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Preface 

The research on PREGMATIC was financed by NWO, the Dutch Organization for Scientific 
Research; project number: 612-317-020. 

I was confronted with Extended Affix Grammars (EAGs) [Mei86] for the first time 
during an advanced course on compiler construction. For this course Jan Damen, Hans 
Langeveld and I had to prepare a presentation which we chose to do on the generation 
of programming environments as in the thesis of Reps [Rep84]. Bert Windau and I (the 
'gensde-twins') did our 'afstudeeropdracht'1 on the combination of Extended Affix Gram­
mars and programming environment generation, under the supervision of Hans Meijer. 
This established the basis for my future research on the subject. 

In the two years that I was an 'onderzoeker in opleiding'21 developed some techniques 
for the automatic generation of error detection3 [BLM89] in the compiler generator Pro-
grammar [Mei86]. Some of these result are included in this thesis. Subsequently I started 
working on the design and implementation of a generator for programming environments. 
I wanted to develop a complete system based on Extended Affix Grammars, without ex­
tending this formalism with all kinds of features intended to specify properties of the tools 
comprising the resulting environment. Furthermore, I was not prepared to restrict the class 
of languages for which an environment could be generated. In order to be able to process 
arbitrary languages I chose a very general parsing technique, viz. (left-corner) backtrack 
parsing. The efficiency of this type of parser is very poor. The parsers generated by Pro-
grammar [Mei86] use the affix-directed parsing principle, which is also incorporated in the 
parsers in the environments generated by PREGMATIC. The consequence is that the affix 
value propagation mechanism is also based on backtracking, which results in severe com­
putational overhead. However generality was preferred over efficiency during this research. 
Given a prototype of the resulting system efficiency can be tackled in a structured way. In 
particular the amount of backtracking can be restricted in both the parser and the affix 
value propagation. 

The ambiguity of a context-free grammar may give rise to several syntax trees and affix 
graphs for some input sentence. These trees are combined into one more complex tree 
which enables the user of the generated environment to work with this tree without being 
forced to disambiguate during the parsing process or to select one of the yielded syntax 
trees. 

1masters'9 thesis 
2 postgraduate research assistent 
3This research was also financed by NWO; project number: 125-30-04. 
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2 PREFACE 

Research on the generation of programming environments is only justified if it includes 
incrementality. Although a lot of research is being done in this field, it is still worthwhile 
to look at incrementality, certainly with respect to EAGs. The key element of Programmar 
[Mei86] was affix-directed parsing — I wanted to make this technique incremental. 

Given this framework I developed a prototype system called PREGMATIC4. It served 
as a basic framework in which adaptations and extensions were easily included. One of 
the extensions of PREGMATIC was a tool5 to influence the unparsing of the syntactical 
constructs of the context-free grammar. 

The specification used to test the prototype was that of a toy language PICO. Its 
specification can be found in Appendix C. Several other languages were used as a case-
study during the development of PREGMATIC. Only SASL is included in this thesis, see 
Chapter 7 and Appendix D. 

Chapter 1 gives an overview of existing systems and formalisms. Some details of PREG­

MATIC will already be introduced at some points in this chapter. The rest of the thesis 
gives a full description of various features of the system. 

In Chapter 2 EAG as a specification formalism is described. Various properties of EAGs 
are presented, as well as the notion of affix-directed parsing. The differences between the 
EAG-formalism as used for generating compilers and transducers, and the EAG-formalism 
as used for generating programming environments will be pointed out. 

Chapter 3 describes the implementation of EAGs. Because a rather unusual type of 
parser is used a lengthy description of this parser and its derivation from the specification 
formalism is given. The process of building the syntax tree and the corresponding affix 
graph is also described. The concept of the affix graph is formalized and a number of 
routines are defined which are necessary for the description of the evaluation method. 
Incrementality is still not taken into consideration in the description of this method. 

In Chapter 4 the structure of the generated environments is described. The user-
interface is explained together with the derivation of some language dependent character­
istics, such as templates and placeholders. This chapter concludes with a description of the 
method in which the unparsing rules are derived and of the tool provided for modifying 
the unparsing of a single language construct. 

In Chapter 5 the incremental features of a generated programming environment are 
discussed. The recognition of placeholders, syntactic incremental reparsing and incremental 
extension of the type checking mechanism incorporated in the environments are discussed. 
This chapter concludes with a number of measures for increasing the efficiency of type 
checkers. 

Chapter 6 is rather independent of the rest of the text. It discusses execution tools 
which could be included in the environments generated by PREGMATIC. 

In Chapter 7 an EAG specification describing the language SASL is presented. It 
describes a number of interesting language features such as the famous offside rule (i.e., 
block structure is defined by indentation), and complex expressions. 

4The name PREGMATIC was suggested by Franc Grootjen, the first four letters stand for PRogramming 
Environment Generator. 

6The design and implementation of this tool was done by Paul Jones. 
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Chapter 1 

Introduction 

The goal of the research discussed in this thesis was the development of a complete system 
for the generation of incremental interactive programming environments from Extended 
Affix Grammars (EAGs) [Wat74] called PREGMATIC. The present project is an extension 
of previous research in the context of Programmar [Mei86], a translator generator based 
on Extended Affix Grammars. We have investigated the possibility of using a given EAG, 
describing both the syntax and static semantics of a language, as a specification of a 
programming environment for that language. It is our ambition to safeguard the EAG 
writer from the need to adapt the language definition. 

Existing formalisms for the specification of programming environments are complex 
and they are strongly influenced by the problems of environment generation. With extant 
programming environment generators, usually based on attribute grammars or similar 
formalisms, it is still a major effort to construct an environment. All kinds of details have 
to be specified explicitly because most generators suffer from an ad hoc approach. 

This research is characterized by the fact that no properties which are unique to the 
subparts of the programming environment need be specified. 

Programming environments are not only interesting for programmers, but also for lan­
guage designers. For example, a programming environment generator is a useful tool to 
check whether the language under development is easy to use. If, however, the generation 
of an environment requires a lot of extra effort the language designer may refrain from pro­
totyping. The description should therefore be devoid of specifications which are exclusively 
needed for the generation of a programming environment. 

The goal of this research is the generation of programming environments, given a sim­
ple specification formalism. The resulting environment of course must be as efficient as 
possible. A major part of the research was therefore into the incremental behaviour of 
the generated environments and on the development of efficient parsing and propagation 
algorithms, given the constraints posed above. Nevertheless, efficiency was not the most 
important aspect of our research — generality was more important. We also wish to stress 
that most results can also be applied to formalisms similar to EAGs, such as attribute 
grammars. 

A system for generating programming environments consists of three main parts. 

9 



10 CHAPTER 1. INTRODUCTION 

1. The formalism to specify the language for which the environment is generated. 

2. The generator itself, which is actually the least interesting part. 

3. The generated programming environment. 

Our system PREGMATIC also consists of these three parts. Each of them will be briefly 
discussed in the next three sections. We conclude this chapter with a description of incre-
mentality. 

1.1 Specification formalisms 

Various formalisms have been proposed for the description of the programming languages 
for which programming environments must be generated. These specification formalisms 
must be expressive, since they have to be read and written by human beings, and they must 
be suitable for an automatic implementation. In this section we will restrict ourselves to the 
description of the tools for the specification of properties of syntax and type checking. Tools 
for the specification of the dynamic semantics of the language are described in Chapter 6. 

Most specification formalisms for generating programming environments are based on 
attribute grammars [Knu68], usually enriched with unparsing rules, tools for the definition 
of templates and a mechanism for the specification of the abstract syntax. For this reason, 
most of the resulting formalisms consist of several parts, such as a collection of syntax rules 
specifying lexical, concrete, and abstract syntax, a collection of semantic rules specifying 
static and dynamic semantics, and a collection of unparsing rules [Hee83, КІІ83]. Older 
formalisms tend to consist of several unrelated parts whereas more recent formalisms try 
to offer a more unified approach. There is no single uniform specification formalism from 
which all parts of a programming environment can be generated. 

In attribute grammars syntax and static semantics are defined by different means. The 
static semantics are usually defined by semantic functions using a programming language 
like С or Pascal. HAG [VSK89] is an attribute grammar based formalism in which this 
strong distinction is abolished. 

The specification formalism SSL of the Synthesizer Generator [RT89a] is strongly based 
on attribute grammars; we will give a short description of this formalism in Section 1.1.1. 
The specification formalism for the PSG-system [BS85, BS86] is also based on attribute 
grammars; however, instead of semantic functions the formalism uses context relations. 
This formalism will be discussed in Section 1.1.3. The specification formalism of the 
ALOE-system [Med82] is based on action routines derived from the semantic routines used 
in compiler generators such as YACC [Joh75]. We will discuss the specification formalism 
of this system in Section 1.1.2. 

A second way of specifying an environment is by means of an algebraic specification 
[BHK89]. The specification formalism ASF+SDF of GIPE [HKKL86, HSV86, КІІ91] is 
based on this principle. The ASF+SDF formalism will be discussed in Section 1.1.4. 

This is not an exhaustive list of specification formalisms but it represents the most 
important ways of specifying languages for the generation of programming environments. 
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There are a lot of very interesting formalisms which are not (yet) used for the specification 
of programming environments, such as HAG [VSK89]. 

Designers of programming environment generators are developing more and more com­
plicated specification formalisms to specify the various parts of the environments. We be­
lieve that most of the relevant information for the generation of these parts can be inferred 
from the specification of the input. Specification formalisms tend to become 'polluted' in 
several ways: 

• adaptations, for example left-factorization of the underlying context-free grammar; 

• extensions, for example extending the specification with templates. 

If these two can be avoided by using powerful generators the result will be more elegant 
specification formalisms. We will not give an exhaustive list of unnecessary adaptations 
and extensions but will give an example of each in Section 1.1.5. 

1.1.1 SSL 

The Synthesizer Specification Language (SSL) was developed for the Synthesizer Gener­
ator [R,T89a]. This system can be considered as the YACC [Joh75] of the programming 
environment generators. We will not give a detailed description of SSL but only a few 
characteristics. 

The context-free concrete syntax of the specified language must be LALR(l), because 
the parser generator is based on YACC [Joh75]. The core of the formalism is an attribute 
grammar — almost each detail of the environment is specified by means of attributes. SSL 
consists of several parts: 

• Rules for specifying the abstract syntax. 

• Rules for the specification of attributes and attribute equations, which also include 
the rules for defining the error attributes and the specification of the semantic func­
tions. 

• Unparsmg rtiles. 

• The specification of the rules for translating the concrete syntax into abstract syntax. 

• Specification rules for templates and transformations. 

The framework of an SSL specification is the abstract syntax. The facilities for explicitly 
defining this abstract syntax make the generated environment quite flexible. The Synthe­
sizer Generator [RT89a] is therefore also well-suited for generating transformation systems, 
such as the PROSPECTRA-system [KBHG+87] and the BMF-system [VBF90]. 
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1.1.2 The ALOE specification formalism 

The generator in the ALOE-system [Med82] generates programming environments includ­
ing template editors (see Section 1.3.1). 

It is not necessary to specify the concrete syntax of a language for this type of edi­
tors. ALOE specifications are therefore smaller than corresponding specifications in other 
formalisms. 

An ALOE specification consists of abstract syntax rules, priority rules, and unparsing 
rules. Besides these parts, which are more or less indispensable for the specification of 
the syntax of a language, the specification writer must also indicate for each node in the 
abstract syntax tree whether this node may be used as a 'file node', i.e. whether the subtree 
of this node may be stored as a file. Furthermore, the language name plus version number 
must be specified. These are necessary to guarantee that a file created with an editor 
is not processed by an editor generated for a different language or a different version of 
the same language. A file created by an ALOE generated editor contains not a textual 
representation of the program but a tree representation. 

The semantics, both static and dynamic, are defined by means of action routines. These 
action routines are specified in a special-purpose programming language, GC, a dialect of C. 
Each production rule is extended with a number of action routines describing the derivation 
of the static semantics. These routines are also used to manipulate the tree, cursor, focus, 
and to report errors. The specification writer may create new language specific action 
routines by writing them in GC using the ALOE Implementation Environment. 

1.1.3 PSG specification formalism 

The PSG specification formalism is a formal non-procedural definition language consisting 
of four parts, viz. the definition of: 

• the lexical, concrete, and abstract syntax of the language, 

• the context conditions, 

• the denotational semantics, and 

• the unparsing rules. 

There is a strict distinction between the different types of syntax. The lexical symbols in 
the specified language must be explicitly defined, but the lexical symbols for identifiers and 
integers, for example, are predefined. The concrete syntax rules are context-free grammar 
rules extended with transformation rules for the construction of the abstract syntax tree. 
Because the parser in a generated editor is an LL(l)-parser the concrete syntax must be 
LL(1). A node in the abstract syntax tree is defined by a 'class identification' and a 
'construction rule'. These nodes may have either a fixed number of subparts of different 
syntactic types, or a flexible number of subparts of the same type. 

Type checking in the PSG-system has the following characteristics: 
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• Arbitrary incomplete programs are type checked. 

• Type errors are detected as soon as possible. 

• Type checking is fully incremental. 

The evaluation mechanism used in the system can be characterized as ал attribute eval­
uation method method using unification and ignoring flow information. The specification 
writer need not have any knowledge of the underlying evaluation technique, he only has to 
define the context relations. These relations consist of three parts: 

• The 'scope- and visibility rules' which define which occurrences of an identifier in a 
program fragment are related to each other. There is a predefined notion of scope 
rules. 

• The 'data attribute grammar' which defines the abstract syntax of the attribute 
values used in the specified language. 

• The 'basic relations' which define the attribute assignments related with each node 
in the abstract syntax tree. They define the local context conditions. 

The PSG specification formalism has a strong modular structure which enables the 
specification writer to develop the syntactical properties of the language independently 
from the context conditions. 

1.1.4 ASF+SDF 

The ASF+SDF specification formalism is a combination of two independently developed 
formalisms: 

• ASF, Algebraic Specification Formalism, and 

• SDF, Syntax Definition Formalism. 

The ASF part of the formalism is used to define the type checking and dynamic seman­
tics of a language. ASF is a many-sorted algebraic specification formalism [BHK89, Hen91]. 
The implementation of the underlying algebraic specification is done by term rewriting. 
The formalism allows modular structuring of the specification. Specifications in ASF con­
sist of several subparts, including export, import, and parameters sections. 

The SDF part [HHKR89] serves to specify the context-free grammar of the language. 
Specification in SDF also contains several components, the three most important of which 
are: 

• lexical syntax, 

• context-free syntax, and 

• priority rules. 
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The context-free syntax defines the concrete syntax. The abstract syntax cannot be spec­
ified explicitly — the system will always derive the optimal abstract syntax tree — but 
the specification writer can influence this construction by postfixing the production rules 
with extra information relevant to the concrete structure of the abstract syntax tree. The 
abstract syntax tree can be only influenced slightly. The SDF part offers no other tools 
for the specification of the abstract syntax. The constructed abstract syntax tree can be 
changed by means of functions which the specification writer has to define in the ASF part. 

There are no possibilities for defining the unparsing of the abstract syntax tree; un-
parsers are generated automatically. During editing, the text is presented to the user in 
exactly the same form in which it was originally entered. 

A third striking difference is that the underlying context-free grammar is not restricted 
to the classes LL(1) or LALR(l), but may be an arbitrary (even ambiguous) context-free 
grammar. 

The formalism is thus quite different from the formalisms presented earlier. 

1.1.5 Pollution 

Most of the specification formalisms presented consist mainly of unrelated subparts. As well 
as requiring the explicit specification of various features of the programming environment 
the formalisms also suffer from unnecessary limitations. Our intention was to use a given 
specification formalism and derive a complete programming environment from it. The 
resulting environment will be less flexible than, for example, an environment generated by 
the Synthesizer Generator [ЛТВЭа], but the specification will be simpler and more uniform. 

Adaptations 

In some systems, the specification writer may have to rewrite the structure of the context-
free grammar before transforming it into a specification. Possible rewritings are left-
recursion elimination and left-factorization, if the parser is an LL(l)-parser. It is even 
possible that the specification writer may not be able to transform an arbitrary gram­
mar into a specification because the parser in the syntax-directed editor of the generated 
environment is not powerful enough. Generators based on YACC [Joh75] only accept spec­
ifications for which the underlying grammar is LALR(l). It is not possible to generate an 
environment for languages which do not satisfy this condition. It may thus be impossible 
to experiment with syntax-directed editing based on ambiguous context-free grammars, or 
with the parsing of languages requiring arbitrary lookahead, however interesting this may 
be. 

It may also be necessary to separate lexical and syntactical properties of the grammar. 
This separation is necessary in formalisms of systems based on LEX [Les75] and YACC 
[Joh75], because each of these tools has its own specification formalism. 

By using a different type of parser and a more powerful generator these adaptations 
become superfluous in PREGMATIC. 
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Extensions 

The specification writer may have to add text not directly related to the grammar in 
order to specify some part or tool in the environment, for example: templates, names of 
placeholders or unparsing rules. 

Most syntax-directed editors allow the use of templates. In the SSL specification for­
malism [RT89b] these templates are defined explicitly — the templates for the non-terminal 
< I exp I > are, for example, defined as: 

transform exp on "+" <lexpl>: Siini(<lexpl>,<|exp|>), 
on "-" <lexpl>: Diff(<lexp|>,<|exp|>), 
on "*" <lexpl>: Prod(<|exp|>,<|exp|», 
on "/" <lexpl>: quot(<|exp|>,<|exp|>) 

This kind of information is redundant, since it is also implicitly available in the context-free 
grammar. 

Again using a more powerful generator makes the specification of this information 
unnecessary in PREGMATIC. Even the abstract syntax need not be defined explicitly, 
however this may lead to a less flexible environment. 

1.2 Programming Environment Generators 
Programming environment generators can be considered as transducers from specifications 
to programming environments. The complexity of the transductions depends on the level 
of explicitness of the specification formalism. If each component of the environment is 
explicitly defined in the formalism a simple transducer suffices to generate the environment. 
Some of these systems nevertheless have interesting features with respect to programming 
environment generation. One system is GIPE [HK86] (Section 1.2.3). In Section 1.2.2 a 
few remarks will be made concerning the Synthesizer Generator [RT89a]. The remaining 
two systems mentioned, ALOE and PSG, are not discussed in this section. 

1.2.1 PREGMATIC 

The generators used in PREGMATIC are also transducers. There are two characteristics 
related to these transducers which may be worth mentioning. One of the prototypes of 
Programmar [Mei86] is used as transducer generator and as a result all generators in 
PREGMATIC are written as EAGs. The second one is that virtually all language specific 
properties of the environment are automatically derived from the specification. The gener­
ators automatically determine certain characteristics of the specification to be used during 
generation, see Chapter 4. 

1.2.2 Synthesizer Generator 

The Synthesizer Generator [Rep84, RT89a] is a generalization of the Cornell Program 
Synthesizer [TR81], a programming environment developed for a subset of PL/I. 
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The lexical scanner and the parser are generated using LEX [Les75] and YACC [Joh75] 
respectively. The remaining components of the environment are generated by simple hand­
written transducers. 

The SSL specification is extensively type checked and various properties of the speci­
fication are calculated. One of the tests performed on the underlying attribute grammar 
is the orderedness test. If the attribute grammar satisfies the ordered attribute grammar 
requirement [Kas91] a more efficient evaluation strategy can be used rather than the more 
general and less efficient algorithms described in [Rep84]. 

During the generation process the expressions in the specification are optimized by, 
among others: 

• constant folding, 

• short-circuited boolean expression evaluation, and 

• tail-recursion elimination. 

1.2.3 GIPE: ASF+SDF meta-environment 

The GIPE (Generation of Interactive Programming Environments) project [HK86] is a 
long term research project funded by the European ESPRIT programme. It has resulted 
in a common toolkit called CENTAUR [BCD+89] that has been used to construct various 
specialized systems. One of them is the ASF+SDF meta-environment [КІІ91] which we 
will discuss here. 

Most systems transform the complete specification into an environment. This is a 
rather time consuming process which is annoying if a complete new environment must be 
generated every time a small alteration is made in a specification under development. 

ASF+SDF meta-environment [КІІ91] has a few interesting characteristics with respect 
to this generation process. The system is strongly based on lazy and incremental program 
generation techniques. This approach considerably speeds up the generation process but 
may slow down the parsing performance. Detailed descriptions can be found in [HKR87, 
HKR90, HKR91]. Instead of generating a complete scanner and parser, only those parts of 
the parser which are really needed during the parsing of an input sentence are generated 
(lazy parser and scanner generation). Modifications of the specification only affect the 
relevant parts of the parser. The previous parser is not thrown away but it is incrementally 
adapted. These techniques are applied to the generated LR(0)-parsers. 

In earlier versions of the system the ASF part was translated into Prolog code [Hen91]. 
The ASF part is currently compiled into Lisp code [Wal91]; see Section 1.3.3. 

1.3 Environments 

We have described the specification formalisms and the programming environment gen­
erators without indicating exactly what must be specified and what must be generated. 
The notion of programming environments is extensive. An unrelated collection of language 
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independent tools (for example an editor, a debugger, and a compiler) available on an ar­
bitrary computer forms a programming environment. We are interested in environments 
consisting of integrated tools, where all tools use the same internal representation of the 
program and all tools are immediately available to the user of the environment. We will 
also restrict ourselves to environments which are incremental, this notion will be explained 
in Section 1.5. Furthermore, the environment must be interactive; batch-oriented devel­
opment of programs is uneconomical. The programming environment will be restricted to 
one language, for a different language a new environment must be generated. 

The typical components of an incremental interactive programming environment may 
be: 

• an editor, 

• a parser, 

• a type checker, 

• an unparser ('pretty printer'), 

• an interpreter, 

• a debugger, 

• a compiler, and 

• a library tool. 

The nucleus of the programming environment from the user's point of view is the syntax-
directed editor, but with respect to the internal operations it is the abstract syntax tree. 
All other tools are available through the editor. They must either be invoked explicitly 
or called implicitly. In the latter case the execution of the tool cannot be influenced by 
the user. Parser, type checker, and unparser do their job without intervention by the user. 
Both types of tools operate on the same abstract syntax tree. 

The various tools will be discussed in the rest of this section, and for each of them 
we will indicate on which systems they are available. The organization of this section is 
directed towards the tools in the generated environments, rather than towards the systems. 

1.3.1 Editor 

A syntax-directed editor is the key element of each environment. The adjective 'syntax-
directed' means that the editor has knowledge of the language for which it has been gener­
ated. This knowledge is used to prevent the introduction of errors, not only syntax errors 
but also type errors. The properties of the language are checked by means of a parser and 
a type checker, see Sections 1.3.2 and 1.3.3. 

We distinguish two different classes of syntax-directed editors [Log88]: template editors 
and text editors. Hybrid editors combine features of both. Template editing is strongly 
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based on the use of placeholders and templates A placeholder is a special symbol repre­
senting a non-terminal which is to be defined later A template is a framework, usually 
the right hand side of a production rule in the context-free grammar, in which the non­
terminals are again replaced by placeholders 

Template editors The editor generated by the ALOE generator of the GANDALF 
system [MF81, Med82] is an example of a template editor It is impossible to create 
syntactically incorrect programs with this kind of editor. The greatest drawback of 
template editors is that editing small-scale constructs like expressions is tedious It is 
also usually not easy to replace one construct by another, for example a while-loop by 
an until-loop, unless such a transformation is explicitly defined in the specification 

Text editors The class of text editors we are considering does not include editors such as 
vi or emacs Instead, text editors process the text almost immediately and transform 
it into a tree representation This type of editor allows the modification of program 
text at arbitrary places The user must only indicate which subpart of the text he 
wants to modify The editor used in the environment of the SAGA system [CK84] 
is a text editor The editor in the ELAN-programming environment [KW86] is also 
a text editor The disadvantage of such an editor is that the syntax-directedness is 
limited to the way in which the structure of the abstract syntax tree is shown to the 
user 

Hybrid editors The editors in the environments generated by the Synthesizer Generator 
[RT89a], the PSG-system [BS86], and the ASF+SDF meta-environment [Kli91] are 
hybrid editors A hybrid editor offers the possibility of using both template editing 
and text editing The disadvantages of the two types of editors can be circumvented, 
their advantages can be combined The level of integration between both editing 
modes vaxies for each system 

The editors generated by PREGMATIC are also hybrid editors They distinguish two 
different editing modes 

• The template edit mode, in which the user works with placeholders and templates 

• The text edit mode, in which the user is allowed to modify one syntactical construct1 

in his program 

1.3.2 Parser 

The parser in the programming environment is used whenever the user has modified a piece 
of program in text edit mode It will be implicitly invoked to parse the input sentence, and 
either builds an abstract syntax tree and corresponding (attribute) graph if the parsing 
was successful, or reports an error if the parsing failed Editors which do not support the 

A syntactical construct is a piece of program which is derived from some non-terminal 



13 ENVIRONMENTS 19 

text edit mode, for example the environments generated by the ALOE generator [Med82]] 

need no parser 
Generated environments usually use LALR(l)-parsers, but LL(l)-parsers are also used, 

for example in the environments generated by the PSG-system [BS86] Most programming 
languages can be described by these two types of grammars 

The use of a stronger type of parser may serve to increase the possibilities of the 
generated environment or to remove restrictions on the specifications The ASF+SDF 
meta-environment [Kli91], for example, uses a generalized LR-parser [Rek92] It can parse 
arbitrary (even ambiguous) context-free grammars 

The PREGMATic-system uses a left-corner backtrack parser (Section 3 1), which also 
makes it possible to work with ambiguous context-free grammars Furthermore, it en­
ables us to introduce a new kind of placeholders (Sections 1 4 and 5 4) and to experiment 
with affix-directed parsing in connection with incremental techniques The notion of affix-
directed parsing will be explained in Section 2 3 

1.3.3 Type checker 

A type checker is included in all three types of syntax-directed editors After an abstract 
syntax tree and the corresponding graph are constructed the program being edited is type 
checked by the type checker 

Most of the research in the area of programming environments is concerned with these 
type checkers, and concentrates on the development of efficient incremental type checkers 

Synthesizer Generator 

In [Rep84] optimal-time change-propagation algorithms were presented, which are incre­
mental extensions of attribute evaluation methods The type checkers generated by the 
Synthesizer Generator [RT89a] are based on these algorithms This system uses various 
incremental attribute evaluation methods If the attribute grammar in the SSL is ordered, 
an incremental ordered attribute grammar evaluator is used, which is more efficient than 
the algorithms presented in [Rep84] 

Various incremental attribute evaluators have been developed (an overview can be found 
in [Alb91a]) Initially, an attribute graph is constructed and evaluated As a result of an 
edit action a subgraph is replaced by a new subgraph and thus attribute values may have 
changed Consequently, the attributes of a number of graph nodes must be recalculated 
The main idea of these incremental attribute evaluators is that the number of graph nodes 
to be visited by the evaluator in order to restore consistency of the attribute graph is 
minimized 

PSG 

The type checkers generated by the PSG-system [BS86] are based on attribute grammars, 
context relations, and unification Because of the use of unification they are more powerful 
than the type checkers of environments based on incremental attribute evaluation 
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Rather than working with a single attribute value, the type checker works with sets of 
still-possible attribute values. This makes it possible to type check arbitrary incomplete 
programs. As soon as some set of attribute values becomes empty the type checker stops 
because a type error has been detected. 

The incremental behaviour of the type checker is obtained by attaching local relations 
to each tree node, which are only relevant for the subtrees of this node. 

ASF+SDF meta-environment 

The type checker in the environments generated by the ASF+SDF meta-environment 
[КІІ91] is based on a completely different evaluation strategy, it uses term rewriting in­
stead of attribute evaluation. The equations in the ASF part are translated to rewrite 
rules, which operate from left to right. A Prolog implementation of this mechanism is 
described in [Hen91]. A Lisp implementation is described in [Wal91]. 

Initially the type checker did not support incremental evaluation, because algebraic 
specifications are in general less suited to it. In [Meu90] a subclass of the algebraic speci­
fications is defined, viz. the 'conditional well-presented primitive recursive schemes' which 
are suited to incremental evaluation. A well-presented primitive recursive scheme is iso­
morphic to a strongly non-circular attribute grammar. The nodes in the abstract syntax 
tree are extended with attributes in which the values of reduced terms are stored. An incre­
mental attribute evaluation algorithm is used to determine which terms must be evaluated 
after a modification, and therefore which attributes must be re-evaluated. This algorithm 
is a modified version of the algorithm presented in [RTD83]. 

1.3.4 Unparser 

The unparser is responsible for transforming the abstract syntax tree into a readable textual 
representation. In most specification formalisms the unparsing is specified by means of 
special unparsing rules for each type of node in the tree. 

The unparser is a tree traversal algorithm which unparses each node in the tree accord­
ing to the rules specified. The unparsing may also depend on the space remaining on a line. 
The layout of the output produced cannot be influenced by the user of the environment 
unless he alters the unparsing rules and generates a complete new environment. 

In the ASF+SDF meta-environment [КІІ91] the unparser cannot be influenced at all by 
the user or the specification writer because the unparsing rules are automatically derived 
from the syntax definitions. 

The environments generated by PREGMATIC include a tool for modifying the unparsing 
of syntactical constructs, see Section 4.3.4. 

1.3.5 Interpreter and debugger 

Most systems for the generation of programming environments have a tool for the execution 
of the developed programs. A few even support the interactive debugging of programs. 
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Although the implementation in each system may be quite different, three major techniques 
for executing programs are used [Kai89]. 

1. Action Toutines, which are applied in the programming environments generated by 
GANDALF [HN86]. The .execution of a syntactical construct can be specified by 
means of an action routine, which will be stored in the corresponding tree node The 
execution of a program corresponds to the execution of the action routines in each 
tree node of the corresponding abstract syntax tree 

2. Attribute grammars are mostly used to describe the static semantics of a language 
using semantic equations. An intermediate code which will be executed by a language 
independent interpreter is necessary in order to describe the dynamic semantics. The 
Synthesizer Generator [RT89a] is based on this technique. 

In [WJ88] attribute grammars are extended with so-called gate attributes to make 
them suitable for the specification of dynamic semantics using the normal attribute 
evaluation techniques as much as possible. Description of dynamic semantics in ordi­
nary attribute grammars is impossible because of the cycles which may be introduced. 
The gate attributes in the modified attribute grammars of [WJ88] identify these cy­
cles. These gate attributes also ensure the use of two different evaluation techniques, 
viz. one for evaluating the attributes outside the cycles and one for evaluating at­
tributes within a cycle. 

3. Denotational semantics are used in the environments generated by PSG [BS86]. 

This list can be extended with a fourth strategy: the environments generated by ASF+SDF 
meta-environment [КІІ91] use term rewriting for the execution of the developed programs. 
The dynamic semantics of the language is specified in the equation part of the ASF+SDF 
formalism [Hen91]. Algebraic functions in the equation part are evaluated using term 
rewriting (Section 1.1.4). In Figure 1.1 we will give a small part of the ASF+SDF specifi­
cation of the dynamic semantics of the whilestatement. 

module eval 

exports 

"evs" "<" SERIES "," VALUE-ENV " ) " -> VALUE-ENV 

"evstat" "(" STATEMENT "," VALUE-ENV " ) " -> VALUE-ENV 

"eve" "(" EXP "," VALUE-ENV " ) " -> VALUE 

equations 

[Е Б] eve (Exp, Value-env) « f a l s e 

evstat (while Exp do Series od, Value-env) " Value-env 
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[Ev6] eve (Exp, Value-env) » true 

evstat (while Exp do Series od, Value-env) -
evstat (while Exp do Series od, evs (Series, Value-env)) 

Figure 1.1: whilestatement specification in ASF+SDF. 

In [Kai89] a combination of action routines and semantic equations yielding action 
equations is described. These action equations are used for both the static and dynamic 
semantics of a language. 

All strategies discussed so far, except for the ASF+SDF-approach, use techniques based 
on: 

• a list of instructions that has to be evaluated [Kai89], 

• abstract code which is executed by an interpreter [BS86, RT89a, NS91], or 

• an attribute graph which is visited by an evaluator and yields the evaluation of the 
program [WJ88]. 

If the code is abstract code, as in the second case above, two different strategies can be used. 
Either a language independent evaluator executes the abstract code, or the interpreter is 
specified within the formalism. 

In [NS91] the abstract code is the concrete code of the program. This concrete code 
is transformed into a predicate, which makes it possible to execute recursive syntactical 
constructs, such as the body of a loop, quite elegantly. Although they claim to be working 
without intermediate code, they are using the concrete code for this purpose. 

The key element of execution is again incrementality. Both interpreter and debugger 
must support the execution of incomplete programs and arbitrary program fragments. The 
execution of an incomplete program is stopped as soon as a placeholder is encountered and 
the editor is automatically invoked to enable the user to extend his program. 

A debugger is a more complex tool than an interpreter due to the interaction with the 
user of the environment. The user must be able to inspect the values of variables and to 
indicate which program fragments he wants to trace in more detail. A detailed description 
of the debugger generated by the PSG-system [BS86] can be found in [BMS87]. The 
debugger generated by the ASF+SDF Meta-environment [КІІ91] is described in [Tip91]. 

In Chapter 6 we will discuss various possibilities to execute programs in PREGMATIC. 

1.3.6 Libraries 

A library within a generated environment may be very handy in order to have simple 
facilities to store and retrieve program fragments, other than ordinary file-IO-facilities. 
Only the PSG-system [BS86] offers a language-independent library facility. 
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1.4 Placeholders 
We have discussed several types of syntax-directed editors in Section 1.3.1. The hybrid 
editor proved to be the most flexible one. We believe however that it can be made even 
more flexible. 

Editors generated by the Synthesizer Generator [RT89a] make it possible to edit the 
text of a single syntactical construct using text edit mode. This selected construct may 
contain several placeholders. The parser is called immediately after leaving the text edit 
mode. The changed program text is rejected if it still contains placeholders, because the 
parser cannot recognize these placeholders. Thus text containing placeholders created by 
the template facility of the editor cannot be recognized by the parser of the same editor. 

This inflexibility is caused by too sharp a distinction between text edit mode and 
template edit mode. Manipulating placeholders in text edit mode, other than replacing 
them by plain program text, is forbidden. It would be more elegant to allow the user to 
introduce placeholders in text edit mode. 

A placeholder, consisting of special open and close brackets enclosing the name of the 
replaced non-terminal, will be called a typed placeholder. We also introduce the untyped 
placeholder, a new kind of terminal symbol not associated with any specific non-terminal. 

The users of the editors generated by PREGMATIC are allowed to manipulate both typed 
and untyped placeholders in text edit mode. They can both be modified and inserted. This 
extension makes the text edit mode more flexible. 

1.5 Incrementality 

Research on generating programming environments is motivated by the exploration of the 
incremental behaviour of such environments. Most implementations of incremental systems 
are based on 're-using as much as possible', without consideration of its costs or whether 
storing all intermediate results is useful. However, there is a trade-off between re-use and 
recalculation. 

We can distinguish three cases: 

• the program is syntactically and static semantically correct, 

• the program contains a syntax error, and 

• the program is syntactically correct but contains some type error. 

With respect to incrementality the last case is particularly interesting. Systems such as the 
Synthesizer Generator [RT89a] will detect the type error and report it, but they will also 
build the corresponding abstract syntax tree and attribute graph because, after correcting 
the error, parts of the syntax tree might be re-used. This is a rather ad hoc solution. It is 
possible to build a unique abstract syntax tree and attribute graph because the underlying 
context-free grammar is not ambiguous. There is no guarantee that some part of this 
syntax tree can be re-used after correcting the error. 
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In EAGs and, more specifically, in systems based on affix-directed parsing a program 
is correct if it is correct with respect to both syntax and type checking. Only if both 
constraints are satisfied will the corresponding syntax tree and affix graph be constructed, 
the latter of which will also be consistently decorated. 

