
Abstract Behavioral Specification:
unifying modeling and programming

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden

op gezag van de Rector Magnificus prof. mr. C. J. J. M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 17 april 2018

klokke 15.00 uur

door

Nikolaos Bezirgiannis

geboren te Thessaloniki, Griekenland,

in 1987

PhD committee

Promotor: Prof. dr. F.S. de Boer

Co-promotor: Dr. C. P. T. de Gouw Open Universiteit

Other members:
Prof. dr. A. Plaat

Prof. dr. F. Arbab

Prof. dr. E. B. Johnsen University of Oslo

Prof. dr. T. van der Storm Rijksuniversiteit Groningen

The work reported in this thesis has been carried out at the Center for
Mathematics and Computer Science (CWI) in Amsterdam and Leiden

Institute of Advanced Computer Science at Leiden University, under the
auspices of the research school IPA (Institute for Programming research and

Algorithmics). This research was supported by the European FP7-610582
project ENVISAGE on Engineering Virtualized Resources.

Contents

1 Introduction 1
1.1 Why ABS . 4
1.2 Targetting Haskell . 6
1.3 Validation . 8
1.4 Outline . 8

2 Background: the ABS Language 13
2.1 Data structures . 14
2.2 Functional code . 17
2.3 Side-effectful and OO code . 19
2.4 Type system . 21

2.4.1 Parametric Polymorphism 22
2.4.2 Subtype polymorphism 22
2.4.3 Variance . 24
2.4.4 Type Synonyms . 25

2.5 Module system . 26
2.6 Metaprogramming with Deltas 26
2.7 Concurrency model . 27
2.8 History of ABS . 33
2.9 Comparison to other concurrent, modeling languages 33

3 HABS: A Variant of the ABS Language 35
3.1 Differences with Standard ABS 35
3.2 Language extensions to Standard ABS 38

3.2.1 Exceptions . 38
3.2.2 Parametric type synonyms 41
3.2.3 Type Inference . 42
3.2.4 Foreign Language Interface 42

3.2.5 Language extension for HTTP communication 44

3.3 Compiling ABS to Haskell . 45

3.3.1 Compiler infrastructure 46

3.3.2 Functional code . 47

3.3.3 Stateful code . 48

3.3.4 Object encoding . 51

3.3.5 Interfaces, Classes and Methods 52

3.4 Typing ABS . 54

3.4.1 Subtyping . 55

3.5 Runtime execution . 59

3.6 Comparison to other ABS Backends 63

3.6.1 Comparing language support and features 63

3.6.2 Comparing runtime implementations 65

3.6.3 Benchmarking the ABS backends 66

3.7 Formal verification of HABS . 68

3.7.1 Restricting to a subset of ABS 72

3.7.2 Operational Semantics 74

3.7.3 Target Language . 77

3.7.4 Correctness . 81

3.7.5 Resource Preservation 84

3.7.6 Experimental Evaluation 85

3.7.7 Proofs and auxiliary results 87

3.8 Case Study on Preferential Attachment 104

3.8.1 Results . 105

3.9 Related Work . 106

4 Resource-aware Modeling in HABS 111

4.1 Modeling time . 111

4.2 Modeling virtualized hardware resources 113

4.3 Modeling systems . 113

4.4 A real-time implementation . 115

4.4.1 Comparison with symbolic-time execution 116

4.5 Case study: DevOps-in-the-Loop 118

4.5.1 The tool . 122

4.5.2 Benchmark . 124

4.6 Related Work . 129

5 A Distributed Implementation of HABS 131
5.1 Implementation . 133

5.1.1 Connection to Cloud infrastructure 134
5.1.2 Serialization . 137
5.1.3 Garbage Collection . 137
5.1.4 Failures in the Cloud . 138

5.2 Extension: Service Discovery 139
5.3 Experiments and Results . 141
5.4 Case Study: Distributed Preferential Attachment 143
5.5 Related Work . 144

5.5.1 Distributed programming languages 145
5.5.2 Cloud middleware and management 145

6 Conclusion and Future Work 149
6.1 Future Work . 150

Summary 154

Samenvatting 156

Bibliography 159

Chapter 1

Introduction

The latest advancements in technology and economic progress led to the ubiq-
uity of computers (hardware and software) in our daily lives. Currently, com-
puter systems are present (embedded) in our phones, watches, automobiles,
and even coffee machines and lamps; the future seems to be even more intru-
sive with computers appearing inside our clothes and under our skin. This
enormous information-gathering from all these computers (sensors) demands
an analogously-large computing power to process this information in a fast or
timely manner.

The future does not look to be so bright, however, when it comes to hard-
ware’s raw processing power. For long, it has been established that Moore’s
law is constrained by the speed of light, that is, there is a limit on how fast
the information can flow (and thus be processed) inside a computer system.
For mainly this reason, hardware manufacturers have been trying to make
the sizes of transistors (i.e. raw processing power) and the distances between
them smaller and smaller through these years of development. Yet, there are
indications that we have reached this time another limit, where manufacturing
at atomic (or even subatomic) levels of transistor size is unstable to produce
circuits and thus not economically-viable at large scales (production yield).

For the last decade, this sole reason has driven manufacturers to turn this
time to parallel computing for keeping up with the Moore’s law, by pack-
ing more and more multiple (and otherwise independent) computing resources
(CPU cores) to form a (single) larger computing system (i.e. the multicore
CPU). This revolution has already reached the mainstream consumer hard-
ware where, as of 2017, a common smartphone can contain up to 10 cores and
an affordable desktop machine up to 32 cores. The underlying idea behind

1

2 CHAPTER 1. INTRODUCTION

multicore computing is that the performance improves when we split up the
workload into multiple (equal) parts and process these in parallel to produce
back the same result. For many common workloads (beside graphics comput-
ing like GPUs), the cores have to communicate sometimes with each other to
perform a single task. This communication (information flow) between the
cores is, once again, constrained by the speed of light. There are even certain
workloads where the cores’ communication is such an overhead that it is faster
to run the computation sequentially (i.e. with a single core). Although the
industry yet seems optimistic in coming up with increasingly larger counts of
CPU cores, there exists the eventual cut-off point, where the limit of light
speed will deem CPUs with million or billion cores unsuitable. It has become
a recent topic of wide discussion whether the Moore’s law will still hold for
the latest hardware developments1.

Another recent advancement that has contributed to the performance of
computer processing is the creation of the “Cloud” infrastructure. Although
the similar distributed computing paradigm has been investigated long before
the Cloud, it has only been the past decade where such online offerings of
hardware infrastructure have become economically viable. Furthermore, the
nowadays dominance of “Anything”-as-a-service has contributed to the recent
popularization of cloud systems, because of the easy scaling (vertical or hor-
izontal) that the Cloud offers. However, distributed (and cloud) computing
hardware is restricted from the same constraint of the speed of light. In fact,
the importance of this constraint is many-fold magnified since the individual
computing processors of the Cloud are often geographically sparsely located:
not interconnected through silicon (as in multicores) but through longer net-
works (e.g. ethernet cables). In many cases the communication overhead in the
Cloud is so profound that poses beside the physical limitation (lightspeed), an
algorithmic problem: how the computation can be distributed (split-up) with-
out being slowed down by the communication overhead. The challenge arises:
how can we utilize these cloud resources optimally?

These limitations in hardware’s raw computing power have moved the at-
tention instead to software, so as to “squeeze” (optimize) the last amount of
performance gain possible. Coupled with the programming paradigm shift that
the multicore revolution brought — where coming up with parallel algorithms
and coding them can often be hard and erroneous — led to a huge burden put
to the software development for being fast while all the while being increas-

1The Economist - The End of Moore’s law http://www.economist.com/blogs/

economist-explains/2015/04/economist-explains-17

ElectronicsWeekly - Is Moore’s law still the law? https://www.electronicsweekly.com/

news/moores-law-still-law-2017-09/

http://www.economist.com/blogs/economist-explains/2015/04/economist-explains-17
http://www.economist.com/blogs/economist-explains/2015/04/economist-explains-17
https://www.electronicsweekly.com/news/moores-law-still-law-2017-09/
https://www.electronicsweekly.com/news/moores-law-still-law-2017-09/

3

ingly complex. To reach optimal performance on the computing infrastructure
where the software is deployed, the software needs to be aware and be able to
control (to some extent) the utilizations of the underlying resources.

Software modeling is a relatively-recently introduced concept to tackle
mainly the “pillar” of complexity. It achieves this, by allowing the user to
abstract from implementation details and instead focus on the functional cor-
rectness of the software. Modeling deals with constructing a higher-level ab-
straction (model) of the software even before it is actually constructed. A
model is governed by a set of formal (concrete) rules which makes it difficult
by-definition to introduce errors into the model. Furthermore, this rigor can
help reason in a high mathematical level about the internals of the software,
and as a result, faults in the design and infrastructure of the software can be
detected early on. Often, these formal rules are written as computer programs
themselves (proof assistants or theorem provers) which allows automatic check-
ing of a model against a set of rules, instead of manually proving its correctness.
Little has been done, however, to achieve performance in software modeling
comparable to a (lower-level) optimized executable program. There have been
some previous efforts [Long et al., 2005, Moreira et al., 2010] to generate (ef-
ficient) code from a model and later include it as part of a program, but these
do not take the available computing resources into account (and thus can-
not exploit them optimally). Furthermore, the integration of such generated
code in production code has often been omitted or under-specified. Hence, the
question arises: how can we optimize performance of software taking aspects
of the available computing resources into account, while still remaining at the
high-level of abstraction that is crucial for model-based approaches?

Summarizing, the general trend in programming languages is to move away
from explicit implementation details and instead focus on abstraction and code
portability (e.g. Java) through high-level formalisms. The software technology
is trying to “catch-up” with the hardware developments, but this requires the
explicit control of the hardware resources and its optimal usage. The main
challenge that arises is how we can abstract away from implementa-
tion details, but still manage the hardware resources at a sufficient
abstraction level, so that we can benefit from the underlying per-
formance. In this thesis, our main contribution is to address this
challenge by constructing a language to write software which can
take advantage of recent hardware developments (multicore, cloud)
without many compromises in the levels of abstraction.

The language discussed in this thesis is a modeling language that engages
both pillars of software-engineering, namely complexity and more-importantly
performance of execution. To achieve this, we aim to provide an interface

4 CHAPTER 1. INTRODUCTION

of inter-operation between the model, the production code and the hardware
infrastructure where the software runs on. Besides multicore hardware, we
also investigate in running the modeling language in the modern distributed
(cloud) computing systems.

1.1 Why ABS

We base our modeling language upon the Abstract Behavioral Specification
language (ABS), with its development starting in to 2006 [Johnsen et al., 2006].
Even before that, the ABS language is the continuation of the high-level, con-
current Creol modeling language which is in-turn born out of of the well-known
first-ever object-oriented programming language SIMULA, that goes back as
early as 1965.

ABS is generally regarded as a modeling language. A modeling language
differs from a programming language in that its primary goal is not to (easily)
construct a software product; a modeling language’s purpose is merely to help
the user lay down information and structure it at one’s will. This structured
information (model) may or may not later act as a “vehicle” for constructing
software. It can still be the case that a model is solely used for the purpose
of brainstorming, idea exploration, experimentation, simulation, or even (hu-
man) communication. In this respect, models are usually left abstract or even
incomplete; this is aided from the fact that a modeling language is usually
governed by a small set of well-defined rules to express the information in a
high-level as possible. Moving on, ABS is executable — compared for example
to the widely-known modeling language UML — since there is a “mechanized”
way to interpret its semantics as transition rules (i.e. an operational semantics)
and thus attach a “meaning” to every (well-constructed) model. The question
arises again as to how then an executable modeling language differs from a pro-
gramming language which also attaches meanings (semantics) to a program
(instead of a model). The answer lies in the separation of their purposes: a
programming language aims to generate (fast) production code, an executable
modeling language only generates code for the purpose of model reduction,
visualization and interactive feedback of information. Although performance
of execution is not a primary goal, it can become important if the modeler
wants to execute larger or more complicated models and interact with them
in a timely manner.

Users of a modeling language (modellers) are generally not expert program-
mers. ABS aims to stay familiar to the average user by supporting a “friendly”
object-oriented programming layer which resembles that of Java. ABS offers a

1.1. WHY ABS 5

functional layer but unlike other, fully-featured functional programming lan-
guages, the language has arguably a smaller learning curve; this is because
on one hand its functional features are minimal, and on the other hand, the
connection with the object-oriented, imperative world is simpler, compared to
monads, type & effect systems, or uniqueness types of other languages.

To further accommodate the average modeler, the ABS ecosystem provides
a plethora of development tools: an interactive development environment in
the Emacs text editor, a developer plugin for eclipse, interactive debugger and
method-call visualizer.

The grammar (syntax) and operational semantics (meaning) of the ABS
language are well defined using formal method techniques: in this way the
documentation of the language becomes more clear and precise, and more, im-
portantly it enables the rigorous analysis of the language. In fact, many anal-
ysis and verification tools have been developed over the course of the years for
the ABS language, ranging from termination analysis [Albert et al., 2013], re-
source analysis [Albert et al., 2015a], deadlock analysis [Giachino et al., 2014],
to monitoring [Boer et al., 2013, Wong et al., 2015] theorem proving and full-
blown verification [Din et al., 2015, Din et al., 2017].

Commonly in software, and in engineering in general, concurrency and
parallelism are two concepts which are both difficult to grasp as well as imple-
ment. A major challenge in the design of modeling languages is an appropri-
ate development of a concurrency model. ABS adds support for concurrency
and inherent parallelism to the object-oriented paradigm. More specifically,
the ABS language combines the Actor model formalism with the notion of
the object to create the active object : the communication to an active object
can be as well asynchronous and is encapsulated behind the usual method
calls. The language’s concurrency model goes a step further and introduces
its main, and characteristic, feature of cooperative scheduling, also known as
(semi-)coroutines. In such a setting, active objects form groups (the so-called
Concurrent Object Groups); all active objects inside a group share their com-
puting resources (i.e. thread of execution). A running object can program-
matically decide to deliberately yield its control so as another object of the
same group can execute, i.e. explicit cooperation which is in contrast to the
usual preemption of thread mechanisms.

ABS’ concurrency model avoids dangerous programming idioms such as
threads and lock mechanisms. The immutability of datastructures in the
purely-functional layer together with the notion of future values (write-once
placeholders which will be computed in the “future”) leads to less race con-
ditions. The fields of an object can only be private, which avoids incidents
of pointer aliasing. Lastly, the “yielding of control” of cooperative scheduling

6 CHAPTER 1. INTRODUCTION

happens in explicit places in the program, which makes it more clear on which
are the concurrent interleavings of that program. You can find out more about
the concurrency model offered by ABS at Section 2.7.

The challenges that we faced during the development of our modeling lan-
guage include finding the right programming constructs to translate the model
to, executing the model through a fast runtime, and showing that the result-
ing executed model conforms still to the set of rules laid out by the modeling
language (i.e. proving correctness). Besides having a generally efficient ABS
implementation, we were faced with the implementation of the “cooperation”
feature of ABS which is arguably difficult to implement. We try to address
this difficulty by developing an efficient runtime environment for ABS.

1.2 Targetting Haskell

To execute the proposed ABS modeling language we translate it to lower-level
Haskell program code. Haskell ([Peyton Jones, 2003]) is a general-purpose
programming language that first appeared in 1987; its name derives from the
mathematician Haskell Curry. Unlike most existing programming languages,
designed by a single person or company, Haskell was designed by a committee
of academicians for the purpose of “agreeing on a common (lazy functional)
language” (from the talk of Simon Peyton-Jones: Escape from the ivory tower:
the Haskell journey). Haskell differs from other functional languages since it is
purely functional: functions play a key role, but they cannot contain any side-
effects. This permits the user to “make better sense” of the program’s code
through equational reasoning and referential transparency. Still, programming
completely without side-effects can be a burden or in certain cases impossible
— e.g. interacting with the real-world has side-effects — and for this reason
Haskell introduces the concepts of Monads (borrowed from Category Theory)
and monadic programming to allow side-effects in the language but without
breaking purity: there is a clear distinction at the type-level between purely
functional and monadic (side-effectful) code. For this reason the type-system
of Haskell has been regarded as a very strong static type-system, with other
reasons being the support for parametric polymorphism, class-constrained
(ad-hoc) polymorphism, type-level programming, datatype-generic program-
ming [Gibbons, 2007], and a limited form of dependently-typed programming
[McBride, 2000]. The semantics of Haskell is by default call-by-need (also
known as lazy). Compared to the commonly-found strict semantics (call-by-
value and call-by-reference), Haskell expressions and their sub-expressions will
only be evaluated at the specific part that is required by the computation.

https://www.youtube.com/watch?v=re96UgMk6GQ
https://www.youtube.com/watch?v=re96UgMk6GQ

1.2. TARGETTING HASKELL 7

Furthermore, unlike the similar call-by-name semantics, lazy semantics will
avoid re-computing already evaluated (sub)expressions, which leads to better
sharing. Last, lazy semantics admits more expressive power for the language
(e.g. when dealing with infinite data structures). Still, the language allows for
partially (in places) introducing strictness which may improve the program’s
performance — most functional languages are strict by-default and optionally
lazy.

The choice of Haskell was made since it provides language features that
closely match those of the functional layer of ABS, and also certain runtime
facilities that make the translation of ABS more straightforward. First of all,
both languages offer a purely-functional layer: whereas ABS restricts the mix-
ing of pure and impure code at the syntactic level, Haskell achieves this instead
on the type-level. Furthermore, their type-systems share certain commonal-
ities, that is algebraic datatypes with support for parametric polymorphism,
ad-hoc polymorphism through ABS interfaces - Haskell’s typeclasses. Finally,
the module system of both language is quite similar; in fact, the ABS module
system was inspired from that of Haskell.

The Haskell type system has been formalized in [Sulzmann et al., 2007,
Eisenberg, 2015]. However, the operational semantics of Haskell, and specifi-
cally that of the GHC Haskell compiler is hypothetical (not been proven cor-
rect yet) as the author say: “It is hypothetical [the semantics] because GHC
does not strictly implement a concrete operational semantics anywhere in its
code. While all the typing rules can be traced back to lines of real code, the
operational semantics do not, in general, have as clear a provenance.” Still,
since both languages are very similar and stay on the same (high) level of ab-
straction, it enabled us to prove the correctness and resource preservation of
the translation of a subset of ABS to a subset of Haskell (with continuations)
which is detailed in Section 3.7.

At the runtime side, the canonical Glasgow Haskell Compiler (GHC) pro-
vides a fast and well-tested runtime system where we base the concurrency
mechanisms of ABS upon. GHC’s features support such as first-class contin-
uations, lightweight (green) threads, load-balancing of threads to multicores
for automatic parallelism gain (also known as the M:N hybrid thread model),
parallel garbage collection, STM-based datastructures (software transactional
memory) among others allowed us to straightforwardly express and thus imple-
ment the ABS concurrency abstractions, and more importantly the cooperative
scheduling of ABS, in terms of Haskell constructs.

Finally, albeit not directly related to Haskell as the target language, Haskell
was chosen as the host language to write the ABS-to-Haskell transcompila-
tion phase, since Haskell is arguably regarded as one of the best languages to

8 CHAPTER 1. INTRODUCTION

write compilers, reasons ranging from the support for brevity through algebraic
datatypes, pattern matching, recursion to compilation’s safety and correctness
provided by the language’s elaborate & strong type system.

It is worth noting that we opted against using Haskell directly, but only
through a translation. Although Haskell can be very expressive and safe,
e.g. monads, its user learning curve is steep with many concepts rooted in
the category theory of mathematics, e.g. again monads. Furthemore, these
concepts are yet to reach a status of mainstream, so the average user that
writes software programs is most likely impervious to them.

Through the translation of ABS to Haskell, we manage to contribute also
to the ecosystem of Haskell:

• a Haskell runtime library to express cooperative scheduling.

• a methodology of providing the object-oriented paradigm for Haskell,
which Haskell normally lacks, as the consequence of implementing it in
our ABS translation.

1.3 Validation

This work has been carried out in the context of the Envisage Project. The
ENVISAGE project is a EU-funded project for:

The development of a semantic foundation for virtualization and
service-level agreements (SLA) that goes beyond todays cloud tech-
nologies. This foundation makes it possible to efficiently develop
SLA-aware and scalable services, supported by highly automated
analysis tools using formal methods. SLA-aware services are able
to control their own resource management and renegotiate SLA
across the heterogeneous virtualized computing landscape.

Our work was validated on two case studies: an industrial case study of
the cloud services offered by the SDL-Fredhopper company https://www.

fredhopper.com/ and a case study on the Preferential Attachment problem
of dynamics, which is concerned with the efficient generation of social-network-
like graphs.

1.4 Outline

Chapter 2 Abstract Behavioral Specification (ABS) [Johnsen et al., 2010a]
is a formally-defined language for modeling actor-based programs. An ac-

https://www.fredhopper.com/
https://www.fredhopper.com/

1.4. OUTLINE 9

tor program consists of computing entities called actors, each with a private
state, and thread of control. Actors can communicate by exchanging messages
asynchronously, i.e. without waiting for message delivery/reply. In ABS, the
notion of actor corresponds to the active object, where objects are the concur-
rency units, i.e. each object conceptually has a dedicated thread of execution.
Communication is based on asynchronous method calls where the caller ob-
ject does not wait for the callee to reply with the method’s return value. In-
stead, the object can later use a future variable [Flanagan and Felleisen, 1995,
Boer et al., 2007] to extract the result of the asynchronous method. Each
asynchronous method call adds a new process to the callee object’s process
queue. ABS supports cooperative scheduling, which means that inside an ob-
ject, the active process can decide to explicitly suspend its execution so as to
allow another process from the queue to execute. This way, the interleaving
of processes inside an active object is textually controlled by the programmer,
similar to coroutines [Knuth, 1973]. However, flexible and state-dependent in-
terleaving is still supported: in particular, a process may suspend its execution
waiting for a reply to a method call.

Chapter 3 Whereas ABS has successfully been used to
model [Wong et al., 2012], analyze [Albert et al., 2014a], and ver-
ify [Johnsen et al., 2010a] actor programs, the “real” execution of such
programs has been a struggle, attributed to the fact that implement-
ing cooperative scheduling efficiently can be hard (common languages
as Java and C++ have to resort to instrumentation techniques, e.g.
fibers [Srinivasan and Mycroft, 2008]). This led to the creation of numerous
ABS backends with different cooperative scheduling implementations:2

ABS→Maude using an interpreter and term rewriting, ABS→Java using
heavyweight threads and manual stack management, ABS→Erlang using
lightweight threads and thread parking, ABS→Haskell using lightweight
threads and continuations.

Implementing cooperative scheduling can be non-trivial, even for mod-
ern high-level programming languages (e.g. Java, C++) because of
their stack-based nature. A recent relevant technology is to use fibers
[Srinivasan and Mycroft, 2008], which adds support for cooperative threads by
instrumenting low-level code (commonly via bytecode manipulation) to save
and restore parts of the stack. We instead opted for source-to-source trans-
lating ABS programs to Haskell, a functional language with language-level

2See http://abs-models.org/documentation/manual/#-abs-backends for more infor-
mation about ABS backends.

http://abs-models.org/documentation/manual/#-abs-backends

10 CHAPTER 1. INTRODUCTION

support for coroutines, based on the hypothesis that a high-level translation
serves as a better middleground between execution performance and most im-
portantly semantic correctness. Our transcompiler translates ABS programs
to equivalent Haskell-code, which is then compiled to native code by a Haskell
compiler and executed. Prior alternative approaches for executing ABS have
been an Erlang translator, that utilizes Erlang’s preemptive lightweight pro-
cesses to simulate cooperative threads, and a Java translator, that manages a
global dynamic pool of heavyweight threads.

Furthermore, we present and discuss a formal translation of a actor-based
language with cooperative scheduling (a subset of ABS) to the functional lan-
guage Haskell. Here we make use of a different, more high-level translation
of ABS to Haskell than the translation implemented in the ABS→Haskell
backend. This formal translation is proven correct with respect to a formal
semantics of the source language and a high-level operational semantics of the
target, i.e. a subset of Haskell. The main correctness theorem is expressed
in terms of a simulation relation between the operational semantics of actor
programs and their translation. This allows us to then prove that the resource
consumption is preserved over this translation, as we establish an equivalence
of the cost of the original and Haskell-translated execution traces. Finally, the
method that was developed is general but applied only to a subset of ABS;
for future work we consider to apply this method for all ABS constructs for
formally verifying the complete ABS language.

Chapter 4 In this chapter we discuss an extension of ABS to write soft-
ware that can programmatically take control of its computing (hardware-
virtualized) resources. This type of programming which we name “resource-
aware” programming differs from the usual emulation or hardware description
languages, such as Verilog, because it does not focus on the design of (new)
hardware but on how software can take advantage and be “aware” of the un-
derlying hardware. We construct an integrated tool-suite for the simulation
of software services which are offered on the Cloud hardware. The tool -suite
uses the Abstract Behavioral Specification (ABS) language for modeling the
software services and their Cloud deployment. For the real-time execution of
the ABS models we use a Haskell backend which is based on a source-to-source
translation of ABS into Haskell. The tool-suite then allows Cloud engineers to
interact in real-time with the execution of the model by deploying and man-
aging service instances. The resulting human-in-the-loop simulation of Cloud
services can be used both for training purposes and for the (semi-)automated
support for the real-time monitoring and management of the actual service

1.4. OUTLINE 11

instances and their computing resources.

Chapter 5 Cloud technology has become an invaluable tool to the IT busi-
ness, because of its attractive economic model. Yet, from the programmers’
perspective, the development of cloud applications remains a major challenge.
In this paper we introduce a programming language that allows Cloud ap-
plications to monitor and control their own deployment. Our language orig-
inates from the Abstract Behavioral Specification (ABS) language: a high-
level object-oriented language for modeling concurrent systems. We extend
the ABS language with Deployment Components which abstract over Virtual
Machines of the Cloud and which enable any ABS application to distribute
itself among multiple Cloud-machines. ABS models are executed by trans-
forming them to distributed-object Haskell code. As a result, we obtain a
Cloud-aware programming language which supports a full development cycle
including modeling, resource analysis and code generation.

This thesis is derived work from the publications:

• Bezirgiannis, N. and Boer, F. d. ABS: A High-Level Modeling Language
for Cloud-Aware Programming In SOFSEM 2016

• Albert, E., Bezirgiannis, N., Boer, F. d., and Martin-Martin, E. A For-
mal, Resource Consumption-Preserving Translation of Actors to Haskell.
In LOPSTR2016

• Azadbakht, K., Bezirgiannis, N., Boer, F. d., and Aliakbary, S. A High-
level and Scalable Approach for Generating Scale-free Graphs Using Ac-
tive Objects. In SAC2016

• Azadbakht, K., Bezirgiannis, N., and Boer, F. d. (2017a). Distributed
Network Generation Based on Preferential Attachment in ABS. In SOF-
SEM2017

• Azadbakht, K., Bezirgiannis, N., and Boer, F. d. (2017b). On Futures
for Streaming Data in ABS. In FORTE2017

• Bezirgiannis, N., Boer, F. d., and Gouw, S. d. Human-in-the-Loop Sim-
ulation of Cloud Services. In ESOCC2017.

The paper “Human-in-the-Loop Simulation of Cloud Services” was awarded
the Best Paper of the Conference: (ESOCC) 6th European Conference on
Service-Oriented and Cloud Computing.

Finally, all code developed during this thesis can be found at the git repos-
itory:

12 CHAPTER 1. INTRODUCTION

Chapter 3 [Bezirgiannis and Boer, 2016]
[Albert et al., 2016]
[Azadbakht et al., 2016]

Chapter 4 [Bezirgiannis et al., 2017]
Chapter 5 [Bezirgiannis and Boer, 2016]

[Azadbakht et al., 2017a]
[Azadbakht et al., 2017b]

Table 1.1: Contribution of publications to chapters of the thesis

https://github.com/abstools/habs

Note that the code was still in active development during the writing of
this thesis; therefore, the latest implementation code might not reflect the
hereby-included code snippets.

https://github.com/abstools/habs

Chapter 2

Background: the ABS
Language

The Abstract Behavioral Specification language[Johnsen et al., 2010a] (ABS
for short) is a modeling language for concurrent systems. As such, it is well
suited for describing, designing, and prototyping highly-concurrent computer
software.

The ABS language is formally specified: the language’s syn-
tax and behaviour are not comprised merely of textual specifica-
tions or broader technical standards, but instead defined rigorously
by means of mathematical methods. Since ABS is formally de-
fined this makes it easier to analyze ABS models for possible dead-
locks [Albert et al., 2014a, Albert et al., 2015b, Giachino et al., 2016b] or re-
source allocation [Albert et al., 2014a] and even fully verify properties over
user-written functional specifications[Din et al., 2015]. Furthermore, the ABS
formal semantics are laid out in a specific way that enforces the user to avoid
certain problematic scenarios which arise during concurrent programming,
such as race conditions and pointer aliasing.

ABS is executable — unlike other more “traditional” modelling languages
— which means that any well-formed ABS model can be executed (evaluated)
by a computer system. The ABS user can thus experiment and test any well-
formed ABS model (e.g. by model-based test-case generation using symbolic
execution [Albert et al., 2015c]) or even generate ABS code that can be inte-
grated in production systems — currently there exist several ABS backends
which generate production code partially or completely.

13

14 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

The syntax and programming feel resembles that of Java. In the rest of
this section we introduce the basic elements and features of the ABS language
in a manual-like style.

2.1 Data structures

All structures that hold data in ABS are immutable — with the exception of
object structures, see section 2.3. An immutable structure cannot be updated
in-place (mutated); instead the structure is copied into a new place in memory
and its substructure updated. A common optimization is to not copy anew the
whole updated structure but only its updated segment. Despite the obvious
drawbacks of memory overhead and performance cost of copying, immutable
data are considered beneficial in a concurrent but most specifically parallel
programming setting for three reasons:

(a) Code can be written that does not have side-effects. This makes it easier
for the user to reason about his/her program with the use of referential
transparency (also known as equational reasoning) as well as the prover
(human or not) to analyse and verify the code.

(b) Multiple threads can operate (i.e. read) the same location, but since the
data does not change, the ordering in which different threads access it does
not matter (no data races).

(c) The memory model becomes simpler; the compiler can thus apply code
optimizations much more liberally.

The basic immutable data structures are the so-called primitive data types
and consist of: Int standing for arbitrary-precision integers, Rat for arbitrary-
precision rational numbers, String for (immutable) strings of Unicode char-
acters. Integers can be implicitly converted to rationals (for more details,
see section 2.4.2) but the other way around (downcasting) can only be done
through explicit conversion (by using the function truncate), to avoid implicit
(in other words, hidden) loss of precision errors in written ABS programs. All
these primitive types are builtin inside ABS and cannot be redefined by the
user or syntactically overwritten. Furthermore, there exist a special builtin
type named Fut<A> which stands for a single containers of a value (of type
A) that may be delivered sometime “in the future”. For more about futures,
see section 2.7. Since futures do not have a literal representation, they can be
overridden. Example code of primitives and the special Fut is briefly given:

2.1. DATA STRUCTURES 15

1 // Integer
1/1 // Rational
”text” // String
obj!method(); // Futures created by async. method calls , see section 2.7

New user-written data structures can be given in the form of algebraic data
types. Algebraic datatypes are high-level data structures defined as products
and/or sums of types — types being other algebraic datatypes, primitives, and,
in case of ABS, also of object types. A product groups together many data of
different types, notated in set theory as A ∗ B ∗ C . . . ∗ N where A,B,C,...,N
are arbitrary types. Products resemble structs in C-like languages and are
denoted in ABS by:

data TypeName = ConstructorName(A,B,C,...,N);

where TypeName is the name of the type (required since ABS is statically-
typed, see section 2.4) and ConstructorName is the name of the data constructor;
in principle, a declaration of a data constructor name is not necessary unless
the algebraic datatype contains also sums, but for the convenience of unifor-
mity it is commonly required to give a constructor name for products as well.
The most popular example of product types are tuples, with a triple of integers
defined in ABS as:

data MyTriple = MyTriple(Int, Int , Int);

Sum types (also known as discriminated unions, tagged unions) groups
together distinct types under a single “category” (type). The notation in
set theory is A + B + C + . . . + N where A,B,C, . . . , N are arbitrary types
(algebraic or object types) as well as product types. In other words, a sum
type of A,B,C, . . . , N means that when a user “holds” a data structure with
type A + B + C + . . . + N , the contained value is of type either A, B, C, or
N. The canonical example of a sum type is the boolean, given in set theory
notation as True+ False and in ABS as:

data Bool = True
| False ;

where True,False are constructor names of their “nil-sized product types”.
The user could achieve the same in C-like languages with enum BOOL {false,true};.
The extra power of algebraic datatypes shines when intermixing sums together
with products; in set theory denoted by (A∗B)+(C)+(D∗E∗Z)+... (parenthe-
ses added only for clarity, strictly speaking they are unnecessary since ∗ takes
precedence over +) whereas in ABS language:

16 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

data Type = Constructor1(A,B)
| Constructor2(C)
| Constructor3(D,E,Z)
| ...;

Constructor names (e.g. Constructor (1,2,3) become important in sum types
of statically-typed language since it allows us to safely (i.e. statically at
compile-time) pattern-match on discrete values of possibly different, distinct
types. Furthermore the contained types can be parametrically polymorphic
with the use of type-variables:

data Either<TypeVar1,Typevar2> = Left(TypeVar1)
| Right(TypeVar2);

where TypeVar1 and TypeVar2 are type-variables standing for any possible
type (algebraic or object type) which will be instantiated (be known) at use
site.

The ABS language specification comes with a Standard Library that defines
certain common algebraic datatypes such as Bool, Maybe<A> and List<A>,
Set<A>, Map<A,B>:

export Bool, True, False ;
export Maybe, Nothing, Just;
export List , Nil , Cons;
export Set,Map;
data Bool = True | False ;
data Maybe<A> = Nothing | Just(A);
data List<A> = Nil | Cons(A,List<A>);
data Set<A> = //implementation;
data Map<A,B> = //implementation;

Note that Set<A> and Map<A> are so called abstract algebraic datatypes
because their concrete implementation is not accessible outside of the module
they are defined in (for our case inside ABS.StdLib). This is achieved by ex-
porting only the types (i.e. Set, Map) and not the data constructors to the
types, making them not accessible outside of the module. Abstract datatypes
offer a two-fold advantage:

(1) operations on such datatypes preserve their invariants (e.g. no dupli-
cate elements in a set or keys in a map, ordering, etc.) since the user
cannot manipulate the data constructors of these types directly (by case-
expression pattern-matching) but only through provided safe (in the sense
of invariant-preserving) operations (functions).

2.2. FUNCTIONAL CODE 17

(2) the individual (ABS) backends have the freedom to choose different
purely (or not) functional datastructure implementations for those ab-
stract datatypes.

2.2 Functional code

At its base, ABS adheres to a functional programming paradigm. This func-
tional layer provides a declarative way to describe computation which ab-
stracts from possible imperative implementations of data structures. Further-
more, ABS is said to be purely functional because inside any ABS program
functional code cannot be mixed with side-effectful code (section 2.3). This
pure/impure code distinction is achieved in ABS completely syntactically, com-
pared to other purely functional languages where the same result is achieved
at the type-system level (e.g. monads in Haskell).

At the centre of functional programming lies the function which is a similar
abstraction to the subroutines of structural imperative programming, in the
sense that it permits code reuse. However, unlike procedures, pure functions do
not allow sequential composition (; commonly in C-style) since they completely
lack side-effects. In the same manner, there is no need for an explicit return

directive as the right-hand side evaluation of the function is the implicit return
result (as it is mathematics). Note that sequential composition (;) is not the
same as functional composition (f ◦ g) because we are not composing right-
hand side outputs of the functions but their underlying effects. The syntax of
declaring an ABS function is:

def ResultType f<TyVar1,...TyVarN>(ArgType1 arg1, ..., ArgTypeN argN) = <expr>;

where f is the name of the function, arg1, . . . , argN are the names of the
formal parameters that the function takes (with their corresponding types)
and ResultType is the overall type of the right-hand side expression. Further-
more, TyVar1, TyVar2, TyVarN are the typevariables that may appear inside
formal parameters’ types and/or ResultType. In this manner, functions can be
parametrically-polymorphic, similar to to algebraic datatypes. Function defi-
nitions associate a name to a pure expression which is evaluated in the scope
where the the expression’s free variables are bound to the function’s argu-
ments. The functional layer supports pattern matching with a case-expression
which matches a given expression against a list of branches.

An expression in ABS is either a primitive value (e.g. 1, 1/1, ”text”),
an applied data constructor (e.g. Left(3)), a fully applied function call (e.g.

18 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

f(True,4), ABS does not support partial application) an identifier (formal pa-
rameter or not), a case-expression, a let-construct or a combination of all of
the above. A let-construct has the form let (Type ident) = <expr1> in <expr2>

and binds the newly introduced identifier ident to point to expr1 inside the scope
of expr2. The result-expression of a let-expression is the β-reduction of expr2

after capture-avoiding substitution of ident with expr1. The declared Type can
be used to upcast the identifier if-and-only-if Type is a subtype of the expr1’s
actual type.

A case-expression is used to deconstruct a value of a datatype to its sub-
components and then assign particular identifiers to (some of) these sub-
components. This case analysis only makes sense for (non-abstract) algebraic
datatypes, where the user has the ability to look inside the data constructors
of the particular datatype. Other datatypes (primitives, abstract, algebraic, or
object types) cannot be deconstructed and analyzed; only an identifier name
can be assigned to them, similar to let-construct modulo the possible subtyping
conversion. An example of the use of case-expression is given below:

def A fromMaybe<A>(A default, Maybe<A> input) = case input {
Nothing => default;
Just(x) => x;
};

Each pattern => <expr> is a distinct branch of the case-expression. A
(sub)-pattern can also be a wildcard (syntax:) which matches any (sub-
)component but does not bind it to an identifier. It should be mentioned that
ABS does not do any case-pattern exhaustiveness search, which means that
the ABS user can define partial functions, e.g.:

def A fromJust<A>(Maybe<A> input) = case input {
Just(x) => x;
};

which will throw a runtime exception (see section 3.2.1) when trying to
evaluate fromJust(Nothing). Such data “accessors” are commonly used in func-
tional languages, so the ABS language provides a shorthand for introducing
such accessors (as syntactic sugar) at the point of the algebraic datatype dec-
laration. For example, the above function will be implicitly defined, simply by
annotating the constructor:

data Maybe<A> = Nothing
| Just(A fromJust);

2.3. SIDE-EFFECTFUL AND OO CODE 19

Finally, all primitive and algebraic data types provide default implementa-
tions for operations of (well-typed) structural equality (==) and lexicograph-
ical ordering (>,<,<=,>=).

2.3 Side-effectful and OO code

Keeping some form of state becomes handy when implementing certain algo-
rithms, both for brevity and performance reasons. Stateful code also caters
for C(++) and Java programmers, as the side-effectful and OO layers are
much more familiar to them than the functional layer. ABS does not imple-
ment stateful computations through purely-functional abstractions (such as
the State monad), but through the use of imperative programming (i.e. se-
quencing statements that possibly have side-effects). Furthermore, unlike an
“observably-only” side-effect-free implementation of state (e.g. the ST monad
of Haskell) ABS employs the full, side-effectful implementation of state as
found in common imperative languages — in contrast, Haskell uses the IO
monad. The reason that ABS uses side-effectful code is that albeit a model-
ing language, it allows certain observable communication with the real-world
environment (e.g. println , readln, HTTP API) to facilitate user interaction
during simulation (Chapter 4) or distributed computation (Chapter 5). As
mentioned in section 2.2, ABS syntactically restricts the appearance of side-
effectful code inside (purely) functional code. As such, side-effectful code can
appear in ABS inside block scopes — a block is delimited by braces { } —
i.e. the main-block (like the main procedure in C), every method-block (i.e.
method body), while-block, if-then-else and if-then blocks.

The notion of local state in any imperative language is represented by local
variables. Variables can be declared anywhere inside a method’s body. The to-
tal scope of any variable is the scope from the start of its declaration line until
the end of the current block. After declaration, they can appear inside expres-
sions, be assigned and reassigned but not re-declared in the same or deeper
scope. Furthermore, primitives (Int , Rat, String) and algebraic datatypes are
forced to take an initial value, whereas object types and the special future
type can be left uninitialized which will default them to null and unresolved
future, respectively. An example of local variables inside a main block:

{ // main block can appear once per module

Int i = 3; // declaration/ initialization of a primitive
Maybe<Fut<String>> j = Nothing; // declaration/initialization of an ADT

20 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

i = i+1; // (re)assignment

Interf o; // declaration−only of an object type
Fut<String> f; // declaration−only of the special future type

j = Just(f); // (re)assignment

return Unit; // Unit returned by main, can be omitted

}

The main-block and every method-block can have a return expr ; statement
appearing strictly as the last statement of the block — this is too strict, since
it would suffice to occur at every tail position so as to have a unique return

point and no early exit of the method, but for clarity reasons the ABS language
opted for a single-only return at the unique last position. If the return expr ;

statement is omitted, it defaults to return Unit; where unit is the singleton
tuple (() in Haskell).

