

Models and axioms
for a fragment of

real time process algebra

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven
op gezag van de Rector Magnificus, prof.dr. J.H. van Lint voor een commissie
aangewezen door het College van Dekanen in het openbaar te verdedigen op

vrijdag 10 december 1993 om 16.00 uur.

door

Anton Stefanus Klusener

geboren te Nieuwveen

Dit proefschrift is goedgekeurd
door de promotoren:
prof.dr. J.C.M. Baeten
en
prof. dr. J .A. Bergstra

Cover by Philip Stroomberg.
Printed and bound by CopyPrint 2000, Enschede, The Netherlands.
@1993 by Steven Klusener (stevenk@cwi.nl).

The work in this thesis has been carried out at the CWI (Centrum voor Wiskunde
en Informatica), Amsterdam in the context of ESPRIT Basic Research Projects no.
3006 (CONCUR) and no. 7166 (CONCT.;R 2).

Acknowledgements

After I finished my undergraduate studies in Computer Science at the University of
Amsterdam (supervised by Jan Bergstra), I moved to Jos Baeten's process algebra
group at the CWI in Amsterdam.

At the time of this move, Jan and Jos had just completed their initial paper
on real time process algebra. Soon I was woricing on the problem of a complete
axiomatization of a subset of their calculus. Initially I had little knowledge of logic
and process algebra, hence I had only a rather vague intuition about how to solve
the problems, and I had no idea how one could work for several years on this topic.

During the first year Jos guided me with patience about doing research on a
mathematica! subject. He has forced me to he precise and clear, without tempering
my enthusiasm. I thank him for all of this.

Jan Bergstra is thanked for the stimulating way he manages practically and
scientifically the process algebra group in Amsterdam that is distributed over the
CWI and the University of Amsterdam. ·

It has been a great pleasure to work together with Willem Jan Fokkink, with
whom I coauthored a great deal of the secoud part of this thesis. Willem Jan has
been my sparring partner on whom I could test most of mine ideas.

This thesis could not have been written without the support and company of my
colleagues at the CWI and the University of Amsterdam (Programming Research
Group). Since any list of names would be incomplete I mention only: Inge Bethke,
Doeko Bosscher, Claudia Brovedani, Jacob Brunekreef, Nicolien Drost, Willem Jan
Fokkink, Rob van Glabbeek, Jan Friso Groote, Joris Hillebrand, Jan Willem Klop,
Henri Korver, Sjouke Mauw, Alban Ponse, Piet Rodenburg, Frits Vaandrager, Gert
Veltink, Chris Verhoef, Bas van Vlijmen, Jos van Wamel and Arjan van Waveren.
Frits Vaandrager is also thanked for the careful manner he refereed this thesis. His
nasty questions have forced me to understand and elaborate several elementary as­
pects in more detail; I hope to have inherited at least a small bit of his thoroughness.
Chris Verhoef is thanked for his remarks on SOS formats.

I am also grateful to Kim Larsen for refereeing this thesis and for the valuable
remarks he gave me. I have much appreciated to have (e-mail) conversations on real
time process algebra with Liang Chen, Jim Davis, Alan Jeffrey, Matthew Hennessy,
Jens Godskesen, Faron Moller, David Murphy, Juan Quemada, Roberto Segala and
Yi Wang.

There is more in the world than real time process algebra. I have been lucky
to also have done industrial research, within the Esprit project Atmosphere and
the Race project BOOST. This thesis has been written outside the scope of these
projects, but werking in these projects helped me to give me a broader outlook on
my work. Therefore, I thank the people of these projects, notably, Loè Feijs and
Rob Vader (Philips Research, Eindhoven; Atmosphere) and Jim Macura and Robert
Primrose (MARl, Gateshead, UK; BOOST).

Finally, I thank the department of Programming Technology of the CWI, headed
by Jaco the Bakker, for the stimulating time I have had.

i i

Abstract

Process algebra is the study of concurrent communicating processes in an algebraic
framework. It has been initiated by Milner, who has developed the process algebra
CCS [Mil80],[Mil89]. Bergstra and Klop presented in [BK84b] the process algebra
ACP, fora textbook we refer to [BW90]. Another process algebra that we mention
is CSP that has been developed by Hoare [Hoa85]. In the first part of this thesis we
give a brief introduetion to ACP, that is basedon [BW90].

Over the last few years there have been several attemps to extend process algebra,
which has resulted in higher order process algebra, process algebra with value passing
and process algebra with time. Baeten and Bergstra have extended ACP with time
by decorating the atomie actions with time stamps [BB91]. These time stamps
are taken from some time domain, which may be the set of real numbers. For
example, a(t) is the process which executes the atomie action a at timet. They also
introduced the process fvES p(v), where v is a so-called time variable, S is a subset
of the time domain, and p is a process expression in which the free occurrences of
the time variabie v become bound. This integrated process expression denotes the
alternative composition over the timestampsin S.

In this thesis we study this approach in more detail. We restriet ourselves to
prefix integrated process terms, that is, we will allow only processes of the form
fvEV a(v) and fvEv(a(v) · p), where V is an interval over the time domain. This
restrietion is necessary to obtain a traetabie calculus for which in principle a com­
plete axiomatization can be found. In the second part of this thesis we study the
bisimulation semantics and axiom systems for real time ACP with prefix integration
without recursion. The problem with process terms with prefixed integration, is
to reason with terms containing free occurrences of time variables. To tackle this
problem, we generalize our syntax. We allow termsof the form fa(a(v) · p), where
a is a condition, that is a boolean expression over time variables. We introduce a
finite axiom system for this generalized class of terms, and we prove completeness
and decidability of bisimulation equivalence. The material of this part originates
from [BB91], [Klu91b] and [FK92], it has partly been written together with Willem
Jan Fokkink.

In the literature several equivalences, and their characterizing laws, are known
which deal with abstraction in process algebra without time. In the third part of this
thesis we define branching, delay and weak bisimulation equivalence in the context
of time, and we study the axiomatizations of these equivalences. Earlier versions of
this work can be found in [Klu91a] and [Klu92].

Process algebra can be used in the specification and verification of protocols. In
part four of this thesis we study guarded recursion in real time ACP in more detail,
as it is an essential feature in the specification of protocols. In this part we show as
well how a real time protocol can be verified, using the axioms for abstraction. The
verification originates from [Klu91a].

In real time ACP consecutive actions can not happen at the same point in time,
although they can occur arbitrary close to each other. In part five of this thesis

iii

we present real time ACP with so called urgent actions, that are actions that may
occur consecutively at the same point in time. By defining additional operators we
can express phenomena like maximal progress. Finally, we show how other timed
process algebras eau be translated into this variant of real time ACP. In particular,
we discuss the axioms for timed weak bisimulation that can be found in several other
papers.

Contents

I Introduetion

1 An Introduetion to Process Algebra
1.1 A short Overview of Process Algebra
1.2 Basic Process Algebra

1.2.1 The Syntax for BPAó
1.2.2 Action Rules and Transition Systems
1.2.3 Bisimulation Equivalence
1.2.4 The Axiom System BPAó
1.2.5 Notations for Equivalences and Summand Inclusions
1.2.6 Basic Terms and Completeness

1.3 Parallelism and Communication
1.3.1 The Syntax of ACP
1.3.2 The Action Rules for the ACP Operators .
1.3.3 ACPis a conservative extension of BPA6
1.3.4 Axioms for Concurrency

1.4 Abstraction
1.4.1 A new Constant for the Silent Step
1.4.2 Semantics for the Silent Step .
1.4.3 Laws for abstraction
1.4.4 Strongly Rootedness

1.5 Recursion
1.5.1 Introduetion

Some Definitions . .

1

3
3
4
4
4
5
6
9

10
12
12
13
13
14
15
15
16
18
19
20
20
20 1.5.2

1.5.3
1.5.4

Axioms for Recursion and Projection 23
The Soundness of the Restricted Recursion Specifica ti on Prin-
ciple . 24

11 Prefix Integrated Real Time ACP

2 BPA with Time Stamps
2.1 Introduetion
2.2 A Syntax with Time Stamped Actions
2.3 A Semantics with Idle Transitions .

V

29

31
31
32
32

vi

2.4 Timed Idle Bisimulation Equivalence
2.5 The Axiom System BPApó ...
2.6 A Term Semantics for BPApó
2. 7 Basic Terrus and Completeness

2.7.1 Basic terrus
2.7.2 Completenessof BPApó

3 ACP with Time Stamps
3.1 Introduetion
3.2 The Syntax of ACPp .
3.3 An Idle semantics for ACPp
3.4 The Axiom System ACP p
3.5 A Term Semantics for ACP p .
3.6 Elimination and Completeness .

4 BPA with Prefixed Integration
4.1 Introduetion
4.2 The Time Domain, Bounds and Conditions .

4.2.1 The Time Domain
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

Bounds
Substitutions
The syntax of conditions
The interpretation of a condition
Intervals and conditions
Partitions and refinements
Some more abbreviations .

4.3 Terrus with conditions
4.3.1 The ultimate delay
4.3.2 The syntax for processterrus
4.3.3 Free time variables

4.4 An Operational Bemantics for Time Open Terrus .
4.4.1 A generalization of bisimulation equivalence
4.4.2 Bisimulation equivalence is a congruence

4.5 Reasoning with Time Open Terrus . .
4.5.1 Substitution and u-conversion
4.5.2 The axiom system BPAp6I .
4.5.3 The Lifting Lemma ...

4.6 Completeness and Decidability .

5 ACP with Prefixed Integration
5.1 Introduetion
5.2 The Axiom System ACP pi . .
5.3 Elimination and Completeness .

Contents

35
36
37
42
42
44

47
47
48
48
51
51
54

57
57
58
58
59
59
60
60
61
61
62
62
62
63
63
63
63
66
69
69
69
70
72

83
83
83
86

Contents

111 The Silent Step in Time

6 Branching Bisimulation and Time
6.1 Introduetion
6.2 Some Examples
6.3 Branching Bisimulation in BPApó
6.4 A Single Law for the Silent Step .
6.5 The Extension with Integration .

6.5.1 A first generalization of the axiom T1p
6.5.2 The Timed Branching Law

6.6 The Embedding of BPAór into BPApórl .
6. 7 Branching Bis. in a term semantics
6.8 Rooted Branch. Bis. Eq. is a Congruence
6.9 Some Additional Notations

7 Completeness for Branching Bisimulation
7.1 Introduetion
7.2 An Intermezzo on Time Variables
7.3 Branching Basic Terms

7.3.1 Introducing r's for each moment of choice
7.3.2 Partitioning a process term
7.3.3 Removing r's
7.3.4 The construction of branching basic terms
7.3.5 Some properties of branching basic terms .

7.4 A Theorem for Branching Basic Terms
7.5 Completeness for Branching Bis. Eq.

8 Delay and Weak Bisimulation and Time
8.1 Introduetion
8.2 Rooted Delay Bisimulation Equivalence .
8.3 Ciosure Rules and ldle Transitions
8.4 Axioms for Rooted Delay Bis. Eq ..

8.4.1 The first r-axiom
8.4.2 The second r-axiom
8.4.3 Delay bisimulation without integration coincides with branch-

vii

89

91
91
92
93
96
97
97
99

. 101

. 103
107

. 108

111
. 111
. 111
. 113
. 113
. 114
. 117
. 119
. 121
. 125
. 132

133
. 133
. 134
. 135
. 138
. 138
. 139

ing bisimulation 140
8.5 Weak Bisimulation and Time . 140
8.6 The Third r axiom . . .
8. 7 The Extension to ACP p .

IV Guarded Reenrsion

9 Prefixed Integration and Guarded Recursion
9.1 Introduetion

. 141

. 142

145

147
. 147

viii Contents

9.2 Some Definitions . 147
9.3 Axioms for Reenrsion and Projection 149
9.4 The Soundness of the Restricted Reenrsion Speeifieation Principle . 150

10 Protocol Verification 153
10.1 Introduetion 153
10.2 The r-swap and r-removal . 154
10.3 The Unwind Principle . . . 154
10.4 Ar Erasing Bisimulation . . 155
10.5 The Speeification and the lmplementation of the Protocol . 156
10.6 Expanding the Definitions 157
10.7 Abstracting from Internal Steps 158
10.8 Some Tongher Methods and Handwavings . 160

V Urgent Actions and Related Work 163

11 Real Time ACP with Urgent Actions 165
11.1 Introduetion 165
11.2 Syntax Definitions 167
11.3 A Two Phase Operational Semantics . 169
11.4 The Axiom System ACPur. 172
11.5 Branehing Bisimulation 176
11.6 A Law for Branching Bisimulation . . . 177
11.7 Branehing Bisimulation with and without Urgent Actions . . 178
11.8 Delay and Weak Bisimulation 180
11.9 Laws for Rooted Delay and Weak Bisimulation. . 180
11.10Alternative Definitions for Weak Bis. . . 181
11.11The Embedding of ACPur into ACPpi . 183
11.12The Embedding of ACP into ACPur . 184

12 Related Work 185
12.1 Introduetion 185
12.2 The Parallel Merge 186
12.3 TCCS of Molier & Tofts . 187
12.4 Moller & Tofts's weak bisimulation . 189
12.5 Wang's Timed CCS 191
12.6 Wang's weak bisimulation . 191
12.7 Chen's Timed CCS 192
12.8 Chen's Weak Bisimulation . 193
12.9 ATP of Nicollin and Sifakis . 196
12.10TPL of Hennessy & Regan . . 200
12.11TIC of Quemada, de Frutos and Azcorra . 200
12.12Weak bisimulation in TIC . 201
l2.130ther related work 202

Contents

A Bounds and Conditions
A.l Introduetion
A.2 Bounds in normal form
A.3 A Proof System for Conditions
A.4 The Refinement Lemma
A.5 An Axiomatization for Conditions .

i x

205
. 205
. 205
. 206
. 206
. 208

x Contents

Part I

Introduetion

1

1

An Introduetion to Process
Algebra

1.1 A short Overview of Process Algebra

In this chapter we give a short presentation of untimed Process Algebra. Most of
this chapter is borrowed from [BW90].

A first objective of this chapter is, of course, to provide the reader who is not
familiar with Process Algebra, and [BW90] in particular, with the background which
is needed to read the rest of this thesis.

A secoud objective is to introduce notations, conventions and proof techniques
that are used in this thesis and that can be explained without referring to time.
Since some of the details of [BW90] cannot be extended easily to the timed setting
of the following chapters we allow ourselves the freedom to deviate at minor points
from [BW90].

In the first section we start with the presentation of BPA8 (Basic Process Algebra
with 8), that is the syntax with atomie actions, the special constant 8 for deadlock,
alternative composition (+) and sequentia! composition (·). We present in detail
how the operational semantics of a process term, which will be a transition system,
can be obtained from so-called action rules. Next, we present the axiom system of
BPAó and we discuss the notionsof soundness and completeness. The completeness
result will be based on so-called basic terms.

In the second section we extend BPA8 with the parallel composition operator (I I)
and the auxiliary operators communication merge (I) and left merge (lL). Together
with the encapsulation operator (oH) we obtain ACP (Algebra of Communicating
Processes). We show how these additional operators can be eliminated from a
process term using the axioms of ACP.

In Section 3 we discuss Milner's silent action r. This silent action can be used
to abstract from internal actions. We discuss three associated equivalences, viz.
branching bisimulation, delay bisimulation and weak bisimulation.

Finally, we present reenrsion in Section 4. We restriet ourselves mainly to the
setting of a single finite guarded specification. We discuss the Recursive Specification

3

4 1. An Introduetion to Process Algebra

Principle (RSP) that says that if two process terms are both solutions of a recursive
specification, then they are equal as well. We formulate this principle as a conitional
axiom and we show that it is sound in the context of guarded specifications.

1.2 Basic Process Algebra

1.2.1 The Syntax for BPA8

We have a, possibly infinite, alphabet A of atomie aetions 1 and a special constant
ó, denoting deadlock, which is not in A. The set A U { 6} is abbreviated by A6 • The
set of process terms over BPAó is denoted by T(BPAó), p, q and z will range over
this set, which is defined by the following BNF sentence, where a E A6•

T(BPAo) : p alp+plp·p

Here, p + q is the alternative composition of p and q while p · q is the sequential
composition of p and q. An element of T(BPAó) is referred to as a process term.
We use the standard convention that · binds stronger than +; thus p · q + p' is parsed
as (p. q) + p'.

The size of a process term p is the number of operators in p.

1.2.2 Action Rules and Transition Systems

The behavior of a process term p is represented by a labeled transition system with
pas root. The statesof a transition system are taken from T(BPA6).

For each a E A there is a transition relation Ra, which is a binary relation over
process terms. Ra (p, p1

) is denoted by p ~ p1 and it is called a transition. A
transition p ~ p' denotes that the process p can evolve into the process p' by
executing the atomie action a. The symbol v denotes termination, for each a E A
there is a predicate R{ Rf (p) is denoted by p ~ v and it means that the
process p can terminate by executing the action a. By abuse of language we will eaU
p ~ v a terminating transition or simply a transition. These transition relations
and predicates are defined astheleast ones satisfying the action rules of Table 1.1.
In other words, p p' if and only if it can he derived from the action rules. A
derivation of a transition p ~ p1 is a proof tree which is constructed from the
action rules, two examples of these proof trees are given in Example 1.2.1. This
style of giving operational semantics is advocated by Plotkin {[Plo81]).

Example 1.2.1 Derivations fora· (b + e) ~ b + c and a· b +a· e ~ b.

1 In the ACP literature, viz. [BW90], it is common to require that A is fini te. In that case,
an axiom scheme that is parameterized by an action can he considered as an abbreviation of a
finite axiom systern. In the timed setting we wil! need axiom schemes which are p11-rameterized
with time stamps. Since the underlying time domain wiJl be infinite these axiom schemes cannot
he considered as an abbrevation of a finite axiom system. Hence, it does not help here to require
that A is finite.

1.2. Basic Process Algebra 5

atom a~ v
p

p· q

plu~ plus~

plus~ V plus~ PI

aEA

Table 1.1: Action Rules for BPAó

atom a at om

a·h ~ b a· (b + c) plus~
a·b+a·c ~ b

1.2.3 Bisimulation Equivalence

We may identify process terms of which the transition systems represent the same
behavior. We define strong bisimulation equivalence, denoted by .t:t. p ~ q means
roughly that every transition of p can be mimicked by q such that the resulting pair
is strongly bisimilar again and vice versa. Bisimulation equivalence can he found as
well in [Par81], [Mil80], [Mil89], [BK84b] and [BW90].

First we need the definition of a bisimulation. In the sequel p'Rq abbreviates
that the binary relation n contains the pair (p, q).

Definition 1.2.2 (Bisimulation}
R Ç T(BPAó) x T(BPAó) is a bisimulation if whenever pRq then

1. p ~ J) implies 3q1 such that q ~ q1 and p1Rq1
•

2. p ~ v implies q ~ V·

3. Respectively {1} and {2} with the role of p and q interchanged.

Bisimulation equivalence is now defined by

Definition 1.2.3 (Bisimulation Equivalence)
p .t:t q iff there is a bisimulation R relating p and q.

6 1. An Introduetion to Process Algebra

In the context of process algebra we are interested only in equivalences on process
terms which are congruences over the process algebra as welt, which means intuitively
that we can substitute terms for bisimilar ones .

.__. is a congruence over BPA8 if it is au equivalence relation (i.e. if it is sym­
metrie, reflexive aud transitive) and it respects the operators of BPAó. The latter
means that Pl .__. P2 aud Ql ±:i Q2 implies P1 + Ql P2 + Q2 aud P1 · Q1 .__. P2 • Q2.

Theorem 1.2.4 (±±is a congruence over BPA8)

Proof. A straightforward proof technique is to show that a bisimulation is sym­
metrie, reflexive aud transitive. Next, two bisimulatious R 1 aud R 2 are given such
that p1R 1q1 and p2R 2q2 and it is showu that from R 1 and R2 bisimulations R' aud
R" eau be constructed such that (p1 + q1)R'(p2 + q2) and (PI · Q1)R"(p2 · Q2). In
genera!, this technique can he quite involved, though it is easy for the specific case
of BPA8.

A much easier way to obtain that ±:i is a congruency, is to use a result of Groote
and Vaandrager ([GV92]). They have proven that if the action rules fit into a certain
format, called the tyjtjtyxt format, then bisimulatiou equivalence is a congruence.
However, this format does not allow predicates on process terms while the rule
atom actually defines a predicate R{ But, as suggested by Groote and Vaandrager
the tyjtjtyxt format can he generalized to a format that allows predicates. Baeten
and Verhoef have elaborated this generalization in [BV93] and they have called this
extension the path format.

It is very easy to check that the action rules of Table 1.1 fit into the p(lth format.
D

1.2.4 The Axiom System BPA6

As the process terms become more complicated it eau he quite involved to show an
equivalence by constructing a bisimulation. To simplify this reasoning we introduce
a mechanism to reason algebraically instead of operationally. For a motivation on
axiomatic reasoning on processes we refer to [Mil80], [Mil89], [BK84b] and [BW90].

We give an axiom system that, tagether with the rules of equationallogic, defines
the same equivalence. The rules of equationallogic, see Table correspond to the
fact that bisimulation equivalence is a congruence. p and q denote process terms
and C(p) denotes a context in which p may occur.

In this thesis we restriet ourselves to process terms only. In the literature, viz.
[BW90], the axioms consider arbitrary process variables, rangedover by X ,Y and Z.
\Ve restriet ourselves to process terms as we introduce so called time variables, that
may occur free or bound in a process term, in the following chapters. In the axioms
we have to refer to these time variables, which is not possible in case of process
variables X, Y. The axiom system BPA8 is given in Table 1.3. Note that by the
axioms Al-A3 we eau consider a summation as a set of alternatives. Moreover, A6

1.2. Basic Process Algebra

p=p
pq ===?qp
p = q, q = z ===} p = z
p q ===? G(p) G(q)
G(p) = C'(p) C(q) = C'(q)

reflexivity
symmetry
transi tivity
context rule
substitution rule

Table 1.2: Rules for Equational Logic

7

tells us that the constant 8 can be considered as an empty summation. By means
of BPA8 we can prove that (a+ b) +a equals b +a.

Example 1.2.5

BPA8 f- (a+ b) +a (b+a) +a A3 b+(a+a) = b+a

Note that we have used the rules of Table 1.2 implicitly.
We have to prove that this axiom system indeed defines bisimulation equivalence,

we will do this in two steps. First we prove that it is sound, i.e. if we can derive
that two process terros p, q are equal using the axioms Al-A 7 then it must be the
case that p .t:t q as well.

Al p+q
A2 (p+q) + z
A3 p+p
A4 (p+ q) · z
A5 (p · q) · z

1 A6 p+ 8

::rq+,)l
p·z+q·z
p·(q·z)

p

Table 1.3: BPA = Al-A5, BPA8 = BPA + A6 + A7

Theorem 1.2.6 (Soundness of BPA8) p, q E T(BPAt5)

BPA8 f- p = q ===? p .t:t q

8 1. An Introduetion to Process Algebra

Proof. Since we have proven already that H is a congruence we know that it is
sound to apply the rules of equational reasoning. It is left to prove that if p = q is
an instanee of one of the axioms of BPAó then p!::.!. q as well. We will discuss only
the axioms Al, A4 and A6 by giving arelation and showing that it is a bisimulation.
The other axioms are left to the reader.

Al p+q !::.tq+p
Take

'R {(u, u)ju E T(BPAó)} U {(p + q, q + p)}

lt is obvious that n is a bisimulation with respect to any pair (u, u), so we
have to discuss the pair (p + q, q + p) only.

- Consicier the case where + q ~ V• this transition can either be
derived by plui0 (sop ;/) or by plus;) (so q ~ ;/).
Assume p ~ v then we can apply plus0 on q + p and we derive
q+p ~ v·
The case q ~ v is symmetrie, plus;) must be replaced by plu~ and
vice versa.

- The case p + q ~ z is analogous to the case p + q ~ v; plu~ must
be replaced by plusi and plus;) must be replaced by plus'j_.
So, from p + q ~ z we can deduce that q + p z as well and we
are ready since 'R(z, z).

A4 (p + q) · z !::.!. p · z + q · z
Take

'R ={(u, u)iu E T(BPAó)} U {((p + q) · z,p · z + q · z)}

The process term (p + q) · z does not have terminating transitions. Every
transition (p + q) · z ~ z' is either deduced by seq0 or by seq1•

- If it can be deduced from setJ.o then z' is syntactically equal to z and either
p ~ vorq ~V·
Assume p ~ v then we can apply rule seqo to p · z and we derive
p · z ~ zand we are ready since 'R(z, z).
The case where q ~ v is equivalent.

- If it can he deduced from seq1 then there is a u such that p + q ~ u
and z' is syntactically equivalent to u· z. The transition p + q ~ u
can either be derived from plui1 or plus'j_.

Assume p + q ~ u can be derived from plui11 then p ~ u and then
we can apply seq1 on p · z and we derive p · z ~ u· z and we are ready
since n(z', u. z).
The case where p + q u can be derived from plus';_ is equivalent to
the previous one.

1.2. Basic Process Algebra

A6 p+ó H p
Take

R {(u, u)iu E T(BPA8)} u {(p + 8,p)}

9

8 has no transitions at all. So a transition p + 8 ~ V can not he derîved
from plus~ so the transition has to he derived from plus& from which p ~ V
follows.

Similarly we can deduce from p + 6 ~ z that p ~ z and we are ready
since R(u, u).

D

The other direction of Theorem 1.2.6 is called completeness, its proof is postponed
till Section 1.2.6.

1.2.5 Notations for Equivalences and Summand Inclusions

Until now, we have seen already several notions of equivalences between process
terms, for each of them we will introduce a notation.

To avoid confusion with the notion of provable equality, we write = for equality
over process terms. If p = q then we say that p and q are syntactically equivalent.

If 8 is an axiom system, such as BPAó, and there is a derivation within 8 which
identifies the process terrus p, q then we denote this by 8 1- p = q. Next, we define
Ç, denoting derivable summand inclusion; p Ç 9 q whenever 8 1- p + q q. We
write p ç q instead of p q if e is clear from the context.

Often we are not much interested whether two process terrus are s,Yntactically
equivalent, but more whether they are equal modulo the axioms Al, A2 and A6.
Hence, we write p ~ q for Al,A2,A6 1- p = q and p!;;; q for p ÇA1,A2,Ae q. In case of
p ~ q we allow ourselves to say that p and q have the same form, or p is of the form
q. If we consider the form of a process term p then we can also say that we consider
p as a bag of its alternatives.

The axioms Al and A2 allow us to remove the brackets in (p1 + p2) + P3· A
processtermof the form p1 + ... + Pn is abbreviated by LiE{l, ... ,n}Pi· Furthermore,
we use the convention that I:;e0 Pi denotes ó.

Intuitively one can consider as being bag inclusion and ÇA1•3,A6 as set inclusion.

Example 1.2. 7

(a+b)+a '!- a+b
BPAó 1- (a+b)+a a+b

((a+b)+c)+a ~ (a+a)+(b+c)
((a+b)+c)+a ~ (a+a)+(b+c)
a+b c: (a+a)+b
a+a !l; a+b
a·b ÇBPA6 (a+c)·b

10

We close this section with a proposition.

Proposition 1.2.8 a E A

P ~ v' {=::::} a ç;; P

Proof.

1. An Introduetion to Process Algebra

• By iudnetion on the length of the derivation of p ~ y'.

• -<== .. By iudnetion of the number of summands of p.

1.2.6 Basic Terms and Completeness

In this section we define a set B of basic terms that enables us to prove the Com­
pleteness Theorem for BPAö easily. A basic term will be a process term such that
the transition system corresponds closely to the structure of the process term. This
will be formalized in Proposition 1.2.12. The definition is very simple, only prefixed
mul tipHeation is allowed, i.e. process terrus of the form p · q where p E A6•

First we define head normal farms ((BG87],(BW90]) and prefix normal forms.

Definition 1.2.9 (Head Normal Farms) pis a head normal form ij it is of the
farm

Ea.. Pi+ Eb;
iE[jEJ

where ai, bi E Aö and I and J are finite index sets.

Note, that the p/s do nothave to be head normal forms as well.
A prefix normal form is a head normal form of which its subterros are in prefix

normal form as well.

Definition 1.2.10 (Prefix Normal Farms) p is a prefix normal form ij it is a
head normal farm

z=a, · p; + Lbi
iEl jEJ

such that far every i p; is a prefix normal form as well.

We have the following proposition which says that every process term can be
reduced to a prefix normal form.

Proposition 1.2.11 Let p E T(BPAö) then there is a head normal farm p1 such
that BPAó 1- p = p'

Proof. First we show that for any prefix normal forms z, z' there is a prefix normal
form u such that BPAh 1- z · z' =u. We prove this by induction onz. The base case
is z = a and we are ready since a · z' is a prefix normal form. For the other cases
we give the following equations which must he read from left to right, such that on
the right hand side induction must be applied.

1.2. Basic Process Algebra

(zo+ Zt) · z' =
(a·z)·z'

zo · z' + Zt · z'
a· (z · z')

11

We can prove the general case by induction of the number of general multiplications,
that is the number of subterms of the form z · 7! where z is not an atomie action
and z' is not in prefix normal form. For the base case we have that z and z' are
prefix normal forms, but z is not an atomie action. This case can bas already been
discussed in the first part of the proof. 0

Proposition 1.2.12 For every prefix normal form we have:

P ~ p' ==> a·p' ç;p
P ~ J ===? a Çp

Proof. By induction on the structure of p. 0

In the untimed setting a basic term is a prefix normal form, without subterms
of the form 6 · p. By proposition 1.2.11 and the axiom A6 (6 · p ó), it is easy to
see that every term p can be reduced toa basic term Pb, such that BPA6 f- p Pb·
We denote the set of basic term by 13.

We are now ready to prove the Completeness Theorem for BPA6.

Theorem 1.2.13 (Completeness of BPA6) p, q E T(BPA6)

p ..._. q ===? BPA8 f- p = q

Proof. An implication of Proposition 1.2.11 is that it is sufficient to prove com­
pleteness for basic terms only.

We will explain this impHeation once in detail. We construct basic terms Po and
qb, such that BPA6 f- p Po and BPA6 f- q = qb. By soundnessof BPA6 w.r.t_.we
have p ..._. Pb and q +-+ qb. By transitivity of +-+ and the assumption p .:t:!:. q we obtain
Pb +-+ qó and it is left to prove that BPA6 f- p6 = qb, as this implies BPA6 f- p q.

• Consider an arbitrary summand a· p' of Po· Then Pb ~ p' and since Ph .:t:!:. qb
there is a q' such that qb ~ q' and p' .:t:!:. q'. By induction BPA6 1- p' q'
and since a · q' qb we may conclude a · p' ÇaPA~ qb.

• Consider an arbitrary summand a E A of Pb· Then Pb ~ J and since
Pb..._. qb also qb ~ J. Hence, a Ç q.

Adding these results together we obtain Pb ÇBPA6 q6• Since bisimulation is symmetrie
we conclude qb ÇBPM Pb· Finally, from Pb ÇaPAé qb and qb Pb we conclude
BPAó f- Pb= qh. o

12 1. An Introduetion to Process Algebra

1.3 Parallelism and Communication

If pand q denote processes then we denote their parallel composition by Pllq. ACP
([BK84b],[BW90]) has an interleaving view on parallelism. That is, if two processes
pand q run in parallel then either the first actioncomes from p, or from q, or the first
action is aresult of a communication of an action from p and an action from q. Also
CCS ([Mil80][Mil89]) has an interleaved point of view. CCS has for every action a
a so-called complementary action a (where a a) such that the communication of
a and a results into r. Moreover, in CCS a cannot communicate with actions b =/=a.

In order to axiomatize the parallel merge we introduce two auxiliary operators,
the communication merge [BK82] and the left merye [BK84b]. Foradiscussion for
the need of the left merge for a finite axiomatization of the parallel merge we refer
to [Mol89] as well.

The communication merge is denoted by I, plq is like P!lq with the restrietion
that only communication actions are allowed in the first step. If there is no initia}
communication possible between the atomie actions a and b, then aib equals 8.

The left mergeis denoted by lL. pllq is like Pllq, with the restrietion that the ini­
tia} action must come from the left component, that is p, and that no communication
is possible.

As example of the parallel merge, communication merge and the left merge we
give the following identity:

(a· P)!l(b · q) (a· p)ll(b · q) + (b · q)ll(a · p) +(a· p)l(b · q)
a· (pll(b · q)) + b · (qll(a · p)) + (alb) · (PIIq)

The last new operator is the encapsulation operator, denoted by àH(p). For H
a subset of A, àH(P) encapsulates all actions of p which occur in p. That is, every
action of pin H is blocked, i.e. turned into ó. Assume that a occurs in pand b occurs
in q, and aib = c where a, b =/= c, then Ó{a,b}(plq) forces p and q to comiriunicate on
the actions a and b. The encapsulation operator originates from [BK84a], and it
corresponds with the restrietion operator in CCS [Mil80],[Mil89].

1.3.1 The Syntax of ACP

Wedefine T(ACP), thesetof processterros over ACP, by the following BNF sen­
tence, where a E Aó and H Ç A.

T(ACP): P ::=a I P1 + P2 I P1 · P2 I P1IIP2 I P1llP2 I P1IP2I àH(P)

We assume a (total) binary function 'Y on As, which will he called the communication
function. We require that 'Y is commutative and associative, that is:

'Y(a, b) = 'Y(b, a) A 'Yb'(a, b), c) = 'Y(a, 'Y(b, c))

Moreover, we require that ')'(a,b) = ó whenever a= ó orb= ti.
This function 'Y will be a parameter of the theory ACP.

1.3. ParaJlelism and Communication

q ...!!:..." q'

pjjq ...!!:..." pjjq'

p'jjq q

• p ...!!:..." ..j , q ~ q' , 'Y(a, b)
pjjq ~ q' pjq ~ "

c p ...!!:..." p', q ..j, 7(a, b) = c

p ...!!:..." p', a!f.H

8H(P) ...!!:..." 8H(p')

a,b,c E A

pllq ~ p' pjq ~ p'

Table 1.4: Action Rules for ACP Operators

1.3.2 The Action Rules for the ACP Operators

13

In Table 1.4 we give the action rules for the additional ACP operators. A rule like

abbreviates the following two rules

p ...!!:..." p' p ...!!:..." p'
and

pllq ...!!:..." p'jjq

1.3.3 ACPis a conservative extension of BPA8

We require that the extension of BPAc5to ACPdoes notintroduce new ide1;1.tities over
BPAc5.

That is, if ±::2.0 denotes the old bisimulation equivalence and ._.n the new bisim­
ulation equivalence, obtained by the extension, then we require for process terms
in the "old" signature (p, q E T(BPAc5)) that p +-+n q iff p +-+o q. Note that this is
certainly not the case if the extension contains an action rule like

14 1. An Introduetion to Process Algebra

p ~ p'

p p'

But, as the action rules in Table 1.4 only add transitions to terrus in T(ACP) -
T(BPAó) it is guaranteed that no new transitions are introduced for terms in
T(BPAó).

We refer toa paper of Verhoef [Ver93b], in which a format is studied, in which
the action rules of the additional operators have to fit to obtain a conservative
extension. ·

For extensions that are discussed in the following chapters we do not mention
anymore the they are iudeed conservative.

1.3.4 Axioms for Concurrency

In Table 1.5 we give the axioms for the ACP operators. The axiom CFl states simply
that the communication between two atomie actions is defined by the communication
function. Together with the axioms for the left merge and the communication merge,
the axiom CMl states clearly the interleaving character of the parallel merge; either
the first action comes from the left or the right component, or it originates from a
communication. The other axioms are rather straightforward axioms for the ll., I
and aH operators. Again, we have a result that every process term can he reduced
to a prefix normal form. The Theorem is called the Elimination Theorem since it
states that the additional operators of ACP over BPAó can he eliminated.

Theorem 1.3.1 (Elimination Theorem for ACP)
'Vp E T(ACP) :lp' where p' is in prefix normal form and ACP 1- p = p'

Pro of. First, suppose that p is of the from zDz', where z and z' are prefix normal
forms and D E {ll., j, 11}. Then we can prove by induction on (depth(z + z'), D)
that there is a prefix normal form z such that ACP 1- u= zDz1

• We take (n, 11) >
(n, ll.) = (n, 1), and (n, D) > (n', D') when n > n'.

The following equations must he read from left to right.

all.z' a·z' ready
(zo+ z1)ll.z' zoiLz' + z1ll.z' use induction
(a· zo)ILz' = a· (zullz1

) use induction

ajb 'Y(a,b) ready
(a· z0)jb 'Y(a, b) ·zo ready
aj(b · zri) = 'Y(a, b) · z~ ready

(a· zo)l(b · z~) 'Y(a, b) · (Zollzri) use induction
(zo+ z1)iz' = Zoiz' + z1lz' use induction
zj(z~ + zD = ziz~ +zi~ use induction

zjjz' zll.z' + z'll.z + ziz' use induction

1.4. Abstraction 15

CFl aib ~r(a, b)

CMl pllq = pllq + qllp + plq
CM2 allp = a·p
CM3 (a·p)llq a· (PIIq)
CM4 (pl + P2)llq = P1llq + P2llq
CM5 (a· p)lb = (aib) · p
CM6 ai(b · p) (aib) · p
CM7 (a· p)l(b · q) (alb) · (PIIq)
CMB (PI+ P2)iq = PI!q + P2iq
CM9 Pi(ql + q2) = Plq1 + Plq2

Dl arf.H 8H(a) a
D2 a EH 8H(a) {;

D3 8H(P+ q) 8H(P) + 8H(q)
D4 8H(p · q) 8H(P) · 8H(q)

a,b E A6, H Ç A

Table 1.5: ACP= BPA{;+ CF1+CM1-CM9+Dl-D4

Similarly, we can prove for a prefix normal form z that there is a prefix normal form
u such that ACP 1- u= 8H(z).

We can prove the general case by induction on the number of occurrences of ACP
operators, i.e., 11, lL' I, aH, using Proposition 1.2.11 and the first part of this proof.

0

1.4 Abstraction

1.4.1 A new Constant for the Silent Step

In practice, if we have an implementation and a specification of a process then we
want to be able to abstract from all the internal details of the implementation such
that it can be proven equivalent with the specification. Therefore we introduce a
constant, r, called the silent step, that denotes internal activity. The silent step is
due to Milner ([Mil83],[Mil89]).

For example, consider the process a · i · b where i is supposed to be an internal
action, then we want to prove this process somehow to be equal to a · b, since these
processes equal with respect to their external actions. First we have to express

16 1. An Introduetion to Process Algebra

formally that i is an internal action, this is clone by applying the r1 operator which
renames every action in I into the silent action r, i.e. T{i}(a·i · b) = a·r · b. Next, we
use the features of the silent step r by which we can show a · T • b to be equal with
a · b. The operator r1 can be found in [BK85]. More general examples of renaming
operatorscan be found in CCS ([Mil80],[Mil89]) and CSP ([Hoa85]) as well.

The problem is to define an equivalence on transition systems (i.e. some bisim­
ulation) which takes the special character of the silent step into regard. In the
literature (among others) three different, but comparable, equivalences have been
introd.uced ([Mil80],[Mil83], [Mil89] and [GW91]).

The strictest one, branching bisimulation equivalence ([GW91]), allows to reduce
r in r · p + q to p, if we do not disregard any options of q. This means that all
options of q must be offered by p as well, in other words, q must be a summand of
p.

Branching bisimulation equivalence itself is not a congruence. Therefore, an extra
condition, called rootedness, is imposed on the branching bisimulation relations.

We extend the alphabets A and A6 by the constant T and obtain AT resp. A.~r.

The set of process terms over BPA, where the constauts are taken from A8,., is
denoted by T(BPA8r).

1.4.2 Semantics for the Silent Step

The three different bisimulation equivalences and their rooted versions which regard
the silent step are: branching bisimulation ([GW91]), delay bisimulation [Mil83] and
weak bisimulation ([Mil80],[Mi189]).

±:tb c z:::!.4 c ~ w

u u u
~rb C ~rd C ~rw

Each of these bisimulation equivalences allows that an a-transition on one side may
be mimicked by a a-transition possibly preceded or followed by silent steps on the
other side. This is shown in Figure 1.1; the forma! definitions are given below.

{l·J·.·J'·J
r*

a

r*

b d w

Figure 1.1: Three bisimulations with r

We have one predicate on T(BPA8r) u { v} which is denoted by V· v(P) holds
iff all maximal paths starting in p consist of r's only and end in V· Note that

1.4. Abstraction 17

v(y'). This predicate is very similar to the weak termination predicate of Aceto
and Hennessy [AH92].

Intherest ofthis section (Section 1.4) we let p, ij and z range over T(BPAór) U

{ v}. In the following p ==} p denotes that there is a path p ~ . . . ~ p of
length zero or more.

Definition 1.4.1 R ç; T(BPAór) x T(BPAór) is a branching bisimulation if when­
ever pRq then

1. lf p ~ p and •(v(fJ)) then either a= r and pRq
or q' such that q ==} z ~ q', pRz and pRq'.

2. Ij p ~ p and v(fJ) then ij such that q ==} z ~ ij with vf(ij) and pRz.

3. Respectively (1} and (2} with the role of p and q interchanged.

Definition 1.4.2 R ç; T(BPA8r) x T(BPAór) is a delay bisimulation if whenever
pRq then

1. IJ p ~ p and •(v(fJ)) then either a = T and pRq
or q' such that q ==} z ~ q' and pRq'.

2. IJ p ~ p and vf(p) then ij such that q z ~ ij with vf(ij).

3. Respectively {1} and {2} with the role of p and q interchanged.

Definition 1.4.3 R ç; T(BPAór) x T(BPAóT) is a weak bisimulation iJ whenever
pRq then

1. Ij p ~ p and •(v(fJ)) then either a = T and pRq
or z', q' such that q ==} z ~ z' ==} q' and pRq'.

2. IJ p ~ p and v(fJ) then
vf(ij)

z', ij such that q ==} z __::__. z'

3. Respectively {1} and {2} with the role of p and q interchanged.

ij and

We need the predicate v to express that "r-stuttering" afterwards is allowed, as
we require that a and a · r are branching bisimilar. For * E {b, d, w} we define
*-bisimulation equivalence.

Definition 1.4.4 p .t:t. q iff there is an *-bisimulation relating p and q.

None of these equivalences is a congruence over T(BPAór). We have torestriet
these equivalences to obtain congruences by imposing a rootedness condition on the
bisimulations.

Definition 1.4.5 A relation Ris rooted w.r.t. pand q if pRq and if p'Rq' implies
that p' p {:? q' = q

18 1. An Introduetion to Process Algebra

We obtain rooted *-bisimulation equivalences, denoted by p <---+.- q, by requiring that
there is a rooted *-bisimulation relating pand q. Now we have for each * E {b, d, w}
that:

Proposition 1.4.6 <-+r• is a congruence

Fora proof of this proposition we refer to [BW90] and [GW9t].

1.4.3 Laws for abstraction

We have the following axiom systems. The laws Tl-T3 are taken from Milner

Tl p·7
z · (7 · (p + q) + p)

T2 7·p
T3 a·(7·p+q)

p
z. (p + q)
7·p+p
a·(7·p+q)+a·p

Table 1.6: The 7 laws

Bl
B2

([Mil80],[Mil89]). B2 is Van Glabbeek & Weijland's branching bisimulation law
([Gw"9J.]), note that Al-A3+A5+Tl+T2 f-- B2. Each rooted bisimulation equiva­
lence can be axiomatized completely by its corresponding theory.

Theorem 1.4.7 p, q E T(BPA67)

p <-+rb q ~ BPA6 + Bl + B2 f-- p = q
p <-+rd q ~ BPA6 +Tl+ T2 f-- p = q
p <-+rw q ~ BPA6 +Tl+ T2 + T3 f-- p = q

In [GW91] the completeness is proven for branching bisimulation equivalence first.
From this result the other completeness results can be found easily.

The combination of 7 and ACP is not trivial. For ACP with 7 and branching
bisimulation the extension is completely straightforward and no extra axioms are
needed. However, for ACP with 7 and delay bisimulation one needs additional
axioms. A typical example is that

al(7·b) =al(7·b+b) =al(7·b)+alb

So, if one assumes that 7 cannot communicate, then one obtains al(7 · b) = alb,
and thus an extra axiom Pl(7 · q) = plq is needed. Further details of this aspect of
abstraction do not fall within the scope of this introductary chapter, and we refer
the reader to [BW90] and [Gla87].

1.4. Abstraction 19

1.4.4 Strongly Rootedness

In the timed case we will come across a stronger rootedness condition. There it
is required that a rooted bisimulation acts on the pair of root nodes as a strong
bisimulation.

Definition 1.4.8 A relation n is strongly rooted w.r.t. pand q if

1. p'Rq

2. p p implies 3q with q {j such that either v'(fi) and J(q) or, •(v'(fi)),
•(v'(q)) and p''R.q'.

3. {2} with the role of p and q interchanged.

In this way we obtain strongly rooted branching bisimulation (±.:tsrb), strongly
rooted delay bisimulation and strongly rooted weak bisimulation (~rw).

For branching bisimulation strongly rootedness is not strictly stronger than root­
edness:

Proposition 1.4.9 p, q E T(BPA6r)

Proof. We prove only ==}, the other direction is trivia!. Assume 'R is a rooted
branching bisimulation w.r.t. pand q. We prove that nis a strongly rooted branch­
ing bisimulation w.r.t. pand q as well.

Consider the case where p ~ pand •(v'(fi)), then we have to show that there
is a q such that, -.(y'(q))i, q ~ q and p ~ q.

It cannot be the case that a= rand p'Rq since nis rooted w.r.t. (p, q), as p'Rq
would imply that p p. Hence there is a z and a ij such that q ==} z ~ ij,
p'Rz and p'Rq. Since nis rooted w.r.t. to (p, q) it follows from p'Rz that z = q,
thus q ~ q. Morover fi'Rij implies p ~ ij. lt is left to the reader to prove that
-.(y'(fi)) and p ~ q imply that -.(J(q)), and we are ready with this case.

The case where p ~ p and v'(fi) is left to the reader. D

This is certainly not the case for delay bisimulation, as is shown by the following
example:

Example 1.4.10 p ±.:tsrd q # p +-+rd q

r ·a +-+rd r · a+ a but r · a

20 1. An Introduetion to Process Algebra

1. 5 Recursion

1.5.1 Introduetion

Until now we have considered finite processes only. In order to express infinite
processes we introduce the standard concept of recursion. For example, the process
which executes the infinite sequence abab ... can be expressed by

x~fa·b·X

Here, X is a so-called recursion variabie that is bound by the declaration X ~f
a· b ·X. A (recursive) specification E consists of a number of declarations of the

form Xi ~f p;. Here, p; is a process term, which is called the body of X;, in which
recursion variables may occur.

