
(1+zu)

is equal to

0.0)
()" h&f uhe-u{ )31 Q’hl’;l) 2 + Bo(w) poan

8]

where
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IB_(u)] £ o (~h1) (sin €)™ [z[* o

since &« = = h = 1 < m,

From

hi (Ti:%) = (<)% ns (hﬁl)(h+2%%°-° (h+k) ()% (h+§)&

it follows that

co
v )5 { (ke (B gk f o gy Ly R

k=0
o)

m=1
= é;; {(-—)h+k ‘ﬁhﬁ%li 2 (b + k)bpe B

m+h=1 s ' n-h ¥
= (=3"nin{n~1) ecc (n=h +1) = + R
n=h ’

where

(11,9

h

oo

o)
em(hm-l) (sin E)“hﬂj‘”m Iz[m I uh*m e ¥ du

0

h=1~m () m

i

L

ht (h + m)? cm(—hel) (sin € )"

This implies (3.6) for each fixed integer h 2 0 and for each
point z in the sector = M + € <arg < 1 - € which satisfies the
& inequality (3.2), so that the power series Z (-)™ nt z" generates
the fixed function Y (z) in the considered sector with asymptotic
radius = 1, But ¥ (z) is not the only analytic fixed function

which is generated by the power series in the said sector with
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- R
asymptotic radius 21, To show this, we consider the function e &

which is analytic in the region in question; the nth derivative can
- - 2 1
3/2n e 2" p(z?), where p(w) is a polynomial in w.

—

22

be written as z
For all z in the considered sector such that |z| € 1, the factor e
has an absolute value which is so small that it is possible to find

for each fixed real g a fixed number c¢ such that

M‘H

R
ld—iez | £c |z|?
Z

For the points z inithe considered sector which satisfy (3.2) the nth

—r B
derivative of e 2  is therefore asymptotically equal to zero, so that

formula (3.6) remains true if Y (z) is replaced by Y (z) + e_z-z.
Nevertheless, sometimes we may define uniquely an analytic func-
tion by means of a power series with fixed coefficients and radius of
convergence = 0 and by using an additional condition, for example, the
condition that the function satisfy a differential equation or a

Laplace integral., For instance the formal derivative of the power

series‘zgn(—)n nt zn, miltiplied by 52 is

00 o0 (e8]
g (=) nt nzn+1 = - g (_)n+1 (n+ 1)} zn*l -23 ()™ i, P
08 @
=1-z2()"n12" =235 ()" n3" ,

so that it is natural to introduce the inhomogeneous linear differ- .

ential equation

22 X'(2) + (L+3) X(2) =1 .
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The solutions of this differential equation have the form

el/ z

Xz} = Wiz) +

(SRS

where a is an arbitrary constant and where qf(z) denctes the fune-
tions defined by (3.5)., If a # 0, the function X(z) is not generated
in the considered sector by the power series Ego(w)n ny z". Conse-
quently P (z) is the only solution of the inhomogeneous differential
equations which is generated in the cons:ic“tefad sector by the power
series in question.

Up till now we have always assumed that 2, lies in the finite
z=planej however we can also teke z o at infinity., In that case we

=1

consider the power series z§’° a, z . If it is possible to find for

each fixed integer n 2 0 a fixed integer e, such that

£ 3 “r = a oo
la,] = e, B (n=0,1, °°¢) ,

then we say that the power series E’ém a, S possesses an asymptotic

radius € R, If the coefficient @, can be chosen independently of one

or more parameters, then we say that the power series possesses an
9 —

asymptotic radius £ R, uniformly in these parameters,

Tl

Suppose Zgo a, % - possesses an asymptotic radius R. For the

points z with
(3.7) 2l 2c ol &,

where C and ¥ denote arbitrary fixed positive numbers, we can con-

struct, according to theorem 13 in the preceding section, an analytic
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function s(z) such that

(o 0]

(3.8) s®(z) v (=) 3

n=o

n{n + 1) o+o (n+h=1) anz_n_h

n

for each fixed integer h = 0, We say that the power series e az

generates this analytic function s(z) with asymptotic radius £R.

Sometimes we restrict ourselves to a sector defined by
« <arg z < (3., In that case we construct a function s(z) which is
analytic for the points z lying in that sector and satisfying (3.7)
such that (3.8) holds for each fixed inmteger h = 0, It is possible
that the coefficients a, are fixed, that the power series 280 a, z
diverges everywhere and that nevertheless this function s(z) is inde-

pendent of W, For instance, replacing in (3.5) z by z—l, and dividing

both sides by z, we see that the power series

*

°Z° (=) n1
n+l -
n=0 %
generates the function
0
o
f rrer du
o

with asymptotic radius %4 1 in the secbor - T + € <argz <M = €,
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Seetion L. Rules of calculations with respect

to the asymptotic radius

THEOREM 15, If both the power series zgo an(z - zo)n and

S
Egobn(z = zo) have an asymptotic radius = R, then the smm series

) n . 4 o) , n
Zgo(an + bn)(z - zo) and the product series 2}0 p, (3 - zo) , when

Py ™ B 05 F af]_bnal + oo + a b also have an asymptotic radius 2 R.

Proof: We know

2, | = 8 B and b f =c

when cy and 0;1 are suitably chosen fixed numbers, Then

LN

] =Tl
(cn + cn) R

la, + byl

£ g ] 17 ~T]
p. | % Kegp, i, g # = # e ) B

which establishes the proof,

Remark: Tt is clear that the corresponding result holds for the

power series
00 on o) -
Za,z and i!bn Z °

THEOREM 16, 1f 1% a 2" had an asymptotic radius ¥ 1 and

@ b

the formal series z = 2 5 b,

W has an asymptotic radius E R, then

the formal expansion of

r

(¢ o] (o0}
(L.1) Z g (2 b, wn)m

m=o =

. . 2 v < . >
gives a power series in W with asymptotic radius = R,
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Proof: We know that

i

s

Iaml & e (m 20) and Ibnl & c;l R 2 (n

where ¢ - and c;l are fixed, The formal power series in w, given by
(L.1) has therefore the majorant
00 ® co
=1 n =h h
2 oe, (¥ ey B |w[)= 3 C R e ™,
m=o n=1 h=0
where ch is fixed, The formal power series in w therefore possesses

5
an asymptotic radius = R.

THEOREM 17, If s(z) is generated by the power series zgo a, 2"

with asymptotic radius ® 1 and if z = z(w) is generated in a sector

&% < arg w ((5 by the power series Zgo bn W' with asymptotic radius

= R, then the formal expansion of

co 00
(1e2) Y e (}‘_; b, wn>‘“

m=0 n=1

according to ascending powers of w gives a power series in w which

generates the function s(z(w)) in the interval &« < arg w < (,Sw:.th

asymptotic radius 2 g,

Proof: Let Zgodhwn be the formal power series given by (L.2). Accord-
ing to the preceding theorem, this power series possesses an asymptotic
radius ® R, so that the power series is asymptotic for the points w

satisfying the inequality

(1.3) Wl £co? &,
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where C and 7y denocte arbitrary fixed positive numbers. According to

theorem 6 of section 2 of this chapter we obtain

°° h
s(z(w)) ~ 3, dy W
h=¢

for the points w which lie in the sector « <argw < (33.nd satisfy
inequality (La3).
Since the formal derivative of Z‘:go d’h wh also possesses an asymp-

totic radius 2 R, we obtain in the same manner as above
00
d h=1
e s(z(w)) v 3 hd, w
h=]

for the points w which lie in the sector & < arg w < (.3 and satisfy
inequality (Le3).

In the same way we obtain the similar result for the n-th deriva-
tive of s(z(w)) with respect to w, where n denotes a fixed integer 20,
This completes the proof,

THEOREM 18, If a  * a) z *+ °°° is a power series in z with asymp-

totic radius > R, then the substitution z = w', where k is a fixed

positive integer, transforms the power series into the power series

thgo a th in w with asymptotic radius E 1/ ko
feo)
Proof: Let Zhﬂo gy, W 5

kh 0

n
W ‘bn w , and therefore

a
. .l ¢ . if nis divisible by k

e 0 otherwise .,

For each fixed integer n % 0 there exists a fixed number Cn such

that

=n/k
b | Sc R k|
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That follows immediately from the definition of the numbers 'bn, if n

is not divisible by k. If n is divisible by k, we obtain by (3.1)

where we choose C, = ¢ . This establishes the proof,

)5

THEOREM 19. If k is a fixed positive integer, if A denotes a

number # O which is independent of 2 (it may depend on w) and if the

power series

T s, (2 - 2)"

n=k

has an asymptotic radius 2 R, then

5 :
) Xa (z -2 )"
n )
n=k
has an asymptotic radius =R if [ A] £ 1 and an asymptotic radius

AL At FTAPYIEEN

Proofs From (3.1) it follows that
£ -n
| Xa |2 |A|c, R

and therefore

B

cnR“n i_f|7\|’51

and

g’C'»‘n(|>\|_1/k11)mn if |A|g 1 andn=k ., QEJD.
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Let us give an example., The same example will be treated in
Part IV, Chapter I, Section 2 as an application of the method of
asymptotically enveloping series.

Put

A(z) = log (1 + z.')-z+%z2

and

A(z,u) = (1 +u) A (I%'u) +(1-u) A (—]?_-Z-;D— A(z) - A(=z)

where -1 € u <1. Let m be positive, Then

L+w)@+u+z) T a(z,u)

is generated by a power series

= Xk
Yo+ Wy, (e
k=0

with an asymptotic radius = R, wniformly in m and u, where

{13

1 - u2 if mu(l - u2)

L) R=
skl 1*;1""']'/3|u|"1/3 (1 - u2)2/3 it mu(l - )

114

The coefficients "Xh(u) are determined by ’g’o(u) =(1-wT,

where T = (1 = v2)™ and by the recurrence relations, valid for
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{(21< + 1)u - 1} Ty * {kT + (k - 1)}3’k_1

{_,hmu T+1-(2k - 3)u } T 2

]

(k + 1) Yis1

+

(L.5)

+

{ﬂl—T%m-(kmz)T}Tbs

+ Ju(T - 1)T m]’k__h + 2(T - 1)T m]’k_s s

where o 3 = Y p = P33 = Yo = T =0

Remark: From the recurrence relations it follows that ?’ k(1.1) can

be written as a polynomial in T, Tu and m. The numbers 70, 7, and
7 » are independent of m3 75, 7), and 7’ are linear polynomials in m;
Y62 T Pg are polynomial in m at most of the second degree; and so

on, In general, 9’1{ is a polynomial in m of a degree which is at most

1/3 k. From
2 2
i o E u2=1(1—g) e -1
1=u 1-u

it follows that g’k(u) can be written as 2 * uoy

%o where Pk and g

k
are polynomials in T and m3 consequently ’fk(u) + 7k(—u) =2p 1is a
2

2 oe Efid m;

polynomial in T and m, therefore a polynomial in T -1 =
1=u
the degree in m is at most equal to 1/3 k.,

3 b

Proof: The function A(z) possesses the expans:‘i_onT - -zh_ + *°° . 50

that A(z,u) has an expansion of the form
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The expression between the braces can be written as a fraction
whose denominator is equal to (1 - uz)h_l and whose numerator is a poly-
nomial in u. We see that this polynomial vanishes for u = O, so that
A(z,u) has an expansion of the form

2y 0 Alw)

)b o ¥

(L.6) uw{l - u
h=3 (l-u

where Ah(u) is a polynomial in u. From the fact that u lies between
-1 and 1 it follows that ]lh(u)] is less than a suitably chosen number
which depends only on h, The power series, occurring in (L.6), has

therefore an asymptotic radius 21 - u2, uniformly in u.

According to theorem 19, applied with k = 3 and A = mu(l - u?)
the power series
Ay

mu(l - u2) csiiesest
h=3 (1-u")

possesses an asymptotic radius 2 R, wiformly in m and u, where R is
defined by (L.l)s this power series generates the function m A(z,u).
According to theorem 17, applied with

m

Ei!m

n_ z_ 2
amZ~e~E
m=0

i~8

¥
o

the function em A(z,u)

is also generated by the corresponding power
series with asymptotic radius ® R, uniformly in u.
The function (1 + u)(1l + u + z)-l is generated by the power
4 ] : " 5 s
series 1 = wp + oco with asymptotic radius 21 + u, therefore with

asymptotic radius 2 2(1 +u) 2 1 - u2 2 R, Consequently the product
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(L +u)(l +u+ Z)"“l . Az u)

is generated by the corresponding power series with asymptotic radius
= R, uniformly in m and u.
Finally we must deduce the recurrence relations between the coeffi-

cients Yy = Tk(u)" To that end we use the formal relation

(]—I..?) e1’I’1 A(Zgu) = (l + 11+ Z) I:EQ -a/k Zk .
=0

We have

1 22

A A

a'(z)

80 that the derivative of 4(z,u) with respect to z is equal to

2 2 2

Z 2z %

%§=A'@%)—AJG§D - 41(z) + A1 (=)
2

= o 2 - £l

T (@ orz) (ew) (l-w-z) 172 172

(hu+2z)22 N 232 z

T D) - (wn)) | 12 (1) (12 (- (w) )

where
Z == huz2 + (-J_ruz * 2u,‘l')23 + 1_1'1132h + 2112? .

Taking the formal derivative with respect to z of both sides of

(Lo7) we get the formal relations
m Mz,u) AA = k=1 s k
m e 2 -,3;=(1+u)k§0k’sz +-k§0(k+1)g’kz R

henre



(111,I1,L,9)

k=0 k=0

Rk, . 2y v © k
m( $ vz ) 2= @-0)1 To(k+ 1) ((1+w)Ypsq * k)3

where

| (122 (1-(u)?) |
Téutz

¥

ﬂ(lﬂzz)(luu—z)=(1—u)«-z—(1-u)z2+z3 .

Comparing the coefficients of zk on both sides we obtain for k 20

! {ah“ i * (-l + 2u") T3 * L‘“BWk_m-h ¥ 2“27k~5}
= (1 - uz){ﬂ - u)(k + 1) ((l 4+ ) ’a,kﬂ_ + 71&) -k ((1 + u)afk + ?,k—l)

- (1 - u(k-1) ((1 t )Y * 71«:--2) + (k- 2)((1 + W)Yo * 71{-3))}

In this way we find for (k +1)(1 - 112)22/1{*1 a linear combination of

v i " 71@1’ 7 105 710—5’ 3’ =L, and ?’k_gn In this linear combination
the coefficient of J’ % is

s L = uz){(k+1.)(1— a) - k(1 +u)} . u%@k +1)um]> ;
the coefficient of P ; is
o, 2 e {-k - (k- 1)@ - uE)} = (1 - uE)Qc a (k= DL = 112)) ;

the coefficient of 71«:@2 is
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-L;mu—(l—u%(—(l—u)(k-l) +(k—2)(1+u_))

=_hmu+(1-u2)é—(2k'3)‘9 3

the coefficient of 71{—3 is
(—-)_uzl2 + Zuh)m - (1= ua)(k -2) =2 ((1 - u2)2 - ) m-(k-2)(1- u2) 3

the coefficient of ’)’k_h is hu3m = Jju {l - (1 - uz)} m and the coeffi-
cient of 71{:—5 is 2u2m =2 {l - (1 - uz)}m. In this way we know the

required recurrence relations between the coefficients T
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Chapter ITI, ON LIMITS MODULO A GIVEN CLASS OF FUNCTIONS

Section 1, DEFINITION OF LIMITS MODULO

A GIVEN CLASS OF FUNCTIONS

The theorems in the first chapter have the disadvantage that
they invoive a function which is supposed to possess in a given inter-
val a derivative of certain order which is very small in that interval.
This condition is satisfied only in special cases. For instance,
even in a simple sum such as

X cot ar n
; ’ ‘&) 9
nSiw

T

12

here «d denotes a large positive mmber, this condition is nctk

=

satisfied, since the function cot %’—?: and alsc its derivatives ars
large in the neighborhood of the origin., It is true that we can
write the sum in question as
o0t Wrnu ) -&-.(") 1",
E{“‘“’m frrn)'ﬁ En s
1Epsiw 1éapEiw

in which the last sum has besn calculated in Section 8 of the first

chapter, whereas the first sum satisfies the required condition,

since the el derivative of cot 3%;-3: - ;?% is at most of the same
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#)
order of magnitude as W B "7 31 the interval 0 £ x % £ and there-

fore very small for sufficiently large &, It is also true that a
similar device can be applied in many other cases. Bult, apart from
the simplest cases, the calculations become so complicated, that
this method is practically inapplicable, To avoid these complica-
tions T introduce a generalized concept of limit, namely that of the
1imit modulo a given class of functions.

Let T be a point set lying on the real axis or in the complex
plane, Let a be a given limit point of that set (a may be infinite).,
Let M(a) be a set of functions g(t) which are defined at all points
t of T in the neighborhood of a such that, if g(t) belongs to M(a),
then M (2) conmtains all functions ¢ g(t), where ¢ denotes a constant,
and if two functions belong to M(a), then M(a) also contains their
sums, Such a set of functions M(a) is called a modulus. It follows
from this definition that a modulus which contains g(t) also contains
=g(t) and their sum which is identically egual to zero, so that each

modulus M(a) contains the function which is identically equal to zero.