ABS is object-oriented: users can write classes which have a number of
method definitions and fields. Fields can be declared in two positions:

class ClassName(<decl−pos1>) {
<decls−pos2...>
<method definitions ...>
}

Fields at position-2 have the same initialization behaviour as local vari-
ables. Position-1 fields are instead left uninitialized and will be instead at cre-
ation time passed by the object creator as parameters (e.g. new ClassName(params)).

Fields can be referenced and reassigned inside any block with the prefix
this .fieldName; fields have the same scope as their class. The special keyword
this points to the currently executing object, much like Java. It is a syntax
error for the main block to use the this or this .fieldName notation, since the
main block lacks a this -object. An example of a class with one method block
definition which adds to a field counter and returns the old counter value is
given as:

class ClassName(Int counter) {
{

// init−block
}
Int addMethod(Int input) {

Int oldCounter = this .counter;

2.4. TYPE SYSTEM 21

this .counter = this .counter + input;
return oldCounter; // oldCounter is a local variable
}
}

Instantiated fields and methods of an object are not visible by default
outside its class scope. In practice this means that an object cannot access
(read or modify) the fields of another object directly (all fields are private), but
only through a method call, and any object can by-default only call its local
methods (e.g. via calling this .m();). Calling a method of another object is
achieved through explicitly exposed methods, which are bundled in interfaces.
You can find more about interfaces and how they are used for (sub)typing in
section 2.4.2.

Each class can have a single constructor, named the init-block. If omitted,
it defaults to the empty-statement block. After the init-block finishes exe-
cuting, the new object reference will be returned to the new-caller who can
now resume execution with its next statement (i.e. new is a synchronous call).
Also, after the init-block has finished, a Unit run() method will be implicitly
asynchronously called for; this method is used for proactive concurrent objects.
In Section 2.7 you can find more about synchronous/asynchronous calls and
concurrency.

ABS lacks pointers and support for pointer-arithmetic. The evaluation
strategy of ABS is strict, namely call-by-value semantics, much like Java
where for primitive types, the value is passed, and for object types, the object-
reference is passed as a value. ABS provides several common control-flow con-
structs: if−then−else branches and while-loops; there is no explicit breaking
out of while loops. Any pure expression can be lifted to a side-effectful one.
A case-statement, where case-branches associate to (side-effectful) statements,
can be used instead of the similar but pure case-expression. Finally, ABS de-
fines the equality operation (==) between objects to mean their referential
equality; however, the ordering of (same-type) objects is left unspecified.

2.4 Type system

ABS is statically typed with a strong type system (strong referring to no
implicit type conversion). The type system offers both System-F-like para-
metric polymorphism and nominal subtyping, commonly found in mainstream
object-oriented languages.

22 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

2.4.1 Parametric Polymorphism

Parametric polymorphism appears in ABS in both datastructures and func-
tions, e.g.:

data List<A> = Nil
| Cons(A,List<A>);

def A head<A>(List<A> input) = case input {
Cons(x,) => x;
};

The A above is a type variable, which means that it can take any concrete
type at instantiation time.

Contrary to mainstream functional languages, the let -construct in ABS is
non-recursive and parametrically monomorphic. Unfortunately, unlike other
languages, there is no way to circumvent this monomorphism restriction, e.g.
with an explicit type signature, since type variables in ABS can only be intro-
duced either at data-structure or function definition and not in let definitions.
For comparison, Haskell provides in addition to the explicit type signature
approach, a language pragma to completely turn off the monomorphism re-
striction across the program modules.

Note that methods in ABS are parametrically monomorphic (compared
to functions). Furthermore, there is no support for higher-rank parametric
polymorphism since ABS lacks first-class functions to start with.

2.4.2 Subtype polymorphism

We saw in the previous section that the functions and algebraic datatypes
(i.e. the functional core of ABS) are governed by a System-F-like type system:
parametric polymorphism with no type inference. Instead, objects in ABS
(imperative layer) are exclusively typed by interfaces. An interface, much like
mainstream object-oriented languages, is a collection of method signatures.
An example of an ABS interface is shown below:

interface InterfName1 {
Int method1(List<Int> x);
}

A class is said that to implement an interface by writing:

class ClassName(params...) implements InterfName1, InterfName2... {
Int method1(List<Int> x) { ... }

2.4. TYPE SYSTEM 23

...
}

The ABS typechecker will make sure that the class implements every
method belonging to the implements list of interfaces.

Unlike mainstream object-oriented languages, classes in ABS only serve as
code implementations to interfaces and can not be used as types; as stated, in
ABS an object variable is typed exclusively by an interface of its class, as in
the example:

{
InterfName1 object1 = new ClassName();
object1 .method1(Nil);

InterfName2 object2 = new ClassName();
...

}

In the above example, object1 can be called only for the methods of its
interface type InterfName1 and object2 only for InterfName2 accordingly.

Besides typing objects, the interface abstraction in many object-oriented
languages serves also the purpose of nominal subtype polymorphism while en-
suring strong encapsulation of implementation details. An interface type B is
said to be a subtype of interface type A (denoted as B <: A) if it includes
all the methods of A (and all of A’s supertypes successively) and perhaps
only adds new methods where their signatures do not interfere with any of
the included methods (from the “supertype” interfaces). In ABS we have to
explicitly declare that an interface is a subtype of another interface by using
the extends directive, as shown in the following example:

interface InterfName2 extends InterfName1 {
Bool method2(Int y);
}

In other words we explicitly “nominate” InterfName2 to be a subtype of
InterfName1 (hence the term nominal subtyping), by inheriting all of the InterfName1

methods (i.e. method1) and extending it with method2. This is in contrast to
structural subtyping where we do not nominate the subtype relations of the
interfaces but the relations are derived from what methods the objects do im-
plement (i.e. their structure). For example, under structural subtyping if an
object o1 implements two methods m1 with type t1, m2 with type t2 and object
o2 implements only m2 with type t2, then object o1’s overall type is a subtype

24 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

of o2’s overall type, thus o1 can be safely upcasted to o2’s type. The main
benefit of structural subtyping is that it makes it possible to infer the overall
types of the objects, but it comes with the drawback of accidental subtyping
(upcasting), when there exist methods among objects with same signature but
different “purpose”. With nominal subtyping, accidental upcasting does not
occur since the user provides explicitly the subtyping relation during interface
declarations. An example follows of the (implicit) upcasting in ABS:

InterfName2 o = new ClassName();
o.method2(3);

InterfName1 o = o; // upcasting to super interface if InterfName2<:InterfName1
o .method1(Nil);// can only call method1, method2 is not exposed through object o

Note that, besides object types (typed by interface), the primitive types
Int and Rat, albeit not represented through (mutable) objects, are associated
by a subtype relation as well, where Int is a subtype of Rat, i.e. Int <: Rat.

2.4.3 Variance

Combining parametric polymorphism with (nominal) subtyping leads to the
overall type system of ABS. Two important questions that arise in such a type
system is a) what is the default variance of the abstractions offered by the
language and b) is the user able to manually (as in syntactically) change their
variance.

Generally, there are three different notions of variance:
Assuming B subtype-of A, i.e. B <: A,

(i) An abstraction C is covariant iff C <: C<A>.

(ii) An abstraction C is contravariant iff C<A> <: C.

(iii) An abstraction C is invariant if it cannot be further subtyped: neither
(i) nor (ii) hold.

For certain abstractions, there are sensible variance defaults. E.g. im-
mutable algebraic datatypes can be covariant by default, and pure functions
are contravariant in their input types and covariant in their output type. There
are reasons, however, that a user wants to change or restrict the default vari-
ance of an abstraction, e.g. a user wants to make an abstraction invariant
because they know that the abstraction does not have to be later subtyped, or

2.4. TYPE SYSTEM 25

the implementation of the abstraction poses certain restrictions which deem it
invariant.

The standard ABS type system [Johnsen et al., 2010a] (given as type rules
of type theory) does not completely specify the default type variance (a).
Furthermore, when ABS uses the term “subtyping” it refers to the common-
notion of width subtyping and not that of depth subtyping1 Taken from the
specification of the ABS language:

T <: T is nominal and reflects the extension relation on in-
terfaces. For simplicity we extend the subtype relation such that
C <: I if class C implements interface I; object identifiers are typed
by their class and object references by their interface. We don’t
consider subtyping for data types or type variables.

So it is left to the particular ABS compilers to define their support for
the variance of ABS abstractions. Many compilers (Maude-ABS, Erlang-ABS,
HABS) provide sensible defaults of covariant subtyping for algebraic datatypes
with only for width subtyping which is the default subtyping we described
in this section (not depth subtyping). Finally, there is no current syntactic
extension to the ABS language to provide means for manually changing the
variance of user-written code.

2.4.4 Type Synonyms

Standard ABS provides language support for type synonyms. A type synonym
of ABS is an “alias” assigning a (usually shorter, mnemonic) distinctive name
to an algebraic datatype, object type, type synonym, or a combination of
those. An example of a type synonym in ABS is shown below:

type CustomerDB = Map<CustomerId, List<Order>>;
type CustomerId = Int;
type Order = Pair<ProductName, Price>;
type ProductName = String;
type Price = Int;

1The term depth subtyping quite differs in meaning than the commonly found (width)
subtyping. For a general description of what is depth subtyping, see https://en.wikipedia.

org/w/index.php?title=Subtyping§ion=5#Width_and_depth_subtyping

https://en.wikipedia.org/w/index.php?title=Subtyping§ion=5#Width_and_depth_subtyping
https://en.wikipedia.org/w/index.php?title=Subtyping§ion=5#Width_and_depth_subtyping

26 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

2.5 Module system

The ABS language includes an elaborate module system, inspired by that of
Haskell. Modules can be specified in the same file or in separate files. Each
module has at most one main block. The ABS user decides which main block
will be the entrypoint of the program at the compilation step. Furthermore,
by not exposing some or all data constructors of an algebraic datatype, the
ABS user can designate the datatype to be abstract, i.e. it hides its concrete
internal implementation. An example of the different constructs of the ABS
module system follows:

module MyModule; // the beginning of a new module

export D,f ,x; // exports specific identifiers
export ∗ from M; // exports everything of imported module M
export ∗; // exports all local and imported identifiers

import M.ident; // imports identifier from module M as qualified
import ident from M; // imports identifier from module M unqualified
import ∗ from M; // imports all exported identifiers of M unqualified

2.6 Metaprogramming with Deltas

Class inheritance, also known as code inheritance, is abolished in favour of
code reuse via delta models [Clarke et al., 2010]. A delta can be thought of
as a non-line-based patch (generated by Unix diff program) or better even,
as a higher-level C macro. Unlike common preprocessors that check only for
syntactic errors of the macros applied, deltas can also be checked for semantic
errors, i.e. if certain delta applications are invalid. An example of delta meta-
programming in ABS, taken from [Gouw et al., 2016], follows:

delta RequestSizeDelta(Int size); // name of the delta
uses FredhopperCloudServices; // which module to apply on
modifies class ServiceImpl { // modifies class

adds List<Int> sizes = Nil; // adds field
modifies Bool invoke(Int size) { // modified method

sizes = Cons(size, sizes);
return original (size); // uses original code
}
}

2.7. CONCURRENCY MODEL 27

Software product lines can be conveniently realized through feature and
delta models (i.e. groups of features, and groups of deltas; deltas implement
the features) [Clarke et al., 2010]. Specific software products can then be gen-
erated from the product line by selecting the desired features, as shown briefly
below:

productline ProduceLine;
features Request, Customer;
delta CustomerDelta(Customer.customer) when Customer;
delta RequestSizeDelta(Request. size) when Request;

product RequestLatency (Request{size=5});
product OneCustomer (Customer{customer=1});

root Scaling {
group [1..∗] {

Customer { Int customer in [1 .. 3]; },
Request { Int size in [1 .. 100]; },
}
}

2.7 Concurrency model

The foundation of ABS execution derives from the actor model
[Hewitt et al., 1973]. The actor model is a model of concurrent computa-
tion where the primary unit of concurrency is the actor. An actor system is
composed of (many) actors running concurrently and communicating to each
other unidirectionally through messages. Unlike other well-known models for
concurrent computation, the actor model arose “from a behavioural (procedu-
ral) basis as opposed to an axiomatic approach” for example that of Milner’s
π-calculus and Hoare’s CSP.

Although the actor model is well-studied and discussed, there is no wide
consensus on what the actor model consists of and what not. Furthermore,
for practicality or implementation reasons, widely-used actor software devi-
ates from the original Actor model specification. Arguably, the closest soft-
ware implementation to the Actor model currently can be found in the Erlang
programming language. For this reason, most of the following actor code ex-
amples are represented in Erlang’s syntax. What follows is a rough list of the
key properties found in the Actor model:

28 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

• Share-nothing philosophy where actors have private state and do not
share memory with each other, but communicate only and explicitly by
messages.

• Sending a message to another actor is asynchronous. The message will be
put in the receiving actor’s mailbox. To receive a message, the actor picks
a message from its mailbox, an operation which is (usually) synchronous.

• After receiving a message, an actor has the choice either to stop execut-
ing, modify its private state, create new actors, send messages or decide
(at runtime) to receive a different message (i.e. change dynamically its
behaviour).

• There is no pre-defined ordering of message delivery: specifically, no local
ordering that dictates that the messages of an actor arrive in the same
order they were sent by that actor; nor is there a global ordering where
sending actors can prioritize their own message over other actors.

• Actors are uniquely — across the whole actor system — addressable. An
actor’s address becomes known to other actors either upon actor creation
or when an actor explicitly exposes its own address (commonly named
self, which can be thought as OO’s this):

% creates a new actor to run function(args). Returns the new actor’s address
OtherActorId = spawn(function, [args]),
% sends its own actor address (self) to another actor as a message
OtherActorId ! (self , payload).

The concurrent execution model of ABS is the result of combining the
object-oriented paradigm with the actor model. Specifically, on top of the
synchronous method calls of (passive) objects of OO languages, ABS adds
support for inherent concurrency and asynchronous communication between
such objects: the result is called an active object.

The active object (also often named concurrent object) is based on the
usual object found in mainstream OO languages, with object caller, object
callee (this in ABS) and synchronous method call (callee .methodName(args)).
Influenced by the actor model, the active object is extended with a mailbox for
receiving messages. As in the actor model, there is no defined message arrival
ordering inside the mailbox. Unlike the actor model, messages in ABS are not
arbitrary (and possibly untyped) atoms, but instead type-checked methods
that the callee explicitly exposes (via interfaces). Sending such a method

2.7. CONCURRENCY MODEL 29

(as a message) is accordingly named making an asynchronous method call
(callee !methodName(args)).

object . method(args); // synchronous method call
object ! method(args); // asynchronous method call

A further deviation from the actor model is that the communication be-
tween ABS active objects is by default two-way whereas using the actor model
we would need two (unidirectional) messages: a message with the request pay-
load (plus the self identity) and a response message to “self” actor, plus the
response payload. In active objects this is encapsulated inside the method’s
definition: the request payload are the method’s actual parameters and the
response payload is the return value.

main() −>
Actor = spawn(className,[]),
Actor ! {method,args,self}, % make an asynchronous method call
...
receive

Response −> doSomethingWithResponse(Response)
end.

className() −>
receive
{method,Args,Sender} => Response = method(Args),

Sender ! response()
end.

method(Args) = <impl>

{
actor = new ClassName();
actor ! method(args); // no need to send self (or this)
}

class ClassName() {
ResponseType method(<args>) {

ResponseType response = <impl>;
return response; // the response is sent when return is called

}
}

Another difference is that this two-way communication is a first-class cit-
izen of the ABS language, called future and represented as Fut<A>. Upon

30 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

establishing the communication, a future is created and assigned a unique
identity among the active-object system. In the simple actor model (e.g. Er-
lang) a future abstraction has to be manually implemented by perhaps some
unique tagging.

{
actor = new Class();
Fut<ResponseType> future1 = actor ! method(args); // asynchronous method call 1
Fut<ResponseType> future2 = actor ! method(args); // asynchronous method call 2

Bool b = future1 == future2; // FALSE identity comparison
...

ResponseType response1 = future1.get; // block until response is ready
doSomethingWithResponse(response1);
}

Get-blocking operation Holding a future is similar to holding a non-
blocking reference to the “future” result value of an asynchronous method
call. Instead, reading this future value (futureReference .get) is an operation
which will block until the asynchronous method call has finished and the re-
sult has been communicated back. Futures are not restricted only to the caller
but can be passed around and read from other objects; however, futures are
written only once and only by the callee object. Futures can be tested in ABS
for equality (==) based on their assigned identity (referential equality). The
standard of ABS does not define a specific ordering on futures.

An ABS system is comprised of active objects executing their actions con-
currently between each other, i.e. sending messages (method calls), receiving
messages (method calls), sending responses (return), waiting for responses
(get). As in the actor model, the level of concurrency (scheduling/interleav-
ing) between active objects (actors) is left unspecified — although it usually
assumes some starvation-freedom guarantees.

The ABS language adds an extra abstraction on top of active objects:
the option of grouping active objects together. Every active object strictly
belongs to one such group (named Concurrent Object Group, COG for short).
To create an active object and put in a brand-new COG, the user uses the
expression new, whereas to create an active object inside the current COG the
expression new local:

InterfName object1 = new ClassName(params); // new object in a new COG
InterfName object2 = new local ClassName(params); // new object in current COG

2.7. CONCURRENCY MODEL 31

In the simplest case where each active object lives in its own COG (through
using only new), the same as before holds where the active objects in the sys-
tem are executed concurrently (preemptively scheduled to avoid starvation).
When forming larger groups (size > 1), each COG will essentially be a pre-
emptively scheduled entity, whereas the active objects inside each COG will
be cooperatively scheduled for concurrency. By “cooperation” we refer to the
intra-object (i.e. inside the same COG) scheduling of ABS processes and not
the synchronization between objects (inter-object communication), which is
achieved through the previously describe get operation.

Cooperative scheduling means that an active object can decide to delib-
erately (syntactically) yield control to another object of the same COG. In
other words, a COG can be seen as an individual (as in independent) pro-
cessing unit where at most one active object is running on. Active objects on
the same COG do not share their mailboxes, but share their processor (COG)
for resources in cooperation. An active object “cooperates” by deciding to
“pause” its execution and give the processing resources to any other object
of the same COG. An active object may be later given back the resources to
resume execution — same as a semi-coroutine, also called generator.

This cooperation (yield of control-execution-resources) manifests in ABS
in three distinct forms:

Yielding unconditionally. The suspend statement releases control of the
currently executing active object to some other object of the same COG
(including possibly itself).

Awaiting on futures. A statement with the form
await futureRef1? & ... & futureRefN?; means that the current object
yields control and will not be resumed at least until all the given futures
have their values ready. In contrast to futureRef .get ; this does not block
the whole execution unit (COG).

Awaiting on booleans. A statement of the form
await booleanExpr1 & ... & booleanExprN means that the current ob-
ject yields control and will not be resumed at least until all the boolean
expressions evaluate together to True. Boolean awaiting makes only
sense when used with boolean expressions that can change, i.e. contain
some object fields, e.g. await this .x==this.y∗2.

The arguments of the latter two forms can be combined with the operator
(&), which basically means that the active object decides to yield at least until

32 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

the specified futures have been resolved and the boolean conditions evaluate
to True at the same time, e.g. await fut1? & this .x>3 & fut2? & this.x==this.y∗2.

Since it is common practice to write code that includes an await on future
following by its get, the ABS provides some syntactic sugar:

{
A result = await o!m(args);
// is syntactic sugar for
Fut<A> hygienicRef = o!m(args);
await hygienicRef ?;
A result = f.get ;
}

It is worth mentioning that although the ABS standard leaves the preemp-
tive as well as the cooperative scheduling underspecified, many ABS backends
employ some concrete strategy, whereas ABS analysis and verification tools
may explore many (if all) schedulability options.

Even with scheduling of messages being open to interpretation, the struc-
ture of the ABS language and its concurrency model avoid common problems
that arise in concurrent programming, such as race conditions, deadlocks and
pointer aliasing. First, the immutability of datastructures serves as the ground
base to avoid a lot of race conditions that commonly arise in imperative pro-
gramming. Moreover, futures which are commonly shared between objects
(and their processors/threads) are also write-once (immutable). Secondly, the
fields of any objects are not directly exposable to other objects, which leads
to less incidents of pointer aliasing. Finally, the scheduling points in ABS are
always explicit (i.e. suspend or await) which makes it easier to reason about the
possible interleavings of an ABS program.

Note. The old ABS standard specified that synchronous method calls
caller .m(args) where the caller and the callee belong to different COGs
is a runtime error. The new version of ABS allows such synchronous
method calls between different COGs, and translates them to the sequence
Fut<A> hygienicRef = caller!m(args); hygienicRef .get ;. This is not semantically
equivalent to the synchronous method call of OO languages (also for same-
COG objects), because although the caller blocks during this call, the callee
does not “immediately” execute the corresponding method body; instead, the
method is put in the mailbox to be later (undetermined and thus not imme-
diate) executed.

2.8. HISTORY OF ABS 33

2.8 History of ABS

The ABS language has its origins in the Creol language which is in turn the con-
tinuation of the SIMULA language. The Creol language [Johnsen et al., 2006]
had features that the current (as of 2017) ABS standard has since abol-
ished, e.g. cointerfaces (interface typing for callers as well) and class
(code) inheritance (replaced instead with Delta metaprogramming). The
current ABS enhanced the initial Creol language with support for algebraic
datatypes with parametric polymorphism and pattern matching, pure expres-
sions, and Concurrent Object Groups, inspired by the JCoBox Java exten-
sion [Schäfer and Poetzsch-Heffter, 2010].

The ABS language has been syntactically and semantically evolved through
three successfully-completed European projects:

1. CREDO: “Modelling and analysis of evolutionary structures for dis-
tributed services”. 2006–2009, https://projects.cwi.nl/credo/indexpub.
html

2. HATS: “Highly Adaptable and Trustworthy Software using Formal Mod-
els”. 2009–2013, http://hats-project.eu

3. ENVISAGE: “Engineering Virtualized Services”. 2013–2016, http://

envisage-project.eu

2.9 Comparison to other concurrent, modeling
languages

The most well-known modeling language is the Unified Modeling Language
(UML). Albeit a general-purpose modeling language, UML focuses on the de-
sign of software systems (mostly object-oriented-based), similar to ABS. Unlike
ABS, UML is not in general executable, although there have been certain tools
(Microsoft Visual Studio, Eclipse IDE) that can generate program code which
derives from UML models. Moreover, UML is defined by standard committees
(Object Management Group, International Organization for Standardization)
and is not defined (as in the case of ABS) using rigorous formal-methods
procedures. UML support for modeling concurrency (through means of inter-
action diagrams, e.g. sequence diagram, communication diagram, interaction
overview diagram) is arguably not adequate to capture the interdependencies,
evolution over time (creating/destroying actors) and inherent indeterminacy
(unbounded non-determinism) of concurrent as well as distributed systems.

https://projects.cwi.nl/credo/indexpub.html
https://projects.cwi.nl/credo/indexpub.html
http://hats-project.eu
http://envisage-project.eu
http://envisage-project.eu

34 CHAPTER 2. BACKGROUND: THE ABS LANGUAGE

The Process Meta Language (PROMELA) of the SPIN model checker
[Holzmann, 2003] is an executable modeling language used to verify (by means
of model-checking) concurrent software systems. The concurrency unit in
PROMELA is the process; the execution of processes is interleaved (unless
using atomic blocks) and the communication between processes is achieved
through (buffered) channels which can be globally shared. Also PROMELA
has a “choice” construct to express bounded non-determinism. In those re-
spects, PROMELA’s model of computation resembles more that of Commu-
nicating Sequential Processes (CSP), than the actor model. Furthermore, the
language has, justifiably, limited support for complex data types, since “larger”
datatypes is one of the culprits for the problem of state explosion during model
checking.

Rebeca ([Sirjani et al., 2004]) is a verifiable modeling language which com-
bines as well the object-oriented paradigm with the actor model. If the number
of “active objects” and size of their mailboxes are bounded, Rebeca can gener-
ate models in lower-level code so as to apply model checking by using external
model checkers, e.g. SPIN. Rebeca also encapsulates the message passing of
the Actor model behind the (asynchronous) method calls, but the communi-
cation is one-way, i.e. such asynchronous methods cannot return values. Since
there are no such “responses” to asynchronous method calls, there is also no
need for futures and their awaiting mechanism. In other words, the active ob-
jects of Rebeca run in an interleaving manner between them, but their methods
only “appear” to run atomically, meaning that each method is executed from
start to end; there exist no mechanism (suspend, await) to jump midway the
method’s body to a different method execution of the same object. Finally,
there is no support for algebraic datatypes and COGs, but there is syntax for
representing bounded non-determinism (choice).

Eiffel (http://eiffel.org) is one of the first statically-typed object-oriented
languages, and became known for its design by contract philosophy, i.e. associ-
ating invariants to classes and contracts in the form of pre- and post-conditions
around method bodies. Unlike ABS, these conditions will not be checked stat-
ically, by analysis and verification tools, but only at runtime (like the familiar
assert ions). The language provides limited support for concurrency, mainly
by means of traditional threading, but like ABS offers private-only fields and
limited form of parametric polymorphism. In a perhaps similar spirit, the
Java Modeling Language (JML) tries to introduce a lightweight method of
design-by-contract and formal verification to (existing) Java object-oriented
codebases.

A more detailed discussion of real-world concurrent programming lan-
guages and runtimes can be found in section 3.9.

http://eiffel.org

Chapter 3

HABS: A Variant of the
ABS Language

The background text on chapter 2 covered the basic characteristics of the ABS
language, which we name Standard ABS ; however, ABS can be better regarded
as a family of languages. Indeed, there are different variations (in terms of
omissions and extensions) to the Standard ABS, each focusing on specific goals,
e.g. on completeness of semantics (Maude-ABS [Johnsen et al., 2010a]), cor-
rectness (KeY-ABS [Din et al., 2015]), model-checking (Maude-ABS), simula-
tion (Erlang-ABS [Göri et al., 2014]), etc.. The variant of Standard ABS that
is described in this chapter focuses instead on performance of execution and is
given the name HABS (short version of Haskell-ABS), since it is implemented
on top of the Haskell language & runtime.

3.1 Differences with Standard ABS

Most features of Standard ABS are supported by HABS. We discuss in this
section explicitly their differences and deviations. Standard ABS, like Java,
allows the re-assignment of passed method parameters, as in the example ABS
code:

class C {
Unit method(Int x) {

x = 3; // reassignment of method parameter
}
}

35

36 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

However, HABS disallows such re-assignments for two reasons: first, it is
considered bad programming practice to re-assign method parameters since it
leads to confusion over how the parameters are passed (call-by-value or call-
by-reference) and secondly, the parallel and, more importantly, the distributed
implementation of ABS become faster and straightforward. For reference, the
OO mainstream languages Scala and OCaml also disallow such re-assignments
of method parameters. Going even further, HABS disallows the re-assignment
of captured patterns in case-statements. There is no such issue for the case-
expression since identifiers inside functional code cannot be mutated, but only
“shadowed”. An example of the two different cases:

{
case (3) { // case−statement

x => {
x = x+1; // reassignment
println (toString (x));
}

}

println (case (3) { // case−expression
y => let (Int y) = y + 1 // shadowing

in toString (y);
});

}

A way to overcome this restriction of re-assignment for both method param-
eters and case-statement patterns, is to manually rename the formal parameter
of method and assign it to a (re-assignable) variable in the beginning of the
method’s body, as in the example:

class C {
Unit method(Int renamed x) {

Int x = renamed x; // extra assignment
x = x + 1; // rest of code remains the same

println (toString (x));
}

}

Continuing on, Standard ABS does not define any default ordering of ob-
jects and futures; as such, the various ABS implementations implement dif-
ferently this ordering which may be stable or not across the whole program

3.1. DIFFERENCES WITH STANDARD ABS 37

execution or even across multiple same-program executions. Because of this,
HABS decides to not provide at all any default ordering (via the builtin com-
parison operators >,<,<=,>=)) for objects and futures. The reason for not
providing such a default ordering is twofold. 1) There is no agreed notion of
what the ordering should be for objects and futures: is it structural (natural)
ordering or physical ordering (e.g. depending on creation time or memory-
address allocation)? 2) An implementation of ordering adds certain overhead
(for tagging the data), especially in the case where stable ordering is required,
over one program execution or even worse over multiple program executions
— any non-determinism of the program would then have to be eliminated.
The OO mainstream language Java also does not provide such default object
and future ordering but instead forces the user to manually provide it, by
implementing the Comparable.comparesTo() method.

This HABS restriction poses a limitation when objects have to appear in
the (fast) Set abstract datatype or as keys of the (fast) Map abstract datatype,
which are provided by the ABS Standard Library. A workaround at the mo-
ment for Set is the choice to use a slow implementation in the Standard Library
(one that does not depend on ordering of elements); for the case of Map the
HABS user has to do manual tagging.

Futures, as described in Standard ABS of section 2.7 are write-once contain-
ers of values. As such they could be covariantly subtyped (see section 2.4.3).
Indeed, certain ABS backends (Erlang-ABS, Maude-ABS) allow for futures
to be covariant; however, for implementation reasons (relating to Haskell) fu-
tures in HABS are not covariant but invariant, i.e. their contained type cannot
change. This does not happen to be a big issue in practice since covariance can
be achieved by extracting the contained value (via future .get), as the example:

{
Fut<Int> f = object!method();
Fut<Rat> f = f; // type error for HABS, ok for other backends

Int v = f.get ;
Rat v = v; // ok for HABS and other backends
}

The above workaround is not applied automatically for reasons of efficiency.
HABS has limited support for fields pointing to futures. Specifically, consider
the ABS example of a future-field:

1 class C {
2 Fut<A> f; // A future field
3

38 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

4 Unit method() {
5 await this . f ?;
6 }
7 ...
8 }

The await of Line 5 says that the current execution has to yield control
at least until the future pointed by this . f is resolved. In other words, the
future that is stored at the moment of resumption inside the field f must be
completed. This means that any standard-ABS backend must not only track
for the completion of the future, but also for any modifications to fields that
contain futures. For performance reason, HABS does not currently track any
modifications to future-fields: this means that the execution will be resumed
when the future that was pointing at the first time of evaluating the statement
await at Line 5, and regardless of any modifications happened to the field in
the meantime of the suspension. This restriction leads to different semantics
of future-fields compared to Standard ABS and as such may yield to deadlocks
that would not occur otherwise.

Compared to other ABS backends, HABS disallows certain “effectful” ex-
pressions of the ABS Standard Library (e.g. random,print, println , readln) to be
placed inside pure functional code. This can be considered not a limitation
but actually an advantage, since HABS strictly and safely separates functional
code from any side-effectful ABS code.

Finally, there is currently no standardization of how any ABS datum (prim-
itive, ADT, object) is textually represented (via the toString () function). Con-
sequently, there is no serialization format proposed for ABS data types. HABS
employs its own textual representation for ABS data, which may differ from
other ABS language implementations.

3.2 Language extensions to Standard ABS

We extend standard ABS with equivalent Haskell features, i.e. type inference,
parametric type synonyms, exceptions-as-datatypes and we modify the past
Foreign Function Interface (specifically designed for Java) with new syntactic
and semantic support for interfacing to Haskell libraries.

3.2.1 Exceptions

A feature that was previously lacking and recently added to the ABS language
is the capability to signal program faults and recover from them. This language

3.2. LANGUAGE EXTENSIONS TO STANDARD ABS 39

extension came as a prerequisite to the support for real-world deployments of
ABS software. Faults commonly appear in real-world systems, especially in
distributed settings. Therefore, a robust mechanism in the form of exceptions
was designed in place.

As a starting point for adding exceptions to ABS, the project undertook a
survey of the design space; a summary can be found in [Lanese et al., 2014].
This section describes the extension that was subsequently implemented.

To be compatible with the functional core of the language, the exception
type is modelled as an Algebraic Data Type (ADT). A single open data type is
introduced with the name Exception. The programmer can extend this basic
data type by augmenting it with user-specific exceptions (data constructors).
The ABS standard library also comes bundled with certain predefined system-
level exceptions (see table 3.1); note that the number of predefined exceptions
may differ between ABS backends. The language, however, makes no dis-
tinction between system and user exceptions, synchronous and asynchronous
exceptions. Synchronous exceptions are mostly user-level written exceptions,
where their occurrence can be traced back to the original program code (e.g.
a call to throw); as such, synchronous exceptions can happen only in specific
program points. Asynchronous exceptions, on the other hand, can happen
anywhere in the program and their occurrence cannot be traced back to an
explicit call to throw; most of these exceptions are generated by the system,
e.g. in other languages StackOverflowException, OutOfMemoryException,
ThreadKilledException. Exceptions in ABS, similar to ADTs, take 0 or
more arguments as exemplified:

exception MyException;
exception AnotherException(Int, String , Bool);

Furthermore, the language treats exceptions as first-class citizens; the user
can construct exception-values, assign them to variables or pass them in ex-
pressions. An exception can be explicitly raised with the throw statement
as:

{
throw AnotherException(3, ”mplo”);
}

When an exception is raised the normal flow of the program will be aborted.
In order to resume execution in the current process, the user has to explicitly
handle the exception. This is achieved with a try−catch−finally compound
statement similar to Java, with the only difference being that the user can
pattern-match on each catch-clause for the exception-constructor arguments.

40 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

DivisionByZeroException Automatically thrown from ex-
pressions that evaluate to x/0

PatternMatchFailException No pattern matched in case or
catch clause, and there was no
wildcard () pattern.

AccessorException Applied data accessor does not
match input data value

AssertionFailException Argument to assert is False
NullPointerException Method call on a null object

Table 3.1: Predefined exceptions for HABS Standard Library

Statements in the try block will be executed and upon a raised exception the
flow of execution will be transferred to the catch block, so as to handle (catch)
the exception.

The catch block behaves similar to the case statement, although the pat-
terns inside a catch block can only have the type Exception. Every such pattern
is tried in order and if there is a match, its associated statements will be
executed.

The catch block is followed by an optional finally block of statements, that
will be executed regardless of an exception happening or not. The syntax is
the following:

try {
stmt1;
stmt2;
....
}
catch {

exception pattern1 => stmt or block;
exception pattern2 => ... ;
...

=> ...
}
finally {

stmt3;
stmt4;
}

In case there is no matching exception pattern, the optional finally block
will be executed and the exception will be propagated in turn to the parent

3.2. LANGUAGE EXTENSIONS TO STANDARD ABS 41

caller, and so forth, until a match is made. In the case that the propagation
reaches the top-caller in the process call-stack without a successful catch, the
process will be abruptly exited. Processes that were waiting on the future of
the exited process will be notified with a ProcessExitedException.

The associated object where the exited process was operating on will re-
main live. That means, all other processes of the same object will not be
affected. There is, however, a special exception case (named die) in the dis-
tributed version of ABS (see section 5.1.4) where the object and all of its
processes are also exited.

Exceptions originating from asynchronous method calls are recorded in the
future values and propagated to their callers. When a user calls “future.get;”,
an exception matching the exception of the callee-process will be raised. If on
the other hand, the user does not call “future.get;”, the exception will not be
raised to the caller node. This design choice was a pragmatic one, to allow
for fire-and-forget method calls versus method calls requiring confirmation. In
our extension, we name this behaviour “lazy remote exceptions”, analogous to
lazy evaluation strategy.

3.2.2 Parametric type synonyms

As shown in section 2.4.4, Standard ABS supports only “plain” type synonyms,
which can be thought of as aliases, assigning a (shorter) type name to another
(possibly “longer”) type name; this is similar to Go’s language version 1.9 type-
aliases feature. Going a step further, the HABS implementation supports more
expressive type synonyms, which are so-called parametric type synonyms. As
the name suggests, such synonyms can take parameters, i.e. type variables,
which allows to combine type aliasing with parametric polymorphism. An
example of a common parametric type synonym in the functional world is the
Error type: “functional” errors can be thought of chains of computations that
may abruptly throw an error — in our simple case, the error is represented as
a String which textually describes what occurred — or complete successfully
with a result. These two choices can be implemented by the sum type (Either)
where by convention Left represents the erroneous situation and Right the
successful computation, e.g. in HABS:

type Error<A> = Either<String,A>;

In Standard ABS, instead of HABS, we could not supply such parameter
A so we can be abstract over all result types. In HABS, the parametric type
synonyms can be further nested, e.g.:

42 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

type WorkFlow<A> = Pair<Iterations, List<Error<A>>>;
type Iterations = Int

3.2.3 Type Inference

We extend the syntax and type system of ABS to allow type inference. The
user adds a wildcard and the underlying type checker will try to infer its type,
as in the HABS example:

{
name = ”MyName”;

Map< ,Int> salaries = insert (emptyMap(),Pair(name,30000));
}

The wildcard here will be replaced by the typechecker (“inferred”) by
String . These partial type signatures are influenced by the recent Haskell
PartialTypeSignatures language pragma extension. Similar to Haskell’s
type inference, the HABS type inference is not complete: particularly, types
that are governed by nominal subtyping rules (i.e. interface types) may fail to
be inferred by the HABS compiler.

3.2.4 Foreign Language Interface

The Standard ABS did not define any interface to a foreign language. How-
ever, based on the demand by modellers for having a library of efficient datas-
tructures (e.g. arrays, hashtables), the previously most popular ABS backend
named Java-ABS backend (to distinguish from the newer Java8-ABS backend)
added a Foreign Language Interface (FLI) to the ABS language, by means of
reflection, ABS annotations and class stubs. More specifically, a Java-ABS user
has to add the Foreign annotation on any ABS class that should be implemented
by foreign code, as in the example (taken from the Java-ABS repository):

import Foreign from ABS.FLI;

interface Random {
Int random(Int max); // Generate random integer between (0, max]

}

[Foreign]
class Random implements Random { // STUB class

Int random(Int max) { // this method is overridden by java

3.2. LANGUAGE EXTENSIONS TO STANDARD ABS 43

return max;
}

}

{
Random rnd = new local Random();
Int n = rnd.random(100);

}

This Random foreign class is a short of a code stub: the ABS user can
however provide with a default implementation in ABS (e.g. a dummy value
here of max), in case there is no support for a particular foreign language
or the code is supposed to run with a different backend that lacks this FLI
extension (i.e. any other backend). Although, the Java-ABS backend did
not declare any restrictions on what foreign languages are supported, there
exists one implementation of only interfacing with Java code. The following
Java snippet is a class that overrides the ABS Random class — some naming
conventions are assumed.

package Env;

import abs.backend.java.lib . types .∗;
import java.util .Random;

public class Random fli extends Random c {

public ABSInteger fli random(ABSInteger max) {
Random rnd = new Random();
int n = rnd.nextInt(max.toInt ());
return ABSInteger.fromInt(n);

}
}

Although this approach of Java-ABS keeps the ABS codebase compatible
with other ABS backends, it limits the support for foreign languages only to
those that admit to object-oriented paradigm, since it relies on subclassing.
Since our goal is to use the Haskell runtime — Haskell lacks OO — and driven
also by the observation that most mainstream languages want to interface to
lower-level code (and thus not OO), for example C, we devised a new extension
to the ABS language that is not OO-bound. This foreign language interface
for HABS was designed around the ABS module system. The user has to
simply prefix an import declaration with foreign. This new syntax directive
is shown in the example:

44 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

// For generating random numbers
foreign import GenIO from System.Random.MWC;
foreign import createSystemRandom from System.Random.MWC;
foreign import uniformR from System.Random.MWC;

{
GenIO g = createSystemRandom();
Int source = uniformR(Pair(1,100), g);
}

Here we import the GenIO random-generator datatype and associated pro-
cedures to create and roll a uniformly-distributed random number from the
implementation of the mwc-random Haskell library. We can then use the im-
ported procedures in ABS functions or statements as usual. Note that we did
not define any types for the imported identifiers. As such, this FLI extension
can be regarded as untyped: the ABS type checker does not do any prior
typechecking, but assumes that the ABS user does the right thing (i.e. well-
typing and not mixing functional with stateful code). In reality, an external
typechecker of the foreign language could be applied for this reason. A further
addition to this FLI extension which has not been implemented yet is adding
static type support by extra type signatures, e.g. :

fimport quot from Prelude;

def Int quot(Int a, Int b) = foreign ;

3.2.5 Language extension for HTTP communication

Finally, since ABS was primarily designed as a modeling language, it lacks the
common I/O functionality found in mainstream programming languages. To
allow user interaction, a new language extension was introduced built around
an HTTP API. The ABS user may annotate any object declaration with
[HTTPName: strExp()] I o = new ... to make the object and its fields accessible
from the outside as an HTTP endpoint. Any such object can have some of its
method definitions annotated with [HTTPCallable] to allow them to be called
from the outside; the arguments passed and the method’s result will be seri-
alized according to a standard JSON format.