For a reenrsion variabie X, with deelaratien X = Px, and process term p such
that p is (rooted bisimilar) bisimilar with p x [p /X], we say that p is a solution of X
modulo (rooted bisimilar) bisimulation equivalence. For example, if we have

def
X = (a+ b) ·X

def
Y = (a· Yjjb · Y)

where 'Y(a, b) 5, then X is salution for Y modulo bisimulation equivalence, and
vice versa.

If we consider

zc!!/z
then every processtermis a salution for z.

In algebraic reasoning we often need the principle that certain specifications have
unique solutions. We introduce the notion of guarded declarations and specifications,
for example, the above declaration for Z is not guarded. We show that if p and q are
both solutions for the same reenrsion variabie and the same guarded specification,
then p and q are equal as well. To show this, we first introduce the projection
operator 7rn, which restricts a process term p to its first n steps. Then, it is shown
that two process terms are equal if they are equal for all their finite projections.

1.5.2 Some Deflnitions

We assume a set RVar of recursion variables, with typical element X. If 1? is a
finite subset of RVar then we denote by T(1?, BPAór) thesetof process terms over
BPA5r in which the recursion variables from 1? may occur as atomie constructs. If
p E T(BPA8r)(= T(0, BPA8r)) then we call pa finite process term.

A specification E is a finite collection of declarations of the form

def def
{Xo = Po, ... , Xn = Pn}

1.5. Recursion 21

where p; E T({X0 , ... ,Xn},BPA67) and i=/= j implies X;=/= Xi. We denote the set
{X0 , .•. , Xn} by rvar(E). For X E rvar(E) we denote the right hand side of the
deelaration of X in E by pf. If X~ rvar(E) then pf denotes 6.

We parameterize the action relations of our operational semantics by a specifi­
cation E. We have two additional action rules whieh are given in Table 1.7. We
obtain equivalenees like -~, and in the obvious way.

pf~EP1 P~~EV
X~Ep' X~EV

Table 1.7: Action Rules for Reenrsion

Definition 1.5.1 {the notion of a solution)
p E T(rvar(E),BPA6r) is a solution for X in E modulo ±:::: ifp +-+E Px[p/X].

We have similar definitions for .=tb and +-+rb-

In the literature, such as [BW90], X occurs guarded in p if there is no trace
p ====} X. For example X oceurs guarded in a · X + b but not in 7 · X + b or X + b.
For a specification the definition of guardedness is more involved as the declaration
of X in

def
X= r·Y+a·X

def
y = 7·Y+b·X

is unguarded. In this section we define guardedness as a predicate within the theory.
If GE(p) is true, then p is guarded. We have an auxiliary predicate G~(p), where
'Ris a set of reenrsion variables, GE(p) is defined by Gf(p). This suffix 'R contains
the reenrsion variables that are encountered during the "investigation" of p. If a
reenrsion variabie is encountered which oceurs already in 'R then ff (false) is returned,
otherwise X is added to 'R and the investigation continnes with the body of X. The
axioms for G~ are given in Table 1.8. As an example of the use of this predicate we
give the derivation for Gf(X) = ffwhere Eis the specification which contains the
above declarations for X and Y.

Example 1.5.2

Gf(X)
Gkx} (7 · Y + a · X)

= Gkx}(7·Y) 1\ Gfx}(a·X)
G {X} (Y) 1\ tt

22 1. An Introduetion to Process Algebra

= Gkx,Y} (T · Y + b · X)
G kx,Y} (T · Y) A Gfx,Y} (b · X)
G{X,Y}(Y) A tt
ff

Gl G~(a) = tt
G2 G~(T) tt
G3 G~(a · p) = tt
G4 G~(T. p) G~(p)
G5 G~(p + q) = G~(p) A G~(q)

G6 G~(X) G~u{x}(pf) if XE rvar(E) n
G7 G~(X) ff otherwise
G8 G~(X ·p) G~u{X}(pf · P) if X E rvar(E) - n
G9 G~(X · p) ff otherwise

Bl ttAa = a
B2 jJAa ff

RÇ,RVar, aET({tt,ff},A)

Table 1.8: Axioms for the (boolean) guardedness function

The following proposition states that for any E, R and pit can be determined
whether G~(p) is tt or ff.

Proposition 1.5.3 For allE, R and p E T(RVar, BPA8T) there is a boolean ex­
pression a, either tt or iJ, such that A4, 5 + Gl-9 + Bl, 2 1- G~(p) a

Proof. First we define a lexicographic ordering on pairs of natural numbers. That
is, (n, m) > (n', m') whenever n > n' or n = n' and m > m'. The · proof uses
induction on (irvar(E) RI, size(p)).

We discuss only the case where p = p1 · p2 and we introduce an internal in duetion
on the size of Pl·

• P1 = a. Immediate by G 1.

• P1 T. Immediate by G2.

• P1 = zr + Zz. Then

G~((zr + zz) · pz) M G~(zt · P2 + z2 · pz)
<f? G~(z1 · P2) A G~(z2 · P2)

1.5. Recursion 23

and by induction we are ready.

and by (internal) induction we are ready.

• p1 = X. If x f/:. rvar(E)-n then we are immediately ready by G9. So, assume
x E rvar(E)- n then we can apply G8 and we obtain G~u{x}(P~ · P2)· Since
irvar(E)- (nU {X})< irvar(E)- n1 we can apply induction.

0

Definition 1.5.4 (Guardedness) The specification E is guarded if for all X E
rvar(E) A4, 5 + Gl-9 + Bl, 2 f- GE(X) = tt.

And, of course, if a specification E is guarded then all process terms over E are
guarded as well.

Proposition 1.5.5 Let E be a guarded specification and
p E T(rvar(E), BPAór) then A4, 5 + Gl-9 + Bl, 2 f- GE(p) tt.

Proof. Omitted. 0

1.5.3 Axioms for Reenrsion and Projection

We need an axiom, RECE, that "imports" the deelara ti ons of the specification E as
identities in the axiom system.

In [BW90] the Recursion Specification Principle is defined as

A recursive specification has at most one solution.

As we have discussed in the introduetion of this seetion we know that this principle
does not hold in generaL The Restricted Recursion Specification Principle considers
only guarded specifieations [BK86]:

A guarded recursive specification has at most one solution.

In Table 1.9 we formulate the Restricted Recursion Specification Principle as a condi­
tional axiom RSP~, the G denotes that Eis supposed to be a guarded specification;
the condition AYErvar(E)Gf(Y) = tt is kept implicit in the premise ofthe axiom. The
eonditional axiom RSP~ compares two veetors of process terms, p = (p1 , ... , Pn) and
q = (q1 , ... , qn)· For two such veetors 'jj, q we abbreviate P1 qb ... , Pn = qn by
p = q. If z is a process term and X = (XIJ ... , X",) is a vector of recursion vari­
ables, then the simultaneous substitution of p; for X; in z is denoted by z[P/X].

24

RSP~ p

E Px

1. An Introduetion to Process Algebra

PxLPIXJ, 7i = Px[7i/XI ==* ï5

Table 1.9: Additional axioms for recursion

If z (z1, •.. , Zn) is a vector of process terms, then the simultaneous substitu­
tion [p/ X] on each z; is denoted by z[p/ X]. Finally, if X = (X11 ... , Xn) is a
vector of process variables, then we denote by Px the vector of declaration bodies
(pxl, · · · ,pxJ.

We introduce the projection operator, though wedefine it a little different from
[BW90]. In [BW90]7r1(a·p) a, whereas we have 1r1(a·p) = a·Ó. The reasou is that
in [BW90] 1r0 (p) is defined equal to E, that is the empty process which terminates
successfully immediately. Hence, they have derivations like 1r1 (a · p) = a· 1r0 (p) =
a· E a. As we want to define 7r0 , but not E, we have decided to put 1r0 (a) ó for
a E A. Since a a· r we put 7ro(7) = r. The axioms for the projection operator
are given in Table 1.10.

PRl 7ro(a) {j

PR2 1rn+l (a) a
PR3 7rn(7) 7
PR4 7ro(a · p) {j

PR5 1rnH(a · P) a· 1rn(P)
PR6 7rn(7·p) 7 · 1rn(P)
PR7 1rn(P + q) 1rn(P) + 1rn(q)

Table 1.10: Axioms for the projection operator

1.5.4 The Soundness of the Restricted Recursion Specifi-
cation Principle

In this subsection we show the soundness of RSP~ for rooted branching bisimulation
equivalence. First we show that for any p, p is equal to some head normal form.
The proposition and lemmas of this subsection are borrowed from [BW90], though
the proofs are different. The proofs below use iudnetion and they are based on the
axiomatic definition of guardedness.

1.5. Recursion 25

Proposition 1.5.6 Let E be a guarded specification and
p E T(rvar(E), BPAór), then there is a p1 such that ')I is in head normal form and
BPAó + RECE 1- p = p'

Proof. We introduce the function rvarE(p) that gives for each process term the
set of reenrsion variables which can he reached by passing r's only. We give some
of its axioms, the other axioms are left to the reader.

= rvarE(p) rvarE(r · p)
rvarE(X)
rvarE(p1 · P2) =
rvarE(PI · P2)

{X} U rvarE(p~)
rvarE(p1) U rvarE(P2)
rvarE(PI)

ifp1 => v
otherwise

Note that since p is guarded we can define by induction p => v as a predicate.
We have

Gf(X) tt

and thus GE(X) implies that rvarE(X) :::> rvarE(p~). We prove the proposition by
induction on (size(p), rvarE(p)). We discuss only the case where p p1 • p2 and
p==.X.

• p = P1 · P2· Let p~ ::::::: Li a; · p; + Lj bi be the head normal form of Pb then
p = ')I if we take p' ::::::: E; a; · (p; · P2) + Lj bj · P2 which is in head normal form
as well.

• p = X. Since rvarE(X) :::> rvarE(p~) we may assume that we have already
constructed a head normal form p' for p~. By RECE we obtain X= p~ p',
and we are ready.

0

Let us denote by hnf (p) the head normal form of p which is constructed by the
proof in the Lemma above. When Gf(p) = tt then wedefine the function l(p) which
corresponds with the lengthof the derivation of Gf(p) tt. In order to do this we
have to fix a derivation. If p is in head normal form then exactly one of the axioms
G1-7 is applicable; we put l(r · p) = 1 + l(p) and we do similarly for the other cases.
If p is not in head normal form then we take l (p) 1 + l (hnf (p)).

Lemma 1.5. 7 Ij E is a guarded specification and p E T(rvar(E), BPAór) then
for each n there is a finite process term p', without occurrences of the projection
operator, such that

BPAó + RECE + PR1-71- 11'n(P) = p1

Proof. We may assume for each p that Gf (p) = tt and we use induction on
(n, l(p)).

First we assume that pis a head normal form and p::::::: Li a;· p; + Lj bj.

26 1. An Introduetion to Process Algebra

Li 1fn(a; ·Pi)+ Lj 1fn(bj)
1fn(a; · p;) + Lj bj

Take an index i, if a;=/= T then we have 1fn(a;·p;) a;·1fn_1(p;) and by induction there
is a fini te process term 11; for 1fn-l (p;). So, assume a; T, then 7rn(T • p;) T ·?rn(p;)
then since l(1 · p;) = 1 + l(p;) we know that we have constructed already a finite
process term p~ for ?rn(P;).

If pis not in head normal form then we have ?rn(p) = ?rn(hnf (p)) and we can
apply induction, as l(p) 1 + l(hnf (p)). 0

Next, we have a proposition that says that if p is a salution for X in E modulo +-+,

then for every n the projection of p is bisimilar with the projection of the body of
x.
Lemma 1.5.8 Let E be a guarded specification with X E rvar(E) such that p is a
salution for X modulo .'::!.(rb), then for all n we have 1fn(P) ~b) 1fn(Px).

Proof. Since pis a solution for X in E we have 7rn(P) .<::!.frb) ?rn(Px[p/ X]). Consider
the derivation between 1rn(px) and hnf (1rn(Px)), note that the latter processtermis
a finite process term, so X does not occur in it. For each step in this derivation for
which RECE X= Px is used we apply p px[p/X] instead. This latter equality is
sound, since pis a salution for X. This gives us a derivation between 1rn(Px[p/X])
and hnf (7rn(Px)) that is sound for ~rb)· Since also hnf (7rn(Px)) 1fn(Px) and
we are ready. 0

From this proposition we obtain the so-called Projection Lemma, that says that
if two process terms are both solutions for X in E modulo {rooted branching)
bisimulation equivalence, then for every projectionpand q are (rooted branching)
bisimilar as well.

Lemma 1.5.9 (Projection Lemma) IJ E is a guarded specification with X E
rvar(E) such that bath p, q E T(rvar(E), BPA81) are solutions for X modulo +-+(rb)

then for all n we have 1rn(P) +--+(rb) 1rn(q).

Proof. Immediate from Lemma 1.5.8. 0

As in [BW90] we obtain RSP~ by proving that two processes are equal if all there
finite projections are equal. This principle is known as the Approximation Induction
Principle (AIP). This principle originates from [BK86]. Restricted versions of AIP
can be found in [BBK87] and [Gla87]. In [BW90] the definition and proof of [Gla87]
is given. We define AlP for a guarded specification; again the condition that E is
guarded, i.e. ÁYErvar(E)Gf(Y) = tt is kept implicit in the premise of the axiom.

1.5. Recursion 27

We restriet AlP to the setting with a guarded specification, as we can transfer only
the soundness proof of this restricted case to the timed case. The proof of [Gla87] is
too subtie to he transferred. The proof below is based on a part, the "easy" one, of
the proof of [Gla87]. Before proving the soundness of AlP~ weneed a proposition
which states that in the context of a guarded specification E every p can reach only
finitely many p's by a sequence of r-transitions.

Proposition 1.5.10 Ij E is a guarded specification and
p E T(rvar(E), BPA8r) then the set {p'IP p'} is finite.

Proof. By induction on l(p). 0

Now we can prove the soundnessof AlP~ for rooted branching bisimulation ..

Theorem 1.5.11 (Soundness of AlP~) Ij E is a guarded specification and p, q E
T(rvar(E), BPA8r) then

Vn : 7rn(P) q

Proof. We consider subterms p' of p such that p' can be reached from p in more
than zero transitions. Similarly we consider subterms q' of q. We define for each m
a relation "'m on those subterms p' and q' such that

and we put p' "'q' if for all m we have p' "'m q'.
We show first that "' is a branching bisimulation. Take p', r/ such that p' rv q'.

• Consider p" such that p' ~ p", where a E A, and put

S { (*) I I a * t 11 *} n = z, q q ===} Z ---+ q , P "'n+l Z, P "'n q

Then we have

1. So 2 S1 2 S2 2 ... since u ""'k+I u' implies u "'k u'.

2. For all n Sn =/= 0 since p' ""'n+l r/.
3. For all n Sn is finite, by Proposition 1.5.10.

Hence n~=O Sn i= 0 and we can take a pair (z, q") E n~=O Sn such that q'
z ~ q", p'"' zand p" "'q".

• Consider p" such that p' __:::__" p'' and put

Sn { (z, q*) I r/ ===} Z __:::__" q*, p' tVn z, p" "'n q*}
U { (q*, q*) I q' ===} q*, p' rvn q*, P11

"'n q*}

and continue analogously to the previous case.

28 1. An Introduetion to Process Algebra

• Consider a transition p' ~ y', where a E A,.. Then

p' ~ y' -<===> 1r1(p')
.ç:::} 1r 1 (q') I "c I .ç:::} q ~ V

And by symmetry we have shown that ,..., is iudeed a branching bisimulation.
It is left to show that"' U{(p, q)} is a branching bisimulation that is rooted w.r.t.

(p,q).
Consider a transition p ~ p' (a E A) then for n > 0 we have as well

1rn(P) ~ 1rn_1(p') and by the definition of (strongly) rootedness there is a q~ such
that 1r n (q) ~ q~ and 1r n-l (p') !:::!b q~. Since this holds for all n and since q is
guarded, there must be a q' such that q ~ q' and q~ 1rn_1(q'). Hence for all m
we have 7rm(P') !:::!b 1rm(q'), and thus for all m p' "'m q' and thus p' "'q' as well.

The casesp p' and p ~ y' (a E A,.) are left to the reader. 0

And finally we can prove the soundnessof RSP~.

Theorem 1.5.12 (Soundness of RSP~) Ij Eis a guarded specification with X Ç
rvar(E) such that both p, q Ç T(rvar(E), BPA8r) are solution.~ for X in E modulo
<-->,.b, then p q.

Proof. Direct by the Projection Lemma and the Soundnessof AlP~. 0

Part 11

Prefix lntegrated Real Time ACP

29

2

BPA with Time Stamps

2.1 Introduetion

In this chapter we present the syntax, semantics and axiomatization of Baeten and
Bergstra's ([BB91]) BPApb, that is Basic Real Time Process Algebra with time
stamped actions. So, we will consider processes like a(l) (action a at time 1). The
treatment of processes like fvE(O,l) a(v) (action a in between time 0 and time 1) is
postponed till Chapter 4.

In this thesis we restriet ourselves mainly to absolute time. That is, the time
stamps are interpreted from the start of the whole process. In absolute time a(2) ·
b(1) is equal to a(2) · {), as first the a action is executed at time 2 after which
the b action cannot be executed any more at time 1. Baeten and Bergstra have
shown as well how to deal with relative time in [BB91]. In relative time the time
stamps are interpreted to be the time distance with respect to the previous action,
where a process is supposed to start at time 0. Baeten and Bergstra write square
brackets for relative time. Thus the relative time term a[1] · b[3] corresponds to
the absolute time term a(1) · b(4). In [BB92] and [BB93a] Baeten and Bergstra
deal with relative time using the initial abstraction operator Jv.p(v), which denotes
a function from time stamps to processes; the process a[l] · b[3] corresponds to
..jv.a(v+ 1) ·b(v+4). Mostother papers on timed process alge bras, such as the timed
CCS papers [MT90J,[MT92],[Wan9laL[Che92] and the timed CSP paper [DS89], use
relative time. In Chapter 11 we discuss the relation between these papers and Real
Time ACP.

In Section 2.2 of this chapter we introduce the syntax of BPAp{j; we introduce
thesetof time stamped actions and we encounter a new operator, the initialization
operator denoted by t » p. Furthermore, we introduce the ultimate delay, denoted
by U(p), which is, intuitively, the upper bound of points in time to which p can idle.

Section 2.3 presents Baeten and Bergstra's original operational semantics (see
[BB91]) in which all, uncountably many, idle transitions are explicit in the transition
systems. Since these transition systems cannot he drawn, the behavior is given by so
called process diagrams. InSection 2.4 we discuss a timed bisimulation equivalence
and we give two different, but equivalent, characterizations.

31

32 2. BPA with Time Stamps

Section 2.5 we give the axiom system of BPAp6, which will basically be an
extension of BPA6.

In Section 2.6 we give an alternative semantics, which is called the term seman­
tics, which does not have idle transitionsin the transition systems. The advantage
is that the proof techniques which we have seen in Chapter 1 can be used again.
The idle behavior of a process term is expressed by a predicate, that corresponds
with the ultimate delay.

The last section defines a notion of basic terms, which becomes more advanced
than in thè untimed case since all time starups have to be taken into account. A
(timed) basic term is a process term with increasing time stamps. Using these basic
terrus we are, finally, able to prove completeness of the axiom system BPAp6 w.r.t.
to bisimulation equivalence.

2.2 A Syntax with Time Stamped Actions

Let A be the set of actions, not containing the constants 6 and ~. The symbol ~ will
be used as label in the operational semantics. A6 denotes A U { 6}, similarly we have
A,. In the tables in which the action rul es for the operational semantics are given,
we let a6 range over A6 , and we let a, range over A,.

As time domain we assume a set Time provided with an ordering <. In the
examples we assume that the natural numbers are part of Time, and that < has its
usual meaning. In case Time contains a least element, then we denote this element
by ..l.

The initialization operator, », takes a t E Time and a process term; t » p
denotes that part of p, which starts after t. All initial actions before or at t are
blocked.

The set T(BPAp6), with typical elements p, PbP2 , is defined in the following way,
where a E A 6 , tE Time.

P := a(t) I P1 + P2 I P1 · P2 I t » P

2.3 A Semantics with ldle Transitions

The semantics of [BB9l] assigns to every term in T(BPAp6) a transition system in
which each state is a pair consisting of a process term and a point in time, and in
which each transition is labeled by a timed (non 6) action. Within this semantics
each transition system concerns two relations

Step c (T(BPAp6) x Time) x (A, x Time) x (T(BPAp6) x Time)
Terminate C (T(BPAp6) x Time) x (A x Time)

These two relations are defined as the least relations satisfying the action rules given
in Table 2.1. We write

2.3. A Semantics with Idle Transitions

t<r

<a(r),t>

< p,t > ,r >

< p,t > <p,r >

< p + q, t > $ < p + q, r >

s < r < ,r >

t<r<s

< s ::» p, t > < s ::» p, r >

t<r<s

a(r) I < p,t > __". V

<p+q,t > ~ v
<p,t> ~ v

a(r) < q + p, t > __... v

s < r < p,t > y'
a(r)

< s ::» p, t > --4 v'
L(r)

s:::; r < p, t > __". < p', r >
<(r) < s ::» p, t > __". < p1

, r >

(a E A, a6 E Aé, a, E A., r,t,s E Time)

Table 2.1: Action Rules for idle semantics for BPAp8

<p,t >
<p,t >

< p', t' > for (< p, t >,(a, r), < p', t' >) E Step

y' for (< p, t >,(a, r)) E Terminate

33

We always have t' r in Step. Moreover, < p, t > $ < r/, r > implies that p' is
the same process term as p and we call it an idle transition.

The term a(l) denotes the process that performs an action at time 1, after which
it is successfully terminated.

F:rom < a(l), t0 > an idle transition is possible toa state of the form < a(l), t 1 >
with t0 < t 1 < 1. An idle transition is a transition that increases the time component
only, without the execution of an action. Furthermore, from each state < a(l), t >
a a(l)-transition to y' is possible whenever t < 1. Since this semantics is based on
the notion of an idle transition we refer to this semantics as idle semantics. In a

34 2. BPA with Time Stamps

0

__ ___i I, U
Figure 2.1: Process diagramsof the terms a(1) and 8(1)

later section we will introduce a semantics without these idle transitions.

The transition system of the term a(l) can be represented by the left-hand
process diagram given in Figure 2.1. A process diagram is simply a pictorial repre­
sentation of a transition system. It is not possible to make a picture of the transition
system itself, since it has uncountably many transitions. The intuition behind such
a process diagram is that the process can idle by going to a lower point without
crossing any line, whereas the execution of an action a at time r is reflected by
going to a dashed line at level r labeled with a. Only dashed lines may be crossed,
after landing on them.

In this thesis we do not assume that time starts at zero, as Baeten and Bergstra
do [BB91]. If time contains negative number as well, then the action a(-1) can be
executed in a state with time t < -1. Our process diagrams are open at the top,
which expresses that we do not assume any start time.

The process term 8(1) can do nothing more then idling untill. From each state
< ó(l), t0 > an idle transition to < 8(1), t 1 > is possible, whenever t 0 < t 1 < 1.

The transition system of a(1) + b(2) can be represented by the process diagram
given in Figure 2.2. A state f..L (in Figure 2.2) is of the form < a(1) + b(2), t >
with 0 < t < 1. From f..L both a terminating a(1)-transition to v and a terminating
b(2)-transition to vare possible. However, from a state like v of the form < a(1) +
b(2), t > with 1 :::; t < 2 only a terminating b(2)-transition to vis possible. Hence,
by idling from < a(l) + b(2), t0 > to < a(l) + b(2), t 1 > with 0:::; t0 < 1:::; t 1 < 2
we have lost the option of executing the a(l)-summand. Thus one could say that
a choice has been made at time 1; after the choice has been made for b(2) the
summand a(1) has become redundant.

The transition system of a(l) + 8(1) has exactly the same transitions as the
transition system of a(1). The summand 8(1) contributes only idle steps which are
contributed by the summand a(1) as well.

However if we consider a(1)+8(2), the 8(2) summand contributes idle transitions
which are not contributed by a(1), since 8(2) has idle transitions to points in time
between 1 and 2. The transition system of a(1) + 8(2) can be represented by the
process diagram on the right-hand side in Figure 2.2.

2.4. Timed Idle Bisimulation Equivalence 35

Figure 2.2: Process diagramsof the terms a(l) + b(2) and a(l) + 6(2)

s ::?? p denotes the process that idles till s, after which it evolves in that part of
p that starts after s. So, if p has no initial actions later then s, then s » p equals
ó(s).

Proposition 2.3.1 a E A

a(r)
< p, t > ---+ v ==> t < r

< p, t > ~ < p1
, t1 > ==> t < r 1\ t'

< p, t > ':!4 < p', t' > ==> t < r 1\ t' r

Proof. These statements can be proven by induction on the derivation. D

2.4 Timed ldle Bisimulation Equivalence

The definition of bisimulation for the timed case is analogous to the one of the
untimed case. We use the adjective idle to stress the fact that the underlying
transition systems contain idle steps.

Definition 2.4.1 {Timed ldle Bisimulation)
n ~ (T(BPApó) x Time)2 is a timed idle bisimulation if whenever
< p, t > n < q, t > then

1. < p, t > ~ < rJ, r > implies that there is a q' such that
a,(r)

< q' t > ---+ < q', r > and < p'' r > n < q'' r >.
a(r) 1 . . a(r)

2. < p, t >---+ v zmpl~es that < q, t >---+ V·
3. Respectively {1) and {2) with the role of p and q interchanged.

Definition 2.4.2 (Timed ldle Bisimulation Equivalence)
< p, t > ~ < q, t > iff there is a timed idle bisimulation n such that

< p, t > n < q, t >.

36 2. BPA with Time Stamps

This definition induces an equivalence relation on process terms, by putting p <-+~ q
iff \ft < p, t > <-+~ < q, t >. The fact that <-+~ is a congruence over BPAp8 will be
discussed later.

In the rest of this thesis we will consider only real time process algebra and we
allow ourselves not to write the adjective timed if we consider a timed bisimulation
or timed bisimulation. Similarly we will write <-+L while we mean <-+~.

2.5 The Axiom System BPAp8

BPAp8 is the theory of Basic Real Time Process Algebra ([BB9l]), see Table 2.2.
It consists of the axioms A1-5, which are the standard axioms of BPA, and timed
versions of A6 and A7 (see Table 1.3). The reformulated version of axiom A6
depends on the time information of the terros and therefore we add a p to its name.
On the other hand, A7 is changedas well, the 8 is changedintoa 8(t), this change
depends on the fact that the alphabet is now A6 x Time instead of A6• Hence, the
reformulation does not depend on any time information we do not add a p in this
case.

Most of the axioms occur already in [BB91], though Baeten and Bergstra use
different names. A6P does not occur in [BB91], Baeten and Bergstra use the following
two axioms instead

t<r 8(t)+8(r) = 8(r)
a(t) + 8(t) = a(t)

The axiom RTOP originates from [BB91] as well, where it was formulated by a(O) =
8(0), as in that paper 0 is the least element of the time domain. We put this axiom
in brackets, as we need it only in case Time has a least element.

Furthermore we have some axioms stating the specific real-time properties and
defining the initialization operator.

Example 2.5.1 Within BPAp8 we can prove:

5 » (a(4) + b(6) + c(7) · d(8))
5 » (a(4) + b(3))
8(1) + a(2) · b(3) + 8(3) · c(4)
a(-1) + b(2) · (c(1) + c(3)) + d(3) · e(2)

The Ultimate Delay

b(6) + c(7) · d(8)
8(5)
a(2) · b(3) + 8(3)
a(-1) + b(2) · c(3) + d(3) · 8(3)

Intuitively, the ultimate delay of p is the upper limit of points to which it can
idle. It is defined within the theory BPAp81. The ultimate delay has already
been introduced by Baeten and Bergstra in [BB91]. In [MT90] Maller & Tofts have
introduced a similar construct, which they call the maximum delay.

Note that we can formulate axiom A6p as well by

A6~ r:::; U(p) p + 8(r) = p

2.6. A Term Semantics for BPAp8 37

Al p+q q+p
A2 (p+q)+z p+(q+z)
A3 p+p p
A4 (p+ q). z = p·z+q·z
A5 (p. q). z p. (q. z)

A6p t?.r a(t) + 8(r) a(t)
A7 ó(t). p 8(t)

(RTOp) a(J.) 8(J.)
RTlp a(t) · p a(t) · (t » p)

RT2a t<r t » a(r) a(r)
RT2~ t?.r t » a(r) 8(t) p
RT3p t » (p+ q) (t » p) + (t » q)
RT4p t » (p. q) (t»p)·q

Ul U(p+q) max(U(p), U(q))
U2 U(a(t)) = t
U3 U(p. q) U(p)

(a E A.s, r, tE Time)

Table 2.2: An axiom system for BPAp8

2.6 A Term Semantics for BPAp8

In Section 2.3 we have presented an operational semantics in which the transition
systems contain idle transitions. In that section each state was a pair of a process
term and a time stamp; an idle transition increased the time while the term remained
the same. We now define an operational semantics without idle transitions, which
induces the same bisimulation equivalence. The action rules are analogous to the
action rules of the operational semantics for untimed BPA, see Table 1.1. Since each
state will be process term the semantics is called the term semantics.

In untimed BPA8,as given inSection 1.2.2, we encountered the following transi­
tion

a~ J and a·p p

In a reai-time setting we have to take the time stamps into account. Consider the
term a(r) · p. After executing the a(r)-action only that part of p can he executed
which starts after r. We will have the following transitions:

38 2. BPA with Tiine Stamps

a(r) ~ v and a(r) · p

In Figure 2.3 the transition systems for the terms a(l) and a(l) + b(2) are given,
together with the conesponding process dia.grarns.

a(l)

a(l)l

v

Figure 2.3: Process dia.grams and transition systems for the terms a(l) and a(l) +
b(2)

However, we have to deal somehow with the idle behavior of the process terms,
as a(l) must he distinguished from a(l) +6(2). Therefore, we introduce a predicate,
Ut(P), that corresponds with the idle semantics in the following way:

< p, T > ~ < p, t > {:=::?- Ut(P)

In Table 2.3 the action rules of the term semantics are given. Every state is a process
term from T(BPApó) and every transition is labeled by a timedatomie action a(r)
where a E A. The term semantics concerns two relations, and one predicate:

Step c T(BPApó) x (A x Time) x T(BPApó)
Terminate ç T(BPApó) x (A x Time)
u c T(BPApó) x Time

We write:

a(r) 1 p ~ p for (p, (a, r),p') E Step
a(r) V
p~ for (p, (a, r)) E Terminate
Ut(P) for (p, t) EU

The transition relations Step, Terminate and the predicate U are defined as the
least relations satisfying the action rules of Table 2.3.

We define a bisimulation on these transition systems.

Definition 2.6.1 (Term Bisimulation)
R C T(BPApó) x T(BPApó) is a bisimulation ij whenever p'Rq then

1. p ~ p' implies 3q' such that q ~ q' and p' Rq'.

2.6. A Term Semantics for BPApb

a(r)
a(r)

v'
t<r

----+
Ut(a6 (r))

p
a(r) 1 ----+ p

p·q
a(r) 1 ----+ p . q Ut(p · q)

a(r) 1 p ----+ p

v'
a(r)

p + q ----+ PI Ut(p+ q)

a(r) 1 p ----+ p

q+p ~ z! Ut(q + p)

t<r t<r p ~ p'

t»p
a(r)

t » p ----+ PI

t<r Ut(P)

Ut(r » p) Ut(T » p)

Table 2.3: Action Rules for term semantics for BPApó

2 I . z· a(r) I . p v ~mp tes q ----+ v .

3. Ut(P) implies Ut(q).

4. Respectively (1}, (2) and (3) with the role ofp and q interchanged.

Bisimulation equivalence is now defined as follows:

Definition 2.6.2 p q ij there exists a bisimulation R relating p and q.

And we obtain directly the congruency of

Theorem 2.6.3 (Congruency of) .t:t is a congruence over BPApb

Proof. The action rules of Table 2.3 are in the path format ([BV93]).

39

0

In the rest of this section we discuss the correspondence to the idle semantics of
Section 2.3. The main difference between these two operational semantics is how the
course of time is recorded. Consicier the following two applications of the respective
actions rules for sequentia! composition.

40 2. BPA with Time Stamps

< a(l) · p, r > .::Q.l < p, 1 >

<(a(1)·p)·q,r> < p. q, 1 >

and

a(1) · p .::Q.l 1 » p

(a(l)·p)·q (1»p)·q

We see in the latter case that the course of time is encoded in the prefix by an
application of the initialization operator. To relate the two semantics formally we
define the functions strip and time on process terms, where we assume a symbol
-oor!. Time.

Definition 2.6.4

strip(a(r))
strip(p + q))
strip(p · q)
strip(r » p)

We state

= a(r)
p+q

= strip(p) · q
p

time(a(r))
time(p + q)
time(p · q)
time(r » p)

-oo
-00

time(p)
r

Proposition 2.6.5 p E T(BPApb) such that time(p) =/= -oo.

p v ~ < strip(p), time(p) > ~ v
p p' =:::::::? < strip(p), time(p) > ~ < strip(p'), r > Atime(p') = r

< strip(p), time(p) >~<'}i, r >
3p" p ~ ;:!' A strip(p") = p' A time(p") = r

Proof. The statements can be proven by induction on the length of the derivation.
0

Furthermore we need one property of +-+.

Lemma 2.6.6 p, q E T(BPAp6), r E Time

p±::!.q r»p-r»q

Proof. Omitted. 0

Using this proposition we can finally prove:

Lemma 2.6.7

Proof.

2.6. A Term Semantics for BPApb 41

p .._.. q implies that 'it t » p .._.. t » q. Hence, we can take Rt such that
Rt : t » p .._.. t » q. We construct R~ as follows

{(< strip(p'), time(p') >, < strip(q'), time(q') >)l(p', q') E Rt}

~ Take R~ such that ~ : < p, t > .._.., < q, t > and let R be

{(p', q')l3t (< strip(p'), time(p') >, < strip(q'), time(q') >) E Rü U {(p, q)}

lt is left to the reader to prove that the constructed relations are indeed bisimula­
tions. D

The following theorem says that the theory BPApb is sound. This means that if
BPAp6f- p = q then p =t q. Since we have already shown that =t is a congruence,
it is suflicient to prove for each axiom that if it proves two terms equal, then these
terrus are bisimilar as well.

Theorem 2.6.8 (Soundness of BPAp6) p,q E T(BPAp8)

BPAp6 f- p q p=tq

Proof. To prove that any of the axioms Al-A5 is sound w.r.t. is similar as
proving that such an axiom is sound w.r.t. =t (untimed bisimulation equivalence),
see Theorem 1.2.6. Below we discnss some ofthe other axioms of BPAp6, the axioms
which are left out are left to the reader.

• A6p t 2:: r : a(t) + 6(r) = a(t). Both process terms have only one transition,

namely y'. U.(a(t) + 6(r)) implies that s s; max(t, r) = t and thus
U.(a(t)) as well. Similarly, we can show that U.(a(t)) implies U.(a(t) + 6(r)).

• A7 is trivia! since neither 6(t) nor 6(t) · p has any transitions and by definition
of Us we have U8 (6(t) · p) iff U.(6(t)).

• RTlp a(t) · p a(t) · (t » p). By definition of u. we have U.(a(t) · p) iff
U.(a(t) · (t » p)). Both processes have only one a(t) transition to resp. t » p
and t » (t » p), hence, it is sufficient to prove that these latter two terrns
are bisimilar.

- Consider a transition t » p ~ z, then by the right hand side action
rule for » we know that r > t and by the same rule we obtain that

t » (t » p) z as well. Similarly, t » p ~ v' implies r > t and

thns t » (t » p) ~ v' as well.

- Consider a transition t » (t » p) z, then by the right hand side

action rule for » we know that t » p z as wel!. Similarly, if

t » (t » p) v' then it must be the case that t » p ~. y'.

42 2. BPA with Time Stamps

D

Finally, we have a proposition that states the correspondence between U(p) and
Ut(p).

Proposition 2.6.9 Let p E T(BPApó) and tE Time, then

Ut(P) {:=:::? U(p) > t

Proof. Omitted. D

2. 7 Basic Terms and Completeness

In this section we prove that BPApó is complete. This means that if p .t± q, then
BPApó f- p q. As in Chapter 1 we first show that each process term can be
reduced to a basic form.

2. 7.1 Basic terms

We extend the definition of head normal farms and prefix normal farms to BPApó.
Since these definitions are analogous to the untimed case, we refer the reader to
1.2.10. Next, we prove that any term can be reduced toa prefix normal form.

Proposition 2.7.1 For any p E T(BPApó) there is a prefix normal farm p' such
that BPApó f- p = rf

Proof. First we show that for a prefix normal form z and r E Time there is a
prefix normal form u such that BPApó f- r » z =u. We do this by induction onz.
The following equations must be read from left to right, note that only in the last
case induction must be applied.

r » a(t) a(t) if r < t
r » a(t) ó(r) if r ~ t
r » (a(t) · z') a(t) · z1 if r < t
r » (a(t) · z') ó(r) if r ~ t
r » (zo+ z1) r » zo + r » z1

Take prefix normal forms z, z', then we can show, as in the proof of Proposition
1.2.11, by induction on z, that there is a prefix normal form u such that BPApó f­
z·z' =u.

Finally, we prove the general case by induction on the number of occurrences of
» and the number of occurrences of general multiplications (see the proof of 1.2.11).

D

We have the following proposition :

2. 7. Basic Terms and Completeness 43

Proposition 2.7.2 Let p be a prefix normal form then

a(r) (
p ----> p1

====? 3r/' p' = r » rl' 1\ a r) · P11 Ç p

p ~ yl ====? a(r) Ç p

Proof. Omitted. D

In the untimed setting a basic term is a processtermin prefix normal form, without
subterms of the form 6 · p. In the timed setting the definition of a basic term is more
involved. In the completeness proof we will use that for a basic term p:

which means that a basic term must have ascending time stamps.

Definition 2.7.3 For p E T(BPAp6) and rE Timewedefine a boolean expression
B(p, r) which reduces to either tt or iJ. Ij p is a prefix normal form

L a;(r;) · p; + L bj(tj)
iEl jEJ

then

B(p,r)=l\(r<r; 1\ B(p;,r;)) 1\ 1\(r<tj)
iEl jEJ

where /\iE0 O:; abbreviates tt.

Here, tt stands for true. B(p, r) tt means that p is a basic term, with initia}
actions later than r. We write p E B(r) if B(p, r) tt and p E B if p E B(r) for
some r, in which case we say that p is a basic term. The following proposition states
the required properties:

Proposition 2. 7.4 p E B, a E A

a(r)·p1 Çp ====? r»p<c--"tp'

Proof. It is sufficient to prove by induction on the size of q that q E B(r) implies
r » q q, since a(r) · p1 Ç p implies rl E B(r). D

Every term can be reduced a basic term.

Theorem 2.7.5 For each term p E T(BPAp6) there is a basic term Pb such that
BPAp6 1- p Pb·

Proof. First, we prove by induction on the depthof z, where z is a prefix normal
form, that for any r there is a basic term z• such that BPAp6 1- r » z = z•.

Assume

44

Take

iEl jEJ

I' = {i E I I r; > r 1\ a; =/= 8}
J' = {j E J I t1 > r}

and we construct zr such that

iEl' jEJ'

2. BPA with Time Stamps

Next, we construct for p a prefix normal form p' such that BPAp8 f- p = p' in
case Time does not contain a least element .L. Otherwise, we construct a prefix
normal form p' such that BPAp8 f- ..L » p = p'.

Assume

iEl jEJ

Take

I' ={iEl I a;=/=8}

and we construct Pb such that

Pb~ L a;(r;) · p~' + L b1(t1)
iEl' jEJ

where p~' is the basic term of r; » p; as we have constructed in the first part of the
~~ 0

Basic terrus occur already in [Klu91b] and [FK92], though in these papers deadlock
summands are removed from a basic term whenever possible; the process terrus
a(2) + 8(1) and a(2) + 8(2) are not basic, they are equal to the basic term a(2).
In this thesis we allow more terrus to be basic, such that the definition and the
construction of basic terrus can be simplified; the price to pay is that a few more
remarks are to be made in the completeness proof.

2.7.2 Completenessof BPApb

We can now prove that the theory BPAp8 is complete.

Theorem 2.7.6 (Completeness for BPAp8) \:fp,q E T(BPAp8)

p +-+ q ===} BPAp8 f- p = q

Proof. Lemma 2.7.5 together with soundness implies that it is suftkient to consider
basic terms only.

2. 7. Basic Terms and Completeness 45

a(r)
• Consider an arbitrary summand a(r) · p' of p. Since a =I= 8, p --+ r ~ p', and

since p .= q there is q' such that q .::ti. r ~ q' and r ~ p' .= r ~ q'. Since p
and q are basic terrus we have

p' +-+ r ~ p' !::± r ~ q' !::± q,

and by induction we obtain p' = q'. Since a(r) · q' C q we may conclude
a(r) · p' q. Hence, I.:; a;(t;) · p; ÇsPAps q.

• Consider an arbitrary summand a(r) of p such that a E A. Then p J

So,p

and since p !::± q also q J, frorn which we conclude a(r) Ç q.

Consider an arbitrary sumrnand ó(r) of p. For any t < r we have Ut(p), hence,
Ut(q) as well. By proposition 2.6.9 we have Vt < r that U(q) > t and thus
U(q) ~ r, and by A6~ we obtain q + ó(r) = q. Thus, ó(r) ÇsPAps q. Hence,
Lj bj(Bj} q.

q and by syrnrnetry also q ÇsPAps pand thus BPAp<5 f- p = q. 0

46 2. BPA with Time Stamps

3

ACP with Time Stamps

3.1 Introduetion

In this chapter we introduce parallelism and synchronization, resulting in the theory
ACPp from [BB91]. In Beetion 1.3 we have discussed ACP (without time) and we
have presented the parallel merge (11) and auxiliary operators such as the left merge
(U.), communication merge (I) and encapsulation (8n).

In our timed setting Pl!q can idle till r only if both p and q are able to idle till
r. Similarly, Pllq can execute an action at r, which originates from p, only if q is
able to idle till r. Hence, the most important difference with the untimed case is the
phenomenon that in a parallel composition both components most praeeed equally
in time. The same holds of course for the left merge and communication merge.

For the axiomatization of the left merge we introduce a new operator, the bounded
initialization, which will be the dual of the initialization operator. p ~ t, the
bounded initialization of p to t, denotes the process p whose initial behavior is
restricted to the time before t, so, all initial actions of p at or after t are blocked.

In Section 3.2 we present the syntax for ACP p, and we discuss this bounded
initialization in more detaiL

In Beetion 3.3 we give the action rules for the idle semantics. These action rules
rules are straightforward adapted versions of the action rules for untimed ACP.

In Beetion 3.4 we give the axiom system for ACP p. The requirement that both
components of a parallel composition have to praeeed in time equally, is expressed
algebraically in the axioms for the left merge by applying the bounded initialization.

In Section 3.5 we give a term semantics for ACP p and we obtain the congruence
for bisimulation equivalence for free since the action rules are in the path format.

Finally, inSection 3.6 we prove the Elimination Theorem for ACPp, which says
that every term in ACPp can be reduced toa basic term (which is in BPAp6). From
this theorem the completeness of ACP p follows directly from the completeness of
BPAp6.

47

48 3. ACP with Time Stamps

3.2 The Syntax of ACPp

We discuss only those cases in which we have to take the time information into
account. In untimed ACP the term z = (a· p) ll.q denotes the process in which the
left component a· p executes its first action a, after which z evolves to Pllq. In the
real-time settingit is a bit more subtle. Consider the process (a(t) · p)ll.q. The left
component a(t) · p can execute the action a at timet only if q is able to idle till t. If
not, then the whole processcan idle only till the ultimate delay of q, because at that
time q is not able to idle any further, while a(t) · p is. We will have the following
identities:

a(2)ll.b(3) = a(2) · b(3)
b(3)ll.a(2) = 8(2)

In the first example the right component b(3) can wait until the left component
a(2) executes its first action. In the second example, however, we see that the right
component a(2) cannot wait long enough and a deadlock is the result.

The set T(ACPp), of terms over ACPp, is defined by the following BNF sentence,
where a E A6 , tE Time and H Ç A:

P ::= a(t) I P +PIP· PIt» PIP» tI PIIP I pll.p I PIP I 8H(P)

We inherit the communication function 'Y from Section 1.3. The communication
function is applied only on a pair of atomie action with the same time stamps, as it
doesnotmake sense, according to [BB91], to have a communication between actions
at different points in time. Thus if 'Y(a, b) = c then

a(2) lb(2) c(2)
a(1)lb(3) = 8(1)

3.3 An ldle semantics for ACPp

In the Tables 3.1 and 3.2 the action rules for the idle semantics are given. Basically,
the only difference with the action rules for untimed ACP, as given in Table 1.4, is
that in a parallel composition one component can execute an action at time t only if
the other component is able to idle till t. The action rules for the BPAp8 operators
can be found in Table 2.1, where p, q now range over T(ACPp).

3.3. An Idle semantics for ACP p

a,(r\ 1 < p, t > ~ < p , r >
<(r) < q,t >------> < q,r >

< Pllq, t > ~ < P'llq, r >

<p,t > ~ v'
t(r)

< q, t > ------> < q, r >
a(r)

< Pllq, t > ------> < q, r >

1(a, b) = c

<p,t > ~ <p',r >
b(r) < q, t > ------> < q', r >
c(r)

< Pllq, t > ------> < p'llq', r >

1(a, b) = c
a(r)

< p, t > ------> v'
<q,t>~<q',r>

11
c(r) < p q, t > ------> < q', r >

a fj. H < p, t > ~ y'

< OH(p), t > ~ v'

<p,t > ~ <p',r >
<(r)

< q, t > ------> < q, r >

< qllp,t > ~ < qiiP',r >

a(r) I < p, t > ------> V
t(r)

< q, t > ------> < q, r >
a(r)

< qiiP, t > ------> < q, r >

1(a, b) = c

<p,t > ~ v'
< q,t > ~ v'

< Pllq, t > ~ V

1(a, b) = c

<p,t > ~ v'
< q, t > ~ < q', r >

< qllp,t > ~ < q',r >

a, fj. H < p, t > ~ < p', r >

< 8H(p), t > ~ < 8H(P'), r >

(a, b, c E A, a, E A, r, tE Time, H Ç A)

Table 3.1: Action rules for idle semantics for 11 and aH

49

50

< p, t > .'1'1. < p', r >
•{r) < q, t > -.. < q, r >

ll a(r) 11 < p q, t > -.. < p' q, r >

")'(a,b) = c
a(r)

< p,t > __,. v'
< r>

r < s < p » 8, t > y'

< p » 8, t > .'1'1. v'

r < 8 < r>

3. ACP with Time Starups

< p, t > ~ < p, r >
•(r) < q, t > __,. < q, r >

~ t(r)
< plq,t > __,. < plq,r >

< p, t > .'1'1. v'
•(r) < q, t > __,. < q, r >

< pllq, t > .'1'1. < q, r >

'I(a, b) = c
a(r)

<p,t>- J
<q,t> ~ v'

c(r)
<plq,t>- v'

")'(a,b) = c
a(r) 1 <p,t> __,.V

< q,t > ~ < q,r >
< qlp,t > -=tl < q',r >

a(r)
T < 8 < p, t > __,. < p', T >

a(r) < p » 8, t > __,. < p', r >

(a, b, c E A, r, t, 8 E Time)

Table 3.2: Action rules for idle semantics for left merge, communication merge and
»

3.4. The Axiom System ACP p 51

3.4 The Axiom System ACP p

The axiom system for ACPp consistsof BPApó together with the axioms of Table
3.3. The narnes of the axioms have been taken from untimed ACP.

