Models

and axioms
for a
fragment of
real time
process

algebra

A.S. Klusener

Models and axioms
for a fragment of

real time process algebra

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven
op gezag van de Rector Magnificus, prof.dr. J.H. van Lint voor een commissie
aangewezen door het College van Dekanen in het openbaar te verdedigen op
vrijdag 10 december 1993 om 16.00 uur.

door
Anton Stefanus Klusener

geboren te Nieuwveen

Dit proefschrift is goedgekeurd
door de promotoren:

prof.dr. J.C.M. Baeten

en

prof.dr. J.A. Bergstra

Cover by Philip Stroomberg.
Printed and bound by CopyPrint 2000, Enschede, The Netherlands.
©1993 by Steven Klusener (stevenk@cwi.nl).

The work in this thesis has been carried out at the CWI (Centrum voor Wiskunde
en Informatica), Amsterdam in the context of ESPRIT Basic Research Projects no.
3006 (CONCUR) and no. 7166 (CONCUR 2).

Acknowledgements

After I finished my undergraduate studies in Computer Science at the University of
Amsterdam (supervised by Jan Bergstra), I moved to Jos Baeten’s process algebra
group at the CWI in Amsterdam.

At the time of this move, Jan and Jos had just completed their initial paper
on real time process algebra. Soon I was working on the problem of a complete
axiomatization of a subset of their calculus. Initially I had little knowledge of logic
and process algebra, hence I had only a rather vague intuition about how to solve
the problems, and I had no idea how one could work for several years on this topic.

During the first year Jos guided me with patience about doing research on a
mathematical subject. He has forced me to be precise and clear, without tempering
my enthusiasm. I thank him for all of this.

Jan Bergstra is thanked for the stimulating way he manages practically and
scientifically the process algebra group in Amsterdam that is distributed over the
CWI and the University of Amsterdam. '

It has been a great pleasure to work together with Willem Jan Fokkink, with
whom I coauthored a great deal of the second part of this thesis. Willem Jan has
been my sparring partner on whom I could test most of mine ideas.

This thesis could not have been written without the support and company of my
colleagues at the CWI and the University of Amsterdam (Programming Research
Group). Since any list of names would be incomplete I mention only: Inge Bethke,
Doeko Bosscher, Claudia Brovedani, Jacob Brunekreef, Nicolien Drost, Willem Jan
Fokkink, Rob van Glabbeek, Jan Friso Groote, Joris Hillebrand, Jan Willem Klop,
Henri Korver, Sjouke Mauw, Alban Ponse, Piet Rodenburg, Frits Vaandrager, Gert
Veltink, Chris Verhoef, Bas van Vlijmen, Jos van Wamel and Arjan van Waveren.
Frits Vaandrager is also thanked for the careful manner he refereed this thesis. His
nasty questions have forced me to understand and elaborate several elementary as-
pects in more detail; I hope to have inherited at least a small bit of his thoroughness.
Chris Verhoef is thanked for his remarks on SOS formats.

I am also grateful to Kim Larsen for refereeing this thesis and for the valuable
remarks he gave me. I have much appreciated to have (e-mail) conversations on real
time process algebra with Liang Chen, Jim Davis, Alan Jeffrey, Matthew Hennessy,
Jens Godskesen, Faron Moller, David Murphy, Juan Quemada, Roberto Segala and
Yi Wang.

There is more in the world than real time process algebra. I have been lucky
to also have done industrial research, within the Esprit project Atmosphere and
the Race project BOOST. This thesis has been written outside the scope of these
projects, but working in these projects helped me to give me a broader outlook on
my work. Therefore, I thank the people of these projects, notably, Loe Feijs and
Rob Vader (Philips Research, Eindhoven; Atmosphere) and Jim Macura and Robert
Primrose (MARI, Gateshead, UK; BOOST).

Finally, I thank the department of Programming Technology of the CWI, headed
by Jaco the Bakker, for the stimulating time I have had.

i
Abstract

Process algebra is the study of concurrent communicating processes in an algebraic
framework. It has been initiated by Milner, who has developed the process algebra
CCS [Mil80],[Mil89]. Bergstra and Klop presented in [BK84b] the process algebra
ACP, for a textbook we refer to [BW90]. Another process algebra that we mention
is CSP that has been developed by Hoare [Hoa85]. In the first part of this thesis we
give a brief introduction to ACP, that is based on [BW90].

Over the last few years there have been several attemps to extend process algebra,
which has resulted in higher order process algebra, process algebra with value passing
and process algebra with time. Baeten and Bergstra have extended ACP with time
by decorating the atomic actions with time stamps [BB91]. These time stamps
are taken from some time domain, which may be the set of real numbers. For
example, a(t) is the process which executes the atomic action ¢ at time ¢. They also
introduced the process [,.¢p(v), where v is a so-called time variable, S is a subset
of the time domain, and p is a process expression in which the free occurrences of
the time variable v become bound. This integrated process expression denotes the
alternative composition over the time stamps in S.

In this thesis we study this approach in more detail. We restrict ourselves to
prefiz integrated process terms, that is, we will allow only processes of the form
Joev a(v) and [oy (a(v) - p), where V is an interval over the time domain. This
restriction is necessary to obtain a tractable calculus for which in principle a com-
plete axiomatization can be found. In the second part of this thesis we study the
bisimulation semantics and axiom systems for real time ACP with prefix integration
without recursion. The problem with process terms with prefixed integration, is
to reason with terms containing free occurrences of time variables. To tackle this
problem, we generalize our syntax. We allow terms of the form [(a(v) - p), where
« is a condition, that is a boolean expression over time variables. We introduce a
finite axiom system for this generalized class of terms, and we prove completeness
and decidability of bisimulation equivalence. The material of this part originates
from [BB91], [Klu91b] and [FK92], it has partly been written together with Willem
Jan Fokkink.

In the literature several equivalences, and their characterizing laws, are known
which deal with abstraction in process algebra without time. In the third part of this
thesis we define branching, delay and weak bisimulation equivalence in the context
of time, and we study the axiomatizations of these equivalences. Earlier versions of
this work can be found in [Klu91a] and [K1u92].

Process algebra can be used in the specification and verification of protocols. In
part four of this thesis we study guarded recursion in real time ACP in more detail,
as it is an essential feature in the specification of protocols. In this part we show as
well how a real time protocol can be verified, using the axioms for abstraction. The
verification originates from [Klu91a].

In real time ACP consecutive actions can not happen at the same point in time,
although they can occur arbitrary close to each other. In part five of this thesis

il

we present real time ACP with so called urgent actions, that are actions that may
occur consecutively at the same point in time. By defining additional operators we
can express phenomena like mazimal progress. Finally, we show how other timed
process algebras can be translated into this variant of real time ACP. In particular,
we discuss the axioms for timed weak bisimulation that can be found in several other
papers.

Contents

I Introduction

1 An Introduction to Process Algebra

1.1 A short Overview of Process Algebra
1.2 Basic Process Algebra
: 1.21 TheSyntaxfor BPAS
1.2.2 Action Rules and Transition Systems
1.2.3 Bisimulation Equivalence
1.2.4 The Axiom System BPAS
1.2.5 Notations for Equivalences and Summand Inclusions
1.2.6 Basic Terms and Completeness
1.3 Parallelism and Communication
1.31 TheSymtax of ACP
1.3.2 The Action Rules for the ACP Operators
1.3.3 ACPis a conservative extension of BPA6
1.3.4 Axioms for Concurrency
1.4 Abstraction L
1.4.1 A new Constant for the Silent Step
142 Semanticsforthe Silent Step.
1.43 Laws for abstraction
1.44 Strongly Rootedness
1.5 Recursion
1.5.1 Imtroduction L.
1.5.2 Some Definitions
1.5.3 Axioms for Recursion and Projection

1.5.4 The Soundness of the Restricted Recursion Specification Prin-
ciple

II Prefix Integrated Real Time ACP

2 BPA with Time Stamps
21 Introduction
2.2 A Syntax with Time Stamped Actions
2.3 A Semantics with Idle Transitions e

Contents

2.4 Timed Idle Bisimulation Equivalence 35
2.5 The Axiom System BPApd 36
2.6 A Term Semantics for BPApS 37
2.7 Basic Terms and Completeness 42
271 Basicterms 42
2.7.2 Completeness of BPApd L. 44
ACP with Time Stamps 47
31 Imtroduction 47
32 TheSyutax of ACPp e 48
3.3 AnlIdlesemanticsfor ACPp 48
3.4 The Axiom System ACPp 51
3.5 A Term Semantics for ACPp bl
3.6 Elimination and Completeness 54
BPA with Prefixed Integration 57
4.1 Imtroduction 57
4.2 The Time Domain, Bounds and Conditions 58
421 TheTimeDomain 58
422 Bounds “. ... b9
4.2.3 Substitutions 59
424 Thesyntax of conditions 60
4.2.5 The interpretation of a condition 60
4.2.6 Intervals and conditions 61
4.2.7 Partitions and refinements 61
4.2.8 Some more abbreviations 62
4.3 Terms with conditions e 62
4.31 Theultimatedelay 62
4.3.2 'The syntax for process terms 63
433 Freetimewvariables, . 63
4.4 An Operational Semantics for Time Open Terms 63
4.4.1 A generalization of bisimulation equivalence 63
4.4.2 Bisimulation equivalence is a congruence 66
4.5 Reasoning with Time Open Terms W ... 89
4.5.1 Substitution and a-conversion, 69
4.5.2 The axiom system BPApSl, 69
453 The Lifting Lemma 70
4.6 Completeness and Decidability 72
ACP with Prefixed Integration 83
51 Introduction 83
5.2 The Axiom System ACPpl 83

5.3 Elimination and Completeness 86

Contents vii
IIT The Silent Step in Time 89
6 Branching Bisimulation and Time 91
6.1 Imfroduction e 91
6.2 SemeExamples 92
6.3 Branching Bisimulationin BPApd oo 93
64 ASingleLawfortheSilent Step 96
6.5 The Extension with Integration 97
6.5.1 A first generalization of the axiom T1, 97
6.5.2 The Timed Branching Law 99
8.6 The Embedding of BPAé7 into BPAps7I 101
6.7 Branching Bis. matermsemanties oL . 103
6.8 Rooted Branch. Bis. Eq. isa Congruence 107
6.9 Some Additional Notations 108
7 Completeness for Branching Bisimulation 111
7.1 Introduction 111
7.2 Ao Intermezzo on Time Variables i1
7.3 Branching Basic Terms wee o113
7.3.1 Introducing 7’s for each moment of choice 113
7.3.2 Partitioning a process term 114
733 Removing 7’s e 117
7.3.4 The construction of branching basic terms 119
7.3.5 Some properties of branching basic terms 121
7.4 A Theorem for Branching Basic Terms 125
7.5 Completeness for Branching Bis. Eq. 132
8 Delay and Weak Bisimulation and Time 133
81 Introduction e 133
8.2 Rooted Delay Bisimulation Equivalence 134
8.3 Closure Rules and Idle Transitions 135
8.4 Axioms for Rooted Delay Bis. Eq. 138
8.4.1 Thefirst r-axiom 138
84.2 Thesecond 7-.axiom 139

8.4.3 Delay bisimulation without integration coincides with branch-
ingbisimulation L. 140
8.5 Weak Bisimulationand Time 140
86 The Third raxiom 141
87 The Extensionto ACPp 142
IV Guarded Recursion 145
9 Prefixed Integration and Guarded Recursion 147

9.1 Introduction

viii Contents

9.2 Some Definitions o 147
9.3 Axioms for Recursion and Projection 149
9.4 The Soundness of the Restricted Recursion Specification Principle . . 150

10 Protocol Verification 153
10.1 Introduction L. 153
10.2 The r-swap and 7-removal 154
10.3 The Unwind Principle 154
10.4 A 7 Prasing Bisimulation 155
10.5 The Specification and the Implementation of the Protocol 156
10.6 Expanding the Definitions 157
10.7 Abstracting from Internal Steps L. 158
10.8 Some Tougher Methods and Handwavings 160

V Urgent Actions and Related Work , 163

11 Real Time ACP with Urgent Actions 165
11.1 Introduction 165
11.2 Syntax Definitions L. 167
11.3 A Two Phase Operational Semantics 169
11.4 The Axiom System ACPur, 172
11.5 Branching Bisimulation L. 176
11.6 A Law for Branching Bisimulation. 177
11.7 Branching Bisimulation with and without Urgent Actions 178
11.8 Delay and Weak Bisimulation 180
11.9 Laws for Rooted Delay and Weak Bisimulation. 180
11.10Alternative Definitions for Weak Bis. 181
11.11The Embedding of ACPur intoc ACPpl 183
11.12The Embedding of ACP into ACPwr 184

12 Related Work 185
121 Imtroduction 185
12,2 The Parallel Mergeo oo i 186
123 TCCS of Moller & Tofts 187
12.4 Moller & Tofts’s weak bisimulation 189
125 Wang's Timed CCS L0000 oo 191
12.6 Wang’s weak bisimulation L. 191
12.7 Chen’s Timed CCS L. o192
12.8 Chen’s Weak Bisimulation, ... 193
12.9 ATP of Nicollin and Sifakis 196
1210TPL of Hennessy & Regan 200
12.11TIC of Quemada, de Frutos and Azcorra 200
12.12Weak bisimulation in TIC L. 201

12.130ther related work 202

Contents ix

A Bounds and Conditions 205
Al Introduction 205
A2 Boundsinnormalform 205
A.3 A Proof System for Conditions 206
A4 The Refinement Lemma 206

A.5 An Axiomatization for Conditions 208

Contents

Part 1

Introduction

1

An Introduction to Process
Algebra

1.1 A short Overview of Process Algebra

In this chapter we give a short presentation of untimed Process Algebra. Most of
this chapter is borrowed from [BW90].

A first objective of this chapter is, of course, to provide the reader who is not
familiar with Process Algebra, and [BW90] in particular, with the background whlch
is needed to read the rest of this thesis.

A second objective is to introduce notations, conventions and proof techniques
that are used in this thesis and that can be explained without referring to time.
Since some of the details of [BW90] cannot be extended easily to the timed setting
of the following chapters we allow ourselves the freedom to deviate at minor points
from [BW90].

In the first section we start with the presentation of BPAS (Basic Process Algebra
with &), that is the syntax with atomic actions, the special constant § for deadlock,
alternative composition (+) and sequential composition (-). We present in detail
how the operational semantics of a process term, which will be a transition system,
can be obtained from so-called action rules. Next, we present the axiom system of
BPA§ and we discuss the notions of soundness and completeness. The completeness
result will be based on so-called basic terms.

In the second section we extend BPAS with the parallel composition operator (|[)
and the auxiliary operators communication merge {|) and left merge (). Together
with the encapsulation operator (9x) we obtain ACP (Algebra of Communicating
Processes). We show how these additional operators can be eliminated from a
process term using the axioms of ACP.

In Section 3 we discuss Milner’s silent action 7. This silent action can be used
to abstract from internal actions. We discuss three associated equivalences, viz.
branching bisimulation, delay bisimulation and weak bisimulation.

Finally, we present recursion in Section 4. We restrict ourselves mainly to the
setting of a single finite guarded specification. We discuss the Recursive Specification

3

4 1. An Introduction to Process Algebra

Principle (RSP) that says that if two process terms are both solutions of a recursive
specification, then they are equal as well. We formulate this principle as a conitional
axiom and we show that it is sound in the context of guarded specifications.

1.2 Basic Process Algebra
1.2.1 The Syntax for BPA¢S

We have a, possibly infinite, alphabet A of atemic actions ! and a special constant
8, denoting deadlock, which is not in A. The set AU {6} is abbreviated by As;. The
set of process terms over BPAS is denoted by T(BPAS), p,¢ and z will range over
this set, which is defined by the following BNF sentence, where a € A;.

T(BPAS) : pu=a|p+p|p-p

Here, p + ¢ is the alternative composition of p and ¢ while p - g is the sequential
composition of p and g. An element of T(BPAS$) is referred to as a process term.
We use the standard convention that - binds stronger than +; thus p-¢+p' is parsed
as (p-q) +7'.

The size of a process term p is the number of operators in p.

1.2.2 Action Rules and Transition Systems

The behavior of a process term p is represented by a labeled transition system with
p as root. The states of a transition system are taken from T(BPAS).

For each a € A there is a transition relation R,, which is a binary relation over
process terms. R,(p,p’) is denoted by p —*» p' and it is called a transition. A
transition p - p’ denotes that the process p can evolve into the process p’ by
executing the atomic action a. The symbol / denotes termination, for each o € 4
there is a predicate RY. RY(p) is denoted by p -+ ./ and it means that the
process p can terminate by executing the action a. By abuse of language we will call
p -2+ / a terminating transition or simply a transition. These transition relations
and predicates are defined as the least ones satisfying the action rules of Table 1.1.
In other words, p — 7' if and only if it can be derived from the action rules. A
derivation of a transition p —~+ p' is a proof tree which is constructed from the
action rules, two examples of these proof trees are given in Example 1.2.1. This
style of giving operational semantics is advocated by Plotkin {[Plo81]).

Example 1.2.1 Derivations fora-(b+c¢) — b+canda-b+a-c — b.

'In the ACP literature, viz. [BW90], it is common to require that A is finite. In that case,
an axiom scheme that is parameterized by an action can be considered as an abbreviation of a
finite axiom system. In the timed setting we will need axiom schemes which are parameterized
with time stamps. Since the underlying time domain will be infinite these axiom schemes cannot
be considered as an abbrevation of a finite axiom system. Hence, it does not help here to require
that A is finite.