The HTTP API extension of ABS utilizes WARP: a high-performance,
high-throughput server library written in Haskell. It is worth noting that any
exposed objects (by using HTTPName) will not be processed by the Haskell’s

3.3. COMPILING ABS TO HASKELL 45

garbage collector, and as such their lifespan reaches that of the whole ABS
program. A snippet utilizing the HTTP-API extension follows, taken from
the ABS Fredhopper case study (described at section 4.5):

interface Monitor {
Maybe<ScaleStamp> monitor();
[HTTPCallable] List<Pair<Time, List<Pair<String, Rat>>>> metricHistory();
}
interface MonitoringQueryEndpoint extends EndPoint {

[HTTPCallable] Unit invokeWithDelay(Int proctime, String customer,
Int amazonECU, Int delay);

}
{

...
[HTTPName: ”monitoringService”] MonitoringService ms=new MonitoringServiceImpl();
[HTTPName : ”monitor”] DegradationMonitorIf degradationMonitor =

new DegradationMonitorImpl(deployerif);

Fut<Unit> df = ms!addMS(Rule (5000, degradationMonitor));
df .get ;

[HTTPName : ”queryService”] MonitoringQueryEndpoint mqep = new
MonitoringQueryEndpointImpl(loadBalancerEndPointsUs, degradationMonitor);

println (”Endpoints set up. Waiting for requests ...”);
}

3.3 Compiling ABS to Haskell

In this section, we introduce another backend approach. This ABS backend
targets the Haskell programming language: Haskell is a purely-functional lan-
guage with a by-default lazy evaluation strategy that employs static typing
with both parametric and ad-hoc polymorphism. Haskell is widely known in
academia and the language makes everyday more and more appearances in
industry too 1, attributed to the fact that Haskell offers a good compromise
between execution performance and abstraction level. An example of a suc-
cessful tool built exclusively in Haskell is the BNF Converter (BNFC) which
generates lexers and parsers for multiple languages (Java, Haskell, C++, ...)
solely from a BNF grammar. We ourselves make use of the BNFC compiler

1https://wiki.haskell.org/Haskell_in_industry

https://wiki.haskell.org/Haskell_in_industry

46 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

tool for our HABS backend, which was later adopted also by the Java8-ABS
backend.

When starting off the HABS backend, the initial motivation was to develop
a backend that can generate more efficient executable code compared to the
markedly slower at the time Maude-ABS and Java-ABS backends, which, in
retrospect, are more appropriate for simulating and debugging ABS code than
running it in production.

The translation of ABS to Haskell was relatively straightforward since the
languages share many similarities, with the exception being the OO layer and
subtype polymorphism that remained a particular challenge (see Section 3.3).
After completing the implementation of the full ABS standard (which was
the result of the previous HATS EU project) we extended the language with
exceptions and preliminary support for Deployment Components in the Cloud
(a goal of the current Envisage EU project). For this Cloud extension we
were motivated by the fact, Haskell’s programming model adheres to data
immutability and “share-nothing” ideologies, which potentially deems Haskell
as a better fit for transitioning ABS to the “Cloud”.

The original Haskell backend of ABS was designed with perfor-
mance in mind, as well as to offer distributed computing on the cloud
[Bezirgiannis and Boer, 2016]. Algebraic-datatypes, parametric polymor-
phism, interfaces, pure functions are all one-to-one mapped down to Haskell.
Haskell’s type system lacks subtyping polymorphism, and as such we imple-
ment this in the HABS compiler itself through means of implicit coercive
subtyping.

3.3.1 Compiler infrastructure

The HABS implementation of ABS translates ABS source to equivalent Haskell
source (i.e. source-to-source compilation, also called transcompilation). We
make use of BNFC converter http://bnfc.digitalgrammars.com/ : a com-
piler generator which generates a fast parser written in Haskell from a BNF
grammar that describes ABS. The HABS transcompiler, which is written in
Haskell itself, translates input ABS abstract syntax tree to a Haskell abstract
syntax tree in the output, which gets subsequently compiled by a Haskell com-
piler. We currently generate code that can only be compiled by the Glasgow
Haskell Compiler (GHC), which is the most widely-used Haskell implementa-
tion.

The translation is mostly straightforward since the ABS and Haskell lan-
guages share certain similarities. The source code and installation instructions
of the HABS transcompiler is located at https://github.com/abstools/

http://bnfc.digitalgrammars.com/
https://github.com/abstools/habs

3.3. COMPILING ABS TO HASKELL 47

habs.

3.3.2 Functional code

At their core, the two languages, ABS and Haskell, are more or less the
same, i.e. purely-functional languages with support for Algebraic Datatypes
and parametric-polymorphism.

Pure functions and case-pattern matching of ABS are translated to the
Haskell equivalents. The let construct of ABS (e.g. let (T x) = exp1 in exp2)
is translated to a lambda abstraction plus its function application, that is
(\ x −> exp2) (exp1::T). The reason that we can simply use lambdas for

translation is that the let in ABS is monomorphic and non-recursive, un-
like Haskell’s. Furthermore, no α-renaming is required since identifier naming
convention in Haskell subsumes that of ABS.

Primitive Types

The Standard ABS defines the Int and Rat arbitrary-precision number prim-
itives. For execution performance reasons, the HABS implementation restricts
those two to fixed-precision, native-architecture counterparts, e.g. Data.Int.Int64

and Data.Ratio.Ratio Int64 for 64bit computer architectures. An integer com-
putation that “overflows” will not trigger an exception in Haskell. However,
supporting arbitrary-precision numbers (i.e. Integer and Rational in Haskell)
would not require a major refactoring of the HABS compiler.

The String primitive of ABS is translated to the type String = [Char] in
Haskell, which as the definition suggests is implemented as a single linked-list
of unicode characters. There exist faster alternatives for Haskell (e.g. the
bytestring and text libraries), but for the moment this does not add much
since usually ABS models do not do heavy string manipulations; this may
change in the future.

Futures of ABS (Fut<A>) are represented in Haskell by the
Control .Concurrent.MVar, which is a mutable variable living on the global heap,
which contains some value A. Unlike the usual mutable variables of Haskell
(IORef), MVars are concurrent datastructures which support for synchroniza-
tion and fairness. The use of MVars for ABS concurrency is detailed more in
the section 3.5 about HABS’ runtime execution.

https://github.com/abstools/habs
https://github.com/abstools/habs

48 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Algebraic Datatypes

Algebraic Datatypes of ABS correspond one-to-one to Haskell’s simple alge-
braic datatypes; both are immutable datastructures, the difference being only
syntactic, e.g. type variables in ABS are upper-case whereas in Haskell are
lower-case, etc.. In fact, the Haskell type system can define more expressive
datatypes than those of ABS, e.g. generalized algebraic datatypes (GADTs),
existential quantification and datatype contexts.

ADT accessors of ABS are translated to Haskell (partial) pure functions.
For example:

data User = Human (String name)
| Bot(String name, Int version);

The above ABS code will result to the following Haskell ADT and two
function “accessors”:

data User = Human String
| Bot String Int;

name :: User −> String
name (Human s) = s
name (Bot s) = s

version :: User −> Int
version (Bot i) = i

Type Synonyms

Unlike most other constructs, type synonyms are a “preprocessing” construct
and do do not carry any runtime costs, i.e. they are only used during type-
checking phase and are omitted at code generation phase which strips off any
types. As such, the ABS type synonyms are translated by the HABS transcom-
piler to the Haskell equivalent ones, which will be typechecked and discarded
by the GHC compiler. Haskell by-default supports parametric type synonyms.
We also rely on a new feature of Haskell called PartialTypeSignatures to
support (partial) type inference in HABS.

3.3.3 Stateful code

As discussed in the Section 1.1, ABS has been designed to be familiar to pro-
grammers using the main-stream object-oriented style of programming. The

3.3. COMPILING ABS TO HASKELL 49

question arises on how we can implement the high-level, familiar concepts of
object-oriented programming in Haskell. It is less straightforward to translate
the ABS language’s local variables and object fields to Haskell, compared to
for example translating to a classic, imperative language: Haskell is a purely
functional language and as such there exists no builtin notion of (implicit) side-
effects. This, however, does not mean that Haskell cannot represent stateful
code at all; in fact, stateful computation in Haskell can be (a) more expressive
and (b) safer than most imperative languages, because of (a) the option of
constructing multiple monads each having different effects and combine them
(by monad transfomers) under a larger monad and (b) the clear separation at
the type-level of pure and side-effectful code, thanks to the monad abstraction.
Monads are a well-studied concept in the Category Theory of mathematics;
here, for practical purposes, we can think of a monad as a typed computation
that has an explicit set of effects and provides two operations around those
effects: sequencing effects (; in imperative languages, >>=, >> in Haskell)
and “lifting” pure expressions to look as they are effectful (return in Haskell).
Since such monadic computations are statically-typed, the type-system does
not allow us to include monadic code inside pure code — the opposite is safe
though and is done through return. Even further, there exist different monads
(offering perhaps different sets of effects) and the type system, again, will not
permit any implicit intermix of monadic code belonging to different monads;
any such conversion of monads (and their effects) have to be explicit.

One of the most common monads provided by Haskell is the so-called State

monad. This monad allows the underlying computation to keep track of some
state (represented as data e.g. an ADT), as well as access it or modify it during
the whole computation. This State monad can be implemented in Haskell itself
as the function with type State s a = s −> (a, s) where is s is the state data
and a is the result of the whole computation.

The other most well-known monad in Haskell is the IO monad, which as
the name suggest is used for input & output to the screen, file, network, etc..
This monad can be considered as a particular instance of the described State
monad, and given as the type synonym: type IO a = State RealWorld a where
RealWorld is the current state of the whole natural world and a is the result
type of the IO computation. However, for “practicality reasons” the RealWorld

datatype is not representable in Haskell and as such is a “magical”, abstract
datatype. Similarly, the actual implementation of IO does not use the purely-
functional State monad but instead the primitive State# monad, which is
implemented in a low-level C library.

For implementing (local) mutable variables and objects of ABS, we decided
not to use the pure State monad, but instead the IO monad for two reasons:

50 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

a) it makes certain imperative constructs easier to define (e.g. while) and b) it
allows implementing exception handling for the ABS actor system; exceptions
between threads in Haskell are asynchronous and (generally) primitive, so they
exist only in the IO monad. For HABS, the ABS main block and all the bodies
of methods (which are sequences of statements) become stateful (monadic)
code. As mentioned earlier, Haskell disallows the inclusion of monadic code
inside pure code at the type-level; consequently, the ABS-translated code is
also guaranteed (by the type-system) to not mix side-effectful ABS object-
oriented code inside purely-functional ABS code.

Mutable variables in Haskell

One particular effect that the IO monad provides, is access to the global
memory heap of the program. This is realized by IORef which is an abstract
reference to a memory location inside the heap 2 We can allocate a new refer-
ence by calling newIORef :: a− > IO(IORefa), which given any data typed
by a will store them in the heap and return a reference to them. As such, the
IORef acts as a container of data in the heap where the data can be read
back (dereferenced) by calling readIORef :: IORefa− > IOa or changed by
calling writeIORef :: IORefa− > a− > IO(). The data inside the IORef
will remain “alive” (not garbage-collected) at least as long as the IORef re-
mains alive. An IORef reference can be passed around, composed, and stored
inside other IORefs as usual data.

We give an example of an ABS snippet accessing mutable variables, which
is translated to Haskell through the HABS compiler:

{
Int x = 3;
Int y = 4;

x = y + 1;
}

main = do
x :: IORef Int <− newIORef 3
y :: IORef Int <− newIORef 4

writeIORef x =<< ((+) <$!> readIORef y <∗> return 1))

2The IORef should not be confused with the C pointer, which is a fixed memory address,
since IORef ’s may transparently change their underlying memory address during a garbage
collection phase.

3.3. COMPILING ABS TO HASKELL 51

Since IORefs live in the (shared-memory) global heap, they are susceptible
to race conditions. However, for the case of HABS, we can assume that no such
race conditions of ABS mutable variables will happen, as long as the HABS
to Haskell compiler does not contain an implementation bug on the described
translation.

Note that, although, Haskell does keep a call stack (like lower-level lan-
guages), any data from local variables of the stack frames are not stored di-
rectly inside the stack datastructure, but simply referenced from the stack to
a different heap location that contains the actual data.

3.3.4 Object encoding

An object is a specific instance of a class and thus holds a separate “copy”
of all the non-static members (fields or methods) of its class. Since objects
are usually long-lived and/or large (contain a lot of fields/methods), they are
(most commonly) stored on the heap (instead of the stack). An object will thus
usually be a contiguous memory chunk containing (among other information)
its fields and a virtual table of methods for dynamic-dispatching.

Similarly for HABS, an object (instance) is represented as a Haskell record
of its fields. A Haskell record is the same as an immutable algebraic datatype
of ABS where each field name acts as an accessor, e.g. in Haskell code:

data ClassContents = ClassContents(field1Name :: Field1Type,
field2Name :: Field2Type,
...);

Thus ABS classes become algebraic datatypes (ADTs) acting as record
types (containers) of their fields, and objects become merely values (instances)
of such record types. Since record values in Haskell are immutable and we
perhaps need to mutate an object’s fields at runtime, we allocate a mutable
reference (IORef) to hold the object’s contents (record value). The type of
an object reference is given in HABS implementation as:

data ObjRef contents = ObjRef (IORef contents) Cog

where contents is a type variable for the container type (in the exam-
ple would be the ClassContents datatype) and Cog is a reference to the ob-
ject’s group — you can find more about the cog’s representation in sec-
tion 3.5 about HABS’ runtime execution. Thus, the statements new Class()

and new local Class () in ABS corresponds to the creation of a new ObjRef
and allocation of its IORef contents, plus the execution of the init-block of
the Class.

52 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

An alternative implementation would be to have for each object an im-
mutable record of mutable references, e.g. in ABS syntax:

data ClassContents = ClassContents(field1Name :: IORef Field1Type,
field2Name :: IORef Field2Type,
...);

which although leads to faster field accesses (and finer-grained await-on-
boolean implementation), it has the theoretical downside of putting more
garbage collection pressure, since the garbage collector will have to scan more
mutable references in the global heap.

Note that, contrary to a canonical implementation of objects inside the
heap, the Haskell object-reference type does not carry a virtual table of meth-
ods. This is instead stored separately on a wrapper datum which carries the
current interface type of the object — see the section 3.3.5 on the runtime
representation of interfaces and methods in HABS.

3.3.5 Interfaces, Classes and Methods

An ABS interface declaration is represented in the translated Haskell code by
a typeclass. We give such a translated example from ABS code taken from
section 2.4.2:

class InterfName1’ a where
method1 :: List Int −> ObjRef a −> IO Int

class InterfName1’ a => InterfName2’ a where
method2 :: Int −> ObjRef a −> IO Bool

Typeclasses are a Java interface-like feature that first appeared in Haskell,
which when combined with the parametric polymorphism, leads to ad-hoc
polymorphism more powerful than commonly found in mainstream languages
(Java, C++). Methods are monadic actions: their Haskell type is of the form
Arg1Type −> Arg2Type −> ObjRef a −> IO ResultType, where the reference to
the object callee this is passed as the last argument to the method (ObjRef a

in the method’s type).
ABS classes become instances to the Haskell typeclasses (ABS interfaces).

A Haskell typeclass instance provides an implementation for the functions
(methods in our case) described inside the typeclass (ABS interface). An
example of a particular ABS class is given:

class C implements InterfName1 {
Int method1(List<Int> y) {

3.3. COMPILING ABS TO HASKELL 53

return 3;
}

}

which is translated to Haskell by the HABS compiler as:

instance InterfName1’ C where
method1 y this = do

return 3 −− translated (sub)−expression

Unlike other statically-typed, object-oriented languages which perform type
erasure at compile-time, an object reference in HABS will be wrapped with
its current interface (which subsequently holds the virtual table of methods at
runtime):

data InterfName1 = forall a . InterfName1’ a => InterfName1 (ObjRef a)
data InterfName2 = forall a . InterfName2’ a => InterfName2 (ObjRef a)

In Haskell this technique is called existential quantification (despite the ∀
symbol), which acts as an existential wrapper over an ABS object reference.
This wrapper attaches (at runtime) the “name” of the current interface type
(nominal typing) of an object reference as well as a link to a virtual table
of method implementations for dynamic dispatching of (synchronous & asyn-
chronous) method calls. It becomes obvious that this technique incurs an
extra performance cost at runtime for holding the current interface wrapper
as live data on the heap, instead of having the types erased after compilation.
This performance cost becomes more apparent when implementing the (co-
variant) subtyping of HABS inside the Haskell language which is discussed in
section 3.4.1.

To conclude the overall translation of ABS to Haskell, the module system is
one-to-one translated to its very much alike Haskell equivalent; the ABS stan-
dard library exists in two versions: 1) the “slow” version implemented in ABS
itself and (re)compiled to Haskell on each execution of the HABS compiler
2) a “fast” version where most of the ABS standard library is implemented
directly in Haskell using optimized Haskell-provided datastructures (Set and
Map) and imported to the translated Haskell code as a fixed Haskell module.
The fast version supports better integration with the foreign language inter-
face of Haskell, since certain standard datatypes will correspond to Haskell
equivalent ones (e.g. List<A> of ABS becomes [a] in Haskell) and thus any
foreign Haskell code which uses the latter can be safely imported to ABS. The
downside of the fast version is that it is non-portable (to other backends) and
susceptible to any changes to the overall ABS standard library; such changes

54 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

would require manually modifications to the fast version of the HABS stan-
dard library. Finally, since delta meta-programming (Section 2.6) is similar to
preprocessing, it happens early on in the compiler frontend phase of any ABS
code and thus all ABS backends will compile only the macro-expanded ABS
code, free from any deltas.

3.4 Typing ABS

Standard ABS, as shown in section 2.4, is statically-typed with a type sys-
tem that offers both parametric polymorphism and nominal subtype polymor-
phism. Our implementation of HABS focuses mostly on correct (i.e. faithful
to ABS semantics) source-to-source compilation of ABS into Haskell; for this
reason and the reason that the type-systems of ABS and Haskell have com-
monalities, a large part of type-checking is left to be performed by the Haskell
typechecker itself. Specifically, we rely on the Haskell typechecker for both
parametric polymorphism and partial type inference (for non-interface types):
a recent version of GHC’s typechecker (version ≥ 8.0.1) is needed with sup-
port for both parametric polymorphism and partial type inference with the
PartialTypeSignatures language extension. The translation of such HABS
types to Haskell equivalent is straightforward and thus omitted from this the-
sis. In the rest of this section on typing HABS, we only discuss the rest of
the ABS type-system, i.e. subtyping and foreign-language interface, which has
to be typechecked by the HABS compiler during the translation and simply
cannot be left to a Haskell typechecker, since the Haskell language does not
support any form of subtyping out-of-the-box.

The upside of not performing full type-checking for HABS, and instead
partly relying on the “target” typechecker, is that we benefit from the proven
GHC type-checking implementation; however, the main drawback is that the
HABS type errors are usually incomprehensible, because they reflect the Haskell
translated code and not the original ABS code — a common problem in source-
to-source compilation and embedded domain specific languages, in general.
Indeed, a specialized ABS typechecker (as the one provided in the original
abstools suite: https://github.com/abstools/abstools) may yield more
precise and user-friendly type-error messages than our typechecking method;
in other words, the Haskell typechecker cannot be fully aware of all the ABS
language constructs. Nevertheless, any HABS-generated program will be ABS-
type safe, in the sense that all type errors are caught at compile time and no
type-error escapes to runtime.

https://github.com/abstools/abstools

3.4. TYPING ABS 55

3.4.1 Subtyping

Haskell’s type system does not support any form of subtyping (structural or
nominal) out of the box; for this reason, we cannot completely rely on Haskell’s
typechecker. Instead, we add support for nominal subtyping of ABS directly
to the HABS compiler itself. The Standard ABS language specification defines
implicit upcasting of interfaces, with no mentions of any (safe) downcasting.
The HABS compiler implements such upcasting by wrapping identifiers (local
variables or fields) that are typed by interface, with an upcasting function
(named up). This function is overloaded by a Sub typeclass, declared in Haskell
as:

class Sub sub sup where
up :: sub → sup

For each subtype relation (of interfaces), the HABS transcompiler will ac-
cordingly generate boilerplate instances of the above upcasting typeclass. Con-
sider for example the three ABS interfaces:

interface I1 {}
interface I2 extends I1 {}
interface I3 extends I1 {}

The HABS compiler will generate, other than the particular interfaces and
its interface wrappers shown in section 3.3.5, specific Haskell code for their
upcasting-relation instances as:

instance Sub I1 I1 where
up x = x

instance Sub I2 I2 where
up x = x

instance Sub I3 I3 where
up x = x

instance Sub I2 I1 where
up (I2 a) = I1 a

instance Sub I3 I1 where
up (I3 a) = I1 a

Note that the null ABS construct can be typed by any interface type;
however, there is no “root” interface type in the ABS interface hierarchy (e.g.
compared to Java’s Object class). An example of ABS code that relies on
upcasting is the following trivial function:

def I2 f(I1 obj) = obj;

56 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

which translates using the HABS compiler to the Haskell code:

f :: I1 −> I2
f obj = up obj

This particular method of wrapping identifiers with the up function works
fine for simple cases of subtyping, as in the above example. The method’s
problem appears on ABS code that requires implicit upcasting, e.g.:

// the builtin equality function in ABS is defined as
def Bool (==)<A>(A l, A r) = <internal implementation>;

{
I2 obj2;
I3 obj3;
Bool b = obj2 == obj3; // implicit upcasting to least−common super interface
}

Following the simple method (of just wrapping each identifier in the Haskell
generated code with a call to up), leads to type ambiguity problems by the sub-
sequent Haskell typechecking, since its typechecker cannot compute a common
interface to upcast the two objects to:

up (obj2 :: I2) == up (obj3 :: I3) −− TYPE ERROR: Haskell ambiguous type

To fix this, the HABS compiler keeps track of the complete nominal subtype
hierarchy of the ABS program under compilation and computes the least-
common super-interface type — if it exists, otherwise signals a type-error.
The least common super-interface, whenever needed, is added by HABS to
the generated Haskell code in the form of extra type signatures that remove
any Haskell type ambiguities. The example before will be annotated by HABS
with type signatures of I1 least-common super interface, which will be accepted
later by the Haskell typechecker:

(up obj2 :: I2) :: I1 == (up obj3 :: I3) :: I1

This approach using extra type signatures solves the problem of implicit
upcasting in ABS. However, yet another problem persists: that of variance.

Adding least common interfaces as extra type signatures solves the problem
of implicit upcasting for HABS, but it is not enough to express the full type-
system of Standard ABS in terms of Haskell, specifically because of variance
support. As discussed in section 2.4.3, the specification of Standard ABS leaves
the (default) type variance undefined; however, given its current language

3.4. TYPING ABS 57

standard, it is safe to assume that only covariance is needed for ABS types
(mostly datatypes combined with interface types). This happens to be the
case for other ABS compilers (Maude-ABS, Erlang-ABS) where they offer
such support for covariance. In the future, if the ABS language standard
is augmented with first-class functions and/or polymorphic methods, other
types of variance (contravariance, invariance) may be needed. Coming back
to HABS, consider an ABS snippet which exhibits covariance:

{
List<I2> l2 = list [obj2];
List<I1> l1 = Cons(obj3, l1);
List<I1> l1 = l2;
}

In the second line, and according to our translation scheme, the obj3 would
be correctly wrapped with the up function (concretely: (up obj3 :: I1)). Unfor-
tunately, in the third line we cannot wrap as well the identifier l2 with up, since
the upcast function operates on ground interface types (i.e. up :: sub −> sup)
and not on (arbitrary) algebraic datatypes mixed with interface types. In
other words our up function is not enough and we would hypothetically like to
have an extra upList :: List<sub> -> List<sup>. We could instead utilize
a similar function already existing in Haskell called fmap, (for functor-map)
to map up over each “substructure” of list; our translated code (simplified for
sake of clarity) would be well-typed in Haskell as:

do
let l2 = [obj2]
let l1 = (up obj3 :: I1) : l1
let l1 = fmap up l2 :: [I1]

This solution does work for simple ABS cases of covariance for ABS single-
arity functor data types (e.g. List<A>, Maybe<A>) but becomes problematic
for arbitrary-arity functors, for example bifunctors (Either<A,B>), trifunctors
(Triple<A,B,C>) and so on and so forth, since no “generic” fmap function over
any arity exists. Instead, we use the genifunctors library https://hackage.

haskell.org/package/genifunctors which in turn makes use of Template
Haskell (macro meta-programming) to generate a separate fmap-like function
specific for each ABS datatype defined (builtin or user-defined). Consider the
ABS example:

{
Either<Bool,I1> e = Right(obj2);
Triple<I1,Unit, I1> t = Triple(obj2, Unit, obj3);

https://hackage.haskell.org/package/genifunctors
https://hackage.haskell.org/package/genifunctors

58 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

}

HABS generates the following Haskell code:

do
let e = fmapEither id up (Right obj2) :: Either Bool I1
let t = fmapTriple up id up (Triple obj2 Unit obj3) :: (I1 , Unit, I1)

fmapEither :: (a −>a1) −> (b −> b1) −> Either a b−> Either a1 b1
fmapEither f g x = case x of

Left x1 −> Left (f x1)
Right x1 −> Right (g x1)

fmapTriple :: (a −>a1) −> (b −> b1) −> (c −> c1) −> (a,b,c) −> (a1,b1,c1)
fmapTriple f g h ˜(a,b,c) = (f a, g b, h c)

where fmapEither and fmapTriple are the simplified, macro-expanded boiler-
plate code generated by the genifunctors library.

This subtyping technique of HABS discussed up to here is regarded in
the object-oriented field as coercive subtyping : the objects carry at runtime
their currently-typed interfaces (in the case of HABS as interface existential
wrappers) and an accompanying generic function up will coerce (in the sense
of change the data structure’s representation) at runtime any interface type to
a super interface type (and its covariants). The other most-used technique in
mainstream object-oriented implementations (Java, OCaml) is called inclusive
subtyping, where most types can be erased after compile-time since the object
memory layout at runtime is compatible with all of its super-interfaces; in other
words, there is no need for an upcasting function to be applied at runtime so
as to perform any object layout changes (coercion). The largest drawback of
coercive subtyping is that there is runtime performance costs of performing
the actual coercion, i.e. changing the objects’ structure itself or transforming
a data structure (fmap) that includes the object(s). Theoretically, there is a
minor benefit of coercive over inclusive subtyping, in the sense that, during
a runtime upcasting operation an object can garbage-collect a portion of its
attributes (e.g. fields) which are unnecessary for super-interfaced methods
(assuming downcasting is not allowed by the language). This is exploited in
the case of HABS and the Haskell/GHC garbage-collector.

Concerning Haskell and subtyping in general, the ap-
proach in [Kiselyov et al., 2004] and its further development in
[Kiselyov and Laemmel, 2005] employ heterogeneous lists and type-level
programming to extend Haskell with even more object-oriented concepts
than needed for the sake of translating ABS, e.g. class code inheritance,

3.5. RUNTIME EXECUTION 59

multiple inheritance, contravariance, depth subtyping. A new and promising
approach is to use the Generic metadata representation found in GHC
version 8.0 to perhaps remove (some of) the boilerplate code-generation which
relies on Template-Haskell and instead employ the Haskell’s native datatype
generic programming [Magalhães et al., 2010]. Yet both these two described
approaches would still implement coercive subtyping for Haskell (and its
HABS “embedding”). To the best of our knowledge, there is currently no
published work that addresses inclusive subtyping for Haskell; this may be
perhaps attributed to the current limitations of GHC’s memory heap layout.
In the worst case, inclusive subtyping for Haskell/GHC would require an
extension of Haskell’s type system with “first-class” support for subtyping.

3.5 Runtime execution

The translated Haskell code is linked against our custom concurrent runtime
library, which is based on GHCs (Glasgow Haskell Compiler) own runtime
system (RTS). This library adds the concurrency model of ABS to Haskell;
more specifically, the high-level features of cooperative scheduling, awaiting
on futures, and awaiting on booleans of ABS can now be used and intermixed
with native Haskell code. Our runtime-as-a-library and its features can hypo-
thetically be used completely outside of ABS and directly inside Haskell code;
in addition to the automatic default object-encoding provided by the HABS
compiler, the user can also manually choose an encoding and subtyping of
their choice.

Each ABS Concurrent Object Group (COG) is represented in our run-
time by a separate Haskell lightweight thread (also known as green thread
or userspace thread). Such threads differ from the system threads commonly
found in other languages (e.g. Java, C), since they carry a smaller memory
footprint and are managed (scheduled) not by the underlying operating sys-
tem (OS), but directly from the language’s runtime system. Since Haskell
threads are very lightweight, a HABS execution could contain “millions” of
COGs inside a single machine, without running out of memory.

GHC’s runtime system goes a step further by offering an M:N threading
model: the RTS manages M lightweight Haskell threads and schedules them
for execution over N system threads, all the while automatically load-balancing
them (through a preemptive scheduling scheme). This hybrid threading model
of GHC also benefits from the Symmetric Multi-Processing (SMP) support of
the operating system, for the parallel execution of Haskell threads by multi-
core CPUs.

60 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Each COG-thread retains an ABS process-queue (similar to an actor’s mail-
box) that holds processes to be executed; a new ABS process is created and
put at the end of the queue upon an asynchronous method call. Every COG-
thread listens to its own process queue for new or re-activated processes and
executes one at a time up to their next release point (await or return).

Processes are implemented as coroutines (which are themselves imple-
mented as first-class continuations) and not as threads, which allows us to
store them inside the COG’s process-queue as data. A continuation is a data-
structure that contains the current execution state of the program (program
counter, local variables, and the call stack) and when invoked, will replace the
current state of the program with the continuation’s saved state. Continu-
ations are initially created by asynchronous method calls: an asynchronous
method activation pushes a new continuation to the end of the callee’s process
queue. In other words, during such an asynchronous method call, a caller cre-
ates a new process by applying the corresponding function to its arguments
and stores its body (function closure) at the end of the callee’s COG queue.

The evaluation of the suspend ABS statement captures the current continu-
ation of the running process and stores it in the end of its COG’s process-queue
(for later resumption). The program is at a release point and so the execution
then jumps to the main loop of the COG, which contains a blocking read from
the head of the process-queue for selecting another process to resume. This
suspension-resumption procedure is the simplest form of cooperative multi-
tasking for HABS (and the ABS language).

Processes awaiting on boolean-conditions (e.g. await booleanExp;) are con-
tinuations which will be captured and resumed only when their condition is
met. The naive approach to implement is to regard boolean awaiting as a form
of syntactic sugar of a while loop that suspends, e.g.:

Unit m() {
before ...;
await (this .x>this.y+1);
after ...;

}

// desugared as
Unit m() {

before ...;
while !(this .x>this.y+1) {

suspend;
}
after ...;

3.5. RUNTIME EXECUTION 61

}

However, such implementation leads to busy-await polling (and conse-
quently waste of CPU cycles) since we resume the process even if its conditions
are guaranteed to not have been met yet. Instead, we use a refined approach
where we store inside each COG thread, besides a process-queue, a “SleepT-
able” which is an association list of boolean actions to continuations, hence
the type type SleepTable = [(IO Bool, ABS’ ())]. We also modify its COG’s
main-loop to traverse the “SleepTable” at every release point and remove the
first continuation that its associated action (IO Bool) evaluates to True; in-
tuitively the action computes the current value of its ABS boolean expression.
If such a continuation exists then the COG will immediately remove it from
the SleepTable and resume it, otherwise the COG will fall back to block on
reading from its process-queue (mailbox) as before. A new entry is inserted to
the SleepTable upon a new boolean-await statement call; the table does not
have to be updated when any field is modified, since field values are extracted
from the latest object reference IORef, hence the monadic action IO Bool. A
further refinement to this “testing” of boolean-awaiting continuations that we
did experiment with, is to use a “monitor”-like implementation, where the
“SleepTable” becomes instead an association of object field indices to contin-
uations: the continuation will be tested only in the condition that at least one
of its dependent fields — an ABS boolean expression can only change because
of this.field modifications — has been modified since the previous time of its
testing; in other words retrying only those continuations that have part of its
condition modified (by mutating fields) since the last release point.

Continuing on, awaiting on futures also avoids similar busy-wait polling by
making use of the asynchronous I/O event notification system of the underlying
Operating System (e.g. epoll on Linux, kqueue on *BSD), which the GHC
runtime system is interfacing with. When a process decides to await on a
future (by calling await f ?;), a new separate lightweight thread is created with
its captured continuation placed inside. This newly-created thread will block
until its associated future has been completed; upon “unblocking”, this thread
will send its enclosing continuation back to the end of the original COG’s
process queue (again for later resumption) and exit. The runtime system
guarantees that such extra threads will not be re-scheduled (consume any
resources) at least until their associated futures are completed.

Each future (Fut<A>) is implemented in HABS as a concurrent datastruc-
ture residing in the memory heap. Such a datastructure will either be empty
(not completed yet) or full containing the result. Any number of threads may
block until the datastructure is full; one thread will write back the result, effec-

62 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

1-1 1-10 1-100 2-1 2-10 2-100 4-1 4-10 4-100

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7
·10−2

T
im

e

mvar tmvar

Figure 3.1: Implementing futures using MVar or TMVar on varying scenarios
(workers-listeners).

tively waking up all blocked threads. In Haskell and GHC, such a concurrent
datastructure can be realized by the Standard Library’s MVar (standing for
mutable variable) or TMVar (software-transactional-memory MVar). The dif-
ference between the two is that MVar guarantees fairness, i.e. blocked threads
will be woken up in the order they arrived (FIFO). Since ABS semantics do
not impose any fairness restrictions on how processes should be woken up
when a future is completed, we decided to benchmark both implementations.
On a system of 2-cores, 4 hyperthreads, the MVar datastructure seems to be
generally slightly faster than its TMVar counterpart — the results are shown
in figure 3.1).

Finally, although the HABS semantics leave the ordering of processes in-
side each COG unspecified, we decided to implement a “mailbox” of processes

3.6. COMPARISON TO OTHER ABS BACKENDS 63

as a FIFO queue. This choice is motivated by the fact that a FIFO queue
preserves the “local” ordering of asynchronous method calls; for example, exe-
cuting o!m1();o!m2(); is guaranteed to not pick for execution the m2 call before
the m1, something which is usually expected by users (of imperative program-
ming). Thus, for this HABS parallel runtime, the mailbox is represented by
a concurrent datastructure residing in the heap; “sending” an asynchronous
method call “writes” the continuation data to the end of the queue. Many
different concurrent FIFO queue implementations exist for Haskell and GHC
e.g. Chan, UnagiChan, TChan, TQueue; we benchmarked some of them and
decided to go with a TQueue implementation, modified for the continuation
monad, which as the results show (figure 3.2) is overall fast and almost as fast
as the plain TQueue implementation (with no cooperative multitasking ap-
proach). Note that the process queue is concurrently modifiable which means
that the COG thread can continue “popping” processes from the head of the
queue and executing them all the while. In parallel, object-callers are placing
new asynchronous method calls and processes awaiting on futures are resolved.

3.6 Comparison to other ABS Backends

Besides HABS, there have been other backend implementations for ABS, with
the most complete of those (as of 2017) being:

Maude-ABS The Maude-ABS backend is used for prototyping and testing
the ABS semantics in the Maude term-rewriting system.

Java-ABS The Java-ABS backend was the first backend specifically devel-
oped to implement the Concurrent Object Groups (COGs) and has been
superseded by the Erlang-ABS backend.

Erlang-ABS This backend is the currently most-used and maintained back-
end and is written in the Erlang programming language. It provides a
reference implementation for the simulation of ABS models.

Java8-ABS The Java8-ABS backend makes use of recent Java technologies
(lambda abstractions, thread-pools) to deliver a better performance for
ABS executions than the above Java-ABS backend.

3.6.1 Comparing language support and features

The Maude-ABS backend is the backend of choice for designing, testing and
experimenting with new language features of ABS; in this respect, the Maude-

64 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
·10−2

1-1

1-100

2-1

2-100

10-1

10-100

100-1

0.67

24.13

1.06

33.54

1.86

152.91

12.78

0.43

17.15

0.58

30.76

2.21

128.89

20.19

0.42

17.98

0.56

33.89

2.42

136.42

22.27

0.36

26.93

0.56

59.56

2.24

218.98

21.88

0.4

17.65

0.53

53.24

1.64

222.93

13.22

0.24

476.97

0.32

218.69

0.44

430.69

3.32

0.22

470.24

0.27

213.52

0.45

429.72

3.42

Time

ours manual tqueue unagi chan pwo pw

Figure 3.2: Benchmarking different implementations for the HABS mailbox

3.6. COMPARISON TO OTHER ABS BACKENDS 65

ABS backend is likely the most feature rich of all ABS backends. Besides the
language differences discussed in section 3.1, an extra feature of the HABS
implementation currently missing from the other backends is the support for
runtime deadlock detection, i.e. knowing that (some) awaiting ABS processes
cannot continue because of mutual dependencies. This is achieved thanks
to the Haskell GHC’s garbage collector detection. On the other hand, there
do exist ABS static-analysis tools that search for possible program deadlocks
[Albert et al., 2014a, Giachino et al., 2016a].

Most ABS backends and tools are integrated with the Envisage Collabo-
ratory [Doménech et al., 2017] http://abs-models.org/laboratory, a web-
based IDE for interactive experimenting with the ABS language and toolsuite
without requiring any program installations: instead, the ABS backends and
tools are installed on a web server and the client (user) just remotely in-
teracts with them. The HABS backend also happens to be supported by
the Envisage collaboratory; for the future, we are considering using ghcjs
https://github.com/ghcjs/ghcjs, a Javascript backend for GHC, to com-
pile ABS user-code on the server-side through HABS and ghcjs directly to
Javascript, and execute it only at the client side: in this way we benefit by not
executing unsafe user code on the server side (no need for sandboxing), and
relieving the collaboratory server system from excessive computing resources.

3.6.2 Comparing runtime implementations

As opposed to some other backends (Erlang-ABS, Java-ABS), the Haskell
backend does not treat active ABS processes as individual system threads,
but instead as data (closures) that are stored in the queue of the concurrent
object, which leads to a smaller memory footprint. This “data-oriented” im-
plementation preserves local message ordering of method activations, although
the ABS language specification leaves this unspecified.

Maude’s term rewriting approach allows easy experimentation with ABS
semantics and model-checking of ABS programs. Since it can explore all ex-
ecution paths of an ABS model, it can replicate the local message ordering
of HABS by following strictly specific execution paths. The largest drawback
of the Maude-ABS backend is its slow execution speed (as later shown in
section 3.6.3) which makes it unsuitable for programming. The Maude-ABS
backend also has only very limited I/O capabilities, which deems for example
the new HTTP-API extension for ABS difficult to implement.

The Erlang-ABS backend relies on the Erlang runtime to implement actor-
style concurrency for ABS. This backend offers simulation of ABS models based
on timed automata, and is discussed in Chapter 4. In contrast to HABS, the

http://abs-models.org/laboratory
https://github.com/ghcjs/ghcjs

66 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

processes in the Erlang-ABS backend are not continuations (data) stored in a
COG’s queue, but alive Erlang processes (Erlang’s version of lightweight, green
threads) living on the heap. The processes of each COG are competing with
each other to acquire a token: acquiring a token means that the process will try
to resume its execution; releasing the token means that the process stumbled
upon an execution of suspend or await. This process-based implementation of a
COG’s “mailbox” cannot guarantee the local message ordering as is the case
with HABS.

The Java-ABS backend is the first “real-world” backend designed with
performance in mind; the backend is however currently not maintained. The
backend follows the data-based approach of continuations which is also em-
ployed by HABS, but the difference lies in implementation, since such contin-
uations are not natively implemented but reified in the Java language itself.
Since Java lacks native support for first-class continuations — it lacks tail-call
optimization and until Java version 8 also lacked closures — the support for
continuations is added in an interpreted-like fashion. The generated by the
backend Java code manages its own stack frames, above those of the JVM.

The Java8-ABS backend does not follow such an interpreted approach,
but similar to Akka, employs a fixed thread-pool where COGs get a chance
to execute on. Depending on the ABS programs involved, this may lead to
process starvation where a number of COGs occupy the threads and do not
release their resources. HABS, on the other hand, does not suffer from such
process starvation, since the number of (lightweight) threads (COGs) is not
fixed and can grow indefinitely up to memory exhaustion.

3.6.3 Benchmarking the ABS backends

The improved execution performance is the main advantage that come with
the ABS-to-Haskell backend, as can be witnessed by the benchmarks and ex-
perimental results in this section. The concurrency/threading model of Haskell
proved to be well-suited for ABS’ cooperative multitasking.