The axioms of the left merge use the bounded initialization. The axiom

CM3 (a· p)llq =a· (pJJq)

can be reformulated by1

CM3p (a(t) · p)llq (a(t) » U(q)) · (PI!q)

sirree

a(t) » U(q)

means intuitively

a(t) only if q is able to idle till t, otherwise a deadlock
at the moment that q cannot idle any further.

The axioms RT6-9, that define the bounded initialization, are very similar to the
axioms RT2-4 (see Table 2.2) which define the initialization operator. Only the
conditions for the atomie cases have to be changed.

The axiom CMl is exactly the same as in ACP. However, together with the
axioms for the left merge it does not result in arbitrary interleaving, since the time
stamps of the atomie actions determine the possible orderings. For example

a(2) llb(3) = a(2) lL b(3) + b(3) lla(2) + a(2)!b(3)
a(2) · b(3) + ó(2) + ó(2)

= a(2) · b(3)

3.5 A Term Semantics for ACP p

Table 3.4 contains the rules for the Ut(P) predicate. Table 3.5 contains the action
rules for the term semantics for the new operators 11, J, lL and aH. The action rules
for the operators of BPApó can be found in Table 2.3, where p, q now range over
T(ACPp).

Note that we have in the idle semantica < p, t >
term semantics u. (p). Hence, the rule

< p', r > iff we have in the

1 In [FK92] an axiomatization is given without introducing the bounded initializati~n. There we
had two axioms which correspond with CM3p, namely CM3~, U(q) > t : (a{t) · p)lLq = a(t) · (pjjq),
and CM3~, U(q) $ t : (a(t) · p)lLq = 6(U(q)). Similarly, we had two axioms which correspond
with CM2p. We have chosen to follow Baeten and Bergstra ([BB91]) here since CM2p and CM3p
are more simHar to resp. CM2 and CM3, and moreover, we will need the bounded initialization
later on anyway.

52 3. ACP with Time Stamps

CF lp a(r) lb(r) 'Y(r)
CF2p r i= t a(r)lb(t) li(min(r, t))

CMl Pilq plLq + qlLp + plq
CM2P a(r)lLp (a(r) 2> U(p)) · p
CM3p (a(r) · p)lLq (a(r) » U(q)) · (PIIq)
CM4 (Pl + P2)1Lq = P1ll q + P2ll q
CM5p (a(r) · p)lb(t) (a(r)lb(t)) · p
CM6p a(r)l(b(t) · p) (a(r)lb(t)) · p
CM1p (a(r) · p)l(b(t) · q) = (a(r)lb(t)) · (PIIq)
CMB (Pl + P2)lq P1lq + P2lq
CM9 Pi(ql + Q2) = PIQl + PIQ2

Dlp af/.H oH(a(r)) = a(r)
D2p aE H OH(a(r)) li(r)
D3 aH(p+q) = aH(p) + aH(q)
D4 oH(P · q) aH(P) · aH(q)

RT5" r<t a(r) 2> t a(r)
RT5f r"2_t a(r) 2> t li(t) p
RT6p (p+ q) » t p»t+q»t
RT7p (p. q) » t = (p » t). q

Table 3.3: The axiom system ACP p

3.5. A Term Bemantics for ACPp 53

< p, t > < p', r >
•(r) < q, t > ----4 < q', r >

where < q, t > ~ < q', r > implies q = q', is reformulated in the term semantics
by

p

p'llq

t<r

(t, rE Time)

Table 3.4: Rules for Ut(P)

Lemma 3.5.1 (Correspondence between 5::!. and +-T')

p,q E T(ACPp)

Proof. Omitted. D

We have

Theorem 3.5.2 (+-7 is a congruence over ACPp)

Proof. The set of action rules is in the path format [BV93]. D

The following theorem can be proven by checking it for each axiom separately.

Theorem 3.5.3 (Soundness) p, q E T(ACPp)

ACP p 'r p = q ~ p <-+ q

Proof. Omitted. D

54 3. ACP with Time Stamps

P'll (r » q) , p'll(r » q)

r»q

P V q ~ t/ !(a, b) = c

pllq ~ q' , qjjp ~ q'' pjq ~ q' , qjp ~ q

r<t
a(r) 1 r<t p---+p

p»t
a(r) 1 p»t---+p

(a,b,c E A, r,t E Time, H Ç A)

Table 3.5: Action rules for ACP p

3.6 Elimination and Completeness

We can show that every process term can be reduced to a prefix normal form.

Theorem 3.6.1 (Elimination Theorem for ACPp)
For each term p E T(ACPp) there is a prefix normal form p' such that ACPp 1-

p=p'

Proof. The proof is similar to that of Theorem 1.3.1. So, first we show for any
two prefix normal forms z, z' and 0{ 11. ll, I}, that there is a prefix normal form u
such that ACPp 1- zDz' u. This is proven by induction on depth(z +z', D). For
the details of this induction we refer to the proof of 1.3.1. We have to adapt some
rules, some of the new versions are given below

3.6. Elimination and Completeness 55

a(r)lLz' a(r)·z1 if r < U(z')
a(r) lL z' = t5(U(z')) if r 2:: U(z')

a(r)lb(r) 'Y(r)
a(r) lb(t) 6(min(r, t)) if rIt

The other rules for lL and I are adapted analogously. The rule for Pllq remains.
Finally we give the rules for p » t, where p is a prefix normal form:

a(r) » t a(r) if r < t
a(r) » t 6(t) if r 2:: t
(Zo+ z1) » t Zo » t + z1 » t
(a(r) ·zo)» t = a(r)·z0 if r < t
(a(r) ·zo)» t t5(t) if r 2:: t

The general case follows by induction to the number of occurrences of ACP p oper­
ators. D

And we have obtained that ACPp axiomatizes ±:t completely.

Theorem 3.6.2 1:/p,q E T(ACPp) p±:tq ACPp 1- p = q

Proof. Suppose that p ~ q. According to Theorem 3.6.1 there are prefix normal
forms p', q' such that ACP p 1- p p' and ACP p 1- q = q'. Then by the soundness
of ACPp w.r.t. ±:tand by the transitivity of ±:t we obtain p' ~ p ~ q ±:t q', and
since p', q' E T(BPAp6), for which we have already proven the completeness, we get
BPAp6 1- p' q'. Hence, ACPp 1- p = q. o

56 3. ACP with Time Stamps

4

BPA with. Prefixed Integration

4.1 Introduetion

In Chapter 2 we have stuclied BPAp8, in which all atomie actions are decorated
with a fixed time stamp. These time stamped processes do not allow us to express
processes that can execute actions within a certain time interval. Therefore, we
extend BPAp8 with the integral construct, which is the alternative composition over
a continuurn of alternatives, it is introduced in real time process algebra by Baeten
& Bergstra [BB91]. They have process terms like fves p, in which the free occurences
of the time variabie v in p become bound, and where S is an arbitrary subset of the
reals. The process that can execute an action a in the interval [1, 2] is expressed by
the process term

r a(v)
JvE[l,2]

In this thesis we take a more restrictive view on integration than in [BB91), called
prefixed integration. We require that every action has as time stamp a time variabie
directly preceded by the binding integral. Furthermore, we do not have arbitrary
subsets of the reals, but subsets that can he described by boolean expressions over
time variables. E.g. we allow the following term

r (a(v). [b(w))
Jl<vAv<2 lv+lwAwv+2

which is also denoted by

r (a(v). [b(w)).
lvE(l,2) lwe[v+I,v+2]

But we do not allow terms like

[([a(w)) or, r (a(2). b(v)) or,
Jv>l Jw>v+l lv>l

r. . a(v)
lv 1S pnme

57

58 4. BPA with Prefixed Integra.tion

The restrietion to prefixed integration may seem a severe one. But we have not yet
encountered a realistic process for which prefixed integration was too restrictive. In
Chapter 12 on related work we show that all known other timed process algebras
fall within prefixed integration as well.

We introduce the notions of bounds, conditions and substitutions. A bound is a
linear expression over time variables, a condition is boolean expression over bounds,
and a substitution is a function that assigns bounds to time variables. For example,
2v + 1 > 3w is a condition, that is validated by the substitution [2/v][1/w]. We
have process terms fa(a(v) · p), where a is a condition. The construct fa binds the
occurrences of the time variabie v in p. This gives us the notion of free and bound
variables. In Section 4.2 we discuss the time domain in detail and we define the
syntax and interpretation of bounds and conditions.

In Section 4.3 we define the syntax for process terms with prefixed integration
in detail.

In Section 4.4 we give an operational semantics. First we give action rules for
terms without free occurrences of time variables. Fora with var(a) ç; { v} there is

a transition faa(v) · p ~ r » p[rjv] whenever a is validated by the substitution
[r j v] (that assigns r to v). In this way we obtain bisimulation equivalence for terms
without free time variables, we define bisimulation equivalence for terms with free
time variables indirectly by considering all possible substitutions. We give also
action rules for terms with free occurrences of time variables, since these action
rules are in the path format of Baeten and Verhoef bisimulation equivalence is a
congruence.

In Section 4.5 we give the axiom system BPApói, and we discuss substitution
and a-conversion in detail.

Finally, in Section 4.6 we prove that BPApói axiomatizes completely bisim­
ulation equivalence for terms with free time variables. To obtain this result we
generalize the definition of a prefix normal form and we prove that any term can be
reduced to such a prefix normal form. Then we construct for each two terms p and
q, possibly containing free time variables, a condition that characterizes for which
substitutions p and q bisimulate.

4.2 The Time Domain, Bounds and Conditions

4.2.1 The Time Domain

In Section 2.2 we have introduced our time domain Time. Here, we introduce
several operators, by which more complex time expressions can be constructed.
We introduce the binary operators + and ·, which wil! have their usual meaning.
Furthermore, we have the unary operators and -l; -t is the opposite of t, i.e.,
t + (-t) = 0, and r 1 is the inverse of t, i.e., t. 1.

So, from now on we consider Time as a collection of constants, at least containing
0 and 1. LetS be the signature {. +. , . ·. , -. , .-1 , Time}. We denote the set

4.2. The Time Domain, Bounds and Conditions 59

of terms overS by T(S).
On T(S) we assume a total ordering that is a transitivo and reflexive relation

that relates every two t0 , t 1 E Time. Furthermore, we assume that ::5 is preserved
by addition by t E Time, and preserved by multiplication by positive t E Time.

For teehuical reasons we split ::5 in = and <. So, we assume that t0 = t 1 iff
to ::5 t1 and lt ::5 to, and that to < t1 iff to ::5 h and t1 i:. to.

Let FLD be the theory of fields [CK90], as given in Table 4.1. We assume that
satisfies the axioms of FLD.
For convenience, we assume that for every tE T(S) there is a c~mstant Ct E Time

such that t =Ct, and that for any two t0 , t 1 E Time we have t0 = t 1 .

x+y = y+x
(xo + x1) + y xo+(xi+Y)
x+O x
x+ (-x) 0
x· (Yo + Yl) = x· Yo +x· Y1
Xo. Y +xl. Y = (xo +x1) · Y
Xo · (x1 · y) (xo · x1) · y
x·y = y·x
1·x x
O·x = 0

x;fO x·x-1 1
o-1 1

Table 4.1: FLD, the axioms of a field

4.2.2 Bounds

TVar denotes an infinite, countable set of time variables. The set Bound of bounds,
with typical element b, is defined by the following BNF sentence, where t E T(S)
and v E TVar. ·

b ::= t I V I bl + lJ.z I t. b

The set of variables in a bound b is denoted by var(b). If var(b) = 0, then b is a
time closed bound, otherwise it is a time open bound.

4.2.3 Substitutions

By E we denote thesetof substitutions, that are mappings from TVar to Bound.
A typical substitution is denoted by (!. We have a subset of (time closed)
substitutions:

60 4. BPA with Prefixed Integration

r;cl = {er I Vv E TVar : cr(v) E Time}

cr(b) denotes the bound that results from substituting cr(v) for each occurrence of v
in b, for all v E var(b).

4.2.4 The syntax of conditions

A condition is a boolean expression over time variables; the atomie conditions are
of the form b < b' and b = b' for b, b' E Bound. The set of conditions is denoted by
Cond.

a ::= tt I ff I b1 < b2 I b1 = b2 I a1 1\ a2 I a1 V 0:2 I -.a

We denote thesetof time variables of a by var(a).

4.2.5 The interpretation of a condition

F= tt to :::5 t1 t1 :::5 to to :::5 t1 to tl

F= to tl f= to < t1

f=o: 0:

Fa V {3, f=j3va f=al\,8 f=-.(o:)

f= u(tt)
f= cr(bo) = cr(b1) f= cr(bo) < cr(bt)

F= cr(bo bt) F= u(bo < b1)

f= u(a) V u(,B) f= u(a) 1\ u(/3)
f= u(a V ,8) F u(a 1\ ,8) f= cr(-.(a))

Table 4.2: Rules for validating time closed conditions

In Table 4.2 wedefine a predicate f= on time closed conditions. For each u E r;ct
and a we have var(u(a)) = 0, and thus either f= u(a) or !;t u(a). We denote the
subset of substitutions in r;ct that validate o: by [a].

[o:J := {u E r;ct I f= cr(o:)},

Moreover, fora time open o: we take f= a if [o:] r:c1. We take f= a= ,8 if [a]= [,8].
In Appendix A we show that b b' iff f= cr(b b'). This is shown by constructing

a normal form for each bound, that is a bound of the forrn:

r1 • V1 + ... + r n · Vn + t (n 0),

4.2. The Time Domain, Bounds and Conditions 61

where r; E Time\0 and all variables are different.
In that appendix we give also an axiom system CA for reasoning with conditions

that contain time variables. We have the following proposition:

Proposition 4.2.1 (Soundness and Completenessof CA)

I= a = !3 CA 1- a = !3
Proof. See Appendix A. D

4.2.6 Intervals and conditions

We assume two symbols, -oo (minus infinity) and oo (infinity) not in Bound. We
denote BoundU { -oo, oo} by Bound-oo,oo· We have some notations that concern oo
and -oo.

b < 00 tt

oo<b jJ

Similarly we have -oo < b, b < -oo, b = oo, and b = -oo as notations of either tt
or Jj. The expression b :S b' abbreviates b < b' V b b', and for b0 , b1 E Bound-oo,oo
we have

V E (bo, b1) agb bo <V A V <bi

v E [bo,bi) agb bo :S v Av < b1

and similarly we have v E (b0 , bi] and v E [b0 , b1] as abbreviations for conditions.
Thns v E (b, oo) abbreviates b < v A v < oo, which in turn abbreviates the

condition b <vA tt, which can be reduced to the condition b < v.

4.2. 7 Partitions and refinements

Two conditions o:1 and o:2 are non overlapping if [o:1] n [o:2] = 0.
A finite collection of conditions {a1, ••• , an} is called non-overlappingif each pair

in the collection is non-overlapping. A collection of conditions {Pi} is called a
refinement of a collection of conditions {a;} if it is non-overlapping, ui[/3il U;[o:;]
and for each j there is ani such that [Pil Ç [a;]. A collection of conditions {Pi} is
called a partition if it refines { tt}.

The following Refinement Lemma will play a crucial role in the main theorems,
like the decidability theorem for BPAp8I, as will be clear in the sequel. Note that
this lemma depends heavily on the syntax of the bounds, if we would allow bounds
like v 2

, then we do not have this lemma any more.

Lemma 4.2.2 (Refinement Lemma) Fix a time variable v. For each condition a
there is an equivalent condition ofthe form Vj(fJj/\V E Vj), where var(IJJ)Uvar(Vj) Ç
var(a)\{v} for allj.

62 4. BPA with Prefixed Integration

Proof. See Appendix A. D

This lemma is our motivation for having and < in our language for conditions,
instead of ~- If we have only ~ then an expression like v E V may abbreviate a
condition with negation, which we do not prefer.

4.2.8 Some more abbreviations

We introduce some more abbreviations for conditions, where b, b0 , b1, b2 E

B ound-oo,oo.

a=?/3 agb -.(a) v j3

qbo, b1D = 0 agb b1 $. bo if (or D =)
a_Qb

bl < bo ïq= [and D =]

qbo, b1D ::/= 0 abb
-.(qbo, b1D 0)

b < sup(qbo, b1D) abb
qbo, b1D ::/= 0 1\ b < b1

b > sup(1bo, b1D) agb 1bo, b1D 0 V b1 < b

Furthermore, V "' V' abbreviates the condition that V and V' are overlapping or
adjacent intervals, such that V U V 1 is an interval as well.

4.3 Terms with conditions

4.3.1 The ultimate delay

In Chapter 2 the ultimate delay of p, denoted by U(p), is a time stamp, that cor­
responds with the upperbound of points in time to which p can idle. For example
U(a(2) · c(4) + b(3)) = max(2, 3) = 3.

For terms in Tct(BPAp81) the ultimate delay can be a time stamp as well, for
example fvE(l, 2J a(v) · c(4) + fwE(2,3) b(w) max(2, 3) 3. For termsin T(BPAp61),
that may contain free time variables, the most obvious generalîzation seems to he
to define the ultimate delay as a bound. However, it makes only sense to put
UCfvE(bo,bt) P(v)) = b1 under the condition that b0 < b1 • Since we do not allow
conditions in our bounds, we cannot define UCfvE(bo,bt) P(v)) properly as a bound.
For similar reasons, we can not define U(a ;--7 p) as a proper bound.

A way out is to add a bound b as parameter to the ultimate delay, and to
identify Ub(JvE(bo,bt) P(v)) with the expression b $. sup((b0 , b1)), that abbreviates the
condition (b0 , b1) ::/= 0 1\ b < b1• If for certain t Ut(P) reduces to tt, then it means
that p can idle till t. In other words, we have introduced the predicate Ut(P), that
we had already in the term semantics, in the calculus as well.

We extend the set Cond to Condu by allowing conditions of the form Ub(P) as
well, where b E Bound. We take var(Ub(p)) = var(b) U fv(p). We have to introduce
two rules for validating this new condition. Note that the premise Ut(P) of the rule

4.4. An Operational Semantics for Time Open Terms 63

on the left hand side in Table 4.3 is the predicate as defined in the Tables 2.3 and
4.4.

Table 4.3: Additional rul es for time closed Ub(P)

4.3.2 The syntax for process terms

Let a E Condu, a E Ab and b E Bound. The set T(BPApbi) of (time open) process
terms with conditions is defined by

p ::=a:-+p I La(v) I L(a(v)·p) I p+p I p·p I b»p ia(p)

We abbreviate fJJD(v) by 6. Insome cases we write f"'(a(v)) · p for faa(v) · p, in
order to stress that the term p is not in the scope of the integral fa·

4.3.3 Free time variables

Wedefine inductively the collection fv(p) of time variables appearing in a process
term p that are not bound by an integral sign in p, the so-called free variables:

fv(Jaa(v)) var(a) {v}
fv(J,.(a(v) · p)) (var(a) U fv(p))- {v}
fv(p + q) fv(p) U fv(q)
fv(p · q) fv(p) U fv(q)
fv(a(p)) {wl3v v E fv(p) and wE var(a(v))}

A process term p with fv(p) = 0 is called a time-closed process term. Wedefine

Tcl(BPAp61) = { p E T(BPApól) I fv(p) = 0 }

Moreover, a term p with fv(p) :/= 0 is a time open term.

4.4 An Operational Semantics for Time Open
Terms

4.4.1 A generalization of bisimulation equivalence

We provide any time closed process term in Tcl(BPA{JDI) with a transition system.
Hence, we add some new action rules, see Table 4.4, that are applicable for time
closed terros only.

64 4. BPA with Prefixed Integration

The action rules for the +, · and » can be found in Table 2.3, in which case p, q

are supposed to range over Tcl(BPAp81). The rules for substitution, that is for O"(p)
where fv(O"(p)) = 0, are given in Table 4.6.

I= a[rjv]

fa(a(v) · p) ~ r » p[rjv]

a(r) 1 p -----+ p
a(r)

a :----> p -----+ p'

I= a[rjv]

faa(v) ~ J

I= a(r) I
a p -----+ v

a(r)
a :----> p -----+ J

I= a[rjv] t < r

UtUa P(v))

i= a Ut(P)
Ut(a :----> p)

(r, tE Time)

Table 4.4: Additional action rules for time closed fa P(v) and a:----> p

dbo) ::S O"(bi) O"(bi) ~ O"(bo)

Fu bo < b1

O"(b0) ::S O"(bi) O"(bt) ::S O"(b0)

l=u bo = b1

Fu a V ,B, l=u ,B V a

~u a

Fu -,(a)

u;<bJ(P)
Fu Ub(P)

b, bo, b1 E Bound, O" E I.:c

Table 4.5: Rules for validating a condition in I.:-semantics

The action rules for the idle semantics are analogous, they are left to the reader.
We extend the definition of+-> to termsof T(BPAp81) by parameterizing the equiv­
alence with a condition, see Definition 4.4.1.

Definition 4.4.1 (a-Bisimulation equivalence)
p, q E T(BPApol) p +-><> q iff VO" E [a] : O"(p) +-> O"(q)

We abbreviate p .._.tt q by p +-> q.

4.4. An Operational Bemantics for Time Open Terms

I= u[rfv](a)

u(J, a(v)) ~ V
a(r)

u(p) + u(q) ----+ V
a(r)

u(p + q) ----+ V

u(p) · u(q) ~ rl
a(r) u(p. q) ----+ p'

u(b) » u(p) p'

u(b » p) ~ p'

u, p, E 1::

u(b) » u(p) ~ V
u(b » p) ~ V

a{r)
u(a) :--+ u{p) ----+ V

a(r)
u(a:--+ p) ----+ v

(p) a(r) . I
0" oP, ----+ V

u(p,(p) ~ V

Ut(u(p) + u(q))
Ut(u(p + q))

Ut(u(b) » u(p))
Ut(u(b » p))

Ut(u o p,(p))
Ut(u(p,(p)))

Table 4.6: Action rules for substitution in term semantics

65

66 4. BPA with Preflxed Integration

Example 4.4.2

fvE[b,b](a(v) · c(w + 1)) +-+b=w fvE[b,b](a(v) · c(v + 1))
fvE(b,b')(a(v) 'fwE(v,e) c(w)) +-+b<e<b'

fvE(b,e) (a(V) ' fwE(v,e) c(W)) + fvE[e,b') a(V) ' {j
fvE[b,b'J (a(V) ' fwE(v,b') c(W)) +-+

fvE[b,b')(a(v) · fwE(v,b') c(w)) + a(b') · {j

4.4.2 Bisimulation equivalence is a congruence

We do not obtain immediately that +-+ is a congruence over T(BPAp81) as the
action rules for substitution, see Table 4.6, are not in the path format of Baeten
and Verhoef. Moreover, the action rules define +-+ only on Tel(BPAp8I), and +-+over
T(BPAp81) is defined indirectly, see Definition 4.4.1.

In this section we give action rules in the path format for terms in T(BPAp81),
that may contain free occurrences of time variables. Each transition is labelled with
a timed action and a substitution (]" E :Bel that determines the values for the free
time variables in the target state. This semantics is called :E-semantics and its action
rules are given in Table 4. 7. We have to redefine the predicate I= as well, in Table
4.5 we define a predicate l=u for arbitrary conditions.

The resulting bisimulation equivalence is denoted by +-+~.
Before we can prove that +-+~ coincides with +-+ we need some properties of both

equivalences.

Proposition 4.4.3 p E Tel(BPAp81), (]" E :E

dP) +-+ P

Proof. By induction to the size of p.

Corollary 4.4.4 p, q E Tel(BPAp81), (]" E :E

p +-+ q {=::::} (]"(p) +-+ (]"(q)

Proposition 4.4.5 p E T(BPAp8I), (]" E :Bel

1 (]"(p) ~ p'

2 (]"(p) ~ J
3 Ut((]"(p))

a(r) 1 p ---->up
a(r) I

P ---->u V

Ut(p)

Proof. By induction on the length of the derivation.

Lemma 4.4.6 For p, q E T(BPAp8I) we have p +-+tt q {=::::} p +-+~ q

Proof.

D

D

4.4. An Operational Semantics for Time Open Terms

Fu[r/v] (a)
a(r) [](faa(v)·P---">uT»CJrjv p)

a(r) 1 p ---">up

p+q~uP1

a(r) 1 p ---">up

q+p~uP1

a(r) 1 p ---">up

p. q ~up'. CJ(q)

P~uP1 Fub<r

b»p ~uP1

a(r) 1 p ---">up
a(r)

a :--* p ---">up'

a(r) 1 P ---">uol-' P

()
a(r) 1 MP ---">uP

Fu[r/vJ (a) F=u t < r

u:(J"'P(v))

u:(p)

u:(P. q)

Fut :::; b

u:(b » p)

u:(p) F=u a

u:(a :--* p)

Fu[r/v] (a)

faa(v) ~u J

a(r) 1 P ---">u V
a(r) 1 P + q ---">u V

a(r) 1 P ---">u V
a(r)

q + p ---">u V
a(r) 1 P ---">u V

p. q ~u r » CJ(q)

a(r) 1 P ---">u V
a(r)

a :--* P ---">u V
a(r)

P ---">uol-' V
()

a(r) I
MP ---">u V

u:(p)

u:(P + q), u:(q + p)

u:(p) F=u b < t
u:(b » p)

u;o~-'(p)

u:(p,(p))

O" E I;cl, M E 1::

Table 4. 7: Action rules for 1::-semantics

67

68 4. BPA with Pretixed Integration

• ===>. Assume p .,_..u q, we construct

{ (p', q') I p', q' E Tcl(BPApól) q'}

and we show that nu {(p,q)}: p q.

First we discuss the pair (p, q). Consider p p', then we have to show that

there is a q' such that q ~" q' and p''Rq'. By Proposition 4.4.5, part 1,

we have a(p) ~ p'. Since we have a(p) ±:± a(q), there is a q' such that

a(q) ~ q' and p1 +-+ q', and thus p''Rq' as well.

The casesp .j and Ut'(p) are left to the reader.

Next, we discuss a pair (p', q') E 'R. Consicier p1 p11
, then by Proposition

4.4.5, part 1, ~,we have a(p') p11
• Since (p', q') E 'R also p' +-+ q', and

since p', q' are time closed we have a(p') a(q') and thus there is a q" such

that a(q') q", from which we obtain that q' ~" q" and p"'Rq".

The cases p' ~u .j and U[(p') are left to the reader.

• Assume p .,_..E q. Take

'R { (p', q') I p', q' E T 01 (BPApól) p1
"__.'i:. q'}

and we show that 'RU {(a(p), a(q))}: a(p) +-+ a(q)

First we discuss the pair (a(p), a(q)). Consider a(p) ~ p', then we have to

show that there is a q' such that a(q) q' and p''Rq'. By Proposition 4.4.5,
a(r) .

part 1, we have p --+" p', smce p q there is a q' such that q q'
and p' q' and thus p''Rq' as well. By Proposition 4.4.5, part 1, we

obtain a(q) q' and we are ready.

The cases a(p) ~ J and Ut(a(p) are left to the reader.

Next, we discuss a pair (p', q') E 'R. Consider p' ~ p11
, then we have to

11 a(r) (I) . l find a q such that q' --+ q" and Ji , q11 E 'R. Take an arb1trary a E ~c .

Since p1 is time closed we have p' ±:± a(p'), and thus there is a p~ such that

a(p') p~ and pu "..... p~. From a(p1
) p~ it follows that p' p~,

and since Ji q' there is a q~ such that q' ~" q~ and p~ q~. From

q1 q~ it follows that a(q') q~, and since q' +-+ a(q') there must be a
a(r)

q11 such that q' --+ q" and q~ . From the previous part of this proof and
p11 rJ;, q11 <-+ q~ we obtain p" q11 "__.E q~. Finally, by rJ; "__.E q; and
the transitivity of .,_..E we obtain p11 q", and thus p11'Rq" and we are ready.

a(r)
The cases a(p') ---+ .j and Ut(a(p') are left to the reader.

4.5. Reasoning with Time Open Terrus 69

0

4.5 Reasoning with Time Open Terms

4.5.1 Substitution and a-conversion

In Table 4.8 we give the axioms for substitution. Consider the process term

[(a(v) · [b(w))
lv>l lw>v+l

and we assume that want to replace v by w, using a-conversion. Obviously, it is not
right to obtain

f (a(w) · f b(w))
lw>I lw>w+l

as both occurrences of the variables w in w > w + 1 are bound by the same integral.
So, first we have to substitute a variabie w' for the bound variabie w, in order to
avoid the above clash of bindings.

This renaming of bound variables is forced by the condition on SU2 and SU3. The
associated derivation that uses the axioms SUl-6 is given in the following example:

Example 4.5.1

8.!!_5

SU2

fv>I(a(v) · fw>v+I b(w))
fw>I(a(w) · fw>v+l b(w)[w/v])
fw>l(a(w) · fw'>v+I b(w')[wjv])

fw>I(a(w) · fw'>w+I b(w'))

In the literature it is usual to deal with process terms modulo a-conversion and to
have the above renaming of bound variables impHeit in the notion of substitution,
for details we refer to [Sto88]. a-conversion also implies that the objects of study
are not expressions, but congruence classes of process terms. Since we do not want
to deal with congruence classes, but with concrete process terms, we have decided
not to work modnlo a-conversion.

4.5.2 The axiorn systern BPApól

The axiom system BPAp81 is given in Table 4.9, the process terms left and right
from the =-symbol are arbitrary process terms from T(BPAp8I). The axiom A6c
says that all idle behavior from the neighbors of a 6-summand can be subtracted
from that ó summand. For example

70 4. BPA with Prefixed Integration

SU u(p+q) = u(p) + u(q)

SU2 wE fv(Jaa(v)) v tf var(u(w))
u(Ja a(v)) = fo'\v(a) a(v)

SU3 wE fv(Ja(a(v) · p)) v tf var(u(w))
u(Ja(a(v) · p)) fu\v(a)(a(v) · u\v(P))

SU4 u(u'(p)) = u o u'(p)

SU5 wjtfv(Jaa(v))
faa(v) = fa[w/v]a(w)

SU6 w tf fv(L"(a(v) · p))
J.,(a(v) · p)) = fa[w/v](a(w) · p[wjv])

Table 4.8: Axioms for substitution

fvE(1,5) a(V) + fvE[5,5] 6(W)

a(v) + fvE[5,5]tdv:::;5) b(v)
fvE(1,5) a(V) + f JJÓ(V)

fvE(1,5) a(V) + Ó

fvE(1,5) a(V)

4.5.3 The Lifting Lemma

In the sequel we will need to lift conditions to the top of a process term. Hence, we
have following Lemma:

Lemma 4.5.2 (Lifting Lemma) If {au·\v E W;} is a partition and v jt var(a;)U
var(W,), then

L (a(v) ·I:;{ a; 1\ v E W; :----+ p;})

Pro of. The pro of is based on the fact that if { 'Yi} is a partition then

BPApbi 1- 'Yj :----+ I:: hi' :----+ Zj•} = {3 :----+ Zj

j'

and we have BPApbii-

4.5. Reasoning with Time Open Terms 71

Al p+q = q+p
A2 (p+q) + z p+ (q+ z)
A3c fa P(v) + ff1 P(v) fcNP P(v)
A4 (p + q). z p·z+q·z
A5ê v tf. fv(q) f"(a(v)) · q J,;,(a(v) · q)

• A5~ v tf. fv(q) J"(a(v) · p) · q fa(a(v) · (p · q))

A6 p+ó p
A6c v ~ fv(p) p+ faó(v) P + fa!•n(Uv(p)) ó(V)
A7c J"(ó(v) · p) faó(v)

i RTOc fttP(v) 8
RTlc fc,(a(v) · p) = J"(a(v) · (v » p))

RT2c v tf. var(b) b » J"P(v) faAv>b P(v) + 8(b)
RT3c b » (p+ q) = (b » p) + (b » q)

Cl a:-> (p+q) = a:--. p+a :-> q
C2 v ~ var(a) a :-t J11 P(v) = far.P P(v)
C3 J"(a(v) · p) = J,.(a(v) ·a :-t p)

• Ulc Ub(P +q) Ub(P) V Ub(q)
. U2c Ub(JvEV P(v)) b < sup(V)
• U3c Ub(a :-t p) = a A Ub(P)

(a E As, b E Bound, P(v) is either of the form a(v) or a(v) · p)

Table 4.9: An axiom system for BPApói

72 4. BPA witll Prefixed Integration

f,.(a(v) · E;{a; 1\ v E W; :-+ p;})
'I:.ifaAa;AvEV;(a(v) ·I:,;{ a; 1\ V E W; :-+ p;})

= I:.d:>:Aa;AvEW; (a(V) . I:,,. {a,, 1\ V E w,, :-+ Pi'})
Li faAa;AvEW; (a(V)·

{a; 1\ VEV n Wi :-+ I:,,.{a;• 1\ V E W;• :-+ p;,}})
faAa;AvEW;(a(v). {a; 1\ VEV n W; :-+ p;})
faAa;AvEwJa(v) ·Pi)

0

4.6 Completeness and Decidability

Definition 4.6.1 (Prefix normal forms)
p is a prefix normal farm, ij it is of the farm

2: L(a;(v) · p;) +EL bj(v)
,a, J{JJ

where a;, /3j E Cond, a; E A, bj E As and each Pi is a prefix normal form as well.

Proposition 4.6.2 For every p E T(BPApói) there is a p1 in prefix normal farm
such that BPApói 1- p = p1

•

Proof. First we introduce some "intermediate" versions of prefix normal forms.
A U-prefix normal form is a prefix normal form as above, with that respect,

that a;, (31 E Condu (they may still contain conditions of the form Ub(z)), and the
variables that are bound by different initial integrals may differ as well. Furthermore,
each p; is a U-prefix normal form as well.

A var-prefix normal form is a prefix normal form as above, with that respect,
that a:;, f3J E Cond, though the variables that are bound by different initia} integrals
may still differ. Furthermore, each p; is a var-prefix normal form as well.

The proof consists of three steps. First we show that every term can be reduced
toa U-prefix normal form. Next, we show how a U-prefix normal can be reduced to
a var-prefix normal form, by replacing all conditions of the form Ub(z) by conditions
in Cond. Finally, we show that a var-prefix normal form can be reduced toa prefix
normal form.

• First we discuss the cases where the subterrus are already in U-prefix normal
form.

1. We show that for any substitution a and U-prefix normal form z there is
a U-prefix normal form u such that BPApói 1- a(z) u. The cases where
z = z0 + z1 and z a'(z0) follow directly from the axioms SUl and SU4
respectively and by induction.

Consider a(J .. a(v)), we take a variabie v' such that 'Vw E fv(J"' a(v)) we
have v1 rt a(w). Then

4.6. Completeness and Decidability 73

BPApOl f- <T(f a(v)) s~5 <T(f a(v')) s~2 f a(v')
Jo. la[v' fv] lu[v'/v](<>)

Consider <T(Ja a(v) · z0), again, we take a variabie v' such that Vw E

jv(Ja a(v) · z0) we have v' rf_ <T(w). By induction there is U-prefix normal
form z~ such that BPAp8I f- z0 [v' lv] = z~, and we have

BPAp81 f- <T(Ja a(v) ·zo)
SU6

<T(Ja[v' fv] a(v') · Zo [v' I V])
ind) <T(Ja[v'/v] a(V1

) • Zb
SU3

fu[v' /v](a) a(v') . <T\v• (zb)

And we are ready by induction.

2. We show that for any b and U-prefix normal farm z there is a U-prefix
normal u such that BPApól f- b » z = u. We use induction to the size of
z. In case b » (zo+ zi) we reduce it to b » z0 + b » z1 and by induction
we are ready.
In case b » fa(a(v) · z0), then we take a variabie v' rf_ var(b). By the
previous case there is a U-prefix normal form z&, such that BPAp81 r
zo[v' lv] = zri. Then, we have

BPAp81 r
S.!!_6

cas_!! 1

R~c

b » fa(a(v) ·zo)
b » fa[v'fv](a(v') · zo[v'lv])
b » fa[v'fvj(a(v'). zri)

fa[v'fv]Av'>b(a(v') ·Zo)+ 8(b)

Similarly, we can show that for any o: and any U-prefix normal form z,
there is a U-prefix normal u such that BPAp8I f- o: :~ z u.

3. We show that for any two U-prefix normal farmszand z1 there is a U­
prefix normal form u such that BPAp81 r z·z' =u. In case of (z0 +z1)·z'
we reduce it to z0 · z1 + z1 · z', and we are ready by induction.
Consider J"(a(v) · z0) • z'. Fix a variabie v' such that v' rf_ fv(z0). By
the first case there is a U-prefix normal form zri such that BPApói r
zo[v' lv] = zb· So, we have

BPApói r
S~6

case 1

fcx(a(v) ·zo)· Z1

fa[v' fv] (a(V1
) • Zo [v1 I V]) • Z

1

fa[v' /v] (a(vl) . z~) . zl

fa[v'/v](a(vl). (zri. zl)),

and by induction we are ready.

Finally, we can prove by induction on the number of occurrences of b » .. ,
o: :~ .. , general multiplications and substitutions, that p can be reduced to
U-prefix normal form.

74 4. BPA with Prefixed Integration

• Assume we have a U-prefix normal form p, then we have to show that p can
be reduced to a var-prefix normal form, that is, we have to show that all
occurrences of Ub(z) in p can be removed by conditions in a.

For U-prefix normal forms we apply the usual definition of subterms; for a
U-prefix normal form q with fa 11ub(z)(a(v) · q') q, we do not consider z as a
subterm of q.

If u.(z) occurs in an initial integral of a certain subterm p1 of p, then we replace
z by .its U-prefix normal form.

We define the U-depth of a U-prefix normal form q as the longest chain q
q0 --+ q1 --+ ... Qn such that for some b the condition Ub(pi+1) occurs in
the condition of an initial integral of a subterm of q;. We show by induction
on U-depth(p) the the U-prefix normal form p can be reduced toa var-prefix
normal form.

If U-depth(p) = 0, then p is already a var-prefix normal form, and we are
ready.

Let U-depth(p) = n > 0, then we have to show that any occurrence of Ub(P')
in a subterm of p can he reduced to a condition a E Cond. Obviouslu U­
depth(p') < n, and by induction we have already constructed a var-prefix
normal form p" for p'. Consider a summand fa P(v) of p". We can reduce this
summand to L;, fa;llvEV; P(v), where {a; /1. v E V.} is the v-refinement of a.
Hence, we have Ub(Ja P(v)) V;a; /1. b ~ sup(V,). Since, U•(P") distributes
over all summands, we have shown that there is a condition a E · Cond such
that u.(p") can he reduced toa, and we are ready.

• Assume we have a var-prefix normal form p, then we have to show that p can
be reduced to a prefix normal form.

Let depth(p) = n, take n time variables, w1, ... , Wn, that do not occur free in
p.

Consider a subterm p' of p, with depth(p') k ~ n and let

Assume that we have replaced all variables at depth k' < k already by wk'·

We replace all v;'s and vj's by W~c and by the choice of w~c we can reptace v; in
each p; by wk without any problems.

D

In the above proof we have used that the set of time variables is infinite. Assume
this set is finite; for example, that there are only two time variables, v0 , v1. Then
we can not reduce Uv,=vJa(v1)))[vtfv0], as weneed at least one other time variabie
V2.

4.6. Completeness and Decidability 75

By abuse of notation we allow ourselves to omit the binding brackets of the
integrals in a prefix normal form. So, we write

while we mean

Next, we construct for each pairpand q a characterizing condition which determ;nes
under which substitutions p and q bisimulate.

A term p in prefix normal form is also in interval prefix normal for m if f• r every
summand fa P(v) the condition a is of the form v E V.

Lemma 4.6.3 (Characterizing condition lemma)
For all p, q E T(BPApól) we can construct a condition a with V'>r(aj ç;; fv(p + q)

such that

F t7(o:) <===> a(p) ±± a(q)

Proof. First we discuss the case where p and q are p:e'1x normal forms, by
induction to the si ze on p + q.

The first part of the proof presents the construction of the condition. In the
second part, we prove that this condition indeed has the required properties.

(Begin of construction.)
First construct o:(p, q) for the case where p, q are interval prefix normal forms. As­
sume

• Consider fvEV a(v) · p' Ç p where a E A. We construct a condition 1.fJ such that
fvEV a(v) · p' is asemantic summand of q. That is, if f= t7(1.p) and a(fvEV a(v) ·

a(r) . a(r)
p') - z then there Is a z' such that a(q) - z' and z ±± z'.

Take K(a) = {k E Kick = a}. By induction there is for each k E K(a) a
condition o:~ç such that

By the Refinement Lemma (4.2.2) there is for o:~ç arefinement

76 4. BPA with Prefixed Integration

where v rJ. var(/3':) U var(Z'f). We construct a partition {'Yy} which refines
each {,Bi}, by taking the cartesian product of all partitions {,Bi}. Hence, for
each y there is a index set X(k,y) such that x E X(k,y) implies "/y:::;. ,B'f.
Furthermore, since {/3':} is a partition we have that x, x' E X(k, y) implies
that .B'k = !3::'.
The condition that fvev a(v) · p' is a summand of

. L 1 a(w) · qk
kEK(a) vEWk

is denoted by the following

cp V "/y A v ç U (Wk n U Zk).
Y kEK(a) xEX(k,y)

Note that y =F y' implies "/y 1\ "/y' = ff.

• Consicter fvEV a(v) p where a E A, then the condition X such that fvev a(v)
is a semantic summand of q is simply

x= V Ç U Wf
L(a)

We do the same for every syntactic summand of q. Let I(A) ={iE Ila; E A}, that
is the subset of I of non-ó summands. Similarly we have J(A), K(A) and L(A). We
have obtained:

for each i E I(A) : cp;
for each j E J(A) : Xi
for each k E K(A) : 1/Jk
for each l E L(A) : wz

Finally we construct U=(P, q) as follows. Take an arbitrary time variabie v tf; fv(p+
q), then we will construct a condition in which v does not occur, and which is
equivalent with U"(p) {:} U"(q).

As p bas only summands of the form fvEvP(v) we know that U"(p) reduces to
V; v < sup(V;). Furthermore, v < sup(V) reduces to V =F 0 1\ v < sup(V), which
can be reduced further to V:/= 0/\ v < b, forsome bound b E Bound00 • Hence, Uv(P)
can be reduced further to V; v; =F 0 1\ v < b;. We can rednee this latter condition
to the form V; o:; 1\ v < b;, where {ai} is a partition such that o:; 1\ O:;r = jf, and
b; E Bound-oo,oo Similarly, we can reduce U"(q) to Vj /3i 1\ v < bj.

We take the cartesian product of {a:;} and {,Bj}, and we rednee U"(p) {:} Uv(q)
to the condition

{V;,j a; A f3J A v < b;} {:} {vï,j a:; A .BJ A v < bj}

which can be further reduced to

4.6. Completeness and Decidability

b'­
J

and we call this latter condition U=(P, q).

77

We collect all the conditions we have constructed so far, and we define a(p, q)
by

a(p, q) 1\ r.pi 1\ 1\ Xi 1\ 1\ '1/Jk 1\ 1\ wz 1\ U=(P, q)
iEI(A) jEJ(A) kEK(A) IEL(A)

Next, suppose p or q are prefix normal forms, but not interval prefix normal
forms. Then we rewrite each summand f7 a(v) · z of pand q, to "ft :--> fvEVi z,
where {"!1 1\ v E Vi} is the v-refinement of"(. In this way we obtain for p a term
L:k 'Y~ :--> Pk, and we rewrite it further to ai :-->Pi such that {a;} is a partition.
We do the same for q, by which we obtain (31 :--> q1. Finally, we take

a(p, q) =V a; 1\ f3J 1\ a(p;, q1).
i,j

It is now left to prove that for any CJ"

(End of construction.)

We prove it for interval prefix normal forms. The case where p and q are not both
in interval prefix normal forms is left to the reader.

===} Take CJ" such that != CJ"(a). We will show O"(p) .!:::!. CJ"(q).

- Consider a transition O"(p) · ~ z then we will show that there is a z'

such that CJ"(q) z' and z.!:::!. z'.

For CJ"(p) z there must be an index i such that a = ~ and z =
CJ"[rjv](v » p;). Since a==? r.p; we have != a(r.p;).
Let r.p be of the form

V "/y A v ç U (W,. n U Zk),
Y kEK(a) xEX(k,y)

as constructed above, then there is exactly one y such that I= a('Yy)·
Moreover, there must be a k E K(a) and an x E X(k,y) such that
r E CJ"(Wk n Zk) and thus

a ~ a[rjv](v » qk)(q)

Since

I= a[r /v] (f3k 1\ v E Zk)

we have by induction

78 4. BPA wjth Prefixed Integration

;) .=:!: u[r /v](ir~]ID;)» p

- Consider u(p) .j, then there is a j such that a b; and r E u(Vj).
Since I= u(x;) and r E u(Vj) there must be an index l E L(a) and

rE u(W{) hence u(q) ~ .j.
- Take at such that Ut(u(p)), then we have to show that Ut(u(q)).

Fix i,j such that I= u(o:;A{Jj), where G:ï,flj are taken from the construc­
tion of U=(p, q). Without proof we state that Ut(u(p)) iff I= t < u(b;)
and Ut(u(q)) iff I= t < u(bj). Since I= u(b; bj), it follows that Ut(u(q))
as well.

And by symmetry we are done.

{::::= Take u such that u(p) .=:!: u(q) then we have to show that I= u(o:).