'MﬁmememmﬁmcMﬁﬁwﬁ%iSmdﬁﬂatmewmh,
n
the derivatives i3 (cot 9f u = ?%m) are bounded near the origin,
' "
But then 4f y = 2=
iy} w

h . ; h
d WX Lid 1 d £ h
[nadpen (C’-Gt — ) = (CO‘b NS ___=) =

which proves our statement,
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We call the 1imit peint a of T an ordinary point with respect to

M under the following conditioms: if M(a) contains a function
g(t) such that g{t) tends to a finite limit A, in the ordinary sense
of "1limit", as t in T tends to a in an arbitrary way, then this limit
iz equal to zerc, If the real point & is an ordinary point with res-
pect te a modulus M{z) and the point set T contains only real numbers
t > a, then we call a + an ordinary point with respect to the modulus;
in that case we denote the modulus by M{a+). If the real point a is
an ordinary point with respect to a modulus M(a) and T contains only
real numbers t < a, then we cgll a— an ordinary point with respect to
the modulus; in that case we denote the modulus by M(a~).

Let us now consider the definition of the limit of a function
£(t) as +-» a, with respect to a given modulus M(a). Suppose that a
is an ordinary point with respect to that modulus and suppose that the
modulus contains at least one function g(t) such that £(t) - g(t) tends
to a finite limit A, in the ordinary sense of "limit" , as t in T
tends to a in an arbitrary way. In that case we call A the limit of

£(t), modulo M(a) as t = a, and we write

A= lim f£(t) (M{a))
t =»a

or
(1) = A (M(a)) as t =»a .

This 1imit, modulo M(a), if it exists, is wniquely defined;

for if M(a) contains the functions g(t) and h(t) such that
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£(t) - g{t) tends to a finite limit A as t = a and £(%) - h(t)

tends to a finite limt A’ as t =+ a (where "1imit' is defined in the
ordinary way), then the function g(t) - h{t), belonging to M(a), tends
to the finite limit A = A as t => a, This limit is equal to zero,

since a is an ordinary point with respect to M(a); consequently

X =AY,

Tf £(t) tends to a finite limit A as + =» a in the ordinary
senge of "iimit", it tends to A with respect to any modulus, for
which a is an ordinary point, since that modulus contains a function
g(t) which is identically equal to zero and £(t) - g{t) = A, as
% in T tendz to a, Conversely, if £(t) —» A with respect to any
moduius for which a is an ordinary point then f£{t) — A with respect
+to the modulus whose fumctions are identically equal to zero and there-
fore f{t) in the ordinary sense of "limit" tends to a finite limit A
as + =% a. We see that the previous definition of limit modulo a
certain modulus is a generalization of the usual concept.

A modulus with at least cne ordinary point does not centain a
function which is identically equal to a non-zero content; for
example, a modulus with at least one ordinary point can therefore
not contain both log + and log 2t, for then it would also contzin
log 2t - log t = log 2.

Tr £(4) and £°(t) possess the limits A and A" modulo M(a),
as t in T tends to a, then ¢ £(t) —» ¢ A and £(t) + .f':"s(t) - A+ A®

modulo M{a), for M{a) contains two functions g(t) and g%( t) such
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that £(t) - g(t) = A and £ (t) = g%(t) 3 A% in the ordinary sense,
so that ¢ £(t) ~ c g(t) =» ¢ A and (£(t) + £7(%)) ~ (g(t) + £'(1)) =
X+ A%, (all 1imits taken in the ordinary sense) where ¢ g(t) and
g(t) + g () belong +to the modulus M(a).

Tt is not certain, however, that the product £(t) £ (t) tends to
a finite limit modulo M{a), Furthermore, even if £(t) () tends to
2 finite 1imit module M(a), this limit is not necessarily equal to
the product A A ¥, For instence, let M(oo) be the modulus formed by
the functions ¢ t, where ¢ is an arbitrary constant. Then infinity is
an ordinary point with respect to this modulus, for if et tends ﬁa a
finite limit A, as t approaches infinity, then ¢ = O and therefore
A =0, Then we have as % —> o (in the ordinary sense), the
functions t, sin % and % tend to O M(om). However, t sin % has no
finite 1imit, modulc M( o), since it is impossible to find a constant

¢ such that t sin % - ¢t tends to a finite 1limit, as t =» c. Further-

i

mere the product t o ¥ = 1 has the 1limit 1 and not zero.

5o

s

Example: If M{oo) consists of the functions ¢ log t, where ¢ is

an arbitrary constant, then

%
1im % =0 (M( o)) .
t=3> 00 1
T write in this case
0
dx
f '5{"3 = 0 9 (M(m)) 9
1
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or, simply

Rig

fOO
1
recognizing, of course, that this is with respect to the modulus M( o).

Tf M'(oe) is the modulus formed by the functions ¢ log 2t, where

¢ is an arbitrary constant, then we have modulo M (o)

vo] ]
dx dx
f Tﬁ»log? and f 'SE'=0 5

1 1

v

since

log t~-log2 t =~ log 2 and log'tnlog%n-log2*b=0 2

The limit with respect to a certain modulus may therefore depend
cri the modulus,
Suppose that

A= 1im £(t)
=% o

exists with respect to a certain modulus M(oo), for which infinity is
an ordinary point, Then the limit of f(t), as t — oo, exists with
respect to any modulus M%( ), which contains all functions belonging
to M( ) and for which infinity is an ordinary point; this limit

modulo M ( o) is alsc equal to A, TFor M(co) and therefore also
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M { ) contains at least one function g(t) such that £(t) - g(t) tends
to A, in the ordinary sense, as t in T approaches infinity, Of

course, the existence of the limit of f(t), as t =» o, modulo M (o)
does not guarantee the existence of the Iimit module M{ o). There-
fore, if we have constructed a certain modulus M( o), for which infinity
is an ordinary point, then it is useful to add to this modulus as many
functions as possible, provided that infinity is also an ordinary
point for the new modulus M%(oo) s which we construct in the described

way .
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Section 2, CONSTRUCTION OF CERTAIN MODULT

Let L{ac) be the modulus formed by the fumctions g(t) which can

be written as a linear combination of products

o =
[2.99 '?-qcl s, B
oo o 1 h

where h denctes an arbitrary integer # 0, where the exponents are real

such that at least one of them is different from zero and where finally
o=k and + = log + (k = 0)
‘ ’ k+l k °

To show that infinity is an crdinary point with respect te this

modulus, we consider two products

T iy °ee 'if}a and . ‘L’al 0o

e 2 - - . - 2 . ap
Supposs ﬁg 3’@ if (/5"? = ')’09 Wwe suppose (-J’.l Il’ if
3 = Y i 3. = £ - 8 = 5
[A = and = ¥, , then we assume P, 5 7,, and so on;
o Q -5.. ol 2 o
finzlly we assume that if ﬁo S SRR 3 . 711—19 then
(7, > ¥y Then the first product is of higher order of magnitude
than the second preducts that means that the first product divided
by the second produst tends to infinity as t = .
An arbitrary function g(t) of L{w) is a linear combination of
a finite number of terms of the form (2.1)., If at least one
of the coefficients cccurring in that linear combination is

different from zers, then the result of the precedir ara-
s P ng p

graph implies that the combination contains 2 term u of
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highest order of magnitude, This term u tends to infinity or to zero
as t approaghes infinity. If u =—» O, then g(t) tends to zero as

t = oo, If u=» w, then g(t) also tends to infinity as t -» @,
Consequently, in this case, if g(t) tends to a finite limit, this
1imit is equal to zerc. On the other hand, if each coefficient in the
linear combination g(t) is equal to zero, then g(t) is identically
aqual to zero, which implies that the limit to which g(t) tends is also
equal to zero. Consequently infinity is an ordinary point with respect
to L{ ).

Consider a modulus M{ <o) whose functions are defined on a set s
which contains arbitrarily large values of t, but such that each
element t 1s positive§ let infinity be an ordinary point of
M(oo) . This modulus generates a modulus M(=oo) (for which - is an
crdinary point), a modulus M{s+) (for which a+ is an ordinary point)
and a modulus M{a~), for which a=- is an ordinary point); here a
denotes an arbitrary real finite rumber. We define M{=00) as the
modulus formed by the functions g(-t), defined for -t in T. We de-
fine M(a+) as the modulus formed by the functions g(?i'—é‘), defined

1 . . \ <
for o= in T; finally we define M(a-) as the modulus formed by the
(Z=E)

1 s
Prme 1 ane e o ] ; L
fume tions g(:z:t-»}g defined for —==- in T, Here g(t) denotes an arbi
trary function belonging to M(co). All the moduli, generated in this
way by the original modulus M{ o) are said to be equivalent., For
instance all the logarithmic moduli L{oco), L{~w), L(a+) and

L{a=) » Where a is an arbitrary real number, are equivalent,
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Example: To prove that the integral

I= / V¥l log (x + 2) dx

1

modulo L{ o) exists, we may write by expanding the integrand

L
\/x+110g(x+2)ﬂleogx+}-9-5—;;5+-—2—1-+r(x) 5
2 x? x?

where r(x) is integrable in the ordinary way from 1 to oo.

We have moduic L( oo)

f x log x dx = 1lim -%t 1ogt-—§t +é‘}=é}’
t=—>
1L
ao
—r L 1
f x 2 logxdx = lim {2‘balogtnht2+h}=h
1 ‘t“>>00
and
@ 1
Jﬂ x 2 dx = 1lim {2 £2 - 2} =-2
1 t=>00
so that
03]
-2 [ rwe
1

We see that the introduction of the logarithmic moduli enables
us to generalize considerably the notion of integrals. Let us con-

sider for instance the integral



e 7 A

= _ 4
f x + x9) log |x| ax

4

where =1 < & < ﬁ There is a difficulty if the closed interval
(= , @) contains the origin. If A& > 0, in the interval 0 <x % (3,

We can write

Lol

L

log |x| = x

2

T

(x + x log x + r(x) ,

where r(x) is inteprable in the ordinary way from zero to (3, so that

we cbtain moduvlo L(C+)

E _k Pk A
/ (x-i-xz) 31og [xldx=/x 310gxdx+ / r(x) dx 3
5 0

o]

the first integral on the right hand side is modulo L(0+) equal to

1 1

30 JlgP-9p O .

If « €0, then we have in the interval =4 £ x <0

L

(x + XE) > log |x| = x 3 log (=x) + r(x)

where r(x) is integrable from o to zero, Then we obtain modulo L(0-)

@] . Q
/ (x + x°) + / r(x) dx .
= o

In the case =1 <% <0 < (> we find thus

Wik

-1
3

AES | g

log |x] dx = 3 log (= =) + 9
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1

L ok
3

& -3 =
/ (x + x°) ~ log x| dx == 3B “1log -9 @ ER

g

I »
+ 3k “log (~x) + 5 A L /r(x)dX§
A

Wk

the intepral on the left hand side is taken with respect to the moduli
L{G+Y) and L(O=) .
Similarly we can calculate the integral in question also for
*% % .1, but then we must use the moduli L(-1+) and L(-1~-).
The remairder of this section is devoted to the construction of

an important new modulus,and to that end we first introduce the con-

cept of "hyperpolynomials",

3/

The functions f(x) = “ has the property that

/0 he 3/2 3/2 i
f(x +1n) =%/ (1 --"fg’?j/"f-"x’/‘w x® h+ € (x,b) ,

a1 LWY]

where €{x,h) tends for zero, if h is fixed and x tends to infinity.
There exists therefore a polynomisal in h

3

p () =2+ dx"n

na

of which the coefficients {but not the degree) depend on x such that
flx + h) - px(h) tends to zero as x —> oo, provided that h is fixed.
We eall s function with this property a hyperpolynomial; more pre-

cisely: a hyperpclynomial is a function £(x) which is defined for

cach sufficientiy large pesitive x with the property that it is pos-
sible to find a polynomisl px(h) in h, of which the coefficients bub

not the degree may depend on x, such that for each fixed h
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£{x + h) - p_(h)

tends to zero as x approaches infinity.
The following properties are immediately clear:

1, A polynomial is a hyperpolynomial.

2, A function which tends to zero as x approaches infinity,
iz a hyperpolynomial .

3. A hyperpolynomial, multiplied by a constant, is a hyper-
polynomial., The sium of two hyperpolynomials is a nyperpolynomial,

hs If there exists an integer k % 0 such that the k-th

derivative of f(x) exists for sufficiently large x and
(k)
£ {(x) =3 0 as X =» © ,

then f£(x) is a hyperpolynomial.

The proof is easy. We have

; k=1 k
f{x + h} == f(x) 3 5‘ f,(X) $ coo 4 1(1_._ ) , f(k-l)(}[) + % f(k) (§ ) 5
- k - 1) :

where f lies between x and x + h, If h is fixed and x tends to infinity,
then f also approaches infinity, so that the last term tends to zero.
This shows that f(x) is a hyperpolynomial.

As particular case we find that each function belonging to the
logarithmic modulus L{wc) defined by (2.1) is a hyperpolynomial.

Remark: The product of two hyperpolynomials is not always a
typerpolynomial. For example, let f(x) = ;3“5 if x is rational and

£{x) = 0 if x is irrational, Then X and f(x) are hyperpolynomials.
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If their product were a hyperpolynomial, then there would exist a
polynomial p (h) in & such that (x+ h) £(x + h) - px(h) would tend
to.zero as x approaches infinity. Suppose ncw that x is a rational
number tending to infinity. If h is a fixed irrational number,
{x + h) £f(x + h) = 0, so that pxﬁh) = 0, Therefore, for each fixed
irrational mmiber h, each coefficient of p, (h) would tend to zero, as
the rational number x approaches infinity. Then px(h) would tend to
zero, not only for each fixed irrational h but also for each fixed
rational rumber h, This is impossible since for each rational number h

{x + h) f(x + h) = 1, so that 1 =~ px(h) tends to O and therefore
pz(h) to 1,

Consider a set K formed by periodic functions with the same

period and satisfying the following conditions: if pl(x), cen ps(x)

denote functions belonging to K and if it is possible to find constants

oq pylx) # oot oy p(x)

is equal to a constant for all x, then this constant is equal to zero.

Let N{ o) be the set formed by all functions of the form
' b de : i eeo0 -
F(x) = p(x) gy(x) + oo+ p(x) g (x)

where s ® 0, where Z(x) denotes a function belonging te L(eo), the
logarithmic modulus at infinity, where pi(x), oo 5 py(x) are

pericdic functions belonging to K and where gl(x), K gs(x) are
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hyperpolynomials, We shall prove that N{ o) is a modulus for which
infinity is an ordinary point,

Proof, It is clear that N{ o) is a medulus. To prove that oo is an

gsrdinary point of this modulus we assume
(2.2) I(x) + py(x) gg(x) + ooo + p(x) g (x) = X,

as x = o, where A denotes a finite number. Under this assumption
we must know that A =0,

Without loss of generality we may suppose that the periodic fune-
tion py(x), °°° 5 p(x) are linearly independent, for otherwise it is
possible to write at least one of those functions, say ps(:x:) as a

linear combination of the s - 1 other functions,
gl .
pis) = ) copnalx)

o~ =]

whence 2q, °°° G, 5 are constants; in this case we have

o

S==L

Xx) + 3 v, (x) I:g,_ (x) + cwgSCX)]—?} A,

-

o
where g,.(x) + e gg(x) (e~ =1, °°° , s ~ 1) are hyperpolynomials,
so that the above expression may be written in the form of (2.2) with
s replaced by s = 1. Therefore, applying the principle of mathematical
induction we may assume for each s 2 0 that =11 the periodic functions
of (2,2} are linearly independent.

A1l the functions belonging to the set K possess the same positive

period a., From (2,2) it follows for each fixed integer m
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(2.3) Z(x + ma) + po(x) gy(x # ma) +# oo0 + 1 (x) g_(x #ma) > A
as X =» o o

Since Z(x), gl(x)9 coo g gs(x) are hyperpolynomials, we can find
polynomials ﬁx(mﬁg gﬁx(mjs soe o gsx(m) in m whose coefficients (but

not the degrees) depend on x, such that

(2.1 I(x + ma) - Ix(m) - 0
and
{2:5) go (x + ma) - gaﬂx(m) =3 0 (o~ =1, *°° , 8) ,

88 X = 00, These 1imit relations hold for each real fixed m.

In this way we find for each fixed integer m
(2.6) Yx(m) - A as x =¥
where
Yo (m) = L (m) + py(x) gy (m) + oco p(x) g (m)

This functicn Wx{m) is a pclynomial in m, ~f which the degree q is

independent of x, so that we can write
W m) = a (x) + a(xm+ oo+ aq(X) nl
In particular "{J;C(O) = ao(x) tends to A as x =» ®, so that

glm) = a, (x)m + oo+ aq(x)mq
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tends to zero as x = o for each fixed positive imteger m. It is

o g e s ; g WA R e i 5
possible to write each coefficient ah(x) (L& h % g} as a linear
combination of (1), y{Z), °°> , y(g}, in which the coefficients are

RGO W SATER ';y'h(m) —» 0 as x =» o0 we find therefore
@h(.ﬁl) -3 0 for h o= 1323 R , g .

This result implies that formula (2.6) holds for each fixed real
number m, Combining this with (2.L) and (2.5) we see that formula
(2,3) is true for each fixed real number m, Replacing x by x - ma

and lethting ma = -u, we obtain for each real fixed u
2x) +pylx+m) gfx) + oo v plx+u)glx) =2 asx>ow .