An important feature of the HABS backend presented in this section is its
good performance compared to the rest of backends for the ABS language.
To show this, we developed a series of sequential and parallel programs that
try to cover all features of the ABS language and we executed them using
the ABS backends: the HABS backend, Java-ABS and Java8-ABS backends,
the Erlang-ABS backend and the Maude-ABS backend. The results appear
in Table 3.2, where times are in seconds, memory usage in KB and a hy-
phen (-) means that the program got stuck. These synthetic ABS benchmarks
programs can be found at https://github.com/abstools/abs-bench). The

https://github.com/abstools/abs-bench

3.6. COMPARISON TO OTHER ABS BACKENDS 67

benchmark results indicate that the HABS backend is the fastest both in terms
of elapsed time and memory residency. Specifically, the HABS backend is on
average 13x faster while taking up 15x less memory than the Java8-ABS back-
end; this may be attributed to the fact that the Java8-ABS backend relies on
Java’s heavyweight threads. Two other downsides of the Java8-ABS backend
is that, firstly, it currently does not support (user-defined) algebraic datatypes
(hence the err in the results table) and, secondly, it suffers from process starva-
tion: there are certain correct ABS programs that terminate but unfortunately
in the Java8-ABS backend they hang, because the employed threading model
(static threadpool) limits how many “processor” units (COGs) can run concur-
rently. The Java-ABS backend is slower than the newer Java8-ABS backend,
and consequently slower than the HABS backend (256x more time and 84x
more memory); the reason may be attributed to factors affecting also the Java-
ABS backend and also the fact that the Java-ABS backend uses busy-waiting
when monitoring active objects for their await conditions. As Table 3.5 shows,
the Erlang-ABS backend got stuck in 3 of the 10 benchmark programs, so the
comparison between the Erlang-ABS and HABS backend should be consid-
ered less reliable. Nevertheless, the Erlang-ABS backend takes 596x more
time and 17x more memory than the HABS backend, since the backend fol-
lows the apparently slower, process-oriented approach, i.e. each ABS process
is implemented as a separate lightweight thread: the COG’s ABS processes
are sitting in a token ring—the process holding the token can execute unless it
is blocked in which case the token is passed that may cause needless spinning
in certain cases. The Maude-ABS backend is extremely slow compared to all
other backends since it is an interpreter, but surprisingly consumes compara-
ble memory to HABS (9x more memory than HABS), and even in some cases
less memory than the other 3 backends: Java-, Java8- and Erlang-ABS.

Hardware: Intel i7-3537U (2 cores, 4 hyperthreads), 8GB RAM, Linux-64bit

The Glorious Glasgow Haskell Compilation System, version 7.10.1

ABS Tool Suite v1.2.3.201509291051-c6f3df1

OpenJDK (build 1.8.0_60-b24) (build 25.60-b23, mixed mode)

Erlang 18 [64-bit] [smp:4:4] [async-threads:10] [hipe] [kernel-poll:false]

Maude 2.6 built: Dec 9 2010 18:28:39

The benchmarks of the ABS backends shown here can be better regarded as
micro-benchmarks: benchmarks that stress-test the way that certain ABS features
(concurrency,parallelism,object-creation) by the backends, but do not represent a
real-world scenario of computational load. To this end, we constructed an ABS model
that implements in a very high-level cache-coherence protocol, commonly found in
everyday modern multi-core central processing units (CPUs). The ABS model is
derived from that of a formally-verified model defined in Maude [Bijo et al., 2016].

68 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Program Time(s) Cpu(%) Mem(KB) ÷habs-time ÷habs-mem
BinarySearchTree 0.01 75 3584 1.00x 1.00x
FieldFutures 0.39 99 93200 1.00x 1.00x
NaiveFib 0.11 97 3900 1.00x 1.00x
Rosetree 0.01 0 3428 1.00x 1.00x
SumList 0.01 86 12020 1.00x 1.00x
ThreadRingLocal 0.06 96 4236 1.00x 1.00x
AwaitOnField 0.09 105 6348 1.00x 1.00x
AwaitOnFut 0.05 104 6132 1.00x 1.00x
Bang 0.22 136 10220 1.00x 1.00x
BenchLists 5.84 138 15320 1.00x 1.00x
BenchMaps 0.05 124 10408 1.00x 1.00x
Big 0.03 136 12964 1.00x 1.00x
Sequences 0.02 162 13376 1.00x 1.00x
SerialMsg 0.04 153 6256 1.00x 1.00x
StressTest 0.04 128 9952 1.00x 1.00x
SyncAsync 0.05 141 9360 1.00x 1.00x
ThreadRingCOG 0.2 136 9980 1.00x 1.00x

Table 3.2: HABS

The results of this cache-protocol benchmark is shown in table 3.7, where Model
Size refers to the number of processor cores of the simulated CPU, given its particular
cache configuration. The performance results show that HABS backend was for this
specific benchmark around 40 to 70 times faster than the Erlang-ABS implemen-
tation. The experimental setup was a 2-core, 4 hyperthreads Intel m-y10c system,
running Windows 10 x64, Erlang-ABS v1.5.1, Erlang/OTP v20, HABS 6365791,
Haskell GHC v8.0.1.

For the future, a larger and established set of real-world and micro benchmarks
in the spirit of [Imam and Sarkar, 2014, Brandauer et al., 2015] would be greatly
beneficial for the ABS ecosystem.

3.7 Formal verification of HABS

The overall contribution of this section is a formal, resource-consumption preserving
translation of the concurrency subset of the ABS language into Haskell, given as
an adaptation of the canonical HABS backend [Bezirgiannis and Boer, 2016]. This
translation thus differs from the translation described above in section 3.3 ; this
new, formal translation is detailed in section 3.7.3 together with a comparison be-
tween the two translations. We opted for the Haskell backend relying on the hy-
pothesis that Haskell serves as a better middleground between execution perfor-
mance and most importantly semantic correctness. The translation is based on

3.7. FORMAL VERIFICATION OF HABS 69

Program Time(s) Cpu(%) Mem(KB) ÷habs-time ÷habs-mem
BinarySearchTree err err err err err
FieldFutures timeout timeout timeout timeout timeout
NaiveFib 4.43 167 137756 40.27x 35.32x
Rosetree err err err err err
SumList err err err err err
ThreadRingLocal 0.2 186 42856 3.33x 10.12x
AwaitOnField 2.39 241 146276 26.56x 23.04x
AwaitOnFut 2.3 300 143580 46.00x 23.41x
Bang 0.8 289 151696 3.64x 14.84x
BenchLists 4.23 114.00 810860 0.72x 52.93x
BenchMaps 0.22 207 49100 4.40x 4.72x
Big 0.2 173 43016 6.67x 3.32x
Sequences 0.31 240 69420 15.50x 5.19x
SerialMsg 0.2 189 45320 5.00x 7.24x
StressTest 0.57 306 104144 14.25x 10.46x
SyncAsync 0.2 166 44584 4.00x 4.76x
ThreadRingCOG 0.2 173 42752 1.00x 4.28x

Table 3.3: Java8-ABS

Program Time(s) Cpu(%) Mem(KB) ÷habs-time ÷habs-mem
BinarySearchTree 0.31 198 73340 31.00x 20.46x
FieldFutures - - out-of-mem - -
NaiveFib 16.56 123 658188 150.55x 168.77x
Rosetree 0.14 149 54564 14.00x 15.92x
SumList 1.11 300 192328 111.00x 16.00x
ThreadRingLocal 7.35 223 830612 122.50x 196.08x
AwaitOnField 7.1 136 487328 78.89x 76.77x
AwaitOnFut 7.82 141 354432 156.40x 57.80x
Bang 5.96 235 755740 27.09x 73.95x
BenchLists 86.78 389 792784 14.86x 51.75x
BenchMaps 96.66 391 796512 1933.20x 76.53x
Big 6.95 175 1172832 231.67x 90.47x
Sequences 8.74 182 788196 437.00x 58.93x
SerialMsg 3.01 263 803224 75.25x 128.39x
StressTest 2.53 205 797100 63.25x 80.09x
SyncAsync 23 144 1183192 460.00x 126.41x
ThreadRingCOG 38.07 186 1099024 190.35x 110.12x

Table 3.4: Java-ABS

70 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Program Time(s) Cpu(%) Mem(KB) ÷habs-time ÷habs-mem
BinarySearchTree 1.28 22 22824 128.00x 6.37x
FieldFutures timeout timeout timeout timeout timeout
NaiveFib 1.63 39 24796 14.82x 6.36x
Rosetree 1.24 19 22688 124.00x 6.62x
SumList 1.29 23 40716 129.00x 3.39x
ThreadRingLocal timeout timeout timeout timeout timeout
AwaitOnField 1.65 78 30492 18.33x 4.80x
AwaitOnFut 1.91 76 26184 38.20x 4.27x
Bang 422.23 133 261776 1919.23x 25.61x
BenchLists 58.67 330 371596 10.05x 24.26x
BenchMaps 56.97 336 428192 1139.40x 41.14x
Big 21.51 230 654056 717.00x 50.45x
Sequences 44.01 207 34036 2200.50x 2.54x
SerialMsg timeout timeout timeout timeout timeout
StressTest 8.3 252 75216 207.50x 7.56x
SyncAsync 13.97 287 377516 279.40x 40.33x
ThreadRingCOG 284.71 311 166128 1423.55x 16.65x

Table 3.5: Erlang-ABS

Program Time(s) Cpu(%) Mem(KB) ÷habs-time ÷habs-mem
BinarySearchTree 0.5 99 47896 50.00x 13.36x
FieldFutures timeout timeout timeout timeout timeout
NaiveFib 198.62 100 38724 1805.64x 9.93x
Rosetree 0.29 98 39444 29.00x 11.51x
SumList timeout timeout timeout timeout timeout
ThreadRingLocal timeout timeout timeout timeout timeout
AwaitOnField 320.21 100 41672 3557.89x 6.56x
AwaitOnFut 328.65 100 41908 6573.00x 6.83x
Bang timeout timeout timeout timeout timeout
BenchLists timeout timeout timeout timeout timeout
BenchMaps timeout timeout timeout timeout timeout
Big timeout timeout timeout timeout timeout
Sequences timeout timeout timeout timeout timeout
SerialMsg timeout timeout timeout timeout timeout
StressTest timeout timeout timeout timeout timeout
SyncAsync timeout timeout timeout timeout timeout
ThreadRingCOG timeout timeout timeout timeout timeout

Table 3.6: Maude-ABS

3.7. FORMAL VERIFICATION OF HABS 71

Program Size HABS Time(s) Erlang-ABS Time(s) ÷habs-time
20 0.71 30.57 43.05x
50 1.47 67.49 45.91x
100 2.73 132.34 48.47x
200 5.01 355.69 70.99x

Table 3.7: HABS vs Erlang-ABS execution time for the cache-coherence pro-
tocol benchmark

compiling ABS methods into Haskell functions with continuations—similar trans-
formations have been performed in the actor-based Erlang language w.r.t. rewrit-
ing systems [Palacios et al., 2015, Vidal, 2014] and rewriting logic [Noll, 2001], in
the translation of ABS to Prolog [Albert et al., 2012] and a subset of ABS to
Scala [Nakata and Saar, 2013]. However, what is unique in our translation and con-
stitutes our main contribution, is that the translation is resource preserving as we
prove in two steps:

• Soundness. We provide a formal statement of the soundness of this transla-
tion of ABS into Haskell which is expressed in terms of a simulation relation
between the operational ABS semantics and the semantics of the generated
Haskell code. The soundness claim ensures that every Haskell derivation has
an equivalent one in ABS. However, since for efficiency reasons, the transla-
tion fixes a selection order between the objects and the processes within each
object, we do not have a completeness result.

• Resource-preservation. As a corollary we have that the transformation pre-
serves the resource consumption, i.e., the cost of the Haskell-translated pro-
gram is the same as the original ABS program w.r.t. any cost model that
assigns a cost to each ABS instruction, since both programs execute the same
trace of ABS instructions. This result allows us to ensure that upper bounds
on the resource consumption obtained by the analysis of the original ABS
program are preserved during compilation and are thus valid bounds for the
Haskell-translated program as well.

In Section 3.7.1 we specify the syntax of the source language and detail its operational
semantics. Section 3.7.3 describes our target language and defines the compilation
process. We present the correctness and resource preservation results in Section 3.7.4,
as well as the intermediate semantics used in this process. In Section 3.7.6 we show
that the runtime environment does not introduce any significant overhead when ex-
ecuting ABS instructions, and show that the upper bounds obtained by the cost
analysis are sound. Complete proofs of the theoretical results can be found at Sec-
tion 3.7.7.

72 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

S ::= x:=E | f:=x!m(ȳ)
| await f | skip | return z
| S1;S2 | if B {S} else {S}
| while B {S}

E ::= V | new | f.get | m(ȳ)
V ::= x | r | I
B ::= B ∧B | B ∨B | ¬B | V ≡ V
D ::= m(r̄){ S }
P ::= D : main(){ S }

Figure 3.3: Syntax of source language

3.7.1 Restricting to a subset of ABS

main() {

node1 = new;

node2 = new;

f1 = node1!map(v1);

f2 = node2!map(v2);

await f1;

await f2;

r1 = f1.get;

r2 = f2.get;

r = reduce(r1,r2);

return r; }

map(v) {

... }

reduce(v1,v2) {

... }

Listing 3.1: A simplified MapReduce task in ABS

Our language is based on ABS [Johnsen et al., 2010a], a statically-typed, actor-
based language with a purely-functional core (ADTs, functions, parametric polymor-
phism) and an object-based imperative layer: objects with private-only attributes,
and interfaces that serve as types to the objects. ABS extends the OO paradigm with
support for asynchronous method calls; each call results in a new future (placeholder
for the method’s result) returned to the caller-object, and a new process (stored in
the callee-object’s process queue) which runs the method’s activation. The active
process inside an object (only one at any given time) may decide to explicitly suspend
its execution so as to allow another process from the same queue to execute.

3.7. FORMAL VERIFICATION OF HABS 73

For this part, we simplify ABS to its subset that concerns the concurrent in-
teraction of processes (inside and between objects), so as to focus solely on the
more challenging part of proving correctness of the cooperative concurrency. In
other words, the ABS language is stripped of its functional core, local variables,
object groups [Schäfer and Poetzsch-Heffter, 2010] and types (we assume the input
programs are well-typed w.r.t ABS type-system). The formal syntax of the state-
ments S of the subset is shown in Fig. 3.3(a). Values in our subset are references
(object or futures) and integer numbers; values can be stored in method’s formal
parameters or attributes. We syntactically distinguish between method parameters
r and attributes. The attributes are further distinguished for the values they hold:
attributes holding object references or integer values (denoted by x, y, z . . .), and fu-
ture attributes holding future references (denoted by f). An assignment f:=x!m(ȳ)
stores to the future attribute f a new future reference returned by asynchronously
calling the method m on the object attribute x passing as arguments the values of
object attributes ȳ. An assignment x:=E stores to an object attribute the result of
executing the right-hand side E. A right-hand side can be the value of a method
parameter r, an attribute x, an integer expression I (an integer value, addition,
subtraction, etc.), a reference to a new object new, the result of a synchronous same-
object method call m(ȳ), or the result of an asynchronous method call f .get stored
in the future attribute f . A call to f .get will block the object and all its processes
until the result of the asynchronous call is ready. The statement await f may be
used (usually before calling f .get) to instead release the current process until the
result of f has been computed, allowing another same-object process to execute. Se-
quential composition of two statements S1 and S2 is denoted by S1;S2. The Boolean
condition B in the if and while statement is a Boolean combination of reference
equality between values of attributes. Again, note that, we assume expressions to
be well-typed: integer expressions cannot contain futures or object references and
boolean equality is between same-type values. The statement return z returns the
value of the attribute z both in synchronous and asynchronous method calls. A
method declaration D maps a method’s name and formal parameters to a statement
S (method body). We consider that every method has one return and it is the final
statement. Finally, a program P is a set of method declarations D̄ and a special
method main that has no formal parameters and acts as the program’s entry point.

The program of Fig. 3.3(b) shows a basic version of a MapReduce
task [Dean and Ghemawat, 2008] implemented using actors in ABS. For clarity the
example uses only two map nodes and a single reduce computation performed in the
controller node (the actor running main). First the controller creates two objects
node1 and node2 (L2–L3), and invokes asynchronously map with different values v1

and v2 (L4–L5). In MapReduce, all map invocations must finish before executing the
reduce phase: therefore, the await instructions in L6–L7 wait for the termination of
the two calls to map, releasing the processor so that any other process in the same
object of main can execute. Once they have finished, the get statements in L8-L9
obtain the results from the futures f1 and f2. Although get statements block the

74 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

(Assign)
getVal(h(n), V) = v h′ = h[(n)(x) 7→ v)]

〈n : (x:=V ;S, l) ·Q, h〉 → 〈n : (S, l) ·Q, h′〉

(New)
h(count) = m h′ = h[(n)(x) 7→ m, (m) 7→ ε, count 7→ m+ 1]

〈n : (x:=new;S, l) ·Q, h〉 → 〈n : (S, l) ·Q, h′〉

(Get)
h(h(n)(f)) 6= ⊥ h′ = h[(n)(x) 7→ h(h(n)(f))]

〈n : (x:=f.get;S, l) ·Q, h〉 → 〈n : (S, l) ·Q, h′〉

(Await I)
h(h(n)(f)) 6= ⊥

〈n : (await f;S, l) ·Q, h〉 → 〈n : (S, l) ·Q, h〉

(Await II)
h(h(n)(f)) = ⊥

〈n : (await f;S, l) ·Q, h〉 → 〈n : Q · (await f;S, l), h〉

(Async)

h(n)(x) = d h(count) = l′ v̄ = h(n)(z̄)
h′ = h[(n)(f) 7→ l′, (l′) 7→ ⊥, count 7→ l′ + 1]

〈n : (f:=x!m(z̄);S, l) ·Q, h〉 d.m(l′,v̄)−→ 〈n : (S, l) ·Q, h′〉

(Sync)
(m(w̄) 7→ Sm) ∈ D τ = [w̄ 7→ h(n)(z̄)] S′ = (̂Smτ)

x

〈n : (x:=m(z̄);S, l) ·Q, h〉 → 〈n : (S′;S, l) ·Q, h〉

(ReturnA)
h′ = h[(l) 7→ h(n)(x)]

〈n : (return∗x;S, l) ·Q, h〉 → 〈n : Q, h′〉

(ReturnS)
h′ = h[(n)(z) 7→ h(n)(x)]

〈n : (returnz x;S, l) ·Q, h〉 → 〈n : (S, l) ·Q, h′〉

Figure 3.4: Operational semantics: Local rules

object (in this case main) and all of its processes until the result is ready, this does
not occur in our example because the preceding awaits assure the result is available.
Finally, L10 contains a synchronous-method self call to reduce that combines the
partial results from the map phase.

3.7.2 Operational Semantics

In order to describe the operational semantics of the language defined above we first
introduce the following concepts and assumptions. The values considered in this
section are in the Int set: integer constants and dynamically generated references to
objects and futures. We denote by Σ = IVar → Int the set of assignments of values
to the instance variables (of an object), with typical element σ and empty element
ε. A closure consists of a statement S obtained by replacing its free variables by
actual values (note that variables are introduced as method parameters and can only
appear in E) and a future reference, represented by an integer, for storing the return
value. By Sτ , where τ ∈ LVar → Int , we denote the instantiation obtained from S
by replacing each variable x in S by τ(x). Finally, we represent the global heap h by

3.7. FORMAL VERIFICATION OF HABS 75

a triple (n, h1, h2) consisting of a natural number n and partial functions (with finite
disjoint domains) h1 : Int → Σ and h2 : Int → Int⊥, where Int⊥ = Int ∪ {⊥} (⊥ is
used to denote “undefined”). The number n is used to generate references to new
objects and futures. The function h1 specifies for each existing object, i.e., a number
n such h1(n) is defined, its local state. The function h2 specifies for each existing
future reference, i.e., a number n such h2(n) is defined, its return value (absence of
which is indicated by ⊥). In the sequel we will simply denote the first component of
h by h(count), and write h(n)(x), instead of h1(n)(x), and h(n), instead of h2(n).
We will use the notation h[count 7→ n] to generate a heap equal to h but with the
counter set to n. A similar notation h[n 7→ ⊥] will be used for future variables,
h[(n)(x) 7→ v] for storing the value v in the variable x in object n and h[n 7→ ε] for
initializing the mapping of an object.

An object’s local configuration denoted by the (object) reference n consists of
a pair 〈n : Q,h〉 where Q is a list of closures and h is the global heap. We use
· to concatenate lists, i.e., (S, l) · Q represents a list where (S, l) is the head and
Q is the tail. A global configuration—denoted with the letters A and B—is a pair
〈C, h〉 containing a set of lists of closures C = {Q} and a global heap h. Fig. 3.4
contains the relation that describes the local behavior of an object (omitting the
standard rules for sequential composition, if and while statements). Note that the
first closure of the list Q is the active process of the object, so the different rules
process the first statement of this closure. When the active process finishes or releases
the object in an await statement, the next process in the list will become active,
following a FIFO policy. The rule (Assign) modifies the heap storing the new value
of variable x of object n. It uses the function getVal(Σ, V) to evaluate an expression
V involving integer constants and variables in the object’s current state Σ. The
(New) rule stores a new object reference in variable x, increments the counter of
objects references and inserts an empty mapping ε for the variables of the new object
m. Rule (Get) can only be applied if the future is available, i.e., if its value is not ⊥.
In that case, the value of the future is stored in the variable x. Both rules (Await I)
and (Await II) deal with await statements. If the future f is available, it continues
with the same process. Otherwise it moves the current process to the end of the
queue, thus avoiding starvation. Note that the await statement is not consumed,
as it must be checked when the process becomes active again. When invoking the
method m asynchronously in rule (Async) the destination object d and the values
of the parameters r̄ are computed. Then a new future reference l initialized to ⊥
is stored in the variable f , and the counter is incremented. The information about
the new process that must be created is included as the decoration d.m(l′, v̄) of the
step. Synchronous calls—rule (Sync)—extend the active task with the statements
of the method body, where the parameters have been replaced by their value using
the substitution τ . In order to return the value of the method and store it in the
variable x, the return statement of the body is marked with the destination variable
x, called write-back variable. This marking is formalized in the ·̂s function, defined
as follows (recall that return is the last statement of any method):

76 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

(Internal)
〈n : Q, h〉 → 〈n : Q′, h′〉

〈(n : Q) ∪ C, h〉 → 〈(n : Q′) ∪ C, h′〉

(Message)

〈n : Qn, h〉
d.m(l′,v̄)−→ 〈n : Q′, h′〉

m(w̄) 7→ Sm ∈ D τ = [w̄ 7→ v̄] S′ = (̂Smτ)
∗

〈(n : Qn) ∪ (d : Qd) ∪ C, h〉 → 〈(n : Q′) ∪ (d : Qd · (S′, l′)) ∪ C, h′〉

Figure 3.5: Operational semantics: Global rules

Ŝs =

 S1; Ŝ2
s

if S = S1;S2,
returns z if S = return z,

S i.o.c.

Rule (ReturnA) finishes an asynchronous method invocation (in this case the
return keyword is marked with *, see rule (Message) in Fig. 3.5), so it removes the
current process and stores the final value in the future l. On the other hand, rule
(ReturnS) finishes a synchronous method invocation (marked with the write-back
variable), so it behaves like a z:=x statement.

Based on the previous rules, Fig. 3.5 shows the relation describing the global
behavior of configurations. The (Internal) rule applies any of the rules in Fig. 3.4,
except (Async), in any of the objects. The (Message) rule applies the rule (Async)

in any of the objects. It creates a new closure (Ŝmτ
∗
, l′) for the new process invoking

the method m, and inserts it at the back of the list of the destination object d. Note
the use of ·̂∗ to mark that the return statement corresponds to an asynchronous
invocation. Note that in both (Internal) and (Message) rules the selection of the
object to execute is non-deterministic. When needed, we decorate both local and
global steps with object reference n and statement S executed, i.e., 〈n : Q,h〉 →n

S

〈n : Q′, h′〉 and 〈C, h〉 →n
S 〈C′, h′〉.

We remark that the operational semantics shown in Fig. 3.4 and 3.5 is very similar
to the foundational ABS semantics presented in [Johnsen et al., 2010a], considering
that every object is a concurrent object group. The main difference is the represen-
tation of configurations: in [Johnsen et al., 2010a] configurations are sets of futures
and objects that contain their local stores, whereas in our semantics all the local
stores and futures are merged in a global heap. Finally, our operational semantics
considers a FIFO policy in the processes of an object, whereas [Johnsen et al., 2010a]
left the scheduling policy unspecified.

3.7. FORMAL VERIFICATION OF HABS 77

3.7.3 Target Language

Our ABS subset is translated to Haskell with coroutines. A coroutine is a general-
ization of a subroutine: besides the usual entry-point/return-point of a procedure
a coroutine can have other entry/exit points, at intermediate locations of the pro-
cedure’s body. Simply put, a coroutine does not have to run to completion; the
programmer can specify places where a coroutine can suspend and later resume ex-
actly where it left off.

Coroutines can be implemented natively on top of programming languages that
support first-class continuations (which subsequently require support for closures
and tail-call optimization). A continuation with reference to a program’s point of
execution, is a datastructure that captures what the remaining of the program does
(after the point). As an example, consider the Haskell program at Listing 3.3(a).
The continuation of the call to (even 3) at L2 is λa→print a, assuming a is the
result of call to even and the continuation is represented as a function. The con-
tinuation of (mod x 2) at L1 is the function λa→print (eq a 0) where x is bound by
the even function and a is the result of (mod x 2). Abstracting over any program,
an expression with type expr :: a has a continuation k with type k ::(a→r) with a
being the expression’s result type and r the program’s overall result type. To ben-
efit from continuations (and thus coroutines), a program has to be transformed in
the so-called continuation-passing style (CPS): a function definition of the program
f :: args→a is rewritten to take its current continuation as an extra last argument, as
in f ’:: args→(a→r)→r. A function call is also rewritten to apply this extra argument
with the actual continuation at point.

A CPS transformation can be applied to all functions of a program, as in the
example of Listing 3.3(b), or (for efficiency reasons) to only the subset that relies
on continuation support, e.g. only those functions that need to suspend/resume.
For our case, ABS is translated to Haskell with CPS applied only to statements and
methods, but not (sub)expressions. Continuations have the type k :: a→Stm where
Stm is a recursive datatype with each one of its constructors being a statement, and
the recursive position being the statement’s current continuation. Stm being the
program’s overall result type (Stm≡r), reveals the fact that the translation of ABS
constructs a Haskell AST-like datatype “knitted” with CPS (Listing 3.4), which will
only later be interpreted at runtime: capturing the continuation of an ABS process
allows us to save the process’ state (e.g. call stack) and rest of statements as data.
For technical convenience, our statements and methods do not directly pass results
among each other but only indirectly through the state (heap); thus, we can reduce
our continuation type to k ::()→Stm and further to the “nullary” function k :: Stm.
Accordingly the CPS type of our methods (functions) and statements (constructors)
becomes f ’:: args→Stm→Stm. Worth to mention in Listing 3.4 is that the body
of While statement and the two branch bodies of If can be thought of as functions
with no args written also in CPS (thus type Stm → Stm) to “tie” each body’s last
statement to the continuation after executing the control structure.

A Method definition is a CPS function that takes as input a list [Ref] of the

78 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

method’s parameters (passed by reference), the callee object named this , a writeback
reference (Maybe Ref), and last its current continuation Stm. In case of synchronous
call the callee method indirectly writes the Return value to the writeback reference of
the heap and the execution jumps back to the caller by invoking the method’s contin-
uation; in case of asynchronous call the writeback is empty, the return value is stored
to the caller’s future (destiny) and the method’s continuation is invoked resulting to
the exit of the ABS process. An object or future reference Ref is represented by
an integer index to the program’s global heap array; similarly, an object attribute
Attr is an integer index to an internal-to-the-object attribute array, hence shallow-
embedded (compared to embedding the actual name of the attribute). Values (V) in
our language can be this-object attributes (A), parameters to the method (P), inte-
ger literals (I), and integer arithmetic on those values (Add, Sub...). The right-hand
side (Rhs) of an assignment directly reflects that of the source language. Boolean
expressions are only appearing as predicates to If and While and are inductively
constructed by the datatype B, that represents reference and integer comparison.

even x = eq (mod x 2) 0

main = print (even 3)

Listing 3.2: Example program in direct style

mod’ x y k = k (mod x y)

eq’ x y k = k (eq x y)

even’ x k = mod’ x 2 (λ a → eq’ a 0 k)

main = even’ 3 (λ a → print a)

Listing 3.3: Example program translated to CPS

data Stm where −− (formatted in GADT syntax)
Skip ::

:::
Stm → Stm

Await :: Attr →
::
Stm → Stm

Assign :: Attr → Rhs →
:::
Stm → Stm

If :: B → (
:::
Stm→Stm) → (

:::
Stm→Stm) →

:::
Stm → Stm

While :: B → (
:::
Stm→Stm) →

:::
Stm → Stm

Return :: Attr → Maybe Ref →
:::
Stm → Stm

data Rhs = Val V

| New

| Get Attr

| Async Attr Method [Attr]

| Sync Method [Attr]

type Ref = Int

type Attr = Int

3.7. FORMAL VERIFICATION OF HABS 79

sJskipKk,wb = Skip k
sJawait fKk,wb = Await f k

sJreturn xKk,wb = Return x wb k
sJreturn∗ xKk,wb = Return x Nothing k
sJreturnz xKk,wb = Return x (Just z) k

sJx:=V Kk,wb = Assign x V JV K k
sJx:=newKk,wb = Assign x New k

sJx:=f.getKk,wb = Assign x (Get f) k
sJx:=y!m(z̄)Kk,wb = Assign x (Async y m z̄) k

sJx:=m(z̄)Kk,wb = Assign x (Sync m z̄) k
sJS1;S2Kk,wb = sJS1Kk′,wb with k′ = sJS2Kk,wb

sJif B {S1} else {S2}Kk,wb = If BJBK (\k′ → sJS1Kk′,wb) (\k′ → sJS2Kk′,wb) k
sJwhile B {S}Kk,wb = While BJBK (\k′ → sJSKk′,wb) k

mJmK = (m l this wb k = sJSmKk,wb)
where m(w̄) 7→ Sm ∈ D and l is the Haskell list that contains
the same elements as the sequence w̄

Figure 3.6: Translation of ABS-subset programs to Haskell AST

data B = B :∧ B | B :∨ B | :¬ B | V :≡ V

data V = A Ref | P Ref | I Int

| Add V V | Sub V V ...

Listing 3.4: The syntax and types of the target language. Continuations are

::::::::::::::
wave-underlined. The program/process final result type is double-underlined

The compilation of statements is shown in Fig. 3.6. The translation sJSKk,wb
takes two arguments: the continuation k and the writeback reference wb. Each
statement is translated into its Haskell counterpart, followed by the continuation
k. The multiple rules for the return statement are due to the different uses of the
translation: when compiling methods the return statement will appear unmarked,
so we include the writeback passed as an argument; otherwise it is used to translate
runtime configurations, so return statements will appear marked and we generate

80 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

the writeback related to the mark. When omitted, we assume the default values
k = undefined and wb = Nothing for the sJSKk,wb translation. BJBK represents the
translation of a boolean expression B, and V JV K the translation of integer expres-
sions, references or variables. A method definition translates to a Haskell function
that includes the compiled body.

main, map, reduce :: Method

main [] this wb k =

Assign node1 New $

Assign node2 New $

Assign f1 (Async node1 map [v1])$

Assign f2 (Async node2 map [v2])$

Await f1 $

Await f2 $

Assign r1 (Get f1) $

Assign r2 (Get f2) $

Assign r (Sync reduce [r1,r2]) $

Return r wb k

map [v] this wb k = ...

reduce [a,b] this wb k = ...

−− Position in the attribute array
[node1,node2,f1,f2,r1,r2,r] = [0..]

Listing 3.5: The Haskell-translated running example of MapReduce

The program heap is implemented as the triple: array of objects, array of fu-
tures and a Int counter. Every cell in the objects-array designates one object
holding a pair of its attribute array and process queue (double-ended) in Haskell
IOVector (IOVector Ref, Seq Proc). A cell in futures-array denotes a future which
is either unresolved with a number of listener-objects awaiting for it to be com-
pleted, or resolved with a final value, i.e. IOVector (Either [Ref] Ref). An ever-
increasing counter is used to pick new references; when it reaches the arrays’ current
size both of the arrays double in size (i.e. dynamic arrays). The size of all attribute
arrays, however, is fixed and predetermined at compile-time, by inspecting the source
code (as shown in last line of Listing 3.5).

An eval function accepts a this object reference and the current heap and
executes a single statement of the head process in the process queue, return-
ing a new heap and those objects that have become active after the execution
(eval this heap :: IO (Heap, [Ref]). An await executed statement will put its
continuation (current process) in the tail of the process queue, effectively enabling
cooperative multitasking, whereas all others will keep it as the head. A Return exe-
cuted statement originating from an asynchronous call is responsible for re-activating

3.7. FORMAL VERIFICATION OF HABS 81

the objects that are blocked on its resolved future. A global scheduler “trampolines”
over a queue of active objects: it calls eval on the head object, puts the newly-
activated objects in the tail of the queue, and loops until no objects are left in the
queue—meaning the ABS program is either finished or deadlocked. At any point in
time, the pair of the scheduler’s object queue with the heap comprise the program’s
state.

Comparison. The described target language is an untyped extract of the canoni-
cal HABS backend [Bezirgiannis and Boer, 2016], also described in Section 3.3, with
the main difference being that ABS statements are translated to an AST interpreted
by eval function, while the canonical version compiles statements down to native
code, which naturally yields faster execution. However, this deep embedding of an
AST allows multiple interpretations of the syntax: debug the syntax tree and have
an equivalence result. At runtime, the eval function operates in “lockstep” (i.e. ex-
ecuting one CPS statement at a time) whereas the canonical backend applies CPS
between release points (await, get and return from asynchronous calls) which benefits
in performance but would otherwise make reasoning about correctness and resource
preservation for this setup more involved. Another argument for lockstep execution
is that we can “simulate” a global Haskell-runtime scheduler (with a N:1 thread-
ing model) and include it in our proofs, instead of reasoning for the lower-level C
internals of the GHC runtime thread scheduler (with M:N parallelism).

Our target language is also related to Coroutining Logic Engines presented
in [Tarau, 2011] for concurrent Prolog. These engines encapsulate multi-threading
by providing entities that evaluate goals and yield answers when requested. They
follow a similar coroutine approach, however, logic engines can produce several re-
sults, whereas asynchronous methods can be suspended by the scheduler many times
but they only generate one result when they finish.

3.7.4 Correctness

To prove that the translation is correct and resource preserving, we use an inter-
mediate semantics � closer to the Haskell programs. This semantics, depicted in
Fig. 3.7, considers configurations (h, [om]) where all the information of the objects
is stored in a unified heap—concretely h(on)(Q) returns the process queue of object
on. The semantics in Fig. 3.7 presents two main differences w.r.t. that in Fig. 3.4
and 3.5. First, the list [om] is used to apply a round-robin policy: the first unblocked
object3 on in [om] is selected using nextObject(h, [om]), the first statement of the
active process of on is executed and then the list is updated to continue with the
object on+1. The other difference is that process queues do not contain sequences
of statements but continuations, as explained in the previous section. To generate
these continuation rules (Async) and (Sync) invoke the translation of the meth-

3Object whose active process is not waiting for a future variable in a get statement.

82 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

(Assign)

nextObject(h, [om]) = on h(on)(Q) = (Assign x V k′, l) · q
getVal(h(on), V) = v h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) · q]

(h, [om])� (h′, [on+1→m] : [o1→n])

(New)

nextObject(h, [om]) = on h(on)(Q) = (Assign x New k′, l) · q
h(count) = onew h′ = h[(on)(x) 7→ onew, count 7→ onew + 1,

(onew)(Q) 7→ ε, (on)(Q) 7→ (k′, l) · q]
(h, [om])� (h′, [on+1→m] : [o1→n])

(Get)

nextObject(h, [om]) = on h(on)(Q) = (Assign x (Get f) k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) · q]

(h, [om])� (h′, [on+1→m] : [o1→n])

(Await I)

nextObject(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Right v h′ = h[(on)(Q) 7→ (k′, l) · q]

(h, [om])� (h′, [on+1→m] : [o1→n])

(Await II)

nextObject(h, [om]) = on h(on)(Q) = (Await f k′, l) · q
h(h(on)(f)) = Left e h′ = h[(on)(Q) 7→ q · (Await f k′, l)]

(h, [om])� (h′, [on+1→m] : [o1→n])

(Async)

nextObject(h, [om]) = on h(on)(Q) = (Assign f (Async x m z̄) k′, l) · q
h(count) = l′ h(on)(x) = ox h(ox)(Q) = qx (m(w̄) 7→ S) ∈ D
k′′ = m h(on)(z̄) on Nothing undefined newQadd ([om], on, ox) = s

h′ = h[(on)(f) 7→ l′, count 7→ l′ + 1, l′ 7→ Left [],
(on)(Q) 7→ (k′, l) · q, (ox)(Q) 7→ qx · (k′′, l′)]

(h, [om])� (h′, s)

(Sync)

nextObject(h, [om]) = on h(on)(Q) = (Assign x (Sync m z̄) k′, l) · q
(m(w̄) 7→ S) ∈ D k′′ = m h(on)(z̄) on (Just x) k′ h′ = h[(on)(Q) 7→ (k′′, l) · q]

(h, [om])� (h′, [on+1→m] : [o1→n])

(ReturnA)

nextObject(h, [om]) = on h(on)(Q) = (Return x Nothing , l) · q
newQdel ([om], on, q) = s h′ = h[l 7→ Right h(on)(x), (on)(Q) 7→ q]

(h, [om])� (h′, s)

(ReturnS)

nextObject(h, [om]) = on h(on)(Q) = (Return x (Just z) k′, l) · q
h′ = h[(on)(z) 7→ h(on)(x), (on)(Q) 7→ (k′, l) · q]

(h, [om])� (h′, [on+1→m] : [o1→n])

Figure 3.7: Intermediate semantics.

ods m with the adequate parameters. Nevertheless, the rules of the � semantics
correspond with the semantic rules in Section 3.7.1.

Given a list [om] we use the notation [oi→k] for the sublist [oi, oi+i, . . . , ok], and
the operator (:) for list concatenation. In the rules (Async) and (ReturnA), where
the object list can increase or decrease one object, we use the following auxiliary
functions. newQadd([om], on, oy) inserts the object oy into [om] if it is new (i.e., it
does not appear in [om]), and newQdel([om], on, qn) removes the object on from [om]

3.7. FORMAL VERIFICATION OF HABS 83

cJ〈C, h〉K = (h′, act),where qJεK = ε
act = [on | (on, Qn) ∈ C,Qn 6= ε] qJ(S, l) ·QK = (sJSK,l) · qJQK
C = {(n1, Q1), . . . , (nm, Qm)} and

h′ = h[(ni)(Q) 7→ qJQiK]

Figure 3.8: Translation from source to target configurations.

if its process queue qn is empty. In both cases they advance the list of objects to
on+1.

newQadd([om], on, oy) =

{
[on+1→m] : [o1→n] if oy ∈ [om]

[on+1→m] : [o1→n] : [oy] if oy /∈ [om]

newQdel([om], on, qn) =

{
[on+1→m] : [o1→n−1] if qn = ε

[on+1→m] : [o1→n] if qn 6= ε

In order to reason about the different semantics, we define the translation from
runtime configurations 〈C, h〉 of Section 3.7.1 to concrete Haskell data structures
used in the intermediate � semantics and in the compiled Haskell programs (see
Fig. 3.8). The set of closure lists C is translated into a list of object references, and
the process queues inside C are included into the heap related to the special term Q.
Although we use the same notation h, we consider that the heap is translated into
the corresponding Haskell tuple (object vector, future vector, counter) explained in
Section 3.7.3. As usual with heaps, we use the notation h[(on)(Q) 7→ q] to update the
process queue of the object on to q. Finally, natural numbers become integers, global
variables become Strings and Nat⊥ values in the futures become Either values. To
denote the inverse translation from data structures to runtime configurations we use
cJ(h′, act)K−1 = 〈C, h〉—the same for queues qJ·K−1 and statements sJ·K−1. Note that
the translation cJ·Kc is not deterministic because it generates a list of object references
from a set of closures C, so the order of the objects in the list is not defined. On the
other hand, the translation of the heap in cJ·K and the inverse translation cJ·K−1 are
deterministic.

Based on the previous definitions we can state the soundness of the traces, i.e.,
every trace of eval steps is a valid trace w.r.t. →. Note that for the sake of conciseness
we unify the statements S and their representation as Haskell terms res , since there
is a straightforward translation between them. We consider the auxiliary function
updL([om], on, l) = [on+1→m] : [o1→n−1] : l to update the list of object references.
The proof can be found in Section 3.7.7.

Theorem 1 (Trace soundness). Let (h1, s1) be an initial state and consider a se-
quence of n − 1 consecutive eval steps defined as: a) oi = nextObject(hi, si), b)
eval o$ i$ h$ i$ = (res$ i$, l$ i$, h$ {i+1}$), c) si+1 = updL(si, oi, li). Then
cJ(h1, s1)K−1 →o1

res1
cJ(h2, s2)K−1

c →o2
res2 . . .→

on−1
resn−1

cJ(hn, sn)K−1.

84 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Note that it is not possible to obtain a similar result about trace completeness
since the →-semantics in Fig. 3.5 selects the next object to execute nondeterminis-
tic (random scheduler), whereas the intermediate �-semantics in Fig. 3.7 follows a
concrete round-robin scheduling policy. The proofs of the theorems is included in
Section 3.7.7. As a final remark notice that the intermediate semantics � can be
seen as a specification of the eval function. Therefore it can be used to guide the cor-
rectness proof of eval using proof assistance tools like Isabelle [Nipkow et al., 2002]
or to generate tests automatically using QuickCheck [Claessen and Hughes, 2011].