1.2. Basic Process Algebra 5

atom a —

PV p = ¢
seqy _"a S€qy e
P g —q p-qg— p-q
p = . p >y
s, —————— plus;, ——————
psz°9+qi>\/p1p+q—“—>p’
p p = ¢
Mgy, e l'll«?r e
P SV T e =
a€ A
Table 1.1: Action Rules for BPAS
atom a — |/ atom _a — +/
seqy s¢to a-h =% b

. i lus
a (b+C) — b+c pius; a-bta-c I

1.2.3 Bisimulation Equivalence

We may identify process terms of which the transition systems represent the same
behavior. We define strong bisimulation equivalence, denoted by £2. p £ ¢ means
roughly that every transition of p can be mimicked by ¢ such that the resulting pair
is strongly bisimilar again and vice versa. Bisimulation equivalence can be found as
well in [Par81], [Mil80], [Mil89], [BK84b] and [BW90].

First we need the definition of a bisimulation. In the sequel pRg abbreviates
that the binary relation R contains the pair (p, ¢).

Definition 1.2.2 (Bisimulation)
R C T(BPAS) x T(BPAS) s e bisimulation if whenever pRq then

1. p -2 p implies 3¢’ such that ¢ %+ ¢' and PRq'.

2. p -5 / impliesg - /.

3. Respectively (1) and (2) with the role of p and ¢ interchanged.
Bisimulation equivalence is now defined by

Definition 1.2.3 (Bisimulation Equivalence)
P £2 g iff there is o bisimuletion R relating p and q.

6 1. An Introduction to Process Algebra

In the context of process algebra we are interested only in equivalences on process
terms which are congruences over the process algebra as well, which means intunitively
that we can substitute terms for bisimilar ones.

£ is a congruence over BPAS if it is an equivalence relation (i.e. if it is sym-
metric, reflexive and transitive} and it respects the operators of BPAS. The latter
means that p; < p; and gy <2 ¢, implies p) +q1 2 p2+ g and p1 - q1 £ p2 - ¢o.

Theorem 1.2.4 (< is a congruence over BPA§)

Proof. A straightforward proof technique is to show that a bisimulation is sym-
metric, reflexive and transitive. Next, two bisimulations R, and R, are given such
that p;Riqy and pyRage and it is shown that from R; and R bisimulations R’ and
R" can be constructed such that (py + ¢1)R'(p2 + @) and (p1 - ¢)R"(p2 - @). In
general, this technique can be quite involved, though it is easy for the specific case
of BPAS.

A much easier way to obtain that <2 is a congruency, is to use a result of Groote
and Vaandrager ([GV92]). They have proven that if the action rules fit into a certain
format, called the tyft/tyzt format, then bisimulation equivalence is a congruence.
However, this format does not allow predicates on process terms while the rule
atom actually defines a predicate RY. But, as suggested by Groote and Vaandrager
the tyft/tyrt format can be generalized to a format that allows predicates. Baeten
and Verhoef have elaborated this generalization in [BV93] and they have called this
extension the path format.

It is very easy to check that the action rules of Table 1.1 fit into the path format.

O

1.2.4 The Axiom System BPA#$

As the process terms become more complicated it can be quite involved to show an
equivalence by constructing a bisimulation. To simplify this reasoning we introduce
a mechanism to reason algebraically instead of operationally. For a motivation on
axiomatic reasoning on processes we refer to [Mil80], [Mil89], [BK84b] and [BW90).
- We give an axiom system that, together with the rules of equational logic, defines
the same equivalence. The rules of equational logic, see Table 1.2, correspond to the
fact that bisimulation equivalence is a congruence. p and ¢ denote process terms
and C(p) denotes a context in which p may occur.

In this thesis we restrict ourselves to process terms only. In the literature, viz.
[BW90], the axioms consider arbitrary process variables, ranged over by X,Y and Z.
We restrict ourselves to process terms as we introduce so called time variables, that
may occur free or bound in a process term, in the following chapters. In the axioms
we have to refer to these time variables, which is not possible in case of process
variables X,Y. The axiom system BPA§ is given in Table 1.3. Note that by the
axioms A1-A3 we can consider a summation as a set of alternatives. Moreover, A6

1.2. Basic Process Algebra 7

p=p reflexivity

p=gq = =] symmetry
p=¢, ¢q=z2 = p=2z transitivity
p=q => C{p)=C(g) context rule
Clp)=C'(p) => C(g)=C"'(g) substitution rule

Table 1.2: Rules for Equational Logic

tells us that the constant 6 can be considered as an empty summation. By means
of BPAS we can prove that (a -+ b) + a equals b+ a.

Example 1.2.5
BPASF (a+b)+a2 (b+a)+aZb+(a+a)Bb+a

Note that we have used the rules of Table 1.2 implicitly.

We have to prove that this axiom system indeed defines bisimulation equivalence,
we will do this in two steps. First we prove that it is sound, i.e. if we can derive
that two process terms p, ¢ are equal using the axioms A1-A7 then it must be the
case that p £ ¢ as well.

Al p+g = q+p

A2 (p+g)+z = p+{g+2)
A3 p+p =p

Ad (p+q -z = p-z+qg-2
A5 (p-g)-2 = p-(g-2)
A6 p+6 =

Table 1.3: BPA = A1-A5, BPAS = BPA + A6 + A7

Theorem 1.2.6 {Soundness of BPAS) p,q € T(BPAS§)

BPASFp=q = ptg

8 1. An Introduction to Procéss Algebra

Proof. Since we have proven already that &2 is a congruence we know that it is
sound to apply the rules of equational reasoning. It is left to prove that if p = ¢ is
an instance of one of the axioms of BPAGS then p & q as well. We will discuss only
the axioms A1, Ad and A6 by giving a relation and showing that it is a bisimulation.
The other axioms are left to the reader.

Al p+g2q+p
Take
"R = {(u,u)|u € T(BPAS)} U {(p + ¢,q +)}

It is obvious that R is a bisimulation with respect to any pair {u,u), so we
have to discuss the pair (p + ¢,¢+ p) only.

— Consider the case where p+ ¢ - ./, this transition can either be
derived by plush (so p —— +/) or by plus, (s0 ¢ — +/).
Assume p -+ |/ then we can apply plus) on g + p and we derive

g+p = /.
The case ¢ -+ +/ is symmetric, plusy must be replaced by plus) and
vice versa.

~ The case p+q — 2z is analogous to the case p+¢ —— \/, plus‘ must
be replaced by plusl1 and plusy must be replaced by pl‘us1
So, from p+¢ —— 2z we can deduce that g+p —— 2z as well and we
are ready since R(z, z).

Ad (p+q) z2p 2+q-2
Take

R = {(v,u)lu € T(BPAS} U {((p+¢q) - 2,p 2 +¢-2)}

The process term (p -+ ¢) - z does not have terminating transitions. Every
transition (p+¢q) - z —= 2’ is either deduced by seqy or by seq;.

— If it can be deduced from seqy then 2’ is syntactically equal to z and either
p —= Jorq — /.
Assume p —*» / then we can apply rule seg to p - z and we derive
p-z — 2z and we are ready since R(z, z).
The case where ¢ —— +/ is equivalent.

~ If it can be deduced from seg, then there is a u such that p+q - u
and 7' is syntactically equivalent to u - z. The transition p+¢ 2+ u
can either be derived from plus, or plus].

Assume p+¢ — u can be derived from plus, then p -~~~ v and then
we can apply seq; on p-z and we derive p-z —— u -z and we are ready
since R(Z', u - 2). :

The case where p+¢ —— wu can be derived from plus] is equivalent to
the previous one.

1.2. Basic Process Algebra 9

A6 p+ée=2p
Take

R = {(u,u)lu € T(BPAS)} U{(p+6,p)}

6 has no transitions at all. So a transition p+68 —= +/ can not be derived
from plusly so the transition has to be derived from plug, from which p = /
follows.

Similarly we can deduce from p+6§ — z that p —— z and we are ready
since R(u,).

O

The other direction of Theorem 1.2.6 is called completeness, its proof is postponed
till Section 1.2.6.

1.2.5 Notations for Equivalences and Summand Inclusions

Until now, we have seen already several notions of equivalences between process
terms, for each of them we will introduce a notation.

To avoid confusion with the notion of provable equality, we write = for equality
over process terms. If p = g then we say that p and q are syntactically equivalent.

If © is an axiom system, such as BPAS, and there is a derivation within © which
identifies the process terms p, ¢ then we denote this by © F p = g. Next, we define
C, denoting derivable summand inclusion; p Cg g whenever © F p+ ¢ = ¢q. We
write p C ¢ instead of p Cg ¢ if © is clear from the context.

Often we are not much interested whether two process terms are syntactically
equivalent, but more whether they are equal modulo the axioms Al, A2 and AS6.
Hence, we write p =~ ¢ for A1,A2,A6 + p==g and p C q for p C,; 446 ¢- In case of
p = ¢ we allow ourselves to say that p and ¢ have the same form, or p is of the form
g. If we consider the form of a process term p then we can also say that we consider
p as a bag of its alternatives.

The axioms Al and A2 allow us to remove the brackets in (p; + py) +p3. A
process term of the form p; + ... + p, is abbreviated by Yicqy,) p:. Furthermore,
we use the convention that 3 ;. p; denotes §.

Intuitively one can consider [as being bag inclusion and C,, 5 4, as set inclusion.

Example 1.2.7

{fa+b)+a # a+b

BPASF (a+b)+a = a+b
(la+b)+ec)+a # (a+a)+(b+¢)
((a+b)+c)+a =~ (a+a)+(b+c)
a+b C (a+a)+b
a-+a Z a-t+b
a-b Coras (a+c)-b

10 1. An Introduction to Process Algebra

We close this section with a proposition.
Proposition 1.2.8 a € A
p—+ < alp

e —>. By induction on the length of the derivation of p —— +/.

s <=. By induction of the number of summands of p.

1.2.6 Basic Terms and Completeness

In this section we define a set B of basic terms that enables us to prove the Com-
pleteness Theorem for BPAS easily. A basic term will be a process term such that
the transition system corresponds closely to the structure of the process term. This
will be formalized in Proposition 1.2.12. The definition is very simple, only prefixed
multiplication is allowed, i.e. process terms of the form p - g where p € A,.

First we define head normal forms ([BG87],[BW90]) and prefiz normal forms.

Definition 1.2.9 (Head Normal Forms) p is a head normal form if it is of the
form

dapi+ b
i€l jer
where a;,b; € As and I and J are finite index sets.

Note, that the p;’s do not have to be head normal forms as well.
A prefix normal form is a head normal form of which its subterms are in prefix
normal form as well.

Definition 1.2.10 (Prefix Normal Forms) p is o prefix normal form if it is o
head normal form

Soimit T

i€l jeJ
such that for every i p; is a prefit normal form as well.

We have the following proposition which says that every process term can be
reduced to a prefix normal form.

Proposition 1.2.11 Let p € T(BPAS) then there is a head normal form p' such
that BPA6 +p = p/

Proof. First we show that for any prefix normal forms z, 2’ there is a prefix normal
form u such that BPAS F 2- 2’ = u. We prove this by induction on z. The base case
is z = a and we are ready since o - 2’ is a prefix normal form. For the other cases
we give the following equations which must be read from left to right, such that on
the right hand side induction must be applied.

1.2. Basic Process Algebra 11

{20+ 21) -2 22 422
(a-2)-2 = a (z-2)

We can prove the general case by induction of the number of general multiplications,
that is the number of subterms of the form 2 - 2’ where 2 is not an atomic action
and 2’ is not in prefix normal form. For the base case we have that z and 2/ are
prefix normal forms, but z is not an atomic action. This case can has already been
discussed in the first part of the proof. « O

Proposition 1.2.12 For every prefiz normal form we have:

p->p => apCp
p >+ = alp

Proof. By induction on the structure of p. ‘ (W)

In the untimed setting a basic term is a prefix normal form, without subterms
of the form & - p. By proposition 1.2.11 and the axiom A6 (6 - p = §), it is easy to
see that every term p can be reduced to a basic term p,, such that BPAS F p = p,.
We denote the set of basic term by B.

We are now ready to prove the Completeness Theorem for BPAS.

Theorem 1.2.13 {Completeness of BPAS) p,¢ € T(BPAS)
peqg == BPAftp=gqg

Proof. An implication of Proposition 1.2.11 is that it is sufficient to prove com-
pleteness for basic terms only.

We will explain this implication once in detail. We construct basic terms p, and
gs, such that BPAS + p = p, and BPAS - ¢ = ¢;,. By soundness of BPA§ w.r.t. = we
have p £ p, and ¢ &2 g,. By transitivity of & and the assumption p &2 ¢ we obtain
Dy £ @ and it is left to prove that BPAS - py = g, as this implies BPAS - p = q.

s Consider an arbitrary summand a-p' of p;. Then p, —— p' and since p, =2 g,
there is a ¢’ such that ¢ — ¢ and p' = ¢’. By induction BPAS - p’' = ¢'
and since a - ¢’ T ¢, we may conclude a - p' Capas G-

o Consider an arbitrary summand a € A of p,. Then p, — / and since
Dy £ gy also gg —— /. Hence, a £ q.

Adding these results together we obtain p; Cppas ¢ Since bisimulation is symmetric

we conclude g5 Cppas oo Finally, from p, Cpeas @ and ¢ Cppas s we conclude
BPAS F py = qp. 0O

12 1. An Introduction to Process Algebra

1.3 Parallelism and Communication

If p and ¢ denote processes then we denote their parallel composition by p|lg. ACP
([BK84Db],[BW90]} has an interleaving view on parallelism. That is, if two processes
p and ¢ run in parallel then either the first action comes from p, or from ¢, or the first
action is a result of a communication of an action from p and an action from ¢. Also
CCS ([Mil80][Mil89]) has an interleaved point of view. CCS has for every action a
a so-called complementary action @ {where @ = a) such that the communication of
a and @ results into r. Moreover, in CCS a cannot communicate with actions b # @.

In order to axiomatize the parallel merge we introduce two auxiliary operators,
the communication merge [BK82] and the left merge [BK84b]. For a discussion for
the need of the left merge for a finite axiomatization of the parallel merge we refer
to [Mol89] as well.

The communication merge is denoted by |, plg is like p|lg with the restriction
that only communication actions are allowed in the first step. If there is no initial
communication possible between the atomic actions a and b, then alb equals é.

The left merge is denoted by L. pll ¢ is like pl|g, with the restriction that the ini-
tial action must come from the left component, that is p, and that no communication
is possible.

As example of the parallel merge, communication merge and the left merge we
give the following identity:

(a-pll-q) = (a-plp-g)+ (b -gl(a-p)+(a-p)l(b-q)
a-(pll(b-g)) +b-(gll(a-p)) + (alb) - (vllg)

The last new operator is the encapsulation operator, denoted by dgx(p). For H
a subset of A, 8g(p) encapsulates all actions of p which occur in p. That is, every
action of pin H is blocked, i.e. turned into 6. Assume that a occurs in p and b occurs
in ¢, and a|b = ¢ where a,b # c, then 6(4,)(plq) forces p and ¢ to communicate on
the actions a and b. The encapsulation operator originates from [BK84a], and it
corresponds with the restriction operator in CCS [Mil80],[Mil89].

1.3.1 The Syntax of ACP

We define T(ACP), the set of process terms over ACP, by the followmg BNF sen-
tence, where a € A; and H C A.

T(ACP): pu=alpi+p|p-plplp: | pillp: | pilp: | Bu(p)

We assume a (total) binary function v on As, which will be called the communication
function. We require that < is commutative and gssociative, that is:

v(a,b) = v(b,a) A v(v(a,b),c) = v(a,7(b,c))

Moreover, we require that y{a,b} = § whenever a = 6 or b = §.
This function y will be a parameter of the theory ACP.

1.3. Parallelism and Communication 13

p — p p —

ollg = Pllg ple = plig pllg — ¢ plg > ¢
g - ¢ g =/
pllg = pll¢ pllg = p

p -5 1,05 ¢, vab)=c p %/, ¢ >, Wab)=c

pllg = Plld ple = pl¢ pllg — v plg =
P/, g =g e =c p 9, g 2, va,b)=c
ollg = ¢ »ple = ¢ plle = ¢ plg = ¢
p—p,a¢H p— ,a¢H
Ou(p) = Ou(y) dualp) —
a,b,c€ A

Table 1.4: Action Rules for ACP Operators

1.3.2 The Action Rules for the ACP Operators

In Table 1.4 we give the action rules for the additional ACP operators. A rule like

p =9

plle = 7le plg — Plg
abbreviates the following two rules
p =7 p =7
Y s | —
a
plls = plla plg = plig

1.3.3 ACPis a conservative extension of BPA§S

We require that the extension of BPASto ACPdoes not introduce new identities over
BPAS. .

That is, if £2° denotes the old bisimulation equivalence and <™ the new bisim-
ulation equivalence, obtained by the extension, then we require for process terms
in the “old” signature (p,¢ € T(BPAS)) that p 2" ¢ iff p ©2° ¢q. Note that this is
certainly not the case if the extension contains an action rule like

14 1. An Introduction to Process Algebra
p— ¢

p =7
But, as the action rules in Table 1.4 only add transitions to terms in T{ACP) —
T(BPAé) it is guaranteed that no new transitions are introduced for terms in
T(BPAS).

We refer to a paper of Verhoef [Ver93b], in which a format is studied, in which
the action rules of the additional operators have to fit to obtain a conservative
extension.

For extensions that are discussed in the following chapters we do not mention
anymore the they are indeed conservative.

1.3.4 Axioms for Concurrency

In Table 1.5 we give the axioms for the ACP operators. The axiom CF1 states simply
that the communication between two atomic actions is defined by the communication
function. Together with the axioms for the left merge and the communication merge,
the axiom CM1 states clearly the interleaving character of the parallel merge; either
the first action comes from the left or the right component, or it originates from a
communication. The other axioms are rather straightforward axioms for the L, |
and 8y operators. Again, we have a result that every process term can be reduced
to a prefix normal form. The Theorem is called the Elimination Theorem since it
states that the additional operators of ACP over BPAS can be eliminated.