1% is sufficient to show that it is possible to let x tend to

infinity in such a way that
{(2.7) v(x) = [Zx) = A |+ gy ()] + eee + g (x)]

tends to zero, For in that case the function Z(x), belonging tc the
logarithmic modulus L( o) tends to the finite limit A so that this
limit,as we have previously seen, is equal "¢ zerc, It is therefore
sufficient to deduce a contradiction from the assumption that v(x)
possesses a positive lower bound of x tends te infinity in a certain

way . With this assumption, we have for each real fixed u

) ) (x)
Itvngm A, pq (% + u) 2 pglx + u i:si::; =0

v(x)
{2.8)

as X == o
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From the definition of v{x) it follows that each of the numbers
o & pul®)
Ax)-A ; T
%T}l(‘jm S v(x) (o==1, ++c , 5)

is in absolute value £ 1 and therefore bounded. Consequently, it is

possible to let x tend to infinity in such a way that

v Yx)- ge (%)
{2-9}_%%'[-}-1«90 and _TTXT“)?C" (v =1, °°°, s)

and that
x-a[E] €,
a

where ¢, G, °°° 5 g and § denote’ suitably chosen constants, which

=

are of course independent of u, Now it follows from (2.8) since

= x .
p&(x—a[‘né]*nu) that

[

P 0(3@ + )

+ Cy pl (g""'il) 4 o0 4 r_'a,sps (i.;.u) = 0

[#]

and from the definition of v(x) and (2,9), that

ol + Joy |+ +oe # legl =

(2,10}
i W&%A!+1h g, () | . EXeN
= 13y - iam w‘-ﬁﬂ = d oco0e jm o TE= l .
W=D 30 Vi Ke=d 0 R K= O v:’i

Since this result holids for each real u we have for each real x

¢; Pq (x) + oo+ c D (x) ==2c &
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According to the conditions imposed on the set X to which the nericdic
functions py(x), =°° , p(x) belong, this constant -c ié equal to
zero, From (2.10) it would follow that at least one of the coeffi-
cients ¢q,0y, o0 5 Cg is different from zere, contrary to the
hypothesis that the pericdic functions pl(x), sos o ps(x} are
linearly independent. This contradicts the assumption that v{X) has
2 positive lower bownd if % tends to infinity in a certain way. Con-
sequently, it is possible io let x tend to infinity in such a way that
#{%x) =3 O so that according to (2.7) X(x) = A and therefore
A =0,

This completes the proof.

T dencte by P{ ) the modulus formed by the functions of the

£(x) = Lx) + py(x) gp(x) + == +p (0 g lx)

where ¥(x) is a function belonging to the logarithmic modulus L ao)
at infinity, where g.I{x) g IS gs(x) are hyperpolynomials and where
pug(x)s oo, ps(x) are functions with the period 1, which are inte-
grable from O to 1 such that

x
f’p (x) dx = 0 (o =71 00 8)

a~

)

Infinity is an ordinary point for this modulus P(oo), for if

we choose the constants ¢, °°° , o, C such that for all x=
: v L=



(LIL, TLT 2,13}
ep Py (®) * ek egpg () = e,
then we find by integrating with respect to x from zero to 1, that

¢ = 0, so that the modulus P(o0) is only a submodulus of the

modulus N{co), treated above.
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Section 3, ON MODULI CONSTRUCTED BY INTEGRATION,

SUMMA TION AND PASSING TO THE LIMIT

In the preceding section we have constructed a modulus P{oo) of
which L( co) is a subset and for which infinity is an crdinary point.,
To show that there exist other extensions of the logarithmic modulus
L{ oo} with the same property we give first a simple example,

Examples The functions v(+) of the form

Wl

1 t
(3.1} w(t) = X(t) + & / t%\/ﬁg_?b dt + e f t 2VIog t dt
2 2

where ¥{t) denotes an arbitrary function belonging to L( oo) and where
eq and o, are arbitrary constants, form a modulus I( o), for which
infinity is an ordinary point,

To prove this we must show that, if a function v(t) of the form
(3.1) tends %o a finite limit in the ordinary sense as t =» oo, this

limit is equal to zero, Integrabting by parts we cbtain

m—=1
W) = L)+ oy 2P ey (10 9V 0 ()
=0

p =1 1
12 | " 2-h %
-'!“@.2"&/ h%bh (log t)° ok (t)}+0m "

where a, and b, denote constants # 0, where C is a constant and

where rm('t) and rrf {(t) are at most of the order (log 'b)l/ 2=~m°
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The functioa Z{t), which belongs to L{wo}, can be written for

sufficiently large % as a finite sum of terms of the form

P Y = Q \ °< 1 = 2 ¢ . = h

(3.2) ¢ & (log ) “(log log t) eoo (Log ec° log *) .

Since the mumber gf these terms is finite we can choose m so large
that their suwa J{t) contains neither a term of the form

Y1 32002 9325 1or 2 term of the form P /2 (105 )3/ WL

where 7., and 7y, are constants # 0, For this choice of m we obtain
5) = T R /. 1/2 %
vit) = L () +eq ¥77 m {t) +oy 77 1" (2) v 0

where the function il(t)s belonging o L{ @), can be written as a sum

of terms of the form (3,2), which certainly contains the terms

32 (10 £33/4 L ang by 7% (Log £)3/2™1

%1 Bl 2

Therefore v(l) is for large values of t urbounded if ey # 0 zand also
if Gq = 0, ey # 0, Simce v(t) tends to a finite limit, we have
therefore ey = oy = 0; so that v(t) = ¥(t) belongs to the modulus
L{w), As infinity is an ordinary poirt for this modulus, the limit
to which v{t) tends ss £ =» 0, is equal to zero, This shows that
infinity is an ordinary point for the modulus I{ o).

Remark: Replacing t by 3 we obtain that the functions v(t) of

the form
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5

) w3 i 5—-’
v(t) = L(t) + ey f t 3/2 Log % dt + ¢, f t # Viog % 3k,
t t

nj=

where Y(t) denotes an arbitrary function belonging to L(0+) and where
¢q and e, are arbitrary constants, form a modulus I(0+), for which
O+ is an ordinary point.

'We =pply the modulus I(0+) to the following integration. If f(x)

is contimuous in the interwval O € x =1 and twice differentiable at

the origin, then the infegral

1
f x>/2 Vgog ;% £(x) dx

v}

exists with respect to this modulus I(0+).

For we can write
£(x) = £(0) + x £' (0) *+ x° r(x)

where r(x) is bounded and we have modulo I{0+), as § = O,

1 : 1
I~/ T ) -
[x’/z\ig;.ﬁg;‘éf(x)dXﬁf(O)f x5/2 log;];dx
i &

i i
+ £7(0) f x“3/2 og j% dx + f x_1/2 v’z.i:og 3—; r(x) dx
§ §

. ) 1
%ﬂ@fiﬁﬂﬁ%%m+ﬂmf:ﬁﬂﬁ%%m
L 1 .
= 2

]
els m];,
& xa\ﬁog; »{x) dx .

=z
e}
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1,
2 2
1
v(t) = 1(x) + clf /2 iog § at + c, f 7% Viog § at
t t
where ¥(t) denotes an arbitrary function belonging to L(0+) and where
ey and ¢, are arbitrary constants, form a modulus I(O+), for which

O+ is an ordinary point.

‘We apply the modulus I(0+) to the following integration. If f(x)

(11

}E contimious E the interval 0 € x 1 and twice differentiable _g_‘t.”

the origin, then the integral

-

1
f x—S/‘Z og}%f(x)dx

O

exists with respect to this modulus T(0+) .

For we can write
£(x) = £(0) + x £' (0) + x° r(x)

where r(x) is bounded and we have modulo I{0+), as § = O,

1 1
f /2 g L £(x) ax = £(0) f 22 fog 1 ax
5 8

1 1
(s = ff
+ £1(0) f xmB/ﬁ Vlog ;i; dx + f £ L/2 og % r(x) dx
§ §
1 | 1
>£0) | x2/? g = ax + £'(0) J[ 372 fios Z dx
=2 5 .
2 2
1
-% 1
+ x 2 Vlog = v{x) d&x .
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We can generalize considerably the obtained result by introducing a set
7 oo} formed by one or more (possibly intinitely) many functions of
the form
- o * o

(2.3) + © (log t) 1 {log log t) B s {(log o< log t) k "
that is, of the form

= & o(

. O 1 k

1‘0 tl Bl & tk .
wherse ‘to = 1t and tn-%l = log Lh and where k is the same integer = 0 for
all functions belonging to U( ). We assume that in each function be-

longing to U( ) the exponents & , %, °-° , =X, satisfy the following

inequalitiess
§ >,
c%oéml 3 if < ==l, then &; S -1 3
(3.1 < if ot = Ny = w1 , then d?%m‘l 3 and so on 3§

finallyg if o(@ = 0&1 = oeo = a‘k-:l 2 - L A then o{k . ;

-

Let p be a positive number such that “‘ck exists and is positive

gy

for t = p. Let I{w) be the set formed by all functions of the form
s t
(3.5) v(t) = X(t) + J e j u, (x) dx
a-=1 D

where s denotes an arbitrary integer 2 0, where u,(t)=1, oo , s)

denctes an arbitrary function belonging to U( o) and where
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@ (0= =1, °°° , s) are arbitrary constantss we assume that Y(t)

is an arbitrary linear combination of terms of the form

)@r

o i Y - | B2 -
{3.6) ‘E{s (log )" “{log Llog t)'" ° e+ (Llog ece log t 5

which tend to infinity as t —» @,
Infinity is not necessarily an erdinary point for this modulus
I{ ), for if U{ o) consists only of the fumction t3/2 and if p > O,

then the function

4
_§t§/2+j Q/degagpm 3

p

which is a constan® # O, can not belong to a modulus for which infinity
is an ordinary point. Therefore we introduce the additional condition
that T(e) does not contain a function which is equal to a constant

# 0. In this way we cbtain

THEOREM 1. Suppose that each function belonging to I(co) which

is identically equal to a constant is equal to zeroc, Then infinity

is an ordinary point for the modulus I( ).

Proof., We must shows if a function t,t) of the form (3.5)
tends to a finite limit A , in the usual sense, as t =» oo, then
X = 0. We know that ¥{t) is a linear combination of terms of the

form (3,6), which tend to infinity, as t =% .
g
Consequently %—% is a linear combination of terms of the form

% To ﬁ i ffr’f:‘i
o ks i B

(3.7 ty oo b

E
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whers

i 2 i ' é R
"&’@édl 3 if y,==-1 , them 93 5-1 3
i'f -a,@ = 7'}‘" = = l 9 t]:len, 72 % 1 g coe ;<

finally, if ¥ = ¥y =" = ¥,==-1 , ‘then 74 =~1

In this way we find that

L4

v (£} = ¥ () + ¢, Ug. (1)
o=

]
i

can be written as a linear combination of terms of the form

Ve, 71 T
'{“\0 't't]- 800 ﬁﬁ S

. . S 4 > : ‘
where the integer ¥ is chosen £ k and = r + 1; the exponents
T oo 713 cae "Z,; satisfy the inequalities

> |
Y o - .gﬂ 5
Vo ®-1 5 if y o=-1 , then 7y 1 3

(308}“ if -J“OE"?’:LEml s then ‘a’z;l g ooo;

5 . 3 = = eoco = 3 % =
finglly, if "0‘0 Tl H,;_,l 1, ‘then 3:6 1 .

-

Choosing a mumberr q 2 p such that ¢ » is defined and positive

for © = g, we obtain for & 2 g
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t b
f v (%) at = ¥(t) - L(q) + }j ua,(t) at
el

jj(t‘)xug:f Pav(r)u? s

!
where

= Y{g) * ﬂ @o,f u, (T} 4% .

P
We have supposed that v{f)} tends %o a finite limit A, in the

usual sense, as t =% w. Therefore
(3.9} f v (%) dT ~» A =~ poast=p o
q :
This implies that v {r) is identicaily equal te zero. For other—

wise the linear combination which represents v (%) contains a term of

highest order of the form

ot B T o o VB
) 1 1 9

where the constant coefficient ¢ is different from zero and whers the

exponents satisfy the inequalities (3.8} . Then
17 ) . 1 '
vit)=¢ct By o000 By + (L)

where p(t) is of smaller order of magnitude than (3.7). In that

case the inbegral
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t
7.
f x 30w b e x M

where X, = % and Xpeq = log xy would increase indefinitely according

to the inequalities (3.8), whereas

+
f Alx) ax

q

would be of smaller order of magnitude, so that

t

f v'(x) ax

q

would be an urbounded function, contrary to (3.9).

Consequently v'{t) is identically equal to zero, so that v(t) is
a constant. Since this function belongs to I( ), it is by hypothesis
equal to zero, so that also its limit A is equal to zero.

This completes the proof,

This set u{ w) of terms of the form (3.3) yilelds, not only the
modulus I{oo) containing integrals, but also a certain modulus S( 00}
which involves sums, To that end we choose a positive integer p
such that t, exists and is positive for each integer & 2 p. Let the
modulus 5( o) be formed by the functions v(t), defined for all

integers t 2 p, of the form

+

c. o, u_(n) ,
o. n‘.:‘..‘p =

vi(t) = X(&) +

L2

if L4
HM 2
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where 7(t) is an arbitrary linear combination of terms of the form
(3.6) which tend t¢ infinity as t —» o, where s denotes an arbitrary
integer ® 0, where u . (t) (o = 1,2, <o , s) denote arbitrary func-
tions belonging to U(co) and where ¢ (o= =1, °°° s) are arbitrary
constants. In the same way as above we prove

THEOREM 2. Suppose that each function belonging to S(e) which

is identically equal to a constant is equal to zero, Then infinity is

an ordinary point for the modulus S(ew).

For instance the functions

o o1 + 3
w(t) = Z(t) + o Yy n®viegn + ¢y S n2Vlegmn ,
“ n=p n=p

where T{t) denctes an arbitrary function belonging to L( <) and where
¢q and ©, are arbitrary constants, form a modulus S( w) for which

infinity is an crdinary point. The series
o 1
E 2 Viog n £(n)
n=2

converges with respect to this modulus ifi?(%) is twice differentia-
ble at the points x %0 in the neighborhood of the origin.

To construct other moduli for which infinity is an ordinary
point, we consider a set T of which infinity is a 1imit point. Fur-
thermore we introduce a set V(co) formed by one or more (possibly

infinitely many) functions v(t) which are defined for each element t

of the given set T and which possess the two following properties:



(111,I11,3,10)

%, The set V(o) does not conmtain a function which tends to a
finite limit #0.

2o For any two different functions belonging to V( o) the abso-
lute value of the quotient tends either to infinity or to zero as t
in T approaches infinity.

THEOREM 2., Consider each function n(t) which can be written as a

3

linear combination of a finite number of functions belonging to v{0) .

These functions form a modulus N(oc) for which infinity is an ordinary

Eoinﬁ.

Proof, If n(t) is not identically equal to zero, we can write

n{t) in the form

n{t) = ) C, "’o.,(t) .
=]
where
v ()
@j_:;fo and  ——e—— 30 (2%sfs) ,
: vl(,t)

as t in T tends to infinity. Therefore

' S W)
n(t) = e vy (1) {1 + Y, Ep =17 ”

where the expression between braces tends to 1 as t in T approaches
infinity. If n{t) tends to a finite limit A, as t in T approaches
infinity, then also ¢y "\rl('t) -3 A. In that case vl('b) tends to a

Pinite limit -(_} and this limit is equal to zero according to the
1
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condition 1 imposed on the set V({ o). Cousequently A= 0, so that
infirity is an ordinary point with respect to the modulus N(oo) .

We obtain a much more general result by introducing the set
W(t) formed by the functions w{t) which can be written for each ele-

ment t of T as the sum of a convergent series

o0
w(t) = ¥ cy Y (t) ,
h=o
where the functions vh(t) (h = 0,1, °** ) belong to V()s we assume

. 5
that for each fixed integer h = C

vhﬂ(t)
=T -3 0 as t = oo

and thab
w(t) = €y Vo (t) = 6 vy (t) = cco = ©he1 Tpe1 (t)

is for large t ab most of the same order of magnitude as vh(t) e

THEOREM L., Let M{w) be the modulus formed by the furctions

(3.10) n(s) = m(t) + 5w ()

=L

vhers n(t) is an arbitrary function belonging to the modulus N{ oo

defined in the preceding theorem, where s is an arbitrary integer 20

and where wl(t) y Walt)y oo% ws(t) denote arbitrary functions

belonging to W(oo).
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Then infinity is an ordinary point with respect to the modulus

&

M{ o0} .

fﬂ}“_ggj‘::., We nust show that, if a function m(t) of the form (3.10)
tends to a finite 1imit as t in T tends to infinity, then this limit
is equzl to zero. The special case s = 0 is treated in the preceding
theorem, sinece in that case m{t) = n(t) belongs to N(oo). We may
therefore assume that s 2 1 and that we have already obtained the
required result in the cases in which s is replaced by a smaller inte-
ger 2 0, We shall deduce a contradiction from the assumption that
m(t) tends to a fimite limit # O, as t in T approaches infinity.