- Fixani E L(a) then we show that I= u(cp;). Take a= a;, V= V;,p' = p,
and cp = cp,. Let cp be of the form

V< Îy A V ç U (Wk n U Zk)),
Y kEK(a) xEX(k,y)

as constructed above, then there is exactly one y such that I= uhv) and
it is left to prove that

u U (W" n l(Y) ~ u(
kEK(a) xEX(k,y)

Take an arbitrary r E u(V), then

u ~ u[r/v](v » p') (p)

Then since u(p) .=:!: u(q) there must be an index j such that

bj(r)
--+ u[r/v](v » qi)(q)

where bi = a and u[rjv](v » p') .=:!: u[r/v](v » %)· By induction
there is a characterizing condition o:(p1,q;) such that I= u[r/v](a(p', %)).
Consider the extra v-refinement of this condition o:(p', qi), let it be of the
form {fl: A v E Zk}, then there is exactly one index x such that

F u[rjv](flk A v E Zk)

and since rE u(Wk) we have

r E u(Wk 1\ z:)
and as well

r E u(U (Wk' U Zk)).
k'EK(a) xEX(k,y)

Since this holds for arbitrary r E u(V) we conclude

4.6. Completeness and Decidability 79

CY U (Wk n l(J') ~ CY(
kEK(a) xEX(k,y)

- The proof that f= CY(Xi) is left to the reader.

- We have to show that f= CY(U=(P, q)). It is sufficient to show that f=
CY(b; = bj), where i,j such that f= CY(a; 1\ f3j)·

Assume f= CY(b; f bj). Then we can findat such that f= CY(b;) < t < CY(bj).
Hence, •Ut(CY(p)) and Ut(CY(q)), but this contradiets CY(p) .._. CY(q), and we
are ready.

And by symmetry we are dorre.

If p or q is not in prefix normal form, then we can develop an algorithm, based on
Proposition 4.6.2, that assigns to each process term z a prefix normal form Zpnf·
Note that 'VCY E ~cl we have CY(z) .._. CY(Zpnf). We put a(p, q) = a(ppnf, qpnf), and we
are ready. D

Proposition 4.6.4

p<-t"'q ==::::} CAf-(a=>a(p,q))=tt

Pro of.

p ::2"' q ===} tfCY E [a] CY(p) .._. CY(q)
===? [a] Ç [a(p, q)]
===? [a=> a(p, q)] =~cl = [tt]
==::::} CA f- (a=> a(p, q)) = tt

Corollary 4.6.5 (Decidability of <-t"')
For each p, q E T(BPApól) and each condition a we can decide whether p <-t"' q

D

Proof. Construct the characterizing condition a(p, q) as is dorre in the proof of
the previous lemma. Then p <-t"' q whenever (a=> a(p,q)) = tt. D

We abbreviate BPApól f-a:--+ p =a:--+ q by BPApól, af- p = q.

Lemma 4.6.6 'Vp, q E T(BPApól)

BPApól, a(p, q) f- p = q

Proof. We prove the theorem first for the case where p and q are interval prefix
normal forms. We abbreviate a(p, q) by a and we assume

P LiEI fvEV; a;(v) ·Pi+ LjEJ fvEV' bj(v)
1

q ~ LkEK fvEWk ck(v) · qk + LlEL fvEW{ dz(v)

80 4. BPA with Prefixed Integration

• Consider fvEV a(v) · p' Ç p. Then a =} Vv cpy where cpy denotes the condition

'Yy 1\ V Ç U (Wk n U Z:}
kEK(a) xEX(k,y)

such that 'Yv 1\ v E z: =} a(p', qk) tt

Without proof we state

BPApól, V ç uwk 1- [P(v) ç L [P(v)
k lvEV k lvEWk

And the induction hypothesis, together with

"(y 1\ V E z: =} a(p', qk) = tt,

says us that

BP Apól, 'Yv 1\ v E ZI 1- p' i~d qk

And we prove BPApól, cpy 1-

fvEV a(V) . p'

c LkEK(a) LxEX(k,y) fvEWknz: a(v). p'

LkEK(a) LxEX(k,y) fvEWknz: a(V) . { cpy 1\ V E z: :--+ p'}
~d }

LkEK(a) LxEX(k,y) fvEWknz: a(V) . { cpy 1\ V E z: :--+ qk

LkEK(a) LxEX(k,y) fvEWknz: a(V) . qk

c LkEK(a) fvEWk a(V) . qk

And thus BPApól, a 1- fvEV a(v) · p' Ç q

• Consider fvEV a(v) Ç p where a E A. Then a =} V Ç UIEL(a) W{ and we have

BPApól,a 1- f a(v) Ç L f d1(v)
lvEV lEL(a) lvEW/

And thus BPApól, a 1- fvEV a(v) Ç q.

• Consider fvEV ó(v) Ç p.

Take 'Yi,j =a; 1\ /3j 1\max(b;,j) = max(ll;J), (see construction of U=(P, q) in the
proof of 4.6.3). Then we show 'Yi,j 1- fvEV Ç q.

By construction, we have either CA 1- 'Yi,j =} V = 0) = tt or CA 1- 'YiJ =} V =/=
0) = tt. In the first case we have

4.6. Completeness and Decidability 81

and in the secoud case we have

BPApói,"Y;,i f-1 8(v) Ç 1 _
vEV v:s;max(b;,j) 1 - ç q

v:s;max(b' i,j)

Hence, BPApói, a f-- p Ç q and by symmetry also BPAp8I, a f-- q Ç p from which we
obtain BPAp81, a f-- p = q.

If p, q are not both in interval prefix normal forms, then we can rewrite them
into L; a; :--> p; and Lj /3i :--> qj respectively, where {ai}, {f3i} are partitions
and p;, qi are interval prefix normal forms. Then a(p, q) = V;,ja; A ,6j A a(p;, qy)
Since {a; A (3i };,j is a partition it is sufficient to show that for each (i, j) we have
BPAp8I, a;A/3jAa(p,q) f-- p = q which reduces to BPAp8l,a;AJ)jAa(p;,qy) f- p; = qi
and we are ready.

If p or q are not in prefix normal form then we have
def

a(p, q) = a(Ppn/l qpnf) moreover we have BPAp8I f- p Pvnf and thus

BPAp81, a(p, q) f-- p = Phnf = qhnf = q

Theorem 4.6.7 (Completeness of BPApói) 'Vp, q E T(BPAp81)

p +-+"' q =} BPAp8I, af- p q

D

Proof. In BPAp8I we have CA f- (/3:::;. j)') tt and BPApói, (3' f-- z = z' imply
that BPApói, j) f-- z = z' as well.

Hence, the completeness follows direct from CA f-- (a:::;. a(p, q)) = tt and Lemma
4.6.6. D

Note, that the completeness and decidability of BPApói are heavily dependent
on the characterizing condition lemma (Lemma 4.6.3), that depends in turn on
the refinement lemma for conditions (Lemma 4.2.2). These lemmas motivate the
restrietion to prefixed integration. Due to the restrietion to subsets that can be
described by our conditions we can use our the refinement lemma. Due to the
restrietion that every integral must preeeed directly the action that uses the bound
variabie we can construct characterizing lemmas.

82 4. BPA with Prefixed Integration

5

ACP with Prefixed Integration

5.1 Introduetion

In this section we extend BPApó1 with the operators 11, I, ll and OH· The set
T(ACPpi) is defined hy the following BNF sentence, where a E A8 , a E Condu, b E
Bound and H Ç A.

p ::= J,a(v)l J"(a(v)·p)lp+plp·plb»pla:""""'plu(p)l
PIIP I pllp I PIP I 8H(P)

There is no need any more for the operator p » b, as will he discussed later. We
extend the definition of the set fv of free time variables, see Suhsection 4.3.3, hy
putting fv(pllq) fv(plq) fv(pllq) fv(p) U fv(q) and fv(8H(p)) = fv(p).

The action rules will not be given in this chapter, they can he gathered from
the Tables 2.3, 3.5, 4.6, 4.4. and Table 4.6. The action rules for substitution for a
term semantics for the additional ACP pi operators, such as given in Table 4.6 for
BPAp8, are left to the reader.

We inherit the definition of hisimulation equivalence for time open process terms
from Chapter 4, Definition 4.4.1. It is left tothereader to prove that hisimulation
equivalence for time open terms is a congruence for ACP pl. As in the previous
chapter one has to give a E-semantics in the path format of Baeten and Verhoef,
and one has to prove that the hisimulation equivalence of this E-semantics coincides
with the hisimulation equivalence of the term semantics.

5.2 The Axiom System ACP pi

We obtain the axiom system ACPpl hy adding the axioms of Tahle 5.1 to the axiom
system BPAp81, where p, q range over T(ACPpl). We have the following theorem.

Theorern 5.2.1 p, q E T(ACP pi)

ACP pi 1- p = q ::=:::} p .!:i q

83

84 5. ACP with Prefixed Integration

CFI fa a(v)l }~ b(v) fallf! 'Y(a, b)(v) + fu.(a,f!) b(v)

CMl Pilq plLq + qllp + plq

CM21 v ft fv(p)
faa(v)llp faiiU.(p)(a(v) · P) + fu.(a,p)D(v)

CM3r v ft fv(q)
fa(a(v) · p)lLq faiiU.(q)(a(v) · (PIIq)) + fu.(a,q)t5(v)

CM4 (PI+ P2)1Lq P1llq+p2lLq

CM5I J",(a(v) · p)j(Jfl b(v))
fo: 11f!('Y(a, b) · p) + fu.(o:,f!) D(v)

CM61 f ... a(v)i ffl(b(v) · p)
fallfJ('Y(a, b) · P) + fu.(a,f3) D(V)

CM71 fa(a(v) · p)j fp(b(v) · q)
= fallf!('Y(a,b)(v) · (pljq)) + fu.(a,/3) t5(v)

CM8 (PI+ P2)jq Ptiq + P2iq
CM9 Pi(ql + Q2) = PIQl +pjq2

Dij 8H(Ja a(v)) = J"a(v) a ft H
Dl~ 8H(Ja(a(v) · p)) In(a(v). aH(P)) a ft H
D2j 8H(faa(v)) fa b(v) a EH
D2~ 8H(Jn(a(v) · p)) J,.t5(v) a EH
D3 8H(P + q) = 8H(P) + 8H(q)

Table 5.1: Additional axioms for ACPpl

5.2. The Axiom System ACP pi

Proof. Omitted.

We use the following abbreviations.

U"(a) aj"b U"(fab(v))
abb

Iuv(a,/}) b(V) fu.(a)AU.(/>) D(V)

Iu.(a,p) ó(V) agb fu.(o:)AU.(p) ó(v)

85

0

Note that U"(a) = U"(Jo:P(v)) for arbitrary P(v), in other words, U"(a) expresses
the idle behavior of an arbitrary process term I" P(v). Furthermore U"(a, fJ) ex­
presses the idle behavior of terms like Ia P(v) 11 I/3 P(v), I"' P(v) I If3 P(v) and
fa P(V) ll I{J P(V).

The axioms CF1, CM21 ,31 and CM5r71 have a Iu.(...) ó(v) summand on their
righthand side for the case that the other summand on the righthand side is of the
form fJJP(v). For in this case we have to guarantee that the process terms leftand
right from the =-sign have the same idle behavior.

Consider the axiom CF r, and take p = Iv<l a(v) and q = fv=2 b(v), so a = (v ::; 1)
and fJ = (v 2). Obviously a A fJ jJ, which means that no communication is
possible. Hence, plq can not execute any actions, and since pjq is able to idle untill,
the axiom CFr must imply plq = 8(1). Hence, we have to add a 8 summand on the
right hand side of CF1 that has the sarne idle behavior as plq. We denote this par­

tienlar 6-surnrnand by Iu.(vSI,v=2) 8(v), that abbreviates fu.<J.<
1

ó(v))AU.(j•=• ó(v)) ó(V),
that reduces to fv<lAv< 2 ó(v), that reduces further to I"< 1 8(vf Finally, we note that
.("9 ó(v) indeed equais 8(1). -

In ACPp weneed the auxiliary operator p :::P t to axiornatize the leftrnerge, see
Table 3.3:

CM2p a(r)llp (a(r) :::P U(p)) · p,

since the a(r) is enabled only in case U(p) > r. In the context ofprefixed integration
we can easily express this phenornenon in the condition of the integral, as is done
in the axiom CM21 . Hence, there is noneed for the operator p :::p b in ACPpl. For
exarnple, take Po fv<s a(v), P1 = fv>S a(v) and q b(3). Then U"(b(3)) (v::; 3).
The expressions Iu.(v~S,q) ó(v) and fu.(v> 5,q) ó(v) both denote processes that equal
fv9 ó(v).

Pollq
= fv<5 a(v)llb(3)

Iv~Mv<a(a(v) · b(3)) + fv<3 ó(v)
= fv~a(a(v) · b(3)) + I"96(V)

Iv$3(a(v) · b(3))

P1llq
= Iv>S a(v)llb(3)

Iv>5Av<a(a(v) · b(3)) + Iv<3 ó(v)
= fjJCa(v) · b(3)) + I":5 3 ó(v}

ó+I"<3 8(v)
Iv$3 ó[v)

86 5. ACP witb Prefixed Integration

5.3 Elimination and Completeness

Theorem 5.3.1 (Elimination Theorem for ACP)
\:lp E T(ACPpl) :lp' where p' is in prefix normal form and ACP r p = p1

Proof. The proof is a combination of the proof of Theorem 1.3.1 (the Elimination
Theorem for ACP) and that of Theorem 4.6.2 (every term in BPApbl can be reduced
toa prefix normal form).

In the proof of Theorem 4.6.2 we defined the auxiliary notion of an U-prefixed
normal form, that is a term that is "almost" in normal form, in the sense that
conditions of the form Ub(P) are still allowed and summands may still bind different
variables.

Following the proof of Theorem 4.6.2 it is sufficient to show that for any two
U-prefix normal forms z and z' and 0 E {I I, lL, I} there is a U-prefix normal form u
such that ACP p r zDz' = u. As usual we show this by induction; as norm for the
induction we take depth(z + z', D) as in the proof of Theorem 1.3.1. Also we can
show by induction on z, where z is a U-prefix normal form, that there is a U~prefix
normal form u such that ACPp r 8n(z) =u, this case is left to the reader.

There is only one complication with respect to the previous eliminatien proofs;
in some cases we have to take "fresh" variables in some of the components.

f,.a(v)llz' =

Ia[v1/v]AU,(z') (a(v') . Z1
) + fu •• (a,z') ó(V)

for some v' +/:. fv(Ja a(v) + z')

J,.(a(v) · zo)llz' =

fa[v'fv]AU •• (z')(a(v') · (zo[v'/v]llz')) + fu.(a,z') ó(v)
forsome v' 'I. fv(fa(a(v) · z0) + z')

(zo+ zl)lz'
zi(z~ + zD

J" a(vo)l fp b(vl)

z0 lz' + z1 lz'
zlz~ + ziz~

= Ia[vfvo]A{J[vfvt] 'Y(a, b)(V) + fu.(a[v/vo],{J[vfvt]) ó(V)
forsome v 'I. fv(f"' a(vo) + ff3 b(v1))

fa: (a(vo) · zo) I ff3 b(vl)
= fa[v/vo]At1[vfv1]('Y(a, b)(v) · Zo[vfvoJ) + fu.(a[vfv0],fJ[vfv1l) ó(v)
forsome v rJ. fvUc,(a(vo)- zo)+ ff3b(vl))

5.3. Elimination and Completeness

faa(vo)l J13 (b(vl) · z&)
fa[v/vo]11,6[vjv 1]{1t(a, b)(v) · zb[v/vl]) + fuv(a[vjv0],/3[vjv1]) D(v)

forsome v fj_ fv(J" a(vo) + f.B(b(v1) • zb))

fa(a(vo) ·zo) I J13 (b(vt) · zb)
= fa[v/vo]A,B[vjv1](1t(a,b)(v) · (zo[v/vo]llzó[v/vl]))

+ fuv(a[v/vo],,B[vjv 1]) 8(V)
forsome v fj_ fv(J"'(a(v0) ·zo)+ f.B(b(vl) z&))

ziiz' z' + z1 llz + ziz'

Finally, we have the completeness for ACP pi.

Theorem 5.3.2 (Completeness for ACPpi) p, q E T(ACPpi)

p <->" q ~ ACPpi, a 1- p q

87

D

Proof. In the proof of the completeness for ACPp (see Theorem 3.6.2) we have
shown how the completeness follows from the Elimination Theorem. D

88 5. ACP with Prefixed Integration

Part 111

The Silent Step in Time

89

6

Branching Bisimulation and Time

6.1 Introduetion

In this chapter we propose a notion of branching bisimulation for Real Time Process
Algebra. An earlier presentation of the contents of this chapter can be found in
[Klu92].

In Section 6.2 we argue that when we deal with time, a T-transition can be
matebed with an idle transition, and vice versa. We will show this by various
examples.

In Section 6.3 we give the fonnal definitions of branching bisimulation in the
context of the idle semantics. We show as well that we need a rooted version to
obtain a congruence.

In Section 6.4 we present a law for branching bisimulation equivalence over
BPAp8T, and we encounter various conditions on the time stamps involved. This
law allows us to remove at T, if it does not determine a moment of choice.

In Section 6.5 we generalize this law to the setting of prefixed integration and
we obtain a law that corresponds closely with the branching law B2 of Section 1.4.
We encounter non trivia! conditions on the bounds involved.

We discussin Section 6.6 the embedding of BPA8T in BPAp8TL
In Section 6. 7 we develop a definition of a term branching bisimulation by chang­

ing the definition of idle branching bisimulation step by step. Finally, in Section 6.8
we show that rooted branching bisimulation equivalence is a congruence.

The proof that the law for branching bisimulation equivalence with integration
is complete, is postporred to Chapter 7. We weaken the definition of branching
bisimulation to delay and even further to weak bisimulation in Chapter 8. Branching
bisimulation in the context of guarded reenrsion is discussed in Chapter 9, and in
Chapter 10 we verify a protocol using rooted branching bisimulation equivalence. In
Chapter 11 we define branching bisimulation in the context of a two phase semantics,
that is a semantics in which consecutive actions at the sarne point in time are
allowed. We show that in such a semantics the notion of branching bisimulation
and the resulting equivalence differs from the one in the present chapter. In the
last chapter of this thesis, Chapter 12, we relate our work on abstraction with other

91

92 6. Branching Bisimulation and Time

papers, that discuss weak bisimulation only.

6.2 Some Examples

In untimed branching bisimulation it is allowed that

a r-transition on one side may be matched
with no transition at all at the other side.

if this r-transition does not determine a choice. Take for example:

:~1:
b~

In our real time context each transition increases the course of time and we relate
states with the same time value only. A statement analogous to the above one is

a (timed} r-transition on one side may be matched
with an idling at the other side.

In the sequel we will give examples of (timed) branching bisimilar process terms by
giving their process diagrams and showing the crucial points in time at which the
underlying transitions systems can be related by a branching bisimulation.

Example 6.2.1 p a(l) · r(2) · b(3) is branching bisimilar with q = a(l) · b(3):

Example 6.2.2 a(l) · r(2) · b(4) is branching bisimilar with a(l) · r(3) · b(4).

6.3. Branching Bisimulation in BPAp6 93

Next, we give some examples of process terms which are distinguished by branching
bisimulation.

Example 6.2.3 a(l) · (7(2) · (b(3) + c(3)) + c(3)) is distinguished from a(l) · (b(3) +
c(3)), since in the first process term it may be the case that at 2 it is determined
that the c will be executed at 3, while in the latter process term the choice between
the b and the c at 3 can nat be done earlier than 3.

In timed branching bisimulation no "7-stuttering" is allowed afterwards; we en­
force that two bisimilar process terms terminate at the same points in time.

Example 6.2.4 a(l) differs from a(l) · 7(2) as the a(l) terminales succesfully at 1
and a(l) · 7(2) at 2. Moreover, a(l) · b(2) is certainly nat branching bisimilar with
a(l) · 7(2) · b(2) since the latter process term has a deadlock.

6.3 Branching Bisimulation in BPAp8

The examples have shown us that the idle steps play a vital role when we deal with
branching bisimulation. Therefore, we will define branching bisimulation equivalence
in the context of the idle semantics first.

Befare giving the definition of branching bisimulation for these transition systems
we have to define < p, t > ::::=::} < q, r >, which means that < p, t > can evolve into
< q, t > by idle transitions and 7-transitions only. Intherest of this chapter "'and
K

1 denote arbitrary elementsof {r, t}.

Definition 6.3.1
::::=::} ç;; ((Tci(BPAp67I) x Time) x Time x (Tcl(BPApórl) x Time)
is defined as the least relation satisfying:

• < p,t >

• if < p,t >
<p,t>

<p,t >
~<(r') < q,r > and < q,r > ~ < q',r' > then

<q,r'>

Remember from the definition of (untimed) branching bisimulation that a transition
p!!..... p' (where p :!::tb q) can be matebed with a series of transitions q ::::=::} z!!..... q'
such that p :!::tb z and p' :!::tb q'. In the timed setting we have to consider idle
transitions as well and we will identify idle transitions with 7 transitions, as is
shown in the previous examples.

Moreover, in the untimed setting the so called Stuttering Lemma (see [GW89])
holds, which states that if

94 6. Branching Bisimulation and Time

then

p .!::tb q0 and p .!::tb Qn imply p .!::tb Qi for 0 :::; i :::; n

This Lemma is characteristic for branching bisimulation.
In the timed setting we start with a definition of branching bisimulation in which

this stuttering property is put in the definition itself. In the sequel we simplify the
definition, and we prove the Stuttering Lemma for this simplified definition for the
the case where the states are process termsin Tcl(BPApóri). We do not start with
this simplified definition right away as it is not clear whether we can prove the
Stuttering Lemma for more general cases with for example recursion.

We need an auxiliary definition for expressing that all intermediate states along
a sequence are related as well.

Definition 6.3.2 (< p, t > < p', r >)'R.(< q, t > ~ < q', r >) denotes that
< rJ, r > 'R. < q', r > and that there is a sequence

< q',r >

with q0 q and t 0 t such that for each i E {0, ... , n} and s E [t;, ti+1), where
tn+l r, it holds that < p, s > 'R. < q;, s >.

Similarly we define (< p, t > < p', r >)'R.(< q, t > ==:::} < q', r >) and (< p, t >

v)'R.(< q, t > ~ V). Using these definitions we can define timed branching
bisimulation.

Definition 6.3.3 (Idle Branching Bisimulation)
'R. C (Tcl(BPApbTI) x Time) 2 is an idle branching bisimulation ij whenever
< p, t > 'R. < q, t > then

1. < p, t > ~ < p', r > (a E A) implies that there is a q' such that

(< p,t > ~ < p',r >)'R.(< q,t > < q',r >).

2. < p, t > ~ < p', r > implies that there is q' such that

(< p,t > ~ < p',r >)'R.(< q,t > ==:::} < q',r >).

3. < p, t > ~ v {a E Ar) implies that

(< p, t > ~ V)'R.(< q, t > ~ V)

4. Respectively {1), {2} and {3} with the role of p and q interchanged.

Note that < p, t > v implies that a E Ar.

6.3. Branching Bisimulation in BPApó 95

Definition 6.3.4 (Idle Branching Bis. Eq.)
< p, t > +-?/, < q, t > iff there is an idle branching bisimulation R such that
< p, t > R < q, t >.

Wedefine /, on Tcl(BPAp871) by requiring that p /, q iff forall tE Time it holds
that < p, t > ~, < q, t >.

Proposition 6.3.5 +-?/, is an equivalence over Tc1(BPAp871).

Proof. Omitted. D

As expected, ~, is not a congruence as is shown by the following two examples.

Example 6.3.6 b(2) + c(3) +-?/, b(2) + 7(2) · c(3)

On the other hand, we have

Example 6.3. 7 b(2) + c(3) + d(3) #1, b(2) + 7(2) · c(3) + d(3)

Hence, +-?/, is not a congruence, and we need a rootedness condition as in the untimed
case.

Definition 6.3.8 (< p, t >-rooted) < p1
, r > is < p, t >-rooted if

I- d •(r) I p = p an r = t, or < p, t > ----* < p, r >.

We define when Ris rooted w.r.t. the pair of states (< p, t >, < q, t >).

Definition 6.3.9 An idle bisimulation R is rooted w.r.t. < p, t > and < q, t > ij
< p,t > R < q,t >, and < p1,r > R < q1,r > implies that < p1,r >is< p,t >­
rooted iff < q1

, r > is < q, t >-rooted.

Finally, we define rooted idle branching bisimulation equivalence, denoted by ~b·

Definition 6.3.10 (Rooted Idle Branching Bis. Eq.)
< p, t > ~b < q, t > if there is an idle branching bisimulation R that is rooted
w.r.t. < p, t > and < q, t >.

96 6. Branching Bisimulation and Time

We obtain rooted idle branching bisimulation equivalence on process terins by put­
ting p q iff forall tE Time we have< p, t > ~b < q, t >. Note, that we have
a(2) + b(3) #~ba(2) + r(2) · b(3).

In Section 6.8 we motivate that is a congruence over BP Apbr, and in Section
6. 7 we define (rooted) branching bisimulation equivalence in the context of the term
semantics.

6.4 A Single Law for the Silent Step

A typical identity is given by the following example.

Example 6.4.1 b(2) + c(3) b(2) + r(2) · c(3)

This example shows us that for some t E Time we have that

P ,__.< Po+ P1 Po+r(t) ·P1

where p0 denotes that part of p which starts before or at t, and p1 denotes that
part of p which starts after t. Since in this case t » p0 ,__.< ó(t), we have as well
p ,_.I, Po+ r(t) · p.

In order to express p0 properly we introduce a variant of the operator p » t,
that allows also actions of p at timet. We denote this operator by p » t, its defining
axioms are given in Table 6.1, its action rules are left to the reader. Incaset < U(p)
we have

p ,__.< p»t+t»p .!:±b p»t+r(t)·p

Note that incaset = U(p) we have

r :S:: t a(r) ;;z t
r > t a(r) » t

(p + q) dz. t
(p. q) » t

a(r)
6(t)
p»t+q;!Zt
(p dz. t) . q

Table 6.1: Axioms for » -operator

6.5. The Extension with Integration 97

p ~· p+8(t) ~· p ~ t+t » p

p+r(t) · 8 ~· p » t+r(t) · p

and if t > U(p) we have

p ~· p » t
#'
p » t + t » p ~' p + 8(t)

To obtain an identity for rooted branching bisimulation, we have to consider the
above terros in a context a(r) · (...). We have, fort< U(p),

a(r)·p ~· a(r)·(p»t+t»p) ~b a(r)·(p~t+r(t)·p),

if r < t, whereas for r' ~ t we have

a(r') · p a(r') · (p » t + r(t) · p) ~· a(r) · o
We can express this algebraically by the following real time r-law:

Tlp r<t<U(p) a(r)·p=a(r)·(p~t+r(t)·p)i

In Chapter 8 we explain the conneetion between this law and the untimed law Tl
in more detail.

6.5 The Extension with Integration

6.5.1 A first generalization of the axiom Tlp

First we give a few examples.

Example 6.5.1 In the calculus without integrals we have the following typical ex­
ample

a(l) · (b(2) + c(3)) ~rb a(I)· (b(2) + r(2) · c(3))

We can adapt this example to

a(l) · (b(2) + c(3)) ±:U. a(l) · (b(2) + f r(v) · c(3))
JvE(2,3)

0

--------- ---------a a

----c c

98 6. Branching Bisimulation and Time

Example 6.5.2 Ij we can make a choice jor the c(3) bejore time 2 (by allowing a
r befare 2) this pair is not bisimilar anymore;
a(l) · (b(2) + c(3)) #!, a(l) · (b(2) + fvE(l.s,3) r(v) · c(3)).

0

--------- 1 -- ... --
a a

2

3

In the sequel we denote by fa (r(w)) · p the term (J"' (r(w)) · p, that is, we stress that
p is not in the scope of the integral fa·

The above examples suggest us to generalize Tlp to the setting of prefixed inte­
gration as follows.

1 (a(v) · p) = 1 (a(v) · (p ~ b0 + f (r(w)) · p)
a Cl< JwE{bo,biD

under the following conditions.

• The interval ~b0 , b1D may not be empty, since otherwise
fwE(boM(r(w)) · p reduces to ó and fa(a(v) · p) is in general not equal to
fa(a(v) · (p ~ bo + ó)).

• We must require that v < bl> since otherwise there may be a deadlock on the
righthand side after the execution of the a at some t 2:: br[tjv].

• We do not allow a deadlock after the execution of the T in
fwE«bo,b1~ (r(w)) · p), that is, we require that p is able to idle till b1. This is
expressed by the condition ubl (p).

The above observations are summarised by the law Tl1 ; the I in the name refers to
integration.

fal\fl(a(v) · p) = fal\fl(a(v) · (p ~ bo + fwE(boM(r(w)) · p))

So, we have

Example 6.5.3
a(l)·fvE(2,4) b(v) ~b a(l)·(J"E(2,31 b(v)+r{3)·J"E(3,4) b(v)) This identity can be derived
as follows. Note, that we can apply Tli with ~bo,b1D = [3,3], and p = fvE(2,4) b(v).
The condition

6.5. The Extension with Integration

reduces to tt. Hence,

v 1 1\ ([3,3] :-f 0 1\ v < 3 1\ U3(1 b(v)))
vE(2,4}

reduces to v = 1. We have the following derivation within BPApéi + BJ.

1- a(l) · fve(2,4} b(v)

agb fv=l a(V) · fvE(2,4} b(V)

AC fv=1A[3,3)#0Av<3AU3cf~e<z.4) b(v)) a(V) . fvE(2,4) b(V)

T]_p a(l) · Uve(2,4) b(v) ~ 3 + r(3) · fvE(2,4) b(v))
a{l) · Uve(2,3] b(v) + r(3) · (3 » fve(z,4) b(v))
a(l) · Uve(2,3] b(v) + r(3) · fve(a,4) b(v))

6.5.2 The Timed Branching Law

However, not all identities can he covered by Tl1 .

Example 6.5.4
a(l) · CivE(l,4) r(v) · (b(3) + c(4)) + c(4)) a{l) · {b{3) + c(4))

and

Example 6.5.5
a(l) · Uve(z,4) r(v) · (b(5) + c(4)) + c(4)) a(l) · (b(5) + c(4))

These identities look like an instanee of the (untimed) second branching r-law:

99

100 6. Branching Bisimulation and Time

B2 z. (T. (p + q) + p) = z. (p + q)

When adding time to this law we have to be very careful with the conditions on
all the intervals as is shown in the following example. The process terrus in this
example differ only with the process terrus in the previous example, in that respect
that in the process term on the left hand side both components b(5) and c(5) can
idle after 4, that is the upperbound of (2, 4).

Example 6.5.6
a(l) · UvE(2,4) T(v) · (b(5) + c(5)) + c(5)) #i; a(l) · (b(5) + c(5))

------a

(j
J _ _l_

c c

Consider the next two examples.

Example 6.5. 7

0

1

2

3

4

------a

5 _J ___ _

b c

The transition system of the lejt hand side of the second pair has a deadlock at 4
caused by the possible execution of the T at 4- The transition system of the right
hand side of the first pair does not have such a deadlock.

a(l) · UvE(2,4) T(v) · (b(3) + c(4)) + c(4)) +-+~b a(l) · (b(3) + c(4))
a(l) · UvE(2,4l T(v) · (b(3) + c(4)) + c(4)) ~b a(l) · (b(3) + c(4))

Example 6.5.8 Consider the following two pairs, of which the first is a bisimilar
one. In the transition system of the lejt hand side of the second pair, the choice for
doing the b might be done at 10, while at the right hand si de it may be postponed
until 11.

a(l) · UvE(l,lO) T(v) · UwE(1,20] b(w) + fzE(O,lO) c(z)) + fwE(l,20] b(w)) -· ----rb

a(l) · UwE(1,20J b(w) + fzE(O,lO) c(z))

a(l) · UvE(l,lO} T(v) · UwE(1,20] b(w) + fzE(O,ll) c(z)) + fwE(1,20] b(w))

~b
a(l) · UwE(1,20] b(w) + fzE(O,ll) c(z))

The previous examples and the discussion of T11 show us that

{ (a(v) · (({ (T(w)) · (p + q) + p))
la lwE~bo,bl~

6.6. The Embedding ofBPA6r into BPApóri 101

is rooted branching bisimilar with

i (a(v) · (p + bo » q))

under the conditions that

• The interval ~b0 , b1D is not empty.

• After execution of the a not all r's are deadlocked, that is, v < b1 •

• At b1 the choice for p or q is determined in the process term p + q. That is,
one of the two surrrmands cannot idle till b11 while the other summand can.
More formally, either Ub1 (p) 1\ --,(Ub,(q)) (p can idle until bh and q cannot), or
-.(U61 (p)) 1\ Uh (q) (p cannot idle untill b1, while q can).

And finally we obtain the timed branching law Bi> as given in Table 6.2.

(~bo, b1D =/=- 0 1\ v < b1 1\

((Ub1 (p) 1\ --,(Ubl (q))) V (-,(U"l (p)) 1\ Ub1 (q))))

fa:Af3(a(v) · UwE~boM(r(w)) · (p + q) + p)) =
fo:A/3(a(v) · (p+bo » q))

Table 6.2: The timed branching law

Unfortunately, the condition o: of the law Br is rather complicated. Vve can make
a case distinction, and give for each case a simpler version of Br, see Table 6.3. We
have the following Theorem.

Theorem 6.5.9 (Soundness) p,q E Tci(BPAp6ri)

BPAp6ri + Br 1- p = q ===> p ~r" q

Proof. Omitted 0

In the next chapter we prove the completenessof BPApói+ B1 w.r.t . .!:!.rb.

6.6 The Embedding of BPA8r into BPAp8ri

Baeten & Bergstra have given an embedding of BPAó into BPApó which interprets
every (untimed) atomie action a as ftt a(v). Let us denote this translation by

RT: T(BPAór) ----+ T(BPAp6ri).

102 6. Branching Bisimulation and Time

Bj a = (qbo,blD =I= 0 /1. V< bl /1. ub,(P))

fal\f3(a(v) · UwEqbo,btD(r(w)) · (p + q »bi)+ p))
fal\f3(a(v) · (p + bo » q »bi))

B~ a = (qbo,blD =I= 0 /1. V< bl /1. ub,(q))

We have

fal\f3(a(v) · UwE~bo,btD(r(w)) · (p » b1 + q) + P » b1))
fal\f3(a(v) · (p » b1 + bo » q))

Table 6.3: Simpier versions of timed branching law

'Vp, q E T(BPA8) p +-+ q Ç::=} RT(p) +-+' RT(q).

However, this does not holdanymore afteradding the Tand working with branching
bisimulation equivalence. For example, in the untimed case we have a· T +-+rb a but

1 a(v) ·1 r(v)
tt tt

#:'.b 1 a(v)
tt

This is caused by a difference in the design decisions of BPA8 respectively BPApói.
In BPA8 the intuition is that the execution of an action may take some time, see
for example [Gla87]. This is exactly the motivation behind the first r law p · r = p.
But in real time process algebra fa a(v) executes an a at some point r such that
I= a[r jv] and terminates successfully at r. A possible embedding of BPA8r into
BPApórl is given by interpreting an untimed atomie action a as

1 a(v) ·1 r(v),
tt tt

expressing that the action a is executed somewhere in time after which it terminates
some time later. This translation has been pointed out by Jos Baeten ([Bae92]). Let
us denote this translation by RTn then we have the following Proposition.

Proposition 6.6.1 p, q E T(BPAór)

p +-+rb q Ç::=} RTr(P) +-+~b RTr(q)

Proof. Omitted. D

6. 7. Branching Bis. in a term semantics 103

6. 7 Branching Bis. in a term semantics

In this Section we focuss on Tci(BPApóri) and we give several alternative character­
izations of idle branching bisimulation, by which we obtain, step by step, branching
bisîmulation in a term semantics.

A first simplification is to weaken the requirement that all intermediate states
are related. This is dorre in the next definîtion of simple idle branching bîsîmilar.

Definition 6.7.1 (Simple Idle Branching Bisimulation)
'R C (Tcl(BPApórl) x Time) 2 is a simple idle branchîng bisimulation if whenever
< p, t > R < q, t > then

1. < p, t > ~ < p', r > (a E A) implies that there are z, q' and s such that

• < q,t >==}< z,s > ~ < q',r >, and

• < p, s > R < z, s > and < p1
, r > R < q', r >.

2. < p, t > ±l. < p', r > implies that there are z, q', K 1 and s such that

~~:'(r)
• < q,t >==}< z,s > ~ < q,r >, and

• < p, s > 'R < z, s > and < p', r > R < q', r >.

3. < p, t > ~ v {a E Ar) implies that there are z and s such that

• < q,t >=::;.< z,s > ~ -.j, and

• < p, s > 'R < z, s >.

4. Respectively {1), {2} and {3) with the role of p and q interchanged.

For a simple idle branching bisimulation R we can prove a timed version of the
Stuttering Lemma [GW89].

Lemma 6.7.2 (Stuttering Lemma for finite process terms)
IJ p, q E Tc!(BPApt5rl) and

< p, t > :ti < p, r > and < q, t > =::;. < q1
, r >,

and R is a simple idle branching bisimulation such that

< p, t > R < q, t > and < p, r > R < q', r >

(
'(r)

then also < p, t > -+ < p, r >)R(< q, t > ==} < q, r >).

104 6. Branching Bisimulation and Time

Proof. We give give only a sketch of the proo[
t(ro) 0 1 · Take r0 = r. For < p, t > ---+ < p, r0 > there are q0 and q0 and there 1s a r 1

such that < q, t > =====:> < qg, r1 > and < qg, r 1 > < qJ, ro > and < p, ro > 'R. <
qÖ, ro >.

Since r1 < r0 we have < p, t > < p, r 1 >. Hence, there are q~, qi and r2 such

that < q,t > =====:> < q~,r2 > and < q~,r2 > < qf,r1 > and < p,ri > 'R. <
qf, r 1 >. Furthermore, since < p, r 1 > ~ < p, r0 > there is also a < qr, r0 > such
that < qf, r1 > =====:> < qi, ro > and < p, ro > 'R. < qr, ro >

If we repeat this argument we get the picture below. Since q is a finite process
term, that is a process term without recursion, this argument cannot he repeated
infinitely many times and we are done

(p, t) (q, t) (q, t)

.....

W d t · I 'dl b h' b' · I · b ,-simple e eno e s1mp e 1 e ranc mg 1s1mu at10n y +-+b ,

Lemma 6.7.3 p,q E Tcl(BPApt)ri)

< P' t > +-+'-simpte < t >
-b q, < p, t > <-+b < q, t >

Pro of.

=====:> It follows from the Stuttering Lemma.

*== Trivial.

0

0

The next change is, that we consider only sequences of r-transitions in the premises
of the clauses of the definition of a branching bisimulation. We have that < z0 , t0 >
t(tl) a(t2) . . a(t2}
---+ < z1, h > ~ < Zz, t2 > Imphes < zo, t0 > ----+ < Zz, t2 > as well. Hence

6. 7. Brancbing Bis. in a term semantics 105

if < q, t > ==? < z, s > < q', r >, then we can find < z', s' > such that

< q,t > < z',s' > < q',r >as well.
Here, denotes that there are only T-transitions allowed along the sequence.

Definition 6. 7.4 (Semi Idle Branching Bisimulation)
R Ç (Tc1(BPAp8TI) x Time) 2 is a semi idle branching bisimulation ij whenever

< p, t > R < q, t > then

1. < p,t > < p', r > (a E A) implies that there are z, q' and s such that

• < q,t > < z,s > <q',r >,
• < p, t > R < z, s > and < p', r > R < q', r >.

2. < p, t > ~ < p', r > implies that there are z, q', ",, and s such that

• < q, t > ~ <z,s> <q',r>,

• <p,t>R<z,s> and<p',r>R<q',r>.

3. < p, t > ~ J {a E Ar) implies that there are z and s such that

• < q,t > a(r)
< z, s > ---jo -J,

• <p,t>R<z,s>.

4- Respectively {1), {2) and {3) with the role of p and q interchanged.

We denote the resulting equivalence by +-+rsemi. And we have the following Lemma:

Lemma 6. 7.5 p, q E Tcl(BPAp8TI), t E Time

< p, t > .._.~-simple < q, t > -$=} < p, t > ::±t-semi < q, t >

Proof. Omitted. 0

Next, we give a similar definition in the context of the term semantics. Before doing
that, we need a way to express idle transitions in term semantics.

Definition 6.7.6 (shiftr)

shifir (a(t)) r » a(t)
shifir(p + q) = r»(p+q)
shifir(p · q) = shifir(p) · q
shifir(t » p) r»p ifr > t

t»p otherwise

For technica! reasous we take shijt_
00

(p) pand U_00 (p) for every p.
We can express an idle transition in the term semantics as follows

106 6. Bn3,nching Bisimulation and Time

p ~ p1 abbreviates Ur (p) 1\ p' shiftr (p)

We redefine , such that is defined on pairs of process terms. Since the course of
time is not obvious anymore from the states, we add it to the label of ===> . As base

case we have p p, and p q with q q' implies p ~r q'. For the
definition of time(p) we refer to Definition 2.6.4. We have the following proposition,
where we take t 2 ~oo for all t.

Proposition 6.7.7 p E Tci(BPApól)

:Jp' p p'

{:::=} Vt 2 time(p) < strip(p), t > ~ < strip(p), r >
{:::=} Ur(P)

Proof. Omitted.

And finally we define term branching bisimulation.

Definition 6.7.8 (Term Branching Bisimulation)
'R Ç Tcl(BPApór1)2 is a term branching bisimulation ij whenever p'Rq then

1. p p' {a E A) implies that there are z, q' and s such that

• q~sZ q',

• shift, (p)'Rz and p''Rq'.

2. p ~ p' implies that there are z, q', K,
1 and s such that

T* x:'(r) I
• q ===>. z ~ q'

• shift. (p)'Rz and rf'Rq'.

a(r)
3. p ----+ J {a E A 7) implies that there are z and s such that

• q
a(r) z ----+ ..;,

• shift.(p)'Rz.

4. Respectively {1), {2) and {3) with the role of p and q interchanged.

We denote the resulting equivalence by -'=tb.

0

Definition 6. 7.9 (p-rooted) rf is p-rooted, ij rf = p or there is an r such that
t(r} 1 p---+p.

Definition 6.7.10 A term bisimulation 'Ris rooted w.r.t. to (p,q) if p'Rq, and
p''Rq' implies that p' is p-rooted iff q' is q-rooted.

6.8. Rooted Branch. Bis. Eq. is a Congruence 107

Definition 6.7.11 p <-+rb q ij there is a term branching bisimulation R, that is
rooted w.r.t. (p,q).

And finally we have the following proposition.

Proposition 6.7.12 p,q E TcZ(BPApóri)

p <-+b q Vt < p, t > ~-semi < q, t >

Proof. Omitted.

Corollary 6.7.13 p,q E Tcl(BPAp8ri)

p~q ~ p q

6.8 Rooted Branch. Bis. Eq. is a Congruence

0

First we give a timed version of strongly rooted branching bisimulation equivalence,
by requiring that it behaves from the roots as if it were strong bisimulation. As
soon as leftand right an action in A.,. has been executed the definition of (unrooted)
bra.nching bisimulation is applied.

Definition 6.8.1 (Strongly Rooted Idle Branching Bis. Eq.)
P <--+ srb q ijj

1. p p1 with a A.,. implies that there is a q' such that

q q' and p' <--+1, q'.

<(r)
2. p ---+ p1 implies that there is a q' such that

q q' and p' srb q'.

3. p J implies that q ..;.
4. Respectively {1},{2} and {3} with the role ofp and q interchanged.

As in the untimed case the definition of strongly rootedness is not stronger than the
one of rootedness, in the case of bra.nching bisimulation.

Proposition 6.8.2 p, q E Tcl(BPAp8I)

P =tsrb q ~ P =..b q

Proof. Omitted. 0

Theorem 6.8.3 <-+,b is a congruence over Tcl(BPApórl).

Proof. It follows from 6.3.5 and 6.7.13 that ~is an equivalence.
It is easy to show that <--+ srb is a congruence, a.nd hence, =..b is a congruence as

well. 0

108 6. Branching Bisimulation and Time

6.9 Some Additional Notations

If we give a diagram like

q
a(r)
---> q'

we mean that p p', q q', p !:tb q and p' !:tb q' and a diagram like

t(r) "* means that p ---> p', q ==>r q' such that p !:tb q and p' !:tb q'.
The first clause of the Definition 6. 7.8 can be expressed as well in the following

way

p p' (a E A) implies that there are z, q1 and s such that

p

a(r)
--->

t(s)
---> s » p

p'

a(r)
---> q'

Finally, we define term branching bisimulation inclusion, which will be used in the
proof of the main theorem of the next chapter.

Deftnition 6.9.1 (Term Branching Bisimulation lnclusion)
p q whenever

1. p p' (a E A) implies that there are z, q' and s such that

n a(r) 1 • q ==>. z ---> q'

• shijt8 (p) Áb z and p' !:tb q'.

2. p ~ p' implies that there are z, q', K
1 and s such that

1"* ~I • q ==>. z q'

• shift.(p) Áb z and p' !:tb q'.

3. p ~ y (a E A_,.) implies that there are z and s such that

6.9. Some Additional Notations 109

a(r) 1 eq Z----+y,

• shift.(p) z.

Note that the definition does not have a "symmetrie" part. Äb is the semantic
equivalent of summand inclusion in BPApól+ B1 .

110 6. Branching Bisimulation and Time

7

Completeness for Branching
Bisimulation

7.1 Introduetion

In this chapter we prove that the axiom B1, together with the axiom system BPAp8I,
axiomatizes ._.rb completely.

We define a rewriting that constructs for each process term its branching ba­
sic term. The main theorem of this chapter is that if two branching basic terms
are branching bisirnilar, then they are strongly bisimilar as well. From this result
the completeness result for branching bisimulation equivalence is reduced to the
completeness problem for strong bisimulation equivalence which we have tackled
already.

7.2 An Intermezzo on Time Variables

In this chapter we consider prefix normal forms only. We reeall that we omit the
binding brackets in these terms, i.e. we write fa a(v) · p for J,. (a(v) · p).

In this chapter we rewrite a term like a(l) · fvE(2,3) r(v) · fwE(v,s) b(w) to a(l) ·
fwE(2,s) b(w). The difficulty with this rewriting is that in this example the time
variabie v, of the integral that is to he removed, occurs later on in the term.

Example 7.2.1

BPAp8I I- a(l) ·1 r(v) ·1 b(w)
vE{2,3) wE(v,5)

a(l) ·1 b(w)
wE{2,5)

We will give a derivation which starts with a(l) · fwE(2,5) b(w)

111

112 7. Completeness for Branching Bisimulation

a(l) · fwE(2,5) b(w)

~ a(l) · fvE(2,3) T(v) · fwE(2,5) b(w)

a(l) · fvE(2,3) T(v) · (v » fwE(2,5) b(w))

a(l) . fvE(2,3) T(V) ' fvE(2,5)Av<w b(W)

~ a(l). fvE(2,3) T(v)' (2 <V ;-t fwE(2,5)Av<w b(w))

2f a(l) · fvE(2,3) T(v) · (2 <V :-t fwE(2,5)A2<v<w b(w))

The expression w E (2, 5) /1. 2 < v < w abbreviates 2 < v /1. v < w /1. 2 < w /1. w < 5,
which has a subcondition 2 < v /1. v < w /1. 2 < w that can be reduced to 2 < v /1. v < w.
By which we obtain 2 < v /1. v < w /1. w < 5. We continue.