Theorem 1.3.1 {Elimination Theorem for ACP)
Vp € T(ACP) 3p’ where p' is in prefix normal form and ACP l-p =179

Proof. First, suppose that p is of the from 2032/, where z and 2 are prefix normal
forms and O € {lL,|,||}. Then we can prove by induction on (depth(z + 2'),0)
that there is a prefix normal form z such that ACP | u = 2002, We take (n,|}) >
(n,L) = (n,|), and (n,0) > («',0F) when n > #'.

The following equations must be read from left to right.

all 2/ = a-2 ready

(zg+z)ll2" = 2zl +2ll7 use induction
{a-20)L2 = a-(z]2") use induction

alb = 7{a,b) ready

(a-2)b = 2ab) 7 ready

olb-%) = ab)-7 ready

(a-2)|(b-25) = ~(a,b)- (20]|25) use induction
(20 + 2)|7 = 2|2 + 2| use induction
z|(zf + 21) = z|zf + 2|7 use induction

2|2 zIL2' + 2Lz + 2|2" use induction

1.4. Abstraction ‘ 15

CF1 alb = ~{a,b)

CM1 pllg = pllg+qllp+plg
CM2 alp = q-p ‘
CM3 (a-plg = a- (7l
CM4 (p+p)lg = plg+plg
CM35 (a-p)lb = (alb)-p
CM$6 al(b- p) = (alb)-p
CM7 (a-plb-9) = (alb)-(pllg)
CM8 (pr+mlle = mlg+plg
CM9 Pl +aq) = plg+ple
DI o¢ H 0yla) = g

D2 acH 8x(a) = §

D3 ou(p+q) = Oulp)+dn(y)
D4 Ou(p-q) = 9u(p) - Ou(q)

a,be A;, HCA

Table 1.5: ACP= BPAé+ CF14+CM1-CM9+D1-D4

Similarly, we can prove for a prefix normal form z that there is a prefix normal form
u such that ACP - u = dx(2).
We can prove the general case by induction on the number of occurrences of ACP
operators, i.e., ||, L, |, 8y, using Proposition 1.2.11 and the first part of this proof.
a

1.4 Abstraction

1.4.1 A new Constant for the Silent Step

In practice, if we have an implementation and a specification of a process then we
want to be able to abstract from all the internal details of the implementation such
that it can be proven equivalent with the specification. Therefore we introduce a
constant, 7, called the silent step, that denotes internal activity. The silent step is
due to Milner ([Mil83],[Mil89}). '

For example, consider the process a -7 - b where 7 is supposed to be an internal
action, then we want to prove this process somehow to be equal to o - b, since these
processes equal with respect to their external actions. First we have to express

16 1. An Introduction to Process Algebra

formally that ¢ is an internal action, this is done by applying the 7; operator which
renames every action in / into the silent action 7, i.e. 7p3(a-4-b) = a-7-b. Next, we
use the features of the silent step 7 by which we can show a - 7 - b to be equal with
a - b. The operator 7; can be found in [BK85]. More general examples of renaming
operators can be found in CCS ([Mil80],[Mil89]) and CSP ([Hoa85]) as well.

The problem is to define an equivalence on transition systems (i.e. some bisim-
ulation) which takes the special character of the silent step into regard. In the
literature (among others) three different, but comparable, equivalences have been
introduced ([Mil80],[Mil83], [Mil89] and [GW91]).

The strictest one, branching bisimulation equivalence {[GW91]), allows to reduce
7 in 7 -p+ ¢ to p, if we do not disregard any options of g. This means that all
options of g must be offered by p as well, in other words, ¢ must be a summand of
p. A

Branching bisimulation equivalence itself is not a congruence. Therefore, an extra
condition, called rootedness, is imposed on the branching bisimulation relations.

We extend the alphabets A and As; by the constant 7 and obtain A, resp. As,.
The set of process terms over BPA, where the constants are taken from A;,, is
denoted by T(BPAST).

1.4.2 Semantics for the Silent Step

The three different bisimulation equivalences and their rooted versions which regard
the silent step are: branching bisimulation ((GW91]}, delay bisimulation [Mil83] and
weak bisimulation ([Mil80],[Mil89)]).

2y C 2y C 2y
U U U
2y C Spd C S
Each of these bisimulation equivalences allows that an a-transition on one side may

be mimicked by a a-transition possibly preceded or followed by silent steps on the
other side. This is shown in Figure 1.1; the formal definitions are given below.

Figure 1.1: Three bisimulations with 7

We have one predicate on T(BPAé7) U {4/} which is denoted by +/. /(p) holds
iff all maximal paths starting in p consist of 7’s only and end in /. Note that

1.4. Abstraction 17

/(). This predicate is very similar to the weak termination predicate of Aceto
and Hennessy [AH92].

In the rest of this section (Section 1.4) we let p, § and 2 range over T(BPA&T) U
{V/}. In the following p = p denotes that there is a path p —— ... -= p of
length zero or more.

Definition 1.4.1 R C T(BPAS7) x T(BPAST) is a branching bisimulation if when-
ever pRq then

1. If p == p and ~(\/(p)) then either a = 7 and PRq
or Az,q¢ such that q == z —*+ ¢, pRz and pRq".

2. Ifp — p and /(p) then 32,4 such that ¢ => z — § with \/(§) and pRz.
3. Respectively (1) and (2} with the role of p and ¢ interchanged.

Definition 1.4.2 R C T(BPAS7) x T(BPAST) is o delay bisimulation if whenever
pRyq then

L Ifp - p and ~(\/(p)) then either a = 7 and pRq
or 3z,¢ such that q = z — ¢ and PRq.

2. Ifp = p and +/(p) then 3z,§ such that ¢ => z — § with \/(§).
3. Respectively (1) and (2} with the role of p and q interchanged.

Definition 1.4.3 R C T'(BPAS7) x T(BPAS7) is a weak bisimulation if whenever
pRyg then

1. Ifp == p and ~(\/(p)) then either a = T and pRq
or 3z,2',¢ such that g == 2 — 2' = ¢ and pRq'.

2. Ifp % P and \/(p) then 32,2',§ such that ¢ => 2z - 2’ => § and
V(@)

3. Respectively (1) and (2) with the role of p and q interchanged.

We need the predicate 4/ to express that “r-stuttering” afterwards is allowed, as
we require that ¢ and @ - 7 are branching bisimilar. For x € {b,d,w} we define
*-bisimulation equivalence.

Definition 1.4.4 p = ¢ iff there is an x-bisimulation relating p and gq.

None of these equivalences is a congruence over T(BPA§7). We have to restrict
these equivalences to obtain congruences by imposing a rootedness condition on the
bisimulations.

Definition 1.4.5 A relation R is rooted w.r.t. p and q if pRq and if p'Rq’ implies
thatp =pe ¢ =q

18 1. An Introduction to Process Algebra

We obtain rooted x-bisimulation equivalences, denoted by p <.« ¢, by requiring that
there is a rooted *-bisimulation relating p and q. Now we have for each * € {b,d, w}
that: :

Proposition 1.4.6 <.« is a congruence

For a proof of this proposition we refer to [BW90] and [GW91].

1.4.3 Laws for abstraction

We have the following axiom systems. The laws T1-T3 are taken from Milner

T1 p-71 =1p B1
z-(r-(p+q)+p) = 2-(p+9q) B2

T2 7-p =T-p+p

T3 a-(7-p+4q) =a-(r-p+ag)+a-p

Table 1.6: The 7 laws

([Mil80],[Mil89]). B2 is Van Glabbeek & Weijland’s branching bisimulation law
([GW91]), note that A1-A3+A5+T1+T2 B2. Each rooted bisimulation equiva-
lence can be axiomatized completely by its corresponding theory.

Theorem 1.4.7 p,q € T(BPAéST)

pehq < BPA6+B1+B2kp=gq
2raqg < BPA6+T1+T2Fp=gq
P qg < BPA6+T1+T24+T3Fp=g¢g

In [GW91] the completeness is proven for branching bisimulation equivalence first.
From this result the other completeness results can be found easily.

The combination of 7 and ACP is not trivial. For ACP with 7 and branching
bisimulation the extension is completely straightforward and no extra axioms are
needed. However, for ACP with 7 and delay bisimulation one needs additional
axioms. A typical example is that

al(7-b) =a|(t-b+b) =a|(T-b) +alb

So, if one assumes that 7 cannot communicate, then one obtains a|(7 - b) = alb,
and thus an extra axiom p|(7 - ¢) = p|q is needed. Further details of this aspect of
abstraction do not fall within the scope of this introductary chapter, and we refer
the reader to [BW90] and [Gla87].

1.4. Abstraction . 19

1.4.4 Strongly Rootedness

In the timed case we will come across a stronger rootedness condition. There it
is required that a rooted bisimulation acts on the pair of root nodes as a strong
bisimulation.

Definition 1.4.8 A relation R is strongly rooted w.r.t. p and g if
1. pRq

2. p % pimplies 3§ withq —— § such that either /(p) and \/(4) or, —‘(\/(p})
~(v/(§)) and PRq’.

3. (2) with the role of p and g interchanged.

In this way we obtain strongly rooted branching bisimulation (2b), strongly
rooted delay bistmulation (erq) and strongly rooted weak bistmulation (Zsra).

For branching bisimulation strongly rootedness is not strictly stronger than root-
edness:

Proposition 1.4.9 p,q € T(BPAéT)

P £ q &= P E24hq

Proof. We prove only =, the other direction is trivial, Assume R is a rooted
branching bisimulation w.r.t. p and ¢. We prove that R is a strongly rooted branch-
ing bisimulation w.r.t. p and ¢ as well.

Consider the case where p — p and —{,/! (p)) then we have to show that there
is a § such that, =(/(§))i, ¢ —— § and p % 4.

It cannot be the case that ¢ = 7 and pRq since R is rooted w.r.t. (p, g), as fRyq
would imply that p = p. Hence there is 2 z and a § such that ¢ => z -2+ 4,
pRz and FR4. Since R is rooted w.rt. to (p,g) it follows from PRz that z = ¢,
thus ¢ —= §. Morover §R§ implies p £ §. It is left to the reader to prove that
=(v/(p)) and p £ ¢ imply that ~(,/(§)), and we are ready with this case.

The case where p —— $ and /() is left to the reader. a

This is certainly not the case for delay bisimulation, as is shown by the following
example:

Example 1.4.10 p 2,09 #= pSwdyq

Tra2g T a+a but 7.0 LaeT-ata

20 1. An Introduction to Process Algebra

1.5 Recursion

1.5.1 Introduction

Until now we have considered finite processes only. In order to express infinite
processes we introduce the standard concept of recursion. For example, the process
which executes the infinite sequence abab... can be expressed by

dgfa b X

d
Here, X is a so-called recursion variable that is bound by the declaration X =ef
a-b-X. A (recursive) specification F consists of a number of declarations of the

form X; ({—f p;. Here, p; is a process term, which is called the body of Xl, in which
recursion variables may occur.

For a recursion variable X, with declaration X = pyx, and process term p such
that p is (rooted bisimilar) bisimilar with px [p/X], we say that p is a solution of X
modulo (rooted bisimilar) bisimulation equivalence. For example, if we have

def(+b)- X

vy %@ vppv)

where y(a,b) = 8, then X is solution for ¥ modulo bisimulation equivalence, and
vice versa.
If we consider

7%

then every process term is a solution for Z.

In algebraic reasoning we often need the principle that certain specifications have
unique solutions. We introduce the notion of guarded declarations and specifications,
for example, the above declaration for Z is not guarded. We show that if p and ¢ are
both solutions for the same recursion variable and the same guarded specification,
then p and ¢ are equal as well. To show this, we first introduce the projection
operator m,, which restricts a process term p to its first n steps. Then, it is shown
that two process terms are equal if they are equal for all their finite projections.

1.5.2 Some Definitions

We assume a set RVar of recursion variables, with typical element X. If R is a
finite subset of RVar then we denote by T(R, BPAS7) the set of process terms over
BPA§S7 in which the recursion variables from R may occur as atomic constructs. If
p € T(BPAST)(= T'(8, BPA67)) then we call p a finite process term.

A specification E is a finite collection of declarations of the form

d d
{XB .:efpﬁs s X 8fpn}

1.5. Recursion 21

where p; € T({ Xy, ..., Xs.}, BPAS67) and i # j implies X; 5 X;. We denote the set
{Xo, ..., Xu} by rvar(E). For X € rvar(E) we denote the right hand side of the
declaration of X in E by p%. If X ¢ rvar(E) then p% denotes §.

We parameterize the action relations of our operational semantics by a specifi-
cation E. We have two additional action rules which are given in Table 1.7. We
obtain equivalences like =2F ©F and ©FE in the obvious way.

g Y T

pE pp pE ey
X 2opp X -Spv

Table 1.7: Action Rules for Recursion

Definition 1.5.1 (the notion of a solution)
p € T(rvar(E), BPAST) is a solution for X in E modulo £ if p 2F px[p/X].

‘We have similar definitions for £2; and 2.

In the literature, such as [BW90|, X occurs guarded in p if there is no trace
p = X. For example X occurs guardedine- X +bbutnotin7- X +bor X +0b.
For a specification the definition of guardedness is more involved as the declaration
of X in

7T-Y+a-X
7Y +b- X

is unguarded. In this section we define guardedness as a predicate within the theory.
If G®(p) is true, then p is guarded. We have an auxiliary predicate GE(p), where
R is a set of recursion variables, G¥(p) is defined by GZ(p). This suffix R contains
the recursion variables that are encountered during the “investigation™ of p. If a
recursion variable is encountered which occurs already in R then ff (false) is returned,
otherwise X is added to R and the investigation continues with the body of X. The
axioms for GE are given in Table 1.8. As an example of the use of this predicate we
give the derivation for Gf {X) = ff where F is the specification which contains the
above declarations for X and Y.

Example 1.5.2
Gy (X)
GEX}(T Y+a-X)

Gi(Y) A tt

I

22

GEX’Y}(T 'Y+b'X)
Gixyy(T-Y) A Gixyy(b-X)

Gy X}y}(}’) A Bt
bid

1. An Introduction to Process Algebra

G2
G3
G4
G5

G6
G7
G8
G9

B1
B2

Gl

o

N

i

tt
£t
tt

GZ(p)
Gz(p) N GE(a)
G%U{X} (Pfc)

Ggu{x}@’?(“p)
il

o
bij

i X € rvar(E)-R
otherwise
ifX ervar(E)—R
otherwise

R C RVar, o € T({tt, ff}, A)

Table 1.8: Axioms for the (boolean) guardedness function

The following proposition states that for any E, R and p it can be determined
whether G£(p) is tt or ff.

Proposition 1.5.3 For all E, R and p € T(RVar,BPAéT) there is a boolean ex-
pression «, either tt or ff, such that A4,5+ G1-9+B1, 2+ GE(p) =«

Proof. First we define a lexicographic ordering on pairs of natural numbers. That
is, {n,m) > (n',m') whenever » > n’ or n = n’ and m > m’. The proof uses
induction on (|rvar(E) — R/, size(p)).

We discuss only the case where p = p; - p; and we introduce an internal induction
on the size of p;.

o py = a. Immediate by G1.

¢ p; = 7. Immediate by G2.

¢ Dy = 21 + 23. Then

GE((m+2) - p) &

H@

GE(z1-p2 + 20 - p2)
GE(z1-p2) A GE(z - p2)

1.5. Recursion 23

and by induction we are ready.

® Dy =21 2.

GE((21-2) 1) B GE(21-(22-2))
and by {internal) induction we are ready.

o py = X. lf ¢ & roar(E)—R then we are immediately ready by G9. So, assume
z € rvar(E) — R then we can apply G8 and we obtain G7x;(p% - p2). Since
lrvar(E) — (RU{X}) < |rvar(E) — R| we can apply induction.

O

Definition 1.5.4 (Guardedness) The specification E is guarded if for all X €
rvar(E) A4,5+ G1-9+B1,2+ GE(X) = tt.

And, of course, if a specification E is guarded then all process terms over E are
guarded as well.

Proposition 1.5.5 Let E be o guarded specification and
p € T(rvar(E), BPAéT) then A4,5+ G199+ B1,2F GE(p) = tt.

Proof. Omitted. (]

1.5.3 Axioms for Recursion and Projection

We need an axiom, REC#, that “imports” the declarations of the specification E as
identities in the axiom system.
In [BW9O0] the Recursion Specification Principle is defined as

A recursive specification has at most one solution.

As we have discussed in the introduction of this section we know that this principle
does not hold in general. The Restricted Recursion Specification Principle considers
only guarded specifications [BK86]:

A guarded recursive specification has at most one solution.

In Table 1.9 we formulate the Restricted Recursion Specification Principleas a condi-
tional axiom RSPE, the G denotes that E is supposed to be a guarded specification;
the condition Ay ervar(z)Gg (Y') = tt is kept implicit in the premise of the axiom. The
conditional axiom RSPZ compares two vectors of process terms, = (p1, . .., p,) and
g = (q1,...,¢n). For two such vectors §,§ we abbreviate py = qi,...,p, == g, by
P =7q. If 2 is a process term and X = (Xy,...,X,) is a vector of recursion vari-
ables, then the simultaneous substitution of p; for X; in 2 is denoted by z{p/X].

24 1. An Introduction to Process Algebra

RECE X = p&

RSPZ 7 = pxlp/X), @ = pxl@/X] = P =1

Table 1.9: Additional axioms for recursion

IfZ = (21,...,%) i8 a vector of process terms, then the simultaneous substitu-
tion [p/X] on each z; is denoted by Z[p/X|. Finally, if X = (X;,...,X,) is a
vector of process variables, then we denote by py the vector of declaration bodies
(pXJ LR ,Px,,)'

We introduce the projection operator, though we define it a little different from
[BW90]. In [BWI0] 7 {a¢-p) = a, whereas we have my(a-p) = a-6. The reason is that
in [BW90] #y(p) is defined equal to ¢, that is the empty process which terminates
successfully immediately. Hence, they have derivations like mi(a - p) = a - mo(p) =
a- €= a. As we want to define 7,, but not ¢, we have decided to put wp{a) = 6 for
a € A. Since a = a -+ we put wp(7r) = 7. The axioms for the projection operator
are given in Table 1.10.