We know that the function n{t) belonging to N(oo) can be written

as a linear combinztion

(3411) - § ()

{311 n(t) = E:L e, vy (B
HOT T

of different functions belonging to V{w). We know slso that w_. (1)

{e= =1, °°° , s) is the sum of a convergent series
@

(3612) wmﬁﬂ=}; ¢ p Voup (B) s
!-:‘}0

where the functions V’Uw}?(‘t) belong to V(o), such that for each

fixed integer h 20

<

S
O‘”h{"i»—-ﬁﬁo as t -» w

n @

(3613

< |

and that
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{3.1L} 'Wm(t) ot vwo(t) = Cqy "x_r"yl(t) coo = eo,hnl vo_ghml(t;

2s at most of the same order of magnitude as vo‘.h(t) . Let z,l(t} be

the function of highest order occurring among the functions denoted by

) @EXED 5 v (4) (R8s

The right hand side of (3.1C} contains at least one term which is equal
to the function .Z-i_('ﬂt-) multiplied by a constant. If ¥ zj_{t) denotes

the total contributicn of all these terms o the right hand side of

(3,10}, then
- 3
(2 R SACREIORNS MR SO
B o= =],

here T, (t) is the linear combination occurring in (3.11) apart from the
possitle term which involves ml('b) ;3 in the same way wyl( t) is the sum
of the convergent series cccurring in (3.12) apart from the possible
term which invelves By ().

Because we have cancelled the term of highest order, we know

that

., () Ww_. (t)
L oL,

as t in T approaches infinity. The constant ¥ occurring in (3.15)

is equal to zerc, for otherwise we would have
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ni(t) s Wml(t)

m(t) = g‘ﬁ1{t§ 1 ® 3F§ZT€TK$¢2%, “§EEI€T p
whers the expression between braces tends to 13 from the fact that
m{t) tends to a finite limit # 0, it would follow that the function
zl(t) belonging to Vi) would also tend to a finite limit # 0, as t
in T approaches infinity, contrary to the hypothesis that V(o) does
not contain a function which tends to a finite 1limit # 0. Consequently

¥ = 0, so that

n(t) =n(t) + il wa(t) .

In other words: formula (3.10) remains true if we cancel on the right
hand side all terms which contain Zi(t) as factor.

We can repeat this argument by introdusing the function zz(t) which
iz the function # zl(t) of highest order occurring among the functions

denched by

1N

a

) GEAED 5 3 (0 3w @Eefs)

Precisely as above we obtain

=
m(t) = () ¢ Fowo(t) 3
o=l

possible terms which involve zl(t) or zz(t); furthermore w&g(t) is
the sum of the convergent series occurring in (3,12) apart from the
possible terms which involwe @l(t) or zz(t), Thus we have cancelled

the terms which involve z.{t) or z.{t}.
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Continuing in this way we define ﬁ;l{(t} for each positive integer
k as the function # ?;h(t) (h = 1,2, °>¢ , k = 1) of highest order

ocecurring among the functions denoted by

] &
v, () WEAED 5 v @Refs 5 05n<k) .
Then
3.16 (+) - (
(3.16) m{t) = n (t) avgl w o (1) 3

3;.k(t) is the linear combination occurring ia (3.11) apart from the
possible terms which involve one of the functions zh(t) (h=1,2, °c° , k),
whereas W _ k(t) is the sum of the convergent series occurring in (3,12)
apart from the possible terms which involve one of the functions
2 (t) (h=1,2, s0s X),

Tet us now examine the behavier as k = oo of the terms on the
right hand side of formula (3.16)., To that end we write

; ; %
e, Ty (1) = Doy vy (B) # "oey v (t)
& ™ L A A AT

where the last cu: contains the terms such that v,{t) is of the same or
higher order than at least one of the functions zk(t) (k 2 1)3 the

sum £ contains the functioms v,(t) which are of smaller crder of

il

magnitude than each function zk(t) (k 2 1), Then we have for suffi-

ciently large k

n(t) = ¢y M(t)
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since all of the terms of ' (and only these temms) have been can-
celled,

If each gilven term in the sez*igs z S h oh has the property
that Voh is of the same or higher order than at least one of the

functions zk("iff) (k ® 1), then
(3.17) Tim  w,{t) =0 ,

since all the terms are cancelled, Otherwise there exists an integer
qo}: 0 such that vmh('b) is for h = 0,1, °°° , q,.= 1 of the same or
nigher order than at least one of the functions zk(t) (k = 1), whereas

v . {t) is for h B of smaller order of magnitude than each function
Tt qc-—

zk{ t) (k 21}, In that case we find

oo

{1.18) kiﬂ;";.m w@k('t) = hﬂ% G vwh(t) 5
e o=

since the terms (and only the terms) with k < G have been cancelled.
Let ¥* denote the sum extended over the positive integers e- £ s for

which formula (2.18) holds; the other positive integers o <s
satisfy formula {3.17). IFf

s o
(3,19} k> 1+ Zi* a_ s

= o

=

the mumber of cancelled terms is greater than the right hand side of
(32,19}, so that it is impossible that the sum ¥ is extended over all
positive iuntegers o &= s. This sum contains therefore at most s - 1

terms .
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Tking in {3.16) the limit as k = o we obtain

(t)= ¥ e ) + C (8,
m }%1 A V)t( o»);; W,

whars
W (t) = § @a_,vq_h(t) é
h=q,.

Thus we have written m(t) in a form similar to the original form
{3,10), but in such a wgy that s is replaced by the number of terms
of the sum 7% and therefore by an integer = 0 which is less than s,
According to our induction hypothesis it is impossible that this
function m{t) tends to a finite limit # O, This gives the required
contradiction,

We will prcceed to give three applications of the last theorem,

THEOREM 5. Let V(ew) be the set formed by the functions

of o =]
3.2 = 'D 1 o606 y k
(3,20) v(t) = 1" ty by ,

o o o “‘E
where k is a given integer = O and where to =t and b, £ = log %y

Furthermore we assume

il

3 T | s
. 203 If = 0, then %, 2 03 if & =oL =0, then %

1 ® 5 then <, = 03

ece . finally, j-'ui‘:u(o mol e =Ky * 0, theney > o .
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Choose the positive number p so large that 'tk is positive ror

t 2 p, Let W(oo) be the set formed by the functions W) which can be

o . N o
written for t = p as a sum of a convergent series

e

Qo

h=g

< 5 o 8. o .
where for each integer h = 0 the coefficient 2y is & constant, and

whers the functions vh(t) (h=0,1, °=° ) belong to V( ®). We assume

that for each fixed integer h = O

!
mf;:‘* e .. as t =%
K

and that

r - A < A I e w 000 = ¥
w(t) Yo ?:a(t) -1 "'f’l"t) “h-1 ‘rhml(t)

is for large % at most of the same order of magnitude as vh(t) ¢

Then the functions

5
(3422) m{t) = ¥{t) + ¥ w,(t) (t = p) ,
ol

where T{E) is an arbitrary function belonging to the logarithmic

: . . . 3
modwlns L( )}, where s is an arbitrary integer ¥ O and where

wy (£) 5 wyl t), eoo o w {t) denote arbitrary functions belonging %o

W( ), form a modulus for which infinity is an ordinary point,

Proof. We must show that, if a function of the form (3.22)

tends to a finite limit A as t = w, this limit is equal to zero.
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We can write X(t} = n{t) + r(t}, where n(t) is a linear combination

o

of a finite number of terms each belonging to V(o) and where r{t) —»

as t =» w. We know therefore that

5
ult) + ZI w(t) =N as t— o
o=l

The gbsolute value of the quotient of two different functions be=
longing to V{eo) tends to infinity or zero as t =» . Also, since
each function in V(oo ) tends to infinity as t ~» oo, we may now apply
the Theorem L, which gives A = 0., Therefore the functions of the
form m(t) form a modulus for which infinity is an ordinary point,

Example: Suppose o and b are real and ¢ is not an integer

2 0, Then the functions

m(t) = Z(t) + &y +2(l0g log t) sin -+ ey(t # b) 5

\fﬁ.ag T

where Z{%) is an arbitrary function of L{aoc) and where ¢y and ¢, are
arbitrary constants, form a modulus, for which infinity is an ordinary

point, For we have

.
i +° log log %
VIsET 1= (2h+1)1(log t)P*1/%

i
~
i
~
jn g

1
+2(log log t) sin

and

el -
(s o) = 5 (%) 2P s p(y)
0% hent h :

where r(t) =» 0 as t =¥ o,
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The function

L(t) = Lthe, & &) X =h

£
o=h <ol

belongs to L(oo) and we have
(3.23) n(t) = 2,(8) * w (1) + x(8)

where

1
w. (t) = ¢, +3(log log t) sin
i 1. EBET%

1
® ()P Flog Log ©
BRSO

o

= ¢y : ‘
~ h=o (2h+l)! (log t)

The set V(o) mentioned in the preceding theorem contains the functions

an ahal
t2(log t) B log log ¢ (h =0,1,2, oc°)
and for each fixed integer h % 0

1 a
W - Tl Tl
o (2g*1)! (Log t)
i

1
7 log Tog &
(10g OFT 2 %5

the conditions of the preceding theorems are satisfied.

is abt most of the same order of magnitude as

If m(t) tends to a finite limit A as t — oo, it follows from
(3.23) and r(t) ~» O that Z;(t) + wy(t) tends also to A and accord-
int to the preceding theorems this limit is equal to zero. Consequent-
ly infinity is an ordinary point with respect to the modulus formed

by the functions m(t).
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THEOREM 6, Let k be a given integer =0 and let p be a positive

number such that % >0 for x 2 ps here x, =X and Fpe1 = log xp .

Let V(oo) be a set formed by functions of the form

(51

+
(3.211); v(t) = ¥ +f xk K gz (t Tp)
p

where o is an arbitrary constant and where (3, By om0 5 By are

arbitrary real numbers satisfying the following inequalities:

B, 2 <13 if B =<1, then By 2 ~15 if B = = -1, then (3 = -

(3+25)
- . ol = - " -
ooy finally, if B, = ﬁ.l = eoo =[% . = -1, then G =-1 .

We assume that 7{ c0) does not contain two different functions

(3.2k) and

t

s " * 3*

(3.26) v(t) = 77 +f xf" mx_fk ax

P
such that

* = - ¥* ooao = 3*
Bo =fy 5 Gy = Oy s Pe= By -

Let W(c) be the set formed by all functions w(t) which for

t = P can be written as the sum of a convergent series

oo
w(t) = ¥, chvh(t) 5
h=0
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where for each integer h 2 0 the coefficient ¢y is a constant and

where the functions vh(t) (h = 0,1 »<) belong to V()3 we assume

that for each fixed integer h = O

vhﬂ“(t) =3 0 as t - o
V. ('tj
h

and that

w(t) = ¢, vo(t) -0 vl(t) = ceo =g o vh»-l(t)

is for large t at most of the same order of magnitude as vh(t) .

Let M( ) be the modulus formed by the functions of the form

m(t) = n(t) + wy(t) + wy(t) + oo+ w (t) 3

here n(t) is an arbitrary linear combination of a finite number of

func tions belonging to V(co); furthermore s is an arbitrary integer

20 and wa_(t) (o~ =1, =~ 5) denote arbitrary functions belonging

to W( o).

¥

Under these conditions infinity is an ordinary point with respect

to M(o0) .

Proof: From the inequalities (3.25) it follows that for x 2p

so that
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and the last side increases indefinitely as © =9 ., Consequently
each function v(t) in V(o) approaches infinity as t =» . Any pair
of.different functions v(t) and v (t) belonging to V(eo) has the
property that their quotient tends to infinity or to zero as t -» .
This follows from the fact that the functions v(t) and v*(t), defined

in (3.2L) and (3.26) have the property that ,Eé_@w tends to infinity as

v (t)

t =% oo in each of the cases:

3% 3
3ﬁ1=ﬂ1 s@2>ﬁ2 3

o o)

ko ko 3% 36
4 = > o £
B>R 3B3=06",A4 A s, =

g - #* o0 o = W o * -4
see 3 finally @ = (3" , °o° 3B 5 =P, 3 Gp> By 3

3
t
interchanging v(t) and v (t) we find that in each remaining case %(—%l

tends to infinity.
Tt may nowr be observed that Theorem 6 is a corrollary of Theorem Lo

Example: For q > 1 the integral

Teo)
I%f x3/2 (log x) el/logx dx
q

exists with respect to this modulus M( o), if we choose V(o) in such

a way that it contains the functions

%
vh(t) = f x"vE (log x')lah dx (h=0,1, === )
|4
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Then M(w ) contains the integral

00 ©®
Lét x3/2(1og :»c)el/log * ax Z: 'I%" ft xj/z(l og x)l ~h =h§o vh(t)

so that this integral tends to zero modulo M(w), as t — . In
this way we find
I-= Lp x3/2 (log :e:)el/1Og *ax (M(0)) .
Applying the same argument with summation instead of integra-

tions we find

THEOREM 7. Let k be a given integer = O and let p be a posi-

tive integer such that n > 0 for each integer n 2 p; here n,=n
and nh+1 = log N

Let V(oo) be a set formed by functions of the form

t (J‘o (31 ﬂk
(3.27) v(t) =y + nomT o my (t integer
n=p

Hi%

p) ,

where Y is an arbitrary constant and where g, ﬂl’ e (jk are ar-

bitrary real mumbers satisfying the inequalities (3.28). We assume

that V(o) does not contain two differemt functions (3.27) and
% * *

nﬁe ﬁo o e o 61{

o i Pk

(3.28) v (t) = ¥ 4

@Md’

such that

B =P, gy =6 , 1B =0

Let W(oo) be the set formed by 211 functions w(t) which can be

written for each integer t = p as the sum of a convergent series
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where each c, denotes 2 constant and where the functions vh(t)

(h =0, 1 ---) belong to V(e ); we assume that for each fixed in-

teger h 2 0
vh+1(t)
—v—(-a—-—--}o as the integer t — oo
h
and that

w(t) - covo(t) - clvl(t) - - ch_lvh__l('b)

is for large integers t at most of the same order of magnitude as

vh(t)o

Let M(oo) be the modulus formed by the functions of the form

S

m(t) = g(t) + 7, w (%) (t integer 2 p)
G=1

here g(t) is an arbitrary linear combination of a finite rumber of

functions belonging to V(oo ); furthermore s is an arbitrary integer

20 and w(t) (0 =1,---,s) denote arbitrary functions belonging to

W(oo).

Under these conditions infinity is an ordinary point with re-

spect to M(e ).

Example: The series

@
v n3/2 (log n)el/log 8
n=2

is convergent with respect to this modulus M(w ), if we choose the

set V(o) in such a way that it contains the functions

t
7, /2 (1og n)X B (h=0,1, << )
n=p
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Section li, INTEGRATION BY PARTS

In the theory of integration the most important rules of calcula-
tion are those of the integraticn by parts and of the substitution of
a new integration vaﬁable., In this section we show that the method
of integrating by parts can be applied also in the theory of integra-
tion with respect to given moduli. For the integrals occurring in
ordinary analysis the method of integrating by parts can 't‘>e formulated
as followss

If ;E‘(x) and g(x) are contimuously differentiable in the open in-

terval a < x < b (a may be =0 and b may be o), then

b b
(hala[ F(x)g' (x)dx = lim £(v)g(v) = lim £{u)g(w) ~Jf £ (x)g(x) dx
v<b usa
- =3 b U=-»a 2

provided that the three terms on the right hand side existj then the
integral on the left exists and is equal to the right hand side.

In the theory of the integrals with respect to given moduli we
obtain the following similar theorem.,

THEOREM 8, Suppose that f(x) and g{x) are continuously differen-

tiable in the open interval a < x <b (a may be =co and b may be +00).

Assume that

lim £(v) g(v)
v<b
T=2>b

exists with respect to a given modulus M(b-) for which b~ is an or-

dinary point and that
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Lim f£{u} g{u)
u>a
U=pa

exists with respect to a given modulus M{a+) for which a* is an ordi-

nary point. Finally we assume that the integral

b
f £'(x) g(x) dx

a

exists modulis M(a+) and M{b-). Under these conditions the integral

b
f fx) g'{x) dx

“a

exists modulis M(a+) and M(b-) and satisfies formula (L,1) modulis

M(a+) and M(b-).

Proof. The proof is simple, We have for a € u <V <b

p v v
£(x) g'(x) ax = £(v) glv) - £{u) g(u) - / £1(x) glx) &x .
u u
Taking the limits modulis M(b-) and M(a+) of the three terms on the
right as v tends to b and u tends to a, we find the required result.
The application of the limits modulo a given class of functions
enables us to generalize considerably slome well-known formulae
occurring in célcu’lus.

THEOREM 9. Suppose

£
=

1™

«%’; arge_gmg >0 3
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if - %‘ < arg € < %&E’E @'1_33 any real number, but if arg € = f-g—,

we assme (3 <<= - 1. Letm be an integer 2 O.

Then the integral

R o
I=f x’&(log =)™ eex dx

0

3 & . 2
exists module L{0+), Furthermore, if - ﬁdl is not an integer = Gy

then we have modulo L{0+)

(4.2) I-—’@i{_}- r(ﬁ:}) c Tt

dgﬁm A (=8

In the case that - é;':}, is equal to_an integer k 2 0, we define

Ik:m as follows:

o0
Lo k
R wleek o m - €xX = Mt €
(L.3) I—f:c (log x)" e ~7T & T@( 1Ikm .
o
Theg.forki’o
k
U—Lum Ikoﬁ%(nlog €=‘{+i+§+“.,+1.{.) s

il
o

where y denotes the constant of Euler, and for m =

€ a™L 8 r(s)

T =
om (nrl) L d_sm"i"1 a=1
l =

(L5) 4

o1 ™l h [wa n (m+l-h)
) 1 () Geg o® T @
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iV

and finally I for x =21 and m = Las e linear combination of T

0a?
TopsTops *° s IOmSI].OE'IZOE LA Iko’ The coefficients in this

linear combination are determined by the recurrence relation

(h"é) R Loy ™ k m=1 Ik-—l m (i 2 m1) .