This does not imply that the user of the environment is forced to correct his erroneous 
programs. The erroneous program fragments will be included in the syntax tree, not as 
a subtree but as text. The realization of these ideas can be found in the Sections 4.2.1 
and 5.2.3. Correction of the error implies complete reparsing of the erroneous program 
fragment. 

The underlying context-free grammar may be ambiguous, but the affix-directed parsing 
eventually ensures that only one solution will be found. If the program text contains some 
type error this may prevent the affix-directed parsing mechanism resolving the ambiguity 
and thus several syntax trees could be built. In order to make the system workable one of 
these must be selected, which is as arbitrary as selecting the text oriented approach. 
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Extended Affix Grammars 

Extended Affix Grammars [Wat74] are a member of the family of two-level grammars. 
They are a direct offspring of two-level van Wijngaarden grammars [WMP+76]. EAGs 
are less general than van Wijngaarden grammars but can be implemented more efficiently. 
The version of EAGs used for PREGMATIC is an extended subset of the EAGs used for 
Programmar [Mei86]. 

EAGs are an extended form of affix grammars [Kos71], which were invented in 1962 by 
Koster and Meertens [MK62] to describe a subset of the English language. The extension 
from which they derive their name is the possibility of using affix expressions at parameter 
positions. 

In attribute grammars [Alb91b], attributes are either inherited or synthesized. In 
EAGs affixes are inherited and derived respectively. The inherited affixes are denoted 
by ">affix" and the derived ones by "affix>". The inherited affixes in the left hand 
side and the derived affixes in the right hand side of a production rule are called 'defining', 
the other ones are called 'applying' affix occurrences. 

Attribute grammars and EAGs are in fact strongly related. There are two main differ­
ences between the two formalisms. The first one is purely syntactical and has to do with 
the notation of the affixes. The attributes in attribute grammars are explicitly named and 
their values are transferred by means of assignations. The second difference is that in at­
tribute grammars the operations on the attribute values are performed by functions outside 
the formalism. In EAGs the domain of the affix values is strings. The only operations on 
these values are the equality test, concatenation and its inverse: splitting a string in several 
parts. It is possible to split an affix value by writing an affix expression at a defining affix 
position. One of the consequences of this symmetry of operations is that it is possible to 
leave out the flow symbols, viz. the ">"-symbol, in the specification of production rules. 

A tutorial on EAG can be found in [Mei90] and an example contrasting EAG with 
other two-level formalisms in [Kos91b]. 

25 
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2.1 aVc" as an E AG specification 

As an example we take the language L = {a n b n c n |n > 0}. The following eag can be 

developed for this language. 

For the sake of clarity we will use the term EAG for the formalism and the term eag 

when we refer to a particular specification in the EAG-formalism. 

anbncn: zero : : " " . 
as (η), 

be (η) , one : : " b " . 
cs (η) . 

η : : zero; 
as (zero) : . one + n. 
as (one + n a ) : 

"a" , na : : n. 
as (na). 

nb : : η . 
bs (zero) : 
bs (one + nb) : nc : n. 

" b " , 
bs (nb). 

cs (zero) : 
cs (one + n c ) : 

" c " , 
cs (nc) . 

While this eag does not show all characteristics of the formalism it is useful for the 

explanation of some of them. An eag can be split into two levels, see Figure 2.1. On 

the first level we only have the underlying context-free grammar. Grammar, rules, non­

terminals, and sets on the first level are extended with the notion 'hyper', if they are 

connected to the displays on the second level. Every notion describing something on the 

second level is prefixed by the notion 'affix'. 

The eag consists of four hyper rules (the rules in the left column) and six affix rules 

(the rules in the right column). 

The first hyper rule in the left column specifies the structure of the input sentence. It 

should consist of a string of a's, a string of b's, and a string of c's, the number of a's, b's, 

and c's should be equal. The second, third, and fourth hyper rule specifies each of these 

strings. The affix rules in the right column specify the domains used on the second level. 

In the example the domain of the affix values are strings consisting of b's. The number of 

a's, b's, and c's recognized in the input are unary counted. The empty string represents 

zero, whereas the string " b " represents one. The other rules in the right column describe 

arbitrary unary values. 

The hyper rules consist of either one alternative, for example anbncn, or more than 
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one alternative, for example as. An alternative of a hyper rule consists of a lefì hand side, 
for example anbncn and a nght hand side which consists of zero or more members. These 
members may be either terminals or hyper non-termmals. A terminal is, as usual, a string 
enclosed by double quotes, such as "a". A hyper non-terminal is a non-terminal which 
may be followed by a display, such as as (zero). A display is a sequence of one or more 
affix expressions. Each affix expression consists of affix terms and the operators + or *. An 
affix term consists of affix ¿еттштш/, affix non-termmal, affix set. The operator + is either 
a concatenation operator or an addition operator. In the example eag the + is used to 
concatenate string values. The *-operator, the tuple operator, can be used to build data 
structures. Both operators will be explained in Section 2.2.5. For example, one + na is 
an affix expression, but it may also be written as "b" + na, or as {b} + na where "b" is 
an affix terminal and {b} is an affix set respectively. The left hand side of a hyper rule 
consists of a hyper non-terminal. 

(n) 
(n) 

(n) 

'(zero) 
.(xme + na) 

(na) 

(zero) 
.(one + nb) 

zero 

one : 

η : : 

na : : 

nb :: 

ne : : 

: "b". 

zero; 
one + η 

η. 

η. 

η. 

(nb) 

(zero) 
.(tme + ne) 

(цс) 
second level 

first level 

Figure 2.1: Levels of an eag. 

As a notational extension, the hyper rule for bs may also be written as: 

bs (nbs): 
{b}*! (nbs). 
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The {b} in the right hand side of the hyper rule is a hyper set The postfix * ' of the set 
means that the longest possible sequence of b's must be recognized in the input (this will 
be explained in Section 2 2 2) The hyper sets must be followed by a display containing 
exactly one affix expression via which the recognized string will be returned 

An affix rule also consists of a left hand side, for example n, and one or more affix 
expressions, for example zero and one + η in η The affix non-terminal η could also be 
defined as 

η : : {b}*'. 

An affix rule defines the domain of the affix non-terminal in left hand side 
This description covers only the syntax of an eag but there is also some interesting 

semantics associated with an eag The consistent substitution constraint, which is de­
rived from the notion of consistent substitution in two-level van Wijngaarden grammars 
[WMP+76], demands that each occurrence of an affix non-terminal in an alternative of a 
hyper rule represents the same value The hyper non-terminals in the right hand side of 
the hyper rule anbncn are all extended with a display containing the affix expression η 
The consistent substitution constraint demands that each occurrence of η represents the 
same value This constraint could be formulated explicitly in the following way 

anbncn 

as (ans), 

bs (bns), 

equal (ans,bns), 

cs (ens), 

equal (bns,ens). 

where equal is a predicate occurrence A predicate is a kind of semantic function (the 
notion of predicates will be further explained in Section 2 2 1) This predicate equal is a 
so-called primitive predicate The hyper rule for cs may also be written as 

cs (n) : 

{c}*' (ncs), 

equally long (ncs, n). 

The hyper non-terminal equally long in the hyper rule cs is also a predicate but it can 
be defined within the formalism itself as 

equally long (>zero, zero): 

equally long (>"c" + res, one + ncs): 

equally long (res, ncs). 

The reason for the flow symbol (>) in the first affix expression of both displays will be 
explained in Section 2 2 1 
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2.2 Formal definition of EAG 

The formal definition of the EAGs as used in Programmar, Programmar-EAGs, can be 
found in [Mei86, Mor89]. It admits a number of extensions to the original EAG-formalism 
[Wat74]. We will give a formal definition of the variant of EAGs which we use for the gen­
eration of programming environments, PREGMATIC-EAGS, which differ from Programmar-
EAGs with respect to affix flow ала affix domain types. The eag presented in the previous 
section is a PREGMATIC-EAG. 

In the rest of this thesis the notion EAG stands for PREGMATIC-EAG. 
An eag consists of a affix grammar1, an (underlying) context-free grammar, and a 

set containing information about the non-terminal occurrences and their associated affix 
expressions. First we will describe the affix grammar; it defines the domains of certain 
affix non-terminals: 

GAG = (NA, TA, SA, PA) 

where 
NA is the finite set of defined affix non-terminals. 
ТА is the finite set of affix terminais. 
SA is the finite set of affix sets. 
PA is the finite set of affit rules: 

PACNAX{NAUTAUSAY 

As well as defined affix non-terminals NA there are free affix non-terminals, which are not 
defined. The set of these non-terminals is FA- VA is the finite set of all affix non-terminals, 

д = ΝΑ и FA- The intersection of the sets of free- and defined affix non-terminals should 
be empty. The notion of affix sets will be explained in Section 2.2.2. Given this affix 
grammar and the free affix non-terminals we are able to define affix expressions: 

АЕс{ АиТАи5АГ 

The (underlying) context-free grammar can be defined as: 

GCFG = (N,T,SH,P,B) 

where 
N is the finite set of non-termmals. 
Τ is the finite set of terminals. 
SH is the finite set of hyper sets. 
Non-terminals can be extended with displays containing affix expressions, this extension 
yields the hyper non-termmals. Η is the set of these hyper non-terminals. 

HcNxAE' 

For example, the hyper non-terminal hyper (meta + free + {set} + "terminal") is 
member of the set H. The notion of hyper sets will be explained in Section 2.2.2. 

Note that this affix grammar is different from the affix grammars introduced by Koster [Kos71]. 
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В is the initial hyper non-terminal. 

Given the sets of hyper non-terminals, terminals, and hyper sets we are able to define P, 

the set of hyper rules: 

PC H x(HuTUSHy 

Given the sets Η, N and A E we are able to define the hyper non-terminals more precisely: 

n(ae) € Я •<=>• η 6 N Л ае = aei,..., ae^n with ae, e AE 

MM represents the number of affix expressions associated with non-terminal M. Given 
this number Мм and the non-terminal M we are able to define the set К describing non­
terminal occurrences and their associated affix expressions as follows: 

К = {(x,tf,)\x S N} 

Given G AG, GCFG, and К we are able to define the full tuple representation of an eag. 

GEM = {NA, TA, SA, FA, PA, N, T, SH, K, P, B) 

In Appendix A we will give a complete eag for a representation of the EAG-formalism 
which incorporates a consistency check on the number of affix expressions associated with 
each hyper rule. 

As an example we will write the eag for the language a ^ c 1 1 given in Section 2.1 as a 
tuple. The hyper rule for bs will be replaced by the hyper rule with the hyper set in the 
right hand side. 

GEAG = (#І д~#{гвго,оп ,п 1па,пЬ,пс} І 

#7>#{"Ъ"}, 

*SA=*{}, 

#FA=#{nbs}, 
#PA-#{zero : : " " . , 

one : : " b " . , 
η : zero; one + п., 
na : : п., 
nb : : п.}, 

#7V»#{anbncn, as, bs, es}, 
« Т - ^ а Ъ с"}, 
#SH-#{{b}*!}, 
#A>#{(aiibncn,0), (as, 1), (bs, 1), (es, 1)}, 
#P»#{ anbncn: as ( n ) , bs (η) , es ( n ) . , 

as (zero) : ., 
as (one + n a ) : "a" , as (na) . , 
bs (nbs): {b} (nbs)., 
es (zero) : ., 
es (one + n e ) : " c " , es (ne).}, 

#B=#anbncn) 
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2.2.1 Predicates and consistent substitution 

The type checking of a language being described can be specified explicitly by EAG predi­
cates, or implicitly by the consistent substitution constraint. A predicate is (by definition) 
a hyper non-terminal which either generates empty or fails, depending on the values of its 
affixes. A predicate Ρ can be either primitive, such as not equal, or defined in terms of 
other predicates like 

Po : Р ц , . . . ,Ρΐρ,-

Po : Pnl ι · · · ι °np„ • 

where each of the Ρ υ is a predicate. Predicates play the same rôle as the semantic functions 
of attribute grammars. Affix-directed parsing is obtained by evaluating these predicates 
during syntactical analysis (Section 2.3). 

There are no flow symbols (">") in an eag unlike the directions in attribute grammars, 
except for the critical affix positions in predicates, i.e. those which are necessary for the 
evaluation of the predicate. If a predicate has several alternatives the same affix positions 
in the left hand side of the distinct alternatives must be marked as critical. 

Suppose an eag includes the following rule: 

identifierlist (deflist): 

identifier (name), 

identifier definition (name,restdeflist,deflist), 
II II 

» > 

identifierlist (restdeflist). 

identifierlist (deflist): 

identifier (name), 

identifier definition (name,nil,deflist). 

where the predicate ident i f ier definition is defined as follows: 

identifier definition (>name,>deflist,newdeflist): 

excludes (name,deflist), 

add to (name,deflist.newdeflist). 

The affix positions with the affix expressions name and def l i s t are the critical affix posi­
tions of this predicate. The affix position with the name newdeflist is not a critical one, 
because this affix contains a value which is the result of the execution of the predicate add 
to: 

add to (>name,>deflist,name*deflist): 

The critical affix positions act as a kind of semaphore (which may cause delayed eval­
uation) and they should be specified in such a way that termination of the evaluation of 
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predicates is ensured. Consider the hyper rule identif i e r l i s t : the predicate ident i f ier 
definit ion is called before the rest of the identifier list is recognized. The result is that 
the predicate cannot be evaluated because the value of the affix non-terminal restdef l i s t 
is not yet known. The evaluation of this predicate is delayed until the rest of the identi­
fier list is processed and the value of the affix non-terminal restdef l i s t is available. A 
delayed predicate is considered as a predicate whose evaluation has not, at this moment, 
failed so that the execution of the rest, either evaluation or parsing, can proceed. When 
the value of a critical position of the delayed predicate becomes available the evaluation of 
this predicate will be reconsidered. 

A predicate remains delayed until all critical affix positions have a value. The specifi­
cation of which affix positions are critical is quite important. Forgetting one could lead to 
non-termination. Suppose the predicate excludes in addto is defined as: 

excludes (>idl,id2*env): 

not equal (idl,id2), 

excludes (idi,env). 

excludes Oid.nil) : 

If the value of idi is available before the value of the second affix position the evaluation 
of this predicate will never stop even though not equal is delayed. 

Every function can be specified by means of predicates. We wish to demonstrate their 
power with respect to the specification of efficient type environments. Predicates can be 
used to build and manipulate complex data structures such as binary trees, in a flexible 
way. 

empty tree : nil. 

replace (>key,>info,>empty tree, 

empty tree*key*info*empty tree): 

replace (>key,>info,>left*key*tiiifo*right, 
left*key*info*right): 

replace (>key,>info,>left*tkey*tinfo*right, 

newleft*tkey*tinfo*right): 

smaller (key,tkey), 

replace (key,info,left.newleft). 

replace (>key,>info,>left*tkey+tinfo*right, 

left*tkey*tinfo*newright): 

smaller (tkey.key), 

replace (key,info,right,new right). 

We assume that the predicate smaller in this predicate replace is primitive. We have 
considered the possibilities of allowing brackets in an affix expression, since an expression 
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of the form le f t*(key*inf o )* r igh t make the structure of the tree more explicit, but felt 
no real urge to introduce them. 

The specification of type checking in EAG is primarily based on consistent substitu­
tion, a notion which was introduced in two-level van Wijngaarden grammars. Consistent 
substitution demands that affix occurrences with the same name within an alternative of 
a hyper rule represent the same value. Consider the hyper rule: 

picoprogram: 
program s t a r t (programname), 

declarat ions (de f l i s t ) , 
ser ies ( d e f l i s t ) , 

program end (programname). 

The multiple occurrence of the affix non-terminal programname in program s t a r t and in 
program end imply that the rule picoprogram will only succeed when the value of both 
affix non-terminal occurrences is the same. 

2.2.2 Semi-terminals 

In Section 2.1 we introduced the notion of affix- and hyper sets. 

bs (nbs): 
{b}*! (nbs). 

The hyper sets are in fact a shorthand notation. It is possible to define terminals, such as 
identifiers, numbers etc, with these sets. The hyper non-terminals in the left hand side of 
those hyper rules with a set in the right hand side are therefore called semi-termmals. The 
set of semi-terminals is defined as: 

ST = {N j N - • axß e Ρ Λ χ e SH} 

The hyper non-terminal bs is member of the set ST. 

An affix set 

l e t t e r : : 
{abcdefghijklmnopqrstuvwxyz}. 

is a shorthand notation for an affix rule of the form: 

l e t t e r : : 
"a" ; 
"b"; 

"z". 
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The exact syntax of both affix- and hyper sets can be found in Appendix A. 
The display of the hyper set should contain precisely one affix expression. The parser 

returns the actual value read in the input by way of this expression. 
The options which may follow both the hyper- and affix sets may need some extra 

explanation. We explain the options only for the hyper sets, they can also be defined in a 
similar way for the affix sets. The hyper set {ai... an} is defined by the following rule, in 
which we consider {ai... an} to be a non-terminal: 

{ai...an}: 
"ai". 

{ai...an}: 
"an". 

The +-option can be defined as: 

{ai...an}+: 
{ai...an}. 

{&!... &Λ}
+·· 

{a!... an}, 
{ai...an}+. 

Whereas the *-option can be represented as: 

{ai...an}*: 

{ai...an}*: 
{ai...an}, 

{ai...an}*. 

The ! -option specifies that the longest possible sequence of elements matching the elements 
in the set should be recognized. The !-option cannot be defined by some rule. The use of 
the !-symbol makes the set strict, viz. only the longest possible sequence is tried. Leaving 
out this option means that all prefixes of the longest possible sequence of elements will be 
tried as well. 

The sets can be used, for example, for the specification of layout: 

layout : 
{ \n}*! (ignored). 

For the specification of special characters, such as newline, we use the С escape convention. 
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2.2.3 Defined affix non-terminals 

The defined affix non-terminals are specified by the grammar GAG = {ΝΑ,ΤΑ,3Α,ΡΑ) 
These defined affix non-terminals describe their affix value domains, which are used in two 
ways 

• as a mechanism to check whether the value assigned to a defined affix non-terminal 
is a member of the language described by parsing the value 

• as a mechanism to generate values which are members of the described language 

In both Programmar-EAGs and PREGMATIC-EAGS, affix non-terminals may be used 
that are not defined, the so-called free affix non-terminals In this case their domain is not 
restricted Defined affix non-terminals are treated with great care in Programmar-EAGs 
One of the well-formedness conditions formulated in [Mei86] states that defined affix non­
terminals describing infinite languages should not be 'applying-only' which it is if it is at 
an applying affix position and it does not occur in a defining affix position within the same 
alternative 

Since flow is not explicitly specified we do not have the notion of defining and applying 
affix occurrences The notion of applying-only defined affix non-terminals therefore does 
not exist but the defined affix non-terminals may nevertheless cause problems during the 
affix evaluation process in our system The primary function of the affix grammar is 
the specification of the domains of affix values of the affix non-terminals occurring in the 
left hand side of the affix rules These defined affix non-terminals check whether affix 
values assigned to them during evaluation belong to their language However, in order 
to obtain a fully decorated affix graph it may be necessary for some of the defined affix 
non-terminals to generate elements of their language We will call these non-terminals 
generative defined affix non-termmals If a defined affix non-terminal describing an infinite 
language were to start generating values the affix evaluation process would never stop 
These affix non-termmals must only have a recognizing function during evaluation, but 
defined affix non-terminals describing finite languages may enumerate all elements of their 
language during the affix evaluation process (this will be discussed in Section 3 4 6) 

2.2.4 Well-formedness 

In [Mei86] three well-formedness conditions were formulated for Programmar-EAGs These 
conditions hold for PREGMATIC-EAGS as well An eag is well-formed if the following three 
conditions are fulfilled 

1 The eag may contain no cycles unless they are blocked by affix values in some way 

2 Termination of the predicates must be guaranteed 

3 Generative defined affix non-terminals must have finite languages 
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An eag has a cycle if non-terminal A properly rewrites to A. This leads to non-
termination during parsing. If however hyper non-terminal A has an affix position with 
a finite domain which is continuously decreasing or increasing the termination is ensured 
by the affix evaluation process. Such an affix position is quite similar to the critical affix 
positions of the predicates and is therefore also called critical. It is denoted in the same 
way: by prefixing it with a flow symbol. The affix evaluation mechanism will treat these 
critical affix positions in almost the same way as the critical ones of the predicates (Section 
5.2). 

The specification writer must guarantee the termination of the predicates as described 
in Section 2.2.1 by indicating which affix positions are critical. 

The notion generative is less obvious for PREGMATIC-EAGS than the notion of applying-
only is for Programmar-EAGs. The specification writer should be very careful in using 
defined affix non-terminals. Termination with respect to defined affix non-terminals is 
guaranteed by the implementation. However either a lot of unnecessary work may be 
involved or the evaluation process may end prematurely. 

2.2.5 Type checking Б AGs 

In Section 2.2.4 three well-formedness conditions were formulated. Violating one of these 
conditions leads to non-termination during evaluation. Whether an eag satisfies these 
conditions cannot be determined during the transformation from eag to programming en­
vironment. In this section we will describe a number of conditions which have to be 
fulfilled in order make an eag well-typed. It is our goal to check these conditions before an 
environment is generated. 

The first condition has to do with identification. For each applied hyper non-terminal 
a corresponding definition should exist, unless the hyper non-terminal was primitive. For 
each affix non-terminal in the right hand side of an affix rule a definition should exist, 
unless this affix non-terminal was primitive. Thus, no free affix non-terminals are allowed 
in the right hand side of affix rules. Note that application before definition is allowed. 
The second condition states that all occurrences of a hyper non-terminal should have a 
consistent number of affix positions. These two conditions are straightforward and easy to 
check. The third condition is more complicated and will be described in the rest of this 
section. 

The affix values in EAGs as described in [Mei86] and [Kos91b] are strings only. In 
PREGMATIC, the EAG-formalism is extended with numerals and tuples. We distinguish 3 
types: STRING, NUMERAL (> 0), and TUPLE. The «-operator is associated with the 
TUPLE type. 

The two new types, NUMERAL and TUPLE, are also available in the Programmar-
EAGs, but there they are considered syntactic sugar. The effect of syntactic sugaring is 
that the concatenation operator is not only polymorphic but affix values of 'different' types 
are allowed on both sides of the operator. It is possible to write an affix expression like: 
"abc" + 123, or "abc" + a * b. It is not possible to define an illegal affix expression 
in Programmar-EAGs with respect to the concatenation operator and the types of its 
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operands. The extensions of the affix value domain are not considered as syntactic sugar 
in PREGMATIC-EAGS. AS a consequence we need a type checking mechanism. 

In order to be able to reason about type checking we have to introduce some definitions 
to assign types to hyper- and affix rules. Furthermore, we have to indicate under which 
conditions a hyper- or affix rule is well-typed. For example, do we consider the following 
affix rule as a well-typed affix rule? 

A : : 1 + A; 

" a " + A. 

We will give three different type models, each of them has consequences for the type checker. 
Before we describe these three models, we have to introduce some definitions. 

Definitions 

The affix expression "ab" + "с" will generate the value "abc", whereas the affix expression 
"ab" + с accepts values which consist of the prefix "ab" and some suffix. The tuple 
operator in an affix expression a*b*c generates an affix value which is a tuple consisting 
of 3 other affix values. This affix expression a*b*c only accepts affix values consisting of 
tuples of 3 elements. An affix expression only accepts the assigned value if it is of the 
appropriate type. An affix expression consisting of only one affix non-terminal accepts 
every value, unless this is a defined affix non-terminal, in which case the value must be 
member of the language defined by this affix non-terminal. 

First, we introduce some notation. 
Given the set of types the type of an 2-tuple is the same as the type of an 3-tuple. 

This mapping may be too general, and to be more specific about the types of the tuples 
we have to refine the basic type TUPLE into the basic types 2 - TUPLE, 3 - TUPLE, 
and n— TUPLE. There will always be a finite number of tuple types. We distinguish the 
following basic types for the affix values: 

• STRING; 

• NUMERAL; 

• 2-TUPLE, 3-TUPLE, ... ,n-TUPLE. 

The basic types can be combined resulting in an union of (basic) types, this will be denoted 
as 

( TYPE1 U TYPE2 U . . . U TYPEn) 

The hyper- and affix rules can be considered as functions. An affix rule is an O-ary 
function (viz. it has no arguments) with one of the basic types as result type. 

zero : : 0. 
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is a function of type 
zero => NUMERAL 

The affix positions of a hyper non-terminal in the left hand side of a hyper rule are con­
sidered as the 'formal' arguments of the function represented by the hyper rule The affix 
expressions on these position determine the type of the arguments The result type of the 
function is always the basic type STRING, because such a function can be considered as 
a recognizing function on the input2 The hyper rules are Л/лгагу functions, with Л/дг the 
number of affix positions associated with the non-terminal N 

rule ("string", 100)· 

is a function of type 

rule STRING χ NUMERAL =» STRING 

The primitive predicates equal and not equal are polymorphic 
The affix non-terminals empty and n i l are primitive The affix non-terminal empty 

represents the empty string, whereas the affix non-terminal n i l represents an empty n-
tuple Furthermore, the digits 0 through 9 are primitive, and 2 or more digits denote the 
usual value within the decimal system The affix non-terminal empty, and the numbers 
{0,1, } have the following types 

empty =>· STRING 

0 => NUMERAL 

1 => NUMERAL 

Because of the extended set of tuple types the affix non-terminal n i l is polymorphic 

ml => (2-TUPLE U3-TUPLE U Un-TUPLE) 

Concatenation of affix values of different types is not allowed Furthermore, the concate­
nation operator is only defined within the affix domain types STRING and NUMERAL, 
concatenating tuples is not allowed The following affix expressions are not allowed "abc" 
+ 123, or "abc" + a * b Furthermore, it is obvious that the +-operator is overloaded 

+ STRING χ STRING =• STRING 

+ NUMERAL χ NUMERAL =• NUMERAL 

2 The affix rules never have an immediate effect on the input 
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To obtain the type of an arbitrary affix expression we define the function r. 

, ч _ ƒ NUMERAL if ae € N 
т(ае) - | STRING i f a e € 5 д v ( o e e 7^ л ae * N) 

r(ae) = Г if ae e ЛГд Л oe : =>· Г 

т(ае) = {STRING U NUMERALU 2 - 7 W ¿ £ U ...) if ae 6 F^ 

7(06!*... *aen) = n-TUPLE 

, . _ ¡STRING iî\/i<n:T{ael) = STRING 
r(aei+.. . +aenJ - | NUMERAL if г < η : т(ое,) = NUMERAL 

For all χ € SH the type of the affix expression in the display is always STRING. Now, we 
are able to give the three type models of the EAG-formalism. 

First type model 

This model is the most restricted one. Using this model an eag is well-typed if: 

• All alternatives of an affix rule have the same type. 

• The ith affix position in the left hand sides of all alternatives of a hyper rule is of the 
same type. 

These two restrictions can be reformulated as 'union-types are not allowed'. Each affix- and 
hyper rule can be uniquely typed. One of the consequences is that tuples with a different 
number of elements cannot be mixed freely in the right hand side of an affix rule. The 
following affix rule is not well-typed. 

env : : ni l ; 
id * type * env; 
id * type * value * env. 

In Section 2.2 the set К was introduced. К contained information about the number of 
affix positions associated with each hyper non-terminal. This can be considered as a very 
restricted form of type information. Now we are able to derive more information about the 
types of an eag and therefore we have to extend this set K. 

κ = κΗυκΑ 

where 
KH = {{х,К,Тж)\х € N] 

and 
А'л = {( а ; ,Т І ) |хе і л} 
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J\fx in the set Ки is the number of affix positions. 
Tx in the set KH is a Λ/Ί-tuple where each element t, of the A/^-tuple corresponds with the 
type of the affix expression on the ith affix position. 
Tx in the set KA is one of the basic types. 

The initial anb,1cn-eag has the following set K'. 

A' = {(aabncn>0,()), 
(as, 1, (STRING)), 
(be, 1, (STRING)), 
(ce, 1, (STRING)), 
(zero, STRING), 
(one, STRING), 
(n, STRING), 
(na, STRING), 
(•ob, STRING), 
(nc, STRING)} 

An element from the set Ая for this eag can also be written as: 

χ : Tx => STRING 

Similarly, an element from the set Кд can be written as: 

x:=>Tx 

An affix rule such as: 

env : : n i l ; 
id * type * env. 

is well-typed and its type can be represented as: 

env : => 3 - TUPLE 

or in the set К as (env, 3 - TUPLE). 
Each rule in the eag can be uniquely typed. Type errors caused by assigning an affix 

value of type STRING to an affix expression of type NUMERAL can be detected immedi­
ately. 

The free affix non-terminals cause some extra overhead, because the type checker prob­
ably needs a closure computation to determine the type of these affix non-terminals. Free 
affix non-terminals can in some way be considered as polymorphic. It will be obvious that, 
given these 'severe' restrictions, it will be possible to define a static type checker for the 
EAG-formaJism. 
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Second type model 

This model is less restrictive than the previous one. An eag will be considered well-typed 
in this model if: 

• All alternatives of an affix rule have the same type, except in that the alternatives 
need not be of the same tuple type. 

• The ith affix position in the left hand sides of all alternatives of a hyper rule must be 
of the same type, but again these affix positions need not be of the same tuple type. 

These restrictions can be reformulated as 'union-types are only allowed with respect to the 
tuple types'. This allows affix rules such as: 

env : : n i l ; 
id * type * env; 
id * type * value * env. 

We can use the set К such as defined for the first model, but the elements of the 
Λ/Ί-tuple Tx in the set Кн and Tx in the set KA may be a union of different tuple types. 

The affix rule env is well-typed: 

env : => ( 2 - TUPLE U 3 - TUPLE) 

or as an element in K: (env, (2- TUPLE U 3 - TUPLE)). 
Allowing a union of tuple types does not mean that an 2-tuple affix expression accepts 

affix values generated by an 3-tuple affix expression, or vice versa. The number of tuple 
elements of an affix value can be used at runtime to select specific alternatives of a hyper 
rule. If the specification writer uses an 3-tuple at an affix position instead of an 2-tuple 
and the hyper rule has more than one alternative this error cannot be detected statically. 
This type error can only be detected at runtime. At compile time the type checker can 
only determine whether the set of tuple types for the г4'1 affix position of an applied hyper 
non-terminal is a subset of the set of tuple types defined by the ith affix position of the 
same hyper non-terminal in the left hand side of a hyper rule. 

It is still possible to define a static type checker for the EAG-formalism if it satisfies 
the restrictions formulated above, although it will be more restricted. 

Third type model 

This model does not restrict the types of 

• the alternatives of the affix rules, or 

• the ith affix position in in the left hand sides of all alternatives of a hyper rule. 
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Type checking the eag at compile time will no longer be feasible, because every hyper- and 
affix rule will be well-typed. The type checker can only check whether the operands of the 
+-operator are of the appropriate type. Furthermore, it can check whether the set of types 
for the ith affix position of an applied hyper non-terminal is a subset of the set of the types 
defined by the ith affix position of the definition of this hyper non-terminal. Consider the 
applied non-terminal ./V: 

... . NIAEi AEn), ... 

The hyper rule defining this non-terminal will be: 

NUE\, .... AE^y. ... . 

N(.AE?, .... AE™): ... . 

The type of non-terminal in the left hand side will be: 

N : {т{АЕ\) U...U τ{ΑΕ?)) Χ . . . Χ ( Г ( Л ^ ) и . . . и T(AE™)) => STRING. 

The application of the hyper non-terminal N will be well-typed if: 

Vi : TÌAEJ С {тіАЕ]) U ... U т(АЕ?)) 

The amount of type checking will be very limited. 
If each rule would be extended with a type specification a static type check would 

become possible. 

IN:TIX...XTJ 
N(.EA\, . . . . EA^): 

N<.EA?, . . . . ЕА%): 

The hyper rule N is well-typed if: 

Vi : {т{ЕАІ) U ... U т(ЕА?)) С Г, 

This extension of the formalism does not fit in with our goal of keeping the formalism as 
simple as possible. 

Final remarks 

In the beginning of this section the affix rule 

A : : 1 + A; 

" a " + A. 
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was presented with the question whether this rule was well-typed Given the three models 
we are now able to answer this question In the first and second model this rule is not 
well-typed The third model allows affix rules of this type, the type of the rule above will 
be 

A =» (STRING U NUMERAL) 

We make the assumption that a type checker first determines the types of both alternatives 
before it assigns a type to the non-terminal A, otherwise this rule will not be well-typed 

To make sure the user of a generated environment is never confronted with a mysterious 
type checking message an approach described in the first or second model should be chosen 

The current implementation of the prototype is based on the third model, but if the 
system is extended with a static type checker this will be based on the second model 

2.3 Affix-directed parsing 

The principle of affix-directed parsing will be explained independently of the parsing tech­
nique used (Section 3 1) A lot of research has been done in the area of attribute directed 
parsing [AMT91], but as yet with only a few results 

The principle itself is simple during the recognition of the input sentence as much of 
the semantics as possible is considered In an eag this is done by evaluating the predicates 
during the parsing of the input sentence In this way type-incorrect programs can be 
rejected as soon as possible without doing a lot of unnecessary work such as parsing the 
rest of the program and building an abstract syntax tree Of course this will not lead to a 
speedup in all cases but it is a convenient extension of the parsing process A lot depends 
on the way in which the type checking is specified 

Affix-directed parsing can also be used to influence the parsing process This is very 
useful for recognizing certain context-depending syntactical constructs, such as the offside 
rule in Miranda [Tur90] Affix-directed parsing can also be used to disambiguate a context-
free grammar 

prio :: 1; 2. term (prio)· 

term (prio + 1) 

ezpr' term (3) 

term (1), "-", 

reloper, tern (1). 

term (1). term (3) 

ezpr variable access. 

term (1) term (3). 

"(", expr, " ) " . 

reloper "=". 

reloper. "<>". oper (1) "+" 

oper (1) "-". 

term (pno) • oper (2) "*". 

term (prio + 1), oper (2). "/" 

oper (prio), 

term (prio). 
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This is demonstrated by simplified Pascal expressions (given above), which, if we leave 
out the affixes, form an ambiguous context-free grammar. Using affix-directed parsing 
ensures that each sentence is recognized in a non-ambiguous way. 

The reason for explaining this principle here is that the combination of affix-directed 
parsing and incremental evaluation is new. However, in some cases it may seem that by 
using affix-directed parsing the incrementality is not fully exploited (Section 1.5). 

In attribute grammars the semantic functions are specified by means of a separate 
language, for example С or Pascal. In the EAG-formalism there is no syntactical distinction 
between predicates and other hyper rules. Syntax and semantics are fully integrated, 
which makes it easy to write and read EAG specifications. Besides this integration on 
the syntactical level we also managed a full integration of the evaluation of the semantic 
functions and the parsing process. 

2.4 Interpretation model of EAG 

In [Mei86] the computation model of Programmar-EAGs is described using a translator 
function and decorated parse trees. The computation model of PREGMATIC-EAGS is slightly 
less complicated because of the absence of the translator function. The notation and 
terminology used in this section is strongly based on Section 2.2. In order to reason easily 
about occurrences of rules we introduce the same notation as used in [Mei86]. 