PR1 () = 6

PR2 mp41(a) =

PR3 m,(7) = T

PR4 mla-p) = 6

PR5 mufa-p) = a-m.(p)
PR6 mo(r-p) = 7 7a(p)
PR7 mi(p+q) = malp)+ mal)

a€ As, n>0

Table 1.10: Axioms for the projection operator

1.5.4 The Soundness of the Restricted Recursioﬁ Specifi-
cation Principle

In this subsection we show the soundness of RSPE for rooted branching bisimulation
equivalence. First we show that for any p, p is equal to some head normal form.
The proposition and lemmas of this subsection are borrowed from [BW90|, though
the proofs are different. The proofs below use induction and they are based on the
axiomatic definition of guardedness. o

1.5. Recursion ' 25

Proposition 1.5.6 Let E be o guarded specification and
p € T(rvar(E), BPAST), then there is a p’ such that p' is in head normal form and
BPAS+RECEFp=1yp

Proof. We introduce the function rvar®(p) that gives for each process term the
set of recursion variables which can be reached by passing 7’s only. We give some
of its axioms, the other axioms are left to the reader.

rvar®(r-p) = rvarf(p)

rvar®(X) = {X}Urvar®(pf)

rvar®(py - p3) = rvarf(p) Urvarf(p,) ifp = v/
rvarB{p-py) = rvarf(p) otherwise

Note that since p is guarded we can define by induction p == 4/ as a predicate.
‘We have

GE(X) =tt = X &rvar®(p%)

and thus G®(X) implies that rvar®(X) D rvar®(p%). We prove the proposition by
induction on (size(p),rvar®(p)). We discuss only the case where p = p; - p» and
p=X.

o p=p;-po. Let pi =~ ¥;a; - p; + 3, b; be the head normal form of p1, then
p=7p if we take p' ~ ¥, a; - (p; - p2) + Z; b; - po which is in head normal form
as well.

e p = X. Since rvarf(X) O rvarf(p%) we may assume that we have already
constructed a head normal form p' for p%. By RECE we obtain X = p§ = p/,
and we are ready.

0

Let us denote by Anf (p) the head normal form of p which is constructed by the
proof in the Lemma above. When G§(p) = it then we define the function {(p) which
corresponds with the length of the derivation of G§(p) = t¢. In order to do this we
have to fix a derivation. If p is in head normal form then exactly one of the axioms
(G1-7 is applicable; we put (7 - p) = 1 +1(p) and we do similarly for the other cases.
If p is not in head normal form then we take [(p) = 1 + I(hnf (p)). '

Lemma 1.5.7 If E is a guarded specification end p € T{rvar(E)},BPAS7) then
for each n there is a finite process term p/, without occurrences of the projection
operator, such thal

BPAS + REC¥ + PR1-7 + 7,(p) = 7'

Proof. We may assume for each p that G§(p) = tt and we use induction on
(n,1(p))-

First we assume that p is a head normal form and p ~ ¥, a; - p; + T, b;.

26 1. An Introduction to Process Algebra

Ta(Esai P+ Z50;) = Ximalas - pi) + X5 malby)
= Yima{ai p:) + ;b

Take an index %, if a; # 7 then we have 7, (a;p;) = a;-7a—1(p;) and by induction there
is a finite process term p for #,—1{p;). So, assume a; = 7, then 7,(7 - p;) = 7 7a{ps)
then since I(7 - p;) = 1 + I(p;) we know that we have constructed already a finite
process term p) for m,(p;).

If p is not in head normal form then we have m,(p) = m,(hnf (p)) and we can
apply induction, as I{p) = 1 + l(hnf (p)). a

Next, we have a proposition that says that if p is a solution for X in F modulo £,
then for every m the projection of p is bisimilar with the projection of the body of
X.

Lemma 1.5.8 Let E be a guarded specification with X € rvar(E) such that p is a
solution for X modulo 24, then for all n we have 7,(p) ﬁgb) ma(px).

Proof. Since p is a solution for X in E we have 7,(p) £ mn(px[p/X]). Consider
the derivation between 7,(px) and haf (m,(px)), note that the latter process term is
a finite process term, so X does not occur in it. For each step in this derivation for
which RECP X = py is used we apply p = px[p/X] instead. This latter equality is
sound, since p is a solution for X. This gives us a derivation between =,{px{p/X1)
and hnf (m,(px)) that is sound for ©24). Since also hnf (7, (px)) 2() Tn(px) and
we are ready. [

From this proposition we obtain the so-called Projection Lemma, that says that
if two process terms are both solutions for X in F modulo (rooted branching)
bisimulation equivalence, then for every projection p and g are (rooted branching)
bisimilar as well.

Lemina 1.5.9 (Projection Lemma) If E is a guarded specification with X €
rvar(E) such that both p, q € T(rvar(E), BPAST) are solutions for X modulo <y
then for all n we have m,(p)) Tn(Q).

Proof. Immediate from Lemma 1.5.8. ' (|

As in [BW90] we obtain RSPEZ by proving that two processes are equal if all there
finite projections are equal. This principle is known as the Approzimation Induction
Principle (AIP). This principle originates from [BK86]. Restricted versions of AIP
can be found in [BBK87] and [Gla87]. In [BW90] the definition and proof of [Gla87]
is given. We define AIP for a guarded specification; again the condition that F is
guarded, i.e. AYQ,,,,I,(E)GQ‘;: (Y) = tt is kept implicit in the premise of the axiom.

AIPG Vo m(p)=m() = p=g¢

1.5. Recursion 27

We restrict AIP to the setting with a guarded specification, as we can transfer only
the soundness proof of this restricted case to the timed case. The proof of [Gla87] is
too subtle to be transferred. The proof below is based on a part, the “easy” one, of
the proof of [G1a87]. Before proving the soundness of AIPZ we need a proposition
which states that in the context of a guarded specification F every p can reach only
finitely many p's by a sequence of T-transitions.

Proposition 1.5.10 If E is a guarded specification and
p € T(rvar(E),BPAS7) then the set {p'|p == p'} is finite.

Proof. By induction on {(p). o

Now we can prove the soundness of AIPZ for rooted branching bisimulation..

Theorem 1.5.11 (Soundness of AIPE) IfE is a guarded specification and p,q €
T(rvar(E), BPAST) then

Vo m(p) 25 mle) = pelg

Proof. We consider subterms p’ of p such that p’ can be reached from p in more
than zero transitions. Similarly we consider subterms ¢' of g. We define for each m
a relation ~,, on those subterms p’ and ¢’ such that

pomd "Tm(p!)] 'er(q')

and we put p’ ~ ¢ if for all m we have p’ ~,, ¢.
We show first that ~ is a branching bisimulation. Take p', ¢’ such that p’ ~ ¢'.

e Consider p" such that p' -2 p", where a € A, and put
So = {(5¢)|d=2 — ¢, P~z p' ~a 0}

Then we have

1. S 28, 25; O ... since u ~;y o implies u ~; o',
2. Foralln S, # @ since p’ ~piy ¢
3. For all n S, is finite, by Proposition 1.5.10.

Hence N, S, # @ and we can take a pair (2, ¢") € N, S, such that ¢ =
z AN qn’ pl ~ z and pn ~ qu'

o Consider p” such that ' ~~ " and put

So= {zg)|d=2z 5 ¢, P~z 0~ g}
U { (q*,q") ! ¢ =q, g, p' q*}

and continue analogously to the previous case.

28 1. An Introduction to Process Algebra
o Consider a transition p' —— ./, where a € A,. Then

PV =) — Y
= mld) >V =7 =Y

And by symmetry we have shown that ~ is indeed a branching bisimulation.

It is left to show that ~ U{(p, ¢)} is a branching bisimulation that is rooted w.r.t.
(,9).

Consider a transition p —— p’ (@ € A) then for n > 0 we have as well
Tn(p) —— Tp-1(p') and by the definition of (strongly) rootedness there is a ¢} such
that m,(¢) — ¢, and m,_1(p') 25 ¢l,. Since this holds for all n and since ¢ is
guarded, there must be a ¢ such that ¢ — ¢’ and ¢/, = 7,_,(¢'). Hence for all m
we have 7,,,(p) £ 1,.(¢'), and thus for all m p' ~,, ¢ and thus p’ ~ ¢’ as well.

The cases p —— p' and p —— / (a € A,) are left to the reader. o

And finally we can prove the soundness of RSPE.

Theorem 1.5.12 (Soundness of RSPZ) If E is a guarded spectfication with Xc
rvar(E) such that both 5,§ C T{rvar(E), BPAS7) are solutions for X in E modulo
S, then p 2F 7.

Proof. Direct by the Projection Lemma and the Soundness of AIPE. 0

Part 11
Prefix Integrated Real Time ACP

29

2

BPA with Time Stamps

2.1 Introduction

In this chapter we present the syntax, semantics and axiomatization of Baeten and
Bergstra's ([BB91]) BPApd, that is Basic Real Time Process Algebra with time
stamped actions. So, we will consider processes like a(1) (action a at time 1). The
treatment of processes like [,y a(v) (action a in between time 0 and time 1) is
postponed till Chapter 4.

In this thesis we restrict ourselves mainly to absolute time. That is, the time
stamps are interpreted from the start of the whole process. In absolute time a{2) -
b(1) is equal to a(2) - 6, as first the o action is executed at time 2 after which
the b action cannot be executed any more at time 1. Baeten and Bergstra have
shown as well how to deal with relative time in [BB91]. In relative time the time
stamps are interpreted to be the time distance with respect to the previous action,
where a process is supposed to start at time 0. Baeten and Bergstra write square
brackets for relative time. Thus the relative time term a[l] - 53] corresponds to
the absolute time term a(1) - b(4). In [BB92] and [BB93a] Baeten and Bergstra
deal with relative time using the initial ebstraction operator \/v.p(v}, which denotes
a function from time stamps to processes; the process a[l] - b[3] corresponds to
vv.a{v+1)-b(v+4). Most other papers on timed process algebras, such as the timed
CCS papers [MT90],]MT92],[Wan91a],[Che92] and the timed CSP paper [DS89], use
relative time. In Chapter 11 we discuss the relation between these papers and Real
Time ACP.

In Section 2.2 of this chapter we introduce the syntax of BPAp6; we introduce
the set of time stamped actions and we encounter a new operator, the instialization
operator denoted by ¢ > p. Furthermore, we introduce the ultimate delay, denoted
by U(p), which is, intuitively, the upper bound of points in time to which p can idle.

Section 2.3 presents Baeten and Bergstra’s original operational semantics (see
[BB91]) in which all, uncountably many, idle transitions are explicit in the transition
systems. Since these transition systems cannot be drawn, the behavior is given by so
called process diagrams. In Section 2.4 we discuss a timed bisimulation equivalence
and we give two different, but equivalent, characterizations.

31

32 2. BPA with Time Stamps

Section 2.5 we give the axiom system of BPApé, which will basically be an
extension of BPAG.

In Section 2.6 we give an alternative semantics, which is called the term seman-
tics, which does not have idle transitions in the transition systems. The advantage
is that the proof techniques which we have seen in Chapter 1 can be used again.
The idle behavior of a process term is expressed by a predicate, that corresponds
with the ultimate delay.

The last section defines a notion of basic terms, which becomes more advanced
than in the untimed case since all time stamps have to be taken into account. A
(timed) basic term is a process term with increasing time stamps. Using these basic
terms we are, finally, able to prove completeness of the axiom system BPApé w.r.t.
to bisimulation equivalence.

2.2 A Syntax with Time Stamped Actions

Let A be the set of actions, not containing the constants 6 and ¢. The symbol ¢ will
be used as label in the operational semantics. A; denotes AU {8}, similarly we have
A,. In the tables in which the action rules for the operational semantics are given,
we let a; range over A;, and we let a, range over A,.

As time domain we assume a set Time provided with an ordering <. In the
examples we assume that the natural numbers are part of Time, and that < has its
usual meaning. In case Time contains a least element, then we denote this element
by L.

The initialization operator, >, takes a t € Time and a process term; ¢t > p
denotes that part of p, which starts after ¢. All initial actions before or at ¢ are
blocked.

The set T(BPApd), with typical elements p, p1, ps, is defined in the following way,
where a € Ag,t € Time.

pi=alt) | pr+p|pi-p|t>p

2.3 A Semantics with Idle Transitions

The semantics of [BB91] assigns to every term in T(BPApé) a transition system in
which each state is a pair consisting of a process term and a point in time, and in
which each transition is labeled by a timed (non §) action. Within this semantics
each transition system concerns two relations

Step (T(BPApé) x Time)

- (A, x Time) x (T(BPApé) x Time)
Terminate C (T(BPApé) x Time)

X
x (A x Time)

These two relations are defined as the least relations satisfying the action rules given
in Table 2.1. We write

2.3. A Semantics with Idle Transitions 33

t<r t<r<s
a(r) i{r)
<a{r),t > = < as(s),t > =5 < ag(s),r >
a(r) ; a{r)
<pt>—><p,r> <pt>— /
<p+q,t>@><p',r> <g}+q,t>“—(’—>>\/
a(r) , a(r)
<pt>—><p,r> <pt>—3
a(r)] a7}
<g+pt>—2<p,r> <g+pt>—>
u{r) «(r)
<p,t>—s<pr> <p,t>-—><p,r>
<p+q,t>i<1}><p+q,r> <q+p,t>£)><q+p,r>
<pt>"Dcpr> <pt>2
<p~q,t>a~”@<p"q,r> <p'q,t>@><q,?‘>
a{r) ¢ a(r)
s<T <pt>—><p,r> s<r <pt>—> 4/
<8>>p,t>@><p’,'r> <8>>p,t>@>\/
t<r<s s<r <p,t>£)><p',r>

<s>>p,t>£z><s>>p,r> <s>>p,t>@}<p’,fr>

(a € A, a; € As, a, € A, 1,1, € Time)

Table 2.1: Action Rules for idle semantics for BPApé

a{r)

<pt>—><p,t'> for (<pt>{ar),<p,t'>) €Step
<p,t> o) 4 for {<pt>{a,1) € Terminate

We always have t' = r in Step. Moreover, < p,t > &), o ¢, 7 > implies that p is
the same process term as p and we call it an idle transition.

The term ¢(1) denotes the process that performs an action at time 1, after which
it is successfully terminated. .

From < a(1)}, ¢, > an idle transition is possible to a state of the form < a(1),¢; >
with ¢; < £; < 1. An idle transition is a transition that increases the time component
only, without the execution of an action. Furthermore, from each state < a{l),t >
a a(1)-transition to +/ is possible whenever t < 1. Since this semantics is based on
the notion of an idle transition we refer to this semantics as idle semantics. In a

34 2. BPA with Time Stamps

Figure 2.1: Process diagrams of the terms a(1) and (1)

later section we will introduce a semantics without these idle transitions.

The transition system of the term a{1) can be represented by the left-hand
process diagram given in Figure 2.1. A process diagram is simply a pictorial repre-
sentation of a transition system. It is not possible to make a picture of the transition
system itself, since it has uncountably many transitions. The intuition behind such
a process diagram is that the process can idle by going to a lower point without
crossing any line, whereas the execution of an action a at time r is reflected by
going to a dashed line at level r labeled with a. Only dashed lines may be crossed,
after landing on them.

In this thesis we do not assume that time starts at zero, as Baeten and Bergstra
do [BB91]. If time contains negative number as well, then the action a(-1) can be
executed in a state with time t < —1. Our process diagrams are open at the top,
which expresses that we do not assume any start time.

The process term §(1) can do nothing more then idling until 1. From each state
< 6(1),t > an idle transition to < §(1),%; > is possible, whenever ¢t < #; < 1.

The transition system of a(1) + b(2) can be represented by the process diagram
given in Figure 2.2. A state p (in Figure 2.2} is of the form < a{1) + b(2),t >
with 0 < t < 1. From g both a terminating a(1)-transition to 4/ and a terminating
b(2)-transition to 4/ are possible. However, from a state like » of the form < a1} +
b(2),t > with 1 < ¢t < 2 only a terminating b(2)-transition to 1/ is possible. Hence,
by idling from < a(1) + b(2),%6 > to < a(1) +5(2),#; > with 0 < fp < 1 < ¢ < 2
we have lost the option of executing the a(1)-summand. Thus one could say that
a choice has been made at time 1; after the choice has been made for 5(2) the
summand a(1) has become redundant.

The transition system of a(1) + §(1) has exactly the same transitions as the
transition system of e(1). The summand §(1) contributes only idle steps which are
contributed by the summand a(1) as well.

However if we consider a(1)+6(2), the §(2) summand contributes idle transitions
which are not contributed by a1}, since §(2) has idle transitions to points in time
between 1 and 2. The transition system of a(1) + 6(2) can be represented by the
process diagram on the right-hand side in Figure 2.2.

2.4. Timed Idle Bisimulation Equivalence 35

L L
1 T

Figure 2.2: Process diagrams of the terms a(1) + b(2) and a{1) + 6(2)

8 > p denotes the process that idles till s, after which it evolves in that part of
p that starts after s. So, if p has no initial actions later then s, then s >» p equals
5(s).

Proposition 2.3.1 a € A

<p,t>ﬂ>\/ = i<r
<pt><pt> = t<rAt=rAp=yp
<pt>ZDB<pt> = t<rAt=r

Proof. These statements can be proven by induction on the derivation.]

2.4 Timed Idle Bisimulation Equivalence

The definition of bisimulation for the timed case is analogous to the one of the
untimed case. We use the adjective idle to stress the fact that the underlying
transition systems contain idle steps.

Definition 2.4.1 (Timed Idle Bisimulation)
R C (T(BPApS) x Time)? is a timed idle bisimulation if whenever
<p,t>R<q,t> then

1. <p,t 20 < P, r > implies that there is o ¢’ such that

<q?t>°—(3<q,?ﬂ>aﬂd<p,?‘>?3<q,:r>.