3.7.5 Resource Preservation

A strong feature of our translation is that the Haskell-translated program preserves
the resource consumption of the original ABS program. As in [Albert et al., 2015b]
we use the notion of cost model to parameterize the type of resource we want to
bound. Cost models are functions from ABS statements to real numbers, i.e., M :
S → R that define different resource consumption measures. For instance, if the
resource to measure is the number of executed steps, M : S → 1 such that each
instruction has cost one. However, if one wants to measure memory consumption,
we have that M(new) = c, where c refers to the size of an object reference, and
M(instr) = 0 for all remaining instructions. The resource preservation is based
on the notion of trace cost, i.e., the sum of the cost of the statements executed.
Given a concrete cost model M, an object reference o and a program execution
T ≡ A1 →o1

S1
. . .→on−1

Sn−1
An, the cost of the trace C(T , o,M) is defined as:

C(T , o,M) =
∑

S∈T |{o}

M(S)

Notice that, from all the steps in the trace T , it takes into account only those
performed in object o (denoted as T |{o}), so the cost notion is object-sensitive. Since
the trace soundness states that the eval function performs the same steps as some
trace T , the cost preservation is a straightforward corollary:

Corollary 1 (Consumption Preservation). Let (h1, s1) be an initial state and con-
sider a sequence TE of n−1 consecutive eval steps defined as: a) oi = nextObject(hi, si),
b) (resi, li, hi+1) = eval oi hi, c) si+1 = updL(si, oi, li). Then T = cJ(h1, s1)K−1 →o1

res1
cJ(h2, s2)K−1

c →o2
res2 . . .→

on−1
resn−1

cJ(hn, sn)K−1 such that C(TE , o,M) = C(T , o,M).

As a side effect of the previous result, we know that the upper bounds that are
inferred from the ABS programs (using resource analyzers like [Albert et al., 2015b])
are valid upper bounds for the Haskell translated code. We denote by UBmain()|o
the upper bound obtained for the analysis of a main method for the computation
performed on object o.

Theorem 2 (Bound preservation). Let P be a program, TE a sequence of eval steps
from an initial state (h1, s1) and UBmain()|o the upper bound obtained for the program

3.7. FORMAL VERIFICATION OF HABS 85

1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

·105

n

st
ep

s

Primality test (low parallelism)

40

60

80

100

ti
m

e
(m

s)

steps
UB
time

1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1

·105

n

st
ep

s

Primality test (high parallelism)

30

40

50

60

70

ti
m

e
(m

s)

steps
UB
time

1,000 2,000 3,000 4,000 5,000

0

2

4

6

8
·105

n

st
ep

s

Logarithm computation

100

200

300

ti
m

e
(m

s)

steps
UB
time

1,000 2,000 3,000 4,000 5,000

0

2

4

·108

n

st
ep

s
Primes in range

0

0.5

1

1.5

2

·105

ti
m

e
(m

s)

steps
UB
time

Figure 3.9: Execution steps vs. time (IntelR© CoreTM i7-4790 at 3.60GHz, 16

GB).

P starting from the main block, restricted to the object o. Then C(TE , o,M) ≤
UBmain()|o

3.7.6 Experimental Evaluation

In the previous section we proved that the execution of compiled Haskell programs
has the same resource consumption as the original ABS traces w.r.t. any concrete
cost model M, i.e., both programs execute the same ABS statements in the same
order and in the same objects. However, cost models are defined in terms of ABS
statements so they are unaware of low-level details of the Haskell runtime envi-
ronment as β-reductions or garbage collection. Studying the relation between cost
models and some significant low-level details of the Haskell runtime in a formal way
is an interesting line of future work. In this section we address empirically one par-

86 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

ticular topic: the Haskell runtime does not introduce additional overhead, i.e., the
execution of one ABS statement requires only a constant amount of work. In order
to evaluate this hypothesis, we have elaborated programs4 with different asymptotic
costs and measured the number of statements executed (steps) and their run-time.
The Primality test computes the primality of a number n: the program creates n
objects and checks every possible divisor of n on each object. The difference is that
the low paralellism version awaits for the result of one divisor before invoking the
next check and the high parallelism version does not. Both programs have a O(n)
cost. The Logarithm computation program computes the integer part n logarithms.
It has cost O(n.log n). Finally Primes in a range computes the prime numbers in
the interval [1..n], thus having a O(n2) cost.

We have tested the programs with n ranging from 500 to 5000, running 20 exper-
iments for every value of n, and measured the time. This is plotted in the cross line
(right margin) in Fig. 3.9. The plot represents the mode times and the minimum
and maximum times as whiskers. We have also measured the actual number of steps,
represented in the square line (left margin) in Fig. 3.9. These two plots show that
the execution time and the number of executed steps grows with a similar rate in
all the programs, independently of their asymptotic cost, thus confirming that the
compilation does not incur any overhead.

We have also plotted the resource bounds obtained by the SACO
tool [Albert et al., 2014a] for the different values of n (triangle line, left margin in
Fig. 3.9). SACO can analyze full ABS programs and thus also the subset consid-
ered in this section, and allows the selection of the cost model of interest. In this
case we have analyzed the original ABS programs using the cost model that obtains
the number of ABS statements executed. As can be appreciated, the upper bounds
are sound and overapproximate the actual number of executed statements. The dif-
ference between the upper bounds and the actual number of statements executed
is explained for two reasons. First, the SACO tool considers constructor methods,
i.e., methods that are invoked on every new object, so the SACO tool will count a
constant number of extra statements whenever a new object is created. However,
the main source of imprecision are branching points where SACO combines different
fragments of information. A clear example are loops like the one in the Primes in
a range program. The main loop checks if a number i ∈ [1..n] is a prime number
on each iteration, and this check needs the execution of i statements. In this sit-
uation SACO considers that every iteration has the maximum cost (n statements)
and generate an upper bound of n2 instead of the more precise (but asymptotically
equivalent) expression 1 + 2 + . . .+ n.

In the future we plan to extend our formalisations to accommodate full ABS,
both in terms of the omitted parts of the language as well as the non-deterministic
behaviour of a multi-threaded scheduler, e.g. by broadening our simulated sched-
uler to non-determinism, and perhaps (M:N) thread parallelism. Another consider-

4The ABS-subset experimental programs and measurements together with the target
language & runtime reside at http://github.com/abstools/abs-haskell-formal.

http://github.com/abstools/abs-haskell-formal

3.7. FORMAL VERIFICATION OF HABS 87

ation is to relate our resource-preservation result to a distributed-object extension
of HABS [Bezirgiannis and Boer, 2016], detailed in Chapter 5; specifically, how the
resource analysis translates to network transport costs after any network optimiza-
tions or protocol limitations. Finally, we plan to formally relate the ABS cost models
used to define the cost of a trace and some of the low-level runtime details of the
Haskell runtime like β-reductions, garbage collections or main memory usage. Thus,
we could express trace costs and upper bounds in terms closer to the actual running
environment.

3.7.7 Proofs and auxiliary results

In this section we will state and prove the completeness and soundness of� w.r.t. →.
The completeness states that any →-step can be performed in a translated Haskell
term using � with the same object and statement. The soundness states that any
�-step is a valid →-step from the translated configuration.

Lemma 3 (Completeness of �). If A →on
S B then there are two Haskell tuples

tA = cJAK and tB = cJBK such that tA �
on
S tB.

Proof. By case distinction on the rule used to perform the step.

• (Internal)+(Assign).

(Internal)

(Assign)

getVal(h(on), V) = v h′ = h[(on)(x) 7→ v]

〈on : (x:=V ;S, l) ·Q,h〉 → 〈on : (S, l) ·Q,h′〉
A ≡ 〈(on : (x:=V ;S, l) ·Q) ∪ C, h〉 →on

x:=V 〈(on : (S, l) ·Q) ∪ C, h′〉 ≡ B

One possible translation of cJAK would be tA = (hc, [om]), where on is the first
object in om that is not blocked and hc is the heap h extended with the process
queues hc = h[(om)(Q) 7→ qJQmK]. Note that hc(on)(Q) = qJ(x:=V ;S, l)·QK =
(Assign x V JV K sJSK,l) · qJQK. Then from tA we can perform a �-step to tB :

(Assign)

nextObject(hc, [om]) = on
hc(on)(Q) = (Assign x V JV K y) sJSK, l) · qJQK

getVal(hc(on), V JV K) = v
h′c = hc[(on)(x) 7→ v, (on)(Q) 7→ (sJSK, l) · qJQK]

tA ≡ (hc, [om])�on
x:=V JV K

(h′c, [on+1→m] : [o1→n]) ≡ tB

Note that cJBK = tB since it contains the set of objects with references om,
which can be translated as the list [on+1→m] : [o1→n], and getVal(h(on), V) =
getVal(hc(on), V JV K) because both functions are the same but except from
the difference in the languages: syntactic elements versus Haskell terms.

88 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

• (Internal)+(Get).

(Internal)

(Get)

h(h(on)(f)) 6= ⊥ h′ = h[(on)(x) 7→ h(h(on)(f))]

〈on : (x:=f.get;S, l) ·Q,h〉 → 〈on : (S, l) ·Q,h′〉
A ≡ 〈(on : (x:=f.get;S, l) ·Q) ∪ C, h〉 →on

x:=f.get

〈(on : (S, l) ·Q) ∪ C, h′〉 ≡ B

One possible translation of cJAK would be tA = (hc, [om]), where on is the first
object in om that is not blocked and hc is the heap h extended with the process
queues hc = h[(om)(Q) 7→ qJQmK]. Note that hc(on)(Q) = qJ(x:=f.get;S, l) ·
QK = (Assign x (Get f) sJSK, l) ·qJQK. Then from tA we can perform a�-step
to tB :

(Get)

nextObject(hc, [om]) = on
hc(on)(Q) = (Assign x (Get f) sJSK, l) · qJQK

hc(hc(on)(f)) = Just v
h′c = hc[(on)(x) 7→ v, (on)(Q) 7→ (sJSK, l) · qJQK]

tA ≡ (hc, [om])�on
x:=f.get (h′c, [on+1→m] : [o1→n]) ≡ tB

and cJBK = tB .

• (Internal)+(Await I) and (Internal)+(Await II). Similar to the previous
case, with the main difference that (Await I) inserts the current process in
the first position of the queue, as usual, and (Await II) at the end.

• (Message)+(Async).

(Message)

〈on : (f:=x!m(z̄);S, l) ·Qn, h〉
od.m(l′,r̄)−→ 〈on : (S, l) ·Qn, h′〉

m(w̄) 7→ Sm ∈ D τ = [w̄ 7→ r̄] S′ = (̂Smτ)
∗

A ≡ 〈(on : (f:=x!m(z̄);S, l) ·Qn) ∪ (od : Qd) ∪ C, h〉 →on
f:=x!m(z̄)

〈(on : (S, l) ·Qn) ∪ (od : Qd · (S′, l′)) ∪ C, h′〉 ≡ B

where

(Async)

h(on)(x) = d h(count) = l′ r̄ = h(on)(z̄)
h′ = h[(on)(f) 7→ l′, (l′) 7→ ⊥, count 7→ l′ + 1]

〈on : (f:=x!m(z̄);S, l) ·Qn, h〉
od.m(l′,r̄)−→ 〈on : (S, l) ·Qn, h′〉

One possible translation of cJAK is tA = (hc, [om]), where on is the first object
in om that is not blocked and hc is the heap h extended with the process
queues hc = h[(om)(Q) 7→ qJQmK]. Note that:

– hc(on)(Q) = (Assign x (Async x m z̄) sJSK, l) · qJQnK

– hc(od)(Q) = qJQdK

3.7. FORMAL VERIFICATION OF HABS 89

Then from cJAK we can perform a �-step to tB :

(Async)

nextObject(hc, [om]) = on h(count) = l′

hc(on)(Q) = (Assign f (Async x m z̄) sJSK, l) · qJQnK
hc(on)(x) = d hc(d)(Q) = qJQdK (m(w̄) 7→ Sm) ∈ D

k = m hc(on)(z̄) on Nothing undefined

newQadd([om], on, d) = s
h′c = hc[(on)(f) 7→ l′, count 7→ l′ + 1, (l′) 7→ ⊥,

(on)(Q) 7→ (sJSK,l) · qJQnK, (d)(Q) 7→ qJQdK · (k, l′)]
tA ≡ (hc, [om])�on

f:=x!m(z̄) (h′c, s) ≡ tB

where cJBK = tB . Note that by the definition of mJ·K and sJ·K

k = m hc(on)(z̄) on Nothing undefined) = sJS′K = sJS′Kundefined,Nothing

so qJQd · (S′, l′)K = qJQdK · (sJS′K, l′) = qJQdK · (k, l′). On the other hand, by
construction s is a list of those object references whose queues (Q) are not
empty.

• (Internal)+(Sync).

(Internal)

(Sync)
(m(w̄) 7→ Sm) ∈ D fresh τ = [w̄ 7→ h(n)(z̄)] S′ = (̂Smτ)

x

〈on : (x:=m(z̄);S, l) ·Q,h〉 → 〈on : (S′;S, l) ·Q,h〉
A ≡ 〈(on : (x:=m(z̄);S, l) ·Q) ∪ C, h〉 →on

x:=m(z̄)

〈(on : (S′;S, l) ·Q) ∪ C, h〉 ≡ B

One possible translation of cJAK is tA = (hc, [om]), where on is the first object
in om that is not blocked and hc is the heap h extended with the process queues
hc = h[(om)(Q) 7→ qJQmK]. Note that hc(on)(Q) = (Assign x (Syncm z̄) sJSK,l)·
qJQK. Then from tA we can perform a �-step to tB :

(Sync)

nextObject(h, [om]) = on
hc(on)(Q) = (Assign x (Sync m z̄) sJSK,l) · qJQK

k = m(h(on)(z̄), on, Just x,
sJSK)

h′ = h[(on)(Q) 7→ (k, l) : qJQK]

tA ≡ (h, [om])� (h′, [on+1→m] : [o1→n]) ≡ tB

where cJBK = tB . Note that by definition of mJ·K and the translation sJ·K

k = m(hc(on)(z̄), on, Just x,
sJSK) = sJŜmτ

x
K(sJSK)

so k = sJŜmτ
x
;SK.

90 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

• (Internal)+(ReturnA).

(Internal)

(ReturnA)
h′ = h[(l) 7→ h(on)(x)]

〈on : (return x;S, l) ·Q,h〉 → 〈on : Q,h′〉
A ≡ 〈(on : (return x;S, l) ·Q) ∪ C, h〉 →on

return x

〈(on : (S′;S, l) ·Q) ∪ C, h〉 ≡ B
One possible translation of cJAK is tA = (hc, [om]), where on is the first object
in om that is not blocked and hc is the heap h extended with the process queues
hc = h[(om)(Q) 7→ qJQmK]. Note that hc(on)(Q) = (Return x Nothing sJSK, l)·
qJQK. Then from tA we can perform a �-step to tB :

(ReturnA)

nextObject(hc, [om]) = on
hc(on)(Q) = (Return x Nothing sJSK, l) · qJQK

newQdel([om], on,
qJQK) = s

h′c = hc[l 7→ h(on)(x), (on)(Q) 7→ qJQK]

tA ≡ (hc, [om])� (h′c, s) ≡ tB

where cJBK = tB . Note that s will not contain on if qJQK is empty.

• (Internal)+(ReturnS). Similar to the previous case.

Lemma 4 (Soundness of �). If tA �
on
S tB then cJtAK−1 →on

S
cJtBK−1.

Proof. By case distinction on the rule applied to perform the step. The reasoning is
very similar to the proof of Theorem 3 so we only include the case of (Assign); the
other rules follow the same ideas.

• (Assign).

(Assign)

nextObject(hc, [om]) = on hc(on)(Q) = (Assign x V k′, l) : q
getVal(hc(on), V) = v

h′c = hc[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) : q]

tA ≡ (hc, [om])�on
x:=V (h′c, [on+1→m] : [o1→n]) ≡ tB

The inverse translation of tA is defined as

A = cJtAK−1 = ((on : (x:=V ′;S, l) ·Q) ∪ C, hc)

where V JV K−1 = V ′, sJk′K−1 = S, qJqK−1 = Q, hc is the inverse translation of
h and C is the inverse translation of the rest of object queues. Then from A
we can perform the following derivation:

(Internal)

(Assign)

getVal(h(on), V ′) = v h′ = h[(on)(x) 7→ v]

〈on : (x:=V ′;S, l) ·Q,h〉 → 〈on : (S, l) ·Q,h′〉
A ≡ 〈(on : (x:=V ′;S, l) ·Q) ∪ C, h〉 →on

x:=V ′ 〈(on : (S, l) ·Q) ∪ C, h′〉 ≡ B

3.7. FORMAL VERIFICATION OF HABS 91

It is clear that cJtBK−1 = B as the set of object referencies in B is {om} and h′c
is the same as hc with the following changes: a) h′c(on)(Q) = qJhc(on)(Q)K−1 =
(S, l) ·Q and b) h′c(on)(x) = hc(on)(y).

Similar results can be stated about the compiled Haskell programs w.r.t. �.
The completeness states that any �-step is performed by the eval function in the
compiled program, and the soundness states that the result of eval is a valid�-step
when applied to the next unblocked object returned by the nextObject function.

Lemma 5 (Completeness of the compilation). If (h, [om])�on
res (h′, [ok]) then eval on

h = (res,l,h’) such that [ok] ≡ updL([om], on, l).

Proof. The eval function is defined in file Eval.hs in the repository https://github.

com/abstools/abs-haskell-formal/blob/master/src/Eval.hs. The first lines of
the eval function extracts the information (attrs,pqueue) of object this from the
heap, selects the first process from pqueue and selects its first continuation c. Note
that the datatype Data.Sequence is imported with name S, and that we assume that
this = on, i.e., the object at position n in [om].

1 eval this h = do
2 (attrs ,pqueue) <− objects h ‘V.read‘ this
3 case S.viewl pqueue of
4 S.EmptyL −> error ”(...)”
5 (Proc (destiny , c)) S.:< restProcs −> let res = c
6 in case res of

Then we proceed by case distinction on the rule used to perform the �-step.

• (Assign).

(Assign)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q
k = Assign x V k′

getVal(h(on), V) = v
h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) : q]

(h, [om])� (h′, [on+1→m] : [o1→n])

If k = Assign x V k′ then res will be Assign lhs V JV K k’ where lhs is the
position in the vector attrs of the variables x. Therefore the case res of

expression will execute the following branch:

7 Assign lhs (Val x) k’ −> do
8 (attrs ‘V.write ‘ lhs) =<< (getVal x)
9 updateObj $ Left k’

10 return (res,
11 [this],
12 h)

https://github.com/abstools/abs-haskell-formal/blob/master/src/Eval.hs
https://github.com/abstools/abs-haskell-formal/blob/master/src/Eval.hs

92 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

The heap is updated to store the value of the expression x using the vector
operators V.write. The concrete value of the expression x is obtained using
the inner function getVal :: V -> IO Int. Then the process is updated to
have the continuation k’ in the front—see definition of the updateObj function.
Finally it returns the instruction res, the unitary list [this] and the new heap
h—note that it has been updated, so h = h′. Clearly [on+1→m] : [o1→n] ≡
[on+1→m] : [o1→n−1] : l since l ≡ [on].

• (New).

(New)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q
k = Assign x New k′ h(count) = onew
h′ = h[(on)(x) 7→ onew, count 7→ onew + 1,

(onew)(Q) 7→ ε, (on)(Q) 7→ (k′, l) : q]

(h, [om])� (h′, [on+1→m] : [o1→n])

If k = Assign x New k′ then res will be Assign lhs New k’ where lhs is the
position in the vector attrs of the variable x. The case ref of expression
will follow the branch:

13 Assign lhs New k’ −> do
14 (attrs ‘V.write ‘ lhs) $ newRef h
15 updateObj $ Left k’
16 initAttrVec <− V.replicate 10 (−1)
17 (objects h ‘V.write ‘ newRef h) (initAttrVec , S.empty)
18 h’ <− incCounterMaybeGrow
19 return (res,
20 [this],
21 h’)

This code updates the heap by storing a fresh reference (the function newRef

extracts it from the heap) in the variable x (line 14), and, as in the assignment
case, it updates the process queue pushing the next continuation k’ in the
front using function updateObj (line 15). In lines 16–17 the code creates an
initial mapping initAttrVec for the new object and inserts in the heap with
an empty process queue S.empty. Finally it increments the reference counter
using the function incCounterMaybeGrow5 and returns (res,[this],h’). It
is clear that h′ = h’ and [on+1→m] : [o1→n] ≡ [on+1→m] : [o1→n−1] : l since
l ≡ [on].

5Since the implementation uses growable arrays to store the mapping from objects to
their attributes, this function also checks if the array is complete and must grow.

3.7. FORMAL VERIFICATION OF HABS 93

• (Get).

(Get)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q
k = Assign x (Get f) k′ h(h(on)(f)) = Right v

h′ = h[(on)(x) 7→ v, (on)(Q) 7→ (k′, l) : q]

(h, [om])� (h′, [on+1→m] : [o1→n])

If k = Assign x (Get y) k′ then res will be Assign lhs (Get a) k’ where lhs

and a are the position in the vector attrs of the variables x and y respectively.
In this case the case ref of expression will execute the following branch:

22 Assign lhs (Get a) k’ −> do
23 f <− attrs ‘V.read‘ a
24 fval <− (futures h) ‘V.read‘ f
25 case fval of
26 −− unresolved future
27 Left blockedCallers −> do
28 (...)
29 −− already−resolved future
30 Right v −> do
31 (attrs ‘V.write ‘ lhs) v
32 updateObj $ Left k’
33 return (res,
34 [this],
35 h)

The code fetchs the value fval of the future stored in the reference that ap-
pears in the variable y (lines 23–24). Since the future is resolved to a value
due to the premises of the (Get) rule—fval = Right v—the value is stored
in the variable x and the process queue is updated by pushing the next con-
tinuation k’ in the front using function updateObj (lines 31–32). Finally,
it returns (res,[this],h). As in the previous cases it is straighforward to
prove that the new heap h—which has been updated in place—is equal to
h′ and [on+1→m] : [o1→n] ≡ [on+1→m] : [o1→n−1] : l since l ≡ [on]. The
code ommited in line 28 handles when the future is not resolved, i.e., when
fval = Left blockedCallers, situation that cannot happen considering the
premises of the (Get) rule.

• (Await I).

(Await I)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q
k = Await f k′ h(h(on)(f)) = Right v

h′ = h[(on)(Q) 7→ (k′, l) : q]

(h, [om])� (h′, [on+1→m] : [o1→n])

Then res is Await attr k’, where attr is the position in the vector attrs of
the future variable f. The eval function will enter into the following branch:

94 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

36 Await attr k’ −> do
37 fut <− V.read (futures h) =<< (attrs ‘V.read‘ attr)
38 case fut of
39 −− unresolved future
40 Left −> do
41 updateObj $ Right c
42 return (res,
43 [this],
44 h)
45 −− already−resolved future
46 Right −> do
47 updateObj $ Left k’
48 return (res,
49 [this],
50 h)

The variable fut contains the value stored in the future variable, which must
be Right _ because the rule (Await I) has been applied. The branch in
lines 46–50 updates the heap h by storing the continuation k’ in the front of
the process queue and return (res,[this],h). The updated heap h is equal
to h′, and clearly [on+1→m] : [o1→n] ≡ [on+1→m] : [o1→n−1] : on.

• (Await II). Similar to the (Await II) case, but fut must be Left _ because
the future is undefined. Then the branch in lines40–44 updates the heap h

by storing the original continuation c in the back of the process queue—see
function updateObj the the parameter is Right c.

• (Async).

(Async)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q h(count) = l′

k = Assign x (Async y m z̄) k′ h(on)(y) = oy h(oy)(Q) = qy
(m(w̄) 7→ S) ∈ D k′′ = m(h(on)(z̄), on, Nothing, λ ∅ → undefined)

newQadd([om], on, oy) = s
h′ = h[(on)(x) 7→ l′, count 7→ l′ + 1, l′ 7→ Left [],

(on)(Q) 7→ (k′, l) : q, (oy)(Q) 7→ qy : (k′′, l′)]

(h, [om])� (h′, s)

Then res will have the value Assign lhs (Async obj m params) k’, where:

– lhs and obj are the positions of x and y in the vector attrs

– m is the Haskell function that is the translation of method m

– params is a list of variables (the arguments of the method invocation)

– k’ is the continuation

The execution of eval will follow this branch:

3.7. FORMAL VERIFICATION OF HABS 95

51 Assign lhs (Async obj m params) k’ −> do
52 calleeObj <− attrs ‘V.read‘ obj −− read the callee object
53 (calleeAttrs , calleeProcQueue) <− (objects h ‘V.read‘ calleeObj)
54 derefed params <− mapM (attrs ‘V.read‘) params −− read the passed attrs
55 let newCont = m
56 derefed params
57 calleeObj
58 Nothing −− no writeback
59 (error ” ... ”)
60 (attrs ‘V.write ‘ lhs) (newRef h)
61 updateObj (Left k’)
62 let newProc = Proc (newRef h, newCont)
63 (objects h ‘V.write ‘ calleeObj) (calleeAttrs , calleeProcQueue S.|> newProc)
64 (futures h ‘V.write ‘ newRef h) (Left []) −− create a new unresolved future
65 h’ <− incCounterMaybeGrow
66 return (res,
67 this :[calleeObj | S.null calleeProcQueue],
68 h’)

The first 3 lines obtain the mapping and process queue of object obj and create
a list of reference values from the list of variables (derefed_params). Lines 55–
59 invokes m to obtain the continuation newCont related to the asynchronous
call. Line 60 stores the new reference newRef h in the variable lhs, and line 61
updates the heap by inserting the continuation k’ in the front of the process
queue of the current object. The next two lines creates and inserts in the back
of the process queue of object obj a new process with continuation newCont and
destiny the new reference newRef h. Line 64 creates a new undefined future
variable, i.e., with value Left [], and line 65 increments the reference counter
of the heap—recall that as mappings are implemented as growable arrays the
function incCounterMaybeGrow can increment their size. Finally, a tuple with
the instruction res, a list of objects and the new heap h’ is returned.

It is easy to see that h’ is equal to h′ since they have received the same updates.
If oy ∈ [om] then s = [on+1→m] : [o1→n]. In this case calleeProcQueue must
not be empty, so the list of objects returned will be [this] and s = [on+1→m] :
[o1→n−1] : on—recall that this=on. On the other hand if oy /∈ [om] then
s = [on+1→m] : [o1→n] : oy, so calleeProcQueue must be empty and the list
of objects returned will be [this,obj]. Therefore s = [on+1→m] : [o1→n−1] :
[on, oy]—recall that oy =obj.

96 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

• (Sync).

(Sync)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q
k = Assign x (Sync m z̄) k′ (m(w̄) 7→ S) ∈ D

k′′ = m(h(on)(z̄), on, Just x, k
′)

h′ = h[(on)(Q) 7→ (k′′, l) : q]

(h, [om])� (h′, [on+1→m] : [o1→n])

In this case res will be Assign lhs (Sync m params) k’ and the execution
of eval will follow the branch:

69 Assign lhs (Sync m params) k’ −> do
70 derefed params <− mapM (attrs ‘V.read‘) params −− read the passed attrs
71 updateObj $ Left (m
72 derefed params
73 this
74 (Just lhs)
75 k’)
76 return (res,
77 [this],
78 h)

The resoning is similar to the (Async) case, but the new continuation related
to the invocation is inserted in the front of the process queue of the current
object—function updateObj in line 71.

• (ReturnA).

(ReturnA)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q
k = Return z Nothing newQdel([om], on, q) = s

h′ = h[l 7→ Right h(on)(z), (on)(Q) 7→ q]

(h, [om])� (h′, s)

In this case res = Return attr wb k’, where attr is the position of the vari-
able z in the mapping, wb is the write-back variable (or Nothing in asyn-
chronous calls) and k’ is the continuation to execute in the current process
after returning. The execution of eval will follow the branch:

79 Return attr wb k’ −> case wb of
80 −− sync call
81 Just lhs −> do
82 (attrs ‘V.write ‘ lhs) =<< (attrs ‘V.read‘ attr)
83 updateObj $ Left k’
84 return (res,
85 [this],
86 h

3.7. FORMAL VERIFICATION OF HABS 97

87)
88 −− async call
89 Nothing −> do
90 fut <− futures h ‘V.read‘ destiny
91 case fut of
92 Right −> error ”...”
93 Left blockedCallers −> do
94 (futures h ‘V.write ‘ destiny) =<< liftM Right (attrs ‘V.read‘ attr)
95 (objects h ‘V.write ‘ this) (attrs , restProcs)
96 return (res,
97 [this | not $ S.null restProcs] ++ blockedCallers,
98 h)

Since the rule (ReturnA) has been applied, then wb = Nothing and the inner
branch in lines 89-98 is executed. Following defensive programming techniques,
the code first checks that the future variable where the value is stored does not
contain any previous value, i.e, it stores Left e, and throws an error otherwise.
However, it is guaranteed that in any sequence of �-steps the future variable
will be unresolved when executing a return step: only one return will be ex-
ecuted in a process and future variables are not reused. Therefore the branch
in lines 93–98 will be executed. First, the value of z (position attr) is stored
in the future variable in position destiny—recall that destiny is the position
of the future variable l from the (ReturnA) rule, see line 5. Then in line 95 it
removes the current process from the process queue in the this object, and in
lines 96–98 it return the result tuple. Note that blockedCallers is an empty
list: it is created empty when creating an asynchronous call—see the case
for the (Async) rule—and it is not modified in other instruction. However
the code includes blockedCallers because it has been prepared to incorpo-
rate some optimizations in the future for handling efficiently those objects
blocked waiting for future variables in a get instruction. It is straightforward
to check that the updated heap h is the same as the new heap h′ from the
(ReturnA) rule, as both have received the same updates. By definition of
newQdel if qn = ε then s = [on+1→m] : [o1→n−1]. In this case s = [on+1→m] :
[o1→n−1] : [] because restProcs will be null. On the other hand, if qn 6= ε
then s = [on+1→m] : [o1→n] and clearly s = [on+1→m] : [o1→n−1] : [on] because
restProcs will not be null.

• (ReturnS).

(ReturnS)

nextObject(h, [om]) = on h(on)(Q) = (k, l) : q
k = Return z (Just x) k′

h′ = h[(on)(x) 7→ h(on)(z), (on)(Q) 7→ (k′, l) : q]

(h, [om])� (h′, [on+1→m] : [o1→n])

Similar to the previous case but executing the branch in lines 81–87: the
returned value is stored in the lhs variable (line 82), and the current process

98 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

continues with the new continuation k’ (line 83), which is inserted in the front
of the process queue.

Lemma 6 (Soundness of compilation). If eval on h=(res,l,h’) and nextObject(h, [om]) =
on then (h, [om])�on

res (h′, updL([om], on, l)).

Proof. By case distinction on the portion of the code of eval that computes the
result of the step. The resoning is very similar to the proof of Lemma 5.

Proof of Theorem 1 (Trace soundness)

Proof. By induction on the number of eval steps using Lemmas 6 and 4.

Auxiliary definitions and results for bound preservation

In order to prove the preservation of the bounds obtained in [Albert et al., 2015b] we
need to prove that for any trace → there is and equivalent trace using the semantics
 considered in [Albert et al., 2015b]. These two semantics have some syntactic
differences but they have the same behavior, so the correspondence is straightforward.
In this case the correspondence is not one-to-one because the semantics has a rule
to nondeterministically select the next process to execute in an object when it is
idle—namely rule (11)—whereas our semantics selects automatically the next process
in the queue when a process finishes or becomes blocked. Performing one →-step
can require two -steps, but in that case the first one executes the same statement
S as → and the second one does not execute any instruction (its decoration is ε).
Therefore the statements executed will be the same in both semantic calculus.

The language presented in Section 3.7.1 and its semantics in Fig. 3.4 and 3.5 are
a simplified version of those in [Albert et al., 2015b]. The main differences are:

• the representation of the states

• the syntax of method invocations (both synchronous and asynchronous),

• the consideration of local variables and class declarations

In [Albert et al., 2015b] states St are sets of futures and objects, which contain
their queues of pending tasks. Formally an object is represented as ob(o, C, h, 〈tv, b̄〉,Q),
where o is the object identifier, C is the class, h is the object heap, tv is the table of
local variables, b̄ is the sequence of instructions to execute, and Q the set of pending
tasks. Futures are represented as fut(fn, v), where f is the future identifier and v its
value, possibly ⊥. The operational semantics in [Albert et al., 2015b] rewrites states
St St ′.

We will consider a slight variation of the operational semantics
in [Albert et al., 2015b] where fields can be directly assigned by new and get

instructions or arbitrary expression in the right-handd side, and future variables

3.7. FORMAL VERIFICATION OF HABS 99

can be fields instead of local variables. This modification does not affect the upper
bounds and the results obtained in [Albert et al., 2015b]. To simplify the results,
we will assume that the decorations of the -steps use the syntax presented in
Section 3.7.1.

In order to prove Theorem 2 we will define a translation from configurations
as defined in Section 3.7.2 to states in the semantics in [Albert et al., 2015b]. The
translation will use the following functions, considering a configuration 〈C, h〉:

• objs(C): returns the set of object identifiers in the set C.

• futs(h): returns the set of future variables in the heap h.

We define two translations for runtime configurations: ‖·‖ from runtinme con-
figurations 〈C, h〉 to states St , and 〈〈·〉〉 from runtime configurations (h, s) to states
St .

Definition 1 (Translation of states).

‖〈C, h〉‖ = {ob(n, , h(n), a, t)|(n : Q) ∈ C, (a, t) = ‖Q‖q} ∪
{ob(o, , ε, ε, ∅)|o ∈ Dom(h) r objs(C)} ∪
{fut(fn, v)|fn ∈ futs(h), h(fn) = v}

‖ε‖q = (ε, ∅)
‖(S; l) · (S1; l1) · . . . · (Sn; ln)‖q = (〈[ret 7→ l], ‖S‖s〉,

{〈[ret 7→ l1], ‖S1‖s〉, . . . , 〈[ret 7→ ln], ‖Sn‖s〉}

‖ε‖s = ε
‖x:=V ;S‖s = x:=‖V ‖v; ‖S‖s
‖x:=new;S‖s = x:=new; ‖S‖s

‖x:=f.get;S‖s = x:=f.get; ‖S‖s
‖f:=x!p(z̄);S‖s = call(m,p(x,z̄,f)); ‖S‖s
‖f:=p(z̄);S‖s = call(b,p(this,z̄,)); ‖S‖s
‖await f;S‖s = await f; ‖S‖s
‖return x;S‖s = return x; ‖S‖s

where ‖V ‖v is the straighforward translation of variables, references and integer ex-
pressions.

Definition 2 (Global translation). 〈〈(h, s)〉〉 = ‖cJ(h, s)K−1‖

Finally we define the notion of relevant trace of steps, i.e., those that execute
an statement.

Definition 3 (Relevant trace). Given a trace TC = St1
o1
S1

St2
o2
S2
. . .

on−1

Sn−1
Stn

we define the relevant trace of TC as those steps that execute an statement:

rel(TC) = {St i
oi
Si

St i+1|St i
oi
Si

St i+1 ∈ TC , Si 6= ε}

100 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Based on the equivalence between → and and Theorem 1 we can prove a
resource preservation result wrt. : for any sequence TE of eval steps there is
a corresponding trace TC using the semantics from [Albert et al., 2015b] with
the same cost. We will use the translation function 〈〈·〉〉 to convert from runtime
configurations (h, s) to the states in .

Lemma 7 (Consumption Preservation wrt.). Let (h1, s1) be an initial state
and consider a sequence TE of n − 1 consecutive eval steps defined as: a) oi =
nextObject(hi, si), b) (resi, li, hi+1) = eval oi hi, c) si+1 = updL(si, oi, li). Then
there is a trace TC = 〈〈(h1, s1)〉〉 ∗ 〈〈(hn, sn)〉〉 such that C(TE , o,M) = C(TC , o,M).

Proof. By Theorem 1 we have that there is a trace (recall that Si ≡ resi)

T = cJ(h1, s1)K−1 →o1
S1

cJ(h2, s2)K−1 →o2
S2
. . .→on−1

Sn−1

cJ(hn, sn)K−1

Since both traces execute the same statements in the same objects, then

C(M, o, TE) = C(M, o, T)

By Lemma 9 (see below) then there is a trace TC = ‖cJ(h1, s1)K−1‖ ∗ ‖cJ(hn, sn)K−1‖
such that

rel(TC) = ‖cJ(h1, s1)K−1‖ o1
S1
‖cJ(h2, s2)K−1‖ o2

S2
. . .

on−1

Sn−1
‖cJ(hn, sn)K−1‖

As before, T and rel(TC) execute the same statements in the same objects, so

C(M, o, T) = C(M, o, rel(TC))

By Lemma 10 (see below) the cost of a cost of TC is the same as the cost of its
relevant trace rel(Tc), so finally

C(M, o, TE) = C(M, o, TC)

Lemma 8. If 〈C, h〉 →n
b 〈C′, h′〉 then:

• ‖〈C, h〉‖ n
‖b‖s ‖〈C

′, h′〉‖ or,

• ‖〈C, h〉‖ n
‖b‖s S

n
ε ‖〈C′, h′〉‖

Proof. By case distinction on the derivation applied to perform the →-step.

• (Internal)+(Assign).

(Internal)

(Assign)

getVal(h(n), V) = v h′ = h[(n)(x) 7→ v]

〈n : (x:=V ;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉
A ≡ 〈(n : (x:=V ;S, l) ·Q) ∪ C, h〉 →n

x:=V 〈(n : (S, l) ·Q) ∪ C, h′〉 ≡ B

3.7. FORMAL VERIFICATION OF HABS 101

The translation of S1 is

‖A‖ = {ob(n, , h(n), 〈[ret 7→ l], x:=‖V ‖V ; ‖S‖s〉, Qtr)|R}

where R is the rest of objects and future variables not involved in the step and
Qtr the translation of Q. From ‖A‖ it is possible to perform a -step using
rule (1) in [Albert et al., 2015b], reaching ‖B‖:

(1)
v = eval(‖V ‖V , h(n), [ret 7→ l])

{ob(n, , h(n), 〈[ret 7→ l], x:=‖V ‖V ; ‖S‖s〉, Qtr)|R} n
x:=‖V ‖V

{ob(n, , h(n)[x 7→ v], 〈[ret 7→ l], ‖S‖s〉, Qtr)|R} ≡ ‖B‖

Note that eval is the function in [Albert et al., 2015b] that computes the
value of simple right-hand sides of assignments, so it behaves exactly like
getVal(h, V).

• (Internal)+(New).

(Internal)

(New)

h(count) = m
h′ = h[(n)(x) 7→ m, (m) 7→ ε, count 7→ m+ 1]

〈n : (x:=new;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉
A ≡ 〈(n : (x:=new;S, l) ·Q) ∪ C, h〉 →n

x:=new 〈(n : (S, l) ·Q) ∪ C, h′〉 ≡ B

The translation of S1 is

‖A‖ = {ob(n, , h(n), 〈[ret 7→ l], x:=new; ‖S‖s〉, Qtr)|R}

From ‖S1‖ it is possible to perform a -step using rule (3) in [Albert et al., 2015b],
reaching ‖B‖:

(3)
m = newRef() newHeap(, ε)

{ob(n, , h(n), 〈[ret 7→ l], x:=new; ‖S‖s〉, Qtr)|R} n
x:=new

{ob(n, , h(n)[x 7→ m], 〈[ret 7→ l], ‖S‖s〉, Qtr), {ob(m, , ε, ε, ∅)|R} = ‖S2‖

Note that m is a new object reference as it has been generated using the
counter, and the heap of the new object generated by newHeap is ε because
we do not consider class declarations. No object with identifier m appears in
C of B, but it is generated by the translation because m is in the domain of h
(second set of ‖·‖)

• (Internal)+(Get).

(Internal)

(Get)

h(h(n)(f)) 6= ⊥ h′ = h[(n)(x) 7→ h(h(n)(f))]

〈n : (x:=f.get;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h′〉
A ≡ 〈(n : (x:=f.get;S, l) ·Q) ∪ C, h〉 →n

x:=f.get

〈(n : (S, l) ·Q) ∪ C, h′〉 ≡ B

102 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

The translation of A is:

‖A‖ = {ob(n, , h(n), 〈[ret 7→ l], x:=f.get; ‖S‖s〉, Qtr), fut(fn, v)|R}

From ‖A‖ it is possible to perform a -step using rule (8) in [Albert et al., 2015b]:

(8)
h(n)(f) = fn v 6= ⊥

{ob(n, , h(n), 〈[ret 7→ l], x:=f.get; ‖S‖s〉, Qtr), fut(fn, v)|R} n
x:=f.get

{ob(n, , h(n)[x 7→ v], 〈[ret 7→ l], ‖S‖s〉, Qtr), fut(fn, v)|R} = ‖B‖

Note that by the definition of the translation ‖·‖ we have that h(h(n)(f)) = v

• (Internal)+(Await I).