X\Y denotes the set of all г such that ζ 6 X and ζ & Y. 
If Χι,..., Xn are sets, where η > 0, the expression Χ ι χ . . . χ Xn denotes the set of all 

ordered sequences {χι,..., xn) of length n, where x, € X, for 1 < i < п. Such a sequence 
will be denoted as (x, | 1 < i < η), or as () if η = 0. The abbreviation «x, | 0 < г < η» 
stands for (XQ, (x, I 1 < г < η)). 

The set of affix terminals, affix non-terminals, and affix sets will be denoted by A = 
(TA U VA U SA). The set of terminals, hyper non-terminals, and hyper sets will be denoted 
by U = {T\JHUSH). 

The function λίχ is defined as λίχ : U -> N with λίχ(ν) = 0 if ν € Τ and λίχ(ν) = 1 if 
ve Stf. 

Let W be the set of all (v, (ae, | 1 < j < λίχ(ν))) inVx AE\ Let AT = (TA U SA) and 
UT = {Τ U Stf). Let ΑΕτ = Αγ and R be the set of all elements in W which are also in 
U χ ΑΕγ. AE represents an affix expression and ΑΕτ an affix value. In an affix expression 
(uk | 1 < fc < m), Uk is its kth affix term. 

« x , | 0 < г < m » represents either an affix rule or a hyper rule, XQ is the left hand 
side, (x, | 1 < г < m) the right hand side and xt , for 1 < г < τη its г"1 member. 

The language of an element α e Л is denoted by L(a). For a free affix non-terminal it 
is Ед, where Σ^ is the set of all legal affix values. For a defined affix non-terminal a, L(a) 
is the set of all t € ΑΕτ such that о ^ с ^ t. Note that ¿(α) = {о} if α € Тд and if α € S^ 
then L{a) = {01,02,...} where o, = α,ι... o,n with η > 0 Λ ; < п о, ; 6 о. 

An Oĵ x assignment is a function os^ : AE' —> ΑΕτ, where AE' = A" and A' Ç A. 
This function asg is defined as: asg((xt \ 1 < i < m)) = (азд(хг) \ 1 < i < τη) and 
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asg(a) € L(a) for all α € A'. The affix assignment function must satisfy the consistent 
substitution constraint. 

An element «(v„ (ttJ | 1 < j < m,)) | 0 < г < m » of R\uT x Л* is a production rule 
if there is a hyper rule «{ „ (е1} | 1 < j < m,)) | 0 < г < m» and an affix assignment 
function asg such that ttJ = asg(etj) for 1 < j < m, and 0 < г < то. Let Ti be the set of 
all production rules. The language L(w) of an element w € R is the set of all s € t/f such 
that w =>-5г s. 

For the initial non-terminal В e H and the input sentence w, we try to find an affix 
assignment function asg such that the resulting set 72. gives: В =>^ w. 





Chapter 3 

Implementing EAGs 

The emphasis in this chapter lies on the construction of the abstract syntax tree along with 
the affix graph, as well as on the decoration of the affix graph. The combination of both 
data structures will, in the rest of this thesis, be called a tree-graph. In this chapter we 
will abstract away from incrementality. Thus the tree-graph is completely reconstructed 
and re-evaluated after each edit action. 

We will in a number of steps describe how we can get from an input sentence to a 
fully decorated tree-graph. The first step to be performed is the recognition of the input 
sentence. We will use a left-comer backtrack parser for this purpose. The reason for 
using this type of parser is that it can easily be generated and it allows left-recursion in 
the context-free grammar. Furthermore, this type of parser can easily be combined with 
the affix value propagation mechanism to obtain affix-directed parsing. We will derive 
the left-corner backtrack parser, by means of a few transformation steps, from a table-
driven deterministic left-corner parser. This will be done in Section 3.1. In Section 3.2 
we formalize the structure of the tree-graph and we define a number of access routines on 
the affix graph nodes. The next step will be the extension of the parser with a mechanism 
to construct a tree-graph in Section 3.3. In Section 3.4 the last step is described: the 
decoration of the affix graph nodes with valid affix values. 

3.1 Left-corner backtrack parser 

A left-corner backtrack parser is a combination of two distinct types of parsers: the left-
corner parser and the backtrack parser. 

The left-corner properties of a context-free grammar are normally only considered with 
respect to deterministic parsers. For the definition of deterministic left-corner parsers we 
refer to [Akk89]. 

Backtrack parsers are seldom used in actual applications. A detailed description of this 
type of parser can be found in [AU72]. There are top-down as well as bottom-up back­
track parsers. The former do not allow left-recursion in the grammar, whereas the latter 
(only) prohibit cycles. Neither type of backtrack parsers has problems with ambiguous 
context-free grammars. Our main objective is to impose no avoidable restrictions on the 

47 
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specification, not even that the language specified is unambiguous1 We will later consider 
the usefulness and workability of such an ambiguous specification The introduction of 
untyped placeholders makes it necessary to use such a powerful parsing mechanism The 
price to be paid for using this flexible type of parser is an exponential time complexity 

The combination of backtrack and left-corner parsing was given as an exercise in [AU72] 
An elegant description of a left-corner backtrack parser is presented in [Меівб], but this 
definition is given in 'update schemes' and is beyond the scope of this thesis A modified 
version of this parser is also applied in the AGFL-project [Kos91a, Zwo90] We will provide 
a more imperative description of this parser, using C-hke code 

3.1.1 Left-corner parsing 

Left-corner parsing, or LC-parsing, is a combination of both top-down and bottom-up 
parsing Given a context-free grammar G = (ΛΓ, Τ, Ρ, S) A rule of the form A Xa € Ρ 
is said to have symbol X as its left-comer, where X may be either a terminal or a non­
terminal This can be formalized in the notion left-comer relation, denoted as ¿ic If 
NQ e N and Nie (NU Τ) the left-corner relation 

NUuNo 

holds, if and only if 
'ΛΓο Nu ,Nn'çP 

The reflexive transitive closure of the left-corner relation is denoted as /*c 

The principle of left-corner parsing is based on the following observations Suppose the 
parser must recognize the sentence w given the initial non-terminal S, S ^" w 

The parser is always in one of the following situations 

1 The parser is at an arbitrary point in the right hand side of a rule and there are still 
some members left 

(a) The next member is a terminal This terminal must be recognized in the input 

(b) The next member is a non-terminal A The parser has to recognize a string 
in the input which can be derived from this non-terminal The non-terminal A 
becomes the current reduction goal, ι e previous reduction goals are 'forgotten' 
for the moment The parser will try to recognize this non-terminal by starting 
with a rule В tß € Ρ, where t is the next input symbol and the relation Bl^A 
holds 

2 The parser has recognized the right hand side of non-terminal В (В ^* шд) [А, В] 
denotes that non-terminal A is the current reduction goal and non-terminal В is the 
current left-comer symbol The relation Bl*cA holds, but there is some work still left 
to be done before the reduction goal A is satisfied The parser proceeds with the rule 
С Bj e Ρ, for which the relation C¿*eA must hold The first member in the right 

1 Later on we will show that ambiguity and incremental evaluation do not cooperate smoothly 
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hand side of this rule is already recognized and the parser will try to recognize the 
remaining part 7. In Figure 3.1 the rest of the right hand side 7 is tD. 

,A 

WB t 'WE W 

Figure 3.1: Incomplete LC-parse. 

3. The parser has recognized the right hand side of non-terminal A and the current 
reduction goal is non-terminal A, so the current left-corner symbol is the same as the 
current reduction goal ([A, A]). The reduction goal A is satisfied and will be removed 
as current reduction goal, which makes the previous reduction goal current again. 

If the reduction goal 5 (the initial non-terminal) is satisfied and w is completely recognized 
the parser will report a successful parse. 

Given a context-free grammar G0 with the following rules. 

S: S,"+»,T. 
T. 

T: T, " x " , i d . 

id. 

(1) 
(2) 
(3) 
(4) 

The left-corner parse of the sentence id χ id + id starting with non-terminal S is: 

• S becomes the current reduction goal, rule (4) fulfills the condition to proceed the 
parsing process, because TZĴ S holds and id is the first symbol of the input sentence. 

.S 

f 
l i d . x . i d . + . id 

• [S,T] holds, the non-terminal Τ is the left-corner of rule (2) and (3), and the relation 
T7*CS holds. The parser chooses rule (3) (this decision is based on lookahead): 

.S 

J 

^ id 

i d . x .id.-·- . id 

. Т Ч ^ і с 

• The parser recognizes the terminals χ and id: 
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• Again [S, Τ] holds and now the parser chooses rule (2): 

• Although [S, S] holds the parser is not yet done with parsing since here is still input. 
S is the left-corner of rule (1) and the relation S¿¡CS holds so the parser chooses this 
rule: 

.S 

Now the terminal + can be recognized. Τ becomes the new current reduction goal. 
Production rule (4) fulfills the condition to continue the parsing process, because 
T7*CT and id is the next symbol in the input. 

.S 

• [T, T] holds, thus S becomes the current reduction goal again, but [S, S] also holds and 
there is no input left so: 
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There are deterministic and non-deterministic LC-parsers. The deterministic LC-
parsers are of type LC(Â;), where к > 0. The к stands for the number of lookahead 
symbols necessary to decide which rule the recognized non-terminal is the left-corner of. In 
the example given above the lookahead was 1 symbol, and this was used, in several cases, 
to decide which rule was needed to continue parsing. In a LC(0)-grammar each rule has 
an unique left-corner. 

In Exercise 5.1.26 of [AU72] a left-corner parser was introduced. The algorithm given 
there is a table-driven LC(l)-parser. We shall use this algorithm to explain our version of 
the left-corner parser, which is a LC(0)-backtrack parser. We will show how, by means of a 
few small transformation steps, a modified version of this LC(l)-parser can be transformed 
into our parser. 

First, we have to give some definitions. Given is the context-free grammar G = 
(N,T,P,S). We introduce a leßmost derivation step: wAS =>im wß6, where w € T', 
A € Ν, δ € (Ν U Т)*, and A : β. e P. The reflexive transitive closure of this derivation 
step is denoted as =>-*m. If S = QQ =>-im Qi =>im . •. ^¡m ^n is a leftmost denvatwn in G, 
then we write 5 =>*m an. Such an an will be called the left-sentenhal form. 
We also have to introduce left-comer derivation. A derivation 5 ^1C wAS is a left-corner 
derivation if 5 =>-*m wA6 is a leftmost derivation. Non-terminal A may not be a left-corner 
of a rule that introduced this A into a left-sentential form in the derivation 5 =>-*m wAd. 
For example, S =$-*lc S+T is not a legal derivation in Go, because the left-corner S is in­
troduced by the rule S: S,"+",T. There are no problems with the derivation S =>-*с a+T 
because Τ is not a left-corner of the rule S: S, "+" ,T. 
In the algorithm we are going to present we use the notation Лг, which means that non­
terminal N may produce empty, thus N =•* ε. 
We also have to refine the left-corner relation. If NQ € N and Ml e (NUT) the left-corner 
relation 

MUicNo 

holds if and only if 
' Л Г о : М 1 , . . . , М „ . . . , М п . ' е Р 

and Mi, . . . , M,-i may produce empty. 
The LC-parser presented in [AU72] is based on ε-free context-free grammars. The parser 

is a deterministic parser and uses one symbol lookahead. We shall present an algorithm 
for generating a parse-table for a non-deterministic version of this parser which uses no 
lookahead. Furthermore, the grammar may contain ε-producing non-terminals. We will 
use the same notation as in [AU72]. The configuration of the modified LC-parser, denoted 
by Mia consists of the remaining part of the input and a stack, (ад,Г), where w € T', 



52 CHAPTER 3. IMPLEMENTING EAGS 

and Γ € {Ν U Τ U (Ν χ Ν) U ε)*. 
In the stack element [А, В], which we will call a reduction marker, the non-terminal A 
represents the current reduction goal which is to be recognized and В the recognized left-
corner. The parse-table 7¿c is a mapping from Γ χ (Τ U e) to Γ* U {shift}. 

If TLC(X, a) = β the parser makes the transition (aw, Xa) \-мт (aw,ßa). 
If Тіс(а, a) = shift it performs the transition (aw, aa) \-мт (w, a). 
The parser accepts the input sentence if (w, S) Н^т (ε, ε). 

Given a context-free grammar G = (Ν, Τ, Ρ, S), we will give an algorithm for construct­
ing the parse-table TLc. 

1. В : a. e Ρ 

(a) If α = eCß where С € Ν, 
then T([A, C],a)= τβ[Α, В] for all A e N and for all α € (Γ U ε) such that 
5 ^І wA6, 
A =>* B-r, 
£ = f ι... б,_і where г > О Л Vj < г : t3 Ç. Ν Λ e, =>" ε, and 
€ = ET... ε^γ. 
Note that A may only be the left-corner of some rule if it is S so that A will be 
a goal at some point in the parsing. 

(b) If a = etß where t e Τ, 
then T(A, a) = etß[A, В] for all A e JV and for all о € (Τ U ε) such that 
S ^ wA5, 
А =•· В7, 
e = бі. . . е,_і where г > 0 AVj < i : e, e Ν A е^ ^* ε, and 
e = ET... ε^ϊ. 

(c) If α = ε where £ = £!. . .£, where г > О Л Vj < г : ε; € Ν, 
then for all α 6 (Τ U ε), T(ß, α) = В if г = 0, or 
Т(В,а) = £ І П > 0 . 

2. Т(А, о) = ε for all A e Ν, A =•' ε, and for all а € (Τ U ε). 

3. Τ([Α, Α], α) = ε for all A € Ν and for all а € (Τ U ε). 

4. Т(а, о) = shift for all α e Г. 

All table entries in the same row are the same for all terminals. It is possible that an entry 
contains several distinct transitions but Mj^ is non-deterministic and always chooses the 
appropriate transition. 

Consider as an example the context-free grammar Gi with the following rules. 

S: "b", U, " ". 

U: A. 
U: U. "s", A. 
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A: M, I . 

"d" . 

With this context-free grammar we are able to generate the parse-table Tic of Figure 3.2. 
The entries for the stack symbols b, e, s, d, a, and i contain the action shift which only 
succeeds if the input symbol corresponds with the stack symbol. 

Stack 
symbol 

S 
U 
A 
M 
I 
M 

is, s] 
lu, и] 
lU, А] 
lo, "J 
[и, i] 
[A, A] 
[A,M] 

[A, I ] 
[M,M] 

[1,1] 
b 
e 
β 

d 
a 
i 

b , e , s 
bUeS 
d[U,M 

,а,а,і,г 

,s] 
UaU,M]Ui[U,I] 

dlA.MjUafA.HjUifA,!] 
d[M, M] U a[M, H] U M 

і [ І . Ц 
ε 
ε 
ευ sA[U,U] 

[и, и 
I [U, А 
M[U,A 
ε 
І[А,А] 
М[А,А] 
ε 
ε 
shift 
shift 
shift 
shift 
shift 
shift 

Figure 3.2: Parse-table TLc. 

The initial configuration of the parser is (w, S), where S is the initial non-terminal of 
the context-free grammar. The final configuration of the parser is (ε, ε). For the input 
sentence bdisie the parser M]^ makes the following transitions: 

(bdisie.S)!-^ (bdiBie,bUe[S,S]) 
\-M

LTC

C (diSie,Ue[S,S]) 
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hMTLc (disie.dtU.MMS.S]) 
·"*/£. (i"«.[»."]»|S.S]) 
•"л/г. (ι·ι·,ΐ[υ,Α]·[8,8]) 

^МІС (ι·ι·,ι[Ι,Ι][α1Α]·[8.8]) 
^(•«.[i.iJMl^ls.s]) 
Ьмтс (sie, [ü,A]e[S,S]) 
l-i#£,(»«.IÖ,ÖI«[S,S]) 
•-Afîe (sie,sA[U,U]e[S,S]) 
•-AfJe (ie,A[U,U]e[S,S]) 
^MJC (ie,i[A,I][U,U]e[S,S]) 
•"иг, (e,[A,I][U,ü]e[S,S]) 
l-Jl#rf(e,M[A1A][ü,U]«[S1S]) 
bMjc(e,[A,A][U,U]e[S,S]) 
bMfc(e.[U,U]e[S,S]) 
ЬмГс (•••[s.s]) 

The parser Mlc has two kinds of transitions 

1 If TLc{a,a) = shift, then [aw, ар) Ι-Μτ (w,p) 

2 If TL C(X, a) = β, then (aiu, Xp) Ь м т с (aw, ^p) 

The second element of the machine configuration is a stack containing information used to 
recognize the remaining part of the input The top of this stack, along with the next input 
symbol, is used to select an entry from the parse-table The derivation of our version of 
the LC-parser is based on two transformations 

Firstly, the table entries are explicitly coded in the parser The number of transitions 
will be equal to the number of entries in the parse-table 

Secondly, we change the contents of the stack from terminals, non-terminals, and re­
duction markers into procedure calls A table entry contains either a list of terminals, 
non-terminals and reduction markers, which should replace the current top of stack, or 
a symbol indicating that the current top of stack should be replaced by nothing In the 
transformed parser the procedure on top of the stack replaces itself by a possibly empty list 
of procedure calls (each represented by an addresses) (by pushing them one by one onto 
the stack) and then executes the procedure on top of the stack Executing a procedure 
on top of the stack corresponds to popping its address from the stack If this procedure 
call stands for an element t € T, then the input pointer may be shifted too This will be 
followed by executing the next procedure on top of the stack We will call this changed 
stack the continuation stack, because it contains all information necessary to continue the 
parsing process The resulting parser after performing these transformations will be MLC 

The first M^-transition is not very interesting and can be written as 
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1. (αω,αρ) l-Mj.c (w,p), Va e T. 

The second one is more interesting. It can be split into 5 different transitions: 

2a. If X = n, where nÇ. N, then 

T L C K a) = ëa/?[n, no] 
which can be written as: 
(aw,np) I-MLC (αω,£α/3[η,ηο]ρ). 

2b. If X = n, where n£ N and η =•* ε, then 
Тіс{п,а) =ё 
which can be written as: 
(аы,пр)ЬМьс (αυι,ΐρ). 

2c. If X = ñ, then 
Ticiñ, α) = ε 
which can be written as: 
(aw, rip) \-MLC (αιυ,ρ). 

2d. If X = [n, n], where η € N, then 
ÎLc([n,n],a) = e 
which can be written as: 
(aw, [n, n]p) \-MLC (aw, p). 

2e. If X = [η,η,], where η € Ν, then 
ÎLc(Kn,],a) = £/?[n,7lo] 
which can be written as: 
(aw, [n, n,]p) \-MLC (aw, Щп, no]p). 

For any context-free grammar the set of transitions of MLC can be generated. The set of 
transitions for the context-free grammar Gi is: 

KSp)h(u>,bUe[S,S]p) 
(w,Vp)\-(w,a[V,H}p) 
(ад,ир)Ь(ад,а[и,М]р) 
(w,Vp)\-(wti[l,I}p) 
(w,kp)\-(w,a[k,H}p) 
(w,kp)\-(w,a.[k,V]p) 
(w,kp) h (щ;,і[І,І]р) 
(Ш,Кр)Ь( ,а[Н,Щр) 
(w,Hp)l·(w,i[n,K\p) 
KMp)b(îi;,Mp) 
(w,lp)\-(w,i[l,l]p) 
(w,Ylp)\- (w,p) 
(w,[S,S]p)i-(w,p) 
(ν,[υ,υ}ρ)ϊ^,ρ) 
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(W7[U-U]p)^(ü„sA[U,U]p) 

(tu.MlpJI-íiü.pJ.Ulp) 
Κΐυ,Μ^μ^,ιΐυ,φ) 
(w,[tl,I)p)\-(w,*\O,k]p) 
(w, [A, A]p) h (w, p) 

{ы,%і}р)^( >, [к,к]Р) 
(ΐΐ;,[Μ,Μ]ρ)1-(ω,ρ) 
K[I,I]p) l-(u;,p) 
(aw, ap) h (ш, ρ), Va 6 Τ 

A configuration of M¿c is of the form (w, p) where w is the input sentence, w € T*, and ρ 
is a stack, ρ e {N U Τ U (Ν χ N) U N)*. By considering the stack elements as procedure 
calls the machine executes the stack itself. In order to make the machine more readable 
we prefix each stack element with a label indicating which action the parser must perform. 

• A stack element t € Τ is transformed into S J. 

• A stack element η 6 N is transformed into S-п. 

• A stack element [η,τη] ζ Ν χ N is transformed into Rjm n, where Rjm represents 
a procedure which either removes the next symbol η from the stack, or pushes a 
number of procedure calls. 

• A stack element ñ is transformed into E_n. 

The transitions of the resulting parser Mlç are: 

1. (tw}S t p) h (w,p), if t 6 Τ (reading an input symbol). 

2. (ш, S η ρ)\- (w, Ε.η ρ), if η € ΛΓ and η =** ε. 

3. (ιυ,Ε.η ρ) h (w,p). 

4. (w, SM ρ) h (w, Е.щ ... Е-П,_і 5 t S.nl+i... 5_π* R.UQ n p),iî n Ç. N 
where 
'no : ni , . ..,n,-i,t, n t + i , . . . , η * . ' e P, Vj' < г : η ; € Ν Λ η ; ^ · * ε, and ί € Τ. 

5. (ω, ß η η ρ) h (ω, ρ). 

6. (w, Л_п, η ρ) h (w, Е-Щ ... £-7г,_і 'S-Ti.+i · · · Sjrik R-UQ η ρ) 
where 
'no : n 1 , . . . ,n,_i,n„n, + i I . . . I ra f c . ' e Ρ, Vj < г : π ; € Ν An, =>* ε. 

A configuration of Μ2σ is of the form (w, p) with 
w € T* the input sentence, and 
ρ e (NU {S.n\n € (ΛΓ U Τ)} U {E n|n 6 TV Λ η =»* ε} U {Я_п|п € TV})* the continuation 
stack. 
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The fourth step of M}^ is rather complicated and will be split into two smaller steps. 
We need to introduce a new stack element G_n for each η & N. 
So the transition 

(w, S л ρ) l· (w, Ε.η-ι... E-Ut-i S Л S.n,+i... 5_пц fí_no η ρ) 

will be split into 
(w, S.np) \- (w, Gjn n) 

and 
(ш, G.np) h (ω, Ε.η\... Е-п,-і8ЛЗ-Пі+і... Зл^Я-щр) 

The transitions of the resulting parser M ^ are: 

1. (tu),5_i p) l· (w,p), if t € Τ (reading an input symbol). 

2. (ui, 5-71 p) \- (w, Ε η ρ),Ίΐη £ N and η =•* ε. 

3. (w,Ejn ρ) h (ω, ρ). 

4. (ш, 5_η ρ) h (w, G-η η ρ), if η 6 Ν. 

5. (w, Gjn ρ) \- (w, Ел\... Ejnt-i S t 5лг+\... S-n* Д.По ρ) 
where 
'no : n i , . . . , n,_i, t, η,+i, . . . , nk.' e Ρ, Vj < г : щ =>' ε, and t S T. 

6. (w, R.n η p)\- (w, p). 

7. (ω, Л.п, η p) h (w, E.n\... E.nt-\ 5.7i,+1... S-Tifc R no η ρ) 
where 
'no : η ι , . . . ,η ,_ι ,η„η, + ι , . . . ,nk.' € P, Vj < г : η, =** ε. 

The second component of the configuration (w, p) of M£ c is the continuation stack 
ρ в {NU {S.n\n e {NU Τ)} U {Ε.η\η € Ν Λ η =>* ε} U {G.n\n & Ν} U {R.n\n 6 І })* 

The generation of the M2c-parser is in fact based on implicit grammar transformations. 
These can also be made explicit, for a detailed description of the explicit grammar transfor­
mations see [Ned91]. A non-deterministic LC-parser is useful if the grammar is ambiguous. 
The non-determinism can be implemented using backtracking, see Section 3.1.2. In Section 
3.1.3 we will transform parser M | c into C-code. 

3.1.2 Backtrack parsers 

Backtracking is a general technique for finding solutions to complex problems. One of the 
most famous problems which can be solved elegantly by using backtracking is the 8-queens 
problem: put 8 queens on a chessboard in such a way that they cannot take each other. 

Backtracking is based on the principle of making one step, seeing whether this step 
leads to a solution and then undoing this step. If a solution is found, the process may 
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either stop or just report its success and continue (undoing its steps). If in some situation 
several alternative steps are possible, each of these steps will be tried one after the other. 

This strategy can also be used in parsing. The parser either recognizes a symbol or 
must try some alternative of a rule to recognize the rest of the input sentence. If the parser 
returns to this situation and there are still alternatives which are not yet tried, these will be 
tried one after the other. This powerful parsing strategy is not necessary for unambiguous 
grammars. It can be very helpful if the grammar is ambiguous. Backtracking can be used 
in both top-down and bottom-up parsers and it can also be combined with the left-corner 
parsers. 

3.1.3 The implementation of the parser 

In this section we assume that no (static) semantics is specified, we are only working 
with the underlying context-free grammar of the eag, which can be described as GCFG = 
(ЛГ, T, SH, P, B), see Chapter 2,. 

In Section 3.1.1 we saw two different ways of implementing left-corner parsers. We gave 
a number of steps for transforming the table-driven parser into our version of the parser. 
The parser is not table-driven but the LC-relations are directly included in the code of the 
parser — for each grammar a complete new parser is generated. In this section we will 
transform the abstract implementation model into pigeon C-code. Basically we follow the 
technique given in [Kos75]. 

The key element of our implementation is the continuation stack, which contains the 
sequence of text addresses and procedure calls necessary to recognize the remaining part 
of the input sentence. The stack operations are: 

• push_q(elem) pushes the element elem on the stack, where elem is either a text 
address or procedure call. Pushing a text address is denoted by: 

push_q("prograa") 

Pushing a procedure call will be denoted as: 

push_q(«get .program ( ) » ) 

If the procedure which is pushed has arguments this will be denoted by: 

push_q(«sym-symbol ("DEFINE")») 

The procedure pueh.q pushes two entities on the stack: the procedure call and its 
argument. 

• pop_q(n) pops n elements from the stack. 

• top_q() returns the top element of the stack without popping it from the stack. 
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We also have the stack operation call_q() which pops the top element from the stack and 
executes the corresponding procedure. If the popped element is not a procedure call the 
parsing is aborted. We may assume that — due to backtracking — the continuation stack 
after returning from call_q() is in the same state as it was before the execution of the 
call_qO. The structure of the parse-routines is: 

PO 
{ 

puah.q(Mn); 

push.qCMi); 
call_q(); 
pop_q(n); 

} 

The restoration of the continuation stack after returning from cal l .qO is guaranteed by 
the fact that each parse-routine implicitly pushes its own address back onto the stack when 
it is finished. Before a next alternative is tried or the parse-routine stops its execution, 
the same number of members are popped from the stack by the routine pop_q() as were 
pushed. 

Text addresses are used as the reduction goals for the left-corner parser. They represent 
the non-terminals in the grammar. 

The following three parse-routines are generated for each non-terminal N in the gram­
mar: 

• getJVQ 

• symJVO 

• red JVQ 

If the non-terminal ./V may produce empty the following parse-routine is also generated: 

• empJVO 

Each of the four types of parse-routines has a specific function, but before presenting them 
we give some useful definitions. 

Definition 1 An alternative 'NQ : N-i,..., Л/і,..., Nn. ' € Ρ ¿s called an LCl
T-alternative of 

N ifN0¿'lcN, Nj =>* e (1 < j < i) and Ni 6 (TUST), where ST is the set of semi-terminals 
defined in Section 2.2.2. 

Definition 2 An alternative 'No : Ni,...,Ni,...,Nn.' € Ρ is called an LC'N-alternative 
of N if Nj; =>* ε (1 < j < i) and Ni = N. 

http://zed.NO
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The parse-routine get JVQ is the concrete realization of the continuation stack element 
G-N in Mlc. It tries to recognize a prefix of the rest of the input sentence which can be 
derived from the non-terminal N. If an alternative 'TVQ : Ni,...,Nn.' 6 F is an LCj-
alternative of N, then this alternative is included in the parse-routine get J V ( ) . 

The parse-routine eym.N is the realization of S-N in Mf c . As we know from Section 
3.1.1, the N may stand for either a terminal or a non-terminal in the parse-routine Bym.NO· 
If it is a terminal this parse-routine is translated into sym_symbol(iV) which will try 
to recognize the terminal symbol N. If N represents a non-terminal, this non-terminal 
is pushed onto the continuation stack as a reduction goal symbol and the parse-routine 
g e t J V Q is called. If the non-terminal may produce empty aym-N must call the parse-
routine етр.ЛЮ as well. 

The parse-routine r e d J V Q is the concrete implementation of R.N in Mlc. It compares 
the non-terminal Ντ on top of the continuation stack with the non-terminal N; if the two 
are equal the top of the stack is popped and the procedure on top of the continuation stack 
is called. The rest of the routine consists of all alternatives which are LC^-alternatives. 

The parse-routine empJVO, which is the implementation of Ε-N in M ¿ c , is the most 
simple one. This routine does not affect the input. 

3.1.4 Generating an LC-parser 

Several aspects of the parser and its generation are demonstrated in this section. For this 
purpose, we will use the following very simple context-free grammar. 

program : uni t : 
"BEGIN", appl icat ion marker, 

u n i t s , i d e n t i f i e r . 
"END". 

appl icat ion marker: 
"DEFINE". 

u n i t s : appl icat ion marker: 
un i t . "APPLY". 

u n i t s : appl icat ion marker: 
u n i t s , 

II . II 

u n i t . i d e n t i f i e r : 
{abcdefghijklmnopqrstuwxyz} (1) . 

There is no type checking information coded in this simple eag but the following aspects 
are covered: 

• left-recursion, 

• empty alternatives, and 

• (semi-)terminals. 
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We will now describe the algorithm for the generation of a parser from an arbitrary eag 

and illustrate it by the step-by-step generation of a parser for the above example. 

1. All non-terminals that may produce empty are marked. In the example grammar 

there is only one non-terminal that may produce empty: a p p l i c a t i o n marker. In 

eags which also describe the static- and dynamic semantics of a language all predicates 

are marked as empty producing. 

2. A routine eym-N is generated for each non-terminal iV which cannot produce empty. 

In Mlc the transition for S.N was: 

{w,S-N pih^CN N p). 

The following parse-routine is generated for the non-terminal program: 

8ym_program() 

{ 
push.qC"program"); 
push.q(«get .program()») ; 
cal l_q(); 

pop.q(2); 

} 

3. The routine empJV is generated for each non-terminal ./V that may produce empty. 

The transition for Ε-N in M ^ was: 

(і ,Е-Кр)Ь( ,р). 
The concrete implementation of this parse-routine for the non-terminal a p p l i c a t i o n 
marker is: 

emp.applicatioimarkerO 

{ 
c a l l - q O ; 

} 

The routine symJV, for a non-terminal which may produce empty, is more compli­
cated. It is the combined implementation of the following two transitions in M ¿ c : 
(w, S JV p) h (w, G-N N p) and 
(tu, SM p) h (tu, E.N ρ). 

The parse-routine for the non-terminal a p p l i c a t i o n marker, eym_application-

marker will be: 

sym_applicatiottmarker() 

{ 
push.qC'applicationmarker") ; 
push-q(«get_applicatioi imarkerO») ; 
cal l-qO ; 
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pop_q(2); 
pu8h_q(«emp_applicatioimarker()») ; 
call_q() ; 
pop_q(l); 

} 

4. The left-corner relation and its transitive closure are computed. For the example 
grammar we have: 

"BEGIN" ¿¡c program 
"DEFINE" ¿ic a p p l i c a t i o n marker 
"APPLY" ¿te a p p l i c a t i o n marker 
a p p l i c a t i o n marker / ¡ c u n i t 
i d e n t i f i e r ¿ic u n i t 
u n i t ¿ic u n i t s 
u n i t s ¿ic u n i t s 
a p p l i c a t i o n marker /*c u n i t s 
i d e n t i f i e r ¿^ u n i t s 
"DEFINE" ¿I u n i t 
"APPLY" Z,*c u n i t 
"DEFINE" ¿¡c u n i t s 
"APPLY" ¿¡c u n i t s 

The alternatives 'No : Ni,..., JV„ . . . , Nn.' which are LCy-alternatives of N are col­
lected and used for the generation of the parse-routine get.N. This step of the 
generation phase corresponds with step (lb) of the algorithm for generating Тю-

An entry in TLC for a non-terminal N may contain a union of alternatives that can 
be tried. So in Mlc several transitions are also generated for non-terminal N: 
(w, G η ρ) h (w, Е-Щ ... E n,_i S-i S-η,+ι. . . Sjik RJIQ ρ) 

These transitions will be combined in the parse-routine getJV. The parse-routine 
get N for the non-terminal u n i t s contains the alternatives: 

unit: application marker, identifier. 

application marker: "DEFINE". 

application marker: "APPLY". 

because these alternatives are the only LC^-alternatives of u n i t s . 

The result will be the following parse-routine: 

get _imits О 

{ 
push_q(«red_uni tO») ; 
push_q(«sym_identif i e r O » ) ; 
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push_q(«emp-applicatioiimarker()») ; 
ca l l_q(); 
pop.qO); 
push_q(«red appl icat ionmarkerO») ; 
push q(«sym.symbol( , ,DEFINE , l)») ; 
call_q() ; 
pop q(2); 
push_q(«red-applicationineu:lier()») ; 
push q^sym.symboK"APPLY")»); 
c a l l . q O ; 
pop_q(2); 

} 

5. The next phase of the generation process corresponds with step (la) of the algorithm 

for generation TLC- This phase is more complicated than the other ones, because 

several entries of TLC are combined in one parse-routine. For a non-terminal N the 

entries for the stack symbols [X, N], where X may be any non-terminal, are com­

bined. Each of these entries may contain several alternatives. Therefore in order to 

implement the parse-routine red N, we make use of the set of transitions from Mlc: 

(ω, R.N, N p) h (ω, E.N^... E.N^ S J V t + 1 . . . S.Nk AJV0 Ν ρ) 

Note that these transitions correspond with the LC'^-alternatives of Ντ\ these alter­

natives are collected and used to generate the parse-routine red_./Vt. 

Only one LC^-alternative can be found for the non-terminal a p p l i c a t i o n marker: 

u n i t : appl icat ion marker, i d e n t i f i e r . 

Before the LC^-alternatives are tried, the transition 

{w,R.N N p)\-(w,p) 

must be implemented. This is done by a test which checks whether the top of the 

continuation stack equals the non-terminal N, so whether the reduction goal has 

already been satisfied. 
The parse-routine will be for the non-terminal a p p l i c a t i o n marker: 

red_applicationmaxker() 

{ 
if (top_q() • "applicationmarker") { 

pop_q(l); 
c a l l - q O ; 
push_q("applicatioiimarker") ; 

}; 
push_q(«red_\Lnit()») ; 

push_q(«sym.identif i e r O » ) ; 

ca l l_qO; 

pop_q(2); 

} 
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The following r e d . u n i t s parse-routine is generated for the left-recursive non-terminal 
u n i t s : 

red-units О 

{ 
if (top_qO - "uni t s " ) { 

pop_q(l); 
ca l l_qO; 
push_q("units"); 

}! 
pu8h_q(«red u n i t s O » ) ; 
push_q(«sym_unit()») ; 
push_q(«sym symboK" ; " ) » ) ¡ 
ca l l_q() ; 
pop_q(3); 

} 

The alternative 

u n i t s : u n i t s , " ; " « u n i t . 

is the only LCyv-alternative of u n i t s . 