~ a(l) · fvE(2,3) T(v) · (2 <V :-t J2<vAv<wAw<5 b(w))
~ a(l) · fvE(2,3) T(v) · (2 <V :-t fv<wAw<5 b(w))

~ a(l) · fvE(2,3) T(v) · fwE{v,5) b(w)

We will use the following identity

f a(v) · p = f a(v) · p[inf(V)/v]
lvEV lvEV

0

which is derivable if the variabie v occurs only as lower bound of initial integrals of
p. To formalize this we define fv*(p) Ç fv(p) where p is supposed to be a prefix
normal form that contains only bounds in normal form, with that respect, that v+O
is rewritten to v.

fv*(JvE(w,IID a(v))
b ~ TVar fv*CfvEqb,b'D a(v))

fv*(J"Eqw,ll} a(v) · p)
b ~ TVar fv*(J"Eqb,ll} a(v) · p)

fv*(p+ q)

var(b')
var(b+ b')
var(bl) U fv(p)\{v}
var(b + b') U fv(p)\{v}

= fv*(p) + fv*(q)

Proposition 7.2.2 Let p be a prefix normal farm and b a bound such that v ~
fv*(p) U var(b) then

BPApól 1- { a(v) · p
laAb5,v

f a(v) · p[b/v]
laAb5,v

Proof. Omitted, the proof is analogous to the derivation in Example 7.2.1. 0

A similar, but semantic, proposition is the following.

Proposition 7.2.3 Let p be a prefix normal form where v ~ fv*(p) and r11 r2 :::; s
then

s » p[ri/v] !::::. s » p[rz/v]

Proof. Omitted. 0

7.3. Branching Basic Terrus 113

7.3 Branching Basic Terms

In this section we will present some rewrite rules by which each prefix normal form
can be rewritten to its so called branching basic term. These terrus are constructed
such that if they are branching bisimilar, then they are strongly bisimilar as well.
To give the reader an idea we will give several process terrus and their branching
basic terms.

Example 7.3.1

a(l) · 7(2) · b(3) -+ a(l) · b(3)
a(l) · UvE(l,2) 7(v) · b(2) + b(2)) -+ a(I) · b(2)
a(l) · CfvE(l,2] b(v) + 7(2) · fvE(2,3} b(v)) -+ a(l) · fvE(l,3} b(v)

7.3.1 Introducing r's for each moment of choice

In order to rewrite each process term into a canonical form we have to rewrite all
three process terrus below into the same form.

Example 7.3.2 BPApól + B1 1-

a(l)· (r(2)· b(3) + c(3))
= a(l)· (r(2)· b(3) + r(2)· c(3))
= a(l)· (b(3) + r(2)· c(3))

This example shows us that it is not possible to have as few as possible 7's in a
process term. Therefore we add a 7 for each moment of choice; in the above example
both outermost process terrus are rewritten to the process term in the middle.

In case of (non trivial) prefixed integration we have to do some more work. If
we consider the process term p where

p '.:::f.l, a(v) + 1. b(v)
vE(0,5) vE[2,6)

then we can split (0, 6) into (0, 2], (2, 5] and (5, 6}, such that the potential of p does
not change by idling within one of the resulting intervals.

In order to reftect these intervals of potential at the syntacticallevel we introduce
a r for each moment of choice. A moment of choice is the upper or lower bound of
one of these intervals. (Only for the time stamp 6 we do not add a 7.) Furthermore,
we will have only intervals of the form (b, b'); a summand of the form fvE(b,b'] P(v)
is rewritten to fvE(b,b') P(v) + P(b'). ·

Example 7.3.3 p '.:::f. fve(o,s) a(v) + fve[2,6) b(v) will be rewritten to

fvE(0,2) a(v) + a(2) + b(2)
+ 7 (2) · CfvE(2,5} a(v) + fvE(2,5} b(v) + b(5)
+ 7(5) · fve(5,6) b(v))

114 7. Completeness for Branching Bisimulation

In case of a process term with free time variables such as

q ~ r a(w) + r b(w)
JwE(v,v+l) JwE(v,2v)

we introduce a partition. Each condition in this partition is an assumption on the
ordering of the bounds of the process term q. Therefore each condition determines
which r's have to be added.

Example 7.3.4 q ~ fwE(v,v+l) a(w) + fwE(v, 2v) b(w) will be rewritten to

V+ 1 2v ;~ fwE(v,v+l) a(w) + fwE(v,v+l) b(w)
V+ 1 < 2v ;~ fwE(v,v+l) a(w) + fwE(v,v+l} b(w) + b(v + 1)

+r(v + 1) · fwE(v+l, 2v) b(w)
V + 1 > 2V :~ fwE(v,2v} a(W) + fwE(v,2v} b(W) + a(2v)

+r(2v) · fwE(2v,v+l} b(W)

7.3.2 Partitioning a process term

As we have seen in Example 7.3.4 we have to consider all possible orderings on the
bounds of a process term p. Therefore we need the notion of an ordered partition of
a finite set S. The sequence (S1, ... , Sn} of subsets of S is an ordered partition if
{ S1, ... , Sn} is a partition of S.

Consider a set B of bounds. We construct the set of conditions on B, each
defining an ordering on the bounds.

• Construct all possible ordered partitions of B, let us assume that there are m
different partitions of B.

• For each ordered partition (B0 , ••. , Bk) we construct a condition a. We take
a representative b1 E B1 for each l E {0, ... , k }. For each b E B 1 the condition
a contains b bz. F'tnthermore for l < l' the condition a contains bt < b1 ••

In this way we obtain the partition {ai} = { a 1, .•• , am} associated to B.
In the following we will denote a by B1 < ... < Bk whenever a is constructed

from the ordered partition (Bb ... , Bk) of B.
We define the bounds ot p, where p is an interval prefix normal form.

bounds(fwE(b,b') P(w) = {b, b'}
bounds(p + q) = bounds(p) + bounds(q)

The process term p will be partitioned by consiclering the set of ordered partitions
of bounds(p) U { v}, where v is a parameter of the construction.

In case p occurs in a context fv'EV a(v') · p, then we construct the partition of p
that depends on v'.

Assume p is of the form

7.3. Branching Basic Terms 115

where each is of the form a(w) or a(w) · p1
• Consicier a= B1 < ... < B~.: where

(Eb ... , Bn) is one of the ordered partitions of B = bounds(p) U { v }.
We construct p(a, l) for l < n:

l:i:<>=>s; :5bt 1\ bt+I9t;

+ l:i:a=>s;:Sbt 1\ bi+ I =u;

+ 1\ d;=(A ~i=]
+ Ei:a=>si=bt+I <u; A ~;=(

fwE(bt,bl+I) P;(w)
~(w)[b1+1/w]
Pi(w)!bz+l/w]
P;(w)[b1+1/w]

And for l 2 n we take p(a, l) c:::' IJ. We have the following proposition.

Proposition 7.3.5 l < n

BPApbl, a 1- p(a, l) = b1 » p » bt+l

Proof. By construction.

Next, wedefine

v(a) =
u(a,p) =

such that v E B1
such that l is the smallest index 2 v(a)

with l1 2 l implies p(a, l1
) ;:::: IJ

Note that a=> -{Ubu(<>,p) (v » p). Finally we define p(a, l).

p(a,l) IJ ifl2u(a,p)
;:::: p(a,l) if l = u(a,p) -1
;:::: p(a,l)+r(b1+1)·p(a,l+1) ifl<u(a,p) 1

Proposition 7.3.6

BPAp/)1, a 1- p(a, l) ~ bt = 8
BPApfii, a 1- b1 » p(a, l) = p(a, l)

Proof. By construction.

The rewrite rule that partitions p, depending on v, by adding all possible r's, is

0

0

where { aj} is the partition associated to bounds(p) U { v}. Finally we have a propo­
si ti on which states that there is a derivation in BPApfii+ B1 that corresponds with
the above rewriting.

Proposition 7.3. 7 /f p -" p' by Rule 1 then

BPApiJl + B,l- L a(v) · p = L a(v) · p'

116 7. Completeness for Bra.nching Bisimulation

Proof. p1 is of the form I:ie{l, ... ,m} {ai :----+ p(aj, v(ai)) }. Take an arbitrary j and
take {J =ai. Let {{J; 1\ v E V;} the v-refinement of {J. It is sufficient to show that

BPApol + B1 t-1 a(v) · p = 1 a(v) · p(a, v(a))
o:A,B;AvEV; o:AiJ;AvEV;

BPAp8I 1-
fo:A.B;Avev; a(V) · P

= fuA,B;AvEV; a(V) · {{J; 1\ V E V; :----+ p}
= fo:A/J;AvEV; a(v) · {{J; 1\ VEV; ;--t {a :----+ p}}
= faA,B;AvEV; a(v). {a :-> p}

We use as well BPApói, •(Ub(p)) 1- b » p ó(b), and BPAp8I, •(U(p)) 1- p » b = p.
First we prove that for l with v(a) :::;; l:::;; u(a,p)

BPAp61 1- LA/J;AvEV; a(v) · p LA{1;1\vEV; a(v) · (p d:: bz + p(a, l))

by induction on u(a,p) l. There are three cases to consider.

1. v(a) :::; l =u(a, p). This case is trivial since a=? •(Ub1 (p)). Thus BPAp6I, al­
P » b1 = p, moreover p(a, u(a,p))::::: 6. And we have the following derivation.

faA/J;twEV; a(V) • (p d:: bz + p(a, l))
foA/J;AvEV; a(V) · {a :----+ (p » bz + p(a, l))}
fal\iJ;I\vEV; a(V) • {a :-> (p + 6)}
IaA/J;AvEV; a(V) . p

2. v(a):::; l u(a,p) -1.

IaA/J;AvEV; a(V) • p
J.,A,B;AvEV; a(v) · {a :--t (p .&::: bz + bz » p .&::: bz+l}

= J<>A/J;AvEV; a(v) · {a :--t (p .&::: bz + p(a, l)}
faA/J;AvEV; a(V) • {a :----+ (p » bz + p(a, l)}

3. v(a) :::; l < u(a,p) - 1. We use BPAp6I 1- (p » b) .&::: b = p » b and
BPApól 1- b » p .&::: b 8(b).

ig_d
IaA,B;AvEV; a(V) • p

foA/J;AvEV; a(V) · {p .&::: bl+l + p(a, l + 1))

faA/J;AvEV; a(v) · ((p d:: b1+1 + p(a, l + 1)) .&::: bl+I
+T(bz+l) · (p d:: bz+1 + p(a, l + 1)))

Prog-
7

.
3

'
6

J<>A/3;AvEV; a(v) · (p » bz+I + T(bz+l) · p(a, l + 1))
= J<>A/3;AvEV; a(V) · (p .&::: bz + bz » P » bi+ I

+T(bz+l) · p(a,l + 1))
Pro:e: 7.3.5

faA/3;1\vEV; a(V) • (p .&::: bz + p(a, l)
+T(bl+1) • p(a, l + 1))

= faA{1;AvEV; a(V) · (p » bz + p(a, l))

7.3. Branching Basic Terms

We continue

fat./3;AvEV; a(V) • p
fat./3;AvEVi a(v) · (p » v + p(a, v(a)))
faNV\VEVi a(v) · (v » P » v + v » p(a, v(a)))
fat.j3;AvEV; a(v) · p(a, v(a))

7.3.3 Removing T's

We have to introduce a rewrite mle that handles the following examples.

Example 7.3.8

a(l) · UwE{l,3) r(w) · (JzE(w,3) a(z) + b(3)) + fwE{l,3) a(w) + b(3))
a(l) · CJwE(l,3) a(w) + b(3))

This example showsus that weneed a mle fora processtermof the form
fwE(b,b') r(w) · p + q where q is a summand of p[b/w].

117

D

In the sequel we present rewrite mles of the form p --->" p' that abbreviates
p---> {a:-+ p'} +{-,(a):-+ p}.

3a (w (/. fv*(p))

fwE{b,ll) r(W) · P + q

A similar, but more advanced, example is the following process term which has a
r(2) which does not determine a choice.

Example 7.3.9

a(l) · CJwE(1,2) r(w) · CJzE(w,3) a(z) + b(3)) + fwE(1,2) a(w)
+r(2) · (JzE(2,3) a(z) + b(3)))

a(l) · (JzE(l,3) a(z) + b(3))

So, we need an additional mle for process terms of the form
fwE(b,b') r(w) · p + q + r(b') · q' where q + q' is a summand of p[b/w].

3b (w (/. fv*(p))

fwE(b,b') r(w). P + q + r(b'). q' --->(q+q' Ä p[bfw]) p[b/w]

118 7. Completeness for Branching Bisimulation

Note that in bothof the Rules 3" and 3° the summand q may be 6.
Rule 1 rewrites the process term

1 a(v) + 1 a(v)
vE(O,l] v€(1,2)

into

1 a(v) + a(l) + T(l) ·1 a(v),
vE(O,l) vE(1,2)

though there is no moment of choice at time 1. Hence, we need to rewrite that
process term to fve(o,2) a(v). Some more involved examples of T's which may be
removed similarly are given below.

Example 7.3.10

fvE(l,2) a(V) + a(2) + T(2) · fve(2,3) a(V)
must be rewritten to fve(l,3) a(v)

fvE(l,2) a(v) + a(2) + T(2) · Uve(2,3) a(v) + b{3))
must be rewritten to fve(l,3) a(v) + b(3)

fve(t,2] a(v) + b(2) + T(2) · Uve(2,3) a(v) + fve(2,3) b(v))
must not be rewritten

In the sequel we denote an arbitrary a(b) ·por a(b) by P(b). If b0 < b1 < b2 and

P ~ LiEf fvE(bo,b1) P;(v) + LjEJ Pj(bt)
q ~ LkEK fve(b 1 ,b2) Q,.(V) + LlEL Qî(b2)

then the T(b1) can be removed in p + T(b1) • q if for each kthere are corresponding
indices i and j such that fve(b1,b2) Qr.(v) can be taken together with fve(bo,b

1
) ~{v)

and Pj(b1) to fve(bo,b
2

) Q~c(v). We have a similar requirement for each j and each k.
This condition is denoted by p "" q and it is defined as follows:

AiEJ (vjEJ ~(bl) ±:!. Pj(br)
A V kEK fve(bo,O.) ~(V) ±:!. fvE(b0 ,0,) Qr.(v))

A Aio (ViEl ~(bi) ±:!. Pj(bt)
A Vr.eK Pj(br) Qk(bl))

A AkeK (V;EI fve(bo,O.) P;(V) fvE(bo,O.) Qr.(v)
A vjeJ Pj(bt) ±:!. Qk(bt)

where z ...,. z' denotes the characterizing condition for z and z' (see Lellima 4.6.3).
For p, q of the above form we have the following Rule, where q[b0 /bd denotes the
process term q in which the lower bound b1 is replaced for b0 . Thus, each summand
fve(b1 ,o,) Qk(v) of Q is changed into fve(bo,O.l Qr.(v).

7.3. Branching Basic Terms 119

However, the Rules 3a ,3b and 4 are only applicable if there are no double 7-summands.
For example, the process term

f a(v)+a(1)+7(1)· r a(v)+7(1)· r a(v)
fvE(O,l) fvE(1,2) fvE(l,2)

can, in its present form, not be rewritten by Rule 4, though we want it to be rewritten
(by Rule 4) to fvE(0, 2) a(v). Hence, we have to take all double 7-summands tagether
before applying either of the Rules 3a, 3b or 4 which is done by the following Rul es
2a and 2b.

2a V '/ fv*(p + q)
fvE(b,b1) 7(V) · P + fvE(b,b') 7(V) · q

i 2b 7(b) · p + 7(b) · q

->(p[bfv] +--+ q[bfv])

fvE(b,b') 7(V) · P i

7 .3.4 The construction of branching basic terms

We combine the rewrite rules to construct branching basic terms. A branching basic
term is a term of the form a; :--. p;, where {a;} is a partition and each p; is an
interval prefix normal form.

We take a prefix normal form p and we perform the steps given below.
(Begin of construction.)

1. We replace each summand J,. a(v) · p' by J" a(v) · pÎ,o, where pbi, is the branching
basic term of p'.

The term pbi, is of the form a; :--. p;, and by the Lifting Lemma we can
rewrite fcx a(v) · pbi, further to L:i faAa; a(b) ·Pi·

2. Each summand of the form fa a(v) · p is rewritten to fa a(v) · p', such that
p ->v p' by Rule 1.

Take an arbitrary summand of p1
, then it is of the form '/ :--. q, such that q is

of the form

120 7. Completeness for Branching Bisimulation

(where z[+z'] denotes a process term which is either of the form z or z + z').

Next, we have a loop, starting for k = n, that applies the other rewrite rules
for each level k. Each turn we start with a term z~c of the form I:iEI• ai :-+ z1.
We take Zn tt :-+ Qn·

(Begin of loop.)
For each iE I~c we apply the following on z1.
(a) If k = n, then we take bn+l such that Qn has a summand fvE(b,.,b,.+I) P(v)

or a summand P(bn+l)·
We remove all summands of the form fvE{b~o,bt.+J) 8(v) and ó(bk+l)·
lf, for k = n, all summands have been removed then we add a summand
ó(bn+l)·

(b) Take the double r-summands together by applying the Rules 2a and 2b.

(c) Apply the Rules 3a, 3b, and then the Rule 4.

We rewrite the term that we have obtained further by taking all.conditions
tagether in a partition, and we obtain {,Bi :-+u{}.

If k > 0 then we lift the partition {,BJ} over the r(bk), and we construct

z1c-1 ::::::: L ,Bi :-+ (Qk-1 + r(b~c) ·u{)
j

If k = 0, then we are ready. (End of loop.)

We do this for each summand of p'. We rewrite the obtained term further by
taking all conditions tagether in a partition, and we obtain

L a(v) · L O:i :-+Pi
1

We apply the Lifting Lemma again, and we obtain

Finally, we construct for each o: 1\ o:;, its v-refinement {o:iJ 1\ v E Vi,J} and we
rewrite the above term to

L O:i,J :-+ 1 a(v) ·Pi
i,j vE\-i 1i

(End of construction.)

7.3. Bra.nching Basic Terms 121

7.3.5 Some properties of branching basic terms

The construction of a branching basic term corresponds with a derivation in the
axiom system BPApc5I+ B1 , as is stated by the following proposition.

Proposition 7.3.11 Let Pbb the branching basic term of p then

BPApc5I + B1 f- L a(v) · p = L a(v) · Pbb

Proof. We will only give a sketch of the proof. By Proposition 7.3.7 we know
that there is a derivation for each application of Rule 1. The Rules 2a and 2b are
direct instauces of the axiom p + p p and the Rules 3a ,3b and 4 are instauces of
the axiom Br. 0

The following two propositions state that branching basic terms are indeed basic
terms. First we have a proposition, that says that the time stamps in a branching
basic term are always increasing.

Proposition 7.3.12 IJ p is a time closed branching basic term, then

p .5j p1
==} 3p11 p1 = r » p11 and r » p11

f-T P11

Proof. We only give a sketch of the proof. If z ->v z' by Rule 1, then it is
guaranteed that any lower bound b of an initia! intervals of z' is in thescope of a
condition v ::; b. 0

Proposition 7.3.13 IJ p, q are time closed branching basic terms, then p f-T q im-
plies depth(p) depth(q).

Pro of. We give only a sketch of the proof. Assume p -=:. q and depth(p) < depth(q),
then we motivate that there is a contradiction.

It must be the case that there are p' and q' such that p' H q', and p' is reachable
from pand q' is reachable from q, and q has a summand of the form fvE(t,t') Q(v)
with t'::; t. For if there is no such q' then p can never be bisimilar with q.

But, in the construction of branching basic terms, especially the first rewrite
rule, it is guaranteed that every summand of the form f(b,b') P(v) is in the scope of
a condition a such that a ~ b < b'. Contradiction. 0

A process term p is an interval branching basic term if it is a branching basic term
such that each summand is of the form fvEV P(v). Note, that for such a p there
are bounds b, b' such that each interval V is either of the form (b, b'} or of the form
[b', b']. For an interval branching basic term p we define the functions S(p) and
U(p) syntactically. S(p) denotes the start time; S(p) = b if there p has a summand
fvE(b,b') P(v). If it does not have such a summand, then it must have a summand
fvE[b',b'J P(v), and we take S(p) b'. U(p) denotes the ultimate delay, as usual, and
we take U(p) = b' if p has a summand fvE(b,b') P(v) or fvE[b',b'J P(v).

122 7. Completeness for Branching Bisimulation

Lemma 7.3.14 Let p, q be branching basic terms with fv(p + q) Ç { v0} and each
for r0 ES, where ISI > 1, we have

p[ro/vo] +-+ q[rofvo]

then there is a relation R which relates subterms of p with subterms of q such that
R(p', q') implies:

• S(p') S(q') and U(p') = U(q').

• Va E Ect : a(p') ±:± a(q').

Proof. If fv(p) Ç {v0} and we write p '""""'~ rf then we mean that p' is a subterm
of p and that there is a a sequence of transitions

() al(rt) () a"(r") (') a p ---+ a p1 • . . ---+ a p

where a(vi) = r; forsome r0 ES.
Note that since p is also a prefix normal form we may indeed assume that for

each transition in such a sequenxe a different variabie is bonnd.
First we prove that there is a relation R such that R(p', q') implies

• S(p') S(q') and U(p') U(q').

• Forall a with p '"'""~ p' and q '"'""~ q' we have a(rl) +-+ a(q').

First we show that it holds for R(p, q), and then we assume that we have proven it
already for R(p', q') and we prove it for subterros of p' and q', that have depth(p') -1.

• By assumption p[r0 /v0] ±:± q[r0 fv0] for all r0 in S. Since for every r0 in S
we have S(p[rofvo]) = S(q[r0 fvo]) and S has more than one element we have
S(p) S(q). Sirnilarly we obtain U(p) = U(q). Finally, by assumption we
have for any a with p '"'""~ p, q '"'""~ q that a(p) ±:± a(q).

• Consider a summand fve(b,b') a(w) · p" Ç p' and take a such that p '"'""~ p', as p
is a branching basic term we know a({b, b')) can not be empty. Hence there is
a finite set

Q = { q"l fwe(b,b')a(w)·q"Çq' 3aEEd 3tEa((b,b'})
a[tfw](p") ±:± a[tjw](q") }

Note that S(p") and S(q"), for q" E Q, are hyperplanes with dirneusion smaller
or equal to d + 1, where d is the depth of p' in p, that is the length of the trace
p '""""'~ rf.
For any a such that p '""':{tfw) rf' there is a q" E Q such that q '""';[tfw] q"[tjw]
where a[tfw](rf') ±:± a[tjw (q'). In other words, for any such a there is a q" E Q
such that a[tjw]((S(rf')) a[tjw](S(q")), which rneans that the hyperplane
S(p") is completely covered by the hyperplanes S(q") for q" E Q.

We find a q" E Q with S(rf') = S(q") in finitely many steps. Take an arbitrary
qg E Q. At each step i~ 0, there are two cases to consider

7.3. Bra.nching Basic Tenns 123

- S(p") =I= S(q~'). Note, that the intersecting plane of S(p") and S(q:') is
one dirneusion smaller than the one of S(p"). Hence we can findarrandt
such that rr[t/w] is "outside" the subplane that has already been covered,
i.e. outside the intersections of S(p") withall S(qj)'s with j :Si:
We take q~~~ from Q that differs from any qj with j :S i, such that
rr[t/w](p") <--+ rr[t/w](ql~1).

- S(p") = S(ql') and we are ready.

It can not be the case that for every q" E Q we have S(p") =/= S(q"), for this
would imply that an n-dimensional hyperplane can be covered by finitely many
n- 1-dimensional hyperplanes.

Similarly we can deduce that there is a q" (in Q) such that U(p") = U(q") as
well.

N ow we have to show that R(p', q') implies

Va : rr(p') ..._. a(q')

which we will do by induction on p'. The base case will not be discussed, as it is
similar to the case discussed below.

By construction of R there must be a rr' such that p ""'*~' p', q ""'*~' q' and
a'(p') <--+ a'(q'). Assume

p' c:::'. fvE(b,b') a;(v) ·Pi+ bj(b') · pj + p"
q' c:::'. l:k fvE(b,b') ck(V) · qk + 2:::1 d1(b') · qj + q 11

where

depth(p") depth(p') 1 depth(q') 1 depth(q")

Take an arbitrary a and consider a transition rr(p') ~ z1• If it originates from

p" then we have already proven that there is a transition a(q') ~ z2 , originating
from q", such that z1 .!:::!. z2 . So, assume it does not originate from p", then there are
two cases to consider:

• a(b) < r < a(b'). Then there is an index i such that a a; and

Since a'(p') rr'(q') and a'((b, b')) =/= 0 there is at E a'((b, b')) such that

a'(p') ~ rr'[t/v](v » p;) .t::t a'[t/v](p;)

So, there is an index k such that

124 7. Completeness for Branching Bisimulation

and

Hence R.(pi, qk), for which we have already proven that

u[r jv](pi) +-> u[r jv](qk))

• r = u(b'). SimHar to the previous case.

From this Lemma we obtain a corollary that motivates the usage of the Rule 4.

0

Corollary 7.3.15 If we have time closed interval branching basic terms p, q and
t 0 < t 1 such that

1 a(v)·p±± 1 a(v)·q
vE{to,h) vE{to,tl)

and fvE(toh) a(v) · p, with t1 < t2, is also a branching basic term, then
fvE(toh) a(v) · q is a branching basic term as well for which

1 a(v) · p .!:± 1 a(v} · q.
vE(toh) vE(toh)

Corollary 7.3.16 If fv(p) 0 andfor all rinS, where ISI > 1, we have p .!:± q[r jv]
then fv(q) = 0 as well.

Finally we have a proposition that relates branching bisimulation inclusion with
branching basic terms:

Proposition 7 .3.17 Let p be an interval branching basic term with a summand
fvEV r(v) · p' such that v ~ fv*(p'} and tE V then

t » p'[tjv] Äb t » p

Proof. Consider a transition

t » p'[tjv] ~ z

take an arbitrary s E (t, r), then by Corollary 7.2.3 we have

8 » p'[t/v] .!:± 8 » p'[s/v]
There is a summand fwEW a(v) · p11 !;-;;; p' sucb that z r » p"[tjv][rjw]. Moreover,
since v ~ fv*(p') we know tbat v ~ fv(p"). Hence, z = r » p"[r/w] and tbus we
have (fora E AT):

t » p'[tjv]
a(r)
~ z

.!:±

t » p'[tjv]
t(s)

s » p'[tjv]
a(r)

~ ~ z
c .!:±b +->b

t»p
r(s)
~ 8 » p'[8/v]

a(r)
~ z

0

7.4. A Theorem for Branching Basic Terms 125

7.4 A Theorem for Branching Basic Terms

In this section we prove the main theorem for branching basic terms, saying that two
branching basic terms are strongly bisimilar whenever they are branching bisimilar.

Theorem 7.4.1 Ij p, q are time closed branching basic terms then

Proof. We prove four Facts for pand q, in the given order.
Take U(p) u.

• Fact 1 (r < u)

p
r(r) - r » p'[r/v]

~ ~ ==} v ft. fv*(p)

p r»p

• Fact 2 (r <u)

p
r(r) - r » p'[r/v]

~ t:4
p

t(r) - r»p

• Fact 3 (r < min(U(p), U(q))

p ~r p'
==} p p'

q
t(r)
---+ r»q

• Fact 4

p~q ==} p:::::!..q

In the proof of Fact 3 we assume that Fact 2 has been proven already for p only.
a(r) 1 Hence, if p ~ q and we have proven Fact 2 already for q, then in case of p - p

the condition that there 3t, z, q' such that

p PI

~

p
t(t)

t»p ~ ---t

~ ~

q ~t z
a(r) - q'

126 7. Completeness for Branching Bisimulation

reduces to :lq' such that

p p'
~ ~

q ~ q'

If z is a time closed branching basic term with S(z) =tand U(z) = t' and there
is an r E (t, t') then Zr denotes the process term which is constructed from z by
replacing each summand fvE(t,t!} P(v) by fvE(r,t'} P(v). Note that r » z <--4 Zr.

• Proof. Fact 1
Assume for r < u that

p ~ r » p'[rjv]
~ ~

p r»p

then we have to prove v 9'- fv*(p').

Take an arbitrary tE (r, u) and consider the transition

r » p ~ t » p'[tjv],

we have to find a conesponding series of transitions starting from r » p'[rfv].
Note that p1 is smaller than p, thus we may assume that Fact 2 bas already
been proven for p'.

First we assume that there is a p11 such that

r»p ~ t » p1[tjv]

r » p1[r /v] ~ t » p"[t/v]

Since p is a basic term

p'[tjv] .!::±. t » p'[tjv] ~ t » p"[tfv] = p11 [tjv],

by induction p'[tjv] <--4 p11 [tjv] and by Proposition 7.3.13 we have
depth(p'[tfv]) depth(p"[tfv]). But this cannot be the case since depth(p") <
depth(p'), as p11 is a proper subterm of p'.

Hence, it must be the case that

r»p ~ t » p'[tjv]

r » p1[rfv] ~ t » p'[rjv]

7.4. A Theorem for Branching Basic Terms 127

Let b, b' he the lower bound resp. the upper bound of the initial integrals of
p', then every summand of p' is either of the form fve(b,b') P(v) or P(b').

There are two cases to consider:

- The case where b = v. Note that

p'[tjv] ±:::!: t » p'[tjv] ±:tb t » p1[rjv] <---> (p'[rjv])t.

By induction p'[tjvJ ±:::!: (p'[rfvDt·

Take an arbitrary summand fwe(v,b') a(w) · z of p'. We will show that
v rt var(b') U fv(z).

Since p'[tjv] ±:::!: (p'[rjvJ)t there is a z1 such that

fwe(t,ll(t)) a(w) · (z[tjvJ)) [;;; p'[tjv]

fwe(t,b'(r)) a(w) · (z1[rjv]) C (p'[rjv]) 1

Then there must be a summand fwe(v,b') a(w) · z' of p1 and an infinite
subset S ç;; (r, u) such that Vt E S

1 a(w) · (z[tjv]) ±:::!: 1 a(w) · (z'[r/v])
wE(t,ll(t)) wE(t,b'(r))

from which we conclude that

* b'(t) b'(r) for more than one t, thus it must he the case that
v rt var(b') and thus b' E T(S).

* Vt ES it holds that z[tjv] <---> z'[r/v]. Hence, by Corollary 7.3.16, we
obtain v rt fv(z).

For summands fwe(v,b') a(w) we can conclude similarly that v can not
occur in b'.

The case where bi= v. Then since pis a basic term r :::; b(r). r b(r)
(for arbitrary r) implies b = v which case already has been considered.
So there are r < b(r) and we may assume as well that we have taken t
such that r < t < b(r). Hence

p'[rjv] ±:::!: t » p'[rjv] ±:tb t » p'[tjv] <---> p'[tjv].

By induction p'[rjv] ±:::!: p'[tjv]. Since this holds for all tE (r,b(r)) we
conclude v rt fv(p').

For summands a(b') · p" and a(b') of p1 we can conclude similarly that v can
not occur in b'. Hence, v rt fv*(p').

• Proof. Fact 2
We assume for r < u that

128 7. Completeness for Branching Bisimulation

p ~ r » p'[r/v]

and we will show that this assumption leadstoa contradiction. Takes S(p).

First we note v (j. fv*(p') (by Fact 1) and that there is a z '!- 8 such that

p ~ 1 r(v) · p1 + z
vE(s,u)

For if z ~ 8 then Rule 3a could he applied. Moreover

z ~ 2::1 Z;(v) + l:Zj(u)
i vE(s,u) j

We will show that the assumption r » p'[r jv] ~ r » p leads to the condusion
that either the Rule 3" or the Rule 3b is applicable. We will do this in two steps.
First we show for each i that fve(s,u) Z;(v) p'[sjv]. Then we show for each
j that either Zj(u) Ä p'[sjv] or that Zj(u) is of the form r(u) · z' such that
z' p'[s/v]. Moreover, we show that there is at most one such summand
r(u) · z', in which case z is of the form z" + r(u) · z' such that z'' + z' Ç p[sjv]
and Rule 3b is applicable. If there is no such summand r(u) · z' then obviously
z p[sjv] and Rule 3" is applicable.

- If fve(s,u) Z;(v) is of the form fve(s,u) a(v) then we obtain direct that for
each transition

z ~ .../ there is a transition r » p'[r jv] ~ .../
~ c and thus r » p'[sjv] -- .../as well. Hence, fve(s,u) a(v) +-+ p[sjv].

Next, assume fve(s,u) Z;(v) is of the form fve(s,u) a(v) · z', then

z ~ t » z'[tjv] t E {r, u)

since we assume r » p'[r jv] ~ r » p there must he corresponding series
of transitions starting from r » p'[rjv]. Note that we have proven Fact
2 already for r » p'[rjv].
First we assume that a = r and that for infinitely many t the transition
is matebed with and idling:

r»p ~ t » z'[tjv]

r » p'[r jv] ~ t » p'[r /v]

Since v (j. fv*(p') and p is a basic term

7.4. A Theorem for Branching Basic Terms 129

p'[tjv] ±:::!:. t ~ p'[tjv] ±:::!:. t ~ p'[rjv].!::Zb t ~ z'[t/v] ±:::!:. z'[t/v]

By iudnetion p'[tjv] ±:::!:. z'[tjv], for infinitely many t. Since v !/: fv*(p') we
have as well v !/: fv*(z') (see Corollary 7.2.2). Hence, p has two double
r-summands, e.g. fvE(s,u) r(v) · p' and fve(s,u) r(v) · z', and thus Rule 2o. is
applicable. Contradiction.
We have obtained that for each transition

r ~ z ~ t ~ z'[tjv],

where r < u, there is a p11 such that

r ~ p'[r/v] ~ t ~ p"[tjv]

and

.z'[tjv] ±:::!:. t ~ z'[tjv].!::Zb t ~ p"(tjv].

By iudnetion z'(t/v] ±:::!:. p"[tjv]. Hence

(3) Vr E (s, u) 1 a(v) · z' $:.. p'[r/v]
vE(r,u)

From which we obtain that

f a(v)·z' p'[s/v]
lve(s,u)

For if not, then there must he a transition

f a(v) · z' ~ r' ~ z'[r' jv]
lve(s,u)

which cannot he matebed by p'[sjv]. But this cannot be possihle since
we may choose r arhitrary close tos in (3).

Concluding, we may say

I: f Z;(v)
i lve(s,u)

p'[sjv]

Now we have to consider Lj Zj(u). Fora transition

a(u) 1 p _____. V

we ohtain directly that there is a transition

r ~ p'[r/v] ~ J
and, hence, a(u) ç; p[sjv].
So, assume a summand Zj of the forma(u)· z' then

r~p

and either

u~z'

130 7. Completeness for Branching Bisimulation

* a= Tand
r';:?p ~ u'::? z'

r '::? p'[r/v] ~ u'::? p'[rfv]

Since v f/. fv*(p') we have u'::? p'[r fv] !:!. p~[sfv]
have

1{[sjv] +--> u '::? p'[r fvJ ±:U, u '::? z'
By induction p~[sfv] +--> 7! and thus z' Ä p'[sjvj.

p'[sfvj and we

Note that there is at most one summand r(u) · z' such that u '::?
z' ±:U, u';:? p'[r/v]. For if r(u) · z1 + r(u) · z11 Ç z such that u';:?
z" ±:z;, u'::? p'[rjvj then we can deduce, using induction, that 7!!:!. z"
and Rule 2b would be applicable.

* orthereis a p1 has a subterm p 11 such that

r';:?p
±:U,

r ';:? p'[r fvj
and we have

u '::? p"[ujwj

z' +--> u» z1
±:U, u ';:? p11 [ufv] +--> p11 [ufw]

by induction z'!:!. p"[ujv] and thus a(u) · z'!:!. a(u)· p11 [ufw] from
which we conclude a(u) · z1 p'[sfv]

• Proof. Fact 3
We have to prove for r < min(U(p), U(q))

p ~r p'

q r'::Pq

Since r < U(p) also p ~ r '::? p, and by branching bisimulation there is a q
such that q ~r q' and r » p ±:z;, q). We have, using Proposition 7.3.17,

r';:?p !:tb q'
r '::? q ±:U, p'

by which we obtain that r » p ±:z;, p' and then we conclude, using Fact 2 and
the Stuttering Lemma, that p ~r p' is an empty sequence and p ::::: p1

•

• Proof. Fact 4

7.4. A Tbeorem for Brancbing Basic Terms 131

It is suflident to show that U(p) = U(q), as this implies for any t that
Ut(P) {::::::::} Ut(q). Assume U(p) :S: U(q), then we may assume as well that
p is of the form

forsomen;?: 0. We take u0 = s, Un+l = U(q). Furthermore we take

Pn

p; d::J z; + r(ui+1) • Pi+l for iE {0, ... , n 1}

Then we have

and

U(q) > U(p) {::::::::} n > 0

and we will show that n > 0 implies that Rule 4 is applicable from which we
obtain that n 0 and, hence, U(p) U(q).

We have

For each r E (un-1, Un} we have

Zn-1 Z
1

=:::} 3q' qUn-1

q' =:::} 3z' Zn-1

q' where z' 5:::::!..b qu,._ 1

z' where z' 5:::::!..b qv."_ 1

Hence, using Corollary 7.3.15 and induction, for each summand
fvE(un_ 1,u,.) a(v) · z' of Zn-1 there is a corresponding summand
fvE(Un-l,Un) a(v) • q' Of qu"_1 SUCh that

r a(v). :1 +-+ r a(v). q',
JvE(Un-1 ,un) JvE(un-l,un)

and by Lemma 7.3.14 also

and vice versa. Similarly for each summand a(un) · z' of Zn_ 1, apart from
r(un). Zn, and each summand fvE(un,'Un+l) Z(v) of Zn.

Hence Zn-l "" Zn and Rule 4 can be applied.

D

132 7. Completeness for Branching Bisimulation

7.5 Completeness for Branching Bis. Eq.

We construct for each basic term its rooted branching basic term:

1. We replace every summand Ia a(v) · p1 by Ia a(v) · pfx,, where pfx, is the branching
basic term of p1

2. Each pfx, is of the form I:; a; :--> p;, and we rewrite Iaa(v) · p~b further to
Ei fal\a; a(V) . Pi·

Lemma 7.5.1 Let p, q E T(BPApói) and Prbb, qrbb are the rooted branching basic
terms of resp. p and q, then

Proof. First we note that BPApC + B1 1- p Prbb, q = qrbb, by soundness we
obtain that forall O" E Ecl we have O"(p) +->rb O"(prbb) and O'(q) +-+rb O"(qrbb)· By
transitivity of .t:±rb, we obtain that forall O" E [a] we have O"(prbb) +-+rb O"(qrbb)·

By the definition of strongly rootedness and Theorem 7.4.1, we obtain
O"(Prbb) !::± 0'(qrbb) · 0

Corollary 7.5.2 (Completeness) p,q E T(BPApól)

p q => BPApól + B1, a 1- p q

Proof. Directly by the previous Lemma and the Completeness for +-+" (Theorem
4.6.7).

8

Delay and "Weak Bisimulation and
Time

8.1 Introduetion

In this Chapter we discuss briefiy delay bisimulation equivalence and weak bisimu­
lation equivalence.

In the untimed case, delay bisimulation can be found by taking branching bisim­
ulation and relaxing one condition. Next, weak bisimulation is obtained by taking
delay bisimulation and allowing 7-transitions afterwards. This is shown in the fol­
lowing figure which is copied from Chapter 1.

{laJ·.·laJ 7*

a

7*

b d w

Figure 8.1: Three bisimulations with 7

In Beetion 8.2 we take the definition of timed branching bisimulation and we
derive timed delay bisimulation from it.

Baeten & Bergstra have suggested in [BB91] to interpret 7-transitions as idle
transitions. In order to obtain "well behaved" transition systems one has to apply
the transitive ciosure on idle and step transitions. In Beetion 8.3 we investigate
this idea in greater detail and we show that the resulting equivalence coincides with
strongly rooted timed delay bisimulation equivalence of section 8.2.

In Section 8.4 we study the axiomatization of timed rooted delay bisimulation.

133

134 8. Delay and Weak Bisimulation and Time

In Section 8.5 we define timed weak bisimulation equivalence, by taking delay
bisimulation and allowing r-transitions afterwards. However, as this equivalence is
nota congruence for ACPp it will not be stuclied in detail. In Chapter 11 we discuss
delay and weak bisimulation in a so called two phase semantics, in that setting weak
bisimulation will be a congruence.

This chapter is based on [Klu92], though Section 8.3 originates from [Klu91a].

8.2 Rooted Delay Bisimulation Equivalence

The first clause of the definitîon of Idle Branching Bisimulation (see Definition 6.3.3)
is

• < p, t > ±>. < p', r > (a E A) implies that there is a q' such that
a(r) a(r)

(< p, t > ---> < p', r >)'R(< q, t > ::=:::;. < q1
, r >).

We relax this clause, by removing the condition that the intermediate states must
be related, and we obtain the following clause for delay bisimulation.

• < p, t > ±>. < p', r > (a E A) implies that there is a q' such that

< q,t > < q', r > and < p', r > 'R < q1
, r >.

In this way we obtain the following definition for delay bisimulation.

Definition 8.2.1 (Idle Delay Bisimulation)
'R c (Tcl(BPApói) x Time) 2 is an idle delay bisimulation if whenever
< p, t > 'R < q, t > then

1. < p, t > < p', r > (a E A} implies that there is a q' such that

< q, t > ~ < q', r > and < p', r > 'R < q', r >.

2. < p, t > ~ < p', r > implies that there is a q' such that
< q, t > ==? < q', r > and < p', r > 'R < q', r >.

3. < p, t > ±>. v (a E A,.) implies that < q, t > ~ v
..{.. Respectively {1}, (2) and (3) with the role of pand q interchanged.

We define (rooted) idle delay bisimulation equivalence +-+(r)d analogous to (rooted)
idle branching bisimulation equivalence.

If we define delay bisimulation equivalence in the context of the term semantics,
then we identify

1 r(v) · a(3) + b(3) and 1 r(v) · a(3) + b(3),
vE(l,2) vE(1,3}

which are certainly not identified by +-+~, as the idle transition

8.3. Glosure Rules and Idle Transitions 135

< 1 r(v) · a(3) + b(3), 0 > :.S:!. < 1 r(v) · a(3) + b(3), 2 >
vE(l,3) vE(1,3)

cannot be properly matebed by

< 1 r(v) · a(3) + b(3),0 >.
vE{l,2)

Hence, we do not define (rooted) delay bisimulation in the context of the term
semantics. But, we have another characterization of (rooted) delay bisimulation,
that is called semi delay bisimulation ..

Definition 8.2.2 (Semi Delay Bisimulation)
R c (T(BPApöl) x Time) 2 is a semi delay bisimulation if 'UJhenever
< p, t > R < q, t > then

1. < p, t > ~ < p1
, r > {a E A) implies that there is a q1 such that

t a(r) I d I 'D I < q, > ===? < q , r >, an < p , r > ''- < q , r >.

2. < p, t > ==::;,. < p1
, r > implies that there is a q1 such that

< q, t > ==::;,. < q', r >, and < rJ, r > R < q1
, r >.

3. < p, t > y' (a E A,.) implies that < q, t > y',

4. Respectively {1}, {2) and {3} with the roZe of p and q interchanged.

We define semi delay equivalence ...-.d-semi and rooted demi delay equivalence
analogously and we have

Lemma 8.2.3

< p, t > +-->(r)d < q, t > <===? < p, t >

Proof. Omitted.

< q,t >

8.3 Ciosure Rules and ldle Transitions

0

Intheir original paper [BB91 J Baeten and Bergstra spend a few words on abstraction,
that we work out in more detail in this section. They propose to replace each label
r by ~ in the transition systems. To guarantee that the transition systems obey
the standard properties of timed transition systems, one has to apply a transitive
ciosure on the idle and step transitions. We can perform this transitive ciosure by
an action rule like:

<p,t> < p', r > ~ < p", s >

< p",s >

136 8. Delay and Weak Bisimulation and Time

We require that (strong) bisimulation remaius a congruence, also after application
of this action rule. This implies, that we may not apply this action rule at the root
level, as r(1) · a(2) must not be identified with r(1) ·a(2) +a(2). From the previous
discussions on branching bisimulation we know that such an identity is not allowed.

In order to distinguish root states (states that are reachable from the start state
by idle transitions only) from internal states, we add a boolean value toeach state,
initialized on jJ (false). As soon as an action a E A, or an idling that originates
from a r, has been performed, the boolean value switches to tt and remains tt
throughout the execution of the rest of the process. For example, we have the
following transitions:

< r(2) · p, O,JJ> .:Q1. < r(2) · p, !,JJ> .:ffi < p,2, tt >

In Table 8.1 the action rules for the ciosure semantics is given.
An idle transition of the form

t(r) I
< p, t,JJ>---+ < p 't,JJ>,

so, where the boolean value is ff in both states, originates from a "real" idle tran­
sition, i.e. one that does not originates from a r. We use this in certain premises,
where we have to distinguish "real" idle trausitions from the idle transitions that
originate from r's. For example, in case an alternative composition inherits an
idle transition, then the other components are dropped in case the idle transition
originates from a r, otherwise the other components are not dropped. Thus,

< r(2) · a(3), l,ff> ~ < a(3), 2, tt > and thus

< r(2) · a(3) + b(3), 1,ff> ~ < a(3), 2, tt > as well

though

< a(3), 1,ff> ~ < a(3),2,ff> and thus

< a(3) + b(3), 1,JJ> ~ < a(3) + b(3), 2,JJ>

We say that two states < p, t, b > and < q, t, b > are ciosure bisimilation equivalent,
denoted by < p, t, b > -~los < q, t, b >, if there is astrong bisimulation n, that
relates < p, t, b > and < q, t, b >.

Lemma 8.3.1

< p,t,JJ>

Proof. Omitted.

+-+' -cl os < q,t,JJ> < q,t >

D

Here, -~rd denotes strongly rooted idle delay bisimulation equivalence, which can
he defined analogously to strongly rooted idle branching bisimulation equivalence,
see Definition 6.8.1.