Remark. As we can see from (l.Li) and (L.5) the two values ob-

tained for I, are the same, namely

since [ (1) =~ 7.
We will divide the proof into 5 parts, as follows:
I. Investigation of the behavior of I at the upper limit, .
II. Behavior of the integral at O, for = %( 0, that is, > -1.

IIT. Behavior of the integral at O for (2 € <1, that is,

= @:—;& 20, and = %ﬂ? not an integer. There are two subcases:
Al m=0 Bl m21,
IV. Behavior of the integral at O for (3= -1, that is
G
P L]

V., Behavior of the integral at O for @ < -1, that is - @i—'-;l—' >0,
(+1

And, == s 2l integer, We have again two subcases:

_!3_]_ m=0 E_l m=1,

I.] The integral I converges in the usual sense at infinity,

since the substitution x* =y gives
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0 - R
- . _%L’l i -
(h.?)[ xﬁ'(log O™ & €F 4x = s f ) L(1og )" e T gy
(>4
il 1

the last integral converges, since we have assumed either

- I <arge <%— thus Re € < 0 ,

(Re €)¥y

in which case because of the & factor the integral converges,

or
arg&=ﬁ%’ and -@-:-;}--1<0

in which case we use the fact that the integrals

o0 ;
f X(y) cos Ay dy and fr X(y) sin Ay dy

1 1
(A real # 0) exist in the usudl sense, if X(y) is continuous and tends
monotonically to zero for sufficiently large y as y = 00,
il | If @> =1, the integral I converges in the usual sense at
the origin also, so that in that case the integral I exists in the

usual sense, Thus the convergent integral

@ o
/ <P ejme'x dx
: :

I ast
Sl = 6EN
3 ydleeydygé_ r(ﬁm)e =3

o

is equal to

)
and taking the partial derivative m times with respect to /3 we find



(i, LA L)

co o
ok m & .
/’ xfb(logx)m &% dx=-?-)(-s-ﬁf X@e_ex dx =
?

m A A

i e
L2 __,F(E_}.,)g =
Y]

This gives the required result in the case that B> -1,

III._! Suppose that (9 £ 1 and that - 6-223 is not an integer =0,
In this part IIT we shall prove that the assertion holds for 3 under
the assumption that we have already proved the assertion for @ + <

instead of (3, so that

9 s | = m J e
(h,B)/ xﬁ+ (Log x)™ cC€F gx = "2?& -3-‘( l‘(ﬁiﬂ) g =
i ?(3 L

modulo L(0+) if /3 € .1 and - @%Jé is not an integer 2 0. Then the as-

ih

sertion will hold for each real /3 = =1 for which - %—l- is not an
integer 20,

To show this we introduce the smallest positive integer h suéh
that @ + 4h > -1, and since the assertion has beenrlproven for
@ > -1, the assertion holds if (@ is replaced By 3+ =<h, Using
(L.8) with (@ + « replaced by (3 + &\ h, we see that the assertion
holds if (@ is replaced by (@ + xh) = & = /3 # o (h-1) (notice
that 4 + =(h-1) & <1), Using (L.8) again, but now with
3+ & (h - 1) instead of (3 # =< , we see that the assertion holds
if (3 is replaced by (3 + % (h = 2). Continuing in this way we

notice that the assertion holds if (3 is replaced by (3 + % h or
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B+ (h=1) or B+ «(h = 2), °°; , or B3+ o and therefore
finally for B = =« (h = h) = (3,
Now we must prove the assertion under the assumption [l BY..
Since ~ ’—G-;ﬂ is not an integer 2 0, the number (@ + 1 is differ-

ent from zero. Iuntegrating by parts we obtain that

co
. L n -ex” 3+
T m f (IOgI X) e dax

(8]

is modulo L{0+) equal to

co
) A
O

o
(L.9) < + -gﬁ x et (log x)™ e(—:x“‘ dx
o.
@ =S
mﬁ% f x® (log x)™F €% ax
o

(-

provided the terms on the right hand side exist modulo L(0+), which we
shall prove presently, If m = O the last term does not occur,
&l Let us consider first the special case in which m = 0,

Ten by (L4.9) I assumes the form

- _ frat]
T sl mex® Ml ew 1 [(frx#) o 0,
AT N 3 =
o

where the last term is equal to
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EL
ir (e;:,) €

Now we shall show that the integrated part is equal to zero and to

show that, we write

P E£x Xﬁ‘-l
as

T d -~ h -
(ho10) g oz xﬂﬂ " oékg A+l "L_E%.)“ xﬁ+l+°(h + #(z)
.\."“'-am

where r(x) = 0 as ¥ ~» 0, Since each exponent (& + 1 + = h'is differ-
ent from zerc, the right hand side of (L,10) tends to zero modulo

L(0+) as x = 0, Moreover

e(<
8 €x XB+1

tends to zero in the ordinary sense as x =% o3 that is obvious if

- ¢ arg € < I bub it is also true if arg € =% -, since we
}:4 A

have assumed /3 % =1 and - '?-;33 is not an integer

iib

0, so that 8 1is
different from -1 and therefore less than =1. Consequently the inte-

grated part is equal to zero, so that modulo L(O+)

a0 o _nf3+-4+*1

Porex™ gy n€x 1 A1 < .

f % & dx m O(I‘ e + 1 e ,
(o]

ﬁ mé_t;
= ;5({:_, I_(—@) [

This gives the required result for m = O,
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Bl Now we treat the case m = 1 mder the asswrrption that we

P

have already proved the required result with m = 1 instead of m, so

that module L(0+)

oo " &1
(h°113/‘ xp(log )L emex.xdx = __Hm 1, {"}&” f_<,@._ﬂ-) g “ .
0

@/Lm-* S

We apply again formula {L.9) and observe that the integrated part

is again equal to zero, Using {1,8) and (L.11) we obtain

Y

nfj’-ﬁ-u-&-l
r-gs 2. |1 r(ﬁ“"“*‘l) £ % + -

ﬁ+i ﬁ(ém A ‘7(. J

m=1 m/s.,y,f

m o 1 +1 =
T r(@;_)e :

«

We have

(3+4+l 3 (3ot
1 (ﬁfr«ﬂ)g” = L8 ,},,r(é::r_e) ¢ =
ol =1 o,

A A

and therefore, according to the rule of Leibniz's

% : e+l
ﬁM—!— 4 m S
m : e +1 1 3+]1 =3
28

r _ ol
cmo o™ (1or(en)e T )
ot 3 /3 m=1 x 4
Substituting this value we obtain

i LB
B 1 (3+1 o
as{Erle)e T

which completes the prcof in the case thabt - @m:% is not an integer = (98



(III,TIT,L,10)

IV,| Now we pass to the proof in the case that p = -1, there-

fore = Egé = 0, Then we have modulo L(0+)

o

. =1 m -=-6';d\

T= 1im / x - (leg x) e - dx =
5‘“’%0 én I

CO
s [

of

dmﬂ_ §=30

Here

es™

(= log §)™* & = (otlog Y™ 5 (x10g §)™F (e“e ° )

the last term tends, in the usual sense, to zero as & =» 0 and the

o
g cymEL
-t lim - dexleg 5 e e *‘EET J/ (log Y)m+1 St dy
o

wo

first term on the right hand side tends modulo L(0+) to zero, so that,

modulo L(0+),

00
I= oty f (1og )7 T ey
(m+71 Yex 5

For .each point s with Re s > O we have

{os]
- =1 =€
esl"(s)ﬁf v gy,
o

and therefore

mel e=8 = a
3 ] - s
d ¢ m+1r(5)) = / 71 (log ™ &V a4y
dS &

o
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so that

€ A Lee 5 Flay)

(m+1) o ™1 ashE o= )

=t

Thus we have found the required result in the case (3= =1, making use
of the remark added to the thec;rem in the case ﬁ =-l,m=0,

V.|l A| Now we treat the case that m = 0 and (d=-1 - «xk;
where k is a positive integer, Since the case k = O has already been
treated in part III we may assume that the assertion has already been
proved in the case m = O for k - 1 instead of k. If k is replaced by

k - 1, then (3 =~1~ak is replaced by
=] ma%(k = 1) = B+ x |

so that we may use the formula

= k=1
(h.lQ)f X@+“e”€xddx=-=-§:l——-€k“l (-= log€='a'+%+%‘+ °-°+4E:]:9
oy "(k=1)t

module L{0+)., Applying (L.9) with m = O we obtain

o0 oo}
o $ e
(14.,13) I = 1+1/ ew-éxx(iﬂ-ldx +%f xﬁwke €x &« i
) o

Tn this case the last term has the value
k=1 k=1
.,,.§_ ‘ (’m) €"___ s = E P ,...,:I;‘ =
A DL ( log €=F + 7+ " * g3

k k
- (=)"¢ _ 1, ..., .1
_ki a{.ﬂ - '_'[_og & 'a’ + T + o+ mkul F
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since k = fi}»‘. We apply (L.10) to the integrated part of (L.13), but

ol
now the sum, occurring in that formula, contains a term with h =k, for
which the exponent B + 1 + % h is equal to zero, so that modulo L(0+)

ol

k
em ¢F x P “?-(-ﬂ%{%-)%u as = = 0

The integrated part in (Le13) is therefore equal to

1 - 1
Y I R 73 = Tk 9

so that
k k.k .
1 (-€) | (=)¢€ T I !
I= o " F= (Tle€-YrITET o Yer) oo
which gives the required result for k e 1, m=0,

"
B| Finally we consider the case in which both = %-l[-? =k and m

cracmm

are positive integers., We again use formula (L.9). The integrated

part is again equal to zero, for applying formila (L,10) we obtain

) : B .
(log x)™ —€x” _PHL E (= e) mlmhﬁog ™

+ r(x)(log x)"
where r(x) (log x)® =» 0 as x =» 0 and where the sum does not contain

5 term which is constant so that the sum tends %o zero modulo L{O+)

as x =» 0, Formula (L.9) tells us therefore that according to the

definition of Ikm given in the statement of the theorem

mEGkI . € om%ekml_r m o(m—l)aek I,
m=1

TWFL Tkm @ F1 m+L k=l,m =~ @+L m
= = s =4

3
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nence
i

i = o

1
kn Tea,m * & Teymel

s

This shows that T, for k ® 1 and m * 1 is a linear combination of I
kom Gne

I I. . This completes the proof,

o : 200 °7° ¢ ko

Toaelops s Tome T100

Another case where we apply the generalized limit is in establish-

ine (modulis L{0+) and L{1-)) the formula

1
f P S N (T )
o M (p*q)

which is valid for each pair of complex numbers p and q, provided

that neither p nor g is an integer £ 0., The formula is well known
for Re p > 0 and Re q> 0. We may suppose that we have proved the
formula already in the case that p + q is réplaced by p + g + 1, so

that

1

f xp(l—x)¢’1dx+fﬁpul(l-x)qu
O

(o]

J[ £ (1 - X)le dx
O

Mp+) T (q) , Cp) r{g+1)
[(p+qtl) ¥ r%p*“qﬂi

_ T r(g) (p+q) . F@ ()

Thus if the formula holds for p + 1 and q it holds for p and q,

and if it holds for p and g + 1 it also holds for p and g. By
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repeating this process we see that the formula holds for each p and q
which are not integers £ 0, since it holds in the case where Re p > O
and Re 1 > 0,

We have calculated (III,ITI,2,page 3) the integral

00
I = f VXFL log (x + 2) dx .
%
We can also evaluate this integral as follows., Since

(x + 1)3/2 log (x + 2) ij/z log x+%xl/2 + €(x)
where € (x) tends to zero as x approaches infinity, we have modulo L(oo)
(x+1)'3/210g (x+2) 20 asx=—> o

so that integrating by parts we find

o

2 ,3/2 2 [T ()
I=-= 3 o 2 log 3 = ‘..'3“ w—m— dx
1

From

[ CA P V- SR V. SR |
XF2 * S (x+2)Vx+1

and
(x+1)3/2n>0 3 (x+1)1/2-)0 as x =» oo (L(oo))

it follows therefore that
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wlny

00
f i
1 (x+2 Wx+1

a0
Y = (L dx
== 22 (5 + log 3) -%f e
7Y (x+2Wx+1
Let us now give some examples involving the modulus P(co) defined
on (IIT,TIT,2,12),

THEOREM 10. Suppose the hyperpolynomial g{x) is k times (k 2 0)

continuously differentisble for x 2 a such that

a0
f ag(k)(x)l dx < @ .

a

Let ’X( x) be a bounded integrable function with period 1. Then the

integral

o0
/ ?('(x) glx) dx

&

modulo P(o) exists.
Proof., The assertion is cbvious for k = 0, so that I may suppose

that k = 1. Integrating k times by parts we obtain for t > a

E k=1
] X(x) gx) ax = ¥, ()" Yo () M (2) - K1l g™ (a)

n=o
a

't
+ ()% f pECEROR
&
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Here Xl(x), 2(1{)1 eoo are defined by

x
Xl(x) =f X(u) du + ¢
o
and

X
X plx) = th_'l(u) du+e, (022) ,
o

where we determine the constantsc,,e, °°° such that
1

Xh(x)dxao (h=1) .
Q

Then Xl(x) ,'Xz(x) s s X (%) satisfy the conditions occurring

in the definition of P(o0), so that the integral

(o0}
f X () elx) ax
a

modulo P(co) exists and is equal to
kel (B, P (x)
R CL MO SR G ORI O
a

h=o0

THEOREM 11, Let m be an integer = O, If s # 0 and # 1, then

o
(=)™ §(m)(s) =*f Y (x) (x5 10g" x)' ax ,
o
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where the integral is taken medulis P( o) and L({0+), This formula

holds also in the case s = O, m 21, In order for the formula to

hold in the case s = m = O the right hand side (which is then equal to

zero) must be replaced by ~%, The formula holds also for s = 1 if

(=) i(m)(s) is replaced by ¥ = 1 when m =0{where 7y is the constant

of Euler)and (<2)2 g(m(s) is replaced by

1 >
1im {(m)m §(m)(s) - 25 } whenm = 1
) (s-1)™1
Remark., Since the zeta function of Riemann has a simple pole
at the point s = 1 with residue 1, this function possesses in the

nei ghborhood of that point an expansion of the form

1 Cq Co 2
g(S)mﬁ‘ﬁ"co*ﬁ(S‘l)*ﬁ(S'“l) w0 °

In this expansion ¢ is the constant of Euler. We have

o]
1
1 | (- §% (s) - Tt =(-)"e
s>1 ( (s-1)™ "=
in particular
1im §(s)=-=§:1_-f =c, = U o

s=»L

For the proof we first consider the half plane Re s > 1, Then
according to the first fundamental identity in the theory of the sum

formula of Euler
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o e
ﬁ@-ﬁ-/ x5 1ogmxdx+/ '\K(x)(fs logmx)' dx
1 1
where © =3 if m =0 and @ = 0 if m > 0, Moreover for 0 < § <1
1 1
f x 2 1og™ x dx +f \Iﬁ(x)(xus Tog™ x) ' dx
Y

1
=‘f d(Y(x) x° log" x) =0 = (§ - 3) ek Ll
5

Subtracting we obtain

@® o
(=)™ g(m) (s) gf % ° logh x dx +/ Y () (x% 10g™ x)' ax
J s

+ (5 -2 §F10g" 5 .

The first term on the right hand side is equal to

m m=1
- Sl—s l_ifss - og 2§ 4 oo 4 (=)t m-l'—nﬁ:i.' ,
(1-s) (1-s)

hence

m m-1
(=)™ (m gy = = g1-8 { log & _ _log 5 . ..o (L)Lt }
§H(s) 22BN o R

(Lo15)

00
+f W) (7° log™)" ax + (§ - %) 7% 10" 5§ .
4
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Let us now prove that the integral

o
I, a-sf Y (=) (xS 1og™ x) ' ax
§

represents a function which is analytic in the whole complex s-plane.
It is evident that Ildenotes a function of s which is analytic in the

helf plane Re s > 1, Integrating by parts we obtain

o
I, == %(S)CS_S log" §)' = I, , where L, =/ "-I)é(x)(x_S log™ x)" dx ,
s

where 12 represents a function of s which is amlytic in the half
plane Re s > 0, so that also the function denoted by I, is analytic

in that half plane. Furthermore

20
I, =~ W(8)(57° 10g"$)" ~ I , where I3 = /3 Y () (x7PL0g™0) ax .

The finction dencted by IE and therefore also those denoted by I, and
Il are analytic in the half plane Re s> =l, Continuing in this way
we see that the function represented by Il is everywhere analytic.
The other terms in (L.15) represent functions of s, which are
analytic for each s # 1, so that that formula holds, not only in the
half plane Re s > 1, but in the whole complex s-plane, the point
s = 1 excepted,
Taking now the limit modulo L(0+) as § -» 0 in (L.15), we find,

for s # 1,
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00
o S(m)(s) = f "-]ﬁ(x) (™% 1og™) ' ax
o

provided that in the special case s = m = O the right hand side is

augmented with

[ (]

Tim (§ - 3) ==
§ =g

To find the required result for s = 1 we notice that the first

term on the right hand side of (L.15) is equal to

(“)mj'men E 515 .(%)il {1 - s)h 1ogh5 .