We have given a typical specimen for each type of parse-routine using the context-free 
grammar given in the example. A complete parser for an arbitrary context-free grammar 
can be generated with this algorithm. The complete parser for this example can be found 
in Appendix B. 

This backtrack left-corner parser version uses no lookahead, which in some cases could 
increase the performance considerably. It will tremendously complicate the generation of 
the parser. 

3.1.5 Parse-routines for predicates 

In order to give a full description of the parser we have to take (static) semantics into 
consideration. 

The consequence of extending the grammar with predicates is that we have to extend 
the left-corner backtrack parser with a new set of parse-routines, to cope with the predicate 
definitions in the eag. Recall that in the first phase of the parser generator all non-terminals 
that only produce empty and which are therefore predicates, are marked. 

If a non-terminal N is the left hand side of a predicate definition the parse-routine 
symJV has to call the parse-routine рг _/ . The body of this routine consists of all the 
alternatives in the right hand side of N. 

The parse-routines sym.P and рг _Р for an arbitrary predicate 
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Po '• A l i - ·ι Pipi-

Po '• Pnl ι · · • ι Ρnpn • 

will look like 

eym_PoO 

{ 
pnsh_q(«pre-.PoO») ; 
cal l_q(); 

pop_q(l); 

} 

and 

pre_PoO 

{ 

pu8h_q(«pre.P tp ( ( ) » ) ; 

pu8h_q(«pre.f ,

li ( ) » ) ; 
cal l_q(); 

popqCpi) ; 

} ' 

Some predicates such as: p r e . e q u a l O and pre jnotequal() are primitive. The definitions 

of the parse-routines for predicates are actually more complicated because of critical affix 

positions and the possibility of delaying predicates. But we need not consider these aspects 

for the moment. 

The execution of predicates is top-down and the termination of the execution must be 

ensured via the affix values of the critical affix positions. 

3.2 Tree-graph 

Before we decorate the affix graph nodes in the tree-graph with affix values, we have to 

know its structure and how it is constructed. The (incremental) affix evaluation mechanism 

is based on moving values from one affix graph node to another and (sometimes) performing 

operations on these values. For ease of presentation we assume, in the rest of this chapter, 

that the only operator is concatenation. The other operations will be described in Section 

5.2. 

In this section we discuss the internal structure of the nodes, formalize the structure 

of the tree-graph, and give a number of access routines for obtaining information from the 
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tree-graph components. This information is used in the description of the (incremental) 
affix evaluation mechanism. 

There are two types of nodes in the tree-graph: 

• tree nodes which correspond to hyper non-terminals or hyper sets 

• affix graph nodes which correspond to affix non-terminals, affix terminals, and affix 
sets in affix expressions of displays. 

There are also two types of links: 

• links between two tree nodes 

• links between a tree node and an affix graph node. 

A tree node is linked to an affix graph node if and only if the affix non-terminal, affix 
terminal, or affix set represented by this affix graph node is applied in an affix expression 
of the display of the corresponding hyper non-terminal or hyper set. Affix non-terminals 
with the same name within one alternative of a hyper rule are represented by one affix 
graph node. Affix graph nodes are never directly linked to each other. 

3.2.1 Tree nodes 

There is a unique type of tree node for each alternative in the eag. The node in the tree-
graph corresponding to the hyper rule ' No{pi, • • • pm) • mi , . . . ,m n . ' € P, is represented 
as: 

sons affix positions 

N0 ТП\ mn 

Figure 3.3: Tree node. 

As can be seen in Figure 3.3, a tree node consists of an identification which is represented 
by the non-terminal No, links to the subtrees which correspond with the non-terminal and 
hyper set members in the right hand side of the rule and two rows of affix positions. The 
affix positions in the upper row represent the affix expressions of non-terminal NQ in the 
right hand side of a rule, the affix positions in the lower row represent those in the left hand 
side. Although the affix expressions are the same for each applying occurrence of the hyper 
non-terminal, this information is stored because of the operations associated with the affix 
expressions. The upper and lower side of any one affix position form an affix position slice. 
A different affix expression may be associated with each side of a slice. These expressions 
may consist of several affix terms. Bach affix term is connected to an affix graph node. 
Therefore each side of an affix position slice may be linked to several affix graph nodes 
(Figure 3.4). 
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® φ 
sons affix position^/ 

position sliç.e 

Figure 3.4: Affix position slice. 

The value of a side of an affix position slice is obtained by concatenating the values of the 
connected affix graph nodes, which is only possible if all connected nodes have a value. A 
number, the sill, is associated with each side of the affix position slice to give the number 
of affix graph nodes with no value. Initially this value is equal to the number of affix 
non-terminals and affix sets in the expression. Each time a value is assigned to an affix 
graph node the sills of the connected slices are decreased. The sill acts as a semaphore 
during the evaluation process. 

The concatenated values of the affix graph nodes connected to both sides of an affix 
position slice must be equal. 

3.2.2 Affix graph nodes 

An affix graph node represents an affix term which is either an affix terminal, an affix 
non-terminal or an affix set, as we have seen in Chapter 2. If it is an affix terminal then 
the value of the affix graph node is always a constant value representing this terminal, see 
Figure 3.5. 

Figure 3.5: Affix graph node for an affix terminal. 

If the affix term is a defined affix non-terminal then the value of this affix graph node 
must be a member of the language defined by the corresponding definition. The affix graph 
node therefore contains both a value and a function to check this value, see Figure 3.6. If 
the affix term is an affix set the value must be composed from the elements of the affix set. 
The affix graph node contains both a value and a function to check this value. 

Figure 3.6: Affix graph node for a defined affix non-terminal. 

If the affix term is a non-terminal which has no definition the value of the affix graph node 
is not restricted and the node will contain a function which always yields 'true'. 

As well as a value and a possible function the affix graph node contains at least one 
link with an affix position slice. These links are established during the parsing process as 
described in Section 3.3. Each link has one of the following three types: 
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• undefined ('und'); 

• in ( ' in '); 

• out ( 'out ') . 

When the affix graph node is connected to some tree node the type of the link is set to 
'undefined'. Immediately after establishing the connection the routine propagate is called. 
This routine will be explained in Section 3.4.3. The routine propagate may change the 
'undefined' type into one of the other two types. These link types are necessary for the 
incremental evaluation process. In fact by assigning these types to the links we obtain a 
dynamic flow in the affix graph. 

3.2.3 A subtree-graph as example 

We extend the simple context-free grammar from Section 3.1.4 with type checking infor­
mation. Each occurrence of an identifier must be defined before it is applied and each 
identifier may only be defined once. We give not the complete eag but only a few rules. 

uni t (old env, new env): 
appl icat ion marker ( type) , 

i den t i f i e r ( i d ) , 
check appl icat ion (type, id , old env, new env). 

appl icat ion marker ("D"): 
"DEFINE", layout; 

appl icat ion marker ("A"): 
"APPLY", layout; 

appl icat ion marker ("A"): 

check appl icat ion (>"A", >id, >env, env): 
includes ( id , env). 

check appl icat ion (>"D", >id, >old env, new env): 
excludes ( id , env), 

add ( id , old env, new env). 

add (>id, >env, " ( " + id + " , " + env +")") : 

Although we will present not the construction routines for the tree-graph until Section 3.3, 
we will now present a small piece of the tree-graph for the input sentence: 

BEGIN DEFINE i END 



3.2. TREE-GRAPH 69 

I applicationinarker| 

Figure 3.7: Subtree-graph. 

The decoration of the affix graph nodes (the ovals) will be discussed in Section 3.4. The 
types associated with the links between affix graph nodes and affix position slices are 
omitted in Figure 3.7. 

3.2.4 Definition of the graph 

In order to discuss the evaluation mechanism we need a more formal description of the 
tree-graph. We give a number of definitions which are used to define the affix evaluation 
mechanism. 

The set of vertices of a tree-graph TG consists of two disjoint sets: 

• the set of vertices T, the tree nodes 

• the set of vertices A, the affix graph nodes. 

The set of edges of a TG consists of two disjoint sets as well: 

• the set of edges T£, representing the links between the tree nodes 

• the set of edges A£, representing the links between the affix position slices and the 
affix graph nodes. 

The tree-graph can be split in such a way that we get a (well-defined) tree and a bipartite 
graph. In order to achieve this we must split each tree node, see Figure 3.8, in set Τ in 
the following way: 

affix positions 

M, ТПі 

(a) 

m n 

^ • — > 

(b) 
Figure 3.8: Split tree node. 
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The partitioning of all nodes in set Τ results in a set of nodes V, representing the affix 
position slices, Figure 3.8(b), and a set of nodes T' representing the tree part of each node 
of T, Figure 3.8(a). The set of vertices T' and the set of edges T£ form a tree. The sets 
of vertices V and A together and set of edges AS form a bipartite graph. 

In the description of the bipartite graph we will ignore the underlying tree structure. 
A bipartite graph consists of a collection of edges and a collection of two different kinds 

of vertices. The vertices of the affix graph, the set A, may be considered to be of the first 
kind and the affix position slices, the set V, of the second. These two sets are disjoint. 

A = {ai,a2,...} 

'P = {PuP2,-} 

The lower side of the affix position slices is represented by 0, whereas the upper side is 
represented by 1. 

An edge in a bipartite graph connects the lower or upper side of a vertex of V with a 
vertex of A. The set of edges is A£. 

A£ = {еі.ег,...} 

The functions 

edge .number _a : A —* N 

edgejiumber_p : V χ {0,1} -• N 

give the number of edges of an affix vertex (Figure 3.9) and a lower or upper side of an 
affix position vertex (Figure 3.10) respectively. 

О 
Figure 3.9: Affix graph node with η edges. 

R 
Figure 3.10: Affix position slice with, n upper edges and m lower edges. 

For a vertex α e A and a position г € Ν, edge_a(o,i) gives the edge e £ AS, which is 
connected to the vertex α at position i. 

edge a : A x N —> AS 

For a vertex ρ € V, a side j G {0,1} and a position i ζ Ν, edge.pCp.j ,i) gives the edge 
e 6 AS, that is connected to the vertex ρ at position г of side j . 

edge.p : V χ {0,1} χ Ν — AS 
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For an edge e € A£ the function vertex_a(e) gives the vertex a 6 A that is connected 
to the edge e at the affix graph node side and the position where the edge is connected to 
the vertex. 

v e r t e x . a : A£ —• Α χ N 

The function v e r t e x p(e) give? the vertex ρ € V that is connected to the edge e at the 
affix position side, a number to indicate the side of the slice and the position where the 
edge is connected to the vertex. 

ve r t ex .p : Αε -* V x {0,1} χ N 

We now define some extra functions which will be needed by the affix evaluation mech­
anism. The function 

type_of : AS -* { 'und', 'out ' , ' in '} 

gives the type of a link in the bipartite graph. 
The function 

va lue .of : A -> Έ*Α U {J.} 

gives the value of an affix graph vertex. If the affix graph node has no value yet the value 
J. is returned. Σ ^ is the alphabet of the legal affix values. If the vertex does not yet have 
a value this function returns the 'undefined' value. The function 

has .value : A —> {0,1} 

which checks whether the affix graph node has some value can be derived from the previous 
function in the following manner: 

, , , Í 0 ifvalue_of(e) = J. 
ha8_value( e) = | j i f v a l u e o f ( e ) ^ ± 

The function 
af f ix.of : V x {0,1} χ N -• A 

gives the affix graph node connected to a side of an affix position slice at position j . It is 
defined as: 

aff iii_of(p,i,j) = a 

where 

(ο,τι) = vertex_a(edge.p(p,z, ij')) 

We mentioned, in Section 3.2.1, that a sill is associated with each side of an affix position 

slice. We are now able to define this sill more formally. 

s i l l : V χ {0 ,1}->N 

This function gives the number of affix graph nodes which do not yet have a value. Using 
the function definitions above this sill function may be defined as follows. 

edge лшпЪег _p(p,i) 
s i l l (p , i ) = edge iiumber_p(p,i) — ^ has-value(affix.of(p,i,j)) 

J = l 
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The last function which must be defined is associated with the definitions of an affix 
non-terminal or an affix set. Each affix graph node representing a non-terminal or set 
contains a function. The function 

aff ix.function_of : Λ —• (Σ^ —> {true, f aise}) 

returns the function which checks the value against the definition associated with the affix 
non-terminal or affix set. If the affix non-terminal is free the function delivers which always 
' true' is returned. 

3.3 Tree-graph construction 

The parser must not only recognize the input sentence, but also construct the corresponding 
tree-graph. In this section we describe the adaptations in the parse-routines necessary to 
construct the tree-graph. 

Given an eag with the underlying context-free grammar 
GCFG = (N,T,SH,P,B); 

consider a hyper rule: 
4V 0 :W 1 , . . . , t f m . , €Pwhere 
N0 e Я and N i , . . . , Nm € (Я U Τ U 5д). Suppose that a node has to be created in the 
tree-graph for a non-terminaJ. Such a node can be created during the recognition of the 
rule2 

1. before the parser starts to recognize the right hand side. 

2. upon completion of the recognition of the right hand side. 

3. at any moment between starting and finishing the recognition, for example, after the 
first member has been recognized. 

A lot of unnecessary work may be done in the first case if the first member can not be 
recognized, since our parsers do not use lookahead. 

The second solution restricts the principle of affix-directed parsing. Whether the recog­
nition of two members of a right hand side would lead to an inconsistent affix graph could 
only be detected after the entire right hand side is recognized. 

The third solution is a compromise between the other two. A node is created when 
the parser has recognized the first member. This approach also meshes perfectly with 
left-corner parsing. 

3.3.1 The algorithm 

We will demonstrate the algorithm for constructing the tree-graph by means of an arbitrary 
alternative in an eag. 

2 Recognition of a rule means that the parser tries to recognize a part of the input derivable from the 
right hand side of the rule. 
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• The algorithm starts with the creation of a number of affix graph nodes necessary in 
this alternative, these nodes are only locally available. 

• The parser will either try to recognize the left-corner of this alternative, which will al­
ways be a (semi-)terminal, or it has just recognized the left-corner of this alternative, 
which will always be a non-terminal. In the first case the parser is in a get JV parse-
routine and in the second case in a red JV parse-routine. If the alternative starts 
with possible empty producing members and the parse-routine get_./V is executed, 
then the tree node is created before these possible empty producing members are 
recognized. If the alternative does not start with possible empty producing members 
and the parse-routine get N is executed, then the tree node is created immediately 
after having recognized the first member. If the parse-routine red-TV is executed, 
then the tree node is created immediately after having recognized the left-corner. 

• The created tree node is pushed onto a separate tree node stack. If the alternative 
is recognized by way of a zea.N parse-routine the subtree built for left-corner non­
terminal is immediately linked to created tree node. 

• The parser proceeds with the recognition of the rest of the alternative. 

- Non-terminals and hyper sets are recognized and the root node for the con­
structed subtree-graphs are on top of the tree node stack. These root nodes are 
removed and linked to the next element on the tree node stack, which is the tree 
node 'under construction' for this alternative. The subgraph is also connected 
to the relevant affix graph nodes. 

- Terminals are recognized and no nodes are created for them. 

• The parser also has a backtrack phase, during this phase all links and nodes created 
are recursively demolished. 

3.3.2 Construction routines 

There are 4 routines involved in the creation of the tree-graph. 

make.tree node: for the creation of tree nodes. 

make aff ix^graphjiode: for the creation of affix graph nodes. 

make-tree_link: for creating links between tree nodes. 

make.af f ix_link: for creating links between tree nodes and affix graph nodes. 

The calls of the routines make_tree-node, maLke.tree.link, and make.af fix .link in the 
parse-routines get.N and red N are pushed onto the continuation stack, in order to create 
the tree node, tree link, and affix link respectively. In this way the creation of tree nodes 
and links is fully integrated in the backtrack mechanism. The three routines show an equal 
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respect of the backtrack mechanism — all allocated memory is freed during backtracking, 
no traces of the nodes or links are left behind. 

The addresses of the tree nodes created by make _tree jiode are pushed onto a separate 
tree node stack. The addresses remain on this stack as long as the nodes are not completed. 
A node is completed if all links between it and its sons are created and the node is also 
connected to all related affix graph nodes. The tree node stack corresponds to the path in 
the tree-graph from the node under construction to the top. As soon as the link between 
the tree node N and its father F is made by the routine make t ree . l ink the address of N 
is removed from the stack and the tree node N is then considered to be completed. The 
father node F is always the next node on the tree node stack. 

The routine make aff ix_link(y4,5) creates a link between an affix graph node A and 
an affix position slice 5 of the tree node on top of tree node stack. We assume that each 
affix position has an implicit name, which makes it possible to refer to a specific affix 
position slice of a tree node. 

The call of the routine maie.affix-graph_node is not pushed onto the continuation 
stack. Before the recognition of an alternative starts the affix graph nodes used within the 
alternative are created. The backtrack mechanism requires that these nodes be explicitly 
dismantled during backtracking and the routine free.affix_graph_node is therefore also 
defined. The explicit creation of affix graph nodes offers us the possibility of assigning 
names to them, which is quite useful because several distinct tree nodes may be connected 
to the same affix graph node. 

3.3.3 An example 

In Section 3.2.3 we gave a few hyper rules which will be used for generating new parse-
routines. The parse-routine get.units, for example, will be: 

get.units() 

{ 
{ 
oldenv = make_aff ix_graph_node() ; 

id « make.aff ix.graph_node() ; 

push_q(«red-UiiitO») ; 

push_q(«sym.identif ier()>>) ; 
push_q(«maie-tree_linkO») ; 
push_q(«make_aff ixJLinkCtype.posl)») ; 
push_q(«emp_applicatioiLmarker()») ; 
push_q(«niake-affix_liiik(neveiiv,pos2)») ; 
push_q(«make aff ixJinkColdenv.posl)») ; 
puBh_q(«make.treejiode("imit")») ; 
call.qO ; 
pop_q(16); 
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freeaff ix graph_node(id) ; 

free_aff ix_graph_node(oldenv) ; 

h 
{ 

loc_l = make.affix^raph-nodeC'D"); 
puBh_q(«red-applicationjnarker()»); 
push-q(«make-affix.liiik(loc_l,po8l)») ; 
push.q(«make.tree-node("applicatiotunarker")») ; 
piish-q(«sym-symbol("DEFINE")») ; 
call_qO; 
pop-q(4); 
free_affix-graph-node(loc 1); 

}; 

} ' 

Of course a lot of extra information will necessary for the creation of the nodes, but for 
sake of the example we want to avoid too much detail. We also assume for the sake of 
simplicity that all routines are polymorphic. 

3.3.4 Optimalizations 

Since a tree node is created for each alternative of a rule the tree-graph will have the same 
size as the derivation tree. The tree-graph thus built is not really 'abstract'. In the SSL 
[RT89b] the specification writer has to indicate where nodes of the abstract syntax tree 
must be created. In our system the tree-graph is built automatically. 

Two heuristic rules can be formulated to obtain a more efficient tree-graph. 

Rule 1 A tree node is not created for an alternative of a rule of which the right hand 
side consists of exactly one non-terminal member and in which no operations are 
performed on the affixes in either the left or right hand sides. Applying this rule will 
eliminate chain productions in the tree-graph. 

Rule 2 The subtrees constructed for left- or right-recursive rules can be flattened if the 
rule has the following pattern: 

A (old affix, new affix): 

В (old affix, affix), 

"terminal", 

A (affix, new affix). 

A (old affix, new affix): 

В (old affix, new affix). 

and no operations are performed on the affixes in these alternatives. A subtree of 
the following structure will normally be built for a right-recursive rule: 
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Figure 3.11: Subtree for right-recursive rule. 

The flattened subtree will look like: 

Figure 3.12: Flattened subtree. 

The application of this rule will have a major impact on the other parts of the system 
which use the tree-graph such as the unparser. 

In the ASF+SDF meta-environment [КІІ91] similar rules are formulated to obtain an op­
timal abstract syntax tree [HHKR89]. These rules are as yet not implemented in the 
prototype of PREGMATIC, but are in development. 

3.4 Non-incremental affix evaluation 

Affix evaluation and affix value propagation are two names for the same phenomenon, viz. 
assigning values to the nodes in the tree-graph. This will be the last step in the process of 
transforming an input sentence into a fully decorated tree-graph. 

Incremental affix evaluation consists of two parts: the propagation of affix values and 
the propagation of 'undefined'. The latter will be explained in Section 5.2. In this section 
we concentrate on the propagation of affix values. 

A tree-graph consists of two types of nodes. The propagation algorithm consists of two 
parts. One part takes care of the propagation of a value from an affix graph node to a tree 
node and the other part from a tree node to an affix graph node. This distinction may 
seem artificial, but propagation can start in both an affix graph node and a tree node. 

Given an affix graph node with a value, this value is propagated to one of the linked 
affix position slices. The value is moved from side s of an affix position slice to the other 
side s' and is then propagated to affix graph nodes connected to this side. Note that, on 
both sides of the slice, operations may be performed on the value. On side s other values 
may be concatenated and on side s' the value may be split into several parts, which are 
all propagated to distinct affix graph nodes. This process is continued, possibly also with 
values from other affix graph nodes, until either all affix graph nodes have a value or until 
ал attempt is made to assign a value to an affix graph node which either already contains 
a value which is not the same as the propagated one, or whose associated definition does 
not accept the propagated value. 

This informal description of our propagation algorithm resembles the algorithms used 
in systems based on attribute grammars. The evaluation process in systems based on 



3.4. NON-INCREMENTAL AFFIX EVALUATION 77 

attribute grammars usually starts assigning values to the nodes in the attribute graph 
after completing the abstract syntax tree and the associated attribute graph. Several 
algorithms have been developed to determine the order in which the attributes have to 
be visited in order to calculate the values of the attributes in the graph [Alb89c, Alb89b, 
Alb89a, LMOW88, RTD83]. In contrast our propagation mechanism is activated as soon as 
a link is created between an affix graph node and an affix position slice. It is not necessary 
for the tree-graph to be complete, the evaluation mechanism will try to assign values to 
affix graph nodes as soon as possible. 

The parsing process and the affix value propagation are intermixed to obtain affix-
directed parsing. The affix value propagation mechanism is also based on backtracking. 
The mechanism propagates values depth-first through the affix graph in an eager way. 
Suppose a node A in this graph has several undefined links. The process selects one of these 
links and starts to propagate the value of this node. If this process stops somewhere in the 
graph, the next undefined link is selected in node A and the propagation is started again. 
This is repeated until there are no undefined links left. This process works recursively in 
all visited nodes. 

For all affix graph vertices in the bipartite graph the following condition holds: 

Va € A : value.of (a) =± V F(value-of (a)) = ' t rue ' 
where 
F = aff ix_functioa_of (a) 

This condition must always be satisfied during propagation. 

3.4.1 Propagation from affix graph node to t ree node 

The affix value propagation mechanism can be split into two phases. The first phase takes 
care of the propagation from an affix graph node to a tree node. The requirements for 
starting the propagation process in an affix graph node A are: the node must have a value 
and at least one undefined link. Thus, if the condition 

hae_value(j4) = 1 Λ (3j : 1 < j < edgejiumber_a(J4) Λ type of (edge_a(j4j')) = 'und') 

holds, the routine propagate will continue. 

І--;ІІ---Із 

A Çv) 
Figure 3.13: Subgraph with undefined link. 

The selected link refers to an affix position slice side which may be connected to several 
other affix graph nodes. The type of the link between A and Τ becomes 'out', to indicate 
that the affix value has 'left' this node by this link, and the sill of the corresponding side 
s of the affix position slice is decreased by one. 
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A iv 

Figure 3.14: Subgraph with 'out' link. 

If s i l l ( T , s ) = 0, which indicates that all affix graph nodes corresponding to the affix 
terms in the affix expression have a value, the values are concatenated and the result 
value is propagated to the other side s' of the slice. The action performed by the routine 
propagate depends on the s i l l ( T , s ' ) , as will be described in the next section. 

3.4.2 Propagation from tree node to affix graph node 

This is the second phase in the propagation mechanism. If a value г> is propagated from 
side s to side s' the actions performed by the routine propagate depend, first of all, on 
the completeness of the affix graph at that point. 

• In the first case, some parts of the tree-graph are not known when propagation starts. 
For example, the other side of an affix position slice may not as yet be connected to 
affix graph nodes. In such a situation the propagation stops in this node. It will be 
resumed later when this affix position slice is linked to one or more affix graph nodes. 

Τ 

Out> •••II·· ^ 

s' 
3 

AÇf) 
Figure 3.15: Incom] siete si ibgraph 

The condition that has to be fulfilled before the value can be propagated is: 

s i l l (T,s) = 0 Λ edge number p(T,.s') > 0 

• Otherwise, the other side of the affix position slice is connected to one or more affix 
graph nodes. 

A Çv 
Figure 3.16: Complete subgraph. 



3.4. NON-INCREMENTAL AFFIX EVALUATION 79 

The propagated value 

Vi + ... + ^edge лшоЬег-р(Т,») 

is non-deterministically split into edge_number_p(T,s') parts. This means that the 
propagation mechanism has to generate all the splits of the propagated value that 
satisfy the constraints imposed by the nodes connected to side s'. 

The following condition holds for all links between affix position slice Τ and affix 

graph nodes Bj. 

M<j<edgejiumber_p(T,·') : 

type.of (edge-p(T,s',j)) = 'und' V type_of (edge p(T,s ' J ) ) = 'out ' 

Some of the links between Τ and nodes Bj may have the type 'out'. Such 

affix graph nodes must already have a value. The part of value that has to be 

propagated to such a node must be equal to the present value of the node, in 

order to satisfy the consistent substitution constraint. 

If the condition 

Ьав- аІие(В^) = 1 

holds, then propagate compares the value of Bj with the propagated value. Let 

edge_iiumber_p(T,i) 

ζ = 5Z value.of (af f ix.of (Г,а,і)) 
1 = 1 

be the propagated value. Then we should have 

Ξυ,,ν : и + value.of (Д,) + ν = ζ. 

The other possible type of link is 'undefined'. The action of the propagation 

mechanism depends on the value of node Вг 

If the node already has some value, the same situation arises as above. If the 
values are equal the link between Τ and B} becomes 'in'. 

Otherwise the node however has no value. Let 

edge number_p ( 7 » 

z = 5 1 value.of (af f ix_of (Τ,β,ϊ)) 
ι=1 
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the propagated value. In order to assign a part of the value to the affix graph 
node B} this value must satisfy the condition 

d u i , . . . , Uedgejujüber-píry) : 

Σ - і Ч + u, + E l

e 4 f

g

+ r u m b e r - p ( T ' ' ' ) u I = ζ 
л 
Fiuj) = ' t r u e ' 
where 
F = a f f ix funct ion of{B3) 

If the propagated value satisfies this condition the type of link between Г and В, 

becomes 'in'. The propagation mechanism will recursively propagate the value 

via the 'undefined' links of Д,, if any. 

If the propagated value does not satisfy the constraints, the value is not assigned 

to the node B^ and the propagation starts to backtrack, because an inconsistency 

was detected in the affix graph, i.e. some context condition was violated. 

Whenever the sills of both sides of the affix position slice are zero the following 
condition is guaranteed to hold: 

Е еабе^шпЪег_р(Т, .) у а 1 и е o f ( a f f i x o f ( r i S ) i ) ) 

Е е = ^ ш п Ъ е г _ р ( т у ) v a l u e o f ( a f f i x o f ( 7 V ) J · ) ) 

3.4.3 Propagation algorithms 

In Sections 3.4.1 and 3.4.2 we discussed the principles of, and conditions for the propagation 
of affix values. In this section we will give the algorithms themselves. We first give the 
algorithm for propagating values from affix position slices to affix graph nodes. 

propagate'(edge) /* from t r e e node to graph node*/ 

{ 
( s l ice , s ide ,pos) :•* vertex_p(edge) ; 
s i l l ( s l i c e , s i d e ) - : = 1; 
type of(edge) :• ' o u t ' ; 
if ( s i l K s l i c e . s i d e ) » 0) { 

side':« 1 - s ide; 
nr := edge_number p ( s l i c e , s i d e ' ) ; 

Σ
ηχ -, „edgeJimiber_p(el:Lce,eide) , , . . . . 

j ^ val i := л.]=і value.of (aff ix of ( s l i c e , s i d e , j ) ) ; 
for i :» 1 to nr 

p u s h . q ( « p r o p a g a t e ( s l i c e , s i d e ' . i , v a l i ) » ) ; 
c a l l . q O ; 
pop.q(nr) ; 

} 
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e lse 
eal l -qO ; 

type_of(edge) : • 'und ' ; 
s i l K s l i c e . s i d e ) + : • 1; 

} 

This routine propagate ' is quite simple, it simply splits the value non-deterministically 
and propagates the values v a l i through the links, independently of the types of those 
links. The expression 1 - s ide switches the process from the lower or upper affix position 
slice side to the upper or lower side respectively. 

We now give the algorithm for propagating vaJues from affix graph nodes to affix posi­
tion slices. 

propagateCsl ice .s ide.nr ,value) /* from graph node to t ree node*/ 

{ 
node :» a f f l x . o f ( s l i c e , s i d e , n r ) ; 
edge : - edge -p ( s l i ce l s ide ,n r ) ; 
if (value .of (node) <> J.) { 

if (value_of(node) " value) 
if (type.of(edge) - 'und ' ) { 
s i l K s l i c e . s i d e ) - : » 1; 
type_of(edge) : • ' i n ' ; 
call_q() ; 
type_of(edge) := 'und ' ; 
s i l K s l i c e . s i d e ) +:= 1; 

} 
else 

c a l l . q O ; 
} 
else /»backtrack*/ 

} 
else { 
F :» aff ix-function.of (node) ; 
pushed :» 0; 
if (F(value)) { 
value_of(node) := value; 
s i l K s l i c e . s i d e ) - := 1; 
type_of(edge) := ' i n ' ; 
for i : • 1 to edge_mimber_a(node) { 

edge' := edge_a(node,i) ; 
if (type-of(edge') = 'und ' ) { 
pushed +:= 1; 
push-q(«propagate ' (edge ' )») ; 

} 
}; 
cal l_q() ; 
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pop_q(pushed); 

type.of(edge) :ж
 'und'; 

sill(slice,side) +:= 1; 

} 
} 
else /»backtrack»/ 

} 

Depth-first behaviour is obtained by processing a propagate- or propagate'-call com­
pletely before the next propagate or propagate' is popped from the stack. 

The else parts marked by the comment /»backtrack*/ invoke the backtrack mecha­
nism. This mechanism can be implemented is several ways, for example that described in 
[Mei92]. 

3.4.4 Predicates and propagation 

The parser in a programming environment generated uses affix-directed parsing. Context 
conditions are explicitly checked by predicates. Affix-directed parsing is obtained by evalu­
ating these predicates during the recognition of an input sentence. This makes it necessary 
for the affix evaluation mechanism to trigger the execution of the predicates. A predicate 
may be evaluated if the sills of all its critical affix position slices are zero, viz. the affix 
graph nodes connected to the upper side of all critical affix position slices have a value. A 
predicate remains delayed until this is the case. 

The delaying mechanism of predicates uses a few extra access routines. Some adapta­
tions to the critical affix position slices also are necessary. A critical affix position slice 
contains, in addition to the two rows of links to affix graph nodes, a marking that indicates 
that this affix position slice is critical and a routine call to the delayed predicate with its 
arguments, see Figure 3.17. 

'c [delay P(poslt..., розп)] \. \~ 

Figure 3.17: Critical affix position slice. 

We need the function: 

i s c r i t i c a l : V —» {true,false} 

which checks whether an affix position slice is marked as critical, and we need a function 
delayed_function which retrieves the stored delayed routine in a critical affix position 
slice. Non-critical affix position slices are implicitly marked. 

In Section 3.1.5 the body of the parse-routine pre_P for the predicate Ρ was presented. 
This parse-routine is in reality more complicated, as we shall see in this section. We will 
demonstrate pre_P by means of the hyper rules given in Section 3.2.3. The parse-routine 
pre_checkapplication will be of the form: 



3.4. NON-INCREMENTAL AFFIX EVALUATION 83 

pre_checkapplicationO 

{ 
push-q(«mark_a8_critical(posl,pos2,pos3, 

«delay-Checkapplicat ion (pos i ,pos2 > pos3,pos4)»)») ; 
piish_q(«make_tree_node("clieckapplication")») ; 
c a l l - q O ; 

pop_q(2) ; 

} 

The routine m a r k _ a s _ c r i t i c a l ( ) takes care of the initialization of the administration, it 
stores a function call delay _P in each critical affix position slice and marks each such 
position as critical. 

The parse-routine de lay c h e c k a p p l i c a t i o n will be of the form: 

delay-checkapplicationCposl,pos2,pos3,pos4) 

{ 
if (sill(posl) - О Л sill(pos2) » О Л sill(pos3) = 0) { 

{ 
env - make_aff ix_graph_node() ; 
l o c i » make_aff ix_graph-node("A") ; 
id • make_aff ii_graph_node() ; 
push_q(«make_aff ix_link(env,pos4)») ; 
push-q(«makej tree-l inkO») ; 
push.q(«make-aff ix-link(eiiv,pos2)») ; 
push_q(«make_aff i x _ l i n k ( i d , p o s l ) » ) ; 
push_q(«pre_ii icludes()») ; 
push_q(«make_aff ix_link(env,pos3)») ; 
push_q(«make_aff ix_l ink( id,pos2)») ; 
push_q(«make_aff ix_l ink( loc_l ,pos l )») ; 
c a l l . q O ; 
pop_q(8); 
free.aff ix_graph_node(id) ; 
free_affix_graph_node(loc_l) ; 
free_aff ix_graph_node(env) ; 

}; 

} ' 

else 

c a l l . q O ; 

} 
Before executing a predicate the affix evaluation mechanism checks whether the affix 

graph nodes connected to the upper side of all critical affix position slices of this predicate 
have a value. If these affix graph nodes are all defined the predicate is executed. If, 
however, some of these affix graph nodes do not yet have a value, the predicate is not yet 
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executed The evaluation of predicates has as side effect that affix graph nodes connected 
to the non-critical affix position slices get a value 

In order to trigger the execution of a delayed predicate the propagation algorithm 
propagate' is adapted 

propagate'(edge) /* from tree node to graph node*/ 
{ 

( s l i ce . s ide ,pos) :» vertex ρ(edge); 
s i l K s l i c e . s i d e ) - · • 1, 
type of(edge) :« 'out ' ; 
i f ( s i l K s l i c e . s i d e ) » 0) { 

i f ( i s - c r i t i c a l ( s l i c e ) ) { 
Ρ :• delayed-fiinction(slice) ; 
push-q(«P») ; 
ca l l .qO; 
pop q ( l ) ; 

} 
else { 

side':- 1 - side; 
nr :• edgejimnber.p(slice,side') ; 
EÎLi val , = Е £ в « ™ Ь в г p(eUc e ,e ide) v a l u e o f ( a f f l x o f ( а 1 і с в , 8 1 ( І ( j ) ) . 
for ι :• 1 to nr 
push-q(«propagate(sl ice,side', i ,val i )») ; 

cal l q() ; 
pop q(nr) ; 

} 
} 
e lse 

cal l q() ; 
type of(edge) ·= 'und'; 
s i l K s l i c e . s i d e ) +:= 1; 

} 

3.4.5 Cycles and propagation 

In Section 2 2 4 we also used the critical affix positions to ensure the termination of cycles 
during parsing The eag for the Pascal expressions presented in Section 2 3 is an example 
of a non-well-formed eag This is caused by the alternative 

term(prio).· 
tenn(prio+l). 