8.3. Glosure Rules and Idle Transitions

t < r

t<r<s

t(r) 1 < p, t,ff> ---+ < p, r,JJ>
<(r) ..1 < p + q, t, b >---+ < p + q, r, b >

s < r < tt >

t<r<s

< s ::» p, t, b > < s ::» p, r, b >

t(r) 1 < p, t,ff>---+ < P 'r,ff>
t(r) 1 < q + p, t, b > ---+ < q + p , r, b >

b ~ I < p,t, > V
a,(r) I

< q + p, t, b > ---+ V

r > s <

s < r < >

Ciosure Rules

(a E A, a, E A., a-rli E A-r,o, r, t, sE Time)

Table 8.1: Action Rules for BPAp6r with Ciosure Rules

137

138 8. Delay and Weak Bisimulation and Time

8.4 Axioms for Rooted Delay Bis. Eq.

Untimed rooted delay bisimulation equivalence is completely axiomatized by the
axioms Tl and T2.

Tl p· T p
. T2 T . p = T . p + p

8.4.1 The first r-axiom

We have seen already in Section 6.2 on timed branching bisimulation that p · r = p
cannot be transformed straightforwardly to the timed case as a(l) · r(2) cannot be
identified with a(l).

An option fora generalization is the identity Tl?.

Tl? a = (dbo,blD -:10 1\ V< bl !\ ub,(P))

i faA{3(a(v) · fwE4bo,b1D(r(w)) · P) = faA{3(a(v) · bo ~ P)

However, this identity is derivable from the law T11 , that has already been discussed
in Chapter 6, Section 6.5.

Hence, we consider T11 as the most appropriate generalization of the untimed Tl.

Proposition 8.4.1 BPApói + Tl1 f- Tl?

Proof. Take a as in Tl?. Without proof we state that BPAp6I f- (b ~ p) ~ b
b(b).

faA{3(a(v) · bo ~ p)

TJ/ faAp(a(v) · ((bo ~ p) ~ bo + fwEiboM(r(w)) · (bo ~ p))
fnA{3(a(v). (8(bo) + fwE4bo,bt}(r(w)). p))
fnAp(a(v) · fwEqb0,b1)(r(w)) · p))

0

8.4. Axioms for Rooted Delay Bis. Eq. 139

8.4.2 The second r-axiom

A typical example is

fwE(l,2) r(W) · fwE(1,3] b(V)
fwE(1,2) 1(W) . fvE{l,3) b(V) + fvE(l,2] b(V)

Note, that

p fwE(1,2) 7(W) . fvE(1,3) b(V)
~d q = fwE(l,2) r(w) · fvE(l,3) b(v) + fvE(l,3] b(v),

as the idle transition < q, 0 > ~ < q, 2 >, where < q, 2 > is < q, 0 >-rooted,
cannot be matched by < p, 0 >, due to the rootedness condition. These examples
suggest to us the following timed version of the second r-axiom, T2.

In the following example we show how the above pair of terms can be identified
within a certain context.

Exarnple 8.4.2
BPApól + T1 1 + T21 1- a(l) · (p + c(2)) = a(l) · (q + c(2))

a(l) · (JwE{l,2) r(w) · fwE{l,3] b(v) + c(2))

a(l) · CfwE(l,2) r(w) · UwE(l,2] b(v) + r(2) · fwE(2,31 b(v)) + c(2))

T~,I a(l) · CfwE(l,2) r(w) · UwE(1,2] b(v) + r(2) · fwE(2,3] b(v))+
1 » CfwE(l,2] b(v) + r(2) · fwE(2,31 b(v)) » 2 + c(2))

a(l) · UwE{l,2) r(w) · UwE{l,2] b(v) + r(2) · fwE{2,3] b(v))+
fwE(1,2] b(v) + r(2) · fwE(2,3] b(v) + c(2))

a(l) · UwE(l,2) r(w) · fwE(l,3] b(v) + fwE(1,3] b(v) + c(2))

As in the untimed case we can derive B1 from T11 and T21.

Proposition 8.4.3

Proof. Omitted.

Theorem 8.4.4 (Soundness)

BPApól + Tl1 + T21 1- p q ==;.- p +-+rd q

D

140 8. Delay and Weak Bisimulation and Time

Proof. Omitted. D

The law T21 is notsound for strongly rooted delay bisimulation equivalence. There­
fore, we formulate T2?, by applying T21 in a context .

. fa(a(V) · Uweqbo,brD (r(W)) · p + q))

. fa(a(v) · Uweqbo,b1}(r(w)) · p+ bo » P &:: b1 + q)

We do not study whether Tl1 and T21 axiomatize completely, but we think
that it can he proven, using the techniques from the previous chapter.

8.4.3 Delay bisimulation without integration coincides with
branching bisimulation

If we formulate the axiom T2r in the context of T(BPApór), then we obtain

r(t) · p = r(t) · p + t » p » t.

Without proof we state that t » p &:: t reduces to ó(t). Hence, the axiom T21 does
not add any new identities over T(BPApór).

8.5 Weak Bisimulation and Time

The first clause of the definition of Idle Delay Bisimulation (see Definition 8.2.1) is

• < p, t > ~ < p', r > (a E A) implies that there is a q' such that

< q, t > ~ < q1
' r > and < p', r > n < q1

' r >.
We extend this clause, by adding an additional sequence of r and idle transitions
afterwards, in order to get a corresponding clause for idle delay bisimulation.

• < p, t > ~ < p1
, r > (a E A) implies that there are z, q' and t' such that

a(r)
- < q, t > =:::::::} < z, r > <q',t!>,

< p', t' > n < q', t' >,
L(t') O.r(r')

< p', r >-... < p', t' > and < p', r > f--> for all r' E (r, t!J

Weneed the condition that < p', r > ~ < p', t' > as only states with the
a.(r')

same time value can be related. Furthermore, the condition < p', r > f-->
for all r' E (r, t'] is needed, since the weak bisimulation skips all behavior
in between r and t' anyway, so we require that there is no behavior in that
interval.

8.6. The Third T axiom 141

Wedefine weak bisimulation equivalence, denoted by <--+w, and rooted weak bisimu­
lation equivalence, denoted by <--+rw·

Definition 8.5.1 (Idle Weak Bisimulation)
n c (Tcl(BPApól) x Time)2 is an idle weak bisimulation if whenever < p, t >

n < q, t > then

1. < p, t > ~ < p, r > (a E A) implies that there are z, q' and t' such that

• < q, t > < z,r > <q',t!>,

• < p', t' > n < q', t' >,
L(t') a,(r')

• < p', r >-- < p', t' > and < p', r > f--4 for all r' E (r, t']

2. < p, t > < p', r > implies that there is a q' and t' such that

• < q,t > ===} < q',t! >,

• <p',t' > n < q',t' >,
L(t') a,(r')

• <p',r>--<p',t'> and<p',r> f--4 forallr'E(r,t']

3. < p, t > ~ v (a E A,.) implies that there are z and s such that

• < q,t >====>< z,s > v,
• <p,t>'R(<q,t>====><z,s>).

4. Respectively (1), (2) and (3) with the role of p and q interchanged.

8.6 The Third T axiom

First we give a typical example.

Example 8.6.1

a(l) · (r(2) · b(3) + c(2)) <-->,.111 a(1) · (r(2) · b(3) + c(2)) + a(1) · b(3)

This identity looks like an instanee of the untimed axiom T3

a· (r · p + q) =a· (r · p + q) +a· p.

We generalize this axiom to the timed case.

142 8. Delay and Weak Bisimulation and Time

T3p r < t

1
a(r) · (r(t) ·p+q) a(r) · (r(t) · p + q) + a(r) · r(t) · p

T3J a = (~bo, b1D i 0 1\ v < b1)

fcxi\,B(a(v) · Uweqbo,b1}(r(w) · P) + q)) =
fcxi\,B(a(v). Uweqbo.b!}(r(w). p) + q) + fa/\,8 a(v). fwe{bo,bt)(r(w). p))

We obtain new identities without r, such as BPAph, as well, these are characterized
by combining Tlp and T3w

Let r < t < U(p) 1\ U(q) $ t then

a(r) · (t ~ p+ q) a(r) · (r(t) · p+ q)

T~ a(r) · (r(t) · p + q) + a(r) · r(t) · p

Td! a(r) · (t ~ p + q) + a(r) · (t ~ p)

Theorem 8.6.2 (Soundness) p, q E T(BPAphi)

BPAphr + Tl1 + T2I + T3I 1- p = q ==? p -rw q

Proof. Omitted

8. 7 The Extension to ACP p

In Chapter 1, Section 1.4, we have discussed briefly the extension of untimed delay
and weak bisimulation to ACP.

In the timed case we have similar phenomena. Consider for example the pair

f r(v) · f a(v)
Jv€(1,2} Jv€(1,2}

f r(v) · f a(v) + f a(v)
JvE(l,2} Jv€(1,2) JvE{l,2)

If we take -y(a, b) = c i b, then

(f r(v). f a(v) + r a(v))l f b(v)
JuE(l,2} JvE(l,2) JvE(l,2} JvE(l,2)

has a summand fve(I,2) c(v). However, according to the operational semantics of this
chapter the process term Uve(l,2} r(v) · fve(I,2} a(v) I fve(l,2) b(v) has no transitions at
alL

Hence, +-+rd is not a congruence for ACPp. Wethink that ~dis a congruence
over ACPp without the auxiliary operators ll and I, in which case we need a ces
alike expansion theorem for the axiomatization of 11· We discuss an expansion the­
orem for a slightly different setting in Chapter 12. Another way of repairing the

8. 7. The Extension to ACP p 143

above example, is to add action rules to the term semantics, that are similar to
the dosure rules we have discussed as well. These problems are subject for further
research.

For the case of time weak bisimulation the case is even worse, as weak bisim­
ulation is not a congruence for the merge (11). Take p = d(l) · (a(3) + b(2)) and
q = d(l) · (a(3) + b(2)) + d(1) · a(3) where, 'Y(b, b) c. Then we have BPAp8+
T3P 1-- p q. But in a context they can be distinguished. In 8{b}(PIIb(2)) at time 2
a communication of b(2) with b(2) is forced since it is the only option for the whole
processnot to deadlock at 2. However, 8{bJ(qllb(2)) has a deadlock at time 2 ..

ACPp 1-- a{bJ(Piib(2)) = a(1) · c(2)
ACPp 1-- 8{b}(qllb(2)) a(1) · c(2) + a(1) · 15(2)

This counterexample is due to Jan Bergstra ([Ber92]). Hence, weak bisimulation
is not a congruence in ACP p. Therefore, we think that weak bisimulation is not
appropriate for extension with time, at least in the context of ACP p. This problem
is due to a interaction of our operational semantics and weak bisimulat!on. In our
operational semantics every transition takes time and consecutive actions cannot
occur at the same point in time.

In Chapter 11 we discuss a two phase semantics for ACP p, in which rooted weak
bisimulation equivalence doesnotsuffer this latter problem. In Chapter 12 we show
that weak bisimulation in such a two phase semantics corresponds to other notions of
timed weak bisimulation as can be found in the literature [Wan91a],[MT92], [Che93]
and [QdFA93J.

144 8. Delay and Weak Bisimulation and Time

Part IV

Guarded Recursion

145

9

Prefixed Integration and Guarded
Reenrsion

9.1 Introduetion

In this chapter we generalize the definitions and resnlts of Section 1.5, where we
have introdnced reenrsion and guardedness in BPADT, into the context of BPApbTL

The main difference with the untimed setting is that we parameterize reenrsion
variables with a time variable. For example, when we define

def
X(v) = a(v) · X(v + 1)

then X(l) is the process that execntes an a at time 1, 2, 3, For simplicity we
will restriet ourselves to the case where each recursion variable is parameterized by
exactly one time variable.

9.2 Some Definitions

We assume a set RV ar of recursion variables, with typical element X. If n is a
subset of RVar then we denote by T(n, BPAp8TI) the set of process terms over
BPApóTI in which the instantiated recursion variables, that are expressions of the
form X(b) where bis a bound, from n may occur as atomie constructs. We put
fv(X(b)) = var(b).

A timed specification E is a fini te collection of declarations of the forrn

def def
{Xo(vi) = Po, ... ,Xn(vn) = Pn}

where p; E ({Xo, ... ,Xn},BPApóTl) and i i= j implies X; i= Xj. We willrestrict our­
selves to time closed declarations, i.e. fv(p;) Ç { v;}. We denote the set { X0 , ... , Xn}
by rvar(E). For X E rvar(E) we denote the right hand side of the declaration of

)
E E .

X(v in E by Px(v)' lf X 1/:. rvar(E) then Px(v) denotes ó.

147

148 9. Prefixed Integration and Guarded Recursion

We parameterize the action relations of our operational semantics by a specifi­
cation E. We have two additional action rules, which are given in Table 9.1. We
obtain equivalences like +-+~, and ~ in the obvious way.

Table 9.1: Action Rules for Recursioii

If p is a process term and there is a time variabie v such that fv(p) Ç { v },
then we denote p[b j v J by p(b). If f v(p) { v}, then the time variabie v can be find
easily when we write p(b), and in case fv(p) = 0, then it doesn't matter which v we
take as p[b/v] can be reduced top. Moreover, when we write p(b), then we assume
implicitly that lfv(p)l :$ 1.

Definition 9.2.1 (the notion of a solution) p E T(rvar(E), BPApor I), with
lfv(p)l :$ 1, is a b-solution for X in E modulo ±:±, ij p(b) ±:± pf.(b).

We have similar definitions for ±:tb and +-+rb.

In order to define the notion of guardedness we (re)define the auxiliary boolean
function G~ 1 on process terms, see Table 9.2.

Proposition 9.2.2 For all E, 1l and p E T(RVar, BPAp8ri) there is a boolean
expression a, either tt or .IJ, such that A4, 5 + Gl-9 + Bl, 2 f- G~(p) =a

Proof. As in the untimed case, see Proposition 1.5.3. 0

Definition 9.2.3 (Guardedness) The specification E is guarded if for all X E
rvar(E) A4, 5 + Gl-9 + Bl, 2 f- Gf(X(v)) tt.

And, of course, if a specification E is guarded then all process terms over E are
guarded as well.

1The above definition of G~(p) is rather syntactical. For example, in case

X(v) ~~ { r(w) · X(v + 1) + a(v + 10)
JwE(v,lO)

we could say that X(O) is guarded as there are only finitely many unfoldings possible. We have
chosen not to do this. It complicates the notion of guardedness since it has to be a conditional
expression. Moreover, it is not clear that Proposition 9.2.2 can be proven, take for example

de/1 Y(v) = r(w) · Y(w) +a(v + 10)
wE(O,lO)

9.3. Axioms for Reenrsion a,nd Projection 149

··--·

G1 Gji(J" a(v)) = tt
G2 Gji Uc, r(v)) = tt
G3 Gji (fc, a(V) · p) tt
G4 Gji(J" r(v) · p) Gfi(p)
G5 Gji(p + q) Gji(p) A Gfi(q)

G6 Gji(X(b)) Gfiu{x}(p~)
if X E rvar(E) 'R.

G7 Gji(X(b)) ff otherwise
G8 Gji(X(b) · p) = Gfiu{x}(P~ · P)

if X E rvar(E)- 'R.
G9 Gji(X(b) · p) = ff otherwise

Table 9.2: Axioms for the (boolean) guardedness function

Proposition 9.2.4 Let E be a guarded specification and
p E T(rvar(E), BPApóri) then A4, 5 + Gl-9 + Bl, 2 f- Gf(p) tt.

Proof. Omitted. 0

9.3 Axioms for Recursion and Projection

= P:Xl7J/X](b) p(b) q(b)

Table 9.3: Additional axioms for reenrsion

As in the untimed case we have two axioms, RECE and RSP~, they are given in
Table 9.3. And we redefine the projection operator as well, see Table 9.4.

If p = (PI, ... ,pn) is a vector of process terms (such that ifv(pi)i :S: 1) and
b (b1, .•. , bn) is a vector of bounds, then we denote by p(b) the vector of process
terms (p1(b1), ... ,pn(bn)). For the other notations t,hat are used in Table 9.3 we
refer to Section 1.5.3.

150 9. Prefixed Integration and Guarded Recursion

PRl 7f0 (J,.a(v))
PR2 7rn+l(J,. a(v))
PR3 7rn(Ja T(v))
PR4 7ro(fa a(v) · p)
PR5 7f,.,+l(Ja(a(v) · p))
PR6 7rn(J0 (T(v) · p))
PR7 7rn(P + q)

= {j

= f,. a(v)
= fa T(v)
= {j

fa(a(v) · 7rn(P))
J"(T(v) · 7rn(P))

= 1fn(P) + 7rn(q)

a E Ar, n 2: 0

Table 9.4: Axioms for the projection operator

9.4 The Soundness of the Restricted Recursion
Specifi.cation Principle

We formulate the notion of a head form as in the untimed case and we have a similar
proposition:

Proposition 9.4.1 Let E be a guarded specification and
p E T(rvar(E), BPApMI), then ther·e is a p' such that p' is in head form and
BPApól + RECE + PRl-7 f- 7rn(P) p'

Proof. See the proof of Proposition 1.5.6. D

Lemma 9.4.2 IJ E is a guarded specification and p E T(rvar(E), BPAp{jTI), then
for each n there is a finite process term Tl, without occurrences of the projection
operator, such that

BPAp{ji + RECE + PRl-7 f- 7rn(P) = p'

Proof. See the proof of Proposition 1.5.7. D

Lemma 9.4.3 Let E be a guarded specification with XE rvar(E) and
p E T(rvar(E), BPApor I) with lfv(p)l:::; 1 such that pis a b-solution for X(v), then
for all n we have 7rn(p(b)) ±:4rb) 7rn(X(b)).

Proof. The proof is almost identical to the proof of the untimed version (see
Lemma 1.5.8).

Since pis a b-solution for X(v) in E we have 7rn(P(b)) ±:4rb) 7rn(Px[v/X][b/v]).
Consider the derivation between 7rn(Px(v)[b/v]) and hnf (7rn(Px(v)[bfv])), note that
the latter process term is a finite process term, so X does not occur in it. For each

9.4. The Soundness of the Restricted Recursion Specification Principle 151

identity in this derivation for which RECE X(b) = Px(v)[bjv] is used we apply p(b) =
PX(v)[p/X][bjv] instead. This gives us a derivation between ?Tn(pX(v)[p/Xl[bjv]) and
hnf (7rn(Px(v)[bjv])) and we are ready. 0

Lemma 9.4.4 (Projection Lemma) IJ Eis a guarded specification with
X E rvar(E) such that both p, q E T(rvar(E), BPAp8rl), with fv(p) ::; 1, fv(q) ::; 1,
are b-solutions for X (v) in E modulo ~rb)> then for all n we have
1Tn(p(b)) 1Tn(q(b)).

Proof. Immediate from Lemma 9.4.3. D

Reeall that p ~ p' denotes that there is a sequence of timed r transitions from
p top'.

Proposition 9.4.5 Ij E is a guarded specification and p E T(rvar(E), BPApor I)
then the set

{p'!p' is a subterm of p, :Jap p'}

is finite.

Proof. By induction on l(p). D

Again we have AIPg:

And we prove

Theorem 9.4.6 (Soundness of AIP0) IJ Eis a guarded timed specification and
p, q E T(rvar(E), BPApórl) then

"'n i: 1Tn(P)

Proof. Let p' be a subterm of p such that p' can be reached from p in more than
zero transitions. Similarly we take a subterm q' of q. Wedefine for each marelation
"'m such that

P "'m q' Ç::::;> 11"m(P') +-'tb 1rm(q')

and we put p''"" q' if for all m we have p' '""m q'.
We show first that "' is a branching bisimulation. Take p', q' such that p1

"' q'.

• Consicier p" such that p' 51 p", where a E A, and put

Sn = { (z,q*,v,a) I q' a(z) 51 a[rjv](q*),
p' "'n+I (q' ==? a(z)), p" "'n a[rjv](q*)}

152 9. Prefixed Integration and Guarded Recursion

and

S!ym { (z,q*,v) 13 a(z,q*,v,a) E Sn}

Then we have

1. So 2 sl 2 s2 2 ... , sirree u ""'k+l u' implies u ""'k U1
• Thus sgym 2 s:ym 2

s~ym 2 ... as well.

2. For all n Sn=/= 0 since p1
"'n+l q1

• Thus S!ym =/= 0 as well.

3. For all n S!Ym is finite, by Proposition 9.4.5.

Herree n::=oS!ym =/= 0 and we can take a tuple (z,q",v) E n:=oS!ym· Then
there is a a such that (z, q", v, a) E n::=o Sn such that
q' ==> a(z)::._. a[rjv](q"), p1

rv (q' ==> a(z)) and p11
rv a[r/v](q11

).

The other cases and the rest of the proof can be derived from the above case and
the proof of the untimed version of the Theerem (see Theorem 9.4.6). o

Theorem 9.4. 7 {Soundness of RSP~) Ij E is a timed guarded specification with
X E rvar(E) such that both p, q E T(rvar(E), BPApMI) with fv(p) 5 1, fv(q) 5 1,
are b-solutions for X(v) in E then p(b) .t#1 q(b).

Proof. Direct by the Projection Lemma and the Soundnessof AlP~. 0

10

Protocol Verification

10.1 Introduetion

Process algebra, i.e. untimed process algebra such as ACP [BW90], can be used to
prove that the implementation of a protocol meets its specification, for a reference
see [Bae90]. The standard example is the alternating bit protocol, see [BW90].

In this chapter we will show that the techniques for protocol verification which
are used in untimed process algebra can be used in the timed case as well. We give
a verfication of the PAR-protocol (Positive Acknowledgement with Retmnsmission),
that has been specified in [BB9l]. An earlier version of this verification has been
published already in [Klu91a].

We will encounter some new concepts. If we have a process like

def
X(v) = r(v) · {(Y(v + 2) + r(v + 1) · X(v + 3)}

one would like to he able prove that

00

X(v) = r(v) · {L r(v + 1 + 3 · n) · Y(v + 2 + 3 · n)}
n=O

The n in the summation of the second process term corresponds with the number
of reenrsion loops in the first process term. This identity cannot be proven within
the axiom systems we have seen so far. In the next section we will introduce the so
called Unwind Principle by which we obtain the above identity.

If one is not interested any more in all internal moments of choice one could also
argue that

a(l) · (r(2) · b(3) + b'(3)) a(l) · (b(3) + b'(3))

In Section 10.4 we introduceaso called r-erasing bisimulation that identifies these
two process terms. Of course, this equivalence is not a congruence over ACP p, as
these two termscan be distinguished by the context 8b,iï(· .. llb(3)), if 7(b, b) eb
and 7(b',b) ti. This equivalence allows us to simplify the above identity for X(v)
into

153

154 10. Protocol Verification

00

X(v) = 7(v) · {LY(v + 2 + 3 · n)}
n=O

The main part of this chapter is devoted to an algebraic reasoning by which we
can rewrite the implementation of the PAR protocol into an expression that still
contains all external behavior and all possible internal moments of choice. With a
little handwaving we use the r-erasing bisimulation to get rid of all the internal mo­
ments of choice, and finally we sketch that the resulting expression is trace included
by some more (time-)abstract expression.

10.2 The r-swap and r-removal

In the verification of this chapter we make use of two identities. One of them is the
7-swap, that allows to swap the 7 from one summand to the other. For example

a(l) · (7(2) · b(3) + c(3)) = a(l) · (b(3) + 7{2) · c(3))

The next one is the 7-removal, for example

a(1) · (7(2) · b(3) + c(2)) = a(l) · (b(3) + c(2))

The formal definitions of these identities are given in Table 10.1.

10.3

7-swap fai\U.(p)I\U•(q) a(v) · (7(b) · p + q)
fai\U&(p)f\U0(q) a(V) · (p + 7(b) · q)

7-removal fai\U.(p)A~(U•(q)) a(v) · (7(b) · p + q)
fai\U.(p)A~(u•(q)) a(V) · (p + q)

Table 10.1: The 7-swap and 7-removal

The U nwind Principle

In Table 10.2 we formulate the so called unwind principle, that allows us to unwind
a recursive specification infinitely many times. As motivation we give the following
pseudo derivation.

10.4. A r Erasing Bisimulation

X(v) 4!:_1 r(v) · {Y(v + b) + r(v + b0) · X(v + b1)}

UP Y(w) = w » Y(w), bo < min(b1, b) ==}

X(v) r(v) · {2::=o r(v + bo + n · b1) · Y(v + b + n · b1)}

Table 10.2: The Unwind Principle

X(v) r(v) · {Y(v + b) + r(v + b0) · X(v + b1)}

r(v) · {r(v + b0) · Y(v + b) + X(v + bt)}
r(v) · {r(v + b0) • Y(v +'b)+

r(v + b1)·
{Y(v + b + b1) + r(v + b0 + b1) • X(v + 2 · b1)}}

r(v) · {r(v + b0) · Y(v + b)+
{ Y (V + b + b1) + 1(V + bo + b1) · X (V + 2 · b1)}}

= r(v) · {r(v + b0) · Y(v + b)+
r(v + b0 + b1) · Y(v + b + b1) + X(v + 2 ·bi)}

155

The dots in the derivation below express that this principle is not provable within
the theory BPApól, or BPApói, in a finite derivation.

10.4 A T Erasing Bisimulation

Definition 10.4.1 (r-Erasing Bisimulation)
R Ç (T x [0, oo))2 is an r-erasing bisimulation if whenever pRq then

1. p ~ p' (a E A) implies that there is a q1 such that q ~ q' and p''R.q'

2. p ~ v {a E As} implies that q V·

3. Ut(p) implies that there is a z such that q q' andUt(q').

,/.. Respectively {1}, (2}, (3} with the role of p and q interchanged.

Reeall that q q' means that there is a r sequence of length zero or more from
q to q'. And we have

156 10. Protocol Verification

Definition 10.4.2 p ~r)e q if there is a ('rooted) erasing bisimulation 'R such that
p'Rq .

.!::!." is an equivalence over BPApOT, butnota congruence. !::::tre is a congruence over
BPApóT, butnotover ACPp.

We can formulate the following law:

la~ (v<b,AU.,(p))
I

i TE faA{3 a(v). UwE~boM T(w). P + q) = fall{3a(v) · (bo ~ p+ q) I

10.5 The Specification and the Implementation
of the Protocol

First we define the individual components.

A
A1(b,v)
A2(b,d, v)
A3(b,d,v)

K
K'(v)

L
L'

B
Bt(b)
B2(b)
B~(b)
B3(b,v)

A1(0, 0)
= l:dED fw>v r1(d)(w) · A2(b, d, w)

s3(db)(v + 0.001) · A3 (b, d, v)
fwE(v+O.OOl,v+O.Ol} rs (ack) (W) · A1 (1 - b, w) +

time_out(v + 0.01) · A2(b, d, v + 0.01)

l:fEDxB fw>O r3(J)(w) · K'(w)
{s4(f)(v + 0.002) + errorK(v + 0.001)} · K

fw>O r5(ack)(w) · L'
{ss(ack)(v + 0.002) + errorL(v + 0.001)} · L

B1(0)
= B2(b) + BHb)

l:deD fw>O r4(db)(w) · s2(d)(w + 0.001) · B3(l- b, w)
= l:dED fw>O r4(d(b- l))(w) · B3(b, w)
= s6 (ack)(v + 0.002) · B1(b)

10.6. Expanding the Definitions 157

10.6 Expanding the Definitions

We expand the definitions, for each new configuration a new reenrsion variabie is
chosen. In this way we obtain the parameterized reenrsion variables X0 - X 2 , Y1 - Y2
and zbz2·

PAR.;mpl Xo(O,O)

Xo(b, v) 8H(At(b, v)IIKIILIIB(b))
fw>v "l:deD rt(d)(w) · Xt(b, d, w)

Xt(b, d, v)
= oH (A2(b,d,v)il K 11 L 11 B(b))

aH (s3(db)(v + 0.001). A3(b, d, v)
11 "L:tEDxBfw>or3(f)(w) · K'
11 L
11 Bt(b)
)

c3 (db)(v + 0.001) · X 2(b, d, v)

Xz(b,d, v)
OH ([fwE[v,v+O.Ol) r5(ack, w) · At(l- b, w) +

time...out(v + 0.01) · A3 (b, d, v + 0.01)]
11 [s4 (d?)(v + 0.003) + errorK(v + 0.002)]· K

11 L
11 "L:deD fw>O r4(db)(w) · s2(d)(w + 0.001) · B(1- b, w) + B2(b)
)

c4(db)(v + 0.003) · s2(d)(v + 0.004) · Z1(b, d, v) +
errorK(v + 0.002) · time_out(v + 0.01) · X1(b, d, v + 0.01)

Z1(b,d,v)
OH (A3(b, d, V+ 0.001)

11K
11 fw>or6(ack)(w) · L'
11 s6(ack)(v + 0.005) · B(1 b)
)

c6 (ack)(v + 0.005) · Z2 (b, d, v)

Z2(b,d, v)
aH ([fwE[v,v+O.Ol) r5(ack, w). At(1- b, w) +

time_out(v + 0.01) · A2(b, d, v + 0.01)]
11 K

158 10. Protocol Verification

11 [ss(ack)(v + 0.007) + errorL(v + 0.006)]· L
11 B1(l-b)
)

c5(ack)(v + 0.007) · X0 (1- b, v + 0.007) +
errorL(v + 0.006) · time_out(v + 0.01) ·lî(b, d, v + 0.01)

Y1(b, d, 1J)
= oH (Az(b,d,v)ll K 11 L 11 B(l- b))

oH (s3(db)(v+O.OOl) · A3(b,d,v)
11 LfEDxB fw>D rs(f)(w)

·[s4 (f)(w + 0.002) + errorK(w + 0.001)]· K
11 L
11 B1(l- b)
)

= c3(db)(v+O.OOl) · Yz(b,d,v)

Yz(b,d,v)
= OH (!fwE[v;u+O.Ol)rs(ack,w)·Al(l b,w)+

time_out(v + 0.01) · A2(b,d,v + 0.01)]
11 [s4(f)(v + 0.003) + errorK(v + 0.002)]· K
11 L
11 LdED fw>O r4(d(1 b))(w) · s2(d)(w + 0.001) · Bz(b, w) +

B~(l- b)
)

= c4(db)(v + 0.003) · Zt(b, d, v) +
errorK(v + 0.002) · time_out(v + 0.01) · Y1 (b, d, v + 0.01)

10.7 Abstracting from Internal Steps

We apply the renaming operator 71 which renames every atomie action a(v) to r(v)
except for the actions r1(d)(v) and s2(d)(v).

'TJ(X0 (b,v)) =
7r(Xl(b,d,v))
1"J(X2(b, d, v))

r1(Z1(b,d,v)) =
r 1 (Z2(b,d,v))

TJ(Y1(b,d,v))
TJ(Yz(b,d,v)) =

fw>v LdED r1(d)(w) · TJ(XI(b,d,w))
7(V + 0.001) · TJ(X2(b, d, v))
r(V + 0.003) · 8z(d)(V+ 0.004) · Tf(Z1(b, d, V)) +
r(v + 0.002) · r(v + 0.01) · r1(X1(b, d, v + 0.01))
r(v + 0.005) · r1 (Z2 (b, d, v))
r(v + 0.007) · r1 (X0(1- b, v + 0.007)) +
r(v + 0.006) · r(v + 0.01) · r1(Yi (b, d, v + 0.01))

r(v + 0.001) · r1(Y2(b, d, v))
r(v + 0.003) · r1(Z1(b, d, v)) +
r(v + 0.002) · r(v + 0.01) · r1(Yi (b, d, v + 0.01))

10. 7. Abstracting Erom Internal Steps 159

Now we can apply the r-law and its implied identities (such as the r-swap and
the r-removal).

r1(X1(b,d,v)) r(v+O.OOl) · TJ(X2(b,d,v))
= r(v + 0.001) ·

{ r(v+0.003)·s2(d)(v+0.004)·ri(Z1(b,d,v)) +
r(v + 0.002) · r(v + 0.01) ·rr(X1 (b, d, v + 0.01)) }

= r(v + 0.001) ·
{ s2(d)(v + 0.004) · r(v + 0.005) · TJ(Z2(b, d, v)) +

r(V+ 0.002) · r1 (X1 (b, d, V+ 0.01)) }
-r(v + 0.001) ·
{ s2(d)(v + 0.004)·

{ -r(v + 0.007) · TI(X0(1- b, t + 0.007)) +
-r(v + 0.006) ·r(v + 0.01) · r1(Y1(b, d, V+ 0.01))} +

r(v + 0.002) · -r1(X1(b, d, V+ 0.01))}
= r(v + 0.001) ·

{ s2(d)(v + 0.004)·
{ r1 (X0 (1 - b, t + 0.007)) +

T(V + 0.006) · 1'J(Yi (b, d, V + 0.01)) } +
-r(v + 0.002) · r1(X1(b, d, V+ 0.01))}

r1 (Yi(b,d,v)) = -r(v+0.001) · TJ(Y2(b,d,v))
r(v + 0.001) ·
{ -r(v + 0.003) · r1(Z1(b, d, v)) +

r(v + 0.002) · r(v + 0.01) · n(YI(b, d, v + 0.01))}
r(v + 0.001) ·
{ r(V+ 0.005) · r1(Z2(b, d, V)) +

r(v + 0.002) · TJ(Y1 (b, d, V+ 0.01)) }
r(v + 0.001) ·
{ { -r(v + 0.007) · r1 (X0 (1- b, t + 0.007)) +

r(v + 0.006) · -r(v + 0.01) · -r1 (Yi(b, d, v + 0.01))} +
-r(V + 0.002) · TJ(Yi (b, d, V + 0.01)} }

r(v + 0.001) ·
{ r1 (X0 (1 b, t + 0.007)) +

r(v + 0.006) · r1(Y1(b, d, V+ 0.01)) +
-r(v + 0.002) · -r1(Y1(b,d,v + 0.01))}

By applying the Unwind Principle:

n(X1(b,d,v)) =r(v+0.001)·
2:::~=0 -r(v + 0.002 + n · 0.01)·
s2 (d)(v + 0.004 + n · 0.01)·
{ TJ(X0 (1 b, V+ 0.007 + n · 0.01)) +

r(v + 0.006 + n · 0.01) · r1(Y1(b, d, v + (n + 1) · 0.01))}

160 10. Protocol Verification

TJ(Yi. (b, d, V)) r(v + 0.001)·
2::::;:'=0 r(v + 0.002 + n · 0.01)
{ri(X0(1- b, v + 0.007 + n · 0.01)) +

r(v + 0.006) · r1 (Y1(b, d, V+ 0.01))}

If we abstract from all intemal activity we come to the following sequence:

Read the data at port 1 1
It takes n time outs before it is delivered at the sender 2
The data is sent over port 2 3
Either the system is back in its starting position 4a
or another round is needed for the acknowledgement 4b

An "acknowledgement round" is similar, though no readat port 1 an sendat port 2
occur. Below we give a more formal presentation of this high level view. Wedefine
Q(b,v) and Q'(b,v) as follows. Q'(b,v) is the "acknowledgement round".

Q(b, v) fw>v LdED r1(d)(w)· 1
2::::;:'=0 r(w + 0.002 + n · 0.01)· 2
s2(d)(w+0.004+n·0.01)· 3
{Q(1- b, w + 0.007 + n · 0.01)+ 4a

r(w + 0.006 + n · 0.01) · Q'(b, w + 0.006 + n · 0.01)} 4b

Q'(b, v) r(v + 0.001) · E:;,"=0 r(v + 0.006 + n · O.ül)·
{ Q(1- b, v + 0.007 + n · 0.01)+

r(v + 0.006 + n · 0.01) · Q1(b, v + 0.006 + n · 0.01)}

If we take

PARint-choice = Q(O 0)
spec '

then we can prove

ACP p + Bp + RSP f- PAR~;!,~choice = PAR;mpl

10.8 Some Tongher Methods and Handwavings

The definition of PAR!;!";;"choice still contains all internal moments of choice, hence
the suffix. At this point in our verification we are not interested any more in these
moments and we define

PAR:;!~tim P(O, 0)

where

10.8. Some Tougher Methods and Handwavings

P(b, v)

P'(b, v)

fw>v 'f:dED r1 (d)(W) ·

2:~0 s2(d)(w + 0.004 + n · 0.01)·
{P(l b, w + 0.007 + n · 0.01)+

P'(b, w + 0.006 + n · 0.01)}

'i:::;='=0{P(1- b, v + 0.007 + n · 0.01)+
P'(b, v + 0.006 + n · 0.01)}

161

We have obtained a description that contains all possible timings which are observ­
able by external actions. If we allow ourselves the freedom to do some handwaving
by which we can apply the axiom E infinitely many times then we obtain that
PARint-choice PARext-tim

spec spec ·

Finally we define

We take PARspee S(O, 0), and we argue that all traces of PAR:;!;;-tim are traces of
PARspee as well.

Of course the reasoning at the end of this chapter is not very precise and formal.
If protocol verification in real time process algebra is to be used, then we expect
that the Unwind Principle, r-erasing bisimulation, dealing with infinite sums and
preorders, can be of use. However, these concepts have to be stuclied in much more
detail, which is subject for further research.

162 10. Protocol Verification

Part V

Urgent Actions and Related "Work

163

11

Real Time ACP with Urgent
Actions

11.1 Introduetion

In this chapter we introduce a variant of Real Time ACP by introducing so-called
urgent actions in a relative time setting. Urgent actions are actions that may be
executed consecutively at the samepoint in time. Note that this is not the case in
ACPp where a(l) · b(l) equals a(l) · ó. We refer to this variant by ACPur, the u
stands for urgent actions and the r for relative time. The motivation for this variant
is that other timed process calculi have also urgent actionsin a relative time setting.
In the next chapter we will show how several other time calculi can be expressed in
ACPur.

This chapter can, in principle, be read independently of the previous ones. For
some definitions, however, we refer explicitly to the sections where they eau be
found.

ACPur consists of the ingredients given below.

• Relative time; the time stamps of the actions are interpreted relatively to
the time of execution of the previous action, or 0 in case of an initial action.
Relative time bas already been introduced in real time ACP by Baeten and
Bergstra in [BB91], where they use square brackets.

• Urgent actions; we assume that for each (symbolic) action a we have its urgent
variant, denoted by à. The difference between ii[t] and a[t] is that the first
action idles until t (t included) after which it executes the à action without
taking any time. a[t], however, idles till t (t excluded) and the execution ofthe
a. action coincides with the proceeding to point 1 in time. Another example,
b[O] means that b has to he executed immediately, while b[O] equals a deadlock
at time 0, since it cannot do the b nor can it idle.

• Prefixed multiplication; as constauts we have timed deadlocks only.

165

166 11. Real Time ACP with Urgent Actions

• The standard operators +, 11, lL' I, aH and Pi· The operator Pi bas not been
discussed in the previous chapters on parallelism and synchronization, though
it is a standard operator from the literature. The symbol f denotes a mapping
from atomie actions to atomie actions, and the operator Pi takes a process term
p and applies this mapping f on all the atomie actions of p.

• Two new operators.

- The shift-operator, (b) ·p. If r > 0 then (r) ·pis the process that becomes
pafter idling r time units, if r < 0 then (r) ·pis the process which is
reached after p bas idled r time units, and finally, (0) · p equals p. For
example:

(2) · Uve[5,6J a[vJ · b[v + 3])
(-2) · Uve[s,sJ a[vJ· b[v + 3])

fve[7,8] ii[v]· ~[v + 1]
= fve[3,41 ii[v] · b[v + 5)

It is used, among other places, in the axiomatization of the left merge,
for example

ii[1)\lb[3] = ii[1]· (-1). b[3] = ii[1]. b[2].

The notation (b) · p originates from Moller & Tofts [MT90), for a time
element t they have (t).p. The shift operator can also be found in the
workof Chen [Che93). The axioms of (b) ·pin this chapter resembie the
ones of Chen, though Chen does not give action rules for it.

Hennessy & Regan [HR90] have introduced a similar construct in discrete
time, they denote (1) · p by O'(p). Baeten & Bergstra [BB92] have also
defined a shift operator, for which they use the notation of Hennesy &
Regan. They denote (r) · p by O'r(p). We have chosen to use the notation
(b) ·pof Molier & Tofts and not the notation O'b(P) of Baeten & Bergstra,
as the 0' denotes already an arbitrary substitution.

- In the next chapter we encounter several timed process calculi that as­
sume maximal progress, i.e., a process cannot idle any more after the
internal action T has been enabled.

For maximal progress in the context of real time process algebra we refer
to Wang. Nicollin & Sifakis [NS91] have introduced action urgency, and
they can consider maximal progressof an instantiation, namely r-urgency.
Bolognesi & Lucidi [BL91] have defined an urgency operator p(H)p in a
discrete time context. The operator p(H) makes all actionsin H urgent in
its argument. We define this operator as wel! in our more general setting.
Since we associate the symbol p already with renaming, we denote the
urgency operator by UH. So, as soon as a the action ii, with a E H, is
enabled in p then UH(P) cannot idle any more.

For example

11.2. Syntax Deflnitions 167

U{a}(JvE[2,3] à[v]· P + fvE(l,4] b[v]· q) =
fvE[2,2] à[v] · P + fvE(l,2] b[v] · q

U{a}CfvE(2,3] à[v]· p) = bi2J
The second identity shows us that the urgency operator may introduce
a deadlock. This observation can also he found in a paper of Jeffrey
[Jef9lc], in that paper deadlocks are called time-stops.

The urgency operator can he axiomatized like the priority operator of
Baeten and Bergstra [BB93a], though we will use a slightly different ax­
iomatization.

The semantics for ACPur has a so-called two phase pattem [NS91]; it has time
phases and action phases. In a time phase all components agree in synchronizing
in idling, that is, the whole process idles for a finite or infinite amount of time such
that for each pair of points in the time interval there is a connecting idle transition.
In an action phase the components execute their actions, either independently or by
synchronization. An action phase does not take time, the behavior of the different
components in an action phase is very similar to the behavior in untimed ACP. In
short, a two phase semantics has timed transitions, which increase the time, and
(untimed) action transitions. Other examples of two phase semantics can he found
in the Timed COS calculi of Wang, Moller & Tofts and Chen, and it can also he
found in ATP of Nicollin & Sifakis.

We axiomatize ACPur by adapting the axioms from ACP pl. Furthermore, we
present branching, delay and weak bisimulation in the context of ACPur and we
discuss the differences between branching bisimulation in a two phase semantics
with the one of Chapter 6.

11.2 Syntax Definitions

We take the definitions of bounds and intervals of Chapter 4, Section 4.2. We reeall
that a bound is a time expression, that is a linear expressionover time variables. The
set of bounds is denoted by Bound., a typical bound is denoted by b. The symbols
-oo are oo are not part of Bound., we denote Bound U { -oo, oo} by Bound-oo,oo·

A condition is a boolean expression over time variables. Atomie conditions are of
the form tt, JJ, b0 < b1 and b0 = b1. Furthermore, we have the operators /\,V and
The set of conditions is denoted by Cond, a typical condition is denoted by a. We
extend Cond to Condu by allowing conditions of the form Ub(P) that corresponds
with the ultimate delay; the condition Ub(P) reduces to true if p can idle till b. In
Chapter 4 we have defined a predicate f= on conditions, intuitively f= a whenever
a reduces to tt.

Thesetof variables that occur in a bound b or a condition a is denoted by var(b)
and var(a) respectively. A substitution is a mapping from time variables to bounds.
Thesetof substitutions is denoted byE, a typical substitution is denoted by er. The

168 11. Real Time ACP with Urgent Actions

set of time closed substitutions, that is the set of (J such that for any time variabie
v we have var((J(v)) 0 is denoted by z:;c!.

We have ~ ranging over { (, [} and D ranging over{),]}. An interval, typically V
or W, is an expression of the form ~b0 , b1} where b0 , b1 E Bound-oo,co· We have the
additional requirement that b1 # -oo, and that b1 = oo implies that D =). Similarly,
b0 # oo and finally b0 = -oo implies that ~= (. We introduce the abbreviation V +b
that expresses that b is added to the bounds of V.

Furthermore, we abbreviate V + (-1) · b by V - b.
With respect to conditions we allow ourselves several abbreviations and expres­

sions that denote conditions. For example, b < oo denotes tt and v E [b0 , bi) (where
[b0 , bi) is an interval) abbreviates b0 :5 v A. v < b1 . So, v E {b, oo) abbreviates
b < v A. v < oo, which denotes in turn b < v A. tt, which can finally be reduced to
b< V.

Thesetof process terms over ACPur is denoted by T(ACPur), and it is defined
by the following BNF sentence, where a E As, b E Bound, n: E Condu, (JE 2:;, H Ç
A, and furthermore f is a mapping from A to A.

P ::= I .. 6[v] I I .. a[v]· P I P + P I n: :- P I (J(p) I (b) · P I P » v
PIIP' I plLp' I PIP' I éJn(p) I Pt(P) I Un(P) I P <ln P

The operator p » V can be considered as a generalization of p » b and b » p; the
process term p »V behaves as p, restricted to the interval V. We have an auxiliary
operator <J H that is used in the axiomatization of Un.

Process termsof the form I,. b[v] ·pare redundant, as they are equ:al to Iabfv].
Hence, they can be removed from the set of process terms without any problems.
We allow these terms as they simplify the axiomatization; without process terms
Iabfv] · p one has to give axioms for the case Ia á[v] · p (where a E A), and also for
the case Ia b[v].

In examples we allow ourselves to abbreviate f" á[v] · ftt b[w] by Ia á[v]. So, ii(l]
abbreviates Iv=l à[v]· Itt 8[w]. We allow ourselves the following abbreviations:

8 I.trbfv]
ii[b] Iv=b à{v]

We have also

So, forsome tE Time the expression Ut({l, 3)) abbreviates (1, 3) =f:. 0A.t E {-oo, 3),
which denotes in turn the condition (1, 3) =f:. 0 A. t < 3, that reduces finally tot < 3.
This latter condition can be reduced to tt or JJ, depending on t.

In f" à[v] · p all free occurrences of the time variabie v become bound by the
integral Ia· We denote the set of free time variables of a process term p by fv(p).

11.3. A Two Pbase Operational Semantics 169

The formal definition of fv(p) is omitted, as it corresponds closely to the definition
of free variables fQr termsin T(ACPpi), as given in Bubseetion 4.3.3 and Beetion
5.1. Reeall that a term without free time variables is time closed, otherwise it is
time open.

11.3 A Two Phase Operational Sernantics

In Table 11.1 and Table 11.2 we give the action rules for the two phase semantics
for ACPur. The inference rules for the evaluation of time closed conditions, and the
action rules for time closed terms with substitutions, have been omitted.