(Internal)

(Await I)

h(h(n)(f)) 6= ⊥
〈n : (await f;S, l) ·Q,h〉 → 〈n : (S, l) ·Q,h〉

A ≡ 〈(n : (await f;S, l) ·Q) ∪ C, h〉 →n
await f

〈(n : (S, l) ·Q) ∪ C, h〉 ≡ B

The translation of A is:

‖A‖ = {ob(n, , h(n), 〈[ret 7→ l], await f; ‖S‖s〉, Qtr), fut(fn, v)|R}

From ‖A‖ it is possible to perform a -step using rule (9) in [Albert et al., 2015b]:

(9)
h(h(n)(f)) 6= ⊥

{ob(n, , h(n), 〈[ret 7→ l], await f; ‖S‖s〉, Qtr), fut(fn, v)|R} n
await f

{ob(n, , h(n), 〈[ret 7→ l], ‖S‖s〉, Qtr), fut(fn, v)|R} = ‖B‖

Note that by the definition of the translation ‖·‖ we have that h(n)(f) = fn.

• (Internal)+(Await II). This case is similar to the previous one but possibly
involving 2 -steps: one that evaluates the await f that cannot continue and
releases the object, and one that schedules the next task in the object.

(Internal)

(Await II)

h(h(n)(f)) = ⊥
〈n : (await f;S, l) ·Q,h〉 → 〈n : Q · ((await f;S, l)), h〉
A ≡ 〈(n : (await f;S, l) ·Q) ∪ C, h〉 →n

await f

〈(n : Q · ((await f;S, l))) ∪ C, h〉 ≡ B

Consider that ‖Q · ((await f;S, l))‖q = (a, t), where a is the translation of
the first task in the queue and t the translation of the rest of the queue. The
translation of A is:

‖A‖ = {ob(n, , h(n), 〈[ret 7→ l], await f; ‖S‖s〉, Qtr), fut(fn, v)|R}

3.7. FORMAL VERIFICATION OF HABS 103

From ‖A‖ we can perform a -step using rule (10) in [Albert et al., 2015b]:

(10)
h(h(n)(f)) = ⊥

{ob(n, , h(n), 〈[ret 7→ l], await f; ‖S‖s〉, Qtr), fut(fn, v)|R} n
await f

{ob(n, , h(n), ε, 〈[ret 7→ l], await f; ‖S‖s〉 ∪Qtr), fut(fn, v)|R} = A′

Similar to the previous case, we know that h(n)(f) = fn. Then from the state
A′ we can apply rule (11) to schedule the first task a in the queue:

(11)
a ∈ 〈[ret 7→ l], await f; ‖S‖s〉 ∪Qtr

{ob(n, , h(n), ε, 〈[ret 7→ l], await f; ‖S‖s〉 ∪Qtr), fut(fn, v)|R} n
ε

{ob(n, , h(n), a, t), fut(fn, v)|R} = ‖B‖

Therefore we have the two-step -derivation ‖A‖ n
await f A

′ n
ε ‖B‖.

• (Internal)+(Sync).

(Internal)

(Sync)

(m(w̄) 7→ Sm) ∈ D fresh τ = [w̄ 7→ h(n)(z̄)] S′ = (̂Smτ)
x

〈n : (x:=m(z̄);S, l) ·Q,h〉 → 〈n : (S′;S, l) ·Q,h〉
S1 ≡ 〈(n : (x:=m(z̄);S, l) ·Q) ∪ C, h〉 →n

x:=m(z̄) 〈(n : (S′;S, l) ·Q) ∪ C, h〉 ≡ S2

The translation of S1 is

‖S1‖ = {ob(n, , h(n), 〈[ret 7→ l], call(b,m(this,z̄,)); ‖S‖s〉, Qtr)|R}

where R is the rest of objects and future variables not involved in the step and
Qtr the translation of Q. From ‖S1‖ it is possible to perform a -step using
rule (4) in [Albert et al., 2015b], reaching ‖S2‖:

(4)
(m(w̄) 7→ Sm) ∈ ‖D‖xsync fresh τ = [w̄ 7→ h(n)(z̄)]

{ob(n, , h(n), 〈[ret 7→ l], call(b,m(this,z̄,)); ‖S‖s〉, Qtr)|R} n
m(z̄)

{ob(n, , h(n), 〈[ret 7→ l], Smτ ; ‖S‖s〉, Qtr)|R} ≡ ‖S2‖

‖D‖xsync is the translation of all the methods in the program D where methods
are treated synchronously, i.e., they store a final value in the field x. We
consider a simplification of the operational semantics in [Albert et al., 2015b]
where synchronous methods return exactly one value, thus the last instruction
of a synchronous method stores the final value in the corresponding field. In

this case it is easy to check that ‖(̂Smτ)
x

‖ = Smτ .

• (Message)+(Async). Similar to the previous case.

• (Internal)+(ReturnA).

(Internal)

(ReturnA)
h′ = h[(l) 7→ h(n)(x)]

〈n : (return x;S, l) ·Q,h〉 → 〈n : Q,h′〉
A ≡ 〈(n : (return x;S, l) ·Q) ∪ C, h〉 →n

return x 〈(n : Q) ∪ C, h′〉 ≡ B

104 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

The translation of A is

‖A‖ = {ob(n, , h(n), 〈[ret 7→ l], return x; ‖S‖s〉, Qtr), fut(l,⊥)|R}

where R is the rest of objects and future variables not involved in the step and
Qtr the translation of Q. From ‖A‖ it is possible to perform a -step using
rule (7) in [Albert et al., 2015b]:

(7)
v = h(n)(x)

‖A‖ = {ob(n, , h(n), 〈[ret 7→ l], return x; ‖S‖s〉, Qtr), fut(l,⊥)|R} n
return x

{ob(n, , h(n), ε, Qtr), fut(l, v)|R} = A′

If Qtr = ε, i.e., if the process queue of object n is empty then we are done
because A′ = ‖B‖. Otherwise we need to apply a step with rule (11) to select
the next proces in the queue, performing a step A′ n

ε ‖B‖ similar to the case
(Await II)

• (Internal)+(ReturnS). Similar to the previous case (ReturnA), but ap-
plying rule (6) instead of (7) in the -step.

Lemma 9. If T = A1 →o1
S1

A2 →o2
S2

. . . →on−1

Sn−1
An then there is a trace TC =

‖A1‖ ∗ ‖An‖ such that rel(TC) = ‖A1‖ o1
S1
‖A2‖ o2

S2
. . .

on−1

Sn−1
‖An‖.

Proof. Strightforward by induction on the number of steps in the trace T , and ap-
plying Lemma 8.

Lemma 10. For any trace TC wrt. , cost model M and object reference o then
C(TC , o,M) = C(rel(TC), o,M).

Proof. By definition of the cost of trace (Definition 3 in [Albert et al., 2015b]), since
only the steps decorated with a statement (i.e., different from ε) contribute to the
cost.

Proof of Theorem 2 (Bound Preservation)

Proof. Straighforward by Lemma 7 and Theorem 3 from [Albert et al., 2015b].

3.8 Case Study on Preferential Attachment

We decided to use HABS in a real-world case study of generating network graphs in
parallel. The preferential attachment is a special class of network generation where
new nodes are sequentially introduced to the network and they attach preferentially
to existing nodes. Such generation process is commonly found in social networks.

3.8. CASE STUDY ON PREFERENTIAL ATTACHMENT 105

The Barabasi-Albert model [Barabási and Albert, 1999] is written to generate scale-
free networks using the preferential attachment mechanism. However the sequential
mechanism used in this PA model makes it an inefficient algorithm. Other existing
parallel approaches, on the other hand, suffer from either changing the original model
or explicit complex low-level synchronization mechanisms. We develop a parallel
version of the PA model in ABS that stays at a high-level, thanks to the actor model
abstraction.

To implement the PA model in ABS, we first extend the ABS language with
support for promises. In general, this feature can cause complicated and hard-to-
verify programs and thus the programmer should use the feature in a disciplined
manner, such as provided by our model (which restricts the model to single write
access), to avoid race conditions.

Apart from a functional layer which includes algebraic data types and pattern
matching, the implementation additionally features global arrays as a mutable data
structure shared among objects which fits well in the multicore setting to decrease the
amount of costly message passing, and also to simplify the model. To achieve this we
utilized the Foreign Language Interface extension to ABS (shown in section 3.2.4).
The ABS code for the algorithm maintains a global, mutable, O(1), boxed array:
each array-cell is an ABS promise coupled with a set of active objects (their thread
references) as “listeners”. An ABS process will suspend its execution until the future
of the array cell is resolved; the active object that resolves the future will inform the
set of listeners to wake up the corresponding suspended processes. This extension
of promise-arrays is integrated naturally in the ABS ecosystem through the await

on-boolean-condition. Finally, we use a foreign-imported random-number library
with each active object having each own, separate random-number generator for
performance reasons.

3.8.1 Results

We ran the program of the PA-based generation of networks in ABS2Haskell based
on the proposed approach on SURFsara cluster on a 16 core processor 2.30 GHz
(Intel Xeon CPU E5-2698 0) with 128GB of memory 6.

The program is verified using a set of test cases (e.g. checking for the resolution
of all edges of the graph and checking duplicates for the final graph). According
to this experiment, the degree distribution of the graphs generated by our proposed
method follows a power-law degree distribution. In Figure 5.2, the performance
and the scalability of the program is depicted for different input parameters. The
performance of the program is good in comparison with the performance of the
efficient sequential implementation of the PA in HABS.

Looking at the performance results, one point worth mentioning is the super-
linear speedup observed when going from 1-core to a 2-core execution for any of the
4 distinct runs. We speculate that this can most likely be attributed to the great

6SurfSARA http://surf.nl

http://surf.nl

106 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Figure 3.10

Figure 3.11

effect a multi-level CPU cache can have on a multicore setup. Specifically for our
case and granted our SURFSara experimentation system, a doubling in number of
cores leads to the doubling of the size of L1 and L2 cache (the shared L3 cache stays
the same). This results to less overall cache misses on a 2-core setup, which greatly
adds to the performance, hence the super-linear speedup. However, this effect is
only clearly observable when transitioning from 1-core to 2-core; after 2 cores, the
parallel threading overhead overshadows any larger-cache benefit. Still, this remains
just a speculation; we are planning to investigate more on the reason and the impact
a cache behaviour can have over the PA graph generation.

3.9 Related Work

Over the years after the appearance of the actor model there have been numerous
programming languages and special libraries that (try to) implement it. Note that
some other concurrency-based languages that relate more to theory and modeling

3.9. RELATED WORK 107

Figure 3.12

Figure 3.13

108 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

are discussed in section 2.9. Here we focus on actor-based languages for practical
purposes. Arguably, the most well-known actor programming language is Erlang,
a dynamically-typed, (non-purely) functional programming language which can be
bytecode-interpreted by its VM (BEAM); thus Erlang code is very portable, since
the same bytecode can be used by any computer system (operating system and
cpu architecture) where the Erlang VM runs on. Erlang, like ABS, disallows any
shared-memory access for concurrent programs: any data exchange has to strictly go
through message passing. Erlang can also support a kind of “object-oriented” storage
inside the actor (active object) by means of the so-called “process dictionary”, a
private storage for each process. These processes are Erlang’s actors, built into the
language runtimes as lightweight (also called green) threads; HABS active-objects
are instead coroutines (even more lightweight). Erlang supports Simultaneous Multi-
Processing (SMP) with preemptive scheduling which automatically load-balances its
processes (actors) over the system’s CPU cores, as does HABS (for its COGs) with
its GHC Haskell runtime. Erlang does not have any notion of a COG or cooperative
scheduling. We defer the discussion of the distributed-computing part of Erlang on
the more related section 5.5.1 of the distributed HABS implementation.

Although strictly not a language but a library, Akka (http://akka.io) has be-
come relatively famous to the Scala and Java communities for introducing the actor-
model type of concurrent and distibuted computing to the JVM ecosystem. Unlike
ABS, the actors are not protected from race conditions, because there exist still the
possibility of shared-memory, “leaked” access between actors via the underlying heap,
although such thing is discouraged in favour of the “safer” message passing. Still
though, there exist a source of “unsafety” since messages cannot be guaranteed to
be immutable. By default Akka’s actors are untyped like Erlang’s messages, however
unlike Erlang, changing the behaviour of the actors (i.e. an actor to decide dynami-
cally at runtime to receive a different message) has to be explicit and arguably more
complicated through the use of become()/unbecome() statements that perform hot-
code swapping of the actor’s implementation. For our case, ABS lacks builtin support
of the Actor model for determining how to receive the next message (e.g. become in
Akka’s Untyped Actors) but such behaviour can be emulated programmatically for
ABS and for Akka’s typed actors. Typed actors is an experimental addition to the
Akka library and looks much closer to the ABS’s active objects where asynchronous
communication is encapsulated behind method calls. Akka does not support await-
ing on booleans, but offers many practical features borrowed from Erlang and other
languages, e.g. supervisors, streams, routers. Finally, Akka is constrained by a
threadpool (since JVM threads are expensive) for supporting Simultaneous Multi-
Processing with preemptive scheduling for its active objects (actors); as such, an
Akka actor system is prone to process starvation or even deadlock, by not correctly
utilizing the event-based mechanism of the library.

Pony [Clebsch et al., 2015] http://ponylang.org is a relatively recent concur-
rent programming language which with a C-written library and runtime for support
of the actor model. As such, it offers a strong connection to C with an FLI. Pony

http://akka.io
http://ponylang.org

3.9. RELATED WORK 109

adds an elaborate type-system based on reference-capability security: a capability
is roughly an object reference together with attached access rights for the caller of
the object. Pony offers both nominal and structural subtyping for its objects. Un-
like ABS, methods cannot be called both synchronously and asynchronously: their
(a)synchronicity is declared at their method-definition. Asynchronous methods in
Pony do not return a result, so there is no implicit bi-directional communication
encapsulated behind the method call — a specific trait of the so-called active ob-
ject pattern. As such, there is no built-in await mechanism (neither or futures nor
booleans): the caller can only pass a function callback (closure) to be executed by
the callee when the method is completed. However, there is limited support for co-
operative multitasking in Pony through promises (read-write futures) and streaming.
Similar to Akka, the Pony runtime employs a thread-pool – the size defaults to the
number of CPU cores — for SMP preemptive multitasking which means the problem
of process starvation still remains. HABS, however, solves this by utilizing Haskell’s
lightweight threads (with an M:N threading model of GHC’s runtime). Finally, Pony
does not have algebraic datatypes.

Encore [Brandauer et al., 2015] is a higher-level actor-based programming lan-
guage which builts on top of the Pony runtime system, thus its runtime characteris-
tics match those of the Pony language. Encore offers almost all language features of
Pony, and adds support of bi-directional communication, i.e. asynchronous method
calls return a Future. Furthermore, Encore adds an await mechanism for a non-
blocking read of the Future value, i.e. the await-caller can be activated on other
methods (processes in ABS). Encore supports the so-called “future-chaining” which
allows to non-blocking map a function to a future container (like Haskell’s Functor).
Encore goes a step further than Pony by allowing the inline of C code inside En-
core program code. The language, as of currently, lacks awaiting on booleans and
algebraic datatypes.

Not relating to the actor model but to our target language, O’Haskell
[Nordlander, 2002] is an attempt to bring the object-oriented paradigm to Haskell.
Unfortunately O’Haskell is a separate language inspired by Haskell and cannot uti-
lize already-existing Haskell code. The offered subtyping is structural (compared to
ABS and HABS nominal), which makes it easier to augment the type inference of
Haskell’s type system. Similar to Pony, O’Haskell has support for “reactive” agents,
which are event-driven objects that do not return a result (future). On a different
direction, [Kiselyov and Laemmel, 2005] implement the object-oriented paradigm in
a library, using purely Haskell constructs. Although the authors detail certain perfor-
mance penalties for doing this “shallow-embedding” of OO in Haskell, the end-result
has a very flexible and powerful type system, offering both structural subtyping and
parametric polymorphism.

110 CHAPTER 3. HABS: A VARIANT OF THE ABS LANGUAGE

Chapter 4

Resource-aware Modeling
in HABS

The standard ABS language, described in chapter 2, is adequate to represent models
of concurrent object-oriented programs; the ABS user can make use of the ABS
tool-suite to analyze, experiment, and execute such models. It becomes, however,
more difficult for the user to express models which change their behaviour over time;
such models are usually constructed during a simulation phase. The word simulation
can take a broad meaning; here, we use the word to refer specifically to computer
simulation: the (inexact) reproduction of a real-life process or system, performed
with the aid of a computer. We implemented the timed extension of ABS with a
real-time interpretation inside the HABS framework.

Furthermore, we model virtualized systems (named Deployment Components)
directly inside ABS as first-class citizens of the language in section 4.3, as well as
their virtualized resources (speed, memory, bandwidth) in section 4.3. At the end,
we evaluate this extension to HABS in an industrial case-study by modeling and
simulating real-world cloud environments.

4.1 Modeling time

[Bjørk et al., 2013] address the issue of time-varying models and simulation in ABS
with a small extension of the language to deal with time; the entity time in their
case is left abstract to accommodate all possible scenarios with different notions
of time (symbolic or real-time) or units of time (seconds, milliseconds, days, etc.).
The following ABS snippet encompasses the wholes new syntax of this “timed” ABS
extension by means of an example:

111

112 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

{
Rat i = 3.1;
duration(i , i+1);
await duration(i+1,i+2);
Time n = now();
}

A duration(i , j); statement blocks the currently-executing Concurrent Object
Group (COG) and all of its processes for less than j time and for the best case i
amount of time; in other words, the blocked time is sampled from the interval [i, j).
The statement await duration(i , j); will instead block only the currently-executing
ABS process for that amount of sampled time; the other processes of the COG
can still be scheduled for execution in the meantime. Finally, there is the effectful
expression now() which returns the current clock of the simulation in the abstract
algebraic-datatype T ime; this expression is used mostly for printing & debugging
purposes. It is worth mentioning the fact that the rest statements of ABS do not
“take” time — in the sense of abstract ABS time, they can still take perceived clock
time — and treated by the timed extension of ABS as instantaneous.

For our case, we implement the Timed-ABS language extension as an extension
of the HABS compiler & runtime, accordingly. We deviate from the initial work on
Timed ABS ([Bjørk et al., 2013]) by providing a specific notion of time, that of the
passage of real-world time — in short, real-time. This choice becomes important
later on since it allows us to have live simulations where the human can interact
with the computer’s simulation, instead of having ‘as-fast-as-possible” simulations.
Another reason for implementing the Timed-ABS extension for HABS is that in the
subsequent Chapter 5 that details the (cloud) distributed-computing part of HABS,
the importance of time becomes more apparent in such a real-world setting, where the
network latency of communication plays and workflows of cloud services dominate
the structure of the model.

A different interpretation of time for Timed-ABS is that of symbolic time, which
is is implemented in the Erlang-ABS backend. Specifically, the Erlang-ABS backend
of ABS provides a symbolic interpretation of the abstractions modeling (CPU) time,
that is, time is modeled by a symbolic clock which is advanced by the execution of a
certain kind of statements, so-called duration statements. In contrast, in this thesis
we introduce the new Haskell backend for ABS denoted by HABS, which is based on
a source-to-source translation of ABS into Haskell and which directly relates the ABS
abstractions of time to the underlying hardware clock. It should be noted that the
term “real-time ABS” has also been used, for example in [Johnsen et al., 2012], to
refer to the ABS abstractions modeling (CPU) time themselves. In this section, how-
ever, we use the term “real-time” to refer to the implementation of these abstractions
with respect to some external clock, e.g., the hardware clock. This implementation
allows for a different kind of simulation, so-called human-in-the-loop simulation, ab-
breviated in the sequel by HITL. In general this kind of simulations require human

4.2. MODELING VIRTUALIZED HARDWARE RESOURCES 113

interaction and are used for training purposes. A typical example is that of flight
simulations where trainees interact in real-time with a model of a plane in flight.
Clearly, for such training to be effective the human interactions should be processed
by the model in real-time as measured by the hardware clock.

4.2 Modeling virtualized hardware resources

Systems in ABS are composed of resources. Example of resources are the number
of CPU cores, their speed, the total memory of the system, the network bandwidth,
etc.. In this section we discuss how computing resources are modelled in ABS.

High-level annotations of the ABS code are used to specify the resource con-
sumptions of the annotated statement ([Johnsen et al., 2012, Albert et al., 2014b]).
For example to signal the overall-CPU resource consumption of a statement, we an-
notate it by [Cost: intExp ()] stmt; which means in practice that stmt will be only
completed (and its side-effects instantaneously realised) after some time where in-
tExp amount of resource Speed has been provided and consumed by the currently
executing deployment component. This model of deployment as executable ABS al-
lows for a formal analysis of the constraints induced by the shared resources in terms
of a formal cost model and its relation to a formalization of Service Level Agreements
(SLA ’s) as a property of a service metric function.

Whereas the Cost annotation induces the passage of time locally inside an ab-
straction of a system, a so called deployment component (see section 4.3), the timed-
ABS extension of the language enables time to pass globally (over the whole model)
always with respect to an external clock. The statement await duration(min,max)
means that the current process will be rescheduled for execution only after min
and less than max time steps from now have passed on the clock; the statement
duration (min,max) will accordingly block the object and all of its process for that
time. If the ABS clock refers to symbolic (abstract) time — used for synchronizing
distinct parts of the model — then the models’ execution is essentially a computer
simulation; however, a model running on the real (hardware) clock defines a user-
interactive simulation.

4.3 Modeling systems

We extend the ABS language with syntactic and library support for Deployment
Components. A Deployment Component (DC), first described in [Johnsen et al., 2010b],
is “an abstraction from the number and speed of the physical processors available to
the underlying ABS program by a notion of concurrent resource”. Over time, in ABS
a DC has further evolved to include other virtualized resources of a computer system
seen in the previous section, like CPU time, memory, and bandwidth, which allows
to model virtual machines and in general other technologies, e.g. Docker containers,

114 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

unikernels. We want to be able to deploy and execute objects on a Deployment Com-
ponent and that requires at least the presence of CPU resources. In this section we
only deal with “simulated” Deployment Components, i.e. machines that do not have
actual computing resources but instead simulated ones, for tracking and predicting
the possible utilization of real machines.

To be able to programmatically (at will) create and delete machines in any lan-
guage would require modeling them as first-class citizens of that language. As such,
we introduce DCs as first-class citizens to the already-existing language of ABS in the
least-intrusive way: by modeling them as objects. Since Deployment Components
are expressed by concurrent objects themselves they become an integral part of any
ABS model. All created DC objects are typed by the interface DC. The minimal
interface for deployment components contains the methods shutdown for shutting
down and releasing the cloud resources of a virtual machine, and load for probing
its average system load, i.e. a metric for how busy the underlying computing-power
stays in a period of time. We use the Unix-style convention of returning 3 average
values of 1, 5 and 15 minutes. After calling shutdown(), the DC object will point to
null. The DC interface resides in the augmented standard library:

module StandardLibrary.CloudAPI;
interface DC {

Unit shutdown();

Triple<Rat,Rat,Rat> load();

}

Similar to this identifier, a method context contains the thisDC read-only variable
(with type DC) that points to the machine host of the currently executing object. A
running ABS node can thus control itself (or any other nodes), by getting its system
load or shutting down its own machine. However, after its creation, a running ABS
node will remain effectively “idle” until some objects are created/assigned to it. The
DC annotation can be used in conjunction with the new keyword to specify in which
(possibly remote) DC the newly created objects which “live” and run:

[DC: dc1] Interf1 o1 = new Cls1(args ..);
o1 ! method1(args ..);
this .method2(o1);

Such objects dynamically deployed onto deployment components are named re-
mote objects and share their resources. The DC annotation does not change the
behaviour of the new keyword: it still creates a new object (inside a new COG),
initializes it, and optionally calls its run method. Indeed, the unannotated ex-
pression new Cls1(params) is equivalent (as in syntactic sugar) to the annotated
[DC: thisDC] new Cls1(params). References to remote objects are indistinguish-
able to local object references and can be normally passed around or called for their
methods. The ABS language specification and its cloud extension do not dictate a

4.4. A REAL-TIME IMPLEMENTATION 115

particular Garbage Collection policy — a specific implementation is provided for dis-
tributed HABS at section 5.1.3, but we assume that holding a reference to a remote
object or future means that the object is alive, if its DC is alive as well.

Usually the ABS user does not create deployment components directly (i.e. by
calling new DC), but instead through a higher object abstraction named Cloud-
Provider, which serves both as a factory of deployment components as well as a
communication endpoint (in the real and not simulated world this corresponds to
the infrastructure service, e.g. Amazon AWS, OpenStack, Azure):

CloudProvider cp = new CloudProvider(params);
this . addInstanceDescription (Pair(” c4 2xlarge eu ”, map(Cons(Pair(CostPerInterval ,419),

Cons(Pair(Cores, 8), Cons(Pair(Memory, 1500), Cons(Pair(Speed, 31), Nil)))))));
this . addInstanceDescription (Pair(”m4 large eu”, map(Cons(Pair(CostPerInterval, 120),

Cons(Pair(Cores, 2), Cons(Pair(Memory, 800), Cons(Pair(Speed, 6), Nil)))))));

DeploymentComponent vm1 = cp.launcInstanceNamed(”m4 large eu”);
[DC: vm1] new WebServer(8080); // deployed object

4.4 A real-time implementation

In this section we introduce the ABS RT Haskell backend of ABS and present its use
by Cloud engineers so that they can interact in real-time with the execution of the
model of the services offered on the Cloud. This interaction consists of deploying and
managing service instances and allows Cloud engineers to acquire knowledge of the
real-time consequences of their decisions. We illustrate this use of HITL simulation of
Cloud services by an industrial case study based on the Fredhopper Cloud Services.

We augment the original HABS backend with support for the timed-ABS lan-
guage extension, and name the resulting backend ABS RT. The clock that ABS RT
uses is the available real-time hardware clock underneath. This means that compared
to the backends with a symbolic clock (Erlang-ABS, Maude-ABS), the passage of
time is not influenced by timed-ABS calls but instead by the real clock itself. The
duration statement is implemented as a sleep call on the concurrent object’s thread,
whereas the await duration creates a new extra lightweight thread which will re-
schedule its continuation back to the original object thread after the specified time.
The [Cost: x] annotations are translated to a executeCost() method call on the de-
ployment component object as seen in Listing 4.1. The instrPS field refers to the
number of instructions the particular deployment component is able to execute per
second. The unit of time (default is seconds) is tunable as a runtime option.

Unit executeCost(Int cost) {
Int remaining = cost;
while (remaining > this . instrPS) {

duration (1,1);

116 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

suspend;
remaining = remaining − this. instrPS ;
}
Rat last = remaining / this . instrPS ;
duration(last , last);
}

Listing 4.1: The implementation of Cost annotation for the ABS RT backend

It is worth nothing that the GHC runtime scheduler dictates that any “sleeping”
thread will be re-activated (preempted) no sooner than the specified time, but may be
later than prescribed (not precise). This does affect the reproducibility, in addition
to the fact that there is no notion of simultaneous method calls (no specific order-
ing, thus non-deterministic hardware-dependent process-enqueuing of simultaneous
callers) as it can be done with total ordering of symbolic time. Finally, we would
like to mention that this real-time implementation as shown in Listing 4.1 is generic
for any ABS backend that uses the hardware clock and implements duration/await
duration as a sleep() system call. Indeed, it would be straightforward to port it to
the Erlang-ABS and Java-ABS backends as well.

4.4.1 Comparison with symbolic-time execution

As briefly discussed in section 4.1, the Erlang-ABS backend also implements the
Timed-ABS extension but with a symbolic clock as notion of time. The Erlang
manual of ABS (at http://docs.abs-models.org) says that:

Time only advances when all processes are blocked or suspended and
no process is ready to run. This means that for time to advance, all
processes are in one of the following states: the process is awaiting for
a guard that is not enabled, the process is blocked on a future that is
not available the process is suspended waiting for time to advance, the
process is waiting for some resources, In practice this means that all
processes run as long as there is work to be done.

At implementation side, the Erlang-ABS backend will execute all processes that
are enabled in the current clock to completion, and will advance the time only if all of
the processes of the system are blocked (as in idling). Then, the Erlang-ABS runtime
will advance the clock to the smallest amount of time of a duration or await duration
ABS statement.

The described above Erlang-ABS execution resembles that of timed automata,
for example as is done in the model checker UPPAAL. There are certain repro-
ducibility problems attached to this execution method. First of all, there exist the
problem of “granularity of concurrency”: the Cost resources although being rational
numbers, are always distributed to processes of a COG with a granularity of 1 unit.
For example, in a hypothetical situation of a DC with Speed=3, one process may

http://docs.abs-models.org

4.4. A REAL-TIME IMPLEMENTATION 117

“consume” 2 cost resources, while the other process can only “grab” 1 cost resource.
A better approach would be to distribute the resources evenly to all the processes
(for the example 1.5 to each process). This is currently hardcoded in the Erlang-
ABS runtime and is not parameterizable. A further problem with reproducibility
is that the Erlang-ABS runtime does not provide any “local” method ordering; the
scheduled processes of a COG do not follow a queue pattern, where a process that
arrived earlier will execute also earlier (FIFO), instead the processes are picked up
for execution in arbitrary order. In other words, the scheduling policy of Erlang-ABS
is non-deterministic. This leads to the inherent problem of non-reproducibility for
certain ABS models running with the Erlang-ABS backend. Consider the artificial
example of spawning a number of asynchronous methods:

module Test;

class C {
Unit run() {

Int i = 0;
while (i<10) {

this !m(i);
i=i+1;

}
}

Unit m(Int n) {
println (toString (n));

}
}

{
new C();
}

The output of the above model’s execution is non-deterministic with the Erlang-
ABS runtime, varying between successive runs, e.g. 0 2 3 4 6 8 7 5 1 9 and
4 9 7 2 1 0 6 5 3 8.

However, even with assumption of method ordering inside the COG the execution
of an ABS model remains non-deterministic (thus non-reproducible simulation) since
there is no fixed scheduler for which COG will execute next. In fact, certain runtimes
(Erlang-ABS, HABS) execute the COGs simultaneously for the benefit of parallelism.
Consider the following example of i number of COGs:

module Test;

interface R {
Unit m(Int n);

118 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

}
class R implements R{

Unit m(Int n) {
println (toString (n));

}
}

class S(R r, Int i) {
Unit run() { r!m(i); }
}

{
R r = new R();
Int i=0;
while (i<10) {

new S(r, i);
i=i+1;

}
}

The output of the above example will again vary on successive runs. This leads us
to consider for future work a simulation of Timed-ABS models where the execution
is driven by a discrete-event simulation (DES) engine. In this way, we could achieve
reproducibility since every event will be marked with its timestamp and all events
are executed in total order. Another theoretical benefit is that such discrete-event
simulations can be executed in parallel or distributed over different computers which
may improve the execution performance compared to the real-time approach (HABS)
as well as that of timed automata (Erlang-ABS).

4.5 Case study: DevOps-in-the-Loop

In this section, we evaluate the ABS RT backend on an industrial case study. We
integrated ABS RT in a new tool-suite for human-in-the-loop simulations for cloud
engineers. Other tools in the suite include the SAGA tool [Boer and Gouw, 2014]
for the declarative specification of service metric functions, and SmartDe-
ployer [Gouw et al., 2016] for the formalization of deployment requirements and the
automatic generation of provisioning scripts. At the core of this suite is a new
Haskell backend ABS RT of the ABS modeling language which supports a real-time
interpretation of the timing constructs of ABS. We further illustrate the use of our
tool-suite by an industrial case study based on the Fredhopper Cloud Services. The
underlying ABS model of the Fredhopper Cloud Services builds on the one presented
in [Gouw et al., 2016] which focuses on automated generation of deployment actions.
Here we extend that model to support HITL simulation and for the generation of

4.5. CASE STUDY: DEVOPS-IN-THE-LOOP 119

more realistic deployment recommendations.
The general methodology underlying the use of ABS RT in the HITL simulation

of Cloud services involves the formalization of Service Level Agreements (SLA ’s) as
a property of a service metric function, as described in [Giachino et al., 2016a], with
a new framework in ABS which captures various monitoring concepts – from QoS
and SLAs to lower-level metrics, metric policies, and listenable and billable events.
The monitoring framework allows the formal development and analysis of monitors
as executable ABS.

Fredhopper1 provides the Fredhopper Cloud Services to offer search and targeting
facilities on a large product database to e-Commerce companies as services (SaaS)
over the cloud computing infrastructure (IaaS). Fredhopper Cloud Services drives
over 350 global retailers with more than 16 billion in online sales every year. A
customer (service consumer) of Fredhopper is a web shop, and an end user is a
visitor to the web shop.

The services offered by Fredhopper are exposed at endpoints. In practice, these
services are implemented to be RESTful and accept connections over HTTP. Software
services are deployed as service instances. The advantages of offering software as a
service on the cloud over on-premise deployment include the following: to increase
fault tolerance; to handle dynamic throughputs; to provide seamless service update;
to increase service testability; and to improve the management of infrastructure.
To fully utilize the cloud computing paradigm, software must be designed to be
horizontally scalable2. Typically, software services are deployed as service instances.
Each instance offers the same service and is exposed via the Load Balancing Service,
which in turn offers a service endpoint (Fig. 4.1). Requests through the endpoint
are then distributed over the instances.

The number of requests can vary greatly over time, and typically depends on
several factors. For instance, the time of the day in the time zone where most of the
end users are located, plays an important role. Typical lows in demand are observed
daily between two am and five am. In the event of varying throughput, a different
number of instances may be deployed and be exposed through the same endpoint.
Moreover, at any time, if an instance stops accepting requests, a new instance may
be deployed in place.

Architecture of the Fredhopper Cloud Services

Each service instance offers the same service and is exposed via Load Balancer end-
points that distribute requests over the service instances. Fig. 4.1 shows a block
diagram of the Fredhopper Cloud Services.

Load Balancing Service The Load Balancing Service is responsible for dis-
tributing requests from service endpoints to their corresponding instances. Cur-

1https://www.fredhopper.com/
2en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling

https://www.fredhopper.com/
en.wikipedia.org/wiki/Scalability#Horizontal_and_vertical_scaling

120 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

Service EndpointService Endpoint

Infrastructure

Platform Service

Service
Instance

Load Balancing Service

Monitoring/
Alerting
Service

Service Endpoint

Service
Instance

Service
Instance

Service
Instance

Deployment Service

Service APIs

Fredhopper
Cloud
Service

Cloud
Provider

Consumes Provides

CustomersCustomers

Figure 4.1: The architecture of the Fredhopper Cloud Services

rently at Fredhopper, this service is implemented by HAProxy (www.haproxy.org),
a TCP/HTTP load balancer.

Platform Service The Platform Service provides an interface to the Cloud En-
gineers to manage customer information, deploy and manage service instances associ-
ated to the customers, and associate service instance to endpoints (load balancers).
The Platform Service takes a service specification, which includes a resource con-
figuration for the service, and creates and deploys the specified service. A service
specification from a customer determines which type of service is being offered, the
number of service instances to be deployed initially for that customer, and the kinds
of virtualized resources on which the service instances should be deployed.

Deployment Service The Deployment Service provides an API to the Platform
Service to deploy service instances (using a dedicated Deployment Agent) onto speci-
fied virtualized resources provided by the Infrastructure Service. The API also offers
operations to control the life-cycle of the deployed service instances. The Deploy-
ment Service allows the Fredhopper Cloud Services to be independent of the specific
infrastructure that underlies the service instances.

Infrastructure Service The Infrastructure Service offers an API to the De-
ployment Service to acquire and release virtualized resources. At the time of writ-

www.haproxy.org

4.5. CASE STUDY: DEVOPS-IN-THE-LOOP 121

ing the Fredhopper Cloud Services utilizes virtualized resources from the Amazon
Web Services (aws.amazon.com), where processing and memory resources are ex-
posed through Elastic Compute Cloud instances (https://aws.amazon.com/ec2/
instance-types/).

Monitoring and Alerting Service The Monitoring and Alerting Service pro-
vides 24/7 monitoring services on the functional and non-functional properties of the
services offered by the Fredhopper Cloud Services, the service instances deployed by
the Platform Service, and the healthiness of the acquired virtualized resources.

If a monitored property is violated, an alert is raised to the Cloud Engineers via
emails and SMS messages, and Cloud Engineers can react accordingly. For example,
if the query throughput of a service instance is below a certain threshold, they
increase the amount of resources allocated to that service. For broken functional
properties, such as a run-time error during service up-time, Cloud Engineers notify
Software Engineers for further analysis. Fig. 4.3a shows a visualization of monitors
in Grafana, the visualization framework used by ABS.

Human in the Loop

A dedicated team of Cloud Engineers is in charge of the day to day operation of
the Fredhopper Cloud Services. Cloud Engineers keep track of alerts raised by the
monitors and the value of monitored metrics over time. Based on their interpretation
of this information, using their domain knowledge, Cloud Engineers decide if, when
and how to scale up, down or restart services instances and Virtual Machines. Manual
scaling rather than auto-scaling is used, as any bug or imprecision in an auto-scaling
approach may have disastrous consequences:

1. Automatically scaling up too much jeopardizes the continuity of the business:
the infrastructure provider charges running Virtual Machines.

2. Automatically scaling down too much may break the Service Level Agree-
ment(s) (SLAs) between Fredhopper and customers. In the most extreme case,
the web shop of a customer may become unavailable, resulting in financial and
reputation damage.

The Cloud Engineers must take into account many factors when deciding if, when
and how to scale. Most importantly:

• The target QoS values for service metrics specified in the SLA between Fred-
hopper and the customer.

• Logical and resource requirements on the deployment3.

• General business KPIs.

3A deployment associates service instances to Virtual Machines

aws.amazon.com
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

122 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

Finding scaling actions resulting in a deployment satisfying all above desiderata, and
applying them at the right time is a challenging task due to several reasons.

SLAs traditionally are informal natural language documents, not represented at
the software level. Thus, metrics tracked by the monitoring system (i.e., memory
consumption), are not directly related to SLAs between Fredhopper and its cus-
tomers. The Cloud Engineer must manually infer a relation between a combination
of the metrics from the monitoring system (typically lower-level), and the metrics in
the SLA (typically higher-level, aggregated at the customer level).

Synthesizing a deployment satisfying all logical and resource requirements is a
computationally complex task for Cloud Engineers. Even taking only the resource
requirements into consideration, it is an instance of the NP-hard multi-dimensional
multi-knapsack problem, where the items are service instances (whose weights are the
resource requirements for the service, like the amount of memory needed, minimal
speed of CPU, etc), and the knapsacks are virtual machines. Logical requirements
must also be taken into account. For example, which service instances should be co-
located on the same VM, and which to deploy on a dedicated VM? For example, the
Query service requires the presence of the Deployment service to function properly.
Another logical requirement is to scale with multiple VMs simultaneously in different
available zones (locations) in each region. This is mandated by most infrastructure
providers to be eligible for compensation for faulty VMs.

In the next section we describe how HITL simulation of ABS models can be used
to improve the above practice of Cloud engineers.

4.5.1 The tool

Our tool-suite for HITL simulations of Cloud services integrates several different
tools.

• The SAGA tool [Boer and Gouw, 2014] was tweaked for monitoring SLA met-
rics and the Grafana framework visualizes the metrics

• The SmartDeployer [Gouw et al., 2016] for synthesizing deployment actions

• A logreplay tool for replaying real-world log files

• The new Haskell ABS RT backend for real-time simulations.

We discuss below how each of these tools was exploited to contribute to the support
for realistic HITL simulations.

We defined a new layered declarative generic framework in ABS which captures
various monitoring concepts from QoS and SLAs to lower-level metrics, metric
policies, and listenable and billable events. This framework exploits the SAGA tool
for the declarative specification of service metric functions which are used to formalize
SLA’s. A service metric function is defined by a mapping of (time-stamped) event
traces to values which indicate the different levels of the provided quality of service.
These events represent client interactions with an endpoint of an exposed service
API. Each monitor captures a single metric, and based on the value of that metric,

4.5. CASE STUDY: DEVOPS-IN-THE-LOOP 123

suggests scaling actions to improve that metric. The MonitoringService periodically
polls the registered monitors at a user-configured interval to retrieve its suggested
scaling actions. An await duration (1,1) statement is used to advance the clock and
determine which monitors to poll at the current time.

Our tool-suite further integrates SmartDeployer [Gouw et al., 2016] for the for-
malization of deployment requirements, and the automatical derivation of an ex-
ecutable (in ABS) provisioning script that synthesizes a deployment satisfying all
specified requirements. By further integrating SmartDeployer actions into the exe-
cutable, SLA-level monitors generated by SAGA, we have a formalized model that
automatically suggests appropriate scaling actions at the right time: when the values
of the SLA metrics give rise to it.

The simulation itself consists of replaying a log file recorded by the actual system
on the ABS model of the system. The logreplay tool is responsible for firing at
appropriate times a HTTP API call (as explain in section 3.2.5) to the running
simulation for each request recorded in the log file. These requests will trigger ABS
code that contains Cost annotations (Listing 4.2), which has the effect of the real-
time simulation as defined for the ABS RT backend.