(1-5)™ 1 1= :
Here
m+li=h
Sl—-s - (1«3)1@g$ b 1 (1 k 1og § + (L~ 8) m+1—h r
k=0

where T, = 0as s =>»1, The first term on the right hand side of

(Lo15) can therefore be written as

(ﬂ)mj.ﬁ % (,,) Lla - S)h 1oghg m-%.,h (1.-31):log $ o 58
(1~-s) i h=o k=0

{where r => 0 as s =» 1)

m+l m+1 n
(“’) m! %1: (1 - s)!‘l logns E' (...)h (ﬁ) ‘¥ ,

(1=-s)m+1 n=o h=o

the dash indicating that the term with h = n = m + 1 does not occur.
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Here

= 7 forn=20

=y

ézM
f‘"\
\-./

=g
/""-""'-.
\___./
i

i

(1 -1)"=0 for15n%m

= (1- 1™ e (™= ()™ forn=m+1 .

The first term on the right hand side of (L.15) is therefore equal to

(<) ™y 1 . ma
(L) " WL 108 o

o

Thus formula (L.15) assumes for Re s > 1 the form

m S—(IR)(S) _ = m;m*l _ nj:j_ 1ogm+1 T J—

®
+ / tI'f:"L(}c)(Js:mS log" x) dx + (§ - %) 5§ 7% 10g™s .
4

If the mumber s, of which the real part is greater than 1, tends

to 1, then r =>» 0 and we find for each fixed integer m 20

m mt . +1
s (£ - 2 -

o
+f \H_(x)(x‘“1 log" ) dx + (§ = %—)5"1 10g™ 5 .
)

If § -> 0, the last term tends, modulo L(0+), to 1 if m = 0
and to zero if m ® 1, Passing to the limit modulo L(0+) we find

therefore
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1m § ()" {™(s) -

s=y1 ml)m+l

oo
=f \]ﬁ(x)(x‘l log" x)' dx

0
provided that in the special case m = O the right hand side is augmented

by 1. This completes the proof,

Remarks., For 1 € s <2 we Find therefore by integration by parts

[0.0]
.(x)xsnldxﬁ-(s—l)f ‘sz(x)xsﬂzdx i
o]

The last integral converges. According to formula (Lo8) in part III,

Chapter I, Section li,

KP (X) = 2 E cos 2T nk
2 n=1 (Eﬁn)!

where the series converges wniformly., Therefore

(s9]
oo
R on2-1) 3 s f o8 &me w2

= 2m = 1) i j (cosy)y.

n=l’ (?11‘ n)

“2(s - 1) (2™ ¢ (1+8) (s -1) sin &2

In 'bhis way we find for 1 < s < 2 the functional equation of
the zeta function
(116)  §(=s) == 2(2m)™ 17 f(1+8) [(s+1) sin T2,

Of course this formula holds for each complex s # -1, since

both sides represent ahaly'bic functions of s.



(ITY,1I1,h,22)

[0.0]
: (m),_ g _ -1 :
s];ﬁ (=" MM (s) - n{fﬁ“ﬁ = L[:: Y G (x log" x)' dx

provided that in the special case m = O the right hand side is augmented

by 1. This completes the proof,
Remarks., For 1 < s €2 we find therefore by integration by parts

8

o o
¢(-s) gf \}?i(x) 1 ax == (s - 1) f ‘-Pé (x) =%,
5 o

The last integral converges. According to formula (L4o8) in part ITI,

Chapter I, Section li

(e.0]
& w2 5 cos 21nx
W = ri%l (2'nr"n)§

where the series converges wmiformly., Therefore

a0

)
-2(s-1) ¥, —s-—]-i-—z-f (cos2"rfnx)xs-2dx
o=l (29 n) 1

B

$(-s)
S

[

0

(0e]

- 2(s - 1) ==-=-—-—-T—=1 ‘f(cs)sa_zdy
> nm'(zln‘n)"'-s o A

a

~2(s - 1) (2m)~I=s C(1+s)l(s=-1) sin% o

In this way we find for 1 < s < 2 the functional equation of
the zeta function
(L16)  §(=s) ==2(2m)™1™% f(1+s) [(s+1) sin B2

Of course this formula holds for each complex s # -1, since

both sides represent analytic functions of s
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Section 5, ON THE SUBSTITUTION OF A NEW INTEGRATION VARIABLE

In this section we make some remarks about the substitution
of a new integration variable,

Let @{x) be a monotonic , non-decreasing function with continuous
derivative in the interval a € x <b, Let #{a) = & and let /3 denote

the limit to which #(x) tends as x =» b. Then, as is well known,

b (®
f £(3(x)) ' (x) ax =f (y) &y

a =S

provided that the last inbegral exists; in that case the first integral
exists also and has the same value,

To generalize this result, it is necessary to introduce a
modulus M(b=) for which b~ is an ordinary point and a modulus M([(3-)
for which [3— is an ordinary point. We suppose that these two moduli
are equivalent., In section 2, page 2, we have already given the
definition of two equivalent moduli, which implies that, if M(b-) is
formed by the functims g(t), then M{[3-) is formed by the functions

X(ﬁ) , where
X(‘B)

i

g(T+b~/3) if b and 3 are finite

= g(1T) ifb=0Q = o

- 1 ; . e s s

= g('ﬁlﬁi"") if b = co and (3 is finite
= o(b = %') if b is finite and 3 = .

For instance, if b and 3 are finite and the corresponding

equivalent modulus M( ) is formed by the functions G(t'), then
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according to the definition given in Section 2 the modulus M{b=) is

formed by the functions G ﬁ:’t and M((® -) is formed by the functions
it R N T N | e 4 .

G (m s which implies the relation e Al gt hence £t =T + b [

THEOREM 12, Let #{x) be a monotonic non-decreasing function with

o 5 o o o p g rA
continuous derivative in a given interval'a = x <b. Put « = p(a)

and let (@ denote the 1imit to which @(x) tends as x = b, Let

t=%+b=pf if b and @ are finite,
to=T if b= £ = o,
(5.1) < ¥
‘t’*’q_,ag if b = oo and (3 is finite,
| t=b~2 if b is finite and (3 =

Therefore, if 7 < (3 tends to (3, then t <b tends to b, so that @(t)
tends to G,

Under these conditions

b & g )
(502)f £(P(x)) ¢ (x) ax = j £(y) dy + Jimg fly) dy
a ot T-33

provided that the integral and the limit, occurring on the right

hand side, exist modulo M{G-):then the integral on the left hand

side exists with respect to the egquivalent modulus M(b=) and is

equal to the right hand sids.

_Ifroofc We have for a <« t < b
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[ pt d(t)
f £(F(x)) ¢'(x) ax a/ £(y) dy
a s

T g(t)
3/ f(y) ay + f(y) ¢y .

=4

(543) <

L
Tt follows from the hypothesis that the last side tends to A, modulo

M((®-<), as T < @ tends to B,where A denotes the right hand side of
(502) . Consequently M((3 =) contains a function Y (T) such that

T a(t)
(5.k) f f(y) dy + f(y) dy - x(ﬁ) - A

-

(in the usual sense) as T < (@ tends to (3. From (5.1) it follows
that X(t) is a function g(t) of t and since M((3~-) and M(b-) are
equivalent, g(t) belongs to the modulus M(b-).

From (5.3) and (5.l) it follows that

£(0(x)) @' (x) dx - g(t) = A

a

(in the usual sense) as t < b tends to b, so that the integral
b
f £(#(x)) ¢'(x) ax
a

exists modulus M{(b-) and is equal to A, This completes the proof,

In a similar way we find:

THEOREM 13, Let @(x) be a monotonic non-decreasing function

o o " . . . . &
with a continuous derivative in a given interval a < x = b, Let

@ = g(b) and let o denote the limit to which @(x) tends as x -» a.
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Let
t e T ga= o if a and er are finite,
4 aT i_g g 2= X =2 = 3
tﬂl if 2 == oo and of is finite
x=1T = 2nc is iinite
t=a=2 if a is finite and X = ~ ®
Under these conditions
b B g(+)
f £(@(x)) ¢'(x) dx = £(y) dy - Ldm (y) &y
3, T R Yy

provided that the integral and the limit, occurring on the right hand

side, exist modulc M(« +)3 then the integral on the left hand side

exists with respect to the equivalent modulus M(a+) and is equal to

the right hand side,

THEOREM 1l. Let @(x) be a monotonic non-increasing function

° o s ° o o a P
with a continuous derivative in a given interval a ® x < b, Put

A = f(a) and let (3 denote the limit to which @#(x) tends as x —» b,

Put

t=s-T+b+f0 if b and 3 are finite
o= =T Eb-_-aﬂﬁam
i - o 2 ik
t_rmﬁ fb=ooand § is finite
1 " & . e
t=b+? }_i:bg.gflrmteir_ggp=woo "
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Tnder these conditions

b £ g(t)
f £(P(x)) ¢'(x) ax Ef £(y) dy + lim f £(y) a7
a (4

T> B3
o T3

provided that the integral and the limit, occurring on the right hand

side, exist modulo M( (3 +)s then the integral on the left hand side

exists with respect to ‘the equivalent modulus M(b~) and is equal to the

right hand side,

THEOREM 15, Let @(x) be in a given interval a < x £pa monotonic

non=increasing function with continuous derivative. Pul /3 = #(b) and

let ~ dencte the limit to which @(x) tends as x =» a, Put

t ==l + g% if a and o« are finite,
t==7 if A = =g = @
il 5 . ..
T T e if a = <o and « is finite
T = o s i =2
1 . . -
"i:.:a-‘“;f ﬁa':ﬁflnl‘teando«ﬂoo

Under these conditions

b © g(t)
f £{@(x)) ¢'(x) ax ﬂf £(y) dy - Lim, f f(y) dy
a =4 T3« Y

provided that the integral and the limit, occurring on the right

hand side, exist modulo M{=-); then the integral on the left hand

side exists with respect %o the equivalent modulus M(a+) and is

equal to the right hand sids.
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In the following examples of Theorems 12-15 we use the logarith-

(00} 0 00
f ax 2 . Y + 1Lin g
X <X v T >0 b
T 2 =

00
=f %I + log 2, modulo L(co)

mic moduli ,

which is obvious anyway since

oo o0 2
dx dx _ dx _
f?f"/ ?c”/-x- og 2 &
L

2 1
Moreover
i) 1 2 2T
a _ [ 2dx _ | &y _ &
/ = f = f 7 T [ ¥
o o o T—0 =
2
- f %Z - log 2, modulo L(0+) .
[¢]
Also
o o] 2 2t
E = ""2d.x e i E + 3 g
[z =

1]

2
»f %Z + log 2, modulis L(0~) and L(0+) .
o]
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and finally
-1 ] @O 2T
f ﬁ = r:%.@ = / 9.?3 = 14im %
X -Z% ¥ Cdien v
=0 - 00 2 T

%‘E - log 2, modulis L(-00 and L(cd

For the calculation of the integral

G
/ F e )P e,

O

where p and g denote arbitrary complex numbers such that neither of
them is equal to an imnteger e 0, we divide the path of integration

by a positive number a into two parts and we apply the transformation
; x : - .
y = g(x) = I"FWX s SO that X I"?:T L]

According to Theorem 12 we have

o0 g(t)
f (1) P9 gx = f P - )T gy + Lan f P - T ey
a -1 'E
where

[ 1 / t i
o= @la) i teayZz ad B(E) =g oty s

provided the integral and limit exist with respect to some modulus
M(1~) for which 1~ is an ordinary point. We will find that L(1-)

possesses this property.
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We have
(1 - )Pt T ool (p;_l) v+ eee X (p;‘l) TG

If the positive integer h is large enough, the remainder r(l - v)

tends to zero as v => O, Consequently, we have

- - +
Prap® = @ -0 - EHa-pte o I EHapT e )
where r(y) = 0 as y = 1 for sufficiently large h., Then the integral

(2=2)" |
5.5) P - T ay

can be written as

- %(1 +3Y9 {(2 -1)79 - 1}

* (pl) 'a%fi' (1 ""r)q‘-l {(2 - ‘U)q+1 - ‘_]_} 4+ eoo

(2=t
* O gy @ -0 {(e-zﬂ*hul}»ff r(y) dy
(4
= ao(l - 'ﬁ)q + 31(1 - ’U)Q""l o G ah(l - r)q*-h
(2-t)"L
+ p(T) + \L r(y) dy

b

where p(T) = 0 as T - 1. Since none of the exponents

q, q*l, <=+ gth is equal to gero, integral (5.5) tends to zero,
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I

Q0
modulo L(1-), as © - 1. Consequently f xpml(l + x) P79 gx exists

a
modulo L( o) and
[o's} 1
I L (1 s 0P gy = f P71 a-pTteg .
a (=4

In a similar way we find modulo L(O+)

2 [~
f P71 (1+ x)P%4x = fyp“‘l (1-9%ay
(o]

o

therefore modulis L(0+) and L(oo)

00 £
f I L e f . L o g Fe)riq)
o 5 [ (p+a)
according to formula (L.l) in the preceding section.

As a last example we consider the integral

(0.8]
o T Ty
13‘[ P (1 Py P g

¢

where neither p nor g is an integer £, Applying Theorem 12 with

the substitution y = :x:2 we get for positive a

e
I = f £2P1 (1 + x.z)np-q dx
«‘3,2

2

o T
=3 f Fra+Pltun [ P a0y
T-yco -
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for Qf(t), the wpper limit of the last integral is equal to tz = 152

since T = t.
The integrand in the last integral can be written as
-g=1 —q2 =q=h-1
ay Tt ey Tt eestay o +r(y). .
If h is sufficiently large
e
f riy) dy = O as T =y 0 .
T 2

T
—q=(k+
Since a1l the integrated terms f 2, v ¢ (1) 4o (x = 0,1 *- h)
[
belong to the logarithmic modulus L{ ), the last term in (5.6) is

equsl to zerc and

oo
I, = = ypﬁl (1 + y)npmq dy
v 2

7L

In a similar way we find modulo L(0+)

2 a
f 2P (1 4 5Py P g = 1 f ¥l @+y)y Py .
o

Therefore modulis L(0+) and L{ co)

oo}
a3 [ APy - LEL0

o

where the last equality follows from the previcus result,
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The generalized limits can be also used in the theory of series.

For instance let us evaluate modulo L(oco)

o
3 b where 0 <w S1
hey  (h=l4w)®

That means that we must calculate

Tim
t=p0n I

e+

_r . (o) .
1 (heldw)®

il

f s is equal to an integer % O, then according to Part III, Chapter I,

Section 7, Theorem 13, ‘the sum
¥ (h=1+ w) %
is equzl to a polynomial in t, in which the constant term is equal to

zero, This polynomial, therefore, belongs to L( oo), so that

P roedam o {Bfool
21 (he-l4w)

. £ : A . .
for each integer s = 0, Let us now consider the case in which s is

%

not an integer ® 1, According to Part III, Chapter I, Section 11,

formula (11.1), we have

L2 1

L mﬁ $(55W) + g(t) + R
= =]1+W)
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where g(t) has the form

-5+l =S —=g=im
g(t) = a  t ag b F e At §

If m is sufficiently large, the remainder R tends to zerc as
t =» o00. Since none of the exponents = s + 1, =s, °°° , = s - mis

equal to zero, g(t) belongs to L(c). Consequently

= 1

Ot e

L wreys e (o)
= e | W

for 0 « w21, if s is not an integer £1,
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Section 6, ON THE SUM FORMULA OF EULER IN THE THEORY

OF THE MCDULC LIMITS
Let us start with

N N
N ' ;
P oo - e e~ [ 260 e - f W0 £ ax
n=], -
1 1
where N is an integer > 1 and where f(x) denotes a function which is
continuously differentiable for x > 0, Here '\{»:’I'_(x) is the function

with period 1 which is equal to zero at x = O and which is equal to

X = % in the interval 0 <x <1, For each mumber & between O and

1 we find

L 1 1
f £(x) dx + f Yitx) £7(x) dx = f d(% (x) f(xb =
) & 8

= UI(=) £(1) - W (8) £(8) = 2£(1) - (5 - 3) £(8) .
44 P 2

Subtracting we cbtain

N N N
5, £(n) - () [ e a e 5 +f5 Yo £'6) ax .
)

n=l

Let us now assume that we have for f'(x) a formal expansion

@
£ (x) = h}: g (x)
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Then we write

]
£(x) = g lx) + g lx) ,
h=o ~

so that

N
N : o
¥ £(n) - § £(W) m“[ £(x) dx - (6 - 3) £(5) =

n=1

1, [N .

5 f W g0 s [ Y ) ) ax
h=0 I . i

Taking the Llimit module P( o) as N — oo and the limit modulo L(C+)
as & =» 0, we cbtain

4 00

2‘? l £ M % ) =

v of(n) -3 lm £(N} - £(x) ax

n=1 7 N2 oo s
(6.1) ﬁ
[ov)
le-1
5 1 . : .
:51:1;%1 (6 ~5) £(8) + {; f ‘tpi(,x) gy (x) dx + B s
Y E‘%E h"'{'f o

a
e | W@ 6@ &

o
provided of course that these limits exist, modulis P(oo) and L{0+),

In this way we obtain the following theorems:

THEOREM 16. Suppose that f(x) is gontinuouslj[ differentiable

for x> 0, Let
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: k=1
£(x) = 3 gh(x) & Gk(x) s
h=0

Then formila (6.1) holds, if the terms in that relation exist with

respect to the moduli P{co) and L{Q+).