2 <pt>24 \/ implies that < q,t > 25 \/
3. Respectively (1) and (2) with the role of p and ¢ interchanged.

Definition 2.4.2 (Timed Idle Bisimulation Equivalence)

<pt> £ <gq,t> iff there is a timed idle bisimulation R such that

<pt>R<qt>

36 2. BPA with Time Stamps

This definition induces an equivalence relation on process terms, by putting p =, ¢
ff vVt <p,t> 2 <gq,t>. The fact that = is a congruence over BPApé will be
discussed later.

In the rest of this thesis we will consider only real timme process algebra and we
allow ourselves not to write the adjective timed if we consider a timed bisimulation

or timed bisimulation. Similarly we will write ©* while we mean <.

2.5 The Axiom System BPApé

BPApé is the theory of Basic Real Time Process Algebra ([BB91]), see Table 2.2.
It consists of the axioms A1-5, which are the standard axioms of BPA, and timed
versions of A6 and A7 (see Table 1.3). The reformulated version of axiom A6
depends on the time information of the terms and therefore we add a p to its name.
On the other hand, A7 is changed as well, the § is changed into a 6(¢), this change
depends on the fact that the alphabet is now As x Time instead of A;. Hence, the
reformulation does not depend on any time information we do not add a p in this
case.

Most of the axioms occur already in [BB91], though Baeten and Bergstra use
different names. A6, does not occur in [BB91], Baeten and Bergstra use the following
two axioms instead

t<r 6(t)+6(r) 8(r)
a(t) +6(¢) alt)

The axiom RT0, originates from [BB91] as well, where it was formulated by a(0) =
6(0), as in that paper 0 is the least element of the time domain. We put this axiom
in brackets, as we need it only in case Time has a least element.

Furthermore we have some axioms stating the specific real-time properties and
defining the initialization operator.

Il

Example 2.5.1 Within BPApé we can prove:

5> (a(4) +b(6) + ¢(7) - d(8)) = b(6) +¢(7) - d(8)

5> (a(4) +5(3)) = 6(5)

6(1) +a(2) - 5(3) +6(3) - c(4) = a(2)-b(3) +6(3)

a(=1) +b(2) - (c(1) +¢(3)) +d(3) - €(2) = a(-1) +b(2) - ¢(3) +d(3) - 6(3)

The Ultimate Delay

Intuitively, the ultimate delay of p is the upper limit of points to which it can
idle. It is defined within the theory BPApél. The ultimate delay has already
been introduced by Baeten and Bergstra in [BB91]. In [MT90] Moller & Tofts have
introduced a similar construct, which they call the maximum delay.

Note that we can formulate axiom A6, as well by

A6, 1<U(p) p+6(r)=

2.6. A Term Semantics for BPApé 37

Al p+q = q+p :

A2 (p+g)+z = p+{g+2)

A3 p+p = P

Ad p+qg)-z = p2t+qg-z

A5 (p-g)-z = plg-2)

As, t>r alt)+6(r) = aft)

A7 6(t)-p = 6(t)

(RTO,) a(L) = é(L)

RT1, a(t)-p = a(t)-{t>p)
RT22 it<r > aofr) = ar)

RT2 t27 t>alr) = 6(f)

RT3, t>(p+q = E>p)+(t>q)
RT4, t>» (@9 = (E>p)-q

Ul Up+q) = max(U(p),U(q))
U2 Ulaft)) =t

U3 Ulp-q) = U(p)

(a € As, 1,t € Time)
Table 2.2: An axiom system for BPApé

2.6 A Term Semantics for BPApd

In Section 2.3 we have presented an operational semantics in which the transition
systems contain idle transitions. In that section each state was a pair of a process
term and a time stamp; an idle transition increased the time while the term remained
the same. We now define an operational semantics without idle transitions, which
induces the same bisimulation equivalence. The action rules are analogous to the
action rules of the operational semantics for untimed BPA, see Table 1.1. Since each
state will be process term the semantics is called the term semantics.

In untimed BPA#é,as given in Section 1.2.2, we encountered the following transi-
tion

a 4 and a-p —— p

In a real-time setting we have to take the time stamps into account. Consider the
term a(r) - p. After executing the a{r)-action only that part of p can be executed
which starts after r. We will have the following transitions:

38 2. BPA with Time Stamps

a(r) o), and afr)-p o), r>p

In Figure 2.3 the transition systems for the terms a{1) and a(1) + 5(2) are given,
together with the corresponding process diagrams.

a(l) 0 a(1}) + b(2)
au)l l J { a(1)
bl . 1 s 5(2)
2 e J

Figure 2.3: Process diagrams and transition systems for the terms a{1) and a(1) +
b(2)

However, we have to deal somehow with the idle behavior of the process terms,
as a{1) must be distinguished from a(1) + 6(2). Therefore, we introduce a predicate,
Uy(p), that corresponds with the idle semantics in the following way:

<p,r> LUA <pt> <= Ulp
In Table 2.3 the action rules of the term semantics are given. Every state is a process

term from T'(BPApé) and every transition is labeled by a timed atomic action a(r)
where a € A. The term semantics concerns two relations, and one predicate:

Step C T(BPApS) x (A x Time) x T(BPApS)
Terminate C T(BPApS) x (A x Time)
U T(BPApb6) x Time

N

We write:

p X2 p for (p,(a,7),p) € Step

@), —5 f for (p,{a,r)}) € Terminate
Ua(?) for (p,t)eU

The transition relations Step, Terminate and the predicate I/ are defined as the
least relations satisfying the action rules of Table 2.3.
We define a bisimulation on these transition systems.

Definition 2.6.1 (Term Bisimulation)
R C T(BPApS) x T{BPApS) is a bisimulation if whenever pRyq then -

a(r) a(r

1. p — p implies 3¢ such that ¢ — ¢ and PRy’

2.6. A Term Semantics for BPApé 39

a(r) t<r
a(r) — e
= Urlas(e)

p Xy p 2y Uy(p)

q—(-)e'r»q p-qﬂp'~q Up-q)

o) o) P ofr) o Us(p)
pra Dy prg By Ut

i p 23 p Ui(p)
g+p Ly g+p = () v Ulg+p)

t<r p—->\/ t<r p-i)u*p

t>>p G(") \/ t>>}? (")p

t<r Ui(p)
Ur »p) Ur > p)

(a € A, ,a; € A, T, t € Time)
Table 2.3: Action Rules for term semantics for BPApé

2. p —>), V/ implies ¢ = \/

3. Udp) implies Uy(q).

4. Respectively (1), (2} and (8) with the role of p and ¢ interchanged.
Bisimulation equivalence is now defined as follows:
Definition 2.6.2 p < ¢ if there exists ¢ bisimulation R relating p and q.
And we obtain directly the congruency of £
Theorem 2.6.3 {Congruency of =2) 2 i3 a congruence over BPApd

Proof. The action rules of Table 2.3 are in the path format ([BV93]). - O

In the rest of this section we discuss the correspondence to the idle semantics of
Section 2.3. The main difference between these two operational semantics is how the
course of time is recorded. Consider the following two applications of the respective
actions rules for sequential composition.

40 2. BPA with Time Stamps

< afl) p,?‘>—(-—)><p,1>

<(@1)-p)-gr>B<pgi1>

and

al)-p B 1>p

@1)-p)-g X 1>p)-q

We see in the latter case that the course of time is encoded in the prefix by an
application of the initialization operator., To relate the two semantics formally we
define the functions sirip and time on process terms, where we assume a symbol
—o0 & Time.

Definition 2.6.4

stripla(r)) = alr) time(e{r)) = —o0
striplp+4q)) = p+q timelp+gq) = —oo
strip(p-q) = strip(p)-q time(p-q) = time(p)
strip{r > p) = p time(r >p) = r

We state

Proposition 2.6.5 p € T(BPApS) such that tz’me(p) # —00.

A 28V = < strip(p), time(p) > =5 \/
o) P = < strip(p), time(p) > —(—)> < strip(p),r > Atzme(p) =7
< stmp(p)}tzme(p) > & v,r>

== dp” p —>) P Astrip(p”y =9 Atime(p”) =7

Proof. The statements can be proven by induction on the length of the derivation.

[
Furthermore we need one property of =.
Lemma 2.6.6 p,q € T(BPApS), r € Time
pg = r>»pir>gq
Proof. Omitted. 0

Using this proposition we can finally prove:
Lemma 2.6.7
p2g &> Vit <pit> 2 <gqt>

Proof.

2.6. A Term Semantics for BPApé 41

== p £ ¢ implies that Vt ¢t 3> p =2 ¢ > ¢. Hence, we can take R, such that
R, 1 t»pe=t>q Weconstruct R as follows

{{< strip(p)), time(p') >, < strip(¢’), time(q") >)|(V, ¢} € R}

<= Take R such that R} : < p,t> &' <g,t> andlet R be

{0, 9")[3t (< strip(p'), time(p') >, < strip(¢), time(q') >) € R;} U {(p,0)}

It is left to the reader to prove that the constructed relations are indeed bisimula-
tions.]

The following theorem says that the theory BPApé is sound. This means that if
BPApét p = ¢ then p £2 ¢. Since we have already shown that = is a congruence,
it is sufficient to prove for each axiom that if it proves two terms equal, then these
terms are bisimilar as well. o

Theorem 2.6.8 (Soundness of BPApS) p,q € T(BPApS)
BPApbFp=q = ptg

Proof. To prove that any of the axioms A1-A5 is sound w.r.t. &2, is similar as
proving that such an axiom is sound w.r.t. = (untimed bisimulation equivalence),
see Theorem 1.2.6. Below we discuss some of the other axioms of BPApé, the axioms
which are left out are left to the reader.

e A6, t > : a(t)+6(r) = a(t). Both process terms have only one transition,

namely “@0, V. Us(a(t) + 6(r)) implies that s < max(t,r) = ¢ and thus
U,(a(t)) as well. Similarly, we can show that U,(a(t)) implies U;(a(t) + 6(r)).

o AT is trivial since neither 6(¢) nor 6(¢) - p has any transitions and by definition
of U, we have U {8(t) - p) i U,(6(2))- o

e RT1, a(t)-p = a{t)-{t > p). By definition of U, we have U,{a(t) - p) iff
Us(a(t) - (t > p)). Both processes have only one a{t) transition to resp. ¢ > p
and ¢t 3> (t > p), hence, it is sufficient to prove that these latter two terms
are bisimilar.

— Consider a transition ¢ > p LA z, then by the right hand side action

rule for 3> we know that r > ¢ and by the same rule we obtain that
t> (t>»p X, as well. Similarly, £ > p M), +/ implies 7 > ¢ and

thus 3 (¢ > p) 25 / as well.

— Consider a transition ¢ 3> (¢ > p) X, z, thén by the right hand side
action rule for >» we know that ¢t > p), z as well. Similarly, if

b(r . >
t> (t>p) o, +/ then it must be the case that £ > p X,

42 2. BPA with Time Stamps

}

Finally, we have a proposition that states the correspondence between U(p) and
Ui(p).

Proposition 2.6.9 Let p € T(BPApé) and t € Time, then
Ulp) <= Ulp)>t

Proof. Omitted.]

2.7 Basic Terms and Completeness

In this section we prove that BPApé is complete. This means that if p &2 ¢, then
BPApS p = ¢. As in Chapter 1 we first show that each process term can be
reduced to a basic form.

2.7.1 Basic terms

We extend the definition of head normal forms and prefiz normal forms to BPApé.
Since these definitions are analogous to the untimed case, we refer the reader to
1.2.10. Next, we prove that any term can be reduced to a prefix normal form.

Proposition 2.7.1 For any p € T(BPApS) there is a prefix normal form o' such
that BPApS - p=1yp

Proof. First we show that for a prefix normal form z and r € Time there is a
prefix normal form u such that BPApé F r > z = u. We do this by induction on 2.
The following equations must be read from left to right, note that only in the last
case induction must be applied.

72> a(t) = aft) fr<t
7> alt) = 6{r) ifr>t
> (a(t) -2y = alt) 2 ifr<t
r»{a(t)-2) = &(r) ifr>t
r>(nty) = r>ntres

Take prefix normal forms z,2’, then we can show, as in the proof of Proposition

1.2.11, by induction on z, that there is a prefix normal form u such that BPApS +
z-Z =u

Finally, we prove the general case by induction on the number of occurrences of

> and the number of occurrences of general multiplications (see the proof of 1.2.11).

: O

We have the following proposition :

2.7. Basic Terms and Completeness 43

Proposition 2.7.2 Let p be a prefic normal form then
P 20, g o= ' =r>p Aalr) - p"Cop
PO = a()Cp
Proof, Omitted. O

In the untimed setting a basic term is a process term in prefix normal form, without
subterms of the form & -p. In the timed setting the definition of a basic term is more
involved. In the completeness proof we will use that for a basic term p:

p X sy =sr>poy

which means that a basic term must have ascending time stamps.

Definition 2.7.3 For p € T(BPAp8) and r € Time we define a boolean erpression
B(p,r) which reduces to either tt or ff. If p is a prefiz normal form

>oai(ri) i+ Y by(ty)

i€l jeJ
then

B(p,r) = _/\(?‘ <7 A Blpi, 1)) A /\J(T <t;)
3 j€

where N;eq o abbreviates it

Here, tt stands for true. B{p,r) = t¢ means that p is a basic term, with initial
actions later than r. We write p € B(r) if B(p,7)} = it and p € B if p € B(r) for
some 7, in which case we say that p is a basic term. The following proposition states
the required properties:

Proposition 2.7.4 pe Bac A
a(r)PCp = r>»peyp

Proof. It is sufficient to prove by induction on the size of ¢ that ¢ € B(r) implies
r > q =g, since a(r) - ¢’ C p implies p’ € B(r). o

Every term can be reduced a basic term.

Theorem 2.7.5 For each term p € T(BPApb) there is a basic term py such that
BPApS - p = p.

Proof. First, we prove by induction on the depth of z, where z is a prefix normal
form, that for any » there is a basic term z” such that BPApS - r » 2 = 27.
Assume

44 2. BPA with Time Stamps

2y ai(ri) - 24+ Y bi(ty)

iel jeJ

Take
I' = iel|ri>r A a;,#6}
J = {j€J|tj>T}

and we construct 2" such that
ZT 'ZZ ai(n) . Z{i + z bj(tj)
iel’ jeJ

Next, we construct for p a prefix normal form p’ such that BPApé - p = p' in
case Time does not contain a least element |. Otherwise, we construct a prefix
normal form p' such that BPApdF L > p=17p'.

Assume
p Zai(ﬁ) -p; + Z b;(t;)
i€l jed
Take

I' = {iel|a;#6}
and we construct p, such that

po = Y ai(ri) - Pt +) by(t5)

iel’ jeJ

where p;* is the basic term of 7; >> p; as we have constructed in the first part of the
proof. O

Basic terms occur already in [K1u91b] and [FK92], though in these papers deadlock

summands are removed from a basic term whenever possible; the process terms
a(2) + 6(1) and a(2) + §(2) are not basic, they are equal to the basic term a(2).
In this thesis we allow more terms to be basic, such that the definition and the
construction of basic terms can be simplified; the price to pay is that a few more
remarks are to be made in the completeness proof.

2.7.2 Completeness of BPApd
We can now prove that the theory BPApé is complete.

Theorem 2.7.6 (Completeness for BPApbs) Vp,q € T(BPApé)
peq —> BPApdFp=gq

Proof. Lemma 2.7.5 together with soundness implies that it is sufficient to consider
basic terms only.

2.7. Basic Terms and Completeness 45

» Consider an arbitrary summand a(r)-p' of p. Sincea # 6, p o), > ¢/, and

since p = ¢ there is ¢’ such that g 2, >qdandr>p 27> ¢. Sincep

and g are basic terms we have
Peresporsdad

and by induction we obtain p' = ¢'. Since a(r) - ¢ C ¢ we may conclude
a(r) - P’ Coraes g- Hence, 35; ai(t:) - pi Coraps ¢-

o Consider an arbitrary summand a(r) of p such that @ € A. Then p), Vv
and since p £2 q also ¢ «n) v/, from which we conclude a(r) L q.

Consider an arbitrary surnmand 6{r) of p. For any ¢ < r we have Uy(p), hence,
Ui(q) as well. By proposition 2.6.9 we have Vi < 7 that U(g) > t and thus
U(g) > r, and by A6, we obtain ¢ + §(r) = ¢. Thus, §(r) Cpps,s ¢- Hence,
Zj bj(sj) Coraps 4-

S0, p Capaps ¢ and by symmetry also ¢ Cppa,s p and thus BPApS Fp=g¢.]

46

2. BPA with Time Stamps

3

ACP with Time Stamps

3.1 Introduction

In this chapter we introduce parallelism and synchronization, resulting in the theory
ACPp from [BB91]. In Section 1.3 we have discussed ACP (without time) and we
have presented the parallel merge (||) and auxiliary operators such as the left merge
(1L}, communication merge (|) and encapsulation (g).

In our timed setting pllg can idle till r only if both p and ¢ are able to idle till
r. Similarly, p|lg can execute an action at r, which originates from p, only if ¢ is
able to idle till . Hence, the most important difference with the untimed case is the
phenomenon that in a parallel composition both components most proceed equally
in time. The same holds of course for the left merge and communication merge.

For the axiomatization of the left merge we introduce a new operator, the bounded
initialization, which will be the dual of the initialization operator. p > f, the
bounded initialization of p to ¢, denotes the process p whose initial behavior is
restricted to the time before £, so, all initial actions of p at or after ¢ are blocked.

In Section 3.2 we present the syntax for ACPp, and we discuss this bounded
initialization in more detail.

In Section 3.3 we give the action rules for the idle semantics. These action rules
rules are straightforward adapted versions of the action rules for untimed ACP.

In Section 3.4 we give the axiom system for ACPp. The requirement that both
components of a parallel composition have to proceed in time equally, is expressed
algebraically in the axioms for the left merge by applying the bounded initialization.