Bool invoke(Int request){
print (”Executing request in service :”+ serviceId);
[Cost : cost(request)] reqCount = (reqCount + 1);
return True;
}

Listing 4.2: ABS method that process each incoming request from the log-file

This model includes automatically generated monitors in ABS which integrate
the declarative specification of service metric functions of SAGA and the provisioning
scripts of SmartDeployer. In the simulation, Cloud engineers can then interactively
select the scaling actions recommended by the different monitors and thus acquire
realtime knowledge of their consequences. In general, these selections requires specific
domain knowledge which includes knowledge of past behavior. For simplicity, Cloud
Engineers can interact with a running HITL simulation via an HTML/Javascript
graphical user interface; a live screenshot is shown in Fig. 4.2. This interface makes
also use of the HTTP API (Listing 4.3) extension as implemented in the HABS
backend, for fetching the metric history and recommendations.

{ // ... main block header omitted
[HTTPName:”monitoringService”] IMonitoringService ms

=new MonitoringService();
[HTTPName:”monitor1”] IDegradationMonitor dm

=new DegradationMonitor(deployer1);
ms!addMonitor(Rule(5000,dm)); // registers a new monitor
[HTTPName:”queryService”] IMonitoringQueryEndpoint ep

=new MonitoringQueryEndpoint(loadBalancerEndPoints,dm);

124 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

println (”Endpoints set up. Waiting for requests ...”);
}

Listing 4.3: The main ABS block exposing the FRH services through the
HTTP API.

Figure 4.2: The GUI of the HITL framework intended for training Cloud
Engineers.

This model-based approach of ABS and its toolset can also be used by the Cloud
Engineers as a semi-automated support system: the Engineer still interacts with the
Fredhopper Cloud Services to perform at the right time the desired scaling actions
suggested by the framework. To achieve this the HTTP API can be used to forward
queries in real-time from the production system to the ABS monitors, whereas the
CloudProvider interface deploys actual IaaS virtual machines. Hence to allow the
Cloud Engineer to engage in simulating real-world scenarios, or simply to interact
with the system in a meaningful manner, we believe it is crucial that the simulation
executes in real-time.

4.5.2 Benchmark

The FRH case study and its ABS model (≈ 2.000 lines of code4) forms the basis
of our experimental results. We focus on the following metric, which is part of the
SLA negotiated between Fredhopper and its customers (the exact percentages are
not fixed, they can be negotiated by customers):

4The source code for the FRH model is at http://github.com/abstools/habs-frh

http://github.com/abstools/habs-frh

4.5. CASE STUDY: DEVOPS-IN-THE-LOOP 125

(a) Original degradation from production system

(b) Haskell simulation of the degradation when simulating the orig-
inal log

(c) Erlang simulation of the degradation when simulating the orig-
inal log

Figure 4.3: Degradation in the production system and as simulated on different
backends

“Services must maintain 95% of the queries with less than 200 millisec-
onds of processing time, and 99% with less than 500 milliseconds, sub-
tracting the 2% slowest queries.”

Initially, our experiments were focused on the FRH case study behavior when
simulating its model (expressed in ABS) without any human intervention. A pro-
visioning script generated by SmartDeployer automatically instantiated all services
of the Cloud Architecture (Fig. 4.1), requested suitable VMs from the CloudProvider

126 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

and deployed the various kinds of Service instances shown in the diagram on it. For
the QueryService, a minimal setup was used with a single instance (co-located with
a DeploymentService instance) deployed to an Amazon m4.large VM. The input to
the simulation was a real-world log file of a particular customer with length of 4
minutes and 30 seconds, coming from a single production VM (of type m4.large).
Fig. 4.3a visualizes the Service Degradation of that log file (customer names are
anonymized); We then proceeded with simulating the FRH system on the Haskell
and Erlang backends of ABS, inputted with the same exact log and using the same
deployment scenario.

The simulation of the FRH model on the HABS backend took 4 minutes and 30
seconds to complete, which matches the log’s length and encourages us to believe
that the simulation is done in real-time. The output of the simulation on the HABS
backend is shown in Fig. 4.3b. There is a deviation that can be seen when comparing
it to the original graph of Fig. 4.3a: the HABS output reports higher degradation
than what would be expected from the real-world log. This can be attributed to three
causes; first, there is the overhead of processing the log file itself (network communi-
cating to the logreplay tool). Secondly, the simulation of the real-time measurements
of the log file involves sleep system calls, which dictates that any “sleeping” thread
will be re-activated no sooner than the specified time, but most likely later than
prescribed, which depends on factors such as backend implementation, hardware
configuration, or the workload of the particular model. Fortunately none of these
had great effect on the models we tested, and the reported degradation is negligibly
affected by this. The last cause which however has a larger effect on the degradation
is that the log file contains a certain number of concurrent requests (requests on
a single machine that were served concurrently in time). The recorded processing
time of the requests are translated into Cost annotations (taking into account the
resource capacities of the machine that has processed the request), and therefore the
concurrent execution of such requests in the simulation will further increase the sim-
ulated processing time of the individual requests. In general, the recorded processing
time of the individual requests includes the overhead of time sharing and as such do
not specify their “intrinsic” processing time. In practice we think one can obtain a
“correct” model by approximating these intrinsic processing time of the individual
requests by averaging over different log files and different deployment scenarios.

Moving on to the Erlang-ABS symbolic-time simulation, we observe slight in-
accuracies of the output (Fig. 4.3c) compared to the original graph. These inac-
curacies can be attributed to two reasons: first, the monitors act autonomously
(while (True) {await duration (1,1);...}), so they may uncontrollably advance the
symbolic time by themselves between HTTP calls of the logreplay tool; as a result
the graph is slightly “stretched” because of extra erroneous time advancements. We
propose two ways to mitigate this at the ABS language level: a) having a statement
every(intExp()){body}; which will register the body as a callback to be executed with
the period given or b) a statement await until (t); which will resume the process only
after the specific time given. In either case the two statements do not advance the

4.5. CASE STUDY: DEVOPS-IN-THE-LOOP 127

time by themselves. The other reason which leads to inaccuracies is that the concur-
rent requests of the log are processed sequentially (as opposed to Haskell) because of
practical difficulties of synchronizing an external tool that uses the real-world clock
(logreplay) and the Erlang-ABS runtime which uses the symbolic clock. Since, as
mentioned before part of the requests in the log happen to be concurrent, the resulted
degradation of the Erlang-ABS simulation may differ from the expected original.

The Erlang-ABS backend took 15min and 30 seconds to complete the simulation
of real-world 4min and 30 seconds of the log. This may be attributed to the fact that
the granularity of the request timestamps is per ms (as given in the log file). We could
speed it up by having a more coarse-grained (less accurate) timestamps. Further-
more, the Erlang-ABS backend does not use a (parallel) Discrete-Event simulation
runtime (called also as-fast-as-possible computer simulation) but a timed-automata
inspired runtime for the advancement of the clock, which requires a computationally-
heavier continuous global administration of the simulation. Given the reasons above,
the code for the monitors while True {await duration (1,1); ...} affects the execu-
tion speed. A way to mitigate this is again to have a coarser periodicity for the
monitors. Based on these experimental findings, we believe in general simulation
frameworks based on symbolic time are not suited for HITL simulations of Cloud
applications.

(a) No scaling - 200ms metric breaks SLA

(b) Performing a Scale-up after 1 minute

Figure 4.4: No-scaling versus Scaling during the Haskell simulation

To evaluate the HITL simulation of FRH case study, a training exercise was

128 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

carried out for the Cloud Engineers. Using our framework, we first visualized the
Service Degradation of a different real-world log file, but include the same Service
Degradation metric from the SLA as above. The deployment configuration used for
that customer was the initial default configuration used by the Cloud Ops team,
which provisions the minimum number of VM’s, and each VM has as few resources
as needed by the services running on the VM. In particular, aside from the Ser-
vice instances shared between different customers, such as the PlatformService and
LoadbalancerService, the non-shared initial default per-customer setup consisted of
one query service instance and a corresponding deployment service instance in ev-
ery availability zone (in the region of the customer), and those were deployed on an
Amazon VM with instance type m4.large.

Fig. 4.4a shows the resulting Service Degradation for that customer on this de-
ployment configuration. The graph shows that in the beginning, performance is low
(and Service Degradation is high). This is caused by the fact that after a service
is started, an initialization phase is triggered, and performance is (as expected) low
during this phase. After a few minutes, initialization finishes and the service degra-
dation metrics stabilize to around 20% queries slower than 200ms and 0% queries
slower than 500ms (subtracting the two percent slowest queries). This means that
while the target QoS as agreed in the SLA for the category “slower than 500ms” is
achieved, this is (by far) not the case for the category “slower than 200ms”.

After establishing that the initial default deployment configuration was not suf-
ficient to satisfy the SLA as agreed with that customer (on that real-world query
log file), the training exercise continued. The Cloud Ops were tasked with selecting
and executing appropriate scaling actions to mitigate the situation. The scaling ac-
tions could be selected through the ABS HTTP API, or in a very simple front-end
(Fig. 4.2).

During the training exercise, several different scenarios were trained; Fig. 4.4b
shows one scenario of the effect on the Service Degradation after the engineer de-
cided to scale up with two query services instances (and corresponding deployment
service instance) in two zones on a (simulated) Amazon m4.xlarge instance after one
minute (13:51) into the simulation. At time 13:54 the new machines have finished
initializing, and the services deployed on them have been started. After that time,
the 200ms metric quickly improves , and after about 25 minutes reaches the target
≤ 5% degradation.

The integrated tool suite described considerably simplified the task of the Cloud
Engineers in managing the day-to-day operation of the Cloud services. In particular:

• The support for real-time simulation was critical in providing a realistic train-
ing experience for the cloud engineers. It allowed the Ops to evaluate and view
metrics of the system and apply corrective actions to the system at the same
speed as they do in the production environment.

• The high abstraction level of the metrics captured by the ABS monitoring
framework enables SLA-based scaling, simplifying the decision process of the

4.6. RELATED WORK 129

Cloud ops in selecting the appropriate corrective scaling actions. Still, do-
main knowledge of the Cloud operator is crucial to properly “translate” their
interpretation of multiple (possibly conflicting) metrics over time into correc-
tive actions. The direct relation of the metrics to SLAs and business KPIs in
our tool suite eliminated the burden on the Cloud Ops to manually interpret
how traditional lower-level metrics (such as CPU usage, memory consumption)
relate to the higher-level SLA/KPI metrics.

• By suggesting to the Cloud Ops only a limited number of possible corrective
actions (synthesized by SmartDeployer), the number of choices the Cloud Op
has to take in real-time (i.e.: which and how many services to deploy, how to
link them, on what kind of VM to deploy them, etc) was reduced substantially.
Since the SmartDeployer actions are synthesized based on the deployment re-
quirements and Smartdeployer generates a corresponding provisioning script,
the numerous deployment requirements are satisfied automatically “by con-
struction”. However, the quality of the suggestions (actions) proposed by the
framework should be improved.

In principle, the suggested SmartDeployer scaling actions could be exploited for
a full auto-scaling approach, without any human intervention. We carried out initial
experiments, but it turned out to be very complex how to deal with different moni-
tors from heterogeneous sources that give conflicting scaling suggestions, taking into
account machine booting time, upcoming promotions from web-shops where peaks
in demand are expected, historic data, etc. Thus keeping the human in the loop
- the cloud engineers with their domain knowledge - still is crucial to optimize the
day-to-day management of services.

4.6 Related Work

There exists a variety of cloud simulation tools including CloudSim
[Calheiros et al., 2011], GreenCloud[Kliazovich et al., 2010], and iCanCloud
[Núñez et al., 2012]; although all of these tools offer finer-grained analysis (e.g.
network configuration and energy consumption in the Cloud) they rely on discrete-
event computer simulation engines, which do not permit live HITL intervention on
a runnning simulation. To the best of our knowledge HITL simulation of Cloud
services has not been investigated before. As already stated above, HITL simulation
allows Cloud engineers to acquire knowledge of the real-time consequences of their
decisions directly in an interactive manner.

The Timber language [Black et al., 2002] http://timber-lang.org is a Haskell-
like language but with strict semantics. It offers a limited form of concurrent ob-
jects with the extra feature of attaching baselines and deadlines to methods. The
execution is non-deterministic and according to the Chemical Abstract Machine
[Berry and Boudol, 1990].

http://timber-lang.org

130 CHAPTER 4. RESOURCE-AWARE MODELING IN HABS

The most known use of real-time in computing comes in the form of a real-time
operating system (OS). Such OSes (e.g. QNX, FreeRTOS) use certain schedulers to
maximize the responsiveness of the system, while minimizing any deadline misses:
these criteria are paramount in the world of embedded systems. A real-time OS,
compared to real-time language like ABS, operates on the level of system processes
(executable programs) and not inside a concurrent program itself, thus it may be
agnostic of any inner program characteristics.

Hardware description languages such as Verilog and VHDL and multicore simula-
tion tools such as Graphite and Sniper are used to also construct software that “talks”
about hardware. However their purposes are in contrast with the “resource-aware”
programming that we detail in this chapter. Specifically, whereas such languages fo-
cus more on the description, design, architecture and implementation of computing
hardware (e.g. CPUs, caches), the ABS tries to create models and simulations of
software that take explicit control and monitor its hardware (cloud) resources.

On the side of ABS, related work revolves around the extension of Stan-
dard ABS with real-time concepts [Johnsen et al., 2012] and its further refinement
[Bjørk et al., 2013] which adds language support for custom (user-defined) pro-
cess schedulers. This refinement permits the containment of the non-deterministic
scheduling of ABS processes inside the COG, programmatically; yet this is not
enough to make ABS programs reproducible (deterministic), because (hard/soft)-
deadline misses can still occur and more importantly there is no global — only local,
inside the COG — ordering of processes.

Chapter 5

A Distributed
Implementation of HABS

The IT industry, always looking for cutting operational costs, has been increasingly
relying on virtualized resources offered by the “Cloud”. Besides being more eco-
nomically attractive, the Cloud can allow certain software to benefit in security and
execution performance. For these reasons, software applications are steadily being
migrated to run on virtualized hardware, essentially turning cloud computing into a
hot topic among the software community.

Recent research has led to numerous methodologies, tools, and technologies being
proposed to help the migration and execution of software in the cloud, ranging from
(static) configuration management tools to (live) orchestration middleware, and from
simple resource monitoring services to the dynamic (elastic) provisioning of resources.
Unfortunately, the (so-called) DevOps engineers are now burdened with developing
and maintaining an extra logic for such cloud tools, besides the usual application
logic. These cloud tools may be best described as semi-automatic and it is often the
case that an engineer has to manually intervene to apply the desired configuration
and deployment of a cloud application.

These cloud applications are migrated unaltered: monolithic boxes of code which
are transferred from a non-cloud setting to the new cloud environment by the De-
vOps engineers. Such separation of the application from its execution is traditionally
believed to be an advantage, long before Cloud came to existence. However, one
would expect that with the introduction of the virtualized (dynamic) hardware of
the Cloud, and since software logic is inherently dynamic, an application could “be-
come aware” (as in Artificial Intelligence) and make use of its own computing power
for managing its cloud resources and deployment in an optimal way, and without
requiring constant administering of an engineer.

131

132 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

In this section, we aim to address the challenges of engineering cloud applica-
tions by introducing a “cloud-aware” programming language that provides certain
high-level abstractions for unifying the application logic together with its deploy-
ment logic in a single integrated environment, while in the same-time, hiding any
lower-level hardware and cloud-provider considerations. The language is intended
for DevOps engineers and (potentially) computational scientists who are responsible
for both the development and execution of software residing in the Cloud but would
rather focus more on the application’s logic than continuously manage its deploy-
ment. Applications written in the proposed language are christened “cloud-aware”
in the sense that they can actively monitor and control their own deployment.

The proposed language is based on the Abstract Behavioral Specification language
(ABS) that we introduced in chapter 2. We extend ABS with DC’s that serve as
a suitable abstraction over Cloud Virtual Machines and which allow the applica-
tion to distribute itself among multiple (provider-agnostic) computing systems. The
ABS developer writes code that can dynamically create, monitor and shutdown such
Deployment Components (Virtual Machines) and most importantly bring up new
objects inside them. To this end, an ABS cloud-application forms a cloud-aware
distributed-object system, which consists of a number of inter-VM objects that com-
municate asynchronously, while recording any failures that may happen in the cloud.

An implementation of this extension must be efficient and safe so that it can be
put in production code. For this, the Haskell backend of ABS (HABS) is chosen
for translating ABS code to Haskell intermediate code, which is again typechecked
and transformed to an executable by an external Haskell compiler. The choice of
Haskell was made mainly for two reasons: the HABS backend seems to be currently
the fastest in terms of speed and memory use (see Section 3.6.3, attributed perhaps
to the close match of the two languages in terms of language features: Haskell is
also a high-level, statically-typed, purely functional language. Secondly, compared
to the distributed implementation sketched in Java, the ABS-Haskell runtime utilizes
the support of Haskell’s lightweight threads and first-class continuations to efficiently
implement multicore-enabled cooperative scheduling. Java does not have built-in lan-
guage support for ABS’ algebraic datatypes; its system OS threads (heavyweight)
coupled with no support for continuations make it a less ideal candidate to implement
cooperative scheduling in a straightforward manner. On the distributed side, we de-
cided against layering our solution on top of Java RMI (Remote Method Invocation)
framework due to a lack of built-in support for asynchronous remote method calls
and superfluous features to our needs, such as code-transfer and fully-distributed
garbage collection.

We augment the HABS backend with support for Cloud-Haskell, a framework
for type-safe, fault-tolerant distributed programming in the Haskell ecosystem. The
implementation, although in its infancy, is already being tested in a real cloud en-
vironment, exhibiting promising results which are also presented. We further ex-
tend the (parallel) HABS runtime with support for Deployment Components that
provide a suitable abstraction of the Virtual Machines provided by the Cloud and

5.1. IMPLEMENTATION 133

which allow the application to distribute itself among multiple machines. The ABS
programmer can dynamically create, monitor and shutdown such Deployment Com-
ponents (Virtual Machines) and most importantly assign new objects to them. As
such, an ABS cloud-application consists of several inter-VM communicating objects,
effectively forming a distributed-object system which can control its own deployment
and still benefit from the (local) parallelism.

A Deployment Component (DC) is a minimal description of the computing re-
sources available to an ABS application (section 4.3). We propose to extend this
notion to allow any cloud resource that can properly be quantified (for example
memory, disk, network, etc). On the other hand, and in contrast to the original
specification, we restrict a DC to correspond solely to a Platform Virtual Machine
(VM) — indeed, the terms DC and VM are used interchangeably by our extension.
We call each deployed ABS application of a separate DC/VM, an ABS node. A
running ABS program on the cloud will effectively form a distributed network of
multiple inter-communicating ABS nodes.

5.1 Implementation

We extend the parallel HABS runtime with support for Deployment Components
that provide a suitable abstraction of the Virtual Machines provided by the Cloud
and which allow the application to distribute itself among multiple machines. The
ABS programmer can dynamically create, monitor and shutdown such Deployment
Components (Virtual Machines) and most importantly assign new objects to them.
As such, an ABS cloud-application consists of a bunch of inter-VM communicating
objects, effectively forming a distributed-object system which can control its own
deployment and still benefit from the (local) parallelism.

At runtime, each COG is a Haskell lightweight thread (with SMP parallelism).
The COG-thread holds a process-enabled queue, a process-disabled table, and a local
mailbox. Upon an asynchronous method call, a new process is created and put in
the end of the process-enabled queue; note that processes are not threads, they are
coroutines (first-class continuations) and thus can be stored as data. The COG
resumes the next process from the queue until it reaches an await (on a future
or a condition), where the process is suspended and moved to the process-disabled
table. Later, another process informs the COG (by writing to its mailbox) that the
await-condition is met; the COG will move back the process to the enabled queue.
This strategy avoids busy-wait polling the boolean await conditions of processes. For
more information, we refer to the section 3.5 where the runtime execution of HABS
is detailed.

Moving on to distributed part, the distributed communication of ABS processes
is realized by Cloud-Haskell [Epstein et al., 2011], which is a Haskell library for
type-safe, fault-tolerant distributed programming. The distribution model of Cloud-
Haskell resembles that of the Erlang programming language, with the difference being

134 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

that Cloud-Haskell has extra support for type-safe and version-safe message passing,
features that we also make very much use of in our Cloud Runtime extension. We
reuse the network transports and serialization protocols defined in Cloud Haskell for
the ABS transmitted data between Virtual Machines. Each COG-thread is accompa-
nied by a separate Cloud-Haskell thread (also lightweight) that listens for messages
in a public mailbox and forwards them to the local mailbox of its associate COG-
thread. This approach was chosen to firstly, avoid needless network-serialization be-
tween local communication and secondly, treat our distributed extension as optional
to our (previously SMP-only) Haskell backend. The resulting remote communica-
tion remains transparent to the user: new objects can be remotely created inside a
different machine and asynchronous calls are made to remote objects (living inside a
remote machine) without changing the syntax and semantics of the ABS language.

As we have seen previously in chapter 4, a minimal implementation of DC has
functionality for (1) shutting down the corresponding virtual machine and (2) prob-
ing for its average system load, i.e. a metric for how busy the system stays in a
period of time. We use the Unix-style convention of returning 3 average values of
1, 5 and 15 minutes. In the case of (1), a VM shutdown implies that its cloud
resources are eventually freed. Each kind of cloud infrastructure service carries its
own implementation of DC. The intention is that the user will not have to provide
such class implementations since the implementation of deployment components will
come bundled with class libraries for common cloud-backend technologies (Amazon,
OpenStack, Azure, etc).

The newly-created object will “live” in the specified DC. The annotated [DC: ..] new
behaves similar to the new keyword: it creates a new COG, initializes the object, and
optionally calls its run method. The annotation [DC:] new Class returns a remote
object reference, (also called a proxy object; o1 in the above example) whose methods
can be called asynchronously and which can passed around in parameters as normal.
Every remote object reference is a single “address” uniquely identified across the
whole network of nodes. Calls to [DC: ...] new will also (besides shutdown, load)
block until the VM is up and running. From a theoretical standpoint, a remotely-
spawned object must point to the same code (attributes and methods) as in a local
object.

5.1.1 Connection to Cloud infrastructure

To properly support resource-aware programming (letting an ABS model manage
and control its resources), when creating a new DC, a cloud provider is contacted in
the background (usually via an XML-RPC API) and asked to bring up a new VM
with the given characteristics. After the machine has booted, the caller replicates
itself (the current ABS application) by transmitting its machine code to the newly-
created machine. In case the cloud provider offers heterogeneous platforms (different
OS or CPU architecture), we instead transmit the ABS source code and compile it
in-place with our compiler toolset (that resides beforehand in the VM’s image). The

5.1. IMPLEMENTATION 135

new machine runs the transmitted ABS application and sends an acknowledgment
signal to its creator, which can now start computations to the new DC by spawning
new objects in it. The image of the virtual machine that is chosen is pre-defined (via
a specific tag name in the cloud infrastructure) and should come with the appropriate
Haskell and HABS compiler toolset already installed. Uploading the image is the
only manual step required by the cloud ABS user.

The creation of Deployment Components is done under the hood by contact-
ing the corresponding (cloud) platform provider to allocate a new machine, usually
done through a REST API. The executable is compiled once and placed on each
created machine which is automatically started as the first user process after kernel
initialization of the VM has completed.

Simply put, a DC corresponds to a single Virtual Machine having certain re-
sources which executes ABS code. We restrict the definition of DC to correspond
only to a Platform Virtual Machine (VM)1 residing inside the boundaries of a Cloud
infrastructure.

By having a common DC interface, the different cloud backends can agree on a
basic service, while still being able to provide additional functionality through sub-
interfaces and distinct DC-interfaced classes. Each DC-interfaced class implements
the connection to a distinct cloud provider (e.g. Amazon, Openstack). A code
skeleton of such a class follows, where the DC (VM) is parameterized by the number
of CPU cores and main RAM memory:

module StandardLibrary.SomeProvider;

data CpuSpec = Micro | Small | Large;
data MemSpec = GB(Int) | MB(Int);

class SomeProvider (CpuSpec c,MemSpec m) implements DC {
Unit shutdown() { /∗omitted∗/ }
Triple<Rat,Rat,Rat> load() { /∗omitted∗/ }

}

The implementer can expose other properties to DCs, such as, network, number
of IO operations, VM region location. A concrete implementation, which is omitted
for brevity, usually involves some high-level ABS logic coupled with low-level code
written in a foreign language (in our case Haskell). The average ABS user will not
have to provide such connections to the cloud, since we (the implementers) intend
to provide class implementations for most major cloud providers/technologies, in an
accompanying ABS library. With this approach, we lift the low-level API of the
cloud provider (usually XML-RPC) to a typed high-level API (e.g. CpuSpec and
MemSpec datatypes).

1A platform virtual machine “emulates the whole physical computer machine, often pro-
viding multiple virtual machines on one physical platform” (from Wikipedia

https://en.wikipedia.org/wiki/Comparison_of_platform_virtualization_software

136 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

Moving on, we create an object of the SomeProvider class by passing the number
of cores and memory measured in GBs as class’ formal parameters. The call to
new SomeProvider contacts the specific cloud provider in the background to bring
up a new VM instance from the pre-defined cloud image. The provider responds
with a unique identifier (commonly the public IP address of the created VM) which
is stored in the DC object. Finally, the machine is released by calling shutdown(),
making the DC object point to null.

DC dc1 = new SomeProvider(Large, GB(8));
future l1 = dc1 ! load (); // underscore infers the type
l1 = future l1 .get ;

dc1 ! shutdown();

The creation of a DC object reference is usually fast, since it involves a single
network communication between the current ABS node and the cloud provider. Still,
the underlying VM requires considerably more time to boot up and be responsive,
depending on factors such as provider’s availability, congestion and hardware. To
address this, we allow the creation of new DC objects to continue, but we require the
program to potentially block when executing the first operation of the newly-created
DC, as shown in the example:

DC mail server = new Amazon(..);
DC web server = new Azure(..);
DC db server = new Rackspace(..);
mail server ! load (); // will block if DC is not up yet

Whereas the development of ABS code is by-definition provider-dependent —
the user has to explicitly specify the class of the cloud provider —, the communica-
tion and interaction between the spawned remote objects is (in principle) provider-
agnostic. To this extent, an ABS user could write an ABS cloud application that
spans over multiple cloud providers and, most importantly, different cloud technolo-
gies.

The ABS user can create new Deployment Components (machines) just as creat-
ing objects (since DCs are modelled as objects). The DC class that is chosen dictates
what kind of machine will be created; we currently provide library support for 3
DC classes talking to 3 different providers: OpenNebula, Microsoft Azure and Local
(similar to Docker containers). The network communication is left to Cloud-Haskell
and is provider-dependent: OpenNebula and Azure with TCP and Local with in-
memory transport. We plan to extend our library with support for more (cloud)
infrastructure providers.

Currently we are investigating the migration of ABS processes between DCs
(machines); this can theoretically be achieved since ABS processes are merely data,
and thus can be serialized and remotely transferred (migrated) from machine to
machine.

5.1. IMPLEMENTATION 137

5.1.2 Serialization

ABS data must be serialized to a standard format before they can be transmitted
between DCs. The serialization of values of primitives and algebraic datatypes is
automatically done by Haskell. We serialize object/future references to proxy refer-
ences by serializing their Cloud-Haskell thread ID (network-unique) together with a
COG-unique ID, and leaving out their actual attributes/future results. Each asyn-
chronous method call is serialized to a static closure, i.e. a static code-pointer to the
method (known at compile-time and platform-independent) and a serialized environ-
ment of its free variables (method arguments and local variables). No kind of code
(source-, byte- or machine-code) corresponding to the method body is transferred.
All serializations described above are type-safe and version-safe, in the sense that we
include (in addition to the payload of an ABS datum) its serialized type signature
and the library-versions of any types involved; thus, we avoid decoding bugs because
of type and library-version mismatches.

Cloud Haskell code is employed for remote method activation and future reso-
lution: the library provides us means to serialize a remote method call to its ar-
guments plus a static (known at compile time) pointer to the method code. No
actual code is ever transferred; the active objects are serialized to unique identifiers
across the entire network and futures to unique identifiers to the caller object (sim-
ply a counter). The serialized data, together with their types, are then transferred
through a network transport layer (TCP, CCI, ZeroMQ); we opted for TCP/IP, since
it is well-established and easier to debug. The data are de-serialized on the other
end: a de-serialized method call corresponds to a continuation which will be pushed
to end of the process queue of the callee object, whereas a de-serialized future value
will wake up all processes of the object awaiting on that particular future.

5.1.3 Garbage Collection

In a local-only setting, all ABS-based values, i.e. ADTs, futures, objects are au-
tomatically garbage-collected by the underlying Haskell GC. However, in our dis-
tributed setting some object/future references may have to be transmitted outside
as proxy references, which results to the local ABS system garbage-collecting “too-
early”. An obvious solution would be to abolish automatic GC altogether, but that
would hinder the development of software applications, especially those supposed
to be long-running (as is the norm in cloud applications). On the other hand, in-
troducing distributed garbage collection to ABS would allow both local and remote
objects to be automatically GC’ed. The downside is that it is much more complex
for the user to reason about the GC-incurred performance penalty which may be
considerable. We chose a middle ground, where objects are by default GC-enabled
and only become disabled when they are remotely communicated over (to another
DC). The implementation has been straight-forward: a process appends the local ob-
ject reference(s) that are transmitted remotely to a locally-held list of GC-disabled
objects. This global list is held during the lifetime of the node, effectively surpassing

138 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

the Haskell’s garbage collector underneath. Our design choice was based on best
practice; we believe that a distributed cloud ABS application of many DCs would
contain a combination of a lot of local ephemeral objects, and only few long-lived
remote objects.

DCs, being special objects, are treated differently: when falling out of context,
they are automatically GC’ed. That does not mean that the attached VM is shut
down. The user that wants to shut down a DC but holds no reference to it any
more, has to contact a remote object residing there to return a reference to the DC
(with thisDC), or to shut it down on user’s behalf. If the executing program holds
(now and in the future) no reference to a DC and its objects, we consider its VM
unreachable and fallen out of scope of the ABS application.

Futures are garbage-collected in a publish-subscribe pattern: the caller of an
asynchronous method is a subscriber, while the callee is the publisher. When the
callee has finished computing the future, it “pushes” the resulting value to its caller
(the direct subscriber) and may now locally garbage-collect that value. A subscriber
that “passes over” a remote future reference to other nodes becomes an intermediate
broker with the responsibility to later also “push” that future value to all others
before it is allowed to locally garbage-collect it. This forwarding strategy avoids
unnecessary tracking and network communication between the initial node and all
(directly and indirectly) subscribed nodes.

5.1.4 Failures in the Cloud

In cloud computing, and in any distributed system in general, failures are
more frequent, mostly because of unreliable networks. Based on this fact, we
further extend ABS with proper support for extensible, asynchronous excep-
tions. At the language level, exceptions are pure expressions modelled as single-
constructor values of the ADT Exception , as detailed in section 3.2.1. To
define new exceptions the user writes a declaration similar to an ADT decla-
ration, e.g. exception MyException(Int, List<String>);. Our cloud exten-
sion predefines certain common “local” exceptions (e.g. NullPointerException ,
DivisionByZeroException) and cloud-related exceptions (e.g. NetworkErrorException,
DCAllocationException, DecodingException).

Normally, if an exception reaches the outermost caller without being handled, its
process will stop. We introduce a special built-in keyword named die that changes
this behaviour and causes an object to be nullified and all of its processes to stop.
With this in hand, a distributed application can easily model objects that can be
remotely killed:

interface Killable { Unit kill (); }
class K implements Killable { Unit kill() { die ; } }
Killable obj = dc1 spawns K();
obj ! kill ();

5.2. EXTENSION: SERVICE DISCOVERY 139

Note that like Cloud-Haskell and unlike (distributed) Erlang, if a network error
occurs between computing nodes, the connection will be dropped and not automat-
ically re-connected. Unlike Cloud-Haskell, there is currently no primitive operation
in HABS to allow the re-connection to a node after a network failure.

5.2 Extension: Service Discovery

Service discovery, the dynamic acquisition of a computing resource suitable to fulfill
a specific task or group of tasks (i.e. a service), can help to decouple parts of a large
distributed system. As such, service discovery is of interest to the Envisage case
studies since certain large, distributed system architectures can be modelled naturally
in this way. This section first briefly explains the basics of service discovery and lays
out the design criteria for integrating service discovery into the ABS language.

In its most basic form, we see a service as a computing entity suitable to fulfill
one or more specific tasks. Since in ABS tasks are modelled via method calls, it
makes sense to model services as ABS interfaces and implement them using ABS
objects. Note that in conventional object-oriented languages, objects and interfaces
might not be sufficient, but the ABS concepts of asynchronous calls, distribution
via deployment components, and safe parallel execution make ABS objects powerful
enough to become services.

We augment the feature of “Deployment Components” (DC) with the ability of
discovering available services offered by a DC. We adopt the notion of a service being
represented by an ABS interface.

The acquire , expose, and unexpose methods are added to the DC interface. Thus,
the DC interface becomes:

interface IDC {
Unit shutdown();
Triple<Rat,Rat,Rat> load();
A acquire<A>(A);
Unit expose<A>(A);
Unit unexpose<A>(A);

}

The newly-introduced methods are parametrically-polymorphic; the programmer
will instantiate their types when using them, as the following example:

{
DC dc1 = new NebulaDC(...);
MailService mail server ;
Fut<MailService> f = dc ! acquire(mail server);
mail server = f.get ();
mail server ! send mail (...);
}

140 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

The acquire method takes as input a “phantom object”. The object is called
phantom since the object’s contents or reference are not actually send; the object is
there only to give hints to the ABS compiler of what is the Interface we want the
acquired object to comply with. The phantom object can also be introduced with a
(nullary) declaration, as in the second line above: MailService mail server ;

The call to acquire makes a request to the DC, asking for a reference to an
(possibly remote) object that complies to the IDC interface/service. Upon processing
the request, the DC searches through its directory facility for object subscriptions
that support such an interface. If there is no search match, the DC will raise the
ServiceNotFoundException and record it in the future as a fault. If the match succeeds,
a reference to a complying object is returned. The returned object reference from the
call to acquire can then be assigned back to the phantom object or any other object.
This returned object reference is typed exclusively by the mentioned Interface and
the user cannot normally know which is the actual class name (class implementation)
behind it, unless this can be guessed through a method implementation.

An object can be subscribe to any DC’s directory facility through the expose
method. For example:

WebService ws = this;
dc ! expose(ws);

Accordingly, an object can be unsubscribed for some of its services/interfaces
with the unexpose method:

AdminService a = admin object;
MyInterface m = this;
dc ! unexpose(m);
dc ! unexpose(admin object);

Following the approach of phantom objects, the arguments to expose and unexpose
are type-checked with respect to the available interfaces that the object (class) imple-
ments. If the programmer omits such a phantom definition, the compiler will com-
pute the object’s principal interface (the object passed to acquire , expose, unexpose)
through type-checking. If the ABS compiler cannot compute such a principal inter-
face, it emits a type-checking error.

This peculiar design choice (of phantom objects) was made so as to not introduce
any backwards-incompatibilities (adding interfaces as first-class citizens) and further
more built-in keyword-statements. A further advantage is that the implementations
of acquire and (un)expose methods can vary between DCs and thus be specific to the
underlying service discovery technology of the cloud provider.

Two-times (un)exposing will not yield a runtime exception and will be silently
suppressed. Each DC keeps track of its own subscribed objects and automatically

5.3. EXPERIMENTS AND RESULTS 141

unsubscribes them in case they fall out of context, i.e. they have normally or excep-
tionally terminated.

5.3 Experiments and Results

We tested two instances of a real-world load-balancer: one with a static deployment
of workers, and an adaptive (dynamic) load-balancer with worker VMs created on-
demand based on how “well” the workers can keep up with incoming requests. Clients
submitted job requests (of approximately of equal size) to the balancer at a steady
rate; workers were distinct Cloud VMs that continuously computed the results for
their incoming job requests.

The static load-balancer case is a fairly straight-forward cloud ABS application,
consisting of 3 classes of LoadBalancer, Worker, and Client , exchanging asynchronous
method calls of job requests/results. The LoadBalancer runs the main block and
initially creates N number of Worker DCs (VMs) before starting to accept requests
and forwarding them to workers in round-robin. We ran this static deployment
against varying size (N=1..16) of worker VMs. The results of the runs are shown in
Figure 5.1(a) stripped from the initial boot time of VMs. What we can draw from
these results is that the completed jobs (per minute) nearly doubles when we double
the number of worker VMs until we reach 5 workers. After that, we still increase
the completed jobs but with a slower pace. This observation can be attributed to
the fact that a point is reached where there is not a significant benefit from adding
more worker VMs; the rate of job requests is always steady, thus worker VMs are
“slacking”.

We modified the static load-balancer to an adaptive version, that takes full ad-
vantage of the expressiveness of the cloud extension. The LoadBalancer creates now
only one VM initially. We accommodate the LoadBalancer with a HeartBeater ob-
ject which periodically retrieves the load from each worker in the VM “farm”. The
HeartBeater computes the average load of all VMs and if this average exceeds 80%, it
creates a new DC (VM), adds it to the current farm, and remotely spawns a Worker
in the new DC. We illustrate a particular run of this configuration in Figure 5.1(b)
(NB: VM boot times are not subtracted from the result). Each asterisk ∗ in (b) is
a point where the HeartBeater decides to create a new DC. This run stabilizes on
6 workers, which is a good approximation of maximum performance (according to
Figure 5.1(a)), and possibly a good choice if we took into account any VM costs. As
an extra, the HeartBeater could potentially shutdown machines if their load remained
small (under a threshold) for a certain time.

The tests were conducted on the SURF cloud-provider with OpenNebula IaaS, on
VMs with modern 8-cores, each with 8GB RAM and 20Gbps Ethernet. Interesting
to mention is that each worker can benefit from ABS multicore (SMP) parallelism.
A snippet of the HeartBeater follows with the full ABS code at our repository2:

2Upstream abs2haskell repository at http://github.com/bezirg/abs2haskell

http://www.surf.nl
http://github.com/bezirg/abs2haskell

142 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

class HeartBeater(List<Worker> farm, Balancer b) {
Unit beat() {

Rat avg = this.%∗\textit{computeLoads}∗)(farm);
if (avg > 80/100) {

DC dc = new NebulaDC(8,8192); // 8−core, 8GB RAM
Worker w = dc spawns Worker();
farm = Cons(w,farm);
b ! updateFarm(farm); } } }

0 5 10 15

10

20

30

worker virtual machines

co
m

p
le

te
d

-j
ob

s/
m

in

0 20 40

10

20

timeminutes

co
m

p
le

te
d

-j
ob

s/
m

in

Figure 5.1: (a) Static deployment of VMs (b) Adaptive Deployment over
time

For future work we are considering additions both at the language and runtime
level. At the language level, it would be beneficial to include, besides the system load,
other metrics such as memory, disk usage, object count, process count, exceptions
raised (as partly done in the cloud simulation of Section 4.5). In this way, an ABS
application would enhance its monitor and cloud-control logic. In a different direc-
tion, we plan to work on adding a basic service discovery mechanism to the standard
library of ABS, as proposed by section 5.2, i.e. by extending the DC interface with
two extra methods: an acquire(Interface obj) method that returns a reference to a
remote object implementing the provided Interface ; an expose(Interface obj) that
subscribes the passed object together with its current interface-view to the service
registry of the DC.

At the system level, we are first interested in expanding our library support
for other common cloud providers (such as Amazon EC2, OpenStack) and sec-
ondly providing user authentication for the cloud infrastructure. Besides the cur-
rent open (peer-to-peer) topology of DCs we want to add support for other cloud
topologies, such as provider-specific, slave-master, or supervision topologies – a

5.4. CASE STUDY: DISTRIBUTED PREFERENTIAL ATTACHMENT143

crude solution to topologies would be to introduce to the DC interface a method
List<DC> neighbours() that lists all ABS nodes residing in the same private cloud
network. In a different direction, we consider extending our virtualization technol-
ogy support. With the introduction of micro-kernels (see the Xen hypervisor and
unikernels), the cloud user no longer needs an OS underneath the application/ser-
vice. By packaging the application into the kernel itself, the startup time of the
VM is greatly improved, as well as its management and distribution. The Haskell
Lightweight Virtual Machine (HaLVM) is a promising technology in this direction
that allows the user to: “run Haskell programs without a host operating system”.
Likewise, containers (e.g. Docker), with its OS-level virtualization, would allow us
to offer a more fine-grained control of deployment.

5.4 Case Study: Distributed Preferential At-
tachment

We ran the ABS-Haskell implementation of the PA algorithm by varying the graph
size, on a distributed cloud environment kindly provided by the SURF foundation.
The hardware consisted of identical virtual machines interconnected over a 10Gbps
ethernet network; each Virtual Machine (VM) was a a single-core Intel Xeon E5-2698,
16GB RAM running Ubuntu 14.04 Server edition. The runtime execution results are
shown in Fig.5.2; the execution time decreases while we add more VMs to the dis-
tributed system, which suggests that the distributed algorithm scales. However, even
with 8 Virtual Machines the implementation cannot “beat” the execution time of one
VM running PA sequentially; to achieve better performance, we may need to include
more VMs. The reason for this can be attributed to the significant communication
overhead, since each worker will send a network packet for every request call made.