The rule

fvev à[v] · P fvev -t à[v] · p[v + tjv]

says that the bounds of an interval can be considered as timers which decrease in
time. As soon as the timer of the lower bound becomes 0 it remains 0. Whenever
0 E V then fvev à[v] · p can execute an a and evolve into p[ojv], which is expressed
by the rule

fvev à[v] · P p[O/v]

Consider the process term fve(4 ,6) à[v] · b[v + 1]. We expect that if à is executed after
idling 5 time units, then the process will evolve into b[6]. In order to obtain this
formally we have to substitute v + t for v in the first rule above and 0 for v in the
secoud rule above.

fve(4,6) à[v]· b[v + 1] fve[O,I) ii[v] · b[v + 6] b[6]

SimHar rules eau he found in the work of Wang, Chen and others.
The process term Un(P) eau idle t time units if it cannot perform an action à,

with a E H, before t. This latter reqnirement is expressed by the negative premise
á[r]

Va E H \fr < t p -/-+ . For this reason, we have to introduce an auxiliary transition

relation p ~ p', that is defined easily by the last rule in Table 11.2.
The definition of a bisimulation and of bisimulation equivalence is completely

straightforward.

Definition 11.3.1 (Bisimulation)
1? C Tc!(ACPur) x Td(ACPur) is a bisimulation ij whenever p1?q then

1.p p' (fi E A U (0, oo)) implies 3q' such that q q' and p'1?q'.

2. q _!!___" q' (fi E A U (0, oo}) implies 3p' such that p _!!___" p' and p'J?q'.

170 11. Real Time ACP with Urgent Actions

f= t > 0 f= Ut(V)

fvev b[v] ~ fvEV -t l[v]

f= a= tJ J11 P[v] .J!....;, p'
fa P[v] .J!....;, p'

. p+q ~ p', q+p ~ p'

(t+r)·p ~ (r)·p

p...!..."p' p' p"
(-r). p .J!....;, p"

p ~ p' f= Ut(V)

p~V ~ p'~V-t

f=ap.J!....;,p'

a:--> p .J!....;, p'

p'

(t) · p p' f= r = t

(r)·p.J!....;.p'

OE V
p'

Table 11.1: Two phase action rules for BPAuró

p'

11.3. A Two Phase Operational Semantics

p

p

p ~ p'

pJiq ~ p'i!q

p rl

p~p' af/.H

8H(p) ~ 8H(P1
)

ä[r]
p' Va E H \:Ir < t p f-->

p p' q --..!... q'
á[r]

Va E H \:Ir < t q f-->

P~H q --..!... p' <lH q'

p

(DE {11, ll, I})

c = 'Y(a, b) =I 6

p ~ p' q q'

pjjq ~ p'Jiq'

c = 'Y(a, b) =I 8

p q'

p p' af/.H

UH(P) ~ UH(P')

t t
p --+ p' q f-->

ä[r]
VaE HVr<tq f-->
p <l H q --..!... UH(P')

Table 11.2: Two phase action rules for ACPur

171

172 11. Real Time ACP witb Urgent Actions

Bisimulation equivalence is now defined by

Definition 11.3.2 (Bisimulation Equivalence) p,q E Tcl(ACPur)
p .<:::::!. q iff there is a bisimulation R relating p and q.

We generalize .<:::::: to time open terms by taking p .<:::::!. q if for any ,y E we have
,y(p) =± ,y(q). Without proof we state that .<:::::!. is a congruence over Tcl(ACPur),
the proof is similar to the one in Chapter 4. First one has to give a semantics
analogous to the so-called E-semantics of Chapter 4, and one has to prove that both
bisimulation equivalences coincide. In the operational semantics we have also the

auxiliary transition relation ~ ; the path format result of Baeten & Verhoef tells us
that bisimulation equivalence in which related states must also have corresponding

is a congruence. For the negative premises we use the generalized format that
is discussed by Verhoef in [Ver93a]. So, one has to show as well that this extra
requirement does not change the bisimulation equivalence.

11.4 The Axiom System ACPur

In the Tables 11.3 and 11.4 the axioms for ACPur are given. The axioms for
substitutions and a-conversion are not given here, they can easily be obtained by
adapting the axioms of Table 4.5.1.

Most of the axioms are adapted ones from BPApol and ACP pl. In BPAp81 neither
fve(l,2) o(v) nor fve(l, 2]8(v) can reach time 2. In other words we have:

U"(JvE(l,2)8(v)) = v < sup((l,2)) v < 2
U"(J"e(I,2]8(v)) = v < sup((1, 2]) = v < 2

In ACPur, however, fve(l,2) b'[v] cannot reach time 2, while fve(l, 21 8[v] can. And in
ACPur we have

Uv(fvE(l,2) b'[v])
Uv(JvE(l,2]8[v])

U"((1, 2))
U"((1,2])

V E (-oo, 2)
V E (-oo, 2]

v<2
v~2

We use U6(V), already defined in Section 11.2. Furthermore we take U~(V) abb

U0(V) V b = 0. In the axioms we use also the following abbreviations.

«bo, b1ho =1= 0 abb «bo, b1D =1= 0 A b1 ~ o
b ~ inf(«bo, b1ho) abb «bo, b1D =1= 0 A

(bo<O=>b~O
V bo ~ 0 => b ~ bo)

abb (bo < 0 => b E [b', b1 + liD
V bo ~ 0 => b E «bo + ll, b1 + b'D)

11.4. The Axiom System ACPur 173

Where oo + b and -oo + b abbreviate oo and -oo respectively.
Instead of these abbreviations it is also possible to introduce an operation like

?:O as an abbreviation on intervals:

In this case, one has to introduce so-called conditionat intervals, that are expressions
of the form U;a; :-+ v;, where {a;} is a partition and each v; is an interval. Then,
for every abbreviation concerning intervals, like b E V and V = 0, one have has
to give a corresponding abbreviation. For example, v E U;a; :-+ v; abbreviates
V;a; 1\ v E v;. Similarly, one can introduce inf(V) as a conditionat bound, that is
a bound of the form I;; a; :-+ b;, where again, {a;} is a partition and each v; is a
bound. For teehuical reasous we have chosen not to deal with conditionat bounds
and intervals.

In Table 11.4 we have also the following abbreviations, fu.(a,q) 6[v] expresses the
idle behavior of U a a[v] · p) lLq, and fu.(a,tJ) expresses the idle behavior of U a à[v] ·
p) 1(1!3 b[v] · q). We have the following abbreviations.

fu.(a,q) 8[v] ~ fu.(j" 8[v])AU.(q) 8[v]

fu.(a,tJ) Z[v] abb fu.(f., 6[v])AU.(J
13

8[v]) 6[v]

In axiom Clvf3ur we have faAU9(q) and not faAU.(q)' as p can execute immediate

actions (i.e., at time 0) in the context pll8, where Uv(8) = U"(Jff6[w]) ff.
The only difficulty of Table 11.4 is the axiomatization of the urgency operator,

UH(P), and its auxiliary operator p<lHQ· All the behavior of the process term p<l Hq
originates from p. The process p <l H q can execute an adion if p eau do so and q
cannot execute an action a, with a E H, at an earlier point in time. So, the right
argument of <lH limits the behavior of the left argument.

The axioms UR1-UR5 eau be considered as a kind of algorithm. First we rewrite
UH(P) to p<lHP by axiom URl. Then <lH is distributed over all summands of its left
argument, by as many as possible applications of UR2. Then, we take a summand
of its right argument; if it is an ä summand, with a EH, then Jf3 b[v]· p can execute
its b actionnolater then the a action is enabled by a 1\ v E V (see axiom UR3). If
it is an a-surnmand, with a rf: H, then the summand is simply skipped (see axiom
UR4). In this way we compare each summand of the right argument with every
summand of the left argument. We are ready if the right component bas become {j,

and finally we apply UH on a smaller depth.

174 11. Real Time ACP with Urgent Actions

Al p+q = q+p
A2 (p+ q) + z = p+(q+z)
A3ur Ia a[v] · p + J13 a[v] . p

= Iav13 a[v] · P

A6 p+8 p
A6ur v (j_ fv(p) p+ J:x8[v] = P -J: faA-.(U.(p)) 6'[v]
A1ur].,8[v]· p fa 6[v]

RTOur J,.a[v]· p = faAv>O ii[v] · P
RTlur Iffä[v]· p = 8 -

RTllur (b)·(p+q) = (b). p + (b). q
RTllur (b) ·(a:--> p) =

a:- ((b) · p) +-,a:- 6'[b]
RT13ur V f/. var(b) (b) · fvev à[v] · p =

fvEV<;o+b a[vj · p[v- bjv) + J[bj

. RT14ur (p+q) »V = p»V+q»V
• RT15,.,.v (j_ var(V) (J., a[v]· p) »V fo:AvEV a[vj 'p

Cl a:- (p+q) a:-p+a:-q
C2 v (j_ var(a) a=- (113 a[vJ · p) = faA/3 a[v] 'p

. C3 J,.ä[v] · p = faä[v] ·(a:- p)
i

Ul Ub(P + q) = Uó(P) V Uó(q)
U2 Ub(a =- p) a A Ub(p)
U3 UbUvev a[v] · p) = Ub(V)

!

a E A6, b E Bound

Table 11.3: Axioms for BPAuró

11.4. The Axiom System ACPur 175

CMl pJJq = pllq + qllp + pjq
CM3ur V r/:. fv(q) (J"ii[v]· p)llq

IaAUJl(q) a[v] . (pll (-V) . q) + fu.(a,q) 6[v]
CM4 (Pl +p2)llq = P1llq+p2llq
CM7",. U a a[vl· p)J(~[vJ · q)

faA/1 'Y(a, b)[v]· (piJq) + fu.(a,/1) 6[v]

CM8 (PI + P2)Jq = P1Jq +P2Jq
CM9 pJ(ql + Q2) pjql + pjq2

Dlur a rfc H 8H(J,)i[v]· p) fa ä[v] · OH(P)
D2ur a EH OH (Ja a[v]· p) = fa Ó[v]
D3 8H(P + q) = OH(P) + 8H(q)

RN2ur PtUa ii[v]· P) fa f(a)[v] · Pt(p)
RN3 Pt(P+ q) = Pt(P) + Pt(q)

a,b E Aó

Table 11.4: Additional axioms for ACPur

176 11. Real Time ACP with Urgent Actions

11.5 Branching Bisimulation

We have already discussed that the behavior of process terms with urgent actions
at one point in time is like the behavior of untimed processes. This implies that
for the definition of branching bisimulation in a two phase semantics, the clause
for p ~ p1 (a E A,.) can be taken from the definition of untimed branching
bisimulation. Moreover, the clause for p p' can be derived from Definition
6.3.3; if pis related with q, then one has to find a q' such that q q1 (q evolves
into q' within t time units, by idling and executing intemal actions) such that every
state along p __!_, p' can be related with a corresponding state along q q'. We
denote this correspondence by (p __!_, rf)'R(q ~ q), which is formalized by the
following definition.

Defi.nition 11.5.1 (p __!_, p')'R(q ~ q') denotes that there are t0 , ••. , tn and
qo, q~, . .. , qn, q~ such that

such that t 0 + ... + tn t and for every i in {0, ... , n} we takes;= 0 in case i= 0
and s; t0 + ... + t;_1 otherwise, such that 'is E (s;, s; + t;] we have pi'Rqt where

s;+s s d to s 8 p ----+ P; an qo ----+ ••• q; ----+ q;

We define branching bisimulation in a two phase semantics as follows.

Defi.nition 11.5.2 'R Ç Tel(ACPurr) x Tel(ACPurr) is a two phase
branching bisimulation iJ whenever p'Rq then

1. IJ p p' then either a = r and p''Rq
or 3z, q' such that q ==::;. z q', p'Rz and p''Rq'.

2. lfp rf then 3q1 such that q q' and (p p')'R(q ~ q').

3. Respectively (1} and (2} with the role of p and q interchanged.

For p, q E Tcl(ACPur) we say that p and q are (two phase) branching bisimilar
equivalent, denoted by p =t" q, if there is a two phase branching bisimulation that
relates p and q. As usual =t" is not a congruence, therefore we have the following
definitions.

Definition 11.5.3 (p-rooted) A process term rf is p-rooted if rf = p or p p'
forsome t.

Defi.nition 11.5.4 (Rootedness) A bisimulation 'R is rooted w.r.t. p and q iJ
rf'Rq1 implies that rf is p-rooted iff q' is q-rooted

We say that p and q are rooted branching bisimilar, denoted by p .t:t,.b q, if there is
a branching bisimulation that is rooted w.r.t. pand q. Without proof we state that
+-+,.b is a congruence.

11.6. A Law for Branching Bisimulation 177

11.6 A Law for Branching Bisimulation

A very easy example of rooted branching bisimilar process terms is given by the
following process terms

ii[1J. (7[2] . b[1] + b[3J)
.!::± ii[1]· (7[2]. (-2). b[3] + b[3J)
.!::±rb ii[1J . b[3]

We generalize this example to the following identity:

ii[t] · (7[r] · O'_r(P) + p) f->rb à[tJ · p

where r 2: 0.
Note that we obtain the following identity as well:

ii[1] . (7[2]. b[l] + b[3] + d[1])
f-t ii[1]· (7[2]· (b[1] + tS) + b[3] + d[1])
f-t ii[1]· (7[2]. ((-2). (b[3J) + (-2). (d[l])) + b[3] + d[1])
- ä[1]· (7[2]· (-2). (b[3] + d[l]) + b[3] + d[l])
.!::±rb ii[l] . (b[3] + d[l])

Let us now consider integration by copying Example 6.5.5.
Example 6.5.5
a(1) · (J"E(2,4) r(v) · (b(5) + c(4)) + c(4)) f->rb a(1) · (b(5) + c(4))

0

-J-_ä_J
1

2

3

4

5 b

-----a

We see that in cases where there are no variabie dependencies in absolute time
there are such dependencies in relative time. This example suggests us the following
variant of the branching bisimulation law. We give a small example to reeall the
needof b0 » q. Here, b0 » q abbreviates q » (b0 , oo).

Example 11.6.1

ii[1]· UvE(l,3) f[v]· (b[4- v] + c[3- v]) + b[4])
for every t E {1, 3) we have (d[1- tJ - 8)

- ii[1]· UvE(l,3) f[v] · {b[4- vJ + c[3- v] + d[l- v]) + b[4])
f-t ii[l] · UvE(1,3) f[v] · (-v) · (b[4] + è[3] + d[l]) + b[4])
#.rb ii[1]. (b[4] + ê[3] + d[l])

178 11. Real Time ACP with Urgent Actions

Bur W rl fv(p + q)
a = (1bo, b1D # 0 1\

((Ub1 (p) 1\ -.(Ubl (q))) V (-.(Ubl (p)) 1\ Ub, (q))))

fc.AfJ ii[v]· UwE(boM i[w]· (-w) · (p + q) + p)

fvEV a[v) · (p + bo » q)

Table 11.5: The branching law for relative time with urgent actions

The condition

expresses that at b1 one of the two components of p + q is still "active", while the
other component has already been dropped from the computation. For furter details
we refer to Section 6.5.

We will not discuss the soundness and completeness of ACPur + Bur w .r. t. ±:±,.b,
but we think that the techniques of Chapter 7 suffice to obtain it.

11.7 Branching Bisimulation with and without
Urgent Actions

In BPApór, BPA with absolute time and without urgent actions, we identify the
following two processes by branching bisimulation:

b(2) + r(2) · c(3) ±:±~; b(2) + c(3)

In relative time this identity looks like

b[2] + r[2]· c[l] ±:±~; b[2] + c[3]

The point is that at time 2 a choice is made; either the b is executed or it is decided
to idle further in which case the c will be executed one time unit later.

However, in the two phase branching bisimulation semantics we have:

b[2] + 7'[2]· ê[l] #b b[2] + ê[3].

After idling two time units the processes have evolved into

b[O] + 7'[0] · ê[l) and b[O] + ê[l]

respectively. We cannot match the transition

11. 7. Branching Bisimulation withand without Urgent Actions 179

b[O] + 7[0] · ë[l] ë[l]

of the lef!; hand si de somehow with a transition on the right hand side, since b[O] +ë[1]
doesnothave ar transition, and we cannot relate ë[1] with b[O] + ë[1] either.

Hence, to reobtain this identity we propose to add a r transition

b[O] + ë[1] ë[1]

as well, which expresses the decision not to execute the b but to continue with idling.
Then, we can conclude that the two processes are iudeed branching bisimilar.

In order to obtain this r transition we add a new operator t(p). t(p) is like p, it
only blocks the immediate actions of p. lts action rule and its axioms are given in
Table 11.6.

L(p + q) i(p) + i(;l
t(f"' ii[v]· P) = faAv>O à[v]· P !

______ _j

Table 11.6: The action rule and axioms for t(p)

By adding the action rule of Table 11.7 we obtain for each moment of choice a
r transition which expresses the decision to idle further.

Table 11.7: Action rule that adds ar transition for each moment of choice

We denote the (rooted) branching bisimulation equivalence which we obtain by
adding the action rule of Table 11.7 by .._.Cr)b·

tt

. p + q) = a[r]· (7[t]· p +rit] ·

We will not discuss the equivalence ±:±{r}b any more in this thesis, though we think

that it is an interesting question whether or not process terms like ii[l]· (b[2] + 7[2]·
ê[l]) and ä[l] · (b[2] + ë[3J) should be identified.

It appears that the choice for a two phase semantics interacts in a subtie way
with the notion of branching bisimulation.

180 11. Real Time ACP with Urgent Actions

11.8 Delay and Weak Bisimulation

As usual we obtain the definition of a delay bisimulation from the definition of a
branching bisimulation by omitting the requirement that the intermediate states are
related as well. So, in the first clause we omit the requirement that pRz and in the
secoud clause we relax the requirement (p::.__. p')R(q q') to simply p'Rq'.

Definition 11.8.1 R Ç T 01 (ACPurr) x Tcl(ACPurr) is a two phase delay bisim­
ulation iJ whenever pRq then

1. IJ p ~ p1 then either a = T and p'Rq
or 3z, q1 such that q =::;,. z ~ q1 and p'Rq'.

2. IJ p::.__. p' then 3q' such that q q1 and rfRq1
•

3. Respectively (1} and (2} with the role of p and q interchanged.

Moreover, we obtain the definition of a weak bisimulation by allowing a sequence of
f's "afterwards" in the first clause:

Definition 11.8.2 R Ç Tcl(ACPurr) x Tcl(ACPurr) is a two phase weak bisim­
ulation if whenever pRq then

1. IJ p ~ p1 then either a = T and p1Rq
or 3z, z', q' such that q =::;,. z ~ z1 ===? q1 and p1Rq1

•

2. Ifp rl then 3q1 such that q ~ q1 and p'Rq'.

3. Respectively (1} and (2} with the role of p and q interchanged.

Wedefine (rooted) delay, denoted by ~r}d> and (rooted) weak bisimulation equiv-
alence, denoted by along the standard way.

Without proof we state that -rd and rwbis are congruences for ACPur.

11.9 Laws for Rooted Delay and Weak Bisimu­
lation

We can construct the laws for rooted delay branching bisimulation with relative
time and urgent actions by adapting the laws T11 and T21 from Section 8.4, and we
obtain the laws Tlur and T2~r·

In BPAp6r with delay bisimulation we have the following identity:

f r(v). f a(w) ~d f r(v). r a(w) + f a(w)
JvE[l,2) JvE[l,2] JvE[l,2) JvE[l,2] JvE(1,2]

In the context of urgent actions (and relative time) we have

11.10. Alternative Definitions for Weak Bis. 181

1 f[vJ·1 ä[w]
vE[l,2) vE[0,2-v] 1 f[v] ·1 ä[w] + 1 a[w]

vE[l,2) vE[l,2-v] vE(l,2]

as the process term on the right hand side can idle untill2, after which it can execute
an ä. Due to the rootedness requirement we can not match this idling properly on
the left hand side. We have the following identîty înstead:

1E[l,2) f[v] ·1E[0,2-v] ä[w] ~d 1E[l,2) f[v] ·1E[l,2-v] ä[w] + 1E[l,2) ii[w]

So, in case of fvEV f[v]· p, we may put that part of p "outside" of the fvEV f[v] that
is restricted to V; we denote this part by p » V.

The law T3u,. is rather simple, only "immediate" f's are allowed after the action
a in the first clause of weak bisimulation, and therefore we can adapt the law T3r
of Section 8.6 to our setting only in case of f[O].

There is also a typical pair of rooted delay bisimilar process terms for which
there is no equivalent pair in the case without urgent actions:

fwE[l,3] f[w] · b[OJ + p

~d fwE[1,3] f[w] · b[OJ + fwE[1,3] b[v] + P

This identity follows from the fact that for any tE [1, 3] we have

t
---+ fwE[l, 3] f[w] · b[OJ + p

fwE[0,3-t] f[w]. b{OJ [+p']
fwE[l,3] f[w] · b[O] + fwE[l,3] b[v] + P

fwE[0,3-t] f[w] · b[OJ + fwE[0,3-t] b[v] [+p']

where we have the p' summand only in case p
transition

p'. And we can match the

1 f[w] · b[O] + 1 blv] [+p']
wE[0,3-t] wE[0,3-t)

with the sequence

1 f{w] · b[O] {+p']
wE[0,3-t)

b[O]

-L r 8[v]
ltt

r 8[v]
ltt

on the left hand side. (Note that faa[v] abbreviates fa.ii[v]· ftt6[v].)
We generalize this identity to the law T2~,.. The laws for delay and weak bisim­

ulation for the two phase semantics are gîven in Table 11.8.

11.10 Alternative Definitions for Weak Bis.

\Ve define p à p' by 3z, z' p ===:> z z' ===:> p' fora# f. Moreover, we
define p ::::4. p' by p p'. So, p à p' may be an empty sequence in case
à f.

Using this definition we can gîve a redefluition of Definition 11.8.2:

182 11. Real Time ilCP with Urgent Actions

IT1ur w(j!fv(p) a (4bo,blD#0AUb1 (p))

Iai\,:3 ii[v] · Iwe~bo,bt} f[w]· (-w) · p = Iai\,8 á[v]· (bo ~ p)

T2~r W f! fv(p)

Iwe{bo,b1) f[w] · (-w) · P = Iwe~boM f[w] · (-w) · P + P ~ V

. fa f[w] · (f.,E[O,b'} ii[v] · p + z) =
· Ia f[wJ · Uve[O,b'} ii[v] · P + z) +Ia ä[w]· p[Ojv]

Table 11.8: r-laws for rooted delay and weak bisimulation .

11.11. The Embedding of ACPur into ACPpl 183

Deftnition 11.10.1 R Ç Tel(ACPurr) x Tcl(ACPurr) is a two phase weak bisim­
ulation if whenever pRq then

1. IJ p ~ p' then 3q' such that q c/ and rfRq'.

2. lf q ~ q' then 3rf such that p ~ rl and rfRq'.

We can generalize the definition of a weak bisimulation as follows:

Deftnition 11.10.2 R C T(ACPurr) x T(ACPurr) is a generalized two phase
weak bisimulation if whenever pRq then

1. If p ~ rl then 3cf such that q q' and p'Rq'.

2. lf q ~ q' then 3p' such that p p' and r/Rc/.
We can show that Definition 11.8.2 and 11.10.2 are in fact equivalent.

Proposition 11.10.3 Ris a two phase weak bisimulation ifi R is a generalized two
phase weak bisimulation

Proof. Omitted. 0

11.11 The Embedding of ACPur into ACP pi

Baeten & Bergstra express relative time processterros in absolut time real time ACP
by means ofthe so-called tickoperator, .jv.p. The expression .jv.p is likea function;
when we start it at time t then t is substituted for v in p. Baeten & Bergstra have
a rednetion rule that is similar to the /1-reduction rule in the À-calculus:

t » (-.jv.p) t » p[tfv]

In [BB93b] Baeten & Bergstra have introduced urgent action in real time ACP
by taking non standard reals in the time domain, as is shortly explained below.

We denote the set of non standard reals by R'. Intuitively, for every real number
t there is an "environment" St C R' such that each r E St is infinitary close to t.
By I we denote the set of positive non standard reals that are infinitary close to 0.
As time domain we take

JRU {t + Ejt E 1R, E EI}

The process ii[tJ · p can now be expressed by the following expression:

-y'v.(LE{rl3< r=t+v+•} a(w). (fpD)

where (fpD is the absolute time process expression for p. In this setting the process
ii[OJ · b[OJ · p executes first the action a and then the action b infinitary close to 0.

Note, that we do not have the above processin prefixed integration, as we cannot
define the set {rj3E r t + v + E} by a boolean expression.

184 11. Real Time ACP with Urgent Actions

11.12 The Embedding of ACP into ACPur ·

Assume that we have generalized ACPur with general multiplication, then there are
several embeddings possible for (untimed) ACP.

As we have discussed in Section 6.6 we can embed ACP into ACPur by trans­
lating the atomie action a into ftt à[v] forstrong bisimulation and ftt à[v]· ftt f[w] in
the case of branching, delay or weak bisimulation.

However, there is also another embedding possible, namely by simply translating
a into ä[OJ, or even ä[t] for a fixed t. This embedding relles on the fact that in a
two phase semantica the behavior in one point in time corresponds with untimed
behavior.

12

Related "Work

12.1 Introduetion

In this chapter we discuss some related work. The major part of this chapter is
dedicated to the translation of several time calculi into the calculus ACPur, that
we have introduced in the previous chapter.

In the last section of this chapter we refer very briefiy to other interested areas
of research that deal with time, though we do not claim to be complete.

In this chapter we translate the following real time calculi into ACPur:

• TCCS of Moller & Tofts ([MT90],[MT92]),

• Wang's Timed CCS ([Wan90],[Wan91b] and [Wan91a]),

• Chen's Timed CCS ([Che91],[Che92],[Che93]),

• ATP of Sifakis & Nicollin ([NS90J,[NSY91J),

• TPL of Hennessy & Regan ([HR90]),

• TIC of Quemada et. al. ([QdFA93]).

We also discuss the axiomatizations of weak bisimulations, that can be found in
[Wan91a], [MT92], [Che93] and [QdFA93].

For every timed calculus C we define a translation function

QD : C ~ACPur

We apply the convention that process terms from a certain calculus C are denoted
by P, Q and Z. Process terms from ACPur, however, remain denoted by p, q and z.
In certain calculi we encounter constructs which we cannot express in ACPur. In
these cases we introduce a simHar construct in the context of ACPur; we provide it
with two phase action rules and we give the characterizing axioms.

In this chapter we use the following abbreviations.

185

186

3 6[0]
~ ~ fu6[v]

il,·p abb fv=oà[v]·p (vi!f.fv(p))
ii. p abb ftt à[v]· p (v 'I. fv(p))

12. Related Work

Note that in ACPur we have~= 6, in this chapter we prefer to use 3 insteadof 6
as it is more conform the use of ij, for a E A.

For p E Tc!(ACPur) the condition Uv(p), for arbitrary v, reduces to a condition
of the form v E {-oo, tD, and we denote by U(p) the interval (-oo, tD.

We will encounter two kinds of prefixes, immediate and delayable prefixes. A
prefix a.p is immediate if the action a has to be executed immediate. A delayable
prefix allows the action a to be executed at an arbitrary point in time. An immediate
prefix corresponds to our (i· p and a delayable prefix corresponds to our [!.p. Some
of the calculi also have a time prefix that corresponds to our (t) · p.

In most of the other calculi we encounter also an operator for encapsulation (aH
in ACPur) and renaming (p1 in ACPur). In the next section we discusshow the
parallel merge appears in the timed calculi.

12.2 The Parallel Merge

The parallel merge of most of the calculi correspond to our parallel merge; both
components have to proceed in time equally. The left merge (tL) and communication
merge (I) are not present in several other calculi. In fact, we can remove them from
ACPur as well. The price to pay is a more complex axiomatization of the parallel
merge, for which weneed the following expansion law, in case tL, I are not available:

Proposition 12.2.1 (Expansion Law for ACPur)
Let

then

P ~ 2::;; fa ài[v] ·Pi
q Ei f.B: bi[v] · qi

Piiq 2:;
+ Ei
+ Ei,j '"ca; ,bj l#
+

fa;/\U3(q) a;[v]· (p;ll(-v). q)

f/>j/\U3(p) bi[v] · ((-v) ·pllqJ)

fa;fi,Bj 'Y(a;, bJ)[v]· (p;llqJ)

fuv(p)fiUv(q) 6[v]

The expression U~(q) abbreviates the condition Uv(q) V v = 0, that is, in case of
fa;fiU2(q) ài[v] · [...] then we can execute an action a at points in time to which q can
idle, or immediate at time 0. Similar laws can be found in the work of Wang and
Chen.

In the previous chapter we have introduced delay and weak bisimulation in
ACPur. In the Chapters 1 and 8 we have discussed briefly that the combination
of delay and weak bisimulation, and the communication and left merge is a little
problematic. Again, we do not work this out in more detail. A possible way out,

12.3. TCCS of Maller & Tofts 187

however, is to disgard these auxiliary operators and their axioms and to add the
above expansion law to the axiom system of ACPur.

The expansion law above shows us the need of the time variables; if we consider
Pllq where p executes an action at some time t, then the way q proceeds may depend
on t. For example, take a simple process like

and note that there are no variabie dependendes at all in this process. If we remove
the 11 then we obtain the following term

f ii[v]· (1- v) · b · ~ + (1) · b · ii · ~ + (1) · ii · b · ~' i v'S)

in which a variabie dependency has been introduced.
This idea has been formalized by Larsen & Godskesen [GL92]. They proved

that there exists no expansion theorem for some dense timed calculi without time
varia bles. This was proved by translating such a calculus into timed graphs [AD90J.
The number of parallel components in a process expression corresponds with the
number of clocks in the corresponding timed graph. An expansion theorem would
imply that a timed graph with n + 1 clocks is equally expressive as a timed graph
with n clocks. They showed, however, that a timed graph with n+ 1 clocks is strictly
more expressive than a timed graph with n clocks.

12.3 TCCS of Moller & Tofts

Molier and Tofts have presented in [MT90] a first version of their TCCS. In that
paper they considered an arbitrary time domain and strong bisimulation equivalence.
The expansion theorem and the completeness were proven only for a discrete time
domain. In [MT90] TCCS has an immediate prefix a.P and a time prefix (t).P.
Moreover, it has two alternative compositions, the strong choice, denoted by +, and
the weÇLk choice, denoted by EB.

The strong choice of P and Q can idle only whenever both P and Q can idle, so
no summands can be dropped from the computation by idling. The weak choice of
P and Q corresponds to our real time ACP +; if P can idle to a point in time to
which Q can not idle, then the weak choice of P and Q can idle to this point as well
and all summands of Q are dropped from the computation.

In [MT90] Moller and Tofts do not have a delayable prefix. To allow the process
a.nil to idle they introduce the delay operator ó.P. ó.P delays all immediate prefixes
of P. Moreover, it drops all summands of P that are forced to idle first, for example
a summand like (1).P'. The delay operatorisnot expressible in ACPur with prefixed
integration, though in the context of general integration it is: construct as follows:

\Ió.PD = f (v) · (QPD ~ [o, o])
JvE[O,oo)

188

~(p) __:__. ~(p)

. ~1 ~(p+q)

I ~2 ~(J"' ii[v] · p)
~(p) + ~(q)

p~rf

~(p) ~ p'

12. Related Work

= (a[O/v] :-+ ~[v] · p[O/v]) + (-,a[O/v] :-+ ~)

Table 12.1: Action rules and axioms for ~(p)

We introduce the delay operator in ACPur (with prefi:xed integration) for the sake of
the translation. We denote this new operator by ~(p). lts action rules and axioms
are given in Table 12.1.

In [MT92] Molier & Tofts give other notations for the strong and weak choice,
instead of+ and EB they use -H- and + respectively. Their motivation is that the weak
choice occurs in the normal forms of the Expansion Theorem of [MT90] and that
other calculi have only one choice construct, which for the most cases correspond
with their weak choice.

Moreover, in [MT92] they replace the delay operator ó.P by a delayable prefix
Q,..P and the delay nil Q.

The translation of TCCS into ACPur is given in Table 12.2.

QOD 3
Only in [MT92] Uo.D = ~

Qa.PD = <i. QPD
Only in [MT92) QfJ..PD = ~· QPD

Q(t).PD (t). QPD
Only in [MT90] Qó.PD = ~(QPD)
In [MT90) as+ QP-~+QD (QPD + UQD) ~ V(QPD) n V(QQD)

i In [MT90) as EB QP+QD = QPD + QQD
QPIQD = UPDIIUQD
QP\aD = 8{a,a:}(QPD)
QP[f]D = pJ(QPD)

Table 12.2: Translation of TCCS (Moller and Tofts) into ACPur, where 'Y(a, a) = r

12.4. Molier & Tofts's weak bisimulation 189

12.4 Molier & Tofts's weak bisimulation

Molier & Tofts [MT92] have defined weak hisimulation equivalence as in Defini­
tion 11.8.2. They cali it T-hisimulation equivalence, they define (observational)T­
congruence hy applying a rootedness condition which coincides with ours. They
show that the ohtained congruence is iudeed the largest possihle congruence. They
have four T-laws, these are given in Table 12.3.

Tl [i·p
T2 i·p
T3 i·(p+(ii·q+tz))

· (p +(i· q ++- z)) =

ii·f·p
i·p+p
i· (p + (ii · q ++- z)) + ii · q
ii . (p + (i . q ++- z)) + ii . q

Tahle 12.3: Tau laws of Molier & Tofts

The law Tl foliows direct from our Tlur· We have

72 f-- I.. b[l] I.. b[l] + b[1.],

and thus as weli

72 r- r.. b[I] + c[I] = r.. b[1J + b(l] + c[l]

This example shows us that the law 72 is not sound for !::::Zd, and thus, that it is not
sound for,rd either.

Proposition 12.4.1

p = r.. b[IJ + c[l] #dr.. b[l] + b[l] + c[l] q

Proof. We show that the transition

q I.· b[l] + b[O] + è[O] q'

cannot he matched by p. Note that can execute hoth a band a ë.
There are two candidates for a sequence, which will both fail:

1. p b[O], no è action is enabled.

2. p ~ i· b[l] + ë[O], nobaction is enahled.

0

The point is that for sound instan ces of 72 only the "immediate" summands of p
may be put outside of the r., as is shown also by our law T2tr· Note, that the two
processes of proposition 12.4.1 can be expressed as well in the Timed CCS calculus
of Molier and Tofts, since à[t] · p can he written in their calculus as (t).(ap ++- 0).
Hence, it is not clear to us how the law r2 can be sound in TCCS.

To derive the laws r3 and 74 we reformulate them as given in Table 12.4.

190

r3' :t·(Q.·p+q)
r4' g · (f · p + q)

:t. ({i. p + q) + ii. p I
= Q ' (f 'P + q) + Q' P I

12. Related Work

Tahle 12.4: Alternative formulations for the laws r3 and r4 of Molier & Tofts

Proposition 12.4.2 We can derive the law T 3 from the laws forstrong bisimulation
of [MT92} and r3'.

Proof. We list some of the axioms of Molier and Tofts which are sound for strong
hisimulation equivalence. We give also one identity ID1 which will he used in the
final derivation. ap must he read as à[O] · p. Note that these laws can he derived as
well in ACPur.

AXl p++(q+z) - = (p++q) + (p++z)
AX2 (i . p + (q ++ é) Q.·p++q
AX3 p+~ = p
AX4 !i·p = ii·p+Q.·p
IDl (p + (i. q) ++ z (p++z)+{i·q

· First we derive the identity !Dl:

(p+{i·q)++z)
(p ++ z) + ({i· q ++ z)

A::?li2 (p ++ z) + (z ++~)+{i. q

A::?lil ((p + ~) ++ Z) + Q. . q

A::?l:a (p++z) + Q.· q

And then we can derive r3:

:t . (p + (ii . q ++ z))
:t · (p + ((ii · q + (i· q) ++ z))

!Dl :t . (p + (i . q + (ii . q ++ z))

:t · (p + Q. • q + (g · q ++ z)) + ii · q
:t. (p + (ii . q ++ z)) + ii. q

Similarly we can derive r4 from r4'.

0

The law r3' can he derived from our law T2tr and the law r4' is a direct instanee
of our law T3ur.

12.5. Wang's Timed GCS 191

12.5 Wang's Timed CCS

In [Wan90] Wang Yi proposes a dense timed CCS calculus with a delayable prefix
a.P (delayable for actions a i= r), a time prefix E(t).P, maximal progress and a
strong choice. In that paper he does not have time variables yet, so he can not
give a proper expansion law. Therefore, he introduces in [Wan91b], [Wan91a) the
construct c(b).P, where b is a bound in which time variables may occur, and the
construct a@v.P, where v is a time variabie of which the accurences in P become
bound by the prefix a@v. This construct idles till it executes the action a at timet,
after which it evolves in P[tfv]. Due to the addition of time variables, Wang could
deduce an expansion law. The translation of Wang's Timed CCS into ACPur is
given in Table 12.5. Note that we cannot put Qa@v.PD = a_· QPD, as the time
variabie v may occur in QPD.

QNILD
Qc(b).PD
Qa@v.PD
QP+QD
QPIQD

· QP\HD
I QP[/JD

~
(b) · QPD
ftt a[v] · (QPD)

= (QPD + QQD) :» U(QPD) n U(QQD)
Ur(QPI) 11 QQD)
8H(QPD)
PJ(QPD)

Table 12.5: Translation of Wang's Timed CCS into ACPur, where 'Y(a, a) = r

Jeffrey gives in [Jef91b] a generalization of Wang's timed CCS [Wan9la]. He has
a non-delayable prefix, a time prefix tt.P and maximal progress. The special feature
is the generalized sum EP where P is a set of processes. He can express Wang's
a@v.P by L:{ct.a.P I tE T} where T is the underlying time domain. Moreover, he
gives a sound and complete axiom system.

12.6 Wang's weak bisimulation

Wang [Wan9lb] [Wan91a] has defined weak bisimulation equivalence as in Definition
11.10.2. Also Wangimposes a rootedness condition on a weak bisimulation, which
coincides with ours, to obtain a (largest possible) congruence.

In Section 12.5 we have discussed that Wang's calculus is based on maximal
progress. This means, in ACPur terms, that every process term must be considered
in a context U{r}(· ..), and we can reduce every fvev f[v]·p to either f[b]·p or b[b]·p.
More precisely:

U{r}(1 f[v] · p) ([bo, b1D :/= 0) :--+ f[bo] · U{r}(p[bo/v])
vE[bo,btb

192 12. Related Work

71 f·p-H-p = f·p

• 73 a. (L:f(t;). c~. p;))
= a. (L:{ (t;) . (i!;. p;) -H- f[r]·

Table 12.6: Tau laws of Wang

and

U{r}({ f[v]· p) = ({bo, b1D =/= 0) :--> b[bo]
lvE(bQ,b1b

Thus, for the image of Wang's Timed CCS in ACPur we can rednee the laws of
Table 11.8 considerably.

For example, if we use the strong choice p-H- q as abbreviation for (p + q) »
U(p) n U(q) then we can rednee the law T2~,. to

T2;!!: f[t]· p = f[t]· p-H- (t) · p

and no » [t, t] is neededas in T2~,..
In Table 12.6 we formulate the tau laws of Wang in ACPur, where p-H- q must

be considered as an abbreviation as given above. The symbol L:* denotes the
generalized strong plus, thus E:{l ,n} p; abbreviates P1 -H- ... -H- Pn·

The law 71 is an immediate consequence of the above identity T2;.:. The law 72
is an immediate consequence of our law T3un and, finally, 73 can be derived from
our branching law Bun that on its turn is derivable from Tlur and T2~,..

12.7 Chen's Timed CCS

In [Che9l],[Che92],[Che93] Liang Chen [Che91],[Che92],[Che93] presents a Timed
ces calculus with a weak choice and the prefix construct a(v)I:'.P, where e,e'
are so called time expression. These time expressions are similar to our bounds.
The difference is that his time expression..<> may be of the form max(e, e'), so he
allows conditionat time expressions as well. For r, r1 in the time domain a(v) I~' .P
executes an a at some t, where t E [r, r'], after which it evolves into P[tjvj. The
process expression a(v)l;' .Pis very close to our fvE[r,r'] a[v]· P, the difference is that
a(v) !;' .P is always allowed to idle until r1

, even if r > r1
•

Chen's TimedCCSis notbasedon maximal progress. The translation of Chen's
calculus into ACPur is given in Table 12.7. The translation of (e)P is not completely
sound, as we do nothave conditionat bounds in ACPur. Formally, we have to define

12.8. Chen's Weak Bisimulation 193

the translation of (e)P by induction to the structure of e, and weneed defining rules
like

Q(max(e, e')PD {
e:::; e' :-+ (e')QPD

+ e' < e :-+ (e)QPD

and similar rules for the other constructars of his time expressions.
Chen obtains a decidability result along a different route than we do. He intro­

duces for every pair of processes P, Q a first order formula WC(P, Q) which is the
least condition such that P and Q are bisimilar. Decidability now follows from the
decidability of the first order theory of the underlying time domain.

This method, however, is not at all constructive and doesnotlead toa complete­
ness result. Therefore, he introduced a conditionat axiom system. If two process
expressions P, Q, possibly containing free time variables, are equal under the condi­
tion a, then he has af- P Q. He constructs a boolean expression a(P, Q), which
is also a condition in our terminology, that is equivalent with the first order formula
WC(P, Q). He then shows that a(P, Q) f- P = Q from which the completeness
follows.

So, Chen has derivations which are relative to some condition and he ha..'l proof
rules for dealing with the conditions. Intuitively a f- p q corresponds to our
f- {a :-+ p} ={a :-+ q}, the difference, however, is that his derivation- uses proof
trees while ours fits within pure equational reasoning.

QNILD
Qa(v) I~' .PD
QP+QD
Q(e)PD
Qe » PD
QPIQD

· QP\aD
QP(!JD

~
fve[e,e'J a(v] · QPD + 8[e']
QPD + QQD

= (e) · QPD
(-e) · QPD
QPDIIQQD

= o{a,äJ(QPD)
Pt(QPD)

Table 12.7: Translation of Chen's Timed CCS into ACPur, where 'Y(a,a) r

12.8 Chen's Weak Bisimulation

In his thesis [Che93] Chen has defined weak bisimulation, that he eaUs .behavioral
abstraction. His definition does not correspond directly with some of the definitions
of weak bisimulations given before, as he does not have a two phase semantics. His
tau laws are given for ACPur in Table 12.8.

194 12. Related Work

We have already discussed that there are some subtie ditierences between Chen's
time expressions and our bounds. Due to this difference we have to present bis T

laws a little different than he does. For example bis first T-law bis given below.

Tl T(vn·(<i·p+q) = T(v)g·((i·p+q)+(i·p

His bounds are always positive, i.e. for all substitutions. Hence, no condition that
e ~ 0 is needed.

Chen denotes the ultimate delay, or maximal delay as he calls it, of a process
term P by !PI, following Molier & Tofts. Some of its axioms are given below.

la(v)~'.PI = e'
lP+ Ql = max(IPI, IQ!)

Note, that the time expression IPI is a conditional one, as max(e, e') abbreviates
{e' ~ e :-+ e} + {e < e' :-+ e'}.

Chen formulates his third T law as follows.

w </. fv(Q) and !PI~ b~ ~ b't
a(v)~~ · (P + -r(w):~ · (w » (b~)Q) + (b~)Q)
=

b'
a(v)~ · (P + T(w)b~ · (w » (b~)Q))

According to Chen the condition !PI ~ bo ~ b1 must be read as "if IPI ~ b~ ~ 14
is valid for all substitutions". Indeed Chen does not have an axiom system for
bis time expressions and conditions. This interpretation is rather strict as in case
v E [b0 , b1] =} IPI ~ b~ ~ b't is valid for all subsitutions (i.e. reduces to true in the
context of an axiom system like CA) the law is sound as well, though it is not clear
how such an identity can be derived. Take for example b0 1, b1 = 2, b~ v, b~ = 2
and P = a'(w)i, then obviously v E [1, 2] =} 1 ~ v ~ 2.

In the context of ACPur we have our ultimate delay instead of !Pl. Since we
do not want to deal with conditional bounds we have decided to define the ultimate
delay on terros with prefixed integration as a condition. The condition !PI ~ b~
expresses that P may not contribute any behavior after b~. In ACPur we express
this by putting the process term in the scope of ... » b~, where p » b abbreviates
p » (-oo, b]. Hence, no reference to the ultimate delay of p is needed. Furthermore,
we put the condition b~ ~ b~ within the process terms and we obtain the following
formulation. So, we formulate Chen's third -r-law as follows, where ä[v]~~ · p denotes
fvE[bo,bl] ä[v] · P·

w </. fv(Q)

ä[vJt~ · b~ ~ b~ :-+ (p ~ b~ + i'[w]:~ · (-w) · (b~) · q + (bö) · q)

ii[v]~~ · bö ~ 14 :-+ (p » bö + i'[w]:~ · (-w) · (b0) · q)

12.8. Chen's Weak Bisimulation

72 a[vJt~ · (f · p + q) a[v]~ · p + a[v]~ · (f · p + q)

73 w t/:. fv(q)
ll a[v]~. {b~ ~ b~ :-+ (p ~ b~ + f[w]b;. (-w). (b~). q + (Yo). q)}

0

b ~
ä[v]~ · {b~ ~ b~ :-+ (p ~ Yo + f[w]b~ · (-w) · (b~) · q)}

74 w t/:. fv((Yo)P + (bDb)
a[vJt~ · {b~ ~ b~ :-+ (f[wJ!~ · ((-w) · ((b'0) • p+ (bD · 8)))}

0

a[vJ:~ · {b~ ~ bl_ :-+ ((bti) · p + (bD · ~)}

75 w t/:. fv((b~) · p + (b1) · 8)
a[v]~. {b~ ~bi :-+ (p ~ b~ + f[wJ:l· (-w). ((bti). q + (b'l). 8)))}

ä[v]~ · {b~ ~ bi :-+ (p ~ bh+ (bh) · q + (bD · 6)}

Table 12.8: 7-laws of Chen

195

196 12. Related Work

Note, that this formulation results in an identity for bo = 1, b1 = 2, b~ = v, b~ = 2
and p = ii'[wH. The law rl can he derived from our law T2~,. and the law r2 can
he derived from our law T3,.,.. Moreover, r3 follows from Tl,., and T2~,. as is shown
below.

Proposition 12.8.1 ACPur +Tl,.,. + T2,.,. 1- r3

Proof. It is left to the reader to proof that ACPur +Tl,..,. + T2,.,. 1- T2~,. where

fa.t\P a[v] . UwE4bo.bt} f[w] . (-w) . p + q » bi)
Iaf\[3 a[v] . Uwe4boM f[w]· (-w) . p + bo » p + q ~ bi)

By this identity, Our reformulation of Chen's third r-law is a direct comiequence of
this derived identity T2~r·

ii[v]~~ · {biJ s bi} :--T {(p ~ b~ + f[w]~ · (-w) · (biJ) · q)}

T~, à[v]~ · {biJ S ~} :--T {(p » b~ + f[wJ!~ · (-w) · (bó) · q + (b~) · q)}

0

Similarly we can derive r4 from Tl .. ,.. Finally, r5 follows from our branching law
B,.,..