In Section 3.5 we give a term semantics for ACPp and we obtain the congruence
for bisimulation equivalence for free since the action rules are in the path format.

Finally, in Section 3.6 we prove the Elimination Theorem for ACPp, which says
that every term in ACPp can be reduced to a basic term (which is in BPApé). From
this theorem the completeness of ACPp follows directly from the completeness of
BPApé.

47

48 3. ACP with Time Stamps

3.2 The Syntax of ACPp

We discuss only those cases in which we have to take the time information into
account. In untimed ACP the term z = (a - p)ll g denotes the process in which the
left component a - p executes its first action a, after which z evolves to p||g. In the
real-time setting it is a bit more subtle. Consider the process (a(t) - p)lLg. The left
component a(t) - p can execute the action a at time ¢ only if ¢ is able to idle till ¢. If
not, then the whole process can idle only till the ultimate delay of ¢, because at that
time ¢ is not able to idle any further, while a(t) - p is. We will have the following
identities:

a(2)Ls3) = a(2)-5(3)
b(3)La(2) = 6(2)
In the first example the right component b(3) can wait until the left component
a{2) executes its first action. In the second example, however, we see that the right
component a(2) cannot wait long enough and a deadlock is the result.

The set T(ACPp), of terms over ACPp, is defined by the following BNF sentence,
where a € A, t € Time and H C A:

p o= a(t)|p+p|p-plt>p|p>t|plp|ply|plp| dulp)

We inherit the communication function v from Section 1.3. The communication
function is applied only on a pair of atomic action with the same time stamps, as it
does not make sense, according to [BB91], to have a communication between actions
at different points in time. Thus if v{a, b) = ¢ then

a(2)[b(2) = ¢(2)
a(D)p3) = (1)

Il

3.3 An Idle semantics for ACPp

In the Tables 3.1 and 3.2 the action rules for the idle semantics are given. Basically,
the only difference with the action rules for untimed ACP, as given in Table 1.4, is
that in a parallel composition one component can execute an action at time ¢ only if
the other component is able to idle till £. The action rules for the BPApé operators
can be found in Table 2.1, where p, ¢ now range over T(ACPp).

3.3. An Idle semantics for ACPp

<p,t>w<p’,r> <p,t>w2<p’,r>
<q,t>ﬂ><q,r> <q,t>ﬂ><q,r>
<pllg,t> 23 < pflg,r > <qlp,t > 28 < gllp',r >
a(r) a(r)
<pt>— <pt>—>
«(r) ¢(r)
<g,t>—<gq,7> <gt>—<q,7>
<p||q,t>M><q,r> <q||p,t>@><q,r>
~¥(a,b) = ¢ (e, b) =¢
<p,t>m<p’,r> <p,t>@>\/
"<q,t>i@><q’,r> <q,t>@>\/
<plag,t> 2% < g7 > < pllg,t > <>
v(a,b) =c v(e,b) =c¢
<pt>2 <pt>2
b(r) ’ b(r)]
<gt>—<q,7r> <gt>—<q,r>
<pllgt > < q\r > <qlpt> <q\r >
a¢é¢ H <p,t>5@>\/ a & H <p,t>a;(3<p',r>
<8H(p),t>ir)> Vv <8H(p),t>M<BH(p’),r>

(a,b,c€ A, a, € A, 7,t € Time, HC A)

Table 3.1: Action rules for idle semantics for || and 8y

50 3. ACP with Time Stamps

<p,t>ﬂ<p,r> <p,t>@><p,?’>
'<q,t>i£f—)»<q,r> <q,t>i(2><q,r>
<plgt>"D <plgr> <plt> L < plg,r >
a(r) / a{r)
<pt>—><p,r> <pt>—>
<q,t>ﬂ<q,r> <q,t>-@><q,7‘>
<pﬂq,t>@»<p'1|q,r> <pqu,t>iT)><q,r>
v(a,b) =c y(a,b) =c¢
<pt>D cpfr> <p,t>ﬂ\/
<q,t>m<q’,’r> <q,t>m\/
<plg,t > < plg,r > <plgt> v
1ab) =c 2o b)=c
<p,t>3(l)>\/ <p,t>@>\/
<q,t>3('-—)»<q‘,r> <q,t>@><q’,ﬂr>
<piq,t>~‘i@><q',r> <t1]p,t>@><q’,?">
r<s <p>>s,t>5@>\/ r<s <p,t>ﬂ<p’,r>
<p>>s,t>m\/ <p>>3,t>i(r—)><p',’r>
ur)
r<s <pt>-—><pr>
<p>>s,t>ﬂ><p>>s,r>

(a,b,c€ A, r,t,s € Time)

Table 3.2: Action rules for idle semantics for left merge, communication merge and
>

3.4. The Axiom System ACPp 51

3.4 The Axiom System ACPp

The axiom system for ACPp consists of BPApé together with the axioms of Table
3.3. The names of the axioms have been taken from untimed ACP. 7
The axioms of the left merge use the bounded initialization. The axiom

CM3 (a-p)lg=ca-(pllg)

can be reformulated by*

CM3, (a(t) - p)lLg = (a(t) > U(q)) - (vllg)
since

a(t) > Ulq)
means intuitively

a(t) only if q is able to idle till t, otherwise a deadlock
at the moment that g cannot idle any further.

The axioms RT6-9, that define the bounded initialization, are very similar to the
axioms RT2-4 (see Table 2.2) which define the initialization operator. Only the
conditions for the atomic cases have to be changed.

The axiom CM1 is exactly the same as in ACP. However, together with the
axioms for the left merge it does not result in arbitrary interleaving, since the time
stamps of the atomic actions determine the possible orderings. For example

a(2)|16(3) = a(2)L5(3) + b(3)La(2) + a(2)]5(3)
= a(2) - b(3) + 6(2) + 6(2)
= a{2) - b(3)

3.5 A Term Semantics for ACPp

Table 3.4 contains the rules for the Uy(p) predicate. Table 3.5 contains the action
rules for the term semantics for the new operators |, |, L and 8y. The action rules
for the operators of BPApd can be found in Table 2.3, where p, ¢ now range over
T(ACPp).

Note that we have in the idle semantics < p,t > A, < p/,r > iff we have in the
term semantics U, (p). Hence, the rule

1In [FK92] an axiomatization is given without introducing the bounded initialization. There we
had two axioms which correspond with CM3,, namely CM35, U(g) >t : (a(t)-p)lLg = a(t)- (pllg),
and CM35, U{q) <t : (aft) - p)lg = 6(U(g)). Similarly, we had two axioms which correspond
with CM2,. We have chosen to follow Baeten and Bergstra ({[BB91]) here since CM2, and CM3,
are more similar to resp. CM2 and CM3, and moreover, we will need the bounded initialization
later on anyway.

52

3. ACP with Time Stamps

CF1,
CF2,

CM1
CM2,
CM3,
CcM4
CMs,
CMS6,
cM7,
CMs
CM9

D1,

D3
D4

RT5¢
RT3}
RT6,
RT7,

a(r)[b(r) = 7(r)

r#t a(r)|bt) = §{min(r,t))
pllg = plg+qllp+plg
a(r)lLp = (al{r) > U(p))-p
(a(r) -p)lLg = {a(r) > U(q)) - (pllg)
(1 +p2)lg = pillg+pllq

(a(r) - p)Ib(t)
a(r)|(5(¢) - p)

(a(r)|b(1)) - p
(a(r)b(2)) - p

i

(a(r) -p)l(b() - @) = (a(r)|b(?)) - (pll@)
(pr + p2)lg = mlg+mlg
pl(+ ¢2) = plg +plge

ad H dg(a(r)) = afr)

a € H dy(alr)) = §(r)
du(p+q) = Oy(p) +9u(q)
oulp-q) = Oy(p) Oul9)

r<t afr)>t = ar)

r>t efr)>t = §(t)
(p+q)>t = pPttg>t
p-g)>t = (p>t)-q

(a,b€ A, r,t € Time, HC A)

Table 3.3: The axiom system ACPp

3.5. A Term Semantics for ACPp 53

<p,t>@><p’,r>
<q,t>ﬂ><q’,r>

<pllot> D < pllg,r>

where < ¢, > A, ¢',r > implies ¢ = ¢, is reformulated in the term semantics

by

p X2y Ug)

pla 22 g
Up) Uiag) Ui(p) Uilp) t<r
Upllg), Ui(pla), Uilple) U:(0u(p) Ulp>r)

{t,r € Time)

Table 3.4: Rules for U(p)

Lemma 3.5.1 (Correspondence between = and ')

p,geT(ACPp) peqg <= p2'yg
Proof. Omitted.]
We have
Theorem 3.5.2 (= is a congruence over ACPp)
Proof. The set of action rules is in the path format [BV93]. O
The following theorem can be proven by checking it for each axiom separately.
Theorem 3.5.3 {Soundness) p,q € T(ACPp)

ACPplp=q =3 peyg

Proof. Omitted. 0

54

3. ACP with Time Stamps

a(r)

p—>p’ U.(q)

pllg =%

Plr>q), dlp =

L r>qllr, plg

a(r)

— Pllir>q)

«“ \/ Uy(q)

plle 22 r>q,

QHP O rs>q, plg X2

rT>q

aflr b(r alr B(r
pgp’ g % ¢ yab)=c p O v ¢ yab)=c

pllg =2

Pld, pla < plle

ple <> v, ple <5V

alr b(r
p By ¢y '?(aﬁ)—c

iiq—-*q, dp 22 ¢,

), —5 + ad¢H
aH(p) LW

r<t po—), Vv

p>t 2

piq—w;, adp <5 ¢
p X0y ag¢H

ou(p) O 8y ()

r<t pgp

p>>tﬁ>p

(a,b,c€ A, r,t € Time, HC A)

Table 3.5: Action rules for ACPp

3.6 Elimination and Completeness

We can show that every process term can be reduced to a prefix normal form.

Theorem 3.6.1 (Elimination Theorem for ACPp)
For each term p € T(ACPp) there is a prefir normal form p' such that ACPp -

p=p

Proof.

The proof is similar to that of Theorem 1.3.1. So, first we show for any

two prefix normal forms z,2' and Q{j|, L, |}, that there is a prefix normal form u
such that ACPp F 2002 = w. This is proven by induction on depth(z + 2',0). For
the details of this induction we refer to the proof of 1.3.1. We have to adapt some

rules, some of the new versions are given below

3.6. Elimination and Completeness 55

a(mllz = afr) -2 fr<U()
a(r)ily = §(U()) ifr>U(()

a(r)|b(ry = ~(r)
alr)|b(t) = &(min(r,t)) ifr#t

The other rules for | and | are adapted analogously. The rule for pllg remains.
Finally we give the rules for p > ¢, where p is a prefix normal form:

a{ry >t = a(r) ifr<t
a(r) >t = §(t) fr>t
(Zg‘f‘?ﬁ;{)»t = Z>t+zn >t

{a(r) - z) >t = alr) 2z fr<t
{a{r) - 20) >t = 68(t) fr>t

The general case follows by induction to the mumber of oceurrences of ACPp oper-
ators. 1

And we have obtained that ACPp axiomatizes <2 completely.
Theorem 3.6.2 Vp,q € T(ACPp) pt2g =3 ACPplp=gq

Proof. Suppose that p 2 ¢g. According to Theorem 3.6.1 there are prefix normal
forms p', ¢’ such that ACPp F p = ' and ACPpF ¢ = ¢’. Then by the soundness
of ACPp w.r.t. = and by the transitivity of £2 we obtain p' &2 p &2 ¢ 2 ¢, and
since p', ¢’ € T(BPApé), for which we have already proven the completeness, we get
BPAps F p' = ¢. Hence, ACPpFp=g¢. O

56

3. ACP with Time Stamps

4

BPA with Prefixed Integration

4.1 Introduction

In Chapter 2 we have studied BPApé, in which all atomic actions are decorated
with a fixed time stamp. These time stamped processes do not allow us to express
processes that can execute actions within a certain time interval. Therefore, we
extend BPApé with the integral construct, which is the alternative composition over
a continuum of alternatives, it is introduced in real time process algebra by Baeten
& Bergstra [BB91]. They have process terms like f ¢ p, in which the free occurences
of the time variable » in p become bound, and where S is an arbitrary subset of the
reals. The process that can execute an action o in the interval [1,2] is expressed by
the process term

./ve[l,Z] a(v)

In this thesis we take a more restrictive view on integration than in [BB91], called
prefized integration. We require that every action has as time stamp a time variable
directly preceded by the binding integral. Furthermore, we do not have arbitrary
subsets of the reals, but subsets that can be described by boolean expressions over
time variables. E.g. we allow the following term

./1<v/\v<2(a(?}) ' /v+1£w/\w5v+2 b(w))

which is also denoted by

. b .
-/176(1,2) (a(v) wE[v+1,9+2) (w))

But we do not allow terms like

jz:>1(wretl a(w)) or, fv>l(a(2) +b(v)) or, /’u is prime a(v)

57

58 4. BPA with Prefixed Integration

The restriction to prefixed integration may seem a severe one. But we have not yet
encountered a realistic process for which prefixed integration was too restrictive. In
Chapter 12 on related work we show that all known other timed process algebras
fall within prefixed integration as well.

We introduce the notions of bounds, conditions and substitutions. A bound is a
linear expression over time variables, a condition is boolean expression over bounds,
and a substitution is a function that assigns bounds to time variables. For example,
2v + 1 > 3w is a condition, that is validated by the substitution [2/v|[1/w]. We
have process terms [, (a{v) - p), where o is a condition. The construct [, binds the
occurrences of the time variable v in p. This gives us the notion of free and bound
variables. In Section 4.2 we discuss the time domain in detail and we define the
syntax and interpretation of bounds and conditions.

In Section 4.3 we define the syntax for process terms with prefixed integration
in detail. o :

In Section 4.4 we give an operational semantics. First we give action rules for

terms without free occurrences of time variables. For o with var(a) C {v} there is

a transition f{, a(v)-p s plr/v] whenever o is validated by the substitution

{r/v] (that assigns 7 to v). In this way we obtain bisimulation equivalence for terms
without free time variables, we define bisimulation equivalence for terms with free
time variables indirectly by considering all possible substitutions. We give also
action rules for terms with free occurrences of time variables, since these action
rules are in the path format of Baeten and Verhoef bisimulation equivalence is a
congruence.

In Section 4.5 we give the axiom system: BPApél, and we discuss substitution
and a-conversion in detail.

Finally, in Section 4.6 we prove that BPApél axiomatizes completely bisim-
ulation equivalence for terms with free time variables. To obtain this result we
generalize the definition of a prefix normal form and we prove that any term can be
reduced to such a prefix normal form. Then we construct for each two terms p and
¢, possibly containing free time variables, a condition that characterizes for which
substitutions p and ¢ bisimulate.

4.2 The Time Domain, Bounds and Conditions

4.2.1 The Time Domain

In Section 2.2 we have introduced our time domain Time. Here, we introduce
several operators, by which more complex time expressions can be constructed.
We introduce the binary operators + and -, which will have their usual meaning.
Furthermore, we have the unary operators — and ~!; —¢ is the opposite of ¢, i.e.,
t+(—t) =0, and ¢! is the inverse of t, i.e., t-t7} = 1.

So, from now on we consider Time as a collection of constants, at least containing
0 and 1. Let & be the signature {. +., ..., —., .7}, Time}. We denote the set

4.2. The Time Domain, Bounds and Conditions 59

of terms over & by T(S).

On T(8) we assume a total ordering =<, that is a transitive and reflexive relation
that relates every two tg,%; € Time. Furthermore, we assume that =< is preserved
by addition by t € Time, and preserved by multiplication by positive ¢t € Time.

For technical reasons we split < in == and <. So, we assume that {; = ¢, iff
to < t; and t; X b, and that {5 < ¢, iff 5 < ¢; and &) A 4.

Let FLD be the theory of fields [CK90], as given in Table 4.1. We assume that
= gatisfies the axioms of FLD.

For convenience, we assume that for every ¢ € T'(S) there is a constant ¢, € Time
such that t = ¢;, and that for any two #5,%; € Time we have {5 = ¢;.

T+y = y+z
(o+z1)+y = o+ (21 +7Y)
T+0 = I
z+ (—z) = 0
z-(yot+y1) = T-wt+z U
To-y+z-y = (To+1)y
zo - (1Y) = (To-71)y
-y = y-z
1.z = T
0-z = 0

z#£0 z-z7! = 1
0! = 1

Table 4.1: FLD, the axioms of a field

4.2.2 Bounds

TVar denotes an infinite, countable set of time variables. The set Bound of bounds,

with typical element b, is defined by the following BNF sentence, where ¢t € 7(8)

and v € TVar. ‘
bu=t | v | bi+b | t-b

The set of variables in a bound b is denoted by var(b). If var(b) = 0, then b is a
time closed bound, otherwise it is a fime open bound.

4.2.3 Substitutions

By ¥ we denote the set of substifutions, that are mappings from TVar to Bound.
A typical substitution is denoted by o. We have a subset £¢ of (time closed)
substitutions:

60 4. BPA with Prefixed Integration

% = {0 | Vv € TVar : o(v) € Time}
o(b) denotes the bound that results from substituting o (%) for each occurrence of v

in b, for all v € var(h).

4.2.4 The syntax of conditions

A condition is a boolean expression over time variables; the atomic conditions are
of the form b < b and b = ¥ for b,5' € Bound The set of conditions is denoted by
Cond.

a U= tt|ﬁ|b1<b2|b1:b2|a1/\aﬂal V(XQI“U[

We denote the set of time variables of o by var(e).