The corresponding red.termO parse-routine, without tree-graph construction routine-calls 
and affix evaluation, looks like 
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redjtermO 

{ 
if (top qO - "term") { 

pop_q(l); 
cal l_q(); 
push_q("term"); 

}! 

p\ieh_q(«red.tenii()») ; 

c a l l . q O j 

pop_q(l); 

} 

Without affix evaluation this clearly results in non-termination of the parsing process. The 

parser generator will determine which alternatives are members of a cycle and if there are 

no critical affix expressions associated with the non-terminal in the left hand side, the eag 

will be regarded as not being well-formed and is rejected. The alternative of term should 

therefore be specified as: 

term(>prio): 
t e n n ( p r i o + l ) . 

The corresponding red_term() routine will then look like: 

red_term() 

{ 
if (top qO - "term") { 

pop_q(l) ; 
call_qO ; 
push_q("term") ; 

}; 
piish_q(«mark_critical_aff ix-pos i t ions(pos i ,«de lay_red_term(pos i )»)») ; 
call_q() ; 
pop-q(l); 

} 

The parse routine delayjred_term() checks whether another tree node should be created, 

if this is not necessary the cycle is considered as completed. The routine delay_red_term() 

looks like: 

delay _red_t erm (posi) 

{ 
if ( s i l l ( p o e l ) - 0) { 

, „edgejiiimber_p(elice,Bide) . , ... _, . . . . . . . 
va l u : " 2^ι=ι value_of(aff ix_of(sl ice,side. j)) ; 
, „edge_iimiiber_p(Blice,side) . .. ... .,

 η
 . .. ... 

vali :
= Σ3=ί value_of(affix_of(slice,side,j))¡ 

if (valu " vali) 
call q(); 
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else { 

if (valu G ргіо Λ vali ε prio) { 

push_q(«delay_red.term(posl)») ; 

/* routine-calls for creating a tree node and 

inserting it in the tree-graph */ 

call_q(); 

pop_q(i); 

} 
else /* backtrack */ 

} 
} 
else 

call.qO; 

} 

3.4.6 Propagation and defined non-terminals 

In Section 2.2.3 we described a few problems concerning defined affix non-terminals. Affix 
graph nodes representing these affix non-terminals should be treated in a special way. 

After the input sentence is recognized and affix value propagation stops it is still possible 
that there may be a number of affix graph nodes without a value. This is caused by 
generative defined affix non-terminals. All affix graph nodes containing a defined affix non­
terminal or a finite affix set are checked, those without a value and containing a defined affix 
non-terminal describing a finite language or a finite affix set start to generate all possible 
values which are propagated one by one. This process is repeated until either no affix 
graph nodes, or only affix graph nodes containing defined affix non-terminals describing an 
infinite language are left. In the latter case it may be impossible to find a fully decorated 
tree-graph in finite time. In that case the process stops and no successful parse is reported. 

Defined affix non-terminals describing infinite languages will have only a recognizing 
function within this strategy. 



Chapter 4 

Structure of generated environments 

In this chapter we give a description of the user-interface and the unparser, which are both 
non-incremental. We also look at the derivation of language dependent features of the 
interface, such as the placeholders and the templates. 

4.1 User-interface 

The user-interface is based on the X-window system and has been implemented using the 
О LIT- widget set [Sun90a, Sun90b]. It consists of one main window (Figure 4.1) and two 
windows which pop up if they are needed by the user: a text edit window and a layout 
modification window. The main window consists of 3 parts: the focus window, the template 
window, and the message line. 

The system offers the following facilities: 

• setting and adjusting the focus (Section 4.1.1); 

• copying and replacing the focused text (Section 4.1.1); 

• replacing a focused placeholder by a syntactically correct template (Section 4.1.2); 

• inserting and modifying the focused text (Section 4.1.3); 

• undoing edit actions (Section 4.1.4); 

• reading and writing files (Section 4.1.5); 

• adjusting the unparsing of syntactical constructs (Section 4.3.4). 

87 



88 CHAPTER 4. STRUCTURE OF GENERATED ENVIRONMENTS 

( File V ) ( Undo) (fñnd ) ( layout . ) ( Edil Focus) 

Figure 4.1: Main window. 

4.1.1 Focus manipulation 

Initially, the 3 subwindows of the main window are empty. An edit session can be started in 
two different ways, by reading a file or by inserting text via the text edit window. In both 
cases the text will be parsed, the corresponding tree-graph will be built and evaluated. As 
a result the focus window will then contain the unparsing of this tree-graph. Initially the 
complete program will be in the focus. The non-terminal of the syntactical construct in 
the focus is always given as the first template in the template window. 

The focus is a syntactic piece of the program selected by the user, which is highlighted 
in the focus window. At least a part of the focus is always visible, except when the focus 
window is empty or the focus has been scrolled, by the user, outside the range of the focus 
window. The highlighted piece of program will be called the extent of the focus. So, the 
focus is a (sub)tree and the extent is its yield (or frontier). 

Each character in the focus window is implicitly linked to a node in the tree-graph. The 
user can move the focus through the tree-graph. Pointing at characters outside the extent 
of the focus moves the focus up the tree-graph, to the common father of the old focus and 
the character pointed at. Pointing at characters inside the extent of the focus moves the 
focus down in the tree-graph. The smallest syntactical construct containing the character 
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pointed at becomes the new focus. It is impossible to focus on layout characters, to select 
a subpart of a terminal symbol or to focus on a subpart of a semi-terminal. 

( File V ) ( Undo ) ( Find ) { ) ( Edit FocuT) 

ВЕБІН 
DECLARE 

PHIL b ІІЧТ 1: 

<lseriesl> 
<lldentiflerl> ·- <iexprefsionl> 
IF <lexpresslonl> THEN <lseriesl> <lelscpartl> Fl 
WHILE <lexpresslonl> DO <lserlesl> 0 0 
<lseriesl> . <lstatementl> 

Figure 4.2: Main window; focus on a placeholder. 

It is not possible to insert or delete a character in the focus window, the text editing 
facilities are restricted to the text edit window and will be discussed in Section 4.1.3. The 
focus window offers a saving-facility, viz. the possibility of saving the extent of the focus 
on a clipboard, and of retrieving the contents of the clipboard later. This can be done by a 
replacing-facility, viz. the possibility of replacing the extent of a new focus by the contents 
of the clipboard, or by a switching-facility, viz. the possibility to replace the extent of a 
new focus by the contents of the clipboard and saving the replaced text on the clipboard. 
Only the textual representation of the subtree will be stored on the clipboard, not the 
subtree itself. After replacing the extent of the new focus by the contents of the clipboard, 
the parser is called to analyze the resulting program. 

4.1.2 Template facility 

Templates are always available in our generated hybrid editor. Each time a new focus is 
selected the contents of the template window are refreshed. For most subtrees selected the 
template window will contain only one element, the placeholder of the syntactical construct 
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which is focused In this way the user always knows the non-terminal of the focused 
syntactical construct If the focus is a placeholder the template window also contains all 
templates which are syntactically correct replacements of this placeholder (Figure 4 2) 
If the user is focused on the placeholder of a semi-terminal the template window will be 
empty except, of course, for the first element 

The user can select one of the templates to replace the extent of the focus The selection 
of one of the templates always results in a syntactically correct program, in a few cases, 
however, the program will not be semantically correct During the construction of the 
list of templates the values of the affix graph nodes connected to the affix position slices 
of the placeholder node are not taken into consideration This information could filter 
out the templates which would yield a semantically incorrect program, but has not been 
implemented in the prototype of PREGMATIC 

A template is selected by clicking on it in the template window The extent of the focus 
is then replaced by the textual representation of the template and the program is reparsed 

If the user focuses on a placeholder of a semi-terminal the text edit window is auto­
matically popped up since this is the only way of transforming a semi-terminal placeholder 
into a real semi-terminal 

IF b 

FI 

J i 

Figure 4 3 Text edit window 

4.1.3 Text editing 

The text edit window can be explicitly invoked by clicking on the Edit Focus button 
(Figure 4 3) or implicitly by focusing on a semi-terminal placeholder It will only contain 
the extent of the focus Changing the focus results in an update of the contents of this 
window This window offers the user a plain text editor with no knowledge of the syntactic 
structure of the text It is possible to use the ordinary cut, copy, and paste facilities of 
the underlying text editor The text edit session is finished by clicking on the Put Back-
button, which is activated after the first alteration of the text in the text edit window The 

Si 
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extent of the focus will be replaced by the new contents of the text edit window and the 
resulting program will be reparsed. To ensure the maximum of incrementality a few extra 
facilities are included. These will be discussed in Chapter 5. If the user changes the focus 
after editing the text in the text edit window but before clicking on the Put Back-button, 
the edit actions are ignored. 

It is not possible to use the contents of the clipboard of the focus window in a text edit 
session. 

4.1.4 Undo 

To ensure a flexible system the editor generated by PREGMATIC offer an undo-facility. The 
user can always undo the last replacement of the extent of the focus. The old extent of 
the focus is put back and the program is reparsed. 

4.1.5 IO-facilities 

The IO-facilities in the system are rather straightforward. It is only possible to read and 
write files. If the user reads a new file the complete tree-graph, if present, is replaced by 
the tree-graph built for the contents of the file read. 

If the user uses the write facility the complete unparse of the tree-graph is written to 
the specified file. It is not possible to save subparts of the tree-graph. 

A desirable, but not yet implemented, facility is to store the complete tree-graph rather 
than the unparse of the tree-graph. This would considerably speed up the processing of 
files. 

4.2 Language-dependent environment issues 

Until now the discussion of the PREGMATlC-EAG-formalism, the affix evaluation mecha­
nism, and the user-interface have not specifically addressed a number of important issues 
related to the generation of programming environments. In this section we discuss: 

• error handling, 

• placeholders, 

• templates. 

4.2.1 Error handling mechanism 

How can the error messages generated for erroneous input sentences be directly derived 
from the EAG-formalism? The technique we describe was initially developed to improve 
the error messages of the Programmar [BLM89]. 

Instead of finding as many errors as possible, we concentrate only on reporting in 
an informative way the first error encountered. The system works incrementally, so the 
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amount of reparsing after corrections will be limited We will here not only concentrate on 
the implementation, but also on the derivation of the contents of the error messages from 
the EAG specification 

The error handling mechanism is completely integrated into the system The specifi­
cation writer cannot influence it, he can influence the contents of the error messages only 
by renaming the non-terminals in his specification The error handling is directed towards 
the user of the generated environment rather than the specification writer 

Since the parsers use affix-directed parsing we are able to treat type errors on an equal 
footing with syntax errors In both cases our error handling mechanism may be expected 
to generate a decent message 

It is our intention to report 

• how far in the input the parser advanced, 

• whether a syntax or type error occurred, and 

• why the parsing failed 

One of the problems we have to solve is that the parsers are based on backtracking 
During the recognition of the sentence error messages will be generated at several positions, 
but only the messages generated for the most advanced position of the parser are relevant 
for the user We have the valid prefix property, ι e if the parser succeeds in recognizing 
a prefix this will be a prefix of a correct program In some cases the source of the error 
lies at a less advanced position, for example in those situations where a begin marker 
of a syntactical construct is missing [LDHH78] In these situations the error handling 
mechanism reports the error at the end of the syntactical construct rather than the lack 
of it at the beginning This is, however, a failing common to most mechanisms 

We say that a predicate which is applied in the right hand side of a rule of which the 
left hand side is not a predicate is m a top-most position and call it a top-most predicate 
occurrence Only these predicates will be used in the type error handling mechanism 

One part of the error message is the input position ζ A second part is formed by the 
symbols Οχ, , α„ expected but not found by the parser and/or the names of the predicates 
Pit >Pp which all yielded false for the input position 

Note that due to the exhaustive search of the backtrack parser several symbols may be 
reported as possible candidates for further recognition The same holds for the predicates 

The error position, the expected symbols and failing predicates already give a fair 
description of the error, but the message can be improved by mentioning the non-terminal 
of some syntactical construct surrounding the error position 

Consider the situation where the parser could not recognize the expected symbol a, 
All the non-terminals on the path from the root to а} are surrounding constructs The non­
terminal closest to a} on that path of which at least one member which is not a predicate 
has been recognized is what we call the active syntactical construct in which ал error was 
detected The non-terminal of the active syntactical construct will also be used in the 
generated error message Consider the erroneous assignment statement 

χ » 1 
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where the —symbol should have been ¡—symbol. The generated error message indicates 
the —symbol as erroneous and generates a message like 

:»-symbol expected in assignation 

This is an example of a typical syntax error message. Consider the erroneous declaration 
statements 

DECLARE BOOL b, INT b; 

The generated message indicates the second b as erroneous and generates a message like 

enter declaration failed in declarations 

The contents of an error message are based on the names of non-terminals and top-most 
predicate occurrences. This is therefore an additional factor for the specification writer to 
take into consideration. She does not, however, have to worry about error handling in her 
specification. 

No tree-graph can be built for a substring containing an error. We do not want to force 
the user to correct his errors immediately. The erroneous string therefore is included as 
a special subtree in the tree-graph. This special subtree consists of two nodes, one top 
node containing the non-terminal of the expected syntactical construct and a leaf node 
containing the erroneous text. 

. L ^ 
I assignation| | 

Figure 4.4: Error subtree. 

The rest of the tree-graph considers the root node of the erroneous subtree as an 
ordinary tree node, therefore this root node should have the same affix positions as the 
tree node replaced. The values of the affix graph nodes connected to the lower sides of 
these affix position slices are .L-values, as will be explained further in Section 5.2. 

Implementation of syntax error handling 

The error messages generated by the system consist of three parts: 

• the error position; 

• the expected symbol, or the top-most failing predicate occurrence; 

• the active syntactical construct. 
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For syntax error messages we are only interested in the expected symbols and not in the 
top-most failing predicate occurrences 

The implementation of the first part of the error message is done by maintaining a 
provisional error position The second part is implemented by calling a routine when 
recognition of a symbol fails This routine compares the current error position with the 
provisional one If the current position is less than the provisional one, the message is 
ignored If it is equal the message is recorded If the position is higher, previously recorded 
messages are removed and only the new message is kept 

The non-terminal of the active syntactical construct can be found on top of the tree 
node stack on which incomplete tree nodes are stored The tree nodes of the non-terminals 
of which at least one member has been recognized are stored on this stack If an error is 
detected, the non-terminal belonging to the node on top of this stack is reported as the 
active syntactical construct 

The number of messages can be reduced considerably by combining all expected symbols 
for the same syntactical construct in one message Furthermore, (typed and untyped) 
placeholders are never reported as expected symbols Consider the following erroneous 
PICO program, in Appendix С the eag for PICO can be found 

BEGIN 

DECLARE 

BOOL b, INT i, 

If b 

THEN ι .= 1 

FI 

END 

The parser is not able to recognize the If-symbol and will pinpoint its position as erroneous 
The error message eventually generated is 

identifier, IF-symbol, or WHILE-symbol expected in program 

Implementation of type error handling 

The type error handling mechanism described in [BLM89] can also be used in the parsers 
of the generated environments 

A syntax error can be detected by the fact the parser fails to recognize some symbol 
and is not able to increase the input pointer A type error is harder to determine, since 
such an error is raised by either 

• failure of a top-most predicate occurrence, which is always caused by the failure of 
primitive predicates, 

• violation of a consistent substitution constraint, or 

• failure of the recognition of an affix value by a defined affix non-terminal 

We will give possible error messages for each of these situations 
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Predicates The implementation of the error handling for a failing predicate requires 
a method for recording the name of the top-most predicate occurrence, the non­
terminal of the active syntactical construct in which the top-most predicate occur­
rence was called, and the non-terminal of the active syntactical construct in which 
the error was detected. 

Predicates may be delayed during parsing and evaluated later. The non-terminal 
of the active syntactical construct in which the top-most predicate occurrence was 
called is needed for localizing the failing predicate, because the same predicate may 
be called several times. This name will be stored in the tree node of the top-most 
predicate occurrence. Evaluation of a delayed predicate causes the 'activation' of 
both its name and the stored non-terminal of the active syntactical construct. The 
non-terminal of the active syntactical construct in which the delayed predicate is 
evaluated is obtained in the same way as for the syntax errors. These three names 
are used to generate the error message. 

Consistent substitution As soon as a value ν is propagated to an affix graph node 
containing a value v' which differs from value v, the consistent substitution constraint 
is violated. Before the affix value propagation mechanism starts to backtrack, an error 
routine is activated, which generates a message 

inconsistent affix values 

together with the non-terminal of the active syntactical construct. If this inconsis­
tency is detected during the evaluation of a predicate the message is suppressed and 
overruled by the message reporting the failure of the top-most predicate. 

Defined affix non-terminals Each affix value ν propagated to an affix graph node which 
represents a defined affix non-terminal A, is checked to determine whether it can be 
recognized by this affix non-terminal. If the non-terminal is not able to recognize the 
value, an error routine is called which generates a message 

affix non-terminal A failed to recognize an affix value 

together with the non-terminal of the active syntactical construct. Again, if this is 
detected during the evaluation of a predicate the message is ignored by the system. 

4.2.2 Derivation of placeholders 

In Section 1.4 we introduced typed and untyped placeholders, in this section we will discuss 
how almost each rule in an eag is extended with extra alternatives to offer the user of the 
generated environment the possibility of working with these placeholders. 
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Typed placeholders 

The parsers in the editors generated by the Synthesizer Generator [RT89a] are not able 

to recognize typed placeholders. However a simple extension of the specification makes 

recognition of these placeholders possible. As an example we modify the SSL specification 

of a simple desk-calculator given in Appendix A of [RT89b]. We will give the new rule for 

Exp in the Parse syntax part. 

Exp : : - ("<|Exp|>"){$$.abs = N u l l O ; } 
I (INTEGER) {$$.abs - Const(STRtoINTUNTEGER)) ;} 
I (Exp "+" Exp) {$$.abs = Sum(Exp$2.abs,Exp$3.abs);} 
I (Exp "-" Exp) {$$.abs = Diff(Exp$2.abs,Exp$3.abs);} 
I (Exp 'Ч·1' Exp) {$$.abs • Prod(Exp$2.abs,Exp$3.abs) ;} 
I (Exp "/" Exp) {$$.abs = Quot(Exp$2.aba,Exp$3.abe);} 
I ( " ( " Exp " ) " ) {$$.abs · Quot(Exp$2.abs;} 

The parser in the new generated editor is now able to recognize this typed placeholder in 
text edit mode. In the Synthesizer Generator [RT89a] however the specification writer has 
to do this adaptation by hand. 

Our system implicitly transforms it instead of letting the specification writer rewrite 
the specification. Each rule is extended with an extra alternative which recognizes the 
typed placeholder. 

- • • • 4 - < u l > ' 
The member in the right hand side of the new alternative can be considered as a terminal 

symbol. 

Although a program text containing placeholders is incomplete, we want to analyze as 

much of the static semantics as possible. In order to be able to perform affix evaluation, 

it is necessary to assign values to the affix positions in the display of the non-terminal 

in the typed placeholder alternative of the rules. The solution chosen in the Synthesizer 

Generator is again cumbersome for the specification writer because he has to give a value 

to the attributes of the placeholders in the SSL specification. In our system this is done 

implicitly. The value has to represent all possible affix values, essentially Σ^,. Initially the 

affix value D is assigned to all affix positions of the placeholder alternative. The affix value 

О represent any legal affix value. 

The internal representation of the rule i d e n t i f i e r l i s t will be: 

identifierlist (G): 

< I identifierlistI>. 

identifierlist (decls): 

identifier (паше), 

enter declaration (name, nil, decls). 

identifierlist (decls): 

identifier (name), 
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enter declaration (name, rest deels, decls), 

",". layout, 

identifierlist (rest decls). 

Predicates are excluded from extension with the typed placeholder alternative, nor can 
a typed placeholder replace a terminal symbol. 

Untyped placeholders 

The introduction of typed placeholders increases the flexibility of the editor, but in order to 
use them the user must know the exact names of all placeholders. This would be impossible 
for a language such as Algol68 if the user has to reproduce the non-terminal names used 
in [WMP+76]. 

We therefore allow the user to use the placeholder without the name of the correspond­
ing non-terminal. Such an untyped placeholder represents almost all non-terminals in the 
language. 

To recognize untyped placeholders the parser is extended in a way similar to that for 
typed placeholders. Each rule gets an extra alternative to recognize the untyped place­
holder symbol. 

Г A:<|>. 
A:.. . . => { A:<|A|>. 

This extension in general makes the grammar ambiguous. It is therefore not possible to 
adapt the SSL specification, as the generated parsers do not allow ambiguous context-free 
grammars. 

The problem of ambiguity can be tackled in two ways. One may either use a more 
powerful parsing method or try to formulate criteria for extending the rules with the 
untyped placeholder alternative which ensure non-ambiguous grammars. Unfortunately, 
formulating a consistent set of rules for extending the rules turned out to be impossible. 
One might think of a combination of both techniques, but for the implementation of the 
prototype we have chosen otherwise. 

Untyped placeholders never replace terminals or predicates. The affix positions associ­
ated with untyped placeholders are treated in the same way as those associated with the 
typed ones. So, the ultimate internal representation for the rule identif i e r l i s t is: 

identifierlist (D): 

<l>. 
identifierlist (O): 

<IidentifierlistI>. 

identifierlist (decls): 

identifier (паше), 

enter declaration (паше, nil, decls). 

identifierlist (decls): 

identifier (паше), 

enter declaration (паше, rest decls, decls), 
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",", layout, 

identifierlist (rest decls). 

4.2.3 Templates 

Templates are not explicitly specified but are derived from the underlying context-free 
grammar. We will only derive templates for non-terminals which are not semi-terminals. 
Layout non-terminals and predicates are excluded from the template mechanism. 

The set of templates of a non-terminal A is denoted by T(A). Consider, for example 
the rule for a s s igna t ion . 

ass ignat ion: 
i d e n t i f i e r , 

check appl ica t ion, 
" : - " , layout, 

expression. 

The occurrences of the non-terminal layout and of the predicate check a p p l i c a t i o n are 
omitted. The resulting template is thus: 

T(ass igna t ion) = {<I i den t i f i e r I> " : • " <I expression I>} 

One way to derive the set of templates for each non-terminal is to collect the templates 
corresponding to the right hand sides of the individual alternatives of the non-terminal. 
The right hand sides of semi-terminals are not transformed into templates. The templates 
for the rules for express ion, term and f ac to r would be: 

T(expression) = {<|terml>; 
<I expression I> "+" <|term|>} 

T(term) « {< | factor |>; 
<|term|> "*" < | factor |>} 

T(f actor) » {< I i d e n t i f i e r ^ ; 
<I number|>} 

This is not an optimal solution for the user. It is possible that the user has a specific 
construct in mind and then has to perform a lot of unnecessary transformation steps. If 
the user wants to transform the placeholder < I express ion I > into the typed placeholder 
< I i d e n t i f i e r I > he needs several steps. 

This tedious way of developing programs is prevented by replacing the templates gen­
erated for alternatives which would consist of one non-terminal (chain rules) by the set of 
templates of this non-terminal. This is done recursively. 

The sets of templates for the non-terminals express ion, term and f ac to r using the 
strategy described above are now: 
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T(expression) • {<lidentifier|>; 
<I number I>; 
<|term|> "*" <|factor|>; 
<lexpression^ "+" <lterml>} 

T(tenn) - {<|identifierl>; 
<I number I>, 
<lterm|> "*" <|factor|>} 

T(f actor) = {<| identifier |>; 
<|n'mnber |>} 

4.3 Unparsing 

In this section we concentrate on the unparsing mechanism of our syntax-directed editors 
The mechanism is based on the underlying context-free grammar of an eag, but it will 
work for any context-free grammar 

The generator extracts all unparsing information from the context-free grammar itself 
(without any additional unparsing rules) and generates a list of tuples which is used by a 
language-independent unparser We do allow the user of the editor to change the contents 
of this list (Section 4 3 4) 

The layout of a program is a very personal matter and no general pretty print strategy 
will satisfy all users of the editor Editors for different languages produce similar layout for 
programs However, different languages may ask for completely different unparsing rules 
Our mechanism will work satisfactorily for languages of the Algol-family, but for functional 
languages or syntax-based languages like CDL3 [KB91] the unparsing may be awkward 
Anyway the specification writer need not bother himself with unparsing when prototyping 
a language 

The unparsing mechanism described in [BS89] makes it possible for the user of the 
editor to influence the unparsing process directly This is done by allowing the user to 
adjust the value of a number of variables, such as LineWidth, Indentation, etc This 
unparsing mechanism is strongly connected to the languages Pascal and Modula-2 It has 
no facilities for adapting the unparsing of an arbitrary syntactical construct and it cannot 
be used in generated programming environments The unparsing mechanism is based on 
Oppen's algorithm [Opp80] 

The system we developed is also strongly influenced by the algorithm formulated by 
Oppen His mechanism allows the specification writer to insert output indications in the 
specification, which the algorithm uses when traversing the abstract syntax tree to generate 
a pretty print In articles of later date this approach has been investigated further and 
described [RW81, Mat83, Rub83, Lea84, BS84, W0086], but there has been no attempt to 
formulate criteria for language-independent unparsing — not even in [Jok89] 

An unparser must produce a pleasantly readable layout of a program text The read­
ability of a program text is increased by spreading large syntactical constructs over several 
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lines in a structured and consistent way. Small syntactical constructs which fit on one line 
must not be split. The unparsing of a syntactical construct is primarily influenced by the 
number of characters left on a line. 

Our discussion is now split into three parts: first we give the algorithm which takes an 
unparsing specification and a tree-graph and produces the unparsing of that tree-graph. 
Secondly, we describe how an unparsing specification is generated starting from a context-
free grammar. Thirdly, we describe the possibilities which the system offers the user for 
changing the unparsing of the syntactical constructs. 

4.3.1 The algorithm of Oppen 

Oppen's algorithm [Opp80] receives a list of lexical tokens together with special characters 
to direct the unparsing. There are two categories of special characters: 

• bracket characters to delimit a syntactical construct, such as an assignment or a 
series; 

• blank characters to mark a possible line break and/or the number of blanks to be 
printed between lexical symbols. 

The bracket characters consist of an open bracket, written as {, to denote the start of 
a syntactical construct and a close bracket, written as J, to denote its end. The blank 
character, written as •, denotes a possible break points. For example, 

[IF χ - y • THEN χ := 0 D ELSE χ :- 1 • FlJ 

will be unparsed as: 

IF χ - y THEN χ :- 0 ELSE χ :« 1 FI 

provided this syntactical construct fits on the remaining space of a line. If, however, it does 
not fit, the syntactical construct will be spread over several lines. The blank characters 
may be either consistent, Clc, or flexible, 0F. Consistent blanks have the property that for 
one construct either all of them are replaced by a newline plus an indentation, or some of 
them are replaced. The syntactical construct above, with all the d-symbols replaced by 
Oc-symbols, would then be unparsed as: 

IF χ - y 
THEN χ :« 0 
ELSE χ :- 1 
FI 

The flexible blank type indicates that the blank characters need not be replaced by a 
newline. If the rest of the structure after a blank character fits on the remaining space of 
a line it will be unparsed on this line. The syntactical construct above, with all D-symbols 
replaced by Dr-symbols, can then be unparsed as: 
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IF χ = y 
THEN χ :- 0 
ELSE χ :- 1 FI 

or as 

IF χ - у 
THEN χ :- 0 ELSE χ :- 1 FI 

However, Oppen is quite vague about the way to specify and obtain a layout like 

IF χ - (y + 1) THEN χ :- 0 
ELSE χ := 1 
FI 

where the ELSE and the FI are always related to the beginning of the THEN-symbol 
One of the drawbacks of this mechanism is the tedious way of producing the unparsing 

Firstly, the tree-graph is traversed to produce the list of lexical tokens which has to be 
buffered Secondly, the length of each syntactical construct is calculated and then the 
unparsing is produced using an extra stack This makes the algorithm less suited for 
implementation in a programming environment 

4.3.2 The unparsing algorithm 

The unparsing algorithm used in PREGMATIC uses also two passes In the first pass the 
length of each syntactical construct is calculated and in the second pass the layout of the 
syntactical constructs is determined and the unparsing of the tree-graph is written into a 
buffer, which is then used to refresh the screen 

The unparsing algorithm is based on a column and line administration of an imaginary 
screen The screen width is known and will not change during the unparsing of the tree-
graph 

A relative column- and line-offset is associated with each member in a right hand side 
the column-offset and line-offset are added to the current screen position and the member 
will be printed at the new position A member may be 'position related' to a preceding 
member In that case, the current position is first reset to the column value of the related 
member and the line value is not modified 

If Ί (M, j , c, I)' is a tuple in the unparsing specification list then г represents the iih 

member in an alternative, j represents the j t h member to which the itH member is related 
If г = j then the г"1 member is not related to any other member The value j must always 
be smaller or equal to г The symbol M is either a terminal symbol, or a typed placeholder, 
if the г"1 member is a non-terminal The symbols с and / represent the relative column­
and line-offset respectively The column-offset с and line-offset / must both be greater than 
or equal to zero 

Suppose we have the following rule 
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ifstatement: 
"IF", 

expression, 
"THEN", 

series, 
"ELSE", 

series, 
"FI". 

the unparsing specification list entry will be: 

0 
1 
2 
3 
4 
5 
6 

(IF. 
(<1 expression|>, 

(THEN, 

(<|series|>l 
(ELSE, 

(<lseriesl>, 

(FI. 

0, 
1, 
0, 
3. 
0, 
5. 
0. 

0. 
1. 
2. 
1, 
2, 
1, 
0, 

0) 
0) 
1) 
0) 
1) 
0) 
1) 

the unparsing will be: 

IF <I expression I> 

THEN <I series I > 

ELSE <I series I> 

FI 

There are two entries in the unparsing specification list for each alternative of a rule: 
one for horizontal unparsing and one for vertical unparsing. These two may be the same. 

The tree traversal algorithm, which calculates lengths, records the sizes for the hori­
zontal unparsing of each syntactical construct in the corresponding tree node. This routine 
traverses the tree-graph and in each node considers the corresponding horizontal unparsing 
entry in the unparsing specification list. The width and height of the horizontal unparsing 
is calculated using the information of this entry. 

The tree traversal algorithm for unparsing the tree-graph also traverses it and unparses 
each node, using the stored length information. If the length is greater than the space left 
on the current line then the vertical unparsing entry is chosen instead of the horizontal one 
to produce the unparsing of this node. 

In left- and right-recursive rules with different vertical and horizontal unparsing rules 
this strategy may lead to an irregular unparsing. Consider the rule: 

series: 

statement, 
II . II 

series. 

series: 

statement. 
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The unparsing of a list of statements may then be: 

<I statement I>; 
<I statement I>; <I statement I> 

The space left on the current line Vas too small to unparse the 3 statements horizontally, but 
it was too large for a complete vertical unparsing. Forcing a consistent vertical unparsing 
can be done in two ways. Either by having the horizontal unparsing equal to the vertical 
one which will result in a vertical unparsing in all cases or by indicating that the unparsing 
of the s e r i e s in a vertical unparsing should always be unparsed vertically. This is done by 
inserting a 'force-vertical character', #-character, in front of the < I s e r i e s I > in the vertical 
unparsing specification list entry: (#< | s e r i e s I > , . . . ) . 

In Section 4.1.1 we remarked that each character in the focus window is directly linked 
to the tree-graph. It is therefore necessary for the unparsing algorithm to store a link 
to the corresponding tree node for each symbol written in the screen buffer. These links 
are stored in a so-called focus buffer, which is used, amongst other things, by the focus 
mechanism. The screen buffer is used to refresh the contents of the windows. 

4.3.3 Generation of unparser 

The generation of the unparser corresponds to generating the entries in the unparsing 
specification list, both horizontal and vertical. The unparser generator is in fact a simple 
transducer. Given an alternative of a rule the entries in the unparsing specification list for 
the corresponding node in the tree-graph are generated. The alternative: 

non-terminalo '• 
memberi membern. 

has the following horizontal unparsing specification list entry: 

0: (<lmem6eril>, 0, 0, 0) 
1: « І т е т 6 е г 2 І > , 1, 1, 0) 

n - 1 : (<lmemòernl>, n - 1 , 1, 0) 

and the following vertical unparsing specification list entry: 

0: (<|memòeril>, 0, 0, 0) 
1: (<ІтетЬег2І>, 1, 0, 1) 

n - 1 : (<l тетЪетп\>, n - 1 , 0, 1) 

This transduction scheme is far too simple, but extra information is needed to generate 
better unparsing rules. 

The generator first assigns a type to each alternative. We only consider the underlying 
context-free grammar of the eag, i.e. with all predicate calls and all non-terminals which 
describe layout filtered out. There are three different types of alternatives: 
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1. the bracket type for alternatives with a bracket structure, i.e. each alternative consists 
of at least two members and the first and/or the last member is a terminal; 

2. the recursive type for alternatives which are left- or right-recursive, i.e. each alterna­
tive consists of at least two members and ¿he first and/or the last member equals the 
non-terminal in the left hand side; 

3. the untyped type for all other alternatives. 

The alternatives of the first type have the form: 

• non-terminalo: 
" terminali " " terminaln " . 

• non-terminalo: 
"terminali", . . . , non-terminaln. 

• non-terminalo: 
non-termmali "terminaln". 

It may be strange to consider the last two types of alternatives as bracket alternatives, but 
they can be considered as alternatives of the form: 

• non- terminalo '· 
"terminali", ..., non-terminaln, "". 

• non-terminalo: 

"" , non-termmali, . . . . "terminaln" . 

The alternatives of the recursive type have the form: 

• non-terminalo: 

non-terminali, ..., non-termmalo. 
• non-termmalo: 

non-termmalo non-terminaln. 

The third type is for alternatives of the form: 

• non-termmalo : 
non-termmali, ..., non-terminal n, 

where 

non-termmalo φ non-terminali 
non-termmalo Φ non-termmaln 

In addition to this type information it is also necessary to know which non-terminals 
have an empty alternative, and the length of each terminal. With this information we state 
the following rules. 
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Rule 1: 

The column and line value of the second tuple in the unparsing specification list entry of 
an alternative which begins with a terminal symbol consisting of one character only will 
not be increased. The column and line value is not increased for tuples of terminals of 
length one which are not the first member in an alternative. The horizontal and vertical 
tuple entries for an alternative like: 

subscription: 
" [" , eipression, "]"· 

are identical and look like: 

([. 0, 0. 0) 

(< I expression^, 1, 0, 0) 

G. 2. 0, 0) 

This rule will always be applied, independently of the alternative type. The tuples for 
these terminals are not related to any tuple in the unparsing specification list entry. 

Rule 2: 

The rule for vertical tuples for alternatives of bracket type consists of two parts: 

1. The column and line values of tuples for terminals of length greater than one preceded 
by a non-terminal are 0 and 1 respectively. 

2. The column and line values of tuples for non-terminals preceded by a terminals of 
length greater than one are 2 and 1 respectively. 

All tuples generated by one of these two rules are related to the first tuple of the unparsing 
specification list entry. 