12.9 ATP of Nicollin and Sifakis

In [NRSV90] and [NS91) Nicollin et al. introduced the discrete time process algebra
ATP (Algebra for Timed Processes). ATP is built from operators from CCS and
ACP. It has an immediate prefix aP and a strong choice, denoted hy ffi. The
additional feature is the binary unit delay operator LP J (Q) which either executes
an immediate action from Por it idles one time unitand evolves into Q. The unit
delay operator is generalized to lPJ 1(Q) which allows actions from P until t time
units has passed after which it evolves into Q. In [NSY91 J Nicollin et al. generalized
ATP with a general time domain. In that paper they denote the immediate prefix by
áP and they also introduce a delayahle prefix àP. Furthermore, the (discrete) delay

t
operator LPJ 1(Q) is generalized to the time out operator P !> Q. Fora discrete
time domain these operators coincide.

The processes in ATP are deadlock free, i.e., each process can either do an action
or it can idle. This is certainly not the case in real time ACP, and in ACPur in
particular. As a consequence the translation of the encapsulation operator is not
that straightforward. In ATP we have O{a}(aP) = 15 where the ATP ó corresponds
to our ~' and aP is an immediate prefix like ij,.p. Hence, we need a variant of our
encapsulation that can rename {i into ~. We denote this encapsulation hy 8ll and

12.9. ATP of Nicollin and Sifakis

Only in [NSY91]
In [NS90] as aP

In [NS90] as LPJ 1(Q)

Only in [NS90]
Only in [NS90J

· Only in [NSY91]
i

~
~· 1PD

= ii · 1PD

Table 12.9: Translation of ATP into ACPur

197

we call it the time stop jree encapsulation. lts action rules and its axioms are given
in Table 12.11. Fora time.dosed process term p we can describe 8f[(p)as follows;
if 8H(p) rl + 6[t] where p' does not contain aH and p' cannot idle till t (i.e.,
...,(Ut(p'))), then 8f[(p) = p' + ~. Otherwise, it 8'f{(p) is just rf. Some examples are
given below.

era} UvE[0,2J a[v])
B{a} UvE[0,2) ä[v])

= ~

B{a} UvE[0,2J a[v] + b[l])
B{a} (f"E[0,2] ii[v] + b[2])

fvE[0,2} 6[v]
~
b[2}

The unary operator 8'f{(p) is axiomatized by means of an auxiliary binary operator,
denoted by p 8fi q. This latter operator distributes over all the summands of its
left argument p. Since 3 8fi 3 = ~ we have as well

~ 8'H q = (q ~) :-+ ~

where q = ~ is an abbreviation that expresses that all conditions of the initial
integrals of q are false.

(<L; L, ii;[vi]· Pi+ lf ~j b[wi]) = ~) agb -,(v;a; V Vj/3j)

For similar reasons we have the conditions ...,(a) 1\ q = ~' and V= 0 1\ q = ~in the
axioms IE3-6. We have also the following abbreviations:

~bo, b1ho = 0 agb ~bo, b1D 0 V 0::; b1 if D =)

a.Qb ~b0 , b1D = 0 V 0 < b1 otherwise

~bo, b1ho # 0 a.Qb ...,(~bo, btho = 0)

198 12. Related Work

r q q'

rPl 0 (q) ~q'

__:__.rl r q' p q --+

rp lt(q) t+r 1 --+ q

p _i_" p' t>O

rPlt(q) ~p'

ED1 rp+ql&(z) rPlb(z) + rqlb(z)
ED2 v rf. var(b)

rfo [[v]· Pl"(q) faAv<b [[v]· P + Ub(a) :-7 (b) · q
ED3 a::/= Ç, v fj var(b)

Uaä[vJ · Plb(q) = faAv<bä[v] · (fplb-vq) + U"(a) :__. (b) · q

Table 12.10: Action rules and axioms for the execution delay rPl"(q)

In [NSY91] Nicollinet al. also introduce the execution delay, denoted by rPlr(Q).
It behaves as P until time r; at time r process P is aborted and Q is started.
However, if P performs the special action Ç, called the cancel action, then the delay
is cancelled, and the subsequent behavior is that of Pafter Ç. The cancel execution
is internal, i.e. it is renamed to r. This operator is not expressible in ACPur and
we have to add it as well. lts action rules and axioms are given in Table 12.10.

12.9. ATP of Nicollin and Sifakis

'Vr

p~p' arf_H

p 8H q ~ 8'tf(p')

t
'Vt p f-t 'Vt q

Va E A-H

p8'tf q

IEl 8'tf(p) p 8'tf p
IE2 (p + q) 8'tf z p 8'tf z + q 8'tf z
IE3 (a:-+ p) 8'tf q =

{ OI :-+ (p 8'tf q)}
+ {(-,(a)Aq=S :-+ ~}

• IE4 a 1- H6 UvEvà[v]· p) 8'tf q
{V~o :f: 0 :-+ fvEV ä[v]· 8'tf(p)}

+ {V~o 0 t\ q = 8 :-+ ~}
IE5 a E H6 UvE(bo,b1] à[v] · p) 8'tf q =

{ ~bo, b1h:o :f: 0 t\ Ub1 (q) :-+ fvE(bo,b1JS[v]}
+ { ~bo, bd~o :f: 0 t\ -,(Ub, (q)) :-+ ~}
+ Hbo, br]~o = 0 t\ q ~ :-+ ~}

IE6 a E H6 UvE(boh) ä[v]· P) 8'tf q
{ ~bo, b1ho :f: 0 :-+ fvE(bo,b1) S(v]}

+ Hbo, b1ho = 0 t\ q = 6 :-+ ~}

199

Table 12.11: Action rules and axioms for the time stop free encapsulation 8'tf(X)

200 12. Related Work

12.10 TPL of Hennessy & Regan

Hennessy and Regan have presented in [HR90] a timed CCS variant, called TPL
(Temporal Process Language). TPL has a delayable prefix (for external actions),
maximal progress and astrong choice. Due to the delay prefix a.P, which expresses
the delay P by one time unit, the underlying time domain is discrete. The main
difference is that Hennessy & Regan use preorders based on testing equivalences as
their semantic domain, insteadof bisimulation equivalence. Therefore, we will give a
translation that corresponds only totheir operational semantics modulo bisimulation
equivalence, see Table 12.12.

QnilD
QnD
Qa.PD
Qa.PD
Qr.PD

. QP+QD
QlPJ(Q)D
QPIQD
QP[/JD
QP\aD

~
3

= (1) · QPD
= ii· QPD

f· QPD
(QPD + QQD) ~ (U(QPD) n U(QQD))
QPD ~ {o, o] + (1) · QQD

= U,(QPDIIUQD)
PJ(QPD)
o{a}(QPD)

Table 12.12: Translation of Hennessy & Regan's TPL into ACPur, where 7(a, a) r

12.11 TIC of Quemada, de Frutos and Azcorra

Quemada, de Frutos and Azcorra have presented in [QdFA93J a timed calculus,
basedon the syntax of LOTOS [18087]. The calculus bas a discrete time domain,
furthermore it bas timed deadlocks, a time stamped prefix and weak choice. It
has also a prefix construct which corresponds with our prefix integration where the
bounds are taken from the time domain, so no time variables occur. Moreover, it
has an auxiliary construct, simHar to our (t) · The translation of TIC into
ACPur is given in Table 12.13. In that Table we denote by H --> r the mapping
that maps all actionsin H tor and that leaves all actionsnot in H unchanged. lt
is also possible to translate Qa[t, t'JPD into fve[t,t'] a[v] . QPD + 8[t']. We have chosen
for the translation into t ~ (ii · QPD) ~ t' + 8[t'] in order to stress that Qa[t, t']PD
does not introduce any time variables.

The authors give also an expansion law, similar to the one we showed in Bee­
tion 12.2. Since the time domain is discrete their generalized sum can indeed be

12.12. Weak bisimulation in TIC 201

Qstop(t)D = 6[t]
QldleD ~
Qat; PD a[t]· QPD
Qa[t, t']PD (!i· QPD) » [t, f] + 6[t']
QPDQD QPD + QQD
QPIHIQD OA-H(QP'DIIQQD)
QhideHinPD = PH-,.(QPD)
QP[fJD Pt(UPD)
QAge(t, P)D = (-t) · QPD)

Table 12.13: Translation of TIC into ACPur, ('y(a, a) a)

considered as an abbreviation of a finite sum, and no time variables are needed.

12.12 Weak bisimulation in TIC

Quemada et al. define weak bisimulation a little different from Definition 11.10.2.
Their T laws are given in Table 12.14.

rl at; Tf;p
r2 rt;p
T3 at; (pDTt'; q)

= at; Age(-f,p)
A ge(-t, p)Drt; p
at; (pDTf; q)Dat; Age(-t', q)

Table 12.14: The tau laws in TIC

The first law can be formulated in ACPur as follows

a[t]· r[t']· p = a[t]· (t). p,

which is a direct instanee of our law T1ur· The law r2 can be formulated in ACPuras
follows

r[t]· p r[t] · p + (t) · p

which is a direct instanee of T2~,.. Finally, r3 is formulated as

ä[t]· (X+ r[t'] · Y) = ä[t]· (X+ r[t'] · Y) + ä[t] · (t') · Y.

202 12. Related Work

This identity is certainly more general than our T3u., which corresponds only with
the case where t' = 0. As a matter of fact, the law -r3 identifies the following.

-r31- ä[l]· (b[l] + 7[2]· c[I]) = ä[l]· (b[l] + 7[2]· c[l]) + a[l]· c(3]

Though these process termscan be distinguished within ±:trw, by the context
àb(... jlb[2]).

ab((a[l] . (b[l] + 7{2]. c[1])) 11 b(2)) a[1]· b[l]
0"((ä[l]· (b{l] + 712]· è[l]) + ii(l). è[3J) 11 b[2]) =

a(l]· b[l] +a[I]· 6[1]

This example is similar to the counterexample against weak bisimulation in BPApó,
see Section 8.7.

12.13 Other related wor k

In the previous sections we have discussed the papers that can be explained in detail
by a translation into ACPur. However, there are several other papers, that can not
be discussed in detail in the context of ACPur, these papers are discussed briefiy
below.

Timed CSP

Mike Reed & Bill Roscoe have presented (dense) Timed CSP in [RR88], they have
given a denotational semantics based on timed traces and timed failures. In [Sch92]
Steve Schneider has given an operational semantics for a slightly simplified version
of Timed CSP. Alan Jeffrey has developed Discrete Timed CSP ([Jef9la]), due to
this simplification he could give a complete axiomatization.

Other references to timed process algebras

An extension of the specification language LOTOS with time is discussed in [BL91].
For a combination of time and probability we refer to [Han91]. For a presentation
of a real timed theory incorporating true concurrency and event refinement we refer
to [Mur91].

Assertional Methods

In this thesis we consider an algebraic approach to real time systems. Besides the
algebraic approach, also other approaches exist in the literature.

Prominent are approaches based on temporal logic extended with quantative
time. An example of this approach with applications to real time distributed sys­
tems is [Koy89]. Also, we can find the approach of extending Hoare triples with
quantitive time, see e.g. [Hoo9t]. It seems that a logica! approach is more suited
to express high level properties of systems, that abstract from the time points of

12.13. Other related work 203

intemal choices. On the other hand, the algebraic approach seems more suited for
system specification. Perhaps, the most proruising future line of research would be
to try to combine algebraic specification featuring equational reasoning with logical
properties featuring proof systems.

Another interesting development is the extension of graphs and autornata with
time ([AD90], [MMT91] [LV91]). An advantage of timed graphs is that they are
finite systems, so model checking is possible. In [NSY91] a translation from ATP
into timed graphs is given.

204 12. Related Work

Appendix A

Bounds and Condition.s

A.l Introduetion

In this appendix we elaborate the bounds and conditions in detail. First we give a
very simple construction that gives for each bound a bound in normal form. Then,
we give an axiom system CA for bounds, see Table A.l.

Using the axioms of CA we can prove the Refi.nement Lemma, on which the
decidibility of BPApól depends. Finally, we prove that if two conditions are equiva­
lent, i.e., they coincide for all possible substitutions, then they can be proven equal
within CA.

A.2 Bounds in normal form

Proposition A.2.1 (Bounds in Normal Form) For every b E Bound there is a
bound b' of the form

r1 · V1 + ... + Tn · Vn + t (n;::: 0)

such that all v; 's are different and r; E Time\0, and b = b'.

Proof. Due to the axioms of an ordered field, we may consider the bounds modulo
associativity and commutativity of the +.

• We rewrite b into b + 0, such that we obtain a bound of the form b' + t, and
we rewrite each v into 1 · v, to guarantee that it occurs in the form r · v.

• We rewrite each r · (bo + b1) into r · bo + r · b1 and ro · (r1 · b) into (r0 • r1) · b,
such that we obtain a bound of the form. r 1 • v1 + ... + rn · Vn + t 1 + ... + tm,

where r;, ti E T(S).

• We rewrite r · v + r' · v into (r + r') · v whenever possible.

We replace each c E T(S) by its Ct E Time. Finally, we remove all summands
0 ·V.

205

206 Appendix A. Bounds and Conditions

0

This Propaaition implies that we can consider thesetof hounds (# -oo, oo) to he
closed under division since

r-1 ·b
r-l · (rl ·VI+ ... + Tn • Vn + t)
((r-1 · r1) · Vt + ... + (r-l · rn) · Vn + (r-1 · t)

and we can replace every r- 1 • t' hy some t11 E Time.
In the sequel a hound b will he in general taken from Bound, unless otherwise

stated.

A.3 A Proof System for Conditions

Proposition A.3.1 For any t0 , t1 E Time and b0 , b1 E Bound we have the following
identities in CA:

to < t1
to = t1
to tl
-.(JJJ
al\ff
aVff
a V -.(a:)
-.(o:V f3)

bo < b1 V b1 < bo V bo = b1
V ,...., W 1\ (v E V V v E W)
r ·Co< r · c1

Proof. Omitted.

ff iJ to i. t1
= tt ifto = t1
= ff ifto # t1

tt
= ff
= 0:

tt
...,(a) 1\ ->({3)

tt
VrvWI\vEVUW
c1 <Co ifr < 0

A.4 The Refinement Lemma

Lemma 4.2.2 ([Refinement Lemma]) Fix a time variable v. For each condition
a there is an equivalent condition of the form v1({31 1\ v E Vj), where var(f3j) U
var(Vj) Ç var(a)\{v} for all j.
Proof. We reduce o:, using equalities from the axiom system CA for conditions
(see Table A.l). First, rewrite a to a condition of the form Vi"/i, with each "/i of
the form 1\i(bJ < bj) 1\ 1\k(ck cD. Reduce the hounds in /i to normal form (see
Proposition A.2.1), i.e., to the form r1 · v1 + ... + r1 • v1 + t. In each (in)equality,
collect factors r · v at one side, and collect the remaining parts of the bounds on the
other side, such that either v is deleted from the (in)equality, or it takes the form
r · v < b or r · v = b, with r # 0 and v (/. var(b). In the latter case, multiply hoth

A.4. The Refinement Lemma 207

aA(3 = (3Aa
(a A (3) tq a A ((3 A 'Y)
o:À(f3V'Y) (aÀ(j)v(aÀ'Y)
a A (a V (3) = a

o:Att = a
aVtt = tt

..,(a À j3) = ..,a V -,(3
-.tt = ff

-{-.a) a

--,(bo bl) (bo < b1) V (b1 < bo)
..,(bo < b1) = (bo = b1) V (b1 < bo)

to < t1 ==> to < t1 = tt

bo=b1Àbo=b b=b1 Ab0 =b
bo<b1Abo b b < b1 A bo = b

bo+b<b1+b = bo < b1
t>O==> t·bo<t·bl bo < b1

bo < b À b < b1 À bo < b1 = bo < b A b < b1

(t, to, t1 E T(S), b, bo, b1 E Bound)

Table A.l: The axiom system CA for conditions

208 Appendix A. Bounds and Conditions

sicles with r- E Time, and replace 1 · v by v. Hence, we can reduce each 'Yi to an
equivalent condition ~ of the form

"(1\ 1\ b; < V 1\ 1\ V < Ck 1\ 1\ V = dt
jEJ kEK lEL

where v does not occur in 7, b;, Ck, d1• We show that such a 7; is equivalent to a
condition of the form VJ(f31 A v E Vj), with v tf. var(f3J) U var(Vj).

First, suppose L i- 0. Fix an l0 E L and put d = dz0 • Then the following
condition is equivalent to "(;.

('YAf\b1 <dA 1\d<ckl\f\d dt) 1\ vE[d,d]
jEJ kEK lEL

So we may assume L = 0. Moreover, we may assume J i- 0 and K i- 0, because
we can always add conditions -oo < v and v < oo, as they abbreviate tt. Then the
following condition is equivalent to 7;_

V ('Y A 1\ bi'~ bi A 1\ ck ~ ck' AvE {bj, ck))
(j,k}EJxK j'EJ k'EK

0

A.S An Axiomatization for Conditions

Finally, Table A.1 contains an axiom system CA for conditions. We have the fol­
lowing proposition:

Proposition 4.2.1[Soundness and Completenessof CA]

I= a {J ~ CA 1- a = (3

Proof. The soundness, i.e., the case {::::=, is left to the reader.
For the completeness, i.e., the case =9, we use induction to the number of

variables that occur in a or (3. In case this number is zero it is left to the reader to
check that a and (3 reduce to either tt or fJ

So assume that we have proved the case for n variables, and let a and (3 contain
n + 1 variables. Fix a variabie v that occurs in a or in (3. Using the construction
from the proof of the Refinement Lemma, we can deduce in CA:

Q V; 'Yi 1\ (V E Vil V ... V V E v;",.)
(3 V i 'Yi 1\ (V E wil V ... V V E WinJ

where v does not occur in the 'Yï, v;1, JVi1, and moreover {'Yi} is a partition and the
v;1 and W;; are non-empty in the context of 'Yi· Apply the identity

V "" W 1\ (v E V V v E W) V""WI\vEVUW

A.5. An Axiomatization for Conditions 209

so that under condition 'Yi both the V;i and the Wij are pairwise disjoint.
Fix an interval V;i «ba, b~D· Since [a] = [,8], and since the 1/ij and the Wij are

pairwise disjoint, it follows that there is exactly one k such that V;i is equal to the
interval VVik «b11 biD under condition "(;. In other words, for this k we have

('Y; A V E V;jj = ['Yi A v E W;k]

This implies ['Y; A b0 = b1 A Yo biJ [tt], and so by the induction hypothesis
CA 1- 'Yi A bo = b1 A b~ = bi tt. Hence, 'Yi A v E 1/ij = "(; 1\ v E W;k in CA. This
holds for all intervals V;j, and conversely for all intervals W;j, so

CA 1- V; 'Yi 1\ (v E l/i1 V ... V V E VimJ
V;'Yi 1\ (v E wil V ... V V E W;"J

0

210 ReEerences

References

[AD90] R. Alur and D. Dill. Automata for modeling real-time behaviour. In
M. Paterson, editor, Proceedings 1 Th IC ALP, Warwick, LNCS 443, pages
322-335. Springer-Verlag, 1990.

[AH92] L. Aceto and M. Hennessy. Termination, deadlock and divergence. Jour­
nalof the ACM, 39(1):147-187, Januari 1992.

[Bae90] J.C.M. Baeten, editor. Applications of Process Algebra. Cambridge
Tracts in Theoretica} Computer Science 17. Cambridge University Press,
1990.

[Bae92] J.C.M. Baeten. Personal communication, 1992.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journat of
Formal Aspects of Computing Science, 3(2):142-188, 1991.

[BB92] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. In
W.R. Cleaveland, editor, Proceedings CONCUR 92, Stony Brook (Invited
Talk), volume 630 of LNCS, pages 401-420. Springer-Verlag, 1992. A
full version has appeared as technica! report 92/06 of the Eindhoven
University of Technology.

[BB93a] J.C.M. Baeten and J.A. Bergstra. Real space process algebra. Joumal
of Formal Aspects of Computing Science, 1993.

[BB93b] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with in­
finitesimals. Technica! report P9325, University of Amsterdam, 1993.

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency
of Koomen's fair abstraction rule. Theoretical Computer Science,
51(1/2):129-176, 1987.

[Ber92] J.A. Bergstra. Personal communîcation, 1992.

[BG87] J.C.M. Baeten and R.J. van Glabbeek. Merge and termination in process
algebra. In K.V. Nori, editor, Proceedings 7th Conference on Foundations
of Software Technology and Theoretical Computer Science, Pune, India,
volume 287 of LNCS, pages 153-172. Springer-Verlag, 1987.

[BK82] J.A. Bergstra and J.W. Klop. Fixed point semantics in process algebras.
Report IW 206, Mathematisch Centrum, Amsterdam, 1982.

[BK84a] J.A. Bergstra and J.W. Klop. Fair FIFO queues satisfy an algebraic
criterion for protocol correctness. Report CS-R8405, CWI, Amsterdam,
1984.

Reierences 211

[BK84b] J.A. Bergstra and J.W. Klop. Process algebra for synchronous commu­
nication. Information and Computation, 60(1/3):109-137, 1984.

[BK85] J.A. Bergstra and J.W. Klop. Algebra of communicating.processes with
abstraction. Theoretical Computer Science, 37(1):77-121, 1985.

[BK86] J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol
by means of process algebra. InW. Bibeland K.P. Jantke, editors, Math.
Methods of Spec. and Synthesis of Software Systems '85, Math. Research
31, pages 9-23, Berlin, 1986. Akademie-Verlag. First appeared as: Report
CS-R8404, CWI, Amsterdam, 1984.

[BL91] T. Bolognesi and F. Lucidi. Timed process algebras with urgent inter­
actions and a unique powerlul binary operator. In J.W. de Bakker et
al., editor, Proceedings of the REX Workshop "Real-Time :Theory in
Practice", volume 600 of LNCS, pages 124-146. Springer~ Verlag, 1991.

[BV93] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured
operational semantics with predicates. Report CSN-93/05, Eindhoven
University of Technology, Eindhoven, 1993. This paper will appear in
the proceedings of CONCDR '93, which will be publisbed in the LNCS
series.

[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts
in TheGJretical Computer Science 18. Cambridge University Press, 1990.

[Che91] L. Chen. Decidability and completenessin real-time processes. Teehuical
Report ECS-LFCS-91-185, University of Edinburgh, 1991.

[Che92] L. Chen. An interteaving model for real time systems. In A. Nerode and
M. Taitslin, editors, Proceedings of the second International Symposium
on Logical Foundation of Computer Science, Tver '92, volume 620 of
LNCS, pages 81-92. Springer-Verlag, 1992.

[Che93J L. Chen. Timed Processes: Models, Axioms and Decidability. PhD thesis,
The University of Edinburgh, 1993. Also appeared as report ECS-LFCS-
93-271, University of Edinburgh.

[CK90J C.C. Chang and H.J. Keisler. Model Theory, volume 73 of Studies in
logic and the foundations of mathematics. North-Holland, 1990.

[DS89] J. Davis and S. Schneider. An introduetion to timed esp. Techn. Mono­
graph PRG-75, Oxford Univ. Comp. Lab., 1989.

[FK92] W.J. Fokkink and A.S. Klusener. Real time process algebra with prefixed
integration. Report CS-R9219, CWI, Amsterdam, 1992. Submitted.

212 Reierences

[GL92] J.C. Godskesen and K.G. Larsen. Real-time calculi and expansion theo­
rems. In R. Shyamasundar, editor, Proceedings 12th Conference on Foun­
dations of Software Technology and Theoretica[Computer Science, New
Delhi, India, LNCS 652, pages 302-315. Springer-Verlag, 1992.

[Gla87] R.J. van Glabbeek. Bounded nondeterminism and the approximation
induction principle in process algebra. In F.J. Brandenburg; G. Vidal­
Naquet, and M. Wirsing, editors, Proceedings STACS 87, volume 247 of
LNCS, pages 336-347. Springer-Verlag, 1987.

[GV92] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. lnformation and Computation, 100:202-
260, 1992.

[GW89] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction
in bisimulation semantics (extended abstract). In G .X. Ritter, editor,
Information Processing 89, pages 613-618. North-Holland, 1989.

[GW91] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction
in bisimulation semantics. Report CS-R9120, CWI, Amsterdam, 1991.
An extended abstract of an earlier version has appeared in G.X. Ritter,
editor, Information Processing 89, North-Holland, 1989.

[Han91] H.A. Hansson. Time and probability in formal design of distributed sys­
tems. PhD thesis, Computer Science, University of Uppsala, Sweden,
1991.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall In­
ternational, 1985.

[Hoo91] J.J.M. Hooman. Specification and compositional verification of real-time
systems, volume 558 of LNCS. Springer-Verlag, 1991.

[HR90] M. Hennessy and T. Regan. A temporal process algebra. Report 2/90,
Computer Science Department, University of Sussex, 1990.

[IS087] ISO. lnformation processing systems - open systems interconnection -
LOTOS a formal description technique based on the temporal ordering
of observational behaviour ISO/TC97 JSC21/N DIS8807, 1987.

(Jef91a] A. Jeffrey. Discrete timed CSP. Teehuical Report Memo 78, Chalmers
University, Goteborg, 1991.

[Jef91b] A. Jeffrey. A linear time process algebra. In K.G. Larsen and A. Skou
(eds.), editors, Proceedings CAV '91, Aalborg, Denmark, LNCS 575,
pages 432-442. Springer-Verlag, 1991.

ReEerences 213

[Jef91c] A. Jeffrey. Translating timed process algebra into prioritized process
algebra. Tecbnical Report Memo 77, Chalmers University, Goteborg,
1991.

[Klu91a] A.S. Klusener. Abstraction in real time process algebra. Report CS­
R9144, CWI, Amsterdam, 1991. An extended abstract appeared in J.W.
de Bakker, C. Huizing, W.P. de Roever and G. Rozenberg, editors, Pro­
ceedings of the REX workshop "Real- Time: Theory in Practice", LNCS
600, Springer-Verlag, 1991.

[Klu91b] A.S. Klusener. Completeness in real time process algebra. Report CS­
R9106, CWI, Amsterdam, 1991. An extended abstract appeared in
J.C.M. Baeten and J.F. Groote, editors, Proceedings CONCUR 91, Am­
sterdam, LNCS 527, pages 376-392. Springer-Verlag, 1991.

[Klu92] A.S. Klusener. The silent step in time. Report CS-R9221, CWI, 1992.
An extended abstract appeared in W.R. Cleaveland, editor, Proceedings
of CONCUR 92, LNCS 630, Springer-Verlag, 1992.

[Koy89J R.L.C. Koymans. Specifying message passing and time-critical systems
with temporallogic. PhD thesis, Technical University Eindhoven, 1989.

(LV91] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations
for timing based systems. In J.W. de Bakker et al., editor, Proceedings
of the REX Workshop "Real-Time :Theory in Practice", volume 600 of
LNCS, pages 397-446. Springer-Verlag, 1991.

(Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS.
Springer-Verlag, 1980.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

[Mi189J R. Milner. Communication and concurrency. Prentice Hall International,
1989.

[MMT91] M. Merrit, F. Modugno, and M.R. Tuttle. Time-constrained automata.
In J.C.M. Baeten and J.F. Groote, editors, Proceedings CONCUR 91,
Amsterdam, volume 527 of LNCS, pages 408-423. Springer-Verlag, 1991.

[Mol89] F. Moller. Axioms for concurrency. PhD thesis, Report CST-59-89,
Department of Computer Science, University of Edinburgh, 1989 ..

[MT90] F. Moller and C. Tofts. A temporal calculus of communicating systems.
In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90,
Amsterdam, volume 458 of LNCS, pages 401-415. Springer-Verlag, 1990.

[MT92] F. Maller and C. Tofts. Behavioural abstraction in TCCS. In Proceedings
ICALP 92, Vienna, LNCS. Springer-Verlag, 1992.

214 Relerences

[Mur91] D. Murphy. 3 papers on classica! concurrency theory (IPA, nets, and
event refinement). Report CSC 91/R5, University of Glasgow, Dep. of
Computer Science, 1991.

[NRSV90] X. Nicollin, J.L. Richier, J. Sifakis, and J. Voiron. ATP: An algebra
for timed processes. In M. Broy and C.B. Jones, editors, Proceedings
IFIP Working Conference on Programming Concepts and Methods, Sea
of Gallilea, Israel, pages 155-177. North Holland, 1990. This paper has
also been publisbed as IMAG report RT-C16.

[NS90] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory
and application. Teehuical Report RT-C26, IMAG, Laboratoire de Génie
informatique, Grenoble, 1990.

[NS91] X. Nicollin and J. Sifakis. An overview and synthesis on timed pro­
cess algebras. In J.W. de Bakker et al., editor, Proceedings of the REX
Workshop "Real-Time :Theory in Practice", volume 600 of LNCS, pages
526-548. Springer-Verlag, 1991.

[NSY91] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and
hybrid systems. In J.W. de Bakker et al., editor, Proceedings ofthe REX
Workshop "Real-Time :Theory in Practice", volume 600 of LNCS, pages
549-572. Springer-Verlag, 1991.

[Par81.] D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, 5th GI Conference, volume 104 of LNCS, pages 167-
183. Springer-Verlag, 1981.

[Plo81] G.D. Plotkin. A structural approach to operational semantica. Report
DAIM! FN-19, Computer Science Department, Aarbus University, 1981.

[QdFA93] J. Quemada, D. de Frutos, and A. Azcorra. TIC A Timed Calculus.
Joumal of Formal Aspects of Computing Science, 5(?):224-252, 1993.

[RR88] M. Reed and A.W. Roscoe. A timed model for communicating sequentia!
processes. Theoretical Computer Science, 58:249-261, 1988.

[Sch92] S. Schneider. An operational semantics for Timed CSP. Teehuical report,
Oxford Univ. Comp. Lab., 1992. To appear in Information & Computa­
tion.

[Sto88] A. Stoughton. Substitution revisited. Theoretical Computer Science,
59:317-325, 1988.

[Ver93a] C. Verhoef. A congruence theorem for structured operational semantics
with predicates and negative premises. Technical report CSN 93/18,
Eindhoven University of Technology, Eindhoven, 1993.

ReEerences 215

[Ver93b] C. Verhoef. A general conservative extension theorem in process algebra.
Draft, Eindhoven University of Technology, Eindhoven, 1993.

[Wan90] Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume
458 of LNCS, pages 502-520. Springer-Verlag, 1990.

[Wan9la] Y. Wang. A Oalculus of Real Time Systems. PhD thesis, Chalmers
University of Technology, Göteborg, 1991.

[Wan91b] Y. Wang. CCS + time an interleaving model for real time systems.
In J. Leach Albert, B. Monien, and M. Rodrîguez, editors, Proceedings
ICALP 91, Madrid, volume 510 of LNCS. Springer-Verlag, 1991.

216 Reierences

Samenvatting

Dit proefschrift behandelt de uitbreiding van proces algebra met tijd.
Proces algebra is de studie van parallelle processen op een algebraïsche grondslag.

Het is geïnitieerd door Milner, die de proces algebra CCS ontwikkelde [Mil80],[Mil89].
Bergstra en Klop ontwikkelden vervolgens de proces algebra ACP (Algebra van Com­
municerende Processen) [BK84b], waarvoor wij eveneens naar het leerboek [BW90]
verwijzen. Het eerste deel van het proefschrift geeft een korte inleiding in de proces
algebra, gebaseerd op [BW90J.

Enkele jaren geleden hebben Baeten en Bergstra ACP uitgebreid met tijd [BB91],
door atomaire acties te voorzien van een tijdstip welke het tijdstip aangeeft waarop
de bewuste actie geacht wordt te worden uitgevoerd. Zo stelt a(5) het proces voor
dat de actie a op tijdstip 5 uitvoert. Om aan te kunnen geven dat acties ook in
een bepaald interval uitgevoerd kunnen worden, voerden Baeten en Bergstra het
integratie construct in. De expressie fves p(v) stelt het proces voor, dat zich kan
gedragen als p(t) voor een willekeurig tijdstip t in S. De naam integratie ontleent
het aan het feit dat het de continue versie betreft van het gegeneraliseerde som
construct uit de proces algebra. In dit proefschrift beperken wij ons tot expressies
van de vorm fvEV a(v) and fvEv(a(v) · p), waarbij V een interval aanduidt in het
onderliggende tijdsdomein. Deze beperking op de toegelaten expressies noemen wij
prefix-integratie.

In het tweede deel van het proefschrift bestuderen wij de operationale semantiek
en de axiomatizering van ACP met tijd en prefix-integratie. Het probleem van
prefix-integratie is het redeneren met expressies waarin tijdsvariabelen nog vrij voor
komen. Als oplossing bieden wij aan om de syntax uit te breiden tot expressies van
de vorm J"' a(v) en fa(a(v) ·p), waarbij a een boolse expressie is over tijdsvariabelen.
Vervolgens geven wij een (eindige) axiomatizering waarvan wij bewijzen dat het
overeenkomt met de gelijkheid van transitiesystemen modulo sterke bisimulatie. Ook
geven wij een beslissingsprocedure die voor twee expressies (zonder recursie) bepaalt
of zij gelijk zijn of niet. Dit deel vindt zijn oorsprong in [BB91], [Klu91b] en [FK92];
het is gedeeltelijk gezamenlijk geschreven met Willem Jan Fokkink.

Binnen de proces algebra worden er verschillende equivalenties gehanteerd die
betrekking hebben op abstractie, zoals vertakkende-, wacht- en zwakke bisimulatie.
In deel 3 van dit proefschrift definiëren wij deze equivalenties in ACP met tijd, en wij
introduceren bijbehorende axiomas. Eerdere versies van dit werk kunnen gevonden
worden in [Klu91a] en [Klu92].

Proces algebra kan gebruikt worden bij de specificatie en verificatie van parallelle
systemen. In deel 4 van dit proefschrift behandelen we eerst ACP met tijd en
beperkte recursie, daar wij eerst dan parallelle systemen met tijd daadwerkelijk
kunnen uitdrukken. Vervolgens geven wij een specificatie en een verificatie van een
protocol, waarvan een eerdere versie ook te vinden is in [Klu91a].

Een van de uitgangspunten van ACP met tijd is, dat opeenvolgende acties niet
op hetzelfde tijdstip uitgevoerd kunnen worden. In deel 5 laten wij dit punt los,
en bestuderen wij een variant van ACP met tijd met urgente actie, dat zijn acties

die achter elkaar op hetzelfde tijdstip uitgevoerd kunnen worden. Ook introduceren
wij extra operatoren, waannee een phenomeen als maximale progressie uitgedrukt
kan worden. Tot slot geven wij in deel 5 een vertaling van enkele andere proces
algebras met tijd naar ACP met tijd en urgente acties. In het bijzonder bestuderen
wij de axiomas voor zwakke bisimulatie met tijd, zoals ze door verschillende anderen
voorgesteld zijn.

Curriculum Vitae

• 25 juli 1965. Geboren te Nieuwveen (ZH).

• juni 1983. VWO-diploma behaald aan de Rijksscholen Gemeenschap Broklede
te Breukelen. Examenpakket: Ne, Eng, Gesch, Ec, Wil, Wi2, Nat, Schei.

• september 1983- juni 1984. Vooropleiding Conservatorium, Utrecht (Cello).

• september 1984- januari 1990. Informatica, Universiteit van Amsterdam.

In de eerste jaren heb ik het studieprogramma van de afstudeerrichting Be­
stuurlijke Informatica afgerond, op de afstudeerscriptie na.

Vervolgens ben ik overgestapt naar de (theoretische) programmatuurkunde en
ben daar onder leiding van prof.dr. J.A. Bergstra afgestudeerd.

Als onderdeel van mijn afstuderen heb ik enige maanden stage gelopen bij Phi­
lips Research, onder begeleiding van dr. L.M.G. Feijs en dr. H.B.M. Jonkers.

• maart 1990- december 1993. Junior project medewerker aan het CWI (Cen­
trum voor Wiskunde en Informatica) te Amsterdam. Mijn aanstelling is voor­
namelijk gefinancierd uit de volgende twee projecten.

maart 1990- juni 1992. Esprit 2 Project ATMOSPHERE.
ATMOSPHERE was een Europees onderzoeksproject op het gebied van
software-ontwikkelingsomgevingen. Het CWI was binnen het project een
subcontractor van Philips Research.
Binnen dit project heb ik gewerkt aan het opstellen van een executeerbare
semantiek van een deeltaal van de specificatietaal COLD.

juli 1992- december 1993. RACE Project BOOST.

BOOST is een Europees onderzoeksproject op het gebied van de telecom­
municatie en intelligente netwerken.

In dit project heb ik mij beziggehouden met het formeel specificeren van
componenten van het model voor intelligente netwerken zoals het door
de CCITT is vastgelegd.

Naast het onderzoek in het kader van bovengenoemde projecten heb ik mij
gedurende deze periode ook bezig gehouden met onderzoek op het gebied van
de uitbreiding van de proces algebra ACP met tijd, onder begeleiding van de
promotores prof.dr. J.C.M. Baeten (TUE) en prof.dr. J.A. Bergstra (UvA).
Dit onderzoek heeft geleid tot het onderhavige proefschrift.

Stellingen behorende bij het proefschrift

"Models and axioms for a fragment of real time process algebra"

door A.S. Klusener

I

Gewortelde vertakkende bisimulatie equivalentie in A CP-met-tijd en prefix-integratie is volledig
geaxiomatiseerd door de wetten voor sterke bisimulatie en de extra wet

f .. a(v) · Uweqbo,bt} r(w) · (p + q) + p) = f .. a(v} · (p + bo :::!1> q)

waarbij a nog condities oplegt aan v, bo, b1, en het wachtgedrag vanpen q; zo moet een van de
procestermen p,q tot b1 kunnen wachten terwijl de ander dat niet kan (zie de hoofdstukken 6
en 7).

11

In de stijl van Baeten en Bergstra stelt a(t) het proces voor dat tot het tijdstipt wacht (en niet
tot en met!) waarna het op tijdstip t de actie a uitvoert. Deze zienswijze leidt ertoe dat de
procestermen b{2}+c(3) en b(2)+r(2}·c(3) binnen vertakkendebisimulatie als gelijk beschouwd
worden (zie hoofdstuk 6}.

Binnen CCS met tijd hanteert men veelal de opvatting dat a(t) tot en met het tijdstipt wacht
waarna het a uitvoert, evenzeer op tijdstip t (zie hoofdstuk 11). Dit betekent echter dat de
bovengenoemde procestermen niet meer gelijk zijn.

Zo blijkt dat een verschil in opvattingen, dat aanvankelijk nogal esoterisch lijkt, wel degelijk
tot concrete verschillen kan leiden.

lil

De technieken uit dit proefschrift ten aanzien van prefix-integratie zijn ook van toepassing op
de analoge prefix-sommatie uit de procesalgebra met data.

Daarbij kan men overigens op de volgende manier prefix-sommatie eenvoudig uitbreiden tot
algemene sommatie. We gaan ervan uit dat een àtomaire actie a voor elke datum d en elke
substitie a een transitie heeft. De procesterm E.,, .. p "erft" het gedrag van p dat voldoet aan
v: a. Enkele van de benodigde SOS regels zijn hieronder gegeven.

a(d) . 1 I=
a(d) 1 P --> o-[d/v] v o-[d/v] a

a -'-'+" V a(d)
Lv:aP --'o- .J p·q

De axiomatisering is tamelijk eenvoudig:

2:",.,. p + Lv:.a p
I:.,:a(p+q)

Lv:ovpP
Lv:o P + Lv:o q

= f;

Lv:t> (Lw:.8 p)
w €/. fv(p) U var(a:)

I:." .. (a. p)
V €/. fv(p) Lv:ttP

I:",""<PivtwJ) p[v I w]

Lv:a(a · Lw:oP)
p

Merk op dat de conditionele procesterm a :--> p uitgedrukt kan worden door I:",.,.p voor
v €/. fv(p) U var(a).

Een dergelijke generalisatie van de prefix integratie in ACP-met-tijd is in principe ook mo­
gelijk, hoewel de operationale regels voor het tijdvoortschrijdgedrag van deadlocks complicaties
teweegbrengen.

IV

Stel een taal voo. met een alfabet A van atomaire acties, en een alfabet I van inverse acties. We
nemen ook een constante 6 'I A u I aan. De taal kent als operatoren de alternatieve compositie
met voorkeur, die wij noteren met '11- conform [BPvW93], eu de algemene sequentiële com­
positie, genoteerd met·. Verder is er een verzameling r van toestanden"/, "/1

, waarin expressies
p, q uit deze taal worden geïnterpreteerd. Er is een partiële functie val : A U { 6} x r __, I x r,
en een totale functie val: I x r--> r. Als val(a, 'Y) =(i, .Y) dan vereisen we dat val(i, .Y) = "/,
waarmee we uitdrukken dat zo'n actie i inderdaad de inverse actie van a in 'Y is. Bovendien
nemen we aan dat voor elke 'Y de applicatie val(ê, "Y) ongedefinieerd is.

Deze taal is alsvolgt van een semantiek te voorzien (met a E A U { 6}, i E I):

p·q (~ q'

val(a, 'Y) =(i,"!')
('yd).

a --> ~

pt!::!Jf;

t!::!J6

V

val(a,ry) is not defined

a~ 6

Protocold [Jon91] is voorgesteld als een deeltaal van de specificatietaal Cold [FJKR87] waaraan
een operationele semantiek gegeven kan worden. Echter, de Protocold-semantiek van een ex­
pressie kan subtiel verschillen van zijn semantiek binnen Cold.

Door het uitbreiden van Protocold met extra operatoren, zoals de zogenaamde soft-cut en
hard-cut uit het logisch programmeren, zou het bovengenoemd verschil zoveel mogelijk syntac­
tisch uitgedrukt kannen worden, wat het inzicht in de relatie van Protocold tot Cold vergroot.
(zie [Klu91]).

VI

In tijd-grafen, zoals bijvoorbeeld die van Alur en Dill [AD90], heeft elke component een eigen
klok. De uitgaande transities van zo'n component zijn enerzijds gelabeld met condities waarin
de klokwaarde een rol kan spelen, en anderzijds met een assignment, die bijvoorbeeld de klok
op nul kan zetten. Dergelijke grafen kennen een zekere redundantie, daar men ervan uitgaat
dat alle klokken even hard lopen.

Het is ook mogelijk om slechts één klok te hanteren, waar de componenten in hun condities
en assignments naar kunnen refereren, zonder dat zij deze klok echter op nul kunnen zetten.

Een mogelijk voordeel van dit alternatief is dat het verband tussen tijd-grafen en procesalge­
bra-met-tijd eenvoudiger wordt, waardoor resultaten gemakkelijker uitwisselbaar worden. Zo
zou het interessant zijn te weten of Fokkink's eliminatie stelling voor reguliere processen met
tijd [Fok93] over te dragen is naar het model van de tijd-grafen.

VII

Het conceptuele model voor intelligente netwerken van de CCITT [CCITT92J geeft een goed
beeld van de opbouw en indeling van deze netwerken. Echter, een aantal details wekt nog
vragen op, wanneer zij gezien worden in het licht van enkele basisprincipes uit de software
engineering. Zo wordt er een aantal Service Onafhankelijke Componenten (in Engelse afkort­
ing SIB's) geïntroduceerd, die onderling geen overlappende functionaliteitengeacht worden te
hebben.

Een van deze componenten, de Elementaire Bel Component (in Engelse afkorting BCP),
verzorgt zelf de communicatie met de gebruikers en de afrekening, terwijl deze taken toebe­
deeld zijn aan andere componenten, respectievelijk de Gebruiker Interactie Component en de
Afrekening Component.

Een ander voorbeeld is dat de parameters van de Gebruiker Interactie Component een vorm
van negatieve afhankelijkheid kennen. Indien een bepaalde parameter een bepaalde waarde
heeft, dan zijn andere parameters van geen enkel belang.

Teneinde tot een specificatie te komen waarin dergelijke details helder zijn uitgewerkt, ver­
dient het aanbeveling (gedeeltes van) het model te specificeren in een daartoe ontworpen for­
malisme als PSF [Mau91] of LOTOS [IS087]. Een voorbeeld van een dergelijke studie is te
vinden in [KVW93].

VIII

Bij het opstellen van de Huurwet in 1950 was het slechts voor artikel 3 van deze wet van
belang zich uit te spreken over de vraag wanneer een ruimte als woon- dan wel als bedrijfs­
ruimte beschouwd werd, indien de ruimte beide bestemruingen had; dit leidde tot lid 6 van dit
artikel waarin een ruimte als woonruimte erkend wordt indien meer dan 60 % van de ruimte
daadwerkelijk als woonruimte in gebruik is.

Bij de wetswijziging van 1972 is woonruimte onder het Burgelijk Wetboek komen te vallen,
en derhalve is bovenstaande vraag nu in een veel groter verband aan de orde. Het wekt dan
ook bevreemding dat men bij deze wetswijziging bovenstaande 60 % regel, of een aangepaste
versie daarvan, niet een meer algemene zeggingskracht toebedeeld heeft.

IX

Een nieuw idee geeft pas echt voldoening wanneer men niet denkt het bedacht, maar het ontdekt
denkt te hebben.

Referenties

[AD90) R. Alur and 0. Dill. Automata for modeling reai-time behaviour. In M. Paterson,
editor, Proceedings 17th ICALP, Warwick, LNCS 443, pages 322-335. Springer­
Verlag, 1990.

[BPvW93] J.A. Bergstra, A. Ponse, and J.J. van Wamel. Process algebra with backtracking.
Teehuical report P9306, University of Amsterdam, 1993.

[CCITT92] Study Group XI (WP XI/4). New Recommendati.on Q.1f!OO- Q Series Intelligent
Network Recommendation Structure. CCITT, Geneva, 10.17 march 1992.

[FJKR87] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans, and G.R Renarclel de Lavelette.
Formal definition of the design language COLD-K. Technica! report, Phllips Re­
search Laboratories, April 1987.

[Fok93) W.J. Fokkink. An elimination theorem for regular behaviours with integration. In
E. Best, editor, Proceedings CONCUR 99, Hildesheim, LNCS 715, pages 432-446.
Springer-Verlag, 1993.

[IS087] ISO. Information processing systems open systems interconnection - LOTOS
a formal description technique based on the temporal ordering of observational

behaviour ISO/TC97 /SC21/N DIS8807, 1987.

[Jon91] H.B.M. Jonkers. Protocold 1.1 user manual. Technica! report, Phllips Research
Laboratories, August 1991.

[Klu91] A.S. Klnsener. An executable semantics fora subset of COLD. Report CS-R9145,
CWI, Amsterdam, 1991.

[KVW93] A.S. Klusener, S.F.M. van Vlijmen and A. van Waveren. Service independent
building blocks-1; concepts, examples and formal specifications. Report CS.R9326,
CWI, Amsterdam, 1993.

[Mau91) S. Mauw. PSF, A Process Specification Formalism. PhD thesis, University of
Amsterdam, Amsterdam, 19::Jl.