Remarks: 1, If f(x) depends not only on'x but also en an un-

bounded variable « and the series

(a0}
r f Y00 6 () ax
k=0 < -

is asymptotic, then the fumctiou

Qo
' 8]
(6.2) T f(n) m% 1im £(N) - f f(x) d&x - 1im (6 - %) £(¢)
= 6 =20

nsL N—> o0 o
is asymptotically equal to
00
i . m l
(6.3) I U g e
o

under the conditions of Theorem 9,

2, If under the conditions of Theorem 9 the remainder
By tends to zero as k =» w, then expression (6,2) is equal to the

sun of the comvergent series (6,3).
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Section 7, NEUTRALIZERS

The application of the sum formula of Euler, given in the preced-

ing section, leads to integrals of the form
o0
(7.1) [ N O(x) elx) dx
U
e

Sometimes it is necessary to divide such an integral into two parts

a0

i
f Wix) glx) ax + f Y(x) glx) ax

t
where + > 0, If the integral (7.l) converges at infinity in the

usual sense, the integral

-
(7,2) f WG glx) ax
b

tends to zero as t =% oo, bub possibly very slowly and perhaps too
slowly for our purpose., If the integral {7.L) does not converge at
infinity in the ordinary sense, but orly with respect to a certain
given modulus M(co), then the integral (7.2) does not even tend to
zero as t = co; it may happen that small changes in the large
number t produce very large changes in the value of the integral

(7.2) s To overcome the difficulties which are consequences of this

Y

phenomenon we introduce a neutralizer., Let n be a given integer = 0.

We call N{u) the neutralizer of the nth order, if
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i
<

N(u) = 0 for u £

114

foru=1

it
=

(7.3}

11
e f vH1 - v)® dv in the interval 0 Eu$1 |
o]

where the constant ¢ is chosen such that N(1) = 1, hence

This funection N(u)} is everywhere, therefore also at the poinkts u =1

and at the origin, n times differentiable and satisfies the relations

(7.L) N(h)(o) = N(h)(l) =0 (L¥h€n) .

The identity

(7.5) N(u) + M1 =mn) =1

H1AN
nn

is evident for u ® 1 and also for u E 0, and in the interval O

we have

o

A=11 1
N{L = u} = ¢ j1 W1 -vdv=e Jr vH(1 - )P dv

O u

so that
1
M) + WL =u) =¢ Jr v (1= vt dr = N(1L) =1
o

This identity (7.5) ensbles us to divide the integral (7,.1) into two

parts as follows
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o
Y (xiglx) N (’2 - %) dx +f \}{{"(X)g(xw(% ~'-des
%

+

co 2
(7.6) f Yeeeaes =
o ©

nobtice that N (2 e “}5) = O for x = 2% and that N(% =t ) = 0 for
x & t,
Tn this way we obtain instead of the integral (7+2), which is

difficult to handle, the integral
w0
= ] x i
(?o?} f %(X') g(x) N(-E = ]) ax 4
t .

whose asbsolute value is, as we shall see, under general conditions,
small for large t and for suitably chosen n, In other words, the
function N(% s ]) neutralizes almost completely the influence of *,
provided that't is large enough and that n is conweniently chosen, Let
us begin with a simple example,

THEOREM 17. ILet t be z positive number and let N(u} be the

neutralizer of positive order n, Let g{x) be n + 1 times continuously

s . " >
differentiable for £ = t such that for h =0, 1, °°° , n

(7.8) B Ex (b Ex 2ty

11

where K and p dencte mumbers = O which are independent of x, Assume

moreover that as x — o

(7.9) “‘P’h+2 (X‘)g(h)(x) -3 0 (h = 0,1, *° n)

with respect to a certain modulus M{eo), for which infinity is an

ordinary point., Finally we suppose that the integral
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a0

(7.10) Jsf lg(n+1)(x)|dx

converges in the ordinary sense, Then the infegral

o0
(7.11) I = f \}i{(}:) g(x) N (% - 1) dxc
t

exists modulo M{ ) and satisfies the inequality

(7012) l:[l ﬁ c;n { J + ¥t (F 4 %)n"'l} ;

where ¢ denotes & suitably chosen number which depends ornly on n,

Proof: Integrating by parts n + 1 times we find modulo M(oo)

ao -

i ‘ dp+L

Is. / \ifn.,{,,zfx) ol %“' 1) g(x)|pdx 3
% dx :

notice that the integrated parts are equal to zero, since the contribu-
tion of infinity is equal to zerc according to (7.9) and the contri-
bution of + is equal to zero according Lo {7.4).

Tn this formula

n+l el -
"i‘?ﬁi I“(% ‘1) a(}c)) =¥ (n;l) b s (’%‘; »«1) plotl=h) oy

h=o

TIf x % 24 all terms on the right hand side, the first term excepted,

are equal to zero, so that we obtain modulo M{oo)
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<L
3[ \P;?” {x) N(%‘ _,1) g(n-c”l) (%) dx
%

2t

ZJ (l’ﬂll_) f W- (X) I\J(h)( ,1) g(n“f‘l—h}(x) ax .

i %

{7.15)

The periodic function %4-2(3{} is in absolute value less than a con-
venient number which depends only on no, Moreover O e N(% w ) E 1,
so that the first term on the right hand side of (7.13) is at most
equal to J multiplied by a coefficient depending only on n. The
absolute value of N (n) (== - ) is also less than a suitably chosen
number which depends only on n, so that the sum Z occurring on the
right hand side of (7,13} is in absciute value

8 & F (n:l) = KFnﬂ_h x t(}} %) Wl

h=o

where ¢ depends orly on n. This gives the required result,

The preceding theorem is very useful in the examination of asympto-
tic expansions, since in that theory we generally can choose n fixed,
But in the theory of convergent expansions it is often necessary to
choose for n a number which increases indefinitely; in such a case we
rust know a convenient upper bound for the coefficient c occurring
in the assertion of the preceding theorem., We shall give this upper
bowmd in theorem 18 but first we formulate a lemma which shall be

applied in the proef of theorem 18,
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fin

LEMMA. We have in the interval 0 &y %1 for each integer h

- i S, £
which is 20 and = n

h n n

i 1_,1'\ & 1’1 —L_ -h }' f‘-2 +2h

&y (E_.i; R L e )
du”

Proof, We know thab

P -w)® | 5

i £

where
oy enfn=1) *+c (n+ 1=k n{n=-1) > {n+1-h+k) ;

k

the sum &, is extended over the integers k 2 0 such that

1A
s

k®h 3 kZn ; k2n-h .,

The coefficient oy is a product of h positive factors, each = n, so

nh and

11,8

N &
that 0 & o

h
izll < z: (.‘1{:) nh ul‘)e-k (1 _ u)n»—h*k

»

2% o (1 - n)n_h (o + (1 - u)).h

a

st g {1 - 13 G

H

This completes the procf.,
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THEOREM 18, Under the conditions of Theovem 17

171 < - I+ sl (P +«H§)n+1 .

Proof . From part III, Chapter I, Section L, Page 3, formulas

(Lo7) and (L.8) it follows thak

Y06 § —2pé 2 § 4
L e (2w (em™e n=E ot
\7':;
2 1ri 1

-}

o= t_“s-f_-HMv%) o sn:rzs_ £2  oom armrscea————
fp ¥ ¥  poal
Consequently the first term on the right hand side of (7.13) is in

absolute value at most equal to

oo
e jr lg(n&l) (xﬁl dx
12(2m)® J, 1 ’

since 0O £ N('g s 1) & 1,
According to the preceding lemma, applied with h - 1 instead of

- i % = £ b
h, we find in the interval 0 =u =1 for h = 1,2, °°° , n + 1
2 2=29 2

13

h=1 ,=2n+2h=2
en 2

]

INkh) (w) ]

Here

~ nini nind
£ znniuﬁ nt 2n
s(2n+1) - S22 < 3n 2 §
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therefore
|N(h) (u}] < % s gehh .

Consequently the sum 2 occurring in (7.13) is by (7.8) in absolute

value at most equal to

1 I%? (n+1) J-h b o2k o n#l-h
620t \ B a

Kk (lm o, ;) n+l
16(2 7)™ B2

This result gives the required result.

An important condition in the two preceding theorems is the

inequality
4 s
ig(h) EX)N =K ];1 ’

If a function g(x), the number h and a point x are given, how can we
find two numbers K and Bs such that this inequality holds? To that
end the following theorems may be useful.,

THEOREM 19 (Preduct Theorem). If

EP @1 (R0, e, )

and

i

(?9-”_1) I“X(hj (x)l — 'Lh])hh {(h 0,1, =+« , n)
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hold, when K s ™ and %, are monotonic non-decreasing functions

h? h. . h
20 of h, then the product

p(x) = g(x) ¥ (x)

satisfies the inegualities

(7.15) Ip (n)(x\[ K I “r‘h +1)‘h)h (h=0,1, *** , n) .

f‘roof . We have

l (h)(v.] - kz ) (k)( )X(h"k)(x)l

”
b /n k sl
% (k) Ky Pn Iy "E

K=o

e

i}

Ky Ly Py Wh)h .

THEOREM 20 (On a function of a functicn). Consider

= X {glx) .
Suppose
. 1 Pt | 2 h
(7.16) Tl el B A (h =1,2, sec , n) o
* |
and
&Y (x)
(T a7) "%T '“"'g‘i:;‘*“ £ ay (h = 0,1, °°°, n) s
it n
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EE.?EE y = g{x)., Lei us assume that L, and 'Tfh(O €£hén) and
h—. . .
< 1 (1% h % 1) are monotonic non-decreasing functions of h.
" ok

Then the inequality

: ()
(7.18) L ¢ ()| % 21y v

holds for h = 0 and also for the positive integers h S n with

BE-

(7.19) By by ®oay g o

. ; . ps . £ .
For the other positive integers it #= n there exists a smallest

o4 o s A T T N &£
positive integer q {(this integer is = h) such that

(7020} a Lh < a

q q-1

for these integers b we have

(R) oy

£ oh ‘t_rhh‘ ,%a

{7.21) TB#I} il h "h Tq

Proof, We must prove the inequalities (7,18) and (7.21) for
% = x_ wnder the assumption that the inequalities (7.16) and (L

hold at x = x_. If we replace g{x) and XCY) by the polynomials

(i
Z n-—wET"—’g—' {:x - Xﬁ‘)k and E "’x"'m“(;"z‘l (y - yo)k 9
k=0 . k=p k?

where y_ = g(xo) the function f(x) = x(g(x)) is replaced by a

polynomial whose derivatives of order == hat x = x, are the same as
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those of the functions f(x) itself., Without loss of generality we

may therefore suppose that g(x) and )((yﬁ are polynomials of degree
£ hn.

Proof. In this way we find by (7.16)

et s g

0
lo
&
i
>
~r
~

lg(x) - glx,)]

=1 0 h
for the points x with Ix o xoi-vh = %, For these points x we have
k)
B X atx,))
el k
£(x) = X(alx)) = F A - (g(x) = g(x)))"
k=0 o
so that, according to {7.L7),
P b K

(7.22) 2 | £ F & L, .

k=0

Now we distinguish two cases.
1, Consider first the integer h = O and the positive integers
%

h £ n which satisfy inequality {7.19). For h = 0 the left hand

side of {7.,18) is equal to

(11

a

0

I£tx )| = | X(elx,) |

according to ({7.L7), so that formila (7,18) holds for h = 0 at

X "X o Consider now an integer h 2 1 subject to (7.19). Since

=k
& e . s . s -
{1 %%k %n) is a monotonic non-increasing function of k, we have
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Multiplying we obtain for k = 0,1, °°° , h

=1
Lé.kg' Lh = 1 4

so that

15
::r"

" 17'1 °
Tt follows therefore from {7.22) that
l£(x)] % (b + 1) a@111

for the points x lying on the circle [ with center X, and radius %‘{; s

The polynomial f(x) = X (g(x)) satisfies the identity

(7.23) L e () = ok f H(z) ,

pu ‘171 (X‘ X. )h+1
hence

%f lf(h)(xo)i £ (h+ 1) 3, ]'.}ﬁ (2vh)h "

which gives the required result (7.18) at x = Xy o
2., Let us now consider a positive integer h € n which does not

satisfy (7.19), so that
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The smallest positive inbteger q with {7.20) is therefore £ h, Then
mﬁLLhil for k = 1,2, 200 4 q = 1
-1

- 4 for k = q,q + 1, °°* s h

3
therefore

o, Lhk'é 3 Lh?- for k = 0,1

330003110

For the points x on the circle [ we find therefore by (7.22)

£ £ (w+1) 2 1,2 ,
so that it follows from (7.23) that

4

e

[
e

|

£ e ) % (n v D) a1 (2w

This completes the proof.

Examples, To find an upper bound for the absolute value of the
derivatives of

) o
) = o ©F

where x » 0 and & » 0, we let

g(x) = cx™ and X (y) = ey

; 5
Then we have for h = 1

1!
hi

[g(h)(}c)i E'T%f |€ ot (& = 1) oo (K +1=h)|xo‘ % 4
hence

1 {h =
M) € e] & 0
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if0< o« €1, If x B 1, we have

[k =1 - o] &% o fork 21 ,
hénce

ni Onﬁ-:‘-ll o e o8 lq+1‘~hlé ah ;

i = :

so that in that case

B 6] £ e 1t =0

Let L = |€ |°< x*% o We can apply the preceding theorem with

L, =L and v, = %" F0< o 61
and with
L, = e =% a.ndvhﬂo(xml if e = .
Furthermore

¢ ey
L@y -l

so that we may choose in the preceding theorem

- - Ex ™
ay, = }ehi[ = T L

-

The inequality (7.19) assumes here the form h % L*, where
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I¥al = |€]« x% e 0<«x %1

= ™ L= 6] x> if o

Consequently we find for the integers h which are 2 0 and §TF

(7.2L) REUSTENCTEY (1) 1€ =7

This result enables us to find an upper bound for the absolute

values of the derivatives of the more general function

: —-€ex”
p(x) = xﬂe s

where
x>0 , A >0 and (3 real

We notice that

n
Ig&iﬁ” S 1A(E -1 e (pr1-m)] P

(7.25)

ity

m+ PP .

Combining this result with (7.24) and applying the product theorem

(theorem 18), we obtain for the integers h which are %0 and £ 1.V

h
(7.26) ™ )] & (n + 1) (_ﬂ@_ii) )] .

Also the more general fumetion

g{x) = x P (10g x)" &€ s
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whers

iy
{©

b
s =< >0 |, /3 regl , nm integer = 0
can be treated in this way.

If h denotes a positive integer, we have
s ~ -h
e .ff 1 = _L\l
P (h It %

and therefore for h = O

< hh =h

h
(7.27) ‘d"1°g z % 7 log x

A

L

This gives for each positive infeger m the inequality

| .h m
(7028} -nglggﬂglu
ax’

£ ph > xﬂh (1og =",

To prove that, we may assume that m E

-

2 and that we know already

h Al g _ i
{7.29} !d (109’;-“3 £ pt (n-1)"x B (10g x)™ L
dx

2

the product theorem (Theorem 18) tells us that (7.28) follows from
(7.27) and (7.29).

Applying the product theorem and using the inequalities (7.25)

+*

and (7.28) we find for each integer h which is 20amd 1

(7.30}

) o\ B
aP ) 6 (ne oy (Htll l*‘”‘) laG |

Applying the product theorem and using the inequalities (7.25)
and (7.28) we find for x &

e and for each integer h = O
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(7.31) & (om o+ b+ | B 2 Mlog 0"

| Plaag )™
| x>

Let us apply these results to find upper bounds for the absolute

values of some integrals of the form

ao
f () elx) N(%ml) & .
t

We consider first the case in which g(x) = x @ (Log x)™ and
t = e. According %o inequality‘(‘?.;ﬁ} the condition (7.8) occurring

in Theorem 17 is satisfied, if we choose

k= (284 196 P20g 20" ama p =Ll

Formula {(7.9) holds with respect to the modulus P( o) defined in

Section 2, Applying Theorem 18 we obtain .

# -
‘,f ‘-Pj:(x) s ﬁ(l@g %)™ N (% - Zl) d?:'
4

(7,,:-32)1
PR SUN (2 ﬁ*l)ﬁ@ﬂ(log 26)" [ m+5n+| @] n+l
12(2,“-)1’1 16(211:)11 %
where

Tkl dx

J = f 7 4% Place 2"
| dx

4+

W

According to (7.31), applied with h =n + 1,
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!g(”ﬂ*l)(x)l £ ((n + D(m + 1) + Ifj'l) el Xﬁ_n-;l(log x)m s

so that

[N

191

'Qn+1xm+1>+1ﬁ0mﬂam;

here

@
J. = f - ¢ ﬁ=n=11(log " d&x .
%

Choosing n 3 B + 2m + 1 and integrating by parts we obtain

t@=-n m
In ™ g oe 8 Yoo Ty
s (en m{ 1 m m(m=-1) m!
4% T (log t) + 4 B B o e ety
{Pﬂ (n-BY°  (n-(3)° (mpﬂ*}

(7.358)

f-=n mj 1 1 1
<t (log t) { e 4 Fage—
n"‘ﬁ 2(!1 @) 22(I}"ﬁ)2
=2 £ 10z 1) .