4.2.5 The interpretation of a condition

fy =ty =ty Xt HhAh

e Eio=1 =t <ty

Fo Fa EB B o
Favp, EBVa EaAf E —(a)

= o(tt) Eolb)=o(b) Eolb) <o(b)

Fole=b) Folbo<b)

o) va(p) Fol@aaf) E-lole)
a(aVp) [o(anp) = o(~(a))

Table 4.2: Rules for validating time closed conditions

In Table 4.2 we define a predicate |= on time closed conditions. For each ¢ € £¢
and o we have var(o(a)) = 0, and thus either |= o(a) or & o(a). We denote the
subset of substitutions in ¢ that validate o by |a].

o] = {oe3z| Folw},

Moreover, for a time open a we take |= « if [o] = T, We take = o = B if [o] =[]
In Appendix A we show that b = b iff |= o(b == b'). This is shown by constructing
a pormal form for each bound, that is a bound of the form:

Ti-viF.. T+t (n20),

4.2. The Time Domain, Bounds and Conditions 61

where r; € Time\0 and all variables are different.
In that appendix we give also an axiom system CA for reasoning with conditions
that contain time variables. We have the following proposition:

Proposition 4.2.1 (Soundness and Completeness of CA)
Fa=8 <> CAFa=§
Proof. See Appendix A. 0

4.2.6 Intervals and conditions

We assume two symbols, —oo (minus infinity) and oo (infinity) not in Bound. We
denote BoundU {—o0, 00} by Bound_. . We have some notations that concern oo
and —oo.

b<oo ™ 4

w<b "2 g

Similarly we have —o0 < b, b < —oc¢, b = o0, and b = —oo as notations of either &t
or ff. The expression b < b’ abbreviates b < & Vb =V, and for by, by € Bound_ o
we have

v€<b0,bl> a"-b“b bh<vAv<bh

’Ue[bo,bl) a=bb b <vAv<bh
and similarly we have v € (bg, b1] and v € [by, b} as abbreviations for conditions.
Thus v € {b,o0) abbreviates b < v A v < oo, which in turn abbreviates the
condition & < v A tt, which can be reduced to the condition b < v.

4.2.7 Partitions and refinements

Two conditions oy and oy are non overlapping if [oy] N jo] = 0.

A finite collection of conditions {ey, ..., &, } is called non-overlapping if each pair
in the collection is non-overlapping. A collection of conditions {g;} is called a
refinement of a collection of conditions {e;} if it is non-overlapping, U;[8;] = U;[a)
and for each j there is an ¢ such that [3;] C [o]. A collection of conditions {F;} is
called a partition if it refines {#t}.

The following Refinement Lemma will play a crucial role in the main theorems,
like the decidability theorem for BPApél, as will be clear in the sequel. Note that
this lemma depends heavily on the syntax of the bounds, if we would allow bounds
like v?, then we do not have this lemma any more.

Lemma 4.2.2 (Refinement Lemma) Fiz a time variable v. For each condition a
there is an equivalent condition of the form v;(B;Av € V}), where var(8;)Uvar(V;) C
var(a)\{v} for all j.

62 4. BPA with Prefixed Integration

Proof. See Appendix A. O

This lemma is our motivation for having = and < in our language for conditions,
instead of <. If we have only < then an expression like v € V may abbreviate a
condition with negation, which we do not prefer.

4.2.8 Some more abbreviations

We introduce some more abbreviations for conditions, where b,bg, by, 52 €
Bound_ o o0-

o= 2 @)vp

(ot =0 2 5 <ty if (= {or) =)
by < p, if (= [and) =]
BE (o, by = B)

b < sup({bo, b)) 20 (oo, bi) #OAb<h

b> sup((bo, b)) 20 bo,br) =0V <b

Furthermore, V ~ V' abbreviates the condition that V and V' are overlapping or
adjacent intervals, such that V' U V" is an interval as well.

(oo, 1) £ 0

4.3 Terms with conditions

4.3.1 The ultimate delay

In Chapter 2 the ultimate delay of p, denoted by U{p), is a time stamp, that cor-
responds with the upperbound of points in time to which p can idle. For example
U(a(2) - c(4) + b(3)) = max(2, 3) = 3.

For terms in T%(BPApél) the ultimate delay can be a time stamp as well, for
example [e 9 a(v) - e(4) + fyeqa 3 b(w) = max(2,3) = 3. For terms in T(BPApéI),
that may contain free time variables, the most obvious generalization seems to be
to define the ultimate delay as a bound. However, it makes only sense to put
U(Joepopy P(v)) = by under the condition that by < b;. Since we do not allow
conditions in our bounds, we cannot define U(Joetboon) P(v)) properly as a bound.
For similar reasons, we can not define U(a :— p) as a proper bound.

A way out is to add a bound b as parameter to the ultimate delay, and to
identify Up(f 50,00y £(v)) with the expression b < sup((bo, b1)), that abbreviates the
condition {(bg, b1} # B A b < by. If for certain ¢ Uy(p) reduces to tt, then it means
that p can idle till £. In other words, we have introduced the predicate U;(p), that
we had already in the term semantics, in the calculus as well.

We extend the set Cond to Condy by allowing conditions of the form Uy(p) as
well, where b € Bound. We take var{U,(p)) = var(b) U fu{p). We have to introduce
two rules for validating this new condition. Note that the premise U(p) of the rule

4.4. An Operational Semantics for Time Open Terms 63

on the left hand side in Table 4.3 is the predicate as defined in the Tables 2.3 and
4.4.

Ulp) F Usw(o(p)
EUlp) [oUs(p)

Table 4.3: Additional rules for time closed U;(p)

4.3.2 The syntax for process terms

Let a € Condy, a € As and b € Bound. The set T(BPApéI) of (time open) process
terms with conditions is defined by

pu=aimp | [aw) | [@@)-p) [p+p | -2 | 5>p | o)

We abbreviate fﬁﬁ(v) by 6. In some cases we write [, (a{v))-p for [a(v) - p, in
order to stress that the term p is not in the scope of the integral [,.

4.3.3 Fyree time variables

We define inductively the collection fv(p) of time variables appearing in a process
term p that are not bound by an integral sign in p, the so-called free variables:

fo(Jo a(v)) = war(a) — {v}

fo(fola(v) -p)) = (var(e) U fo(p)) — {v}

fo(p+a) = fo(p) U fu(q)

fo(p-q) = fo(p)U fo(g)

fol(o{p)) = {w|3v v € fo(p) and w € var(c(v))}

A process term p with fu(p) = 0 is called a time-closed process term. We define
T*(BPApsl) = {pe T(BPApSL)| fu(p) =0}

Moreover, a term p with fv(p) # @ is a time open term.

4.4 An Operational Semantics for Time Open
Terms

4.4.1 A generalization of bisimulation equivalence

We provide any time closed process term in T9(BPApél) with a transition system.
Hence, we add some new action rules, see Table 4.4, that are applicable for time
closed terms only.

64 4. BPA with Prefixed Integration

The action rules for the +, - and > can be found in Table 2.3, in which case p, ¢
are supposed to range over T(BPApéI). The rules for substitution, that is for o(p)
where fv(o(p)) = 0, are given in Table 4.6.

/o Ealr/o] falr/o] t<r
L(a@)) X3 r>plrfo] fae) By UllP)
EFo »p Oy Fa pB V ka Up)
a:—)pgp' a:—»pﬂ)\/ U(a :— p)
(r,t € Time)

Table 4.4: Additional action rules for time closed [, P(v) and a :— p

o(bo) X a(b1) o(br) X a(bo)
o o by = by
o(bo) 2 o(br) a(b1) £ o(bo) o o
Fo bo < b E.,aVvp, kE,BVa
|=a (87 #a ,3 %o’ (6
;:a aAp ’:a _‘(a)
FEoou 0 Uswy(P)
o u(@) o Us(p)

b, by, by € Bound, o € £

Table 4.5: Rules for validating a condition in ¥-semantics

The action rules for the idle semantics are analogous, they are left to the reader.
We extend the definition of £ to terms of T(BPApéI) by parameterlzmg the equiv-
alence with a condition, see Definition 4.4.1.

Definition 4.4.1 (e-Bisimulation equivalence)

p,q € T(BPApI) peeqiff Vo €la]: o(p) 2 o(g)

We abbreviate p 2 g by p < q.

4.4. An Operational Semantics for Time Open Terms

= alr/v)(a = ofr/vl(a)
o([(a(0)-p) 2D r>alrflp) of,a) Xy
o(p) +olg) 2 ¢/ o(p) +olg) < v
op+q) 5 p olp+q) 5 v
o(p)-o(q) <2 ¢
o(p-q) <5 p
o(t) > o(p) <3 p o(b) > o(p) X
o(b > p) “-‘lp sb>p) Dy
o(a) = o(p) X p o(a) = olp) 22
o(aimp) By o(aimp) 2y
goup) 2O p coup) X v
o(uip) 23 ¢ o(up) 25
Eolr/ole) Et<r Us(o(p) + o(q))
Uo(f, P(v))) Ui(o(p+q))
Ui(o(@) - 0(a)) U(o(b) > o(p))
Uo(p-q)) Ui(a(b > p))
U(o(a) i a(p)) Uilo 0 u(p))
U,(o(a s P)) Ut(U(M(P)))
o uEL

Table 4.6: Action rules for substitution in term semantics

66 4. BPA with Prefixed Integration

Example 4.4.2

Loepp(a(v) - c(w + 1)) b= , Soep(a(v) - c(v +1))
Joewwy(@(V) * fueque c(w)) <<
fve(b e) (a(v) we(v,e) c(w)) + fve[e b') a‘() 6
Loep(@(V) - fucppy c(w)) =
Joepwy (@) - fueqwy c(w)) + a(b') - 6

4.4.2 Bisimulation equivalence is a congruence

We do not obtain immediately that © is a congruence over T(BPApél) as the
action rules for substitution, see Table 4.6, are not in the path format of Baeten
and Verhoef. Moreover, the action rules define = only on T(BPApél), and < over
T(BPApéI) is defined indirectly, see Definition 4.4.1.

In this section we give action rules in the path format for terms in T(BPApéI),
that may contain free occurrences of time variables. Each transition is labelled with
a timed action and a substitution ¢ € £ that determines the values for the free
time variables in the target state. This semantics is called X-semantics and its action
rules are given in Table 4.7. We have to redefine the predicate = as well, in Table
4.5 we define a predicate |=, for arbitrary conditions.

The resulting bisimulation equivalence is denoted by <.

Before we can prove that =% coincides with < we need some properties of both
equivalences.

Proposition 4.4.3 p € T%(BPApél), c € &

alp)=2p

Proof. By induction to the size of p. O

Corollary 4.4.4 p,q € T*(BPApéI), 0 € &
p2g & o(p) 20(g)

Proposition 4.4.5 p € T(BPApSl), o € ¢

o) Dy = p,p
a(r) alr
2 o) By = Xy

3 Ulolp) <<= U"()

Proof. By induction on the length of the derivation.]

Lemma 4.4.6 For p,q € T(BPApSI) we havep 2% ¢ <— p =¥ g
Proof.

4.4. An Operational Semantics for Time Open Terms

'=a['r/'u] (04) I:O'[T/'U] ()
a(r

0 @(V) - p =25 7> or/v|(p) Jao(v) =5

p X,y p—> a(T)a v
p+q23, p p+q, v

p 2, p p ¥,
q+p3, p q+p—>ax/

P23,y P, v

P8, E.b<r P8,V Eb<r
b>p Dy b>p T, v
Py Ea ‘.Y Eoa
aimp Dy aimp i,y
p Maou p’ a(T) oou \/

a(r) a(r)

w(p) =, p' (p) oV

'=0[r/v] (0‘) Est<r UU()

U7 (f, P(v)) Ut (p+49), U (g+p)
U (p) F.t<b Ui(p) kEob<t
U (p-9q) U7 (b > p) U?(b>> p)
U(p) Eso U (p)
U? (e :— p) U? (u(p))
ceXd pex

Table 4.7: Action rules for X-semantics

67

68

4. BPA with Prefixed Integration

e ==> Assume p =% g, we construct

R = {(@,¢)|V.¢d €TBPAWSI) p'= ¢}

and we show that RU {(p,¢q)}: p &% ¢.

alr)

First we discuss the pair (p, ¢). Consider p —3, p', then we have to show that

there is a ¢’ such that ¢ Q)g ¢ and p"Rq’. By Proposition 4.4.5, part 1, <=,

we ha\:e cr(p)) 7. Since we have o(p) =2 o(q), there is a ¢’ such that

o(g) &5 ¢ and p’ < ¢, and thus p'Rq’ as well.

The cases p —>‘,r +/ and U7 (p) are left to the reader.

8l

Next, we discuss a pair {p/,¢') € 'R Consxder P —>, p”, then by Proposition

4.4.5, part 1, <=, we have o(p') =5 p”. Since (p’,q) € R also p’ &2 ¢, and

since p', ¢’ are time closed we have o(;o’ } #2 o{q’) and thus there is a ¢” such

{r) o)

that o(g’) % ¢", from which we obtain that ¢ =5, ¢” and p"Rq".

The cases p/ MO v/ and U7 (p') are left to the reader.

<=, Assume p 2% ¢. Take
R = {(p.¢)|p,d €T*BPAp) p=” ¢}

and we show that R U {(a(p),c(g))} : o(p) £ o(q)

First we discuss the pair (o(p), o(g)). Consider o(p) —% ¢/, then we have to

alr),

show that there is a ¢’ such that o{¢) —5> ¢ and p'Ry¢’. By Proposition 4.4.5,

part 1, == we have p @)o 7, since p 2% g there is a ¢’ such that ¢ Q*(, q
and p' <% ¢, and thus p'Rq’ as well. By Proposition 4.4.5, part 1, <=, we

obtain o(gq) — o)

The cases o(p) —>), v/ and U(c(p) are left to the reader.

Next, we discuss a pair {¢,¢") € R. Consider p/ atr) p", then we have to
find a q” such that ¢' o), ¢" and (p”,¢") € R. Take an arbitrary o € £,
Since p’ is time closed we have p' = o(p'), and thus there is a p such that

a(p)), pr and p" © pll. From o(p) atr), Pl it follows that p/ -Qw o

—> ¢ and we are ready.

and since p’ < ¢ there is a ¢ such that ¢’ o ¢” and p! <% ¢’. From
q ma ¢ it follows that ¢(q") ot q(,, and since ¢ =2 o(¢’) there must be a
q" such that ¢' o) —> ¢" and ¢/ . From the previous part of this proof and
p¥ = ¢l ¢" = ¢! we obtain p” zE P, ¢" 2F ¢”. Finally, by p!l =¥ ¢ and
the transitivity of < we obtain p” =¥ ¢”, and thus p"Rq" and we are ready.

The cases o(p') =5 \/ and U{o(p') are left to the reader.

4.5. Reasoning with Time Open Terms 69

4.5 Reasoning with Time Open Terms

4.5.1 Substitution and a-conversion

In Table 4.8 we give the axioms for substitution. Consider the process term

/v>1 (a('U) ' [,v>9+1 é(u’))

and we assume that want to replace v by w, using a-conversion. Obviously, it is not
right to obtain

L>1(a(w}) [u>w+l b(w))

as both occurrences of the variables w in w > w+1 are bound by the same integral.
So, first we have to substitute a variable w' for the bound variable w, in order to
avoid the above clash of bindings.

This renaming of bound variables is forced by the condition on SU2 and SU3. The
associated derivation that uses the axioms SU1-6 is given in the following example:

Example 4.5.1
fv>l(a’(v)) fw>v+1 b(‘ll))}

B p (@)« [y b(w)[w/v])
[oo1(a(w) - [y b(w)w/v])
ng fw}l(a(w) : fw’>w+1 b(wf})

In the literature it is usual to deal with process terms modulo a-conversion and to
have the above renaming of bound variables implicit in the notion of substitution,
for details we refer to [Sto88]. a-conversion also implies that the objects of study
are not expressions, but congruence classes of process terms. Since we do not want
to deal with congruence classes, but with concrete process terms, we have decided
not to work modulo a~conversion.

4.5.2 The axiom system BPApél

The axiom system BPApéI is given in Table 4.9, the process terms left and right
from the =-symbol are arbitrary process terms from T{BPApSI). The axiom A6¢
says that all idle behavior from the neighbors of a d-summand can be subtracted
from that 6 summand. For example

70 4. BPA with Prefixed Integration

SUL o(p+q) = olp)+olo)
SU2 we fo(f,a(v)) v ¢&var(o(w))
o([,a(v)) = fou(e (V)

SU3 w € fu([,(a(v)-p)) @ ¢&var(o(w))
- o(fla(v) - p)) = [y (e(a(®) o\u(p))

8U4 o(d'(p)) = ood'(p)

SUs w ¢ fo(f,al(v))
fa &(?}) = fa{w/v] a(w)

SU6 w & fu(f(a(v) - p))
fa(a’(v) ' P)) = fa[w/v](a'(w) . p[’UJ/'U])

(a€ As, 0€L)

Table 4.8: Axioms for substitution

. foeqs a(v) + fogpss 6(w)

;—' Loeqs 0(0) + fogis siamwes) 6 (v)
= fv&(l,ﬁ) afv) + fﬁé(”)

foeqs a(v) +6

= fv€(1,5) a(v)

4.5.3 The Lifting Lemma

In the sequel we will need to lift conditions to the top of a process term. Hence, we
have following Lemma:

Lemma 4.5.2 (Lifting Lemma) If {a; Av € W;} is a partition and v & var{o;)U
var(W;), then

[@@) Sfeinvewiimph == [(a(v) - p3)

Acy AuEW;

Proof. The proof is based on the fact that if {v;} is a partition then
BPApSI b v i— Z{f}}; —zpt o= Bz
j)

and we have BPApéI-

4.5. Reasoning with Time Open Terms

Al p+gq = g+p

A2 p+qg)+= = p+(g+2)

A'SC fa P(”) -+ fﬂ P(’U) = fa\fﬁ P(’U)

A4 (p-{-q)'z = p‘-’cv"f"Q'Z

ASz o fulg) [u(a(v)) - ¢ = [o(a(v)-q)

Ast v fulg) [(a()-p)qg = [(a(v)-(p-9)
A6 p+ é = p

Abc v & fulp) p+ [, 6(v) = P+ farwoey (V)
AT J.(8(v) -) = [0

RT0c IgP() =6

RT1c Jula(v) - p) = [(a(v) (v>>p))
RT2¢ v g var(d) b> [, P(v) = Jonuss P(v) +6(b)
RT3¢ b>»(p+aq = b>p+(0>q
C1 a:— (p+q) = ai—ptai—g
C2 vgwar(a) a:— [y P(v) = Jars P(v)

C3 Jala(v) - p) = [o(a(v) a:—p)
Ule Uy(p+q) = Uy(p) vV Us(q)
U2¢ Us(Joev P(v)) = b<sup(V)

U3C Ub(OZ o> p) = aA Ub(p)

(a € As, b € Bound, P(v) is either of the form a(v) or a(v} - p)

Table 4.9: An axiom system for BPApd!