The rule for horizontal tuple entries for these alternatives is straightforward. The 
column value of tuples for terminals of length greater than one, preceded by a non-terminal 
as well as for non-terminals preceded by a terminal of length greater than one, is 1. The 
tuples are not related to any other tuple in the unparsing specification list entry. An 
alternative like: 

whilestatement: 
"WHILE", expression, "DO", series, "0D". 

has the following vertical unparsing specification list entry: 

(WHILE, 0, 0, 0) 

(<(expression!>, 0, 2, 1) 

(DO, 0, 0, 1) 

(<|series|>, 0, 2, 1) 

(0D. 0, 0, 1) 
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Rule 3: 

The rule for the vertical tuples for alternatives of recursive type is: the column and line 
values of all tuples, except for the tuples which satisfy Rule 1, are 0 and 1 respectively. 
These tuples are all related to the first tuple in the entry. For the horizontal tuple entry 
these values are 1 and 0 respectively. These tuples are not related to any other tuple. 

A recursive rule like: 

s e r i e s : 
series, ";", statement. 

has the following unparsing specification list entry: 

0: «lseriesl>, 0, 0, 0) 

1: (;, 1, 0, 0) 
2: «Istatement^, 0, 0, 1) 

This unparsing rule could lead to the following layout, as we have seen in Section 4.3.2: 

<I statement I>; <I statement[>; 

<I statement I> 

This can be prevented by inserting the #-character in the tuples of recursive non-terminals 
in the vertical unparsing specification list entry. In the prototype the user of the editor 
has to insert this #-character. 

Rule 4: 

If, in a rule of bracket type, two non-terminals are not separated by a terminal, and one 
of the two or both may produce empty, the generator will only increase the line value of 
the tuple in the vertical unparsing specification list entry belonging to the second non­
terminal and relate it to the first tuple in the unparsing specification list entry. In the 
horizontal unparsing specification list entry neither the column nor the line value of this 
tuple is increased and the tuple is not related to any other tuple. The vertical unparsing 
specification list entry for an alternative like: 

i fs tatement: 
"IF", expression, "THEN", s e r i e s , e l separ t , "FI". 

where: 

e l separ t : 
"ELSE", s e r i e s . 

e l separ t : 

will be: 
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(IF, 0, О, О 

(<|expression|>, 0, 2, 1 

(THEN, О, О, 1 

(<|series|>, 0, 2, 1 

(<|elsepart|>, О, О, 1 

(FI, О, О, 1 

Rule 5: 

The horizontal and vertical unparsing specification list entries for the alternatives of semi-
terminals are very simple. JVo layout is inserted between the members of these alternatives, 
so the column and line values in these tuples are 0 and the tuples are not related to each 
other. 

Heuristic rules 

The rules above have a very strong heuristic nature. Other rules could of course be formu­
lated. It is also possible to consider more characteristics of the grammar, such as the level 
at which a rule is applied. 

4.3.4 Adaptat ion of unparsing rules 

Finally, we want to discuss how the user can adapt the unparsing rules. Clicking on the 
layout-button will pop up the layout modification window, Figure 4.5. 

Verlkall Horl?onUI I 

Іе^ргеъьійп . THEN 

,. le lsopart I 

ι o k ) ( c a n c e l ) 

Figure 4.5: Layout modification window. 

It makes it possible for the user to adapt the unparsing rule of the focused syntactical 
construct. If the syntactical construct cannot have unparsing rules, if for example it is a 
semi-terminal or a placeholder, the layout-button is not activated. The window contains 
the horizontal or vertical unparsing of the syntactical construct with each subtree replaced 
by its corresponding placeholder. It strongly resembles a template. 

Only a few alterations are allowed. The unparsing of a syntactical construct can be 
adapted by inserting or deleting space characters, newline characters, and the #-character. 
It is not possible to modify the terminals and placeholders visible in the window. The 
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•-character may only be inserted immediately in front of a placeholder. There are two 
space-symbols: the "."-symbol, representing the space symbols in the unparsing of the 
corresponding node of the tree-graph, and the " "-symbol, used to shift terminal symbols 
and placeholders into the appropriate column. Any terminal or placeholder which is pre­
ceded by one or more "."-symbols is considered to start in the column containing the first 
"."-symbol. Consider Figure 4.5, where the Fl-symbol is related to the IF-symbol, the 
placeholder < I elsepart I > is related to the THEN-symbol as is the placeholder < I series I > 
though it will always be preceded by two blanks. The resulting unparsing can be found in 
Figure 4.1. 

If the user clicks on the ok-button the adaptation of the vertical or horizontal un­
parsing rules of a syntactical construct becomes immediately visible. If he clicks on the 
cancel-button the adaptation to the unparsing rule are ignored. The horizontal and 
ver t ica l buttons are used to switch between both orientations. Switching has the same 
effect as clicking on the cancel-button. The adaptations made in the unparsing rules are 
permanent, quitting the editor will not restore the original unparsing rules. 



Chapter 5 

Increment ality 

In Chapter 3 we assumed that the complete program text is reparsed after each edit action 
and a complete new tree-graph is built and evaluated. We show the sequence of steps to 
obtain a consistent tree-graph again. 

1. Perform the edit action on the extent of the focused subtree-graph. This text can be 
changed by: 

• inserting new text before, 

• appending new text after, or 

• changing the text within, 

the focused syntactical construct. Incremental behaviour of the system can be ob­
tained if only the smallest affected syntactical construct is reparsed. 

2. Prune the 'modified' subtree-graph. It is necessary to remove part of the tree-graph 
in order to process the alterations in the text. This will be replaced by a new subtree-
graph, obtained by reparsing the new text. The subtree is removed by simply cutting 
the tree link between the tree node F and the top node ./V of the subtree to be 
removed. The subgraph is removed by cutting all links between the upper side of the 
affix position slices of node /V and the connected affix graph nodes. 

It is also necessary to propagate the -L-value via the removed links of type 'first-in'. 
The -L-propagation mechanism is described in Section 5.2.2. All affix graph nodes 
which depend on the removed subtree-graph, are marked by this process. 

3. Reparse the modified extent of the pruned subtree-graph, starting at the non-terminal 
of the root of the pruned subtree-graph. 

4. If the text is syntactically correct and no local context conditions are violated, the 
parser returns a subtree-graph. Syntactically the subtree-graph must fit in the same 
place in the tree-graph as the old subtree-graph. Otherwise a different (higher) tree 
node in the tree-graph would have been selected to start the reparsing. It is, however, 

109 
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possible that the grafting causes a violation of some context condition, this will be 
discussed in Section 5 6 3 

The subtree is grafted by establishing one link only The grafting of the affix subgraph 
consists of establishing several links between some graph nodes and the upper side 
of the affix position slices of the top node of the constructed subtree-graph After 
establishing these links the affix value propagation mechanism is invoked to make 
the tree-graph consistent again During this process only nodes with ±-values are 
visited 

A type error may also be detected during the affix evaluation started after the grafting 
of the subtree-graph The affix evaluation process will then start to backtrack 

In this chapter we will look at incremental reparsing, placeholder recognition, and 
incremental unparsing We will also look at incremental affix evaluation and give a number 
of improvements to increase efficiency 

5.1 Reparsing 

Altered text is reparsed by a routine which has two parameters 

• the text that is to be parsed, and 

• the non-terminal to which the text should be reduced 

The user of a generated syntax-directed editor will always edit within the extent of the 
focus An edit action can be seen as replacing the current extent of the focus by a new 
text Although the rest of the tree-graph is not affected, starting the reparsing with the 
focused node and the new text may not guarantee a successful recognition Suppose the 
user has focused on the expression 1 in the following program 

BEGIN 
DECLARE 

BOOL b, INT i ; 
IF b 
THEN ι := [l] 
FI 

END 

The user now changes the extent of the focus into 

| l ELSE ι :• 2] 

Instead of reparsing only the altered expression, the reparsing process should start in 

the node the extent of which is the complete conditional, otherwise recognition will fail 

Although in most cases the focused node will cover the alterations, in a few cases the 

reparsing will have to start in an ancestor node of the focus 
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There is always a minimal node which covers the complete syntactical effect of the edit 
action. In [Bra90] this minimal node is found by some oracle, in reality the system can 
only determine this node by trial and error. One strategy to find this node is to try all 
nodes on the path from the focus to the root of the tree-graph. 

Of course we cannot prevent the system from doing unnecessary work during the search 
for this minimal node. If the text to be parsed contains an error, a lot of unnecessary work 
may be involved. We will formulate heuristic rules to reduce the number of nodes to be 
tried by the system. All edit actions can be reduced to the following two cases: 

1. A placeholder is replaced by a template: this operation preserves syntactic correct­
ness. 

2. Either a syntactical construct is replaced by another syntactical construct (by apply­
ing a replacing- or switching-facility) or its extent is textually modified; with both 
operations the syntactical correctness and structure are no longer guaranteed. 

In the first case, if the reparsing of a template does not succeed it is not necessary to try 
another node, because the error is a type error. 

In the second case, the edit actions may cause a complete restructuring of the tree-graph. 
Of course we can use the straightforward method of trying each node until a successful 
parse is found. But it is probably to be more efficient to try only a few nodes and then, 
if still not successful, to reparse the complete program. In our system the reparsing is 
first tried in the focused node. If this is not successful the stnctly enclosing syntactical 
construct1 is tried, and if this is still not successful the complete program is reparsed. 
Consequently, the complete program is reparsed for each syntax error. 

There is a range of different techniques to determine where the reparsing process 
should start. We have selected just one, which works satisfactorily for our system. In the 
ASF+SDF meta-environment [КІІ91], for example, only the extent of the focus is reparsed. 
If the parser finds an error, the user of the system has to move the focus explicitly. 

5.2 Type checking 

The affix evaluation mechanism described in Chapter 3 was not incremental. Before we 
give the details of the incremental affix evaluation mechanism, we describe the internal 
representation of affix values. 

5.2.1 Representation of affix values 

In Chapter 3 we discussed the affix value propagation mechanism without knowing what 
kind of values were propagated and what kind of operations were performed on these values 
in the affix position slices. In this section we give a description of the affix value types and 
their internal representation. We also describe the operations on them and pay attention 

1 A node η is a stnctly enclosing syntactical construct of a descendant node n' if the extent of η is aß f 
where β is the extent of n' and (α ψ ε V η φ ε) Λ η φ η ' . 
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to their effects on the special •-value and ±-value. The following operations are performed 
in the affix position slices: 

• tuple operation, 

• concatenation operation, and 

• no operation. 

Tuple operation If an affix expression contains a tuple operator then the affix values of 
affix graph nodes connected to an affix position slice (Figure 5.1) are either 

• combined into a η-tuple affix value, or 

• the η-tuple affix value is deterministically split into the η values. 

* 

JhJ ( vn 

Figure 5.1: Tuple operation. 

Concatenation operation If an affix expression contains a concatenation operator then 
the affix values of affix graph nodes connected to an affix position slice (Figure 5.2) 
are either 

• added or concatenated to an affix value of type NUMERAL or STRING 

• the affix value is non-deterministically split into η values. 

+ 

^уі) ( v„ 
Figure 5.2: Concatenation operation. 

No operation The affix value in Figure 5.3 is merely propagated, without any operation 
being performed on it. 
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Θ 
_JL_ 

Θ 
Figure 5.3: No operation. 

For the affix value propagation algorithm described it was sufficient to know that each 
affix graph node contained either a defined value or no value at all. In Section 5.4.2 we will 
use the G-value for the initialization of affix graph nodes connected to the affix position 
slices of placeholders. The notion of 'no value yet' is formalized in the J.-value. An affix 
graph node with the ±-value has not yet been visited by the evaluator. The initial value 
of all affix graph nodes except affix graph nodes containing a terminal affix value is the J.-
value. This value is also used for the initialization of affix graph nodes connected to the root 
nodes of erroneous subtrees. These two new values make it necessary to reconsider affix 
values. We will now describe their structure and the operations on them more explicitly. 

The internal representations of the affix values of type NUMERAL and STRING are 
simple and consist of a numeral (> 0) or zero or more characters respectively. 

An affix value of type TUPLE vi*... *vn consists of a list of references to the elements 
of the tuple, see Figure 5.4. 

/ 

Figure 5.4: Tuple value representation. 

where 
Vi € (NUMERALU STRING U TUPLE U {α и ±}), 1 < г < п. 

The O-value and ±-value represent the unspecified and the undefined value respectively. 
There is a difference with respect to the operations performed on them. The D-value is 
more or less treated as an ordinary affix value, except for: 

Vi+. . . + D + . . . + v n = Ü 

The operation should be read from left to right. By allowing ü-values to be an element of 
a tuple, the affix evaluation mechanism is able to do as much type checking as possible. 

The -L-value is less defined than the D-value and consider the following operations: 

V i + . . . + 1 + . . . + V n = 1 

V I * . . . * ± * . . . * V B = -L 

If at least one argument of a tuple operator has the _L-value the resulting value is .L-value. 
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The D-value is less defined than any affix value of type NUMERAL, STRING, or 
TUPLE (Figure 5.5). The consequence is that if the affix evaluation process propagates a 
value ν / O, and it reaches an affix graph node which contains the O-value it is replaced 
by v. The affix value propagation process then continues via the 'in' links in this node. 

NUMERAL STRING TUPLE • 

± 
Figure 5.5: Pseudo-lattice of affix domain types. 

5.2.2 Affix value propagation revisited 

The incremental type checking mechanism is in fact equivalent to the evaluation mechanism 
described in Chapter 3, except for a few small changes in the affix value propagation 
algorithm. It is necessary to define a marking algorithm which traverses the tree-graph to 
mark the affected affix graph nodes. 

Initially, almost all affix graph nodes have the .L-value. These nodes have to be visited 
by the affix value propagation algorithm in order to assign values to them. 

After a subtree replacement, a number of affix graph nodes have to be re-evaluated. 
The modification to the tree-graph may affect not only the values of the affix graph nodes 
connected to the affix position slices of the changed tree node, but also the values of other 
affix graph nodes which (in)directly depend on these affected nodes. In [Rep84] an optimal 
re-evaluation algorithm is formulated, based on the dependency graph. The re-evaluation 
in PREGMATIC does not use a dependency graph, the re-evaluation is completely dynamic. 
Two different strategies for re-evaluating affected affix graph nodes are presented here. 

It is necessary to adapt the affix value propagation algorithm presented in Section 3.4.3 
for both solutions. The incremental evaluation mechanism must know which link was 
responsible for the initialization of the affix graph node, otherwise too many nodes will be 
marked as affected, which results in a expensive re-evaluation process. This link is therefore 
marked as 'first-in' using the marker 'IN', by the affix value propagation algorithm. 

'IN' 

Figure 5.6: First-in link. 

The -L-propagation algorithm 

This is the less efficient of the two solutions because all affix graph nodes which may have 
been affected have to be visited by the marking- and affix value propagation algorithm, 
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independently of the changes to their values. The marking algorithm is a propagation 
algorithm which propagates the _L-value through the tree-graph. It starts propagating 
after pruning a subtree-graph 

A • · 

'IN' 

И) 
•в : 

С 

- 1 - _ 

'out' 

'IN' 

-'· ' · J 

'out' 

'out' 

Figure 5 7 i.-propagation 

In Figure 5 7 the dashed box represents the pruned tree node. The affix graph node 
containing the -L-value was connected to an affix position slice of the pruned tree node via 
a 'first-in' link. 

All affix graph nodes connected via 'first-in' links to the removed tree node are marked 
by the .L-value 

Starting in an affix graph node A the .L-value is propagated to the rest of the graph 
via the 'out' links of this node The condition to continue the J.-propagation process in an 
affix graph node is· 

3j 1 < J < edge лшаЬег_а(Л) Л type of (edge a.(A,j)) = 'out' 

The sill of the connected affix position slice side s is increased and the -L-value is propagated 
to the other side s' of the affix position slice The type of the link between A and side s is 
changed to 'undefined'. 

The .L-value is then propagated via all links connected to s' of type 'in' and 'first-in'. 
The sill of s' is adjusted If no links of these types exist the -L-propagation process stops. 
The condition for continuing the .L-propagation process is therefore 

3j ' 1 < J < edge number p(T,s') 
Л 

(type of (edge p(T,s'j)) = 'IN'V type.of (edge.p(T,s'j)) = 'in') 

£ j ( j y 
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Figure 5 8 Affix position slice. 
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All affix graph nodes have at most one 'first-in' link. This link was responsible for the 

initialization of the node. If the _L-value is propagated to an affix graph node via this 

'first-in' link the value of the node becomes the J.-value and the process is recursively 

continued. The propagation of the ±-value via an 'in' link will not affect the value of the 

affix graph node and the process stops in this node. It is not necessary to continue the 

-L-propagation in such a node because the value of this graph node depends on another 

part of the tree-graph. The type of the link is changed to 'undefined' in both situations. 

In Figure 5.8 the .L-propagation process moves the ±-value from affix graph node A to ΰ , , 

yielding Figure 5.9. 

Figure 5.9: Resulting affix position slice. 

If the type of the link had been 'in' the value of Я, in Figure 5.9 changed, only the type 
of the link to B} would have been changed, not the value in Д,. 

The two algorithms for propagating the -L-value from tree node to graph node and from 
graph node to tree node are respectively. 

±-propagate(s l ice,s ide) 

{ 
nr :- edge шшЪе:г_р(з1ісе,side) ; 
for i := 1 to nr { 

node : · a f f i z . o f ( s l i c e , s i d e , i ) ; 
edge :» edge_p(s l ice,s ide, i ) ; 
if (value of(node) <> ± ) { 

type :» type_of(edge); 
if (type = ' IN') { 

type.of(edge) := ' u ' ; 
value of(node) :» ± ; 
-L-propagate'(node) ; 

} 
e lse if (type = ' i n ' ) 

type.of(edge) :» ' u ' ; 
} 

} 
} 

-L-propagate' (node) 

{ 
nr :« edge jiuisber_a(node) ; 
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for i :» 1 to nr { 
edge :» edge_a(node,i); 
i f (type.of(edge) = 'out') { 

(s l ice ,s ide ,pos) := vertex_p(edge) ; 
type.of(edge) := 'u ' ; 
-L-propagate(slice,(l-side)) ; 

} 
} 

} 

Neither of the algorithms J.-propagate and ^-propagate' is based on backtracking. The 
reparsing of the altered text either succeeds, in which case the newly constructed subtree-
graph is grafted onto the rest of the tree-graph and the tree-graph is again made consistent, 
or the parsing fails and the text is transformed into an erroneous subtree which is grafted 
onto the tree-graph. The affix graph nodes connected to the lower sides of the corresponding 
affix position slices of this erroneous subtree will all have the _L-value and thus no extra 
propagation actions are needed. One of these two actions will always occur, so undoing 
the ±-value propagation is not necessary. 

The propagation of the .L-value to a non-critical affix position slice of a predicate 
causes the propagation process to stop in this slice. If, however, the value is propagated to 
a critical affix position slice the predicate becomes delayed and the values of all affix graph 
nodes connected to the upper side of the non-critical affix positions become the .L-value. 
These ±-values are propagated through the rest of the affix graph. 

The marking algorithm 

A second solution is inspired by the optimal re-evaluation algorithm formulated by [Rep84]. 
It is a more efficient variant of the J.-propagation algorithm. In the tree-graph from which 
the old subtree-graph is removed only the affix graph nodes which are connected to the 
removed tree node via a 'first-in' link are marked as affected, for example 'M' in Figure 
5.10. These are not marked if they contain the .L-value or ü-value. 

.'out' 

where іл, φ D and u, Φ J.. 

Figure 5.10: ^-propagation. 

The new propagation algorithm will visit not only all nodes with the .L-value but also 
the marked affix graph nodes. If it propagates a value ν to a marked affix graph node, the 
old value of this node is compared with the propagated one. If these values are equal the 



118 CHAPTER 5 /NCREMENTALJTY 

propagation process stops at this node, if they are not equal, the old value is overwritten 
by the propagated value and the propagation process is continued via all 'out' links The 
marking process is always one step in advance, so the marking is already propagated via 
these links unless the two values were the same The affix graph nodes connected via a 
'first-in' link are marked as affected, see Figure 5 11 The marking propagated via the 'out' 
links are propagated to the other side of an affix position slice and then propagated to the 
affix graph nodes connected via 'first-in' links, if there are any 

Figure 5 11 Affix position slice 

The propagation process will propagate the values via both the 'in' as well as the 'first-
in' links to the affix graph nodes However, the nodes connected to the 'in' links are not 
marked and the propagated value is thus only compared with the current value of such a 
node The propagation process either stops in this node, if the propagated value equals the 
current value of the node, or starts to backtrack, if the values are different This process 
is recursively repeated in each marked affix graph node until the tree-graph is consistent 
again or no such consistent tree-graph can be found 

If the propagation process hits on a critical affix position of a predicate, this predicate 
is re-evaluated and the affix graph nodes connected to the non-critical affix position slices 
via a 'first-in' link are marked as affected 

Shortcomings of the marking algorithm 

The second solution is much more efficient than the first one, because the propagation of a 
value ν can stop if this value is the same as the value of a marked affix graph node visited 
In the first solution all affected affix graph nodes have to be visited twice In spite of loss 
of efficiency we have selected this first solution, because it guarantees that none of the 
undesired effects described in the rest of this section occur 

The second algorithm operates in a depth-first manner This is why the re-evaluation 
of the predicates may be problematic, especially if they have more than one critical affix 
position If several of these positions of a predicate depend on the pruned subtree-graph, 
this predicate may need to be evaluated several times before a consistent decoration of 
the tree-graph is found Although several of the critical affix positions are affected, only 
one of these receives a new value because of the depth-first method To guarantee a 
proper re-evaluation of such a predicate, it should become delayed until all affected crit­
ical positions have obtained a new value This is not possible unless the complete graph 
is inspected to see whether other critical affix positions of this predicate depend on the 
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changed subtree-graph However, we do not have the dependency graph explicitly avail­
able The propagation algorithm will therefore immediately re-evaluate the predicate, and 
because of the potential illegal combination of values for the affix positions the outcome of 
the evaluation of the predicate is suspicious Or, worse, a consistent decoration exists but 
is never found because the illegal combinations of values always result in a failure of the 
evaluation process The possibility of several re-evaluations of the same predicate makes 
the efficiency gain questionable, because each re-evaluation may involve a recalculation of 
affix values of a considerable part of the tree-graph 

The first solution causes no problems with the re-evaluation of predicates, because all 
affected critical affix positions will be marked by the ^-propagation algorithm and the 
predicate is thus only evaluated if all affix graph nodes connected to the critical affix posi­
tion slices have a value again The second advantage of this solution is that the propagation 
algorithm itself need not be modified, it is simply preceded by the ±-propagation phase 

5.2.3 Affix value propagation in erroneous subtrees 

In this section we discuss the propagation of affix values in a tree-graph which contains an 
erroneous subtree If a syntax or type error is detected during the parsing of the new text, 
this text is transformed into an erroneous subtree The user is not forced to correct the 
errors before going on with the rest of the edit actions This can be achieved by grafting 
erroneous subtrees onto the tree-graph in order to enable the user to correct them later 
The structure of the erroneous subtree is discussed in Section 4 2 1 The contents of the 
connected affix graph nodes is the -L-value In the previous section we discussed the J.-
propagation algorithms and remarked that they do not use backtracking So if the parsing 
fails and an erroneous subtree is built no extra propagation actions are needed when this 
subtree-graph is grafted, because the values of all affix graph nodes depending on the new 
subtree-graph remain the ±-value 

5.3 Ambiguity 

Having found a successful parse, the parser yields a tree-graph This tree-graph must be 
copied when performing edit actions on it, because in the backtrack phase the tree-graph is 
dismantled (Section 3 3) However, our parser does not stop after the first successful parse, 
so several tree-graphs may be built Somehow all these tree-graphs must be combined into 
one tree-graph, because the user can only edit one tree-graph2 

The result of combining multiple tree-graphs will be a 3-dimensional tree-graph Tree-
graphs with distinct subtree-graphs are mapped onto one tree-graph Corresponding 
subtree-graphs which are not equal can all be found in this 3-dimensional tree-graph, 
their root nodes are connected to a new type of tree node, the 3-dimensional tree node 

2A possible solution may be that the system automatically selects one of these tree-graphs, but in that 
case it is possible that a tree-graph is selected which the user did not have in mmd This can be prevented 
by allowing the user to direct the selection, as is done in the ASF+SDF meta-environment [Kli91] 
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The sons of the 3-dimensional node are subtree-graphs which have the same root and 
represent the same substring in the input sentence. The internal structure of each of these 
subtree-graphs is in general different. 

First we need the following definitions: 

Ν φτ Ν' & 3N : α. e Ρ, Ν' : a'. € Ρ : {Ν = Ν' Λ α φ α')ν 
(Ν = Ν' Λ α = α'Λ 
3Κ € α, N1 βα'-.Ν,-.β.εΡ, N[:ß'.eP Λ β φ β') 

Ν=ΤΝ' «• 3Ν : α. e Ρ, Ν' : α'. € Ρ : 
{Ν = Ν' Λ α = α'Λ 

ЛГ, e a, Ni ea': Κ: β. ζ Ρ, ΛΓ.' : β'. € Ρ Λ /3 = /3') 

In both tree-graphs yielded by the parser, ΤΊ and Γ2, there are corresponding paths from 
root node ΛΌ to node Л^ such that for each pair of nodes ./Vt|i and І гі2 with i < j the 
condition Nlti =т Nt¿ holds, and N]ti фт Л .̂г holds. Thus, in Nj the two tree-graphs start 
to diverse. In Figure 5.12 the two nodes for which different alternatives were chosen have 
the labels N3ti and NJt2 respectively. 

Τ Τ 

Wi W2 W3 Wi »2 W3 

Figure 5.12: Two tree-graphs for an ambiguous sentence. 

The extent of Λ ,̂ι equals the extent of iV^, but they represent different alternatives for 
the same non-terminal in the context-free grammar. In Figure 5.13 the two tree-graphs 
axe combined in one 3-dimensional tree-graph. 

Τ 

Figure 5.13: 3-dimensional tree-graph for an ambiguous sentence. 

We must be careful if N^i and/or Ν,ρ have more than one son, because N}ti and N^ 
may not have the same substring as extent. Consider the ambiguous rule: 
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exp: 
exp, 

exp. 
exp: 

id. 

When the parser has, for instance, recognized the sentence x+x+x, the two tree-graphs 
shown in Figure 5.14 will have been built. 

and 
^xpl 

Sil " P I 

ΖΛ 
s i W I 

(ППЕЮ m 

[ex 

ВзІехРІ 

Ei 

p| I I 

1 8 21expi | | 

I 1 l i d l 1 l i d l 1 

x + x + x x + x + x 
Figure 5.14: Tree-graphs for x+x+x. 

Their naive combination is shown in Figure 5.15. The nodes S and S' are the 3-dimensional 
nodes in the tree-graph. This 3-dimensional tree-graph represents three different unpars-
ings, because of possible illegal combinations: 

X + X Viz. S2+S1' 
X + X + X Viz. Bi + Si' or г + Зг' 
X + X + X + X Viz. Bl-l-82' 

S'lexpl | | 

/ \ 
•l1«Pl Iss'lexpl | | 

| i d 
/ \ 

1 Udì 1 lid 1 
Figure 5.15: 3-dimensional tree-graph. 

The illegal combinations can be prevented by combining these subtree-graphs at a node 
higher in the tree-graph, see Figure 5.16. 
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Figure 5.16: Correct 3-dimensional tree-graph. 

A tree folding mechanism is invoked each time an alternative tree-graph is found for the 
same input sentence. Instead of being duplicated, the alternative tree-graph is compared 
with the already available (3-dimensional) tree-graph and a new 3-dimensional tree-graph 
is built. 

A similar technique for folding syntax trees of ambiguous (natural language) sentences 
is discussed in [Hal91]. Their technique goes even further: it shares as many subtrees as 
possible within the subtrees of an 3-dimensional node. This technique was developed to 
increase the storage efficiency of the LDB-system, a Linguistic Database program [HH90]. 

5.3.1 Unparsing of 3-dimensional tree-graphs 

The various unparsings of the tree-graphs built for an ambiguous sentence need not be the 
same. The editor, however, can only display one unparsing. The different subtree-graphs 
are all combined using 3-dimensional tree nodes. The substrings with different unparsings 
are therefore localized. 

The unparse routine nevertheless traverses all subtree-graphs of a 3-dimensional node, 
in order to be able to select each of the subtree-graphs built for an ambiguous sentence so 
links to all individual subtree-graphs must still be stored. 

5.3.2 Affix value propagation in 3-dimensional subtree-graphs 

The decoration of the corresponding affix graph nodes is in general different in each of 
the tree-graphs yielded by the parser. The tree-graphs yielded are transformed into one 
tree-graph and the resulting affix graph nodes must again become consistent. 

Each successful recognition of the same sentence results in a decorated tree-graph. 
The tree-graphs are compared one by one and equivalent parts are mapped onto each 
other. Differing subtree-graphs are combined into 3-dimensional subtree-graphs. During 
this process only tree nodes are compared, not the contents of the affix graph nodes. 

The contents of the affix graph nodes may also be different. There are several ways of 
solving this problem. 

1. The 3-dimensional node is introduced as soon as equivalent affix graph nodes in 
different tree-graphs built for the same input sentence have different values. The 
consequence may be that the amount of sharing in tree-graphs is very restricted. 
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2 The contents of the resulting affix graph node becomes the Q-value as soon as equiv­
alent affix graph nodes in different tree-graphs have different values This yields no 
problems because each parse was syntactically and static semantically correct 

3 Both values are stored in the same resulting affix graph node 

4 The values of the affix graph nodes of only the first parse are stored and the values 
of the affix graph nodes of the other parses are ignored 

We have opted for the second solution, which works fine 

5.3.3 Incrementality and ambiguity 

Fully reparsing the sentence is inevitable for an ambiguous context-free grammar in order to 
guarantee that the user gets all information So an attempt to maximize the incrementality 
is superfluous Each edit action may introduce or delete several parsings 

Although ambiguity in general renders incremental techniques useless, the techniques 
introduced above are still useful to tackle the problem of untyped placeholders, since these 
cause 'local' ambiguities 

5.4 Placeholders 

Placeholders and templates play an important role in PREGMATIC Both typed and un­
typed placeholders as well as templates are automatically derived from the specification 
as described in Chapter 4 The usefulness of, and extra convenience introduced by the 
untyped placeholders has been explained in Section 14 In this section we discuss the 
consequences for the parser and affix value propagation 

An untyped placeholder can be replaced by several typed ones, where each of the 
substitutions results in a successful parse and a corresponding tree-graph These tree-
graphs can be combined and result in a 3-dimensional tree-graph, as discussed in Section 
53 

Untyped placeholders may represent all non-terminals in the language except semi-
terminals 

It is necessary to transform untyped placeholders into typed placeholders in order to 
be able to work with them All rules of the grammar are implicitly extended with an 
extra alternative, and as a result the grammar becomes ambiguous The following PICO 
program contains an untyped placeholder 

BEGIN DECLARE χ; χ :- <l> END 

The (only) possible replacements for < I > in this program are 

• <I expression I> 

• <I term I> 
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• <Ifactor I> 

• <I identifier I> 

• < I number I> 

The main problem is the assignment of non-terminal names to the untyped placeholders 
during parsing. Each parse-routine get N is extended with two extra alternatives, for the 
recognition of the typed and the untyped placeholder respectively. 

get JVC) 

{ 
pueh_q(«redJVO») ; 
push_q(«sym_symbol("<|7V|>")»); 
push_q(«make_tree_iiode("7V")»); 
call_q(); 
pop_q(3); 
push q(«redJVO») ; 
push_q(«sym_symbol("< I >")») ; 
push_q(«make_tree_node("JV")») ; 
call qO; 
pop q(3); 
pu8h_q(«redJVO») ; 

} ' 

An untyped placeholder is replaced by a typed one in each tree-graph yielded by the 
parser but these typed placeholders need not be the same. If an untyped placeholder can 
only be replaced by one typed placeholder no 3-dimensional subtree-graph will be built 
and the textual representation of this untyped placeholder is automatically changed into 
the typed one. 

The unparsing of an untyped placeholder which represents several typed ones is still the 
untyped placeholder symbol. It is connected to all typed replacements internally during 
unparsing. 

All possible typed replacements are shown, together with all possible templates (Figure 
5.17) when the user focuses on an untyped placeholder. A selection causes the replacement 
of an untyped placeholder by a typed one, or by a template. The structure of the 3-
dimensional tree-graph may also be changed, but the reparsing mechanism will take care of 
that, by starting in the highest 3-dimensional tree node, see the next section. It is therefore 
possible that subtree-graphs and/or 3-dimensional tree nodes disappear as a result of an 
edit action. 

The introduction of untyped placeholders causes the grammar to become (locally) am­
biguous. In Section 5.3.3 it was remarked that reparsing should start in the root node 
in order to ensure that all information is available. Because of the local nature of the 
ambiguity, the reparsing of a subtree-graph which contains an untyped placeholder always 
starts in the highest 3-dimensional tree node. 
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If inserted text contains a placeholder no extra attention is paid to it. If parsing has 
succeeded no attempts to find more typed replacements by trying higher nodes are made. 

( File V ) С Undo ) ( Find ) ч )( Edit Focus ) 

BEGIN 
D E C L H R E 

BOOL b . INT i; 
Iseriesl>; 

EHD 

<lwhllestatementl> 
WHILE <lexpresslonl> DO <lserlesl> OD 
<llfstatementl> 
IF <lexpres*lonl> THEN <lseriesl> <lelsepíirtl> Fl 
<lassignationl> 
<lldentlflerl> - <|pxpresslonl> 
<lrtatementl> 

Figure 5.17: Untyped placeholder focused. 

5.4.1 Templates 

If the user focuses on a placeholder, the template window shows all possible syntactically 
correct templates. If the user clicks on a template the tree-graph has to be adapted. We 
have chosen the template starting in the focused (typed) placeholder or in the highest 
3-dimensional tree node for reparsing. 

The use of a prefabricated subtree-graph for templates would not work for a replace­
ment of an untyped placeholder, because the selection of the template may initiate the 
restructuring of the 3-dimensional tree-graph. 

5.4.2 D-value propagation 

The Π-values are strongly related to placeholders (Figure 5.18). These values enable us to 
do just as much type checking as is possible when the program contains placeholders. 

The D-value is propagated as an ordinary affix value, but if it is assigned to an affix 
graph node which already contains a value ν ^ •, the affix value propagation process 
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stops propagating the G-value, and starts propagating value ν This value is propagated 
'backwards' via the links over which the ü-value was propagated 

l<Ul>H Η 

Figure 5 18 Placeholder node for non-terminal A 

There is some resemblance between the ü-value propagation mechanism and unification 
In a unification mechanism the propagation of a more defined set of values is preferred over 
the propagation of a less defined set of values There is no other resemblance, because the 
evaluation mechanism always propagates only one value instead of sets of values 

5.5 Unparsing 

One of the remaining topics we want to address is incremental unparsing Although the 
introduction of the user-interface based on the X-window system has made incremental 
unparsing less urgent IO-performance in this user-interface even improved using a non-
incremental technique We will nevertheless briefly discuss some of the results obtained by 
applying this technique 

The unparsing algorithm has to traverse the tree-graph twice The first pass calculates 
the length of each syntactical construct, and the second pass writes the terminal symbols 
and layout symbols to the screen buffer In the first pass only the length of those tree 
nodes affected need be recalculated This incremental feature is still used 

The incremental optimahzations in the second pass are rather restricted It is not 
sufficient to visit only the tree nodes affected during the unparsing of the tree-graph, 
because the effect of the edit action may affect the unparsing of tree nodes which themselves 
are not affected This is the case in recursive rules where a non-recursive member is 
changed, and the effect of this alteration is that the orientation of the unparsing of this 
rule is changed 

All edit operations affect the contents of the screen buffer Unparsing the tree-graph 
can be considered as inserting and deleting layout symbols in the screen buffer, which 
can be done in such a way that a only minimal number of screen updates are necessary 
Applying this principle in combination with the X-window system causes annoyingly slow 
window updates 

5.6 Efficiency considerations 

We noted at several places that the efficiency of the total system is not optimal, but in the 
introduction we stated that we prefer generality to efficiency The use of the backtracking 
mechanism may lead to an exponential behaviour of the parser and the type checker Much 
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of the inefficiency in the parser can be prevented by examining the eag carefully, and by 
transforming some of its rules. 