THEOREM 21, If + ® e and n 2 B+ 2m + 1, then

-~
@0

f
j "ﬂ(x‘) x P (log )™ W (;%" - ) dx
(7.3h) ot

n+l

(2@ +1)-bﬁ+1(10g 28)™ [ (n#1) (ms1)+5m+ | @]
€ B = T
Iy (217)

\

This inequality is very sharp, if n is large and t is very large.
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m P
Section 8, ON SUMS OF THE FORM . a(n) b(e n®),
n=1
The generalized limits, introduced in this chapter, are convenien®

for the determination of the behavior of sums of the form

%) aln) b{e n™Y)

n=l

For the sake of simplicity we restrict ourselves here to the sums

@ - of
(8.1} 5, E‘l f{n) , where £f{x) = x & {log x)™" e cx 5
n=

il

We suppose

i

(8.2) x>0 P real 3 m is an integer 2 +p % arg€ g— U s

@
o
i

pAR

oo

"R

where p denotes a fixed positive number e

THEOREM 22, If the condition (8.2) is satisfied, then S  is for

small values of |¢ | asymptotically equal to
_ B+
of s h
1 3 +1 (=€)
C3 r("‘) ) +h§0 e X(@d“h)‘

if - ﬁo‘ﬂ; is not an integer 2 0, and So is asymptotically equal to

5

R Y
(=) .k 1,1, ... .1
TT= € (~1log € =Y + < ¥+ Tt * + I_E)

oo h

R ST (G R
h=o :
h#k
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if = r;@% equal to an integer k E O3 here 7 denotes the constant

o el T e (T

gj Fuler,

At the same time we give a proof of the following theorem,.

THEOREM 23, If the condition (8.2) is satisfied and m is a fixed
£ : k) i85 & tiXed

positive integer, then S5 is for small values of | €| asymptotically

equal _;tg

csm[ xf(10g )" &% ax + T ‘T‘w_"f ‘l’i(x)Gc flog 0)") ax ,
[ h=0 °
Q 0

where the integrals, taken modulo L(O+)_,. are calculated in the theorems

9 and 11 in Section i,

Proof, If Re w £ 0, then

-l B w9
W w =
g = ?Z% il T (q=0,1, »==)
so that
o 8
£i(x) = (:cra (log )™ e Ex"y

"1 e . - o
= ﬂx@ {1og )" e T o x“*(ﬂ 1(108, " eEF

- I
+ m cBL (log x)mj‘ & &

iz equal to

1 h §
£ (x) = q)i %%im PP (10g ™' + Ty (0

h=o

where
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o e L et e
o) g-z[fsg_,a.,;ex@ =L J10g x|
q st o q
(8"6” * ;i:u. ; LBF=a lilog Xim % m_l_i_'_, Xﬁ+°¢q—1!10g X|m-=-1
q * -
=u-L§TL—= xPra l{(]/ﬂi + ¢ q) [Log x|™ + m [log x|" 1} :
5

Applying Theorem 16 in Section 6 we obtain modulo L(O+)

smmf £(x) & + 1im (§ - 3) £(3)
o) 8o
(8.7) '
+ qz ,.(:f_,gm f 'klf(x) x a‘h(log x)™ d« +R_ ,
h=0 q

where

o
(8,8} Rq = f ‘{»’i(x) Yy (x) dx .

o

The expression

h
G-p e - (5-3 L ST PP e s o0
oghém @.ﬂ; °
=3
and consequently
(8.9) (§ - L) £(8) = 0 (mod. L(O+)) , as & =0 ,

except in the case in whichm = 0 and 3 + < h = 0 or =1 for suitable
integer h 2 0, In Theorem 23 the integer m is different from zero,
so that (& - ) £(8) tends to zero module L(0+), hence

L]

m
O h=0

oo =
S mj f(x)dx-ﬁ-qE ('“E) f Y, (x) 2O Biog ) E*Eg
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The proof of Theorem 23 is therefore established as soon as we have

shown that the remainder [Rq| is far each fixed integer q =0 for

small values of |€ | at most of the same order of magnitude as |€ |9,
Tn Theorem 22 we have m = 0, Then formula (8.9) holds if

B +xh#0 and # = 1 for each integer h ® 0, If there exists an

3

integer ¥ 2 0 such that @ + x I = 0, then we have modulo L(O+)

1 7
(8.10) (53 £0) » -5 =81 - poy dnfl

as § —» 0, If there exists an integer k 2 O such that @+ « k =<1,

then we have modulo L(0+)

k
(8.11) (F-Hecr=L8l . e 50 .

Finally, if there exist two integers Y %0 and k 2 0 such that

3+ oy =0and B+ « k=~1, then we have modulo L(0+)

as & =» 0

4 k
(812) (8 -5 2(8) > §(0) &gl « 59)

The special case m = 0 of Theorem 11 in Section L gives

o sf:b 1}[1(}1’.) x‘msml dx
0

i}

3(5) for s # 0 and s # 1

i}
Q
i
o

for s

F—'T-=1 for s

1
a
2

Therefore
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-1
:2 kmég\ (@*ﬁh)f %() ﬁ-'-e(h—]_dJL
(8.13)

o
= qz (“C) j( - h) ;

h=o

if there does not exist an integer h ® O for which (3 + = h is equal

to zero or =L, If there exists an integer ¥ 2 0 such that [B+xy=0,

then we can choose q such that X < g and then
the term with h = ¥ on the right hand side of (8.13) must be cancelled.
Finally, if there exists an integer k20 and < q such that ﬂ + A k=
then the term with b = k ;n the right hand side of (8,13)
L (7 -,
Thus we find modulo L(C+) that

-1
lim 3) £(5) + E L ([3+°<h)/ ¥ () P o

S-mm =0

must be replaced 'bj’

(8.o11)

g=1
- & (CXD TRy s
=0

if there does not exist an integer h = O such that 3 + X h = =13 for

if there is an integer ¥ % 0 and < q with /3 + =X ¥ = 0, then the term

(“’” f(= o = ) = L:i.‘i’mj(o)

is given by lim (§ - —=) £f(§), Formula (8.lL4) holds also if = %ﬂ«'

p —o
is equal to an integer k = O but in that case the term with h = k on
k
the right hand side of (8.lL) must be replaced by (- e) ¥ - Con-

+1
sequently, if - e is not an integer = 0, then

l’
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N -8
(36153505%["':@;!;)6 x +ﬁz (“”C) f (- (3uo<h)+R

[

and if - Ll is equal to an integer k =0, and < q, then
o¢ 3 5

K
('8(:1,6}
=5 k
4-:2 mm f( ﬁmo(h’)q-‘g_(mj{%.l_-:-gq .
1=20
hifk

Consequently, not only the proof of Theorem 23, but also that of
Theorem 22 is established, as soon as we have shown that the remainder
|r ql is for each fixed integer q 0 and for small values of |€ | ab

most of the same crder of magnitude as |€ an Tt is even sufficient to show

i

that for sufficiently large fixed integer s = g (fixed means here:
independent of €) the remainder |RS| is for small values of |€ | at
most of the same order of magnitude as |€ |, for it follows from

(8.7) that

We choose s so large that (3 + « & > 0, Since we are only interested
in the behavior of the sum S for small values of |e| we may suppose
that !G" i <& -jé'_"o

We divide R into two parts Us * Ve where

.t-
(8,17} g, = Y (x) r(x) N2 - _) dx
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and
oC
(8.18) v, = f Y (x) r (x) NE - 1) ax
t
where
-l
(8,19 t=le] X

and where the order n of the neutralizer W(w) is a sufficiently large
fixed integer. For sufficiently small | € | we have t 2 e,

Applying (8.6) with s instead of g we cbtain

|

(8.20) |u | =

0
(18] + = s+rﬂt[ xﬁ+dS{L(k@:amdx .
#

We have chosen s so large that B + o 5 >0, so that

0] ey 1€ 1% 80775 (og ™ .

In this proof e;,c85, °°- 2 denote sultable numbers which are indepen-
dent of €, t and x. In this way we have found

S= 3
<+ [ 1 T G a
t-:"":]_ I € ! <D( -}-1 10g ! c I) = Cl l .S I ke

for sufficiently large fixed number s. It is therefore sufficient to

i

|u

o

show that V‘3 is for given integer s and for suitably
chosen integer n at most of the same order of magnitude as |e |%.

From the definition of rq(x) it follows that



(111,I1I,8,8)

3=1 h 7
) - o
(8.1} r (x) = £'(x) = ¥ _(_,_EQL xp = (log x)m) 5
therefore

Sesl, h - 1
(8.22) V_(x) =1 - ;Z;o L:ﬁ‘%-l-f wlcx)éf"““h(log x)”j NE - 1) ax
t

where

a0
wf—«f Y () £'(x) N(E - 1) ax
%

Applying (7.3l) with 3+ « h - 1 instead of /3 and withm and m - 1

instead of m, we find
©
. Beolh v R
Y (x) (x (log x)™) N(3 = 1) dx
t
<e, g B <=l (150 )T 5

if we choose the fixed integer n % B3 +e(s~-1) +# 2m, Then the sum

Z, occurring in (8,22), is in asbsolute value at most equal to

g1 ! h
S | 3+ «h-n-1 m < q
62 hz "“-H”Ewm t (log t) = 02 |€ I
._0
if the fixed integer n is large enough. The only thing we have to do

now is to show that also W is for sufficiently large fixed integer n

at most of the same order of magnitude as |e |%.
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We have

A
£ () = xfPp 0 7T,

where Ph(x) is a polynomial in €x and log x; the degree in
ex® is £ n and the degree in log x is € m3; this assertion is obvious
for h = 0 and can be proved for h 21 by means of the principle of

mathematical induction. Thus we find for each fixed integer h 2 0 and

for x 2 e
A
1P 0] € ey xPP @ s (e x)P(og ™ ST

where Y = Re € 2 |e] sinp > 0. From

1
e =4
le] 2® t* = 2% |e|™™ < 2
it follows that in the interval t £ x £ 2t

1280 () | e) £68 (10g )

Applying (7.13) with I =W and g{x) = £{x) we obtain

0 A
W] < e;[ x Bl (1 + (|e]x°()n+1)(’log )™ e NE ax
+

+ g, £ PO (log )™

6

= A
< c;l € |n+'1 / xﬁ+(°{ ~1)(n+1) (iog x)m emﬂx dx
t

+ e, tPT (Log 1),

7

if n is sufficiently large. This inequality implies, if 0 <X <1,
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| <ecg e,

if t is sufficiently large, If & 2 1 we write

o0
o f = ( = s A
e !n 1 f xﬁ+(o< 1) (o1} tisp " e Nx 4

X

. L B -1 (n) . PP Brlr(ec =1) (n#+l)
= |¢ Im"‘“frf =3 % malf y = (log %)m eV gy
[3+1+(x¢=1) {n+1) o) -
, n- (3 - = (3+1+(&=1) (n+1) -
= je [[® l|sinp]| = o(mlf y (1°gf£ll)meyd3'
7
< e lel?

for sufficiently large n. This completes the proof.,

In the preceding theorem we have found for Sm an asymptotic expan-
sion, which is valid for small vaiues of |e|. This expansion is, as
we shall prove now,convergent (1) if 0 < = <1 (2) if X =1 and

le | <2, To that end we examine the behavior for large values of

h of the integral

o0
T ff Wi(x) (X(3+o(11 (1log 9™ ax
o

We have found in Theorem 11 in Section ]} that this integral is equal

to
=" fW e p-xn

if (3 + o h is different from zerc and 1.
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The zeta function of Riemann satisfies, as we have seen in formula
{L.16), the functional equation
fl=58) ==2 (_2(”),;,1:,5 3(14- s) T(s+ 1) sinﬂ; .
For s # 1 we have
¢ 7’ sy 4
O(.S(S*—”l)éj(Z):—ém and IS_:LD.T': s
so that
|58 Edp @M Ms+1) .

The series

® b
L ‘—(:ﬁ?w §(-3 =« n)
B+oh®]

has therefore the majorant

0o h
i I (21@1“‘/3“‘“?1 MB+ o h+ 1)JT§=L
iz h=g °
B +oh=],

and this majorant converges (1) if 0 < x <1 (2) if & =1 and

|e | <217, This gives the required result in the particular case

m = 0, In the general case m = 0 we write §(m) (~s) by means of the
functional equation of the zeta function as a linear combination with
constant coefficients of terms of the form

2m & @+ PP a+e &h 2L,
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where g + j £ m, Consequently for s 21

(e g yem= § (rPass ),

J=o
where ¥ depends only on m., The series
o h
m = &
E j( )(“’@‘”q h)(h°)
h=o
3 +anl

has therefore the majorant

0 h m
< E (gw)ﬂﬁ“’"‘h EL%_!ﬂ E “—»(J-) (B + « h+l”
=g - ° j=o0
A+t h=l

Since also this majorant comverges (1) if 0 <o < 1 (2) if « =1 and

m

| < 2 7, we find in this way the required result for each integer

()

il

0
We see even: if |€ | < 27 and 0< & %1, then the expansion,
cbtained above for the sum Sm’ converges uniformly in e,

The question arises whether Sm is in these two cases the sum of
this convergent series, If we assume that - % Larg € < -'-g: , the

reader finds the affirmative answer in

THEOREM 2),, Assume - ‘-El <arg € € —g:, Suppose either

0< e <1or < =1and le] <2m, Let (@ be real and let m be an

. A
integer = O, Then the sum

(8..23) S, = 3% f(n) where f£(x) = }cﬁ(log %)™ e«-éxd

n=o
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can be written as a sum of a convergent series, namely

£

- o0
! L My e =
(8.2) s, =5 FEES) g j( @~ 4h)
if - is not an intege = Oy

5 g(ﬁm Ek(ﬂ-‘lo e-=‘{+o<?(+l+l+en+_
o ki +08 i k

(8.25)

oo h
=&
» 5 L5l fep-xn

h= ’

h#k
if - %ﬂi is equal to an integer k = 0, finally for m = i

oo
(8.26) s, __f £® (108 2P @ + h}j f Y (x ) (P *B(10g )™ 'ax,
=0
o

where the integrals are taken modulo L{0+),

Proof, We begin in the same way as in the proof of the preceding
theorem, but now we must show that the remainder Rq tends to zero as
g = 3 in this argment €, &, 3 and m are supposed to be fixed.
Let us treat first the case that 0 €< x <1, We choose a number

+ depending on q such that

(8.27) +© =» o0 3 = =0 ;q}i)%-@m}() as Q =y 0 o

Furthermore we define the order n of the neutralizer N(u) as the

largest integer E - 1, so that n depends on q and tends to

m+T7je

infinity as q = oo, even so rapidly that
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(8.28) %‘log t ~» 0 as q =y 00

For sufficiently large q we have
t2e and [ +xq>0 ,
We divide again R g into the two parts Uq + Vqs where U_ is according

to (8.6), in absolute value at most equal te

e

2t
j x‘ﬂ*%q-l {( |A] + =« q Jlog xlm + m|log xlm_l} dx
o

& ! 3
& ?f%a%lﬁ (26)°* %9 (105 )™,

o
where ¥ is fixed., From =» 0 it follows that Uq =2 0 as q =% 0.

Furthermore
(o'} o
(8.29) f Y (x) £ W(E - 1) ax éf |£7(x)] ax =» O
t 5

as t =» ., It is therefore sufficient to show that

0
n.ETm I, , where I, = j qjl(x) £ (x) N(% - 1) ax
t

tends to zmero as q —» o0, for then it follows from (8.28) that ¥y
and therefore also Rq = Uq + Vq tends to zero as q = . To that

end we apply inequality (7.3L) with 8 + o h - 1 instead of /3.

The sufficient condition
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n§ﬂ+°(h+2m

is satisfied for 0 § h < g and for sufficiently large g, since it fol=-

lows from (8,.28) that then

n2 @+xgs+2m> 3 + h+2m .

nh

We find therefore for 0 = h <gq

n+l

(8.30) |5 <3 (2{%«. h=-1 +1> tﬁ"’“h“l(log o)™ (m+1) (n+]£)+5n+|p‘l

For sufficiently large g

n"‘"l?-'lpl s

hernce

(n+1)(m+1)55n+ | 2| ¢ (n#1) (m+7) 2 1
t 17 e

by the definition of n. Consequently it follows from (8.30) and
(8,28)

log |I,| < (@ + aq - 1) log 2t + m log log 2%t -n-l<-3n
for sufficiently large q. In this way we find

1. h
ea_énE Ii! 2e|€|°"%‘n===-ao

| | &
q k=0

as q —» 0o, This completes the proof for 0 < % <1,
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The sum Sm 45 a continuous finction of « in the interval
0 < « % 1 and we have seen that the expansion, obtained for S, con-
verges wniformly in &« if |€|< 2W , so that the required formulas
(8.23), {B,2L) and (8.25) hold also if e =1 and le | <21,

Tt is easy to see that the series Sm remains convergent if the
condition = %ﬁx < arg € < %g-is replaced by

Fos &~

(8,31} € # 0 *E . o< fl and FCx =1

29
H
Ja
My
i
&

and that the sum Sm iz a contimuous function of €, Since the expan-
sions, obtained for 8 , converge wnifornly in & (1) ire<« <1 (2)
if of =1 and |€ | < 2T, we obtain finzlly

THECREM 25, Asswme {8.31)s let m be an imteger = 03 if ot =1,

we suppose that |€ | < 27, Under these conditions the formulas (8.2L),

(8.25) and (8.26), obtained in the preceding theorem, remain true.

In the chapters I, IT and II we have not exhausted the theory of
the sum formula of Euler, Still many other applications can be given,
even in the domain of the real variables,and the sum formula of Euler
in the complex plane has not been treated at all in these chapters,
The reader can find an excellent exposition of this sum formula ins
W. B. Ford, Studies on Divergent Series and Summability, Michigan
Science Series, vol, IT, New York, The Macmillan Company, 1916,

XI + 19L pages (compare in particular p. 1 ~ 63.)

Septenber 15, 1952
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