On the other hand, the memory consumption (Table 5.1) is more promising:
a larger distributed system requires less memory per VM. For example with the
largest tested graph size, a distributed system of 8 VMs requires approx. 2.5 times
less memory per VM than a local system. This allows the generation of much larger
PA graphs than would otherwise fit in a single machine, since the graph utilizes and
is “distributed” over multiple memory locations.

To improve the execution performance and time scaling, we further refined our
approach to solving the PA problem by combining multiple request messages in a
single TCP segment; this change increases the overall execution performance by
having a smaller overhead of the TCP headers and thus less network communication
between VMs, and better network bandwidth. In another (orthogonal) direction,
we could utilize the many cores of each VM to have a parallel-distributed hybrid
implementation in ABS-Haskell for faster PA graph generation, but this is left for
future work.

This new improved version of the distributed PA algorithm is implemented as well
in distributed HABS, [Bezirgiannis and Boer, 2016], with small high-level changes

http://www.xenproject.org/
http://corp.galois.com/halvm
https://www.docker.io/

144 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

Total number of VMs
Graph size 1 2 4 8
n = 106, d = 3 306 423 313 229
n = 106, d = 10 899 1058 644 411
n = 107, d = 3 1943 2859 1566 874
n = 107, d = 10 6380 9398 4939 2561

Table 5.1: Maximum memory residency (in MB) per VM.

Total number of VMs
Graph size 1 2 4 8 16
n = 106, d = 3 306 266 212 155 114
n = 106, d = 10 899 1028 547 354 221
n = 107, d = 3 1943 3242 1603 967 621
n = 107, d = 10 6380 9668 6702 3611 1905

Table 5.2: Maximum memory residency (in MB) per VM (refined approach).

to the model. Beside higher level of abstraction at the programming level thanks
to our proposed improvement, the distributed runtime system provides more than
6x speedup performance compared to the same implementation without using the
improvement, presented in [Azadbakht et al., 2017a]. The results of the refined ap-
proach are illustrated in Fig. 5.3. The distribution overhead increases the execution
time for two machines, which is compensated by the parallelism achieved through
adding more VMs. We managed this time to achieve positive speedup compared to
a sequential algorithm implementation of one local machine, when using greater or
equal to 8 virtual machines for distributing workload. As shown in the new memory
results of Table 5.2, it is still the case that the memory consumption decreases by
adding more VMs, which enables generating extra-large graphs which cannot fit in
centralized-memory architectures.

5.5 Related Work

With the introduction of the Cloud, a plethora of cloud technologies and tools have
appeared in the software community. We distinguish two categories of technologies
related to our work: distributed-programming languages and cloud middleware.

5.5. RELATED WORK 145

5.5.1 Distributed programming languages

Erlang is one of the first distributed-oriented languages that next to the canonical
message-passing communication, offers distinct features, such as hot-code loading
and binary serialization of arbitrary closures — thus the capability to transfer them
over the wire. This comes with a cost in safety since the serialized Erlang data are
untyped and usually unversioned. The Akka framework brings distributed actors to
the Scala language. Although Akka provides a rich library and toolkit, it currently
lacks a cloud-aware API. At runtime The Java RMI (Remote Method Invocation) is
a library bundled in the Java platform for communication between remote objects.
The product pioneered in areas such as bytecode downloading and distributed-GC.
The method invocation is strictly synchronous (the caller has to wait for the remote
method to finish) and thread-unsafe. JADE[Bellifemine et al., 1999] is an active
distributed multi-agent system also built in Java; agents are more expressive than
actors at the expense of program complexity and, possibly, performance.

5.5.2 Cloud middleware and management

Ubuntu JuJu is a tool primarily for scaling and orchestrating a system’s deployment
on the cloud. Juju also comes with a GUI for modelling and visualizing a cloud
deployment and saving it to a “recipe” for later reuse. It is usually accompanied
by a configuration-management tool (such as Puppet) for the provisioning of cloud
machines. CoreOS is a container-based OS that provides service and configuration
discovery. It can be thought as a low-level infrastructure, primarily targeted to sys-
tem administrators, for managing system services across a cluster of cloud machines,
The Aeolus research project has built various tools that can derive an optimized
deployment from the constraint-based model of a desired deployment, and automat-
ically deploy that derivation. Finally, general SaaS supported by cloud providers
eases the migration of existing software to the cloud and its automatic scaling of
deployment. Albeit dynamic, a SaaS deployment can only vary on the CPU con-
sumption, whereas our proposal would allow a much more expressive deployment
that can depend on arbitrary application logic.

http://erlang.org
http://akka.io
http://jujucharms.com
http://coreos.com
http://www.aeolus-project.org/

146 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

Figure 5.2: Performance results of the distributed PA in ABS-Haskell for
graphs of n = 106 nodes with degree d = (a) 3 , (b) 10 and n = 107 nodes
with degree d = (c) 3 , (d) 10.

5.5. RELATED WORK 147

Figure 5.3: Performance results of the refined distributed PA in ABS-Haskell
for graphs of n = 107 nodes with m = (a) 3 , (b) 10.

148 CHAPTER 5. A DISTRIBUTED IMPLEMENTATION OF HABS

Chapter 6

Conclusion and Future
Work

We have presented the modeling language ABS and its implementation, that tries to
engage in all the three problems of software-engineering, namely performance, secu-
rity and complexity. We more or less focused on execution performance, because we
believe that this is under-represented in the research field of modeling languages, and
formal methods in general. However, through our experiments and case studies we
did investigate on matters of complexity (e.g. the preferential attachment problem)
by manually proving the correctness of a subset of our implementation.

More specifically, in Chapter 3 we have presented a concurrent, object-oriented
language (ABS) and its compilation to Haskell using continuations. The runtime
utilized Haskell-GHC’ lightweight (green) threads to automatically benefit from any
multicore parallelism. The compilation to a subset of ABS is formalised in or-
der to establish that the program behaviour and the resource consumption are
preserved by the translation. Compared to the only other formalised ABS back-
end [Johnsen et al., 2010a] (in Maude), our Haskell translation admits the preserva-
tion of resource consumption, and as a side benefit, makes uses of an overall faster
backend.1 The performance that the backend promises has been shown through a
list of micro-benchmarks and real-world cases of the cache coherence protocol and
preferential-attachment implementations.

In Chapter 4, we integrate the timed extension of ABS into HABS with its real-
time characterization of the abstract time. The virtualized resources and systems
(deployment components) are also present in HABS as first-class citizens of the lan-
guage. We made use of these new modeling constructs to build an industrial case

1http://abstools.github.io/abs-bench keeps an up-to-date benchmark of all ABS
backends.

149

http://abstools.github.io/abs-bench

150 CHAPTER 6. CONCLUSION AND FUTURE WORK

study for the human-in-the-loop simulation of virtualized (cloud) services. Our initial
experimental results on the use of the presented tool-suite provides clear evidence for
the viability of human-in-the-loop (HITL) simulation of Cloud services for training
purposes. The training sessions themselves can further be used to provide feedback
to the underlying ABS models of the Cloud services and the monitors. Ultimately,
the resulting fine-tuning of these models may reach a level of maturity and confi-
dence that allows their deployment in the real-time monitoring and management of
the actual service instances. In general, we believe that HITL simulation of Cloud
services provides a variety of interesting and challenging research problems, for ex-
ample mining the log files to calculate an approximation of the “intrinsic” processing
time of the individual service requests, cancelling the effect of time sharing.

In Chapter 5, we presented an extension to the ABS language that permits the
management of an application’s own cloud-deployment inside the language itself.
We discussed the realization of such extension (by a Haskell transcompiler) and the
execution of an ABS cloud application (based on Cloud-Haskell). Results showed
that ABS can benefit from the extra performance that the Cloud offers. Moreover,
the extension gives to ABS the expression power it needs to fuse the application
logic with the application’s own (dynamic) deployment logic. A positive side-effect
of the proposed extension is that, ABS being primarily a modeling language, could
now be used to model also an application’s deployment. Indeed, such cloud-aware
software models could be simulated against different and dynamically-varying cloud
deployment scenarios. We believe that the cloud extension of ABS leads to new
opportunities for furthering the application of formal methods to cloud computing,
for example: specifying, verifying, and monitoring Service Level Agreements (SLA)
of software systems — with that being the overall goal of ENVISAGE, our current
research project. Indeed, we like to envisage software that is aware of its deployment
and thus can control it, while its users merely monitor its behaviour via SLAs signed
between the interested parties.

6.1 Future Work

There are multiple directions to take for improving in the future the HABS lan-
guage and runtime system: in the front of the parallel runtime library, the resource-
modeling and simulation, and/or the distributed part of the HABS framework.

The parallel version of HABS presented in Chapter 3 has been extensively studied
and tested through benchmarks, experiments and case studies. Also, a simplification
of the runtime library has been formally shown to preserve the correctness and re-
sources during the translation of a subset of ABS to the Haskell functional language.
However, in real execution we rely on the lower-level C-written GHC runtime sys-
tem, which we have little guarantees about. A solution to this would be to utilize an
approach of systematic testing, as done in [Walker and Runciman, 2015], to test if
our HABS runtime library maintains certain progress properties and guarantees by

6.1. FUTURE WORK 151

exhaustively testing the threading non-determinism.

Regarding the resource-aware modeling of ABS through the Timed-ABS exten-
sion and the simulation of cloud resources, an interesting area to investigate is the
support of ABS for discrete-event simulation. We envision a design of such added
support where methods correspond to discrete events of the simulation and method
calls are merely the “firing” of such events.In this regard, since the “firing” of events
happens at specific (as in discrete) time, each ABS method call has to be anno-
tated with a timestamp, for example [Time: t1] o!m1();. The method’s parameters
become arguments to such events and as such can be seen as events (instances of
events) themselves. Assuming that the events can be ordered (lexicographic order-
ing of method names) as well as their arguments (data-specific ordering) and since
we can provide a fixed ordering (across any successive executions of the same pro-
gram) of COG identities, we can guarantee the reproducibility of such discrete-event
simulations done with the timestamp-augmented extension of the ABS concurrent
language. For the implementation side (i.e. the simulation engine), there has been
extensive literature for the advancement of algorithms for executing such simulations;
two main categories of fast simulation-engine algorithms, which can also benefit from
parallel and distributed execution, have been established: that of conservative class
algorithms found in [Misra, 1986], and that of optimistic algorithms first proposed in
[Jefferson and Sowizral, 1985]. Still, however, there is no clear winner between those
categories which besides the common trade-off between execution time& memory, is
very much dependent on the specific model that is simulated.

The distributed runtime of HABS detailed in Chapter 5 may receive for the
future multiple optimizations that can make the distributed computing in ABS both
faster and more robust. As a first optimization, we consider the propagation of
futures to their holders. Currently, any resolved future has to be asked for its value
directly to its resolver (the method’s callee). Since future values are immutable,
a first optimization would be instead of contacting the resolver itself is to contact
the specific Deployment Component that passed the future onto the holder in a
propagation-like fashion. On a similar front, if the deployment component of the
resolver of the future fails (because of an exception or hardware error), the value
of the future will not be available to its holder anymore, even if its (immutable)
value has be computed (resolved). To solve this, we could introduce a way of many-
copy replication and caching of the future values among the members (Deployment
Components) of the distributed system. In this way, the holder of futures can fetch
their values even after the error of their original Deployment Components.

Finally, the distributed version of HABS would greatly benefit from experiment-
ing with a large computing scenario, involving perhaps a larger scale version of the
Preferential Attachment case study (with many computing nodes) or some analysis
of big-data; the ABS language is a good fit for expressing the concurrent aspects
of these analyses and, moreover, the management of the cloud infrastructure can
become easier with the cloud extension of ABS. A testing of such a large scale can
give us more confidence of the robustness and readiness of the distributed HABS

152 CHAPTER 6. CONCLUSION AND FUTURE WORK

platform.

Acknowledgements

I would like to thank my fiancée Joëlle who was always there for me. I also like
to thank my mother Kaiti, father Antonis, and sister Rina for supporting me from
abroad. Thanks goes to my “clean parents” (schoonouders) and Jeske for de gezel-
ligheid.

Finally, I want to thank some friends for being there for me before and during
my PhD: Charalampos Kiskinis, Christos (Ntempa) Raptis, Christos Orlis, Stergios
Gkatsis, Thomas Taskoudis.

153

Summary

The physical constraints in computer hardware manufacturing and the industry’s ea-
gerness to keep up with the Moore’s law, led to the establishment of multicore proces-
sors and (Cloud) distributed systems in our everyday use. To be fully utilized, these
technologies of “simultaneous” processing often require elaborate modifications to the
computer software. This has placed a large burden on the software-development side,
especially when also taking into account the ever-increasing demand for more fea-
tureful, thus likely more complex software. One particular method to tackle software
complexity is software modeling, which leaves out certain implementation details and
focuses instead on the functional correctness of the software. Yet, to gain full per-
formance from the aforementioned advancements in hardware, a model of software
should be aware of the hardware resources, at least in an abstract manner.

In this thesis, we strive to address this challenge by constructing a modeling lan-
guage to write software which can take advantage of recent hardware developments
(multicore, cloud) without compromising in its abstraction levels. Our language
is based on top of the Abstract Behavioral Specification (ABS), which is an exe-
cutable modeling language with a focus on cooperative-multitasking concurrency.
We translate programs written in our ABS-based language to Haskell, an established
functional programming language, since Haskell comes with built-in support for both
cooperative concurrency in the form of coroutines, and multicore parallelism through
lightweight threads of execution. Further, we formally prove the correctness as well
as the resource-consumption preservation of the translation of a subset of our lan-
guage to Haskell. To put our solution to test, we compare its performance to other
existing ABS-based implementations.

To enable software models take control of their computing resources, we extend
our language with certain constructs that abstract (virtualize) over the hardware.
This “resource-aware” language extension is packaged in a tool-suite for human-in-
the-loop simulation of Cloud services; such a live simulation can be used for training
DevOps engineers to the cloud environment of IT companies.

Finally, we provide an implementation of distributed communication and a con-
nection to the Cloud infrastructure, so that software models written in our language
can be executed as distributed applications. Because models are “resource-aware”,

154

155

they can programmatically monitor and control their own Cloud deployment. Our
implementation is the first realization of the earlier “Deployment Components” con-
cept of ABS to abstract over Virtual Machines of the Cloud and enable any ABS
application to distribute itself among multiple Cloud-machines.

Samenvatting

De fysieke beperkingen in de productie van computerhardware en het verlangen van
de industrie om de wet van Moore bij te houden, hebben gezorgd voor het gebruik
van multicore processoren en gedistribueerde systemen (Cloud) in ons dagelijks leven.
Deze technologien van “simultane” verwerking vereisen vaak ingrijpende aanpassin-
gen in de computersoftware om volledig te worden benut. Dit legt een zware last
op softwareontwikkeling, zeker als er rekening gehouden wordt met de voortdurend
toenemende vraag naar functionelere en waarschijnlijk complexere software. Een
van de methodes om softwarecomplexiteit aan te pakken, is door modellering van
software. Deze methode laat irrelevante implementatiedetails weg en legt daarbij de
nadruk op de functionele juistheid van de software. Echter, om de eerdergenoemde
verbeteringen in hardware optimaal te benutten, moet een softwaremodel bewust
zijn van de systeembronnen, in ieder geval op een abstracte manier.

In dit proefschrift proberen we deze uitdaging aan te pakken door een eigen
modelleertaal te ontwerpen. Deze taal genereert software die kan profiteren van re-
cente hardware ontwikkelingen (multicore, cloud), zonder afbreuk te doen aan zijn
abstractieniveau’s. Onze taal is gebaseerd op de Abstract Behavioral Specification
(ABS). Concurrency in deze modelleertaal focust op de coperatieve multitasking.
Programma’s geschreven in onze ABS-gebaseerde taal worden vertaald naar de func-
tionele programmeertaal Haskell, vanwege de ingebouwde ondersteuning in Haskell
voor zowel de coperatieve multitasking in de vorm van coroutines, als het multicore
parralelisme door lichtgewicht uitvoeringsthreads. Daarnaast bewijzen we formeel
zowel de juistheid van de vertaling naar Haskell als het behoud van de resource
consumptie na vertaling in een deel van onze taal. Om onze oplossing te testen,
vergelijken we zijn prestatie met andere bestaande ABS-gebaseerde implementaties.

Om softwaremodellen in staat te stellen om de controle over hun computing-
bronnen te nemen, breiden we onze taal uit met verschillende constructies die een
abstractie maken over de hardware. Deze uitbreiding van de “bronbewuste” taal is
onderdeel van een nieuwe methode voor human-in-the-loop simulaties van Clouddi-
ensten. Zo’n simulatie kan gebruikt worden voor training van DevOps-ingenieurs in
de cloudomgeving van IT-bedrijven.

Tot slot bieden we een implementatie aan voor gedistribueerde communicatie en

156

157

een verbinding met de Cloud infrastructuur, zodat softwaremodellen die geschreven
zijn in onze taal uitgevoerd kunnen worden als gedistribueerde applicaties. Omdat
modellen “bronbewust” zijn, kunnen ze programmatisch hun eigen cloud resource
infrastructuur monitoren en beheren. Onze implementatie is de eerste realisatie van
het eerdere concept van “Deployment Componenten” van ABS die een abstractie te
representeren van Virtuele Machines in de Cloud en om elke ABS-applicatie in staat
te stellen zich te distribueren onder meerdere Cloud-machines.

158 SAMENVATTING

Bibliography

[Albert et al., 2015a] Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-
Zamalloa, M., Martin-Martin, E., Puebla, G., and Román-Dı́ez, G. (2015a). Re-
source Analysis: From Sequential to Concurrent and Distributed Programs. In
FM 2015: Formal Methods, volume 9109, pages 3–17. Springer International Pub-
lishing, Cham.

[Albert et al., 2015b] Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-
Zamalloa, M., Puebla, G., and Román-Dı́ez, G. (2015b). Object-sensitive cost
analysis for concurrent objects. Software Testing, Verification and Reliability,
25(3):218–271.

[Albert et al., 2014a] Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S.,
Gómez-Zamalloa, M., Martin-Martin, E., Puebla, G., and Román-Dı́ez, G.
(2014a). SACO: Static Analyzer for Concurrent Objects. In Tools and Algo-
rithms for the Construction and Analysis of Systems, Lecture Notes in Computer
Science, pages 562–567. Springer, Berlin, Heidelberg.

[Albert et al., 2012] Albert, E., Arenas, P., and Gómez-Zamalloa, M. (2012). Sym-
bolic Execution of Concurrent Objects in CLP. In Practical Aspects of Declarative
Languages, volume 7149, pages 123–137. Springer Berlin Heidelberg, Berlin, Hei-
delberg.

[Albert et al., 2015c] Albert, E., Arenas, P., and Gómez-Zamalloa, M. (2015c). Test
Case Generation of Actor Systems. In Automated Technology for Verification and
Analysis, Lecture Notes in Computer Science, pages 259–275. Springer, Cham.

[Albert et al., 2016] Albert, E., Bezirgiannis, N., Boer, F. d., and Martin-Martin,
E. (2016). A Formal, Resource Consumption-Preserving Translation of Actors to
Haskell. In Logic-Based Program Synthesis and Transformation, Lecture Notes in
Computer Science, pages 21–37. Springer, Cham.

[Albert et al., 2014b] Albert, E., Boer, F. S. d., Hähnle, R., Johnsen, E. B., Schlatte,
R., Tarifa, S. L. T., and Wong, P. Y. H. (2014b). Formal modeling and analysis
of resource management for cloud architectures: an industrial case study using
Real-Time ABS. Service Oriented Computing and Applications, 8(4):323–339.

159

160 BIBLIOGRAPHY

[Albert et al., 2013] Albert, E., Flores-Montoya, A., Genaim, S., and Martin-Martin,
E. (2013). Termination and Cost Analysis of Loops with Concurrent Interleavings.
In Automated Technology for Verification and Analysis, volume 8172, pages 349–
364. Springer International Publishing, Cham.

[Azadbakht et al., 2017a] Azadbakht, K., Bezirgiannis, N., and Boer, F. S. d.
(2017a). Distributed Network Generation Based on Preferential Attachment in
ABS. In SOFSEM 2017: Theory and Practice of Computer Science, Lecture
Notes in Computer Science, pages 103–115. Springer, Cham.

[Azadbakht et al., 2017b] Azadbakht, K., Bezirgiannis, N., and Boer, F. S. d.
(2017b). On Futures for Streaming Data in ABS. In Formal Techniques for Dis-
tributed Objects, Components, and Systems, Lecture Notes in Computer Science,
pages 67–73. Springer, Cham.

[Azadbakht et al., 2016] Azadbakht, K., Bezirgiannis, N., Boer, F. S. d., and Ali-
akbary, S. (2016). A High-level and Scalable Approach for Generating Scale-free
Graphs Using Active Objects. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing, SAC ’16, pages 1244–1250, New York, NY, USA. ACM.

[Barabási and Albert, 1999] Barabási, A.-L. and Albert, R. (1999). Emergence of
Scaling in Random Networks. Science, 286(5439):509–512.

[Bellifemine et al., 1999] Bellifemine, F., Poggi, A., and Rimassa, G. (1999).
JADE–A FIPA-compliant agent framework. In Proceedings of PAAM, volume 99,
page 33. London.

[Berry and Boudol, 1990] Berry, G. and Boudol, G. (1990). The Chemical Abstract
Machine. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’90, pages 81–94, New York, NY,
USA. ACM.

[Bezirgiannis and Boer, 2016] Bezirgiannis, N. and Boer, F. d. (2016). ABS: A High-
Level Modeling Language for Cloud-Aware Programming. In SOFSEM 2016:
Theory and Practice of Computer Science, Lecture Notes in Computer Science,
pages 433–444. Springer, Berlin, Heidelberg.

[Bezirgiannis et al., 2017] Bezirgiannis, N., Boer, F. d., and Gouw, S. d. (2017).
Human-in-the-Loop Simulation of Cloud Services. In Service-Oriented and Cloud
Computing, Lecture Notes in Computer Science, pages 143–158. Springer, Cham.

[Bijo et al., 2016] Bijo, S., Johnsen, E. B., Pun, K. I., and Tarifa, S. L. T. (2016). A
Maude Framework for Cache Coherent Multicore Architectures. In Rewriting Logic
and Its Applications, Lecture Notes in Computer Science, pages 47–63. Springer,
Cham.

[Bjørk et al., 2013] Bjørk, J., Boer, F. S. d., Johnsen, E. B., Schlatte, R., and Tarifa,
S. L. T. (2013). User-defined schedulers for real-time concurrent objects. Innova-
tions in Systems and Software Engineering, 9(1):29–43.

BIBLIOGRAPHY 161

[Black et al., 2002] Black, A. P., Carlsson, M., Jones, M. P., Kieburtz, R., and Nord-
lander, J. (2002). Timber: A programming language for real-time embedded sys-
tems. Technical report.

[Boer et al., 2007] Boer, F. S. d., Clarke, D., and Johnsen, E. B. (2007). A complete
guide to the future. In Programming Languages and Systems, pages 316–330.
Springer.

[Boer and Gouw, 2014] Boer, F. S. d. and Gouw, S. d. (2014). Combining Mon-
itoring with Run-Time Assertion Checking. In Formal Methods for Executable
Software Models, Lecture Notes in Computer Science, pages 217–262. Springer,
Cham.

[Boer et al., 2013] Boer, F. S. d., Gouw, S. d., and Wong, P. Y. H. (2013). Run-Time
Verification of Coboxes. In Software Engineering and Formal Methods, Lecture
Notes in Computer Science, pages 259–273. Springer, Berlin, Heidelberg.

[Brandauer et al., 2015] Brandauer, S., Castegren, E., Clarke, D., Fernandez-Reyes,
K., Johnsen, E. B., Pun, K. I., Tarifa, S. L. T., Wrigstad, T., and Yang, A. M.
(2015). Parallel Objects for Multicores: A Glimpse at the Parallel Language En-
core. In Formal Methods for Multicore Programming, Lecture Notes in Computer
Science, pages 1–56. Springer, Cham.

[Calheiros et al., 2011] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C.
A. F., and Buyya, R. (2011). CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23–50.

[Claessen and Hughes, 2011] Claessen, K. and Hughes, J. (2011). QuickCheck: A
Lightweight Tool for Random Testing of Haskell Programs. SIGPLAN Not.,
46(4):53–64.

[Clarke et al., 2010] Clarke, D., Helvensteijn, M., and Schaefer, I. (2010). Abstract
Delta Modeling. In Proceedings of the Ninth International Conference on Gen-
erative Programming and Component Engineering, GPCE ’10, pages 13–22, New
York, NY, USA. ACM.

[Clebsch et al., 2015] Clebsch, S., Drossopoulou, S., Blessing, S., and McNeil, A.
(2015). Deny Capabilities for Safe, Fast Actors. In Proceedings of the 5th Inter-
national Workshop on Programming Based on Actors, Agents, and Decentralized
Control, AGERE! 2015, pages 1–12, New York, NY, USA. ACM.

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). MapReduce: sim-
plified data processing on large clusters. Communications of the ACM, 51(1):107.

[Din et al., 2015] Din, C. C., Bubel, R., and Hähnle, R. (2015). KeY-ABS: A De-
ductive Verification Tool for the Concurrent Modelling Language ABS. In Auto-
mated Deduction - CADE-25, Lecture Notes in Computer Science, pages 517–526.
Springer, Cham.

162 BIBLIOGRAPHY

[Din et al., 2017] Din, C. C., Owe, O., and Bubel, R. (2017). Runtime Assertion
Checking and Theorem Proving for Concurrent and Distributed Systems. pages
480–487.

[Doménech et al., 2017] Doménech, J., Genaim, S., Johnsen, E. B., and Schlatte, R.
(2017). EasyInterface: A Toolkit for Rapid Development of GUIs for Research
Prototype Tools. In Fundamental Approaches to Software Engineering, Lecture
Notes in Computer Science, pages 379–383. Springer, Berlin, Heidelberg.

[Eisenberg, 2015] Eisenberg, R. (2015). System FC, as implemented in GHC.

[Epstein et al., 2011] Epstein, J., Black, A. P., and Peyton-Jones, S. (2011). Towards
Haskell in the cloud. In ACM SIGPLAN Notices, volume 46, pages 118–129. ACM.

[Flanagan and Felleisen, 1995] Flanagan, C. and Felleisen, M. (1995). The semantics
of future and its use in program optimization. pages 209–220. ACM Press.

[Giachino et al., 2016a] Giachino, E., Gouw, S. d., Laneve, C., and Nobakht, B.
(2016a). Statically and Dynamically Verifiable SLA Metrics. In Theory and
Practice of Formal Methods, Lecture Notes in Computer Science, pages 211–225.
Springer, Cham.

[Giachino et al., 2014] Giachino, E., Kobayashi, N., and Laneve, C. (2014). Deadlock
Analysis of Unbounded Process Networks. In CONCUR 2014 – Concurrency
Theory, volume 8704, pages 63–77. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Giachino et al., 2016b] Giachino, E., Laneve, C., and Lienhardt, M. (2016b). A
framework for deadlock detection in core ABS. Software & Systems Modeling,
15(4):1013–1048.

[Gibbons, 2007] Gibbons, J. (2007). Datatype-Generic Programming. In Datatype-
Generic Programming, Lecture Notes in Computer Science, pages 1–71. Springer,
Berlin, Heidelberg.

[Göri et al., 2014] Göri, G., Johnsen, E. B., Schlatte, R., and Stolz, V. (2014).
Erlang-Style Error Recovery for Concurrent Objects with Cooperative Scheduling.
In Leveraging Applications of Formal Methods, Verification and Validation. Spe-
cialized Techniques and Applications, Lecture Notes in Computer Science, pages
5–21. Springer, Berlin, Heidelberg.

[Gouw et al., 2016] Gouw, S. d., Mauro, J., Nobakht, B., and Zavattaro, G. (2016).
Declarative Elasticity in ABS. In Service-Oriented and Cloud Computing, Lecture
Notes in Computer Science, pages 118–134. Springer, Cham.

[Hewitt et al., 1973] Hewitt, C., Bishop, P., and Steiger, R. (1973). A Universal
Modular ACTOR Formalism for Artificial Intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, IJCAI’73, pages 235–245,
San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Holzmann, 2003] Holzmann, G. (2003). Spin Model Checker, the: Primer and Ref-
erence Manual. Addison-Wesley Professional, first edition.

BIBLIOGRAPHY 163

[Imam and Sarkar, 2014] Imam, S. M. and Sarkar, V. (2014). Savina - An Actor
Benchmark Suite: Enabling Empirical Evaluation of Actor Libraries. In Proceed-
ings of the 4th International Workshop on Programming Based on Actors Agents
& Decentralized Control, AGERE! ’14, pages 67–80, New York, NY, USA. ACM.

[Jefferson and Sowizral, 1985] Jefferson, D. and Sowizral, H. (1985). Fast concurrent
simulation using the Time Warp mechanism. In SCS Conf. Distributed Simulation,
pages 63–69.

[Johnsen et al., 2010a] Johnsen, E. B., Hähnle, R., Schäfer, J., Schlatte, R., and
Steffen, M. (2010a). ABS: A Core Language for Abstract Behavioral Specifica-
tion. In Formal Methods for Components and Objects, Lecture Notes in Computer
Science, pages 142–164. Springer, Berlin, Heidelberg.

[Johnsen et al., 2010b] Johnsen, E. B., Owe, O., Schlatte, R., and Tarifa, S. L. T.
(2010b). Validating Timed Models of Deployment Components with Parametric
Concurrency. In Formal Verification of Object-Oriented Software, Lecture Notes
in Computer Science, pages 46–60. Springer, Berlin, Heidelberg.

[Johnsen et al., 2006] Johnsen, E. B., Owe, O., and Yu, I. C. (2006). Creol: A
type-safe object-oriented model for distributed concurrent systems. Theoretical
Computer Science, 365(1):23–66.

[Johnsen et al., 2012] Johnsen, E. B., Schlatte, R., and Tarifa, S. L. T. (2012). Mod-
eling Resource-Aware Virtualized Applications for the Cloud in Real-Time ABS.
In Formal Methods and Software Engineering, Lecture Notes in Computer Science,
pages 71–86. Springer, Berlin, Heidelberg.

[Kiselyov and Laemmel, 2005] Kiselyov, O. and Laemmel, R. (2005). Haskell’s over-
looked object system. arXiv:cs/0509027. arXiv: cs/0509027.

[Kiselyov et al., 2004] Kiselyov, O., Lämmel, R., and Schupke, K. (2004). Strongly
typed heterogeneous collections. In Proceedings of the 2004 ACM SIGPLAN work-
shop on Haskell, pages 96–107. ACM.

[Kliazovich et al., 2010] Kliazovich, D., Bouvry, P., Audzevich, Y., and Khan, S. U.
(2010). GreenCloud: A Packet-Level Simulator of Energy-Aware Cloud Comput-
ing Data Centers. pages 1–5. IEEE.

[Knuth, 1973] Knuth, D. E. (1973). The art of computer programming. Addison-
Wesley series in computer science and information processing. Addison-Wesley
Pub. Co, Reading, Mass.

[Lanese et al., 2014] Lanese, I., Lienhardt, M., Bravetti, M., Johnsen, E. B.,
Schlatte, R., Stolz, V., and Zavattaro, G. (2014). Fault Model Design Space for
Cooperative Concurrency. In Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Specialized Techniques and Applications, Lecture Notes in
Computer Science, pages 22–36. Springer, Berlin, Heidelberg.

[Long et al., 2005] Long, Q., Liu, Z., Li, X., and Jifeng, H. (2005). Consistent code
generation from UML models. In 2005 Australian Software Engineering Confer-
ence, pages 23–30.

164 BIBLIOGRAPHY

[Magalhães et al., 2010] Magalhães, J. P., Dijkstra, A., Jeuring, J., and Löh, A.
(2010). A Generic Deriving Mechanism for Haskell. In Proceedings of the Third
ACM Haskell Symposium on Haskell, Haskell ’10, pages 37–48, New York, NY,
USA. ACM.

[McBride, 2000] McBride, C. (2000). Dependently Typed Functional Programs and
their Proofs.

[Misra, 1986] Misra, J. (1986). Distributed discrete-event simulation. ACM Com-
puting Surveys (CSUR), 18(1):39–65.

[Moreira et al., 2010] Moreira, T. G., Wehrmeister, M. A., Pereira, C. E., Pétin,
J. F., and Levrat, E. (2010). Automatic code generation for embedded systems:
From UML specifications to VHDL code. In 2010 8th IEEE International Con-
ference on Industrial Informatics, pages 1085–1090.

[Nakata and Saar, 2013] Nakata, K. and Saar, A. (2013). Compiling Cooperative
Task Management to Continuations. In Fundamentals of Software Engineering,
pages 95–110. Springer.

[Nipkow et al., 2002] Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Is-
abelle/HOL: a proof assistant for higher-order logic. Number 2283 in Lecture
notes in computer science. Springer, Berlin ; New York.

[Noll, 2001] Noll, T. (2001). A Rewriting Logic Implementation of Erlang. Electronic
Notes in Theoretical Computer Science, 44(2):206–224.

[Nordlander, 2002] Nordlander, J. (2002). Polymorphic subtyping in O’Haskell. Sci-
ence of Computer Programming, 43(2–3):93–127.

[Núñez et al., 2012] Núñez, A., Vázquez-Poletti, J. L., Caminero, A. C., Castañé,
G. G., Carretero, J., and Llorente, I. M. (2012). iCanCloud: A Flexible and
Scalable Cloud Infrastructure Simulator. Journal of Grid Computing, 10(1):185–
209.

[Palacios et al., 2015] Palacios, A., Vidal, G., and Herbstritt, M. (2015). Towards
Modelling Actor-Based Concurrency in Term Rewriting. Technical report, Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Ger-
many.

[Peyton Jones, 2003] Peyton Jones, S. L., editor (2003). Haskell 98 language and
libraries: the revised report. Cambridge University Press, Cambridge, U.K. ; New
York. OCLC: ocm51271691.

[Schäfer and Poetzsch-Heffter, 2010] Schäfer, J. and Poetzsch-Heffter, A. (2010).
JCoBox: Generalizing Active Objects to Concurrent Components. In ECOOP
2010 – Object-Oriented Programming, Lecture Notes in Computer Science, pages
275–299. Springer, Berlin, Heidelberg.

[Sirjani et al., 2004] Sirjani, M., Movaghar, A., Shali, A., Boer, D., and S, F. (2004).
Modeling and Verification of Reactive Systems using Rebeca. Fundamenta Infor-
maticae, 63(4):385–410.

BIBLIOGRAPHY 165

[Srinivasan and Mycroft, 2008] Srinivasan, S. and Mycroft, A. (2008). Kilim:
Isolation-Typed Actors for Java. In ECOOP 2008 – Object-Oriented Programming,
Lecture Notes in Computer Science, pages 104–128. Springer, Berlin, Heidelberg.

[Sulzmann et al., 2007] Sulzmann, M., Chakravarty, M. M., Jones, S. P., and Don-
nelly, K. (2007). System F with type equality coercions. In Proceedings of the
2007 ACM SIGPLAN international workshop on Types in languages design and
implementation, pages 53–66. ACM.

[Tarau, 2011] Tarau, P. (2011). Coordination and Concurrency in Multi-engine Pro-
log. In Coordination Models and Languages, Lecture Notes in Computer Science,
pages 157–171. Springer, Berlin, Heidelberg.

[Vidal, 2014] Vidal, G. (2014). Towards Erlang Verification by Term Rewriting. In
Gupta, G. and Peña, R., editors, Logic-Based Program Synthesis and Transforma-
tion, volume 8901, pages 109–126. Springer International Publishing, Cham.

[Walker and Runciman, 2015] Walker, M. and Runciman, C. (2015). Déjà fu: a
concurrency testing library for haskell. pages 141–152. ACM Press.

[Wong et al., 2012] Wong, P. Y., Albert, E., Muschevici, R., Proença, J., Schäfer, J.,
and Schlatte, R. (2012). The ABS tool suite: modelling, executing and analysing
distributed adaptable object-oriented systems. International Journal on Software
Tools for Technology Transfer, 14(5):567–588.

[Wong et al., 2015] Wong, P. Y. H., Bubel, R., Boer, F. S. d., Gómez-Zamalloa, M.,
Gouw, S. d., Hähnle, R., Meinke, K., and Sindhu, M. A. (2015). Testing abstract
behavioral specifications. International Journal on Software Tools for Technology
Transfer, 17(1):107–119.

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity
Management: Bridging the Crypto-
graphic Design of ABCs with the Real
World. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2015-01

A.J. van der Ploeg. Efficient Ab-
stractions for Visualization and Interac-
tion. Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory
Control in Health Care Systems.
Faculty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks: Flex-
ibility and Trustworthiness. Faculty
of Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’
Teamwork from within the IDE. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Grow-
ing Pains: Understanding Services and
Their Clients. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics
and Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Ob-
taining and understanding fixpoints in
model checking. Faculty of Mathematics
and Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV and TLS
security protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2015-12

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolution-
ary Computation to Cryptology. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2015-16

R.W.J. Kersten. Software Analy-
sis Methods for Resource-Sensitive Sys-
tems. Faculty of Science, Mathematics
and Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Science,
TU/e. 2015-19

D. Gebler. Robust SOS Specifications
of Probabilistic Processes. Faculty of
Sciences, Department of Computer Sci-
ence, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of Inter-
connects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems
for Healthcare. Faculty of Mathematics
and Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-
in-Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2016-05

Y. Luo. From Conceptual Models
to Safety Assurance – Applying Model-
Based Techniques to Support Safety As-
surance. Faculty of Mathematics and
Computer Science, TU/e. 2016-06

B. Ege. Physical Security Analysis
of Embedded Devices. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core De-
cision Diagrams. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-10

A.C. van Hulst. Control Synthesis us-
ing Modal Logic and Partial Bisimilar-
ity – A Treatise Supported by Computer
Verified Proofs. Faculty of Mechanical
Engineering, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics
of Requirements Process Improvement.
Faculty of Mathematics and Computer
Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-13

J.N. van Rijn. Massively Collab-
orative Machine Learning. Faculty
of Mathematics and Natural Sciences,
UL. 2016-14

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Effi-
cient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of
Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communica-
tion on the Internet and in the Inter-
net of Things (IoT). Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty
of Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Lim-
itations and Opportunities. Faculty of
Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography – Having your cake

and eating it too. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2017-08

A.M. Şut̂ıi. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific
Languages. Faculty of Mathematics and
Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Veri-
fication of Synchronisation Classes in
Java: A Practical Approach. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2018-01

S. Darabi. Verification of Program
Parallelization. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2018-02

J.R. Salamanca Tellez. Coequa-
tions and Eilenberg-type Correspon-
dences. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and
Computer Science, TU/e. 2018-05

H. Basold. Mixed Inductive-
Coinductive Reasoning Types, Pro-
grams and Logic. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-06

A. Lele. Response Modeling: Model
Refinements for Timing Analysis
of Runtime Scheduling in Real-time

Streaming Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and
programming. Faculty of Mathematics
and Natural Sciences, UL. 2018-08

	Introduction
	Why ABS
	Targetting Haskell
	Validation
	Outline

	Background: the ABS Language
	Data structures
	Functional code
	Side-effectful and OO code
	Type system
	Parametric Polymorphism
	Subtype polymorphism
	Variance
	Type Synonyms

	Module system
	Metaprogramming with Deltas
	Concurrency model
	History of ABS
	Comparison to other concurrent, modeling languages

	HABS: A Variant of the ABS Language
	Differences with Standard ABS
	Language extensions to Standard ABS
	Exceptions
	Parametric type synonyms
	Type Inference
	Foreign Language Interface
	Language extension for HTTP communication

	Compiling ABS to Haskell
	Compiler infrastructure
	Functional code
	Stateful code
	Object encoding
	Interfaces, Classes and Methods

	Typing ABS
	Subtyping

	Runtime execution
	Comparison to other ABS Backends
	Comparing language support and features
	Comparing runtime implementations
	Benchmarking the ABS backends

	Formal verification of HABS
	Restricting to a subset of ABS
	Operational Semantics
	Target Language
	Correctness
	Resource Preservation
	Experimental Evaluation
	Proofs and auxiliary results

	Case Study on Preferential Attachment
	Results

	Related Work

	Resource-aware Modeling in HABS
	Modeling time
	Modeling virtualized hardware resources
	Modeling systems
	A real-time implementation
	Comparison with symbolic-time execution

	Case study: DevOps-in-the-Loop
	The tool
	Benchmark

	Related Work

	A Distributed Implementation of HABS
	Implementation
	Connection to Cloud infrastructure
	Serialization
	Garbage Collection
	Failures in the Cloud

	Extension: Service Discovery
	Experiments and Results
	Case Study: Distributed Preferential Attachment
	Related Work
	Distributed programming languages
	Cloud middleware and management

	Conclusion and Future Work
	Future Work

	Summary
	Samenvatting
	Bibliography