In this section we will describe a few improvements to the system which may lead to a 
better performance. We will also give a short list of hints for improving the eag. 

5.6.1 Re-use 

The reparsing of the changed extent of a node may involve unnecessary work when parts 
of this extent have already been parsed in previous parses. The parsing of these parts may 
yield the same subtree-graphs as the time before. We could enlarge the incrementality by 
re-using these subtree-graphs rather than parsing the extent of these tree-graphs. 

Each character of the extent of the root node of the tree-graph is linked to a tree 
node (Section 4.1.1). The links created by the unparsing algorithm are used by the focus 
mechanism. They can also be used by the reparsing algorithm described in this section. 

Immediately after an edit action, all tree nodes on the path from the focus to the root 
are marked as affected. The subtree-graphs without affected roots may be re-used by the 
reparsing algorithm. We want to use as much as possible of the previous tree-graph, but 
we cannot prevent the reparsing of new text and of pieces of the extents of affected nodes. 

This technique for increasing the incrementality is particularly fruitful if the complete 
tree-graph must be reparsed, but it can also be used during the reparsing of text yielded 
by the text edit window. The implementation of the parser is discussed in Section 3.1.3. 
The recognition of text derivable from a non-terminal ./V is done by the parse-routine 
ge tJV. This routine is extended with a mechanism to scan the previous tree-graph for a 
node N of which the extent starts at exactly the current input position and which is not 
marked as affected. If such a node is found, instead of parsing the extent of this node, 
the corresponding subtree-graph is retrieved and the input position is set to the position 
immediately after the extent of this node. The modified parse-routine ge t_uni t s from 
Section 3.1.4 looks like: 

get_units() 

{ 
node :« lookup_in_tree("iinits") ; 
if (node <> n i l ) { 

pueh_q(«red_uni t sO») ; 
p 'ush_q(«retrieve_subtree(node)») ; 
c a l l -qO; 
pop.q(2) ; 

} 
e lse { 

push_q(« red -un i tO») ; 

} 
} 
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The routine lookup_in_tree will return the tree node if it is found and it satisfies all 
conditions, i.e. it may not be marked as affected; otherwise it will return n i l , representing 
the empty tree node. The routine retrieve_Bubtree(node) pushes the tree node node on 
the tree node stack and moves the input position beyond the extent of node; these actions 
are reversed during backtracking. The corresponding affix graph is of course also copied. 

This technique is also used in reparsing the text yielded by the text edit window. Each 
character of the text in the text edit window is still linked to the subtree-graph of the focus. 
During this edit action the link administration of the extent of the focus is continuously 
updated. Newly inserted characters are not linked to the tree-graph. Deletion of characters 
also causes deletion of the corresponding links to the tree-graph. Clicking on the put back-
button causes the replacement of the extent of the focus and an update of the complete 
link administration. The reparsing mechanism may use this information during the parsing 
of the modified extent. 

5.6.2 Re-using results of predicate evaluations 

Another improvement is concerned with the evaluation and re-evaluation of predicates. In 
the current implementation each predicate occurrence is evaluated, independently of other 
occurrences of the same predicate. Such a predicate may be evaluated several times during 
the decoration of the affix graph and it may be re-evaluated several times with the same 
values for its critical affix positions. Re-evaluation of a predicate with the same values for 
the critical affix positions will always have the same result. These (re-)evaluations can be 
improved to obtain more efficient affix value propagation. 

In order to be able to do this we must ensure that affix values are mapped onto each 
other, two affixes with the same value refer to the same memory location containing this 
value. This is not a major modification in the system, each time an affix value is created 
it must be checked whether this value already exists. If the system satisfies this constraint 
we are able to improve the evaluation of the predicates. 

The main idea is that no predicates are evaluated twice for the same values of the critical 
affix positions during an edit session, the complete sequence of edit actions between starting 
up and shutting down the system. This can be achieved by storing (caching) the values of 
the critical affix positions and the result of the evaluation and/or the resulting values of the 
non-critical affix positions for each predicate. Each time a predicate is evaluated this list 
is first inspected, if the predicate has not yet been evaluated for these values the predicate 
must be evaluated and the results stored. If the predicate has already been evaluated 
the result of the previous evaluation are re-used. This strategy is possible because the 
evaluation of predicates is deterministic. The performance can be improved even further 
by using a hashing technique. A similar technique, hash-consing for tree-graphs, is used in 
HAG [VSK91], to improve the evaluation of non-terminal attributes (NTA). 

5.6.3 Inconsistencies detected after grafting subtree-graphs 

One of the weak points of our system with respect to incrementality is that an inconsistency 
detected during the affix evaluation started after grafting a syntactical and static semantical 
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correct subtree-graph results in a destruction of this grafted subtree-graph. An erroneous 
subtree is built and grafted which contains the extent of the previously built subtree-graph 
but has no internal tree structure. At this point the performance can be improved by not 
backtracking over the grafting action, but by reporting only the error. 

This strategy could be generalized, but then the joint-venture of the parser and affix 
value propagation has to be adapted. The detection of a type error does not cause back­
tracking, but allows the parsing process to continue. If the syntactical recognition succeeds 
the tree-graph is completed with as much type checking information as possible. We per­
formed some experiments using this strategy and were not really satisfied with it. There 
was a high degree of ambiguity since for each failing alternative an attempt was made to 
recognize the rest of the sentence which quite often succeeded. We tried to improve this 
by formulating stronger conditions to continuing the parsing process but this did not lead 
to satisfactory improvements in performance. This generalization has therefore not been 
implemented in the prototype. 

5.6.4 Improvements 

The performance of the system can also be improved by transforming the eag specification: 

1. left-factorization of the underlying context-free grammar. 

2. application of predicates as soon as possible. Try however to avoid unnecessary 
delaying. 

3. use of free affix non-terminals if an affix value is only transferred in an alternative. 
This prevents unnecessary checks. 

This list of improvements is not exhaustive, but may suggest other transformations. 





Chapter 6 

Execution 

Until now we have discussed topics which are related to syntax-directed editors, but which 
were not specific to programming environments in general. One way to turn a syntax-
directed editor into a programming environment is by adding a component for executing 
the developed programs, implemented as: 

• an interpreter, 

• a compiler, or 

• a debugger. 

We describe only an interpreter-based approach, because the implementation of a debugger 
is very much like that of an interpreter. A compiler could be generated using the compiler 
generator Programmar [Mei86]. 

We will describe three different methods which could be used for implementing an 
interpreter in PREGMATIC: 

1. evaluation by means of intermediate code. 

2. evaluation by means of predicates. 

3. evaluation by means of evaluating affix expressions. 

We have not yet implemented any of these methods in the prototype of PREGMATIC, but 
we did experiment to some extent with the second and third method. All three models 
make it necessary to adapt the EAG-formalism which must be extended with facilities 
which allow the specification writer to mark either the affix positions or the predicates 
used for the dynamic semantics. We have not yet decided what these extensions will look 
like and therefore we could not implement the interpreter in the prototype. 

The user-interface needs to be extended with an execute-button which opens an 10-
window in which the user may interrupt, resume, or restart execution. 

The three models will be demonstrated by using the same example. We will give the 
specification of the dynamic semantics of the following syntactical construct. 
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whilestatement: 
"while", 
expression, 

"do", 

series, 

"od". 

We discuss the three possible implementation models in the next three sections and look 
at IO, incrementality, adaptations to the EAG-formalism, and relation to other systems. 
We conclude this chapter with an overview of the techniques used in other systems. 

Incrementality again plays an important rôle in the execution of programs. The first 
view of incremental execution is that an arbitrary piece of program may be selected and 
executed [Kai89] provided it is complete and consistent. This strategy is applied in the 
ELAN-programming environment [KW86]. If this selected piece of program depends on 
other parts of the program, for example for initialization of variables, the interpreter will 
immediately report an error. The second view is that incomplete programs, viz. programs 
containing placeholders may be executed. The third view is that as much information from 
previous interpretation sessions of the same program is re-used [WJ88] as possible. 

6.1 Code generation 
In this section we present the first method of implementing an interpreter in PREGMATIC. 

The method is straightforward: translating the developed program into intermediate code 
and executing that code. 

During the development of the program a list of instructions is generated in some 
intermediate language using the normal affix evaluation mechanism. These instructions are 
interpreted by a language independent interpreter. This interpreter only has knowledge of 
the intermediate code. A similar technique is used in the Synthesizer Generator [RT89a]. 

Each syntactical construct is described by a number of instructions. The affix evaJuation 
mechanism takes care of constructing the complete list of instructions representing the 
translation of the developed program to intermediate code. The representation of the 
constructed list depends on arbitrary design decisions, which may effect the incremental 
behaviour of the system. Some implementations are better suited to incremental generation 
of the list than others. 

We will demonstrate this execution strategy by means of an eag which generates code 
for a stack-oriented interpreter. The instructions consist of a label followed by an opcode 
and zero or more operands. Values are pushed onto the stack and the operations modify 
the contents of this stack. The rule for the whilestatement is given below. The non­
terminals are extended with affixes needed for the generation of the code. We have left out 
the affixes describing the type checking. 

whilestatement (nextlabel, expressionlabel, 
expressioncode + 
boclabel + ":" + 
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"BOC(" + serieslabel + "," + nextlabel + " ) " + nier + 

seriescode + 

gotolabel + ": GOTO " + expressionlabel + alcr): 

"while", 

maie label (boclabel), 

expression (boclabel, expressiunlabel, expressioncode), 

"do", 

make label (gotolabel), 

series (gotolabel, serieslabel, seriescode), 

"od". 

BOC stands for BranchOnCondition. The call make label is a call to a predicate which will 
generate a unique label, the exact implementation details of this predicate are not relevant 
to understanding this example. The affix non-terminals nextlabel and expressionlabel 
contain the labels of the instruction following the whileetatement and of the first instruc­
tion of the whileetatement respectively. 

We will only give the code for the following piece of program: 

while 

χ / - 9 
do 

χ := χ + 1 
od 

The resulting list of instructions for this program fragment will be: 

7: 
Θ: 
9: 
10: 
11: 
12: 
13: 
14: 
1Б: 
16: 

PUSHVAR 

PUSHVAL 

NOTEQUAL 

BOC 
PUSHVAR 

PUSHVAL 

ADD 
STORE 

GOTO 

• . · 

This method may be the most tedious one for the specification writer because he may also 
have to write the interpreter. This need only be done once. The dynamic semantics of 
other languages can be described using the same interpreter. 

6.1.1 IO-facilities 

The specification of the complete dynamics of a language asks for facilities for reading and 
writing of values — IO-facilities. The specification writer has to know which facilities are 
offered by the interpreter. They may be very different, ranging from very simple routines 
for reading and writing a single character to complex routines for window manipulations. 
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6.1.2 Incrementality 

The incrementality of this type of interpreter will be very restricted. The current im­
plementation of the affix evaluation mechanism would even make execution impossible so 
long the program contained placeholders. No code will be generated if the construction 
of the list of instructions is done by using the concatenation operator. This is of course 
undesirable but correcting it would mean a complete re-implementation of the evaluator. 
It is also possible to construct the list of instructions using the tuple operator. The re­
sulting representation will not be a list but a kind of tree structure, which can easily be 
transformed into a list representation before it is passed to the interpreter. 

List representation of the code makes it very difficult to execute only part of the pro­
gram. Furthermore, a small alteration of the program text involves a complete recon­
struction of the generated list of instructions. Processing dynamic semantic information in 
environments generated by the Synthesizer Generator [RT89a] does not suffer from the two 
problems described above. The evaluator in the environments generated by the Synthesizer 
Generator [RT89a] stores the code generated for each syntactical construct in an attribute 
and these attributes are linked, forming a code graph for the developed program. The 
interpreter traverses this graph by following the links and executes the code stored in each 
attribute node. The advantage of this strategy is the limited amount of recomputation 
after an alteration of the program text and that it enables the user to execute only a part 
of the program. 

A similar solution could also be used in the environments generated by PREGMATIC. 

This would mean an extension of both the EAG-formalism and the affix evaluation mech­
anism. The affixes describing dynamic semantic information have to be marked in some 
way. The evaluation mechanism needs to be extended with a mechanism to directly link 
the affix graph nodes containing this dynamic semantic information to each other. 

Re-using as much information as possible of previous executions from the same program 
in this interpretation model is only possible if the interpreter is adapted to keep track of 
values which can be re-used from previous calculations. 

6.2 Interpretation within EAGs 

In this section we describe the second method of tackling the problems related to the 
execution of programs developed in PREGMATIC. In the previous section we worked with 
a language independent interpreter and intermediate code. The approach discussed in this 
section is also based on intermediate code. The interpreter is not language independent, 
but defined as a predicate in the specification. The intermediate code generated is a more 
abstract representation of the program developed and will be interpreted by that predicate. 
The predicate resembles the ones used for the specification of the type checking rules. 

The variables and their values are stored in a so-called value environment, an abstract 
representation of the memory locations used by an ordinary interpreter. The right hand 
side of the rule for program is extended with a call to the interpret-predicate. Again 
the eag does not contain any type checking information. The non-terminal series in the 
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right hand side of the rule for program therefore has only one affix non-terminal. This 
non-terminal code contains the abstract representation of the recognized program. 

program : 

"begin". 

declarations, 

series (code), 

"end". 

interpret (code, nil, value-env). 

We will only give the rule for whilestatement. 

whilestatement ("while"*cond*loop): 

"while". 

expression ("bool", cond), 

"do", 

series (loop), 

"od". 

The abstract representations of expression and ser ies are stored in the affixes cond and 
loop respectively, which are combined and extended with a label while, to indicate that 
a loop should be executed and propagated as a 'synthesized' affix. 

We will now only give the alternative for the whilestatement from the specification of 
the predicate interpret and the definition of the predicate interpretwhile. 

interpret (>"while"*expr*while> >old values, new values): 

interpretexpr (expr, old values, val), 

interpretwhile (val, expr, while, old values, new values). 

interpretwhile (>"true", >expr, >while, >old values, new values): 

interpret (while, old values, values), 

interpretexpr (expr, values, val), 

interpretwhile (val, expr, while, values, new values). 

interpretwhile (>"false", >expr, >while, >values, values): 

This method of executing programs depends heavily on predicates. The calculation 
of the values of the variables must be specified by means of predicates. A lot of prim­
itive predicates will be necessary to make these calculations possible, or to make them 
more efficient. A primitive predicate for performing multiplication will be more efficient 
than specifying the multiplication by means of repeated additions. There are also other 
shortcomings related to this solution which will be discussed in the next sections. 
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6.2.1 lO-facilities 

Specification of 10 in this method is also based on primitive facilities. The capabilities 
of these facilities are comparable to those of the IO-facilities of the previous method for 
executing programs the representation of the IO-channels, which take care of the transfer of 
values from and to the output device, either afile or a window, may however be problematic. 
In the previous method these channels were implicitly available via the interpreter, now 
they have to be explicitly specified as affixes. 

The first solution is to represent the IO-channels as ordinary affixes. Almost every 
non-terminal in the interpret-predicate is extended with two affix non-terminals in and 
out, which represent the input channel and the output channel respectively. For example, 
the alternative for whilestatement in the interpret-predicate will be: 

interpret (in, out, >"while"*expr*while, >old values, new values): 

interpretexpr (expr, old values, val), 

interpretwhile (in, out, val, expr, while, old values, new values). 

The primitive predicates for accessing these channels are read(in,v), for reading values 
from the input channel in, and write(v,out) for writing values to the output channel out. 
The affix position represented by in will be critical in the definition of the predicate read 
whereas ν will be the criticai affix position in the definition of the predicate write. 

The disadvantage of this solution is the 'dragging' of the IO-channels through the 
specification of the interpret-predicate. This problem could be prevented by making the 
affixes for the IO-channels global. This means that these two affixes are always implicitly 
available and can be accessed at any moment via the predicates read and write. This 
representation of the channels would be very exceptional, because neither the specification 
formalism nor the system support this type of affixes. We therefore prefer the solution 
which 'drags' the IO-channels through the eag, although it involves some extra work. 

6.2.2 Evaluation 

Looking at the dynamic semantics in the EAG specification suggests that the execution. 
of a program may be done by using the same affix value propagation mechanism as for 
type checking the language. Though this claim is true the specification of the dynamic 
semantics may yield a non-well-formed eag. The execution of a non-terminating loop yields 
a non-terminating affix evaluation process, which is correct with respect to the execution 
but not with respect to the evaluation process. The integration of parsing and affix value 
propagation now causes a severe problem. The evaluation of the interpret-predicate, 
which is not guaranteed to terminate, may cause non-termination of the entire parsing 
process. 

The solution of Section 6.1 does not have these problems because the interpreter is 
explicitly started by the user of the programming environment, while the affix value prop­
agation mechanism will cause the evaluation of the program implicitly. Explicit invocation 
of the interpret-predicate is also the solution for the problem described here. The con­
struction of an abstract representation of the program may be done during the parsing of 
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the sentence, the predicate interpret should however remain delayed until the user of the 
environment pushes the execute-button. 

The generator of the environment should be able to recognize which predicates in the 
specification are used for execution of the program and which are used for type checking. 
This cannot be determined statically, so the EAG-formalism needs to be extended with an 
annotation for marking the predicates which specify execution. 

The same affix value propagation mechanism can be used for the evaluation of the 
interpret-predicates. The system however has facilities to interrupt the execution of a 
program, by for example pushing the interrupt-button in the execute-window. The 
propagation process should therefore regularly inspect whether execution should be inter­
rupted. 

6.2.3 Incrementality 

The specification of the dynamic semantics as given in the beginning of this section does 
not offer facilities for incremental execution. The interpret-predicate cannot evaluate 
only a part of the abstract representation. This problem can easily be solved by extending 
each rule with a call to the interpret-predicate. Focusing on a program fragment and 
invoking the interpreter will cause the evaluation of this fragment only. The presence of 
the extra calls to the interpret-predicate does not influence the evaluation mechanism, 
because these calls are also ignored by the affix value propagation mechanism if these 
predicates are annotated. The only disadvantage of this method is that the IO-affixes are 
needed in all rules. The rule for the whilestatement will be: 

vhilestatement (in, out, "while"*cond*loop): 
"while", 

expression ("bool", cond), 
"do", 

series (in, out, loop), 
"od", 
interpret (in, out, "while"*cond*loop, nil, valenv). 

The placeholders, another facility to increase the incremental behaviour cause no prob­
lems. The placeholder will be represented as a ü-value in the abstract code and will cause 
termination of the execution process. Using this strategy makes it difficult to focus on the 
placeholder which caused the termination of the évaluation process. 

Re-using as much information as possible from previous executions of the same program 
comes more or less for free, because predicates are only evaluated once for the same affix 
values. An adaptation of the program text causes an alteration of the abstract code 
generated during parsing. Pieces of program which are not affected will generate exactly 
the same abstract code. Incremental re-evaluation of predicates will ensure that for these 
pieces of program the predicates for interpretation behave in the same way — if, of course, 
the alteration did not affect the value environment built during execution. 
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6.3 Graph-visit interpretation 
The last strategy for executing programs is based on a graph-visiting evaluation mecha­
nism. This interpretation method is essentially different from the one used in the Synthe­
sizer Generator[R,T89a], which also works with a graph, but it is very similar to the method 
described in [WJ88]. This interpretation technique consists of an affix evaluation mech­
anism which walks over the affix graph and updates affix graph nodes until a consistent 
decoration is found, which corresponds to the execution of the program. 

The value environment is an argument of the interpret-predicate in the previous 
solution for executing programs. In this solution the value environment is represented by 
a well-defined set of the affix graph nodes which is updated during evaluation. 

The rule for whi les ta tement describing the execution looks like: 

whilestatement (oldvale, newvals): 
"while", 

expression (oldvals , exprval) , 
loop (exprval, o ldvals , newvals, loopvals) , 

"do", 
se r i es (loopvals, o ldvals ) , 

"od". 

where: 

loop (>"true", >oldvals, va l s , o ldvals) : 

loop (>"false", >oldvals, oldvals , va l s ) : 

This way of interpreting programs also causes some problems. The IO-facilities used in 
this technique are equivalent to the facilities discussed in Section 6.2.1. 

6.3.1 Evaluation 

A careful examination of both the rule given above and Figure 6.1 will reveal that the affix 
value propagation mechanism either will stop too soon, because the consistent substitution 
constraint cannot be fulfilled with respect to the affix non-terminal o ldvals , or will not 
stop at all, because o ldva l s does not change and thus the first alternative of predicate 
loop will always succeed. 

We assume that the value environment changes during execution of the loop-body, so 
the value of the affix o ldva l s of the non-terminal s e r i e s differs from the value of the affix 
o ldva l s of the non-terminal whi les ta tement . Therefore the propagation process starts 
to backtrack after executing the loop-body for the first time. This time the problems are 
not only caused by starting the affix value propagation mechanism too soon, viz. during 
the parsing and calculation of the static semantics, but they also have a more structural 
nature. 
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Figure 6 1 Part of a tree-graph 

The solution of the problem of mixing up the various types of calculations is solved by 
invoking the propagation process for the calculation of the dynamic semantics explicitly by 
pushing the execute-button The problem of the violation of the consistent substitution 
constraint can only be solved by using a different propagation mechanism which does not 
take this constraint into consideration If the current value of an affix graph node differs 
from the propagated value the current value is overwritten by the propagated one and the 
process must continue An adapted version of the propagation technique such as described 
in Section 5 2 2 will for example do the job One of the adaptations is that the affix link 
types 'first in' and 'in' should be ignored and that the propagation process must know 
by way of which link the previous value was propagated The efficiency of this evaluation 
process can be improved by re-introducing the flow It is otherwise possible that the wrong 
link will be selected to propagate the value, which could lead to a considerable amount of 
unnecessary work This unnecessary work will be involved for example if the propagation 
process first propagates the value to the series non-terminal 

The affixes describing the dynamic semantics in the eag should be marked in order 
to choose the right propagation technique for decorating the affix graph nodes This 
is impossible, so the specification formalism should be extended in order to enable the 
specification writer to indicate which affixes describe the dynamic semantics of the specified 
language This corresponds to marking the gate attributes in the method described by 
[WJ88] 

6.3.2 Incrementality 

The incrementality in this solution is obtained for free, because the evaluation process can 
very easily be restricted to the subgraph related to the focused subtree-graph Pushing 
the execute-button will only execute the extent of the focus We will not give the exact 
implementation details The presence of placeholders also causes no problems, because 
propagating an affix value to an affix graph node connected to a placeholder will suspend the 
propagation process and adjust the focus to this placeholder This is only possible because 
of the direct links between the affix graph nodes and the tree nodes The propagation 
process recognizes these affix graph nodes because of the d-value 

Re-using as much information as possible from previous executions of the same program 
is also for free, because the pieces of program which are not changed will preserve the same 
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values for the corresponding affix graph nodes, unless these affix graph nodes depend 
indirectly on the changed text. The -L-propagation algorithm will also mark those affix 
graph nodes containing dynamic semantic information affected. 



Chapter 7 

Case-study: SASL 

Programming environments can in fact be generated for all kinds of programming languages 
and specification languages. We initially considered Pascal [JW86] but this language has 
already been used extensively for this purpose. Several specifications exist in different 
formalisms, SSL [RT89b] and ASF+SDF [Deu91]. Specifications for Pascal in the EAG-
formalism can be found in [Wat74, Wat79]. 

A possibly more interesting language we considered was the functional language Mi­
randa [Tur90]. This language has a number of very interesting properties: 

• offside rule, 

• expression oriented ('everything is an expression'), 

• application before definition, and 

• severe type checking rules. 

Although a lot of work has already been done [Hie87], a full specification in EAG would 
still involve too much work. Still fascinated by functional languages and their specification 
problems we rediscovered the predecessor of Miranda: the language SASL [Tur79]. This 
language has almost the same interesting problems as Miranda except for the type checking. 
The language is not as large and therefore better suited as a case-study. 

SASL stands for "St. Andrews Static Language". It is a mathematical notation for 
describing certain kinds of data structures. It contains no commands and a data structure, 
once defined, cannot be altered [Tur79]. We will not discuss all features of the language. 
We restrict ourselves to those which are relevant to the EAG specification of SASL. 

7.1 Syntax of SASL 

We first give a context-free grammar describing the syntax of SASL in BNF. Terminals 
are written in uppercase letters and they are surrounded by quotes, for example "WHERE", 
" ; ", etc. Non-terminals are written in lowercase letters. 
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expr — expr "WHERE" defe I 

condexp 

condexp —» opexp "->" condexp ";" condexp I 

liBtexp 

liBtexp —> opexp "," listexp I 

opexp "," I 

opexp 

opexp —» prefix opexp I 

opexp infix opexp I 

comb 

comb —» comb simple I 

simple 

simple —» паше I 

constant I 

"(" expr " ) " 

defs —• clause ";" defe I 

clause 

clause —> nameliat "=" expr I 

name rhe 

rhs —» formal rhs I 

formal "=" rhs 

namelist —> struct "," nameliet I 

struct "," I 

struct 

struct —• formal ":" struct I 

formal 

formal —» name I 

constant I 

"(" namelist " ) " 

constant —» numeral I 

charconst I 

boolconst I 

"()" I 

string 

numeral —» real scalefactor I 

"-" real scalefactor 

real —» digit"
1
" I 

digit"
1
" "." digit"

1
" 

scalefactor -• "e" digit"
1
" I 

"e" "-" digit
+
 I 

ε 
boolconst — "TRUE" I "FALSE" 

charconst -» "У." anychar | "SP" I "NL" I "NP" I "TAB" 

prefix — "-" I "+" I "-" 

infix -» ":" I "++" I "I" I "6" I " » " I ">" I ">=" | "=" | "-=" I "<=" I "<" I 

" « " | "+" | "-" | "*" | "/" | "DIV" I "REM" I "**" I "." 

The notion digit"1" stands for one or more digits. The last alternative of scalefactor 
represents the empty alternative. 



7 2 SEMANTICS OF SASL 143 

All infix operators are left associative except for the operators " : " , " • + " , " * * " , and " " 
The priority rules for the operators are 

{:. ++}1 < {I} < {4} < {-} < { » , >, >-, -, - = , <-, <, « } < 
{+,-}2 < {+,-}3 < {*,/,DIV,REM} < {**, ,}1 

Some of the non-terminals in the context-free grammar of SASL are not defined These 
non-terminals represent the terminal symbols name, алусЬаг, d i g i t , and s t r i n g A name 
is any sequence of lowercase letters, digits and the symbol " " which starts with a lowercase 
letter The hyper rule for name is 

паше: 
{abcdefghijklmnopqrstuvwxyz} (1), 

{abcdef ghijklmnopqratiivwiyz0123456789 }* ' ( I s ) . 

The hyper rule for d i g i t is 

d i g i t : 
{0123456789} ( d ) . 

The non-terminal aaychar represents any visible character The non-terminal s t r i n g 
stands for an arbitrary number of characters prefixed by a single quote character and 
postfixed by a double quote character 

Layout in SASL consists of spaces, newhnes, and comments Layout is always optional 
except when leaving out the layout between two symbols would lead to a new name For 
example, leaving out the layout in the fragment f 3 would result in f 3, which is a new 
name instead of a name followed by a constant SASL obeys the offside rule, which will 
be explained in Section 7 3 We have omitted SASL comments 

7.2 Semantics of SASL 

Type checking in SASL is in fact very simple It consists simply of the identification of 
identifiers There is no check on types of operands or the arguments of functions If 
an operator is called with inappropriate types the result of the evaluation will be the 
undefined object 

There are 6 types of objects in SASL, which correspond to the data types of expressions 

1 numbers, which may be positive, negative, or zero 

2 t r u t h v a l u e s , which are represented by the values TRUE and FALSE 

3 c h a r a c t e r s , which are always preceded by a '"/."-character, for example '/.B, '/.c, '/,'/„ 

and the unprintable characters SP, NL, NP, and TAB 

1 Right associative 
2The dyadic infix operators + and -
3The monadic prefix operators + and -
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4. l i s t s , which are ordered sets of objects, these objects are called elements. 

5. funct ions , which assign an output object to an input object of the right type. This 

output object is the result value of the evaluation of the function for the input object. 

6. undefined, which represents expressions which are not well-formed or do not termi­
nate, for example 3 + TRUE, or f ас - 3 . 

The following holds for all types of objects: 

• Any object can be named. 

• Any object can be the value of an expression. 

• Any object can be an element of a list. 

• Any object can be given to a function as its input. 

• Any object can be returned by a function as its output. 

Objects of different types may be freely mixed, for example 

a > b -> TRUE ; 7 

Even elements of lists need not be of the same type: 

1, TRUE, 3 + TRUE, ( 1 , 2, 3) 

It is impossible to have a static type check mechanism with these type checking con­
straints. 

7.3 Offside rule 

While the type checking constraints are not really interesting, SASL has another interesting 
feature, viz. the offside rule. Describing this feature in the EAG-formalism is not trivial. 
The offside rule in the SASL-manual [Tur79] is formulated as 

Every symbol of an expression must lie below or to the right of the first symbol 
of the expression. 

The specification of the offside rule in the EAG-formalism is based on a modified version 
of this rule. This version was also implemented in the SASL system under UNIX. 

1. In a definition, represented by the non-terminal c lause, every token of the expr 
following the "="-symbol must be to the right of the column containing this " = " -
symbol. 
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2. In a conditional expression, represented by the non-terminal condexp, every token of 

the expr following the "->"-symbol must to the right of the column containing the 

" - " of this "-> "-symbol. 

The offside rule is meant as an implicit delimiter, as an alternative to the delimiter " ; " in 

the following construction: 

expr WHERE clause ; defs 

In this case the defs need not obey the offside rule but no token belonging to c l a u s e may 

be offside. The following SASL fragment, for instance, is written using the offside rule. 

f 3 
WHERE f χ - g y ζ 

WHERE y = ( x + l ) * ( i - l ) 
ζ = χ ** 2 + 4 

g y ζ = y * ζ 

instead of 

f 3 
WHERE f χ - g y ζ 

WHERE y - ( x + l ) * ( x - l ) ¡ z - x * * 2 + 4 ; ; 
g y ζ » y * ζ 

The use of the offside rule poses some constraints on the specification of the unparsing rules 

by the user of the programming environment. Because of the offside rule the user must be 

careful when he transforms the layout of some syntactical construct. Some transformations 

may move offside definitions to non-offside definitions or vice versa. 

We restrict our discussion to the specification of the offside rule for the rule for condexp. 

The rule without the offside information is: 

condexp: 

opexp, 

"->", layout, 

condexp, 

";", layout, 

condexp. 

condexp: 

llstexp. 

In order to specify the offside rule it will be necessary to know a column position. A prim­

itive predicate column which returns the current column value during parsing, is therefore 

available to the specification writer. The initial column value is determined at the begin­

ning of the "->"-symbol in the first alternative of condexp. The delimiter, the " ; "-symbol 

in the grammar above, may now be either a " ; "-character or a newline character. 
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condexp: 

opexp, 

column (col), 

"->", layout, 

condexp, 

delimiter (col), 

condexp. 

where 

delimiter (col) : 

";", layout. 

delimiter (col) : 

offside (col). 

The predicate offside is defined as: 

offside (>border): 

column (col), 

smaller (col, border). 

The definition of the predicate smaller can be found in Appendix D. 
This approach, forces the layout of the syntactical construct condexp into a fixed for­

mat: 

<IopexpI> -> <IcondexpI> <I delimiter I> 
<|condexpI> 

The layout will be the same for both orientations, recall Section 4.3.2. Otherwise a program 
fragment in the vertical orientation 

<IopexpI> -> <IcondexpI> <IcondexpI> 

cannot be recognized when the second alternative for delimiter is chosen, because the 
second < I condexp I > is not offside. This problem can only be solved if the delimiter is 
explicitly specified in the rule for condexp, one alternative for the delimiter " ; " and one 
for the implicit delimiter. 

condexp: 

opexp, 

column (col), 

"->", layout, 

condexp, 

inside (col), 

" ¡ " , layout, 

condexp. 
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condexp: 

opexp, 

column (col), 

"->", layout, 

condexp, 

delimiter (col) , 

condexp. 

where 

delimiter (col) : 

offside (col). 

The layout orientation can now be specified for each alternative. 

7.4 SASL expressions 

The second interesting aspect of the SASL language is the specification of its expressions. 
Given the BNF specification of SASL the expressions could be specified as: 

opexp: 

prefix, 

opexp. 

opexp: 

opexp, 

infix, 

opexp. 

opexp: 

comb. 

This specification is too simple. The infix and prefix operators do not have the same 
priorities (Section 7.1) and this rule should therefore be refined, but before we can refine 
this rule we have to look at the associativity of the operators. Some of the operators will 
be right cissociative while others will be left associative. The difference in associativity 
must be visible in the resulting tree-graph. 

The affix position of the first alternative of the hyper rule for opexp must be critical 
to ensure termination of the parsing process. Furthermore, the affix non-terminal must be 
defined. The part of the eag in which expressions are defined is given below. 

prio :: 1;2;3;4;5;6;7;8;9. 

rightprio :: 1;9. 

leftprio :: 2;3;5;6;8. 
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preprio : : 4;7. 

rightopexp (rightprio): 

opexp (rightprio + 1). 

rightopexp (rightprio): 

opexp (rightprio + 1), 

rightinfix (rightprio), 

rightopexp (rightprio). 

opexp (>prio): 

opexp (prio + 1). 

opexp (rightprio): 

opexp (rightprio + 1), 

rightinfix (rightprio), 

rightopexp (rightprio). 

opexp (preprio): 

prefix (preprio), 

opexp (1). 

opexp (leftprio): 

opexp (leftprio), 

infix (leftprio), 

opexp (leftprio + 1). 

opexp (10): 

comb. 

The associativity is not the same for all operators. The operators " : " , "++", "**", 
and " . " are right associative, the rest are either left associative or prefix operators. The 
priorities of the right associative operators are 1 and 9, that of the prefix operators 4 and 
7. 

The tree-graph for a left associative expression has a different structure than for a right 
associative expression. We therefore have two different hyper rules. The fact that priorities 
of the right associative operators are different from those of the left associative operators 
is used to distinguish between the two rules. 

We have left out all other affixes involved identification and specification of operators. 
This can be found in Appendix D. 

7.5 Remaining specification problems 

There is one nasty problem in the SASL syntax, viz. an ambiguity at the lexical level 
which is hard to solve even with affix-directed parsing. It could only be solved by full type 
checking. Because no type information is available the infix operator ++ can be recognized 
in two ways, either as the right associative operator ++, or as the left associative infix 
operator + followed by the prefix operator +. In the SASL manual it is stated that the 
operands of the ++ operator may only be lists, otherwise the result will be undefined 
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which is a legal SASL object, see Section 7.2. This problem can be solved in several ways. 
We have selected the most simple rather than the most elegant one: eliminating the prefix 
operator + from in the SASL language. 

The specification of the identification of identifiers is quite straightforward. Identifiers 
may be multiply defined. A· number of identifiers are predefined, such as abs, concat, 
l i s t , zip, etc. The definitions following the WHERE add a number of local definitions to 
the previously defined identifiers. 

expr (prevdefs): 

expr (locals*prevdefs), 

"WHERE", layout, 

defs (prevdefs, nil, locals). 

The identifiers in a nameliet are locally defined with respect to the expr following the 
"="-symbol and the surrounding definitions. The same holds for the name. However, the 
identifiers represented by the non-terminal formal are only local with respect to the expr 
in the second alternative of rhs. This can be specified in the following way: 

clause (col, prevdefs, locals, newlocals): 

namelist (prevdefβ, locals, newlocals), 

column (col), 

"-", layout, 

expr (newlocals*prevdefs). 

clause (col, prevdefs, locals, newlocals): 

паше (id), 

enter name (id, prevdefβ, locals, newlocals), 

rhs (col, prevdefs, newlocals). 

rhs (col, prevdefs, locals): 

formal (prevdefs, locale, newlocals), 

rhs (col, prevdefs, newlocals). 

rhs (col, prevdefs, locals): 

formal (prevdefs, locals, newlocals), 

column (col), 

"=", layout, 

expr (newlocals*prevdefs). 





Chapter 8 

Conclusions and future work 

As we have already stated several times, the emphasis of this research has been on generality 
and not on efficiency. However, in order to obtain a system which can be used in real life 
applications the efficiency of the current prototype implementation has to be improved 
considerably. But before giving the list of improvements and thus hints for future research 
we draw some conclusions from the preceding chapters. 

• Editing programs of ambiguous languages proved not to be feasible in incremental 
programming environments. In Section 5.3 we gave a number of reasons why ambi­
guity and incrementality lead to conflicts — at least in the way we wanted to tackle 
this problem and to assure a consistent tree-graph. 

• Deriving a complete programming environment using a simple specification formalism 
proved to be feasible. In Chapter 4 we gave a number of 'transformation' rules for 
deriving language specific elements of the environment from the EAG specification. 

• The incremental behaviour of the environments generated by PREGMATIC can only be 
fully exploited when the user has the discipline of editing only small scale constructs 
via the text edit mode. This will improve performance and it stresses the syntax-
directedness of the system. 

An advantage of PREGMATIC compared with other systems is its simple specification 
formalism. This makes PREGMATIC extremely suitable for rapid prototyping, the specifi­
cation writer is not forced to extend or adapt its specification. 

8.1 Generated system 
The PREGMATic-system of course has a number of shortcomings. Some of them can 
be repaired in a 'final' implementation, others are inherent in the techniques on which 
the complete concept of the system is based, such as backtracking. The flexibility and 
functionality of the system and of the user-interface can be improved. These are in fact 
implementation issues. The first group of shortcomings has to do with efficiency of the 
resulting system. 
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• Backtracking should be restricted. The underlying context-free grammar of the eag 
has to be unambiguous. But the recognition of untyped placeholders and local am­
biguous syntactical constructs makes backtracking inevitable. Another parsing tech­
nique, or the use of lookahead may also lead to a more efficient result. 

• The affix value propagation mechanism is also based on backtracking, but this should 
be restricted as well. A unification approach in the evaluation mechanism could be 
considered. However, the full integration of parsing and propagating affix values 
should be maintained. 

8.2 Formalism 

In Chapter 1 we stated that we want to use a given EAG to generate a programming envi­
ronment and to safeguard the EAG writer from adapting the specification. This goal has 
been achieved, except for the specification of the dynamic semantics. Some improvements 
can still be considered and will be described in the rest of this section. 

The EAG-formalism proved to be very suitable as a specification formalism for gener­
ating programming environments. The integration of syntax and type checking, and the 
absence of various environment specific properties makes the formalism concise and easy 
to read. We have given three methods for specifying the dynamic semantics of a language. 
To make the interpreter workable it is necessary for the specification writer to mark either 
the affix positions or the predicates used for the dynamic semantics. 

The EAG-formalism nevertheless has a few shortcomings. It is rather inflexible with 
respect to the tree-graph construction especially if it is compared with the Synthesizer 
Generator [RT89a]. This system allows the specification writer to manipulate the abstract 
syntax tree explicitly, which enables him to define, for example, transformation rules within 
the SSL-formalism. This could be solved by extending the EAG-formalism with facilities 
for influencing the construction of the tree-graph. 

Another shortcoming of the EAG-formalism is the absence of global affixes. This makes 
it necessary to 'drag' affixes all the way through the specification. In Appendix D this is 
the case for the affix prevdef s in the non-terminal condexp and all related non-terminals. 
The introduction of global affixes would solve this problem of writing 'unnecessary' affix 
occurrences in the specification. 

The unparsing method works satisfactorily for Algol-like languages, which are mainly 
based on opening and closing keywords. However, for a language such as SASL the user of 
the generated environment has to adapt the layout of a considerable number of syntactical 
constructs. This can be prevented by either extending the number of heuristic rules or 
introducing a mechanism for specifying the unparsing rules in the EAG-formalism. 

8.3 Generator 
The generation process also has some shortcomings, the efficiency of this process can be 
considerably improved. The current implementation of the generators is based on a variant 
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of the EAG-formalism, which makes it very suited for the process of prototyping. A re-
implementation of these generators in a language like С would make them faster and thus 
more suited for programming environment generation. 





Appendix A 

An eag for the EAG-formalism 

extended affix grammar: 

layout, rules (nil, env). 

rules (old env, new env): 

rule (old env, env), 

rules (env, new env). 

rules (env, env): 

rule (old env, new env): 

hyper rule (old env, new env). 

rule (env, env): 

affix rule. 

hyper rule (old env, new env): 

hyper nonterminal (old env, env), 

":", layout, 

hyper alternative (env, new env), 

".", layout. 

hyper alternative (old env, new env): 

hyper members (old env, new env). 

hyper alternative (env, env): 

hyper members (old env, new env): 

hyper member (old env, env), 

",", layout, 

hyper members (env, new env). 

hyper members (old env, new env): 

hyper member (old env, new env). 

hyper member (old env, new env): 

hyper nonterminal (old env, new env). 

hyper member (env, env): 

hyper set. 

hyper member (env, env): 

terminal. 

155 
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hyper nonterminal (old env, new env): 

nonterminal (identifier), 

display (number), 

consistent (identifier*mimber, old env, new env). 

consistent Opair, >env, env): 

include (pair, env). 

consistent (>pair, >env, pair*env): 

exclude (pair, env). 

include (>pair> >pair*env): 

include (>pair, >head*env): 

differs (pair, head), 

include (pair, env). 

exclude (>pair, >nil): 

exclude (>pair, >head*env): 

differs (pair, head), 

exclude (pair, env). 

differs (>new idf*!, >idf»y): 

not equal (new idf, idf). 

display (number): 

"(", layout, 

directed affix expressions (number), 

" ) " , layout. 

display (0): 

directed affix expressions (1 + number): 

directed affix expression, 

",", layout, 

directed affix expressions (number). 

directed affix expressions (1): 

directed affix expression. 

directed affix expression: 

">", layout, 

affix terms. 

directed affix expression: 

affix terms. 

affix rule: 

affix nonterminal, 

": :", layout, 

affix alternatives, 

".", layout. 

affix alternatives: 

affix expression, 

";", layout, 

affix alternatives. 

affix alternatives: 

affix expression. 

affix expression: 

affix expression: 

affix terms. 

affix terms: 

affix term. 

affix terms: 

affix term, 

"+", layout, 

affix terms. 

affix terms: 

affix term, 

"*", layout, 

affix terms. 

affix term: 

affix nonterminal. 

affix term: 

affix terminal. 

affix term: 

affix set. 

affix term: 

affix number. 

nonterminal (idf): 

identifier (idf), layout. 
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terminal: 

quoted string, layout. 

affix nonterminal: 

identifier (idi), layout. 

affix terminal: 

quoted string, layout. 

hyper set: 

bracket string, layout, 

options, 

display (1). 

affix set: 

bracket string, layout, 

options. 

options: 

options: 

"»", layout. 

options: 

"+", layout. 

options: 

"•i", layout. 

options: 

"+1", layout. 

identifier (l+lgs): 

{abcdefghijklmnopqrstuvHxyz} (1), 

letgits (Igs), layout. 

letgits (ls+lgs): 

{ }*i (blanks), 

{abcdefghijklmnopqrBtuwxyzl234567e90}+
1
 (Is), 

letgits (Igs). 

letgits (empty): 

quoted string: 

{"} (qi). 

chars, 

{"} (q2). 

bracket string: 

{\{} (bl), 
chars, 

{\}} 0.2). 

chars: 

{abcdefghijklmnopqrstuvwxyz}*' (c), 

chars. 

chars: 

{ABCDEFGHIJKLMN0PqRSTUVWXYZ0123456789}+' (c), 

chars. 

chars : 

{•-»-'«#$\{%&*()-+=Ι[];:·,.<>/"'\} }+' (с), 
chars. 

affix number: 

{123456789} (d), 

{0123456789} (rd), 

layout. 

layout : 

{ \n}*
1
 (ignored). 
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The generated parser 

sym program О 

{ 
pUBh-qC'program") ; 
push q ( « g e t programO») ; 
cal l .qO : 

pop_q(2)¡ 

} 

sym.unitsO 

{ 
push qCunite") ; 
pUBh_q(«get_uiiitB()») ; 
cal l .qO ; 
pop-q(2); 

} 

sym.unitO 

Í 
puBh_q("unit"); 
puah q ( « g e t u n i t O » ) ; 
ca l l qO; 

pop q(2); 

} 

sym.appl icat юпшагкег ( ) 

{ 
push-qCapplicatioiimarker") ; 
puBh-q(«get.applicaiюішагк г О » ) ; 
c a l l qO ; 
pop_q(2); 
pueh q(«emp-applicationmarker()») ; 
call_q() ; 

pop_q(l); 

} 

sym_identifier() 

Í 
push q("identifier") ; 
push q(<<get_identifier()>>) ; 
call_q(); 

pop_q(2) ; 

} 
get.program О 

{ 
piish-q(«red programO») ; 

push-q(«eym_eymbol("END")») ! 

push_q(«eym units ()») ; 

pueh_qC«sym.symbol("BEGIN")») ; 

call.qO ¡ 

pop-q(4) ; 

} 
get unite() 

{ 
push_q(<<red unitO») ; 
push q(«sym_identif l e r O » ) ; 
push q(«emp_applicationmarker()») ; 
call.qO ; 
pop_q(3) ; 
puBh-q(«red applicationmarkerO») ; 
push q(«eym_Bymbol("DEFINE")») ; 
call q O ; 
pop_q(2); 
pueh_q(«red_applicationmaxkerO») ; 
push.q ( < <sym_symbol ( "APPLY " ) » ) ; 
c a l l . q O ; 

pop_q(2); 

} 
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get-applicationmarkerO 

{ 
push q(<<red applicationmarkerO>>) ; 

pueh-q(«aym_eymbol("DEFINE")») ¡ 
call-q(); 
pop.q(2); 
push q(«red applicationmarkerO») ; 
push-q^eym-SymbolO'APPLY")»); 
call.qO ; 
pop-q(2); 

} 
get .unit О 

{ 
pueb.q(«red.uBit()») ; 

pueh.q(<<eym identifier0») ; 

push.q(«emp applicationmarkerO») ; 

call.qO ; 

pop.qO) ; 

push q(«red applicationmarkerO»); 

push q(<<Bym eymbolC'DEFINE")») ; 

call.qO ; 

pop_q(2); 

push q(<<red_applicationmarkerO») ; 

push q(«eym symbolC'APPLY")») ; 

call.qO; 

pop.q(2) ; 

} 

emp .applicationmarkerO 

{ 
call.qO; 

} 
red programO 

{ 
if (top.qO = "program") { 

pop.q(l); 

call.qO; 

push q("program"); 

} 
} 

red_unitsO 

{ 
if (top qO = "units") { 

pop q(l); 

call_qO; 

push q("units"); 

}; 
pueh_q(«red unitsO») ; 

push q(«eym.unitO») ; 

puBh.q^Bym.symboK" ;")»); 

call q(); 

pop q(3); 

} 
red unit О 

{ 
if (top qO - "unit") { 

pop_q(l); 

call qO ; 

push qC'unit") ; 

}; 
push_q(«red.unitsO») ; 

call_qO ; 

pop_q(l); 

} 
red applicationmarkerO 

{ 
if (top qO = "applicationmarker") { 

pop q(l); 

call qO; 

push qC'applicationmarker") ; 

}; 
push q(«red unitO») ; 

push q(«Bym identiflerO») ; 

call qO; 

pop_q(2) ; 

} 
red identifierO 

{ 
i f (top qO = "identif ier") { 

pop_q(l); 
c a l l q( ) ; 
push qC'identif ler") ; 



Appendix С 

An eag for PICO 

picoprogram: 

layout, 

"BEGIN", layout, 

declarations (deels), 

senes (decls), 

"END", layout. 

declarations (decls): 

"DECLARE", layout, 

identiflerlist (decls), 

";", layout. 

identiflerlist (decls): 

type (type), 

identifier (id), 

enter declaration (id, type, nil, decls); 

identiflerlist (new decls): 

identiflerlist (old decls), 

",", layout, 

type (type), 

identifier (id), 

enter declaration (id, type, old decls, new decls). 

series (decls): 

statement (decls); 

series (decls): 

series (decls), 

";", layout, 

statement (decls). 

statement (decls): 

assignation (decls); 

statement (decls): 

ifstatement (decls); 

statement (decls): 

whilestatement (decls). 

assignation (decls): 

identifier (id), 

check application (id, decls, type), 

":=", layout, 

expression (decls, type). 

ifstatement (decls): 

"IF", layout, 

expression (decls, "bool"), 

"THEN", layout, 

series (decls), 

"ELSE", layout, 

series (decls), 

"FI", layout. 
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whilestatement (decle): 

"WHILE", layout, 

expression (deels, "bool"), 

"DG", layout, 

series (decls), 

"OD", layout. 

expression (decls, type): 

term (decls, type); 

expression (decls, "int"): 

expression (deels, "int"), 

"+", layout, 

term (decls, "int"). 

term (decls, type): 

factor (decle, type); 

term (deels, "int"): 

term (deels, "int"), 

"*", layout, 

factor (deels, "int"). 

factor (decls, type): 

"(", layout, 

expression (decls, type), 

" ) " , layout; 

factor (decls, type): 

identifier (id), 

check application (id, decls, type); 

factor (decls, "int"): 

number ; 

factor (decls, "bool"): 

boolean. 

type ("bool"): 

"BOOL", layout; 

type ("int"): 

"INT", layout. 

enter declaration (>id, >type, >decls, nevdecls): 

excludes (id, decls), 

add to (decls, id, type, nevdecls). 

add to (>liet, >id, >type, id*type*list): 

check application (>id, >declB, type): 

includes (id, decls, type). 

excludes (>id, >nil): ; 

excludes (>id, >head*type*tail): 

not equal (id, head), 

excludes (id, tail). 

includes (>id, >id*type*tail, type):; 

includes (>id
>
 ^eadthtype'tail, type): 

not equal (id, head), 

includes (id, tail, type). 

number : 

{0} ("0"), layout; 

number : 

{123456789} (d), 

{0123456789}*' (ds), layout. 

boolean: 

"TRUE", layout; 

boolean: 

"FALSE", layout. 

identifier (1 + Igs) : 

{abcdefghijklmnopqrstuwxyz} (1) , 

letgits (Igs), 

layout. 

layout : 

{ V
1
}*

1
 (ignored). 

letgits (blanks + Igsl + lge2): 

{ }*' (blanks), 

{abcdefghijklmnopqrstuvvxyzl234567890}+' (Igsl), 

letgits (lgB2); 

letgits (empty): 
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An eag for SASL 

eael : 

layout, 

predefines (predefв) , 

column (col), 

expr (col, predefB*nil) . 

expr (margin, prevdefs): 

expr (margin, locals*prevdefe), 

"WHERE", layout, 

defs (prevdefs, nil, locale). 

expr (margin, prevdefs): 

condexp (margin, prevdefs). 

condexp (margin, prevdefs): 

opexp (1, margin, prevdefs), 

defines (col), 

condexp (prevdefe), 

column (Icol) , 

inside (Icol, col), 

";", layout, 

condexp (margin, prevdefs). 

condexp (margin, prevdefs): 

opexp (1, margin, prevdefs), 

defines (col), 

condexp (prevdefs), 

column (Icol), 

offside (Icol, col), 

condexp (margin, prevdefs). 

nghtopexp (nghtpno, margin, prevdefe): 

opexp (nghtpno + 1, margin, prevdefe). 

nghtopexp (nghtpno, margin, prevdefs): 

opexp (nghtpno + 1, margin, prevdefe), 

nghtinf ix (nghtpno), 

nghtopexp (nghtpno, margin, prevdefe 

condexp (margin, prevdefs): 

listexp (margin, prevdefe). 

listexp (margin, prevdefs): 

opexp (1, margin, prevdefe), 

",", layout, 

listexp (margin, prevdefs). 

defines (col): 

column (col), 

"->", layout. 

listexp (margin, prevdefs): 

opexp (1, margin, prevdefs), 

",", layout. 

listexp (margin, prevdefs): 

opexp (1, margin, prevdefe). 

p n o : : 1;2;3;4;5;6;7;8;9. 

n g h t p n o : : 1;9. 

l e f t p n o : : 2;3;5;6;8. 

prepno : : 4;7. 
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opexp (>prio, margin, prevdefe): 

opexp (pno + 1, margin, prevdefe). 

opexp (nghtprio, margin, prevdef a) : 

opexp (nghtprio + 1, margin, prevdefe), 

right infix (nghtprio) , 

nghtopexp (nghtprio, margin, prevdefe). 

opexp (prepno, margin, prevdefe): 

prefix (prepno), 

opexp (1, margin, prevdefe). 

opexp (leftpno, margin, prevdefe): 

opexp (leftpno, margin, prevdefe), 

infix (leftpno), 

opexp (leftpno + 1, margin, prevdefe). 

opexp (10, margin, prevdefe): 

comb (margin, prevdefe). 

prefix (4): 

"-", layout. 

prefix (7): 

"-", layout. 

rightinfix (1): 

"++", layout. 

rightinfix (1): 

":", layout. 

nghtinf ix (9) : 

"**", layout. 

nghtinf ix (9) : 

".", layout. 

infix (2): 

"I", layout. 

infix (3): 

"t", layout. 

infix (Б): 

"»", layout. 

infix (5): 

">", layout. 

infix (5): 

">=", layout. 

infix (5): 

"=", layout. 

infix (5): 

"-=", layout. 

infix (5): 

"<=", layout. 

infix (5): 

"<", layout. 

infix (5): 

"«", layout. 

infix (6): 

"+", layout. 

infix (6): 

'·-", layout. 

infix (8): 

"*", layout. 

infix (Θ): 

"/", layout. 

infix (8): 

"DIV", layout. 

infix (8): 

"REM", layout. 

comb (margin, prevdefe): 

comb (margin, prevdefe), 

inside simple (margin, prevdefe). 

comb (margin, prevdefe): 

simple (margin, prevdefe). 

simple (margin, prevdefe): 

column (Icol), 

inside (Icol, margin), 

inside simple (margin, prevdefe). 

inside simple (margin, prevdefe): 

name (id), 

includes in defe (id, prevdefe). 

inside simple (margin, prevdefe): 

constant. 

inside simple (margin, prevdefe): 

"(", layout, 

expr (margin, prevdefe), 

" ) " , layout. 



165 

defs (prevdefs, oldlocals, newlocals): 

clause (col, prevdefs, oldlocals, locale), 

column (Icol), 

inside (Icol, col), 

" ¡ " , layout, 

defs (prevdefs, locals, newlocale). 

defs (prevdefs, oldlocals, newlocals): 

clause (col, prevdefs, oldlocals, locals), 

column (Icol), 

offside (Icol, col), 

defs (prevdefs, locals, newlocale). 

defs (prevdefs, oldlocals, newlocals): 

clause (col, prevdefs, oldlocals, newlocala). 

clause (col, prevdefs, locale, newlocals): 

namelist (prevdefs, locals, newlocals), 

column (col), 

"=", layout, 

expr (col, newlocals*prevdefe). 

clause (col, prevdefs, locals, newlocals): 

name (id), 

enter name (id, prevdefs, locals, newlocale), 

rhe (col, prevdefs, newlocals). 

rhs (col, prevdefs, locals): 

formal (prevdefs, locals, newlocals), 

rhs (col, prevdefs, newlocale). 

rhs (col, prevdefs, locals): 

formal (prevdefs, locals, newlocals), 

column (col), 

"=", layout, 

expr (col, newlocale*prevdefв). 

namelist (prevdefs, oldlocals, newlocals): 

struct (prevdefs, oldlocals, locals), 

",", layout, 

namelist (prevdefs, locals, newlocala). 

namelist (prevdefs, locals, newlocals): 

struct (prevdefs, locals, newlocals), 

",", layout. 

namelist (prevdefs, locals, newlocals): 

struct (prevdefs, locals, newlocals). 

struct (prevdefs, oldlocals, newlocals): 

formal (prevdefs, oldlocals, locals), 

":", layout, 

struct (prevdefs, locals, newlocale). 

struct (prevdefs, locale, newlocals): 

formal (prevdefs, locals, newlocale). 
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formal (prevdefs, locals, newlocals): 

name (id), 

enter паше (id, prevdefs, locals, newlocals). 

formal (prevdefs, locale, locale): 

constant. 

formal (prevdefs, locals, newlocals): 

"(", layout, 

namelist (prevdefs, locals, newlocals), 

" ) " , layout. 

string: charconst: 

{'} (qi). m <ч). 
chars, char, layout. 

{"} (q2), layout 

char: 

{abcdefghij klmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZO123456789} (с). 

char: 

{'-- 'С#$%&\{*()-+-|[];:',.<>Л»\} } (с). 

chars : 

chars: 

{abcdefghijklnmopqrstuvwicyzABCDEFGHIJKLMN0PQRSTUVWXYZ0123456789}+" (c), 

chars. 

chars: 

{
,
~-'«#$%&\{*0-+=|[];:',.<>/?\} }

+ l
 (c). chars. 

constant: 

numeral. 

constant: 

charconst. 

constant : 

boolconst. 

constant: 

"()", layout. 

constant : 

string. 

numeral: 

real, 

scalefactor, layout. 

numeral: 

"-", layout, 

real, 

scalefactor, layout. 

real· 

{0123456789}+' (ds). 

real: 

{0123456789}+' (ds), 

{·} (P). 
{0123456789}+" (fds). 

scalefactor: 

scalefactor: 

{e} (e), 

H (•). 
{0123456789}+' (de). 

scalefactor: 

{e} (e), 

{0123456789}+' (ds). 
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boolconst: 

"TRUE", layout. 

boolconst: 

"FALSE", layout. 

name (1+le): 

{abcdefghijklmnopqrstuvwxyz} (1), 

{abcdefghi3klmnopqr8tuvwxyz01234667e9_}*! (Is), layout. 

layout : 

{ \n}*! (ignored). 

offside (>col
>
 >col+l+i) : . 

inside (>col+x, >col) : 

enter name Old, >prevdefB, >locals, locals): 

includes in defв (id, prevdefs). 

enter name (>id, >prevdefe, >locals, newlocals): 

excludes in defs (id, prevdefs), 

enter local name (id, locals, newlocals). 

enter local name (>id, >locals, locals): 

includes (id, locals). 

enter local name (>id, >locals, newlocals): 

excludes (id, locals), 

addto (id, locals, newlocals). 

includes (>id, >id*reet): 

includes (>id, >head*tail): 

not equal (id, head), 

includes (id, tail). 

excludes (>id, >nil): 

excludes (>id, >head*tail): 

not equal (id, head), 

excludes (id, tail). 

includes in defв (>id, >localB*restdefs): 

includes (id, locals). 

includes in defв (>id, >localB*restdefs): 

excludes (id, locals), 

includes in defв (id, reetdefs). 

excludes in defs (>id, >nil): 

excludes in defs (>id, >locale*reBtdefs): 

excludes (id, locals), 

excludes in defs (id, restdefs). 

addto (>id, >list, id*list): 



168 APPENDIX D AN EAG FOR SASL 

predefines (defβ): 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

addto 

("abs", m i , defl), addto 

("ali", defl, def2), addto 

("and", def2, def3), addto 

("append", def3, def4), addto 

("arctan", def4, def5), iddto 

("code", def5, def6) , addto 

("cons", def6, def7), addto 

("converee", def7, def8), addto 

("char", def8, def9), addto 

("cjustify", def9, def10), addto 

("concat", def10, def11), addto 

("cos", def11, def12), addto 

("count", def12, def13), addto 

("decode", def13, def14). addto 

("digit", def14, def15), addto 

("digitval", def15, def16), addto 

("drop", def16, def17), addto 

("e", def17, def18), addto 

("entier", deflS, def19), addto 

("eq", def19, def20), addto 

("exp", def20, def21), addto 

("filter", def21, def22), addto 

("foldl", def22, def23), addto 

("foldr", def23, def24), addto 

("for", def24, def25), addto 

("from", def25, def25), addto 

("function", def25, def26), addto 

("hd", def26, def27), addto 

("I", def27, def28), addto 

("interleave", def28, def29), addto 

("intersection", def29, def30), addto 

("iterate", def30, def31), 

("K", def31, def32), 

("lay", def32, def33), 

("layn", def33, def34). 

("length", def34, def35), 

("letter", def35, def36), 

("list", def36, def37), 

("Ijustify", def37, def38), 

("log", def38, def39), 

("logicai", def39, def40), 

("member", def40, def41), 

("modulo", def41, def42), 

("not", def42, def43), 

("number", def43, def44), 

("or", def44, def45), 

("pi", def45, def46), 

("plus", def46, def47), 

("printwidth", def47, def48), 

("product", def48, def49), 

("reverse", def49, def50) , 

("show", def50, def51), 

("sin", def51, def62), 

("some", def52, def53), 

("spaces", def53, def54). 

("sqrt", def54, def55), 

("sum", dei55, def66), 

("take", def56, def57), 

("times", def57, def58), 

("ti", def58, def59), 

("union", def59, def60), 

("until", def60, def61), 

("while", def61, def62), 

("zip", def62, defe). 
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Samenvatting 

PREGMATIC is een generator voor increméntele programmeeromgevingen dat wil zeggen 
een programma dat door middel van transformaties een formele beschrijving van een 
willekeurige taal (programmeer- of specificatietaai) in een programmeeromgeving voor deze 
taal omzet. Het formalisme waarin de taal beschreven wordt, is Extended Affix Grammars 
(EAGs) [Mei86]. Dit formalisme is ontwikkeld voor de beschrijving van zowel de syntax 
als de statische en dynamische semantiek van een taal. In vergelijkbare systemen, zoals 
de Synthesizer Generator [RT89a] en PSG [BS85, BS86], worden formalismen gebruikt die 
zeer dicht tegen Extended Affix Grammars aan liggen: attribuutgrammatica's. Het specifi­
catieformalisme SSL [RT89b] is een attribuutgrammatica uitgebreid met allerlei faciliteiten 
om de diverse onderdelen van een programmeeromgeving te beschrijven, zoals de abstracte 
syntax, gaten (placeholders) en sjablonen (templates). Het gevolg van deze aanpak is dan 
ook niet meer het abstracte beschrijven van een taal maar concreet uitprogrammeren van 
een omgeving. Een andere techniek om talen te beschrijven voor het genereren van pro­
grammeeromgevingen gaat uit van algebraische specificaties. Het specificatieformalisme 
ASF+SDF [HHKR89, Hen91] (ontwikkeld binnen het GIPE-project) is hier een voorbeeld 
van. 

Een van de doelstellingen van het onderzoek beschreven in dit proefschrift was het EAG-
formalisme onaangetast te laten, dat wil zeggen niet uit te breiden met allerlei toeters en 
bellen om de diverse programmeeromgeving-afhankelijke faciliteiten uit te programmeren. 

In Hoofdstuk 1 hebben we een overzicht gegeven van de diverse andere systemen 
waarmee programmeeromgevingen kunnen worden gegenereerd De belangrijkste systemen 
zijn de Synthesizer Generator [RT89a], PSG [BS85, BS86], GANDALF [MF81, Med82] en 
de ASF+SDF meta-environment [КІІ91]. 

In Hoofdstuk 2 is het EAG-formalisme besproken. De beschrijving van het formalisme 
bestaat uit een syntactisch en een semantisch gedeelte, waarbij het semantische gedeelte 
de beschrijving bevat van consistente substitutie en predicaten. Het principe van affix-
gestuurd ontleden is geïntroduceerd en er wordt een aantal voorbeelden genoemd waarbij 
dit principe toegepast kan worden. Affix-gestuurd ontleden wil zeggen dat er tijdens het 
ontleden van de invoerzin al berekeningen worden gedaan, bijvoorbeeld of er statisch se­
mantische conflicten optreden. Verder wordt een gedetailleerde beschrijving van het type­
ringsmechanisme van EAGs gegeven. 

De Hoofdstukken 3 en 5 bespreken een concreet executiemodel van EAGs dat als ba­
sis voor de gegenereerde programmeeromgevingen kan dienen. Dit gebeurt in een aan­
tal stappen uitgaande van een gegeven EAG. Eerst wordt een ontleder (left-corner back-
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track ontleder) gegenereerd uit de onderliggende context-vrije grammatica. Daarna wordt 
beschreven hoe de interne datastructuren (syntaxboom en affixgraaf) eruitzien. Vervolgens 
wordt een aantal algoritmen beschreven die de knopen in de opgebouwde affixgraaf van 
affixwaarden voorzien. Zowel de ontleder als de evaluatie-algoritmen zijn op backtrack­
ing gebaseerd, beide werken zeer nauw samen om affix-gestuurd te kunnen ontleden. In 
Hoofdstuk 3 wordt ervan uitgegaan dat na iedere edit-operatie de hele invoerzin opnieuw 
wordt bekeken. In Hoofdstuk 5 wordt besproken hoe informatie uit eerder uitgevoerde be­
rekeningen gebruikt kan worden, hetgeen resulteert in increméntele versies van de diverse 
algoritmen. Met name het increméntele evaluatie-algoritme is interessant. Incrementaliteit 
is een van de belangrijkste eigenschappen van gegenereerde programmeeromgevingen. Na 
iedere verandering in de programmatekst wordt het ontleden tot een minimum beperkt. 
Door aan het affix-evaluatie-mechanisme een stap toe te voegen waarin de aangetaste 
knopen worden gemarkeerd, wordt van een zo klein mogelijk gedeelte van de affixgraaf-
knopen de waarde opnieuw berekent. 

In Hoofdstuk 4 wordt de structuur van de gegenereerde omgeving besproken. Be­
halve naar de taalonafhankelijkheden, zoals het gebruikersinterface, wordt er gekeken naar 
taalafhankelijkheden zoals de generatie van sjablonen en (getypeerde en ongetypeerde) 
gaten. De prettyprint wordt automatisch afgeleid uit de onderliggende context-vrije gram­
matica. PREGMATIC biedt echter de mogelijkheid om deze afgeleide prettyprint voor de 
afzonderlijke taaiconstructies te veranderen. Het hele prettyprintmechanisme wordt even­
eens beschreven in dit Hoofdstuk. 

In Hoofdstuk 6 wordt beschreven welke mogelijkheden het EAG-formalisme biedt voor 
het executeren van programma's ontwikkeld met een programmeeromgeving gegenereerd 
met PREGMATIC. Er worden drie verschillende manieren besproken om de dynamische 
semantiek van een taal te beschrijven in EAGs. Geen van deze drie modellen is geïmple­
menteerd in het prototype, omdat voor ieder van deze modellen een aanpassing van het 
EAG-formalisme onvermijdelijk zal zijn. Verder wordt er nog een kort overzicht gegeven 
van vergelijkbare technieken toegepast in andere programmeeromgevingsgeneratoren. 

Voor het testen van PREGMATIC en de gegenereerde programmeeromgevingen zijn di­
verse talen, gespecificeerd met behulp van EAGs, gebruikt. Hoofdstuk 7 beschrijft de 
functionele taal SASL [Tur79]. Niet alleen de syntax en semantiek worden beschreven, 
maar ook problemen die optraden tijdens het specificeren van SASL in EAGs. In de Ap­
pendices zijn nog twee andere EAG-specificaties opgenomen, namelijk de beschrijving van 
het EAG-formalisme zelf (Appendix A) en de beschrijving van het speelgoedtaaltje PICO 
(Appendix C). 

De belangrijkste doelstelling van het onderzoek was het formalisme eenvoudig te houden 
en de mogelijkheden te bekijken om uit zo'n eenvoudig formalisme zoveel mogelijk onderde­
len van de omgeving te genereren. De efficiëntie van de gegenereerde programmeeromgevin­
gen en de generatoren is niet aan bod gekomen in dit onderzoek. Het huidige prototype van 
PREGMATIC kan als uitgangspunt dienen om een generator te ontwikkelen die efficiëntere 
programmeeromgevingen genereert. 
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Stellingen 
behorende bij het proefschrift 

PREGMATIC A Generator for Incremental Programming Environments 

door Marinus Gerardus Josephus van den Brand 

1. Het onderzoek naar de generatie van programmeeromgevingen zou zowel 
gericht moeten zijn op rapid prototyping bij programmeertaalontwikkeling 
als op het produceren van bruikbare omgevingen. 

2. Het semantisch gestuurd ontleden is een krachtig hulpmiddel, echter in 
de huidige implementatie van zowel Programmar [Mei86] als PREGMATIC 

wordt dit principe te vaak toegepast. Voor ieder predicaat in een Ex­
tended Affix Grammars [Mei86] zou moeten worden aangegeven of zijn 
evaluatie direct bijdraagt aan het semantisch gestuurd ontleden of in een 
later stadium geëvalueerd kan worden. 

3. Het onderzoek op het gebied van generatie van programmeeromgevingen is 
alleen gerechtvaardigd indien de incrementaliteit van het generatieproces 
en/of de gegenereerde omgeving wordt benadrukt. 

4. De non-terminal attributen in High-Order Attribute Grammars [VSK89] 
lijken sprekend op de predicaten in Extended Affix Grammars. 

5. In talen waarmee pretty printing gespecificeerd kan worden leidt het idee 
dat een taaiconstructie zowel een horizontale als verticale oriëntatie kan 
hebben onvermijdelijk tot een 2-pass prettyprint algoritme. 

6. De geringe populariteit van Extended Affix Grammars is niet te wijten aan 
het formalisme maar aan het gebrek aan goede artikelen die het formalisme 
beschrijven of toepassen. 

7. Ondanks de discriminerende houding van de kerkleiding houden vrouwe­
lijke vrijwilligers de Nederlandse rooms-katholieke kerk draaiende. 

8. De invoering van wiskunde A en В op het VWO heeft niet geleid tot 
een popularisering van de wiskunde maar tot een reductie van het aantal 
studenten in de exacte vakken. 

9. Het gebruik van moleculaire biologische technieken in landbouwkundig 
onderzoek wil niet zeggen dat iedere aardappel in een proefveld genetisch 
gemanipuleerd is. 

10. De eenwording van Europa maakt het reizen met een verlopen paspoort 
onmogelijk. 
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