71

72 4. BPA with Prefixed Integration

Lla(v) - Z{os Ave W, i— p})
= Tilorasnvev;(0(v) - e Av e Wi - p;})
= S e (a(0) - e{aw v € W i i)
= i Janasnvew, (a(v)-
{Of,' AveVnNW, :— Z,-,{aif Av€E Wy > P{-‘}})
= Z-i fa/\a;/\vew.; (a(v) ‘ {0/,,; AvevVn Wi B pt})
= fa/\a,'/\vEW.; (a(v) - @)

4.6 Completeness and Decidability

Definition 4.6.1 (Prefix normal forms)
p is a prefiz normal form, if it is of the form

> [@) 2+ % [b)
2 * i 7
where a;, 8; € Cond, a; € A, b; € As; and each p; is a prefix normal form as well.

Proposition 4.6.2 For every p € T(BPApél) there is a p' in prefiz normal form
such that BPApSL+p =1y,

Proof. First we introduce some “intermediate” versions of prefix normal forrs.

A U-prefix normal form is a prefix normal form as above, with that respect,
that oy, 8; € Condy (they may still contain conditions of the form Uy(z)), and the
variables that are bound by different initial integrals may differ as well. Furthermore,
each p; is a U-prefix normal form as well.

A var-prefix normal form is a prefix normal form as above, with that respect,
that «;, 3; € Cond, though the variables that are bound by different initial integrals
may still differ. Furthermore, each p; is a var-prefix normal form as well.

The proof consists of three steps. First we show that every term can be reduced
to a U-prefix normal form. Next, we show how a U-prefix normal can be reduced to
a var-prefix normal form, by replacing all conditions of the form U,(2) by conditions
in Cond. Finally, we show that a var-prefix normal form can be reduced to a prefix
normal form.

s First we discuss the cases where the subterms are already in U-prefix normal
form.

1. We show that for any substitution ¢ and U-prefix normal form 2z there is
a U-prefix normal form u such that BPApSI | o(2) = u. The cases where
Z = 2y -+ 2 and 2 = o'(z) follow directly from the axioms SU1 and SU4
respectively and by induction.
Consider o(f, a(v)), we take a variable v’ such that Yw € fv([, a(v)) we
have v’ & o{w). Then

4.6. Completeness and Decidability 73

BPASI - o /a a(v)) % o /) 52 / ey ®)

Consider o(f, a(v) - z), again, we take a variable v such that Yw €
fo(f, a(v) - z) we have v' &€ o(w). By induction there is U-prefix normal
form zj such that BPApSI | z[v'/v] = 2, and we have

BPAp6I + a(f,a(v) - z)
s'gs a(fa[v’/v] a(v') - z[v'/v])
‘L"gi U(fcx[v’/u] a’(vl) ’ 26)

2 fa[v'/v](a) a(v') - o\w (29)

And we are ready by induction.

2. We show that for any b and U-prefix normal form z there is a U-prefix
normal ¢ such that BPApSI - b > 2z = u. We use induction to the size of
z. In case b > (20 + 21) we reduce it to b 3> 2+ b > 2 and by induction
we are ready.
In case b > [(a{v) - z), then we take a variable v’ ¢ var(h). By the
previous case there is a U-prefix normal form zj, such that BPApSI t+
2{v' /v] = 2{. Then, we have

BPApbI - b [(a(v) - z0)
S by @lv) - 20[0'/0))
Cag'e ! b>> Jro:['v‘[v} (6(,&,:) : z;))

RT=20 fa[c’jv}f\v’>b(a(?)’) . zi)) + 5(6)

Similarly, we can show that for any « and any U-prefix normal form z,
there is a U-prefix normal « such that BPApél - ¢ :— 2z = u.

3. We show that for any two U-prefix normal forms z and 2’ there is a U-
prefix normal form u such that BPApSI F 2-2’ = u. In case of (z5+2;)- 2/
we reduce it to zp - 2/ + 2, - 2/, and we are ready by induction.

Consider [,(a(v) - 20) - #/. Fix a variable ¢’ such that v/ ¢ fv{z). By
the first case there is a U-prefix normal form zj such that BPApsI +
29[/ [v] = 2. So, we have
BPApéI - J(a(v) - %) - 2
Sgs a[u'/u](() Z()[i)’/’l)})
case 1
= a[v'/v](a'() ZO) 4
A5t

= fa[v'/‘v](a’(vl) : (z(’l ' Z’)),
and by induction we are ready.
Finally, we can prove by induction on the number of occurrences of b > ..,

o :— .., general multiplications and substitutions, that p can be reduced to
U-prefix normal form.

74

4. BPA with Prefixed Integration

e Assume we have a U-prefix normal form p, then we have to show that p can

be reduced to a var-prefix normal form, that is, we have to show that all
occurrences of Uy(z) in p can be removed by conditions in .

For U-prefix normal forms we apply the usual definition of subterms; for a
U-prefix normal form g with [,y ,y(a(v) - ¢') T ¢, we do not consider z as a
subterm of g¢.

If Up(z) occurs in an initial integral of a certain subterm p’ of p, then we replace
z by its U-prefix normal form.

We define the U-depth of a U-prefix normal form g as the longest chain ¢ =
G — §1 — ...¢, such that for some b the condition Up{p;(1) oceurs in
the condition of an initial integral of a subterm of ¢;. We show by induction
on U-depth(p) the the U-prefix normal form p can be reduced to a var-prefix
normal form.

If U-depth(p) = 0, then p is already a var-prefix normal form, and we are
ready.

Let U-depth(p) = n > 0, then we have to show that any occurrence of U, (p)
in a subterm of p can be reduced to a condition o € Cond. Obviouslu U-
depth(p’) < n, and by induction we have already constructed a var-prefix
normal form p” for p'. Consider a summand f, P(v) of p". We can reduce this
summand to Y3; [, auev; P(v), where {a; A v € Vi} is the v-refinement of a.
Hence, we have Up(f, P(v)) = Vo4 A b < sup(V;). Since, Up(p") distributes
over all summands, we have shown that there is a condition o € Cond such
that Up(p") can be reduced to o, and we are ready.

Assume we have a var-prefix normal form p, then we have to show that p can
be reduced to a prefix normal form.

Let depth{p) = n, take n time variables, w1, ..., w,, that do not occur free in
p-
Consider a subterm p' of p, with depth(p') = k < n and let

P [@) p)+ 2 [60

Assume that we have replaced all variables at depth ¥’ < k already by wy.
‘We replace all »;’s and *v;’s by w; and by the choice of w; we can replace v; in
each p; by wg without any problems.

O

In the above proof we have used that the set of time variables is infinite. Assume
this set is finite; for example, that there are only two time variables, vy, v;. Then
we can not reduce ([, _, (a(v1)))[v1/v0], as we need at least one other time variable

V3.

4.6. Completeness and Decidability 75

By abuse of notation we.allow ourselves to omit the binding brackets of the
integrals in a prefix normal form. So, we write

() - b,
;Lump+;éx@
while we mean

;meym+z&@m.

Next, we construct for each pair p and ¢ a characterizing condition which determ.nes
under which substitutions p and ¢ bisimulate.

A term p in prefix normal form is also in interval prefiz normal form if fer every
summand [, P(v) the condition « is of the form v € V.

Lemma 4.6.3 (Characterizing condition lemma)
For all p,q € T(BPApSI} we can construct a condition o with vir(e) € fv(p+ ¢)
such that

Fola) <= o(p) 209

Proof. First we discuss the case where p and ¢ are p.e/ix normal forms, by
induction to the size on p-+g¢.
The first part of the proof presents the construction of the condition. In the
second part, we prove that this condition indeed has the required properties.
(Begin of construction.)
First construct a(p, q) for the case where p, ¢ are interval prefix normal forms. As-
sume

i

r
q

Yier fev, 0i(v) - pi + Ty fsev; b;(v)
Trek Juew, cx(v) - g + Tier fvewg di(v)

R

where a;, bj,ck, di € As

o Consider [,.y a(v)-p’ T p where a € A. We construct a condition ¢ such that
foev o(v) - P is a semantic summand of ¢. That is, if |= () and o([,cy a(v) -
?)), then there is a 2 such that o(q) 4 o and 2 & 2.

Take K(a) = {k € K|cx = a}. By induction there is for each & € K(a) a
condition oy such that

Eolar) < o))
By the Refinement Lemma (4.2.2) there is for o a refinement

{88 Nve ZE}

76 4. BPA with Prefixed Integration

where v & var{ff) U var(Z¢). We construct a partition {-,} which refines
each {Af}, by taking the cartesian product of all partitions {8F}. Hence, for
each y there is a index set X{k,y) such that « € X(k,y) implies v, = 5.
Furthermore, since {#f} is a partition we have that z,2" € X(k,y) implies
that 3¢ = B¢

The condition that f,cy a(v) - p’ is 2 summand of

> o, 800) 2

. keK(a)

is denoted by the following

P = \/ﬂw\VC U W U 20).
k€K (a) € X (ky)

Note that y # y' implies v, Ay = ff.

o Consider [,cy a(v) C p where a € A, then the condition x such that [. a(v)
is a semantic surnmand of ¢ is simply

x=vclyw
L(a)

We do the same for every syntactic summand of ¢. Let I(A) = {i € I|a; € A}, that
is the subset of I of non-é summands. Similarly we have J(4), K(A) and L(A}. Wi
have obtained:

foreach 1€ I{A):
foreach je& J(A): x;
for each k € K(A):

foreach le L{A): w

Finally we construct U~(p, ¢) as follows. Take an arbitrary time variable ¢ € fu{p+
g), then we will construct a condition in which v does not occur, and which is
equivalent with U, (p) & U,(q). :

As p has only summands of the form [,., P(v) we know that U,(p) reduces to
V; v < sup(V;). Furthermore, v < sup(V) reduces to V # @ A v < sup(V), which
can be reduced further to V' # @ Av < b, for some bound b € Bounds,. Hence, U,(p)
can be reduced further to V; V; # @ A v < b;. We can reduce this la.tter condition
to the form V; a; A v < b;, where {o;} is a partition such that o; A oy = ff, and
b € Bound_ oo Similarly, we can reduce U,(g) to V; §; Av < b,

We take the cartesian product of {&;} and {f;}, and we reduce U,(p) & U,(q)
to the condition

{V,’)j oz,r/\,BjAv < bt} L4 {V,‘,}' oz;f\ﬂj ANy < b;}

which can be further reduced to

4.6. Completeness and Decidability 77

Vi Oéi/\ﬁj/\bi=b_'1-

and we call this latter condition U~(p, q).
We collect all the conditions we have constructed so far, and we define a(p, ¢)
by

alp,)= A er A xin A wr N\ wAU-(pq)

i€l(d) jes(4) ke K{A) leL{A)

Next, suppose p or g are prefix normal forms, but not interval prefix normal
forms. Then we rewrite each summand N a(v) -z of p and ¢, to ;v i foey 2
where {v; A v € V} is the v-refinement of v. In this way we obtain for p a term
Sk Tk i— Dk, and we rewrite it further to ¥; o; :— p; such that {a;} is a partition.
We do the same for ¢, by which we obtain 3°; 8; :— ¢;. Finally, we take

a(p.g) =V oi A B Aolpi).

%55

(End of construction.)
It is now left to prove that for any o

Fole) = o) =g

We prove it for interval prefix normal forms. The case where p and ¢ are not both
in interval prefix normal forms is left to the reader.

= Take o such that k= o(a). We will show o(p) 2 o(q).

-

— Consider a transxtion a(p)) 4 then we will show that there is a

such that o(q) 0 o and z = 2.

For a(p) “) 4 there must be an index i such that a = a; and z
alr/vl(v > pi). Since o = ¢; we have |= o(p;).
Let ¢ be of the form
\/%, AVE U Wen U 2,
k€K(a) z€X(k,y)

as constructed above, then there is exactly one y such that = o(v,).
Moreover, there must be a £ € K{(e) and an © € X(k,y) such that
r € o(W N ZF) and thus

o 2 olro)(v > @)

Since

Folr/vi(6 A veZp)

we have by induction

78 4. BPA with Prefixed Integration

4 ’) = olr/o)(lr2l@)> p
~ Consider o(p) =5 \/ then there is a j such that a = b; and r € (V).
Since = cr(xj) and 7 e J(V’) there must be an mdex ! € L(a) and
r € o(W}) hence o(q) 5 \/

— Take a t such that U;(o(p)), then we have to show that Uy(o{q)).

Fix 4, j such that = o{a; A B;), where ¢, §; are taken from the construc-
tion of U~(p,q). Without proof we state that U(o(p)) f F t < o(b:)
and Uy(a(g)) iff = t < o(b). Since |= o(b; = b)), it follows that U,(o(g))
as well.

And by symmetry we are done.
<+ Take o such that o(p) = o(g) then we have to show that = o{«).

— Fix an i € L(a) then we show that |= o(y;). Takea =a;, V =V,,p' = p;
and ¢ = ;. Let @ be of the form :

\/(%AVC U Wen U 20)),

kEK(a) 2EX (k,y)

as constructed above, then there is exactly one y such that = o(vy,) and
it is left to prove that

o U Wen (1) 8o

kEK(a) zeX(ky)
Take an arbitrary v € o(V), then

o X slr/vl(v > p) (p)

Then since o(p) & o(g) there must be an index j such that

59 alr/olo > 45 ()

where b; = a and ofr/ov)(v > p') « ofr/v](v > ¢;). By induction
there is a characterizing condition a(p’, ¢;) such that |= o[r/v](a(p', ¢;)).
Consider the extra v-refinement of this condition a(p/, ¢;), let it be of the
form {f#f A v € Zf}, then there is exactly one index « such that

Eolr/vi(6 A veZ)
and since r € o{W;) we have
reo(We A Z7)

and as well

reo(U e U Z)).

K E€K(e) z€X(ky)

Since this holds for arbitrary r € o(V') we conclude

4.6. Completeness and Decidability 79

o U Wen () B a(

keK(a) €X{k,y)
— The proof that |= o(x;) is left to the reader.

— We have to show that = o(U-(p,q)). It is sufficient to show that |=
o(b; = b);), where i, j such that |= o(a; A B)).
Assume |= o(b; # b}). Then we can find a ¢ such that |= o(b;) <t < o (bf).
Hence, —U,(o(p)) and U(c(g)), but this contradicts o(p) = o(g), and we
are ready.

And by symmetry we are done.

If p or ¢ is not in prefix normal form, then we can develop an algorithm, based on
Proposition 4.6.2, that assigns to each process term 2z a prefix normal form zy,.
Note that Yo € ¢ we have 0(z2) = 0(2pns). We put a(p, q) = a&(Ppns, dpns), and we
are ready. O

Proposition 4.6.4
pe*q = CAl(a=alp,q)=tt
Proof.

pe*qg = Voelo a(p) = a(qg)
= [a] C [a(p, q)]
= [a= alp,q)] = =% = [¢]
= CAF (a=a(pq)) =1t

Corollary 4.6.5 (Decidability of =)
For each p,q € T(BPAp6I) and each condition o we can decide whether p = ¢

Proof. Construct the characterizing condition «(p,g) as is done in the proof of
the previous lemma. Then p £2* ¢ whenever (@ = a(p, q)) = tt. ad

We abbreviate BPApSl + a :— p =« :— q by BPApél,a b p=q.
Lemma 4.6.6 Vp,q € T(BPApéI)
BPApélL, a(p,q) Fp=4¢

Proof. We prove the theorem first for the case where p and q are interval prefix
normal forms. We abbreviate a(p, ¢) by o and we assume

P~ Yier fvew ai(v) - pi + Yies fvev; bj(”)

q ek Joew, x(v) - @ + Zier Joew; di(v)

R

80

4. BPA with Prefixed Integration

where a;, ¢, b;,d; € As.

¢ Consider [,y a(v)-p' E p. Then a = V, ¢, where ¢, denotes the condition

’)’y/\Vg U (Wkﬂ U Zf)

keK(a) zeX{(k,y)

such that v, Av € Zf = a(p',qx) = tt

Without proof we state

BPApSLV C LkJWk F / L POC §k_j / P(v)

vEW},

And the induction hypothesis, together with

AV E Zy = Ot(p’, (Ik) = tt,

says us that

BPApSL,y, Ave Z; ind ak

And we prove BPApél, ¢, -

[|= N

N

Joev a(v) - P

ke (a) LaeX(ky) Jvew,nzz (V) - 7

EkeK(a) Yeex(ey) Joewnzz 0(v) - {oy Av € Z :— P}
Ekex(a) Yeex(ky) fvewenzz a(v) - {oy Av € ZF — ‘Ik}
ZkEK(a) ZIGX(k,y) fveWanz a('v) G

EkeK(a) fvEWk a(v) - g

And thus BPApéL,a t [,y a(v)-p' Cq

e Consider [,y

BPApSL, o F / a@w)C 3 / i)

teL(a) VVEW,

And thus BPApSL, a - [oy a(v) C q.

o Consider [,¢y 6(v) C p.

Take Vi = A ,3_7' A max(l_)i,j)

proof of 4.6.3). Then we show 7;; F [,y C gq.

By construction, we have either CA+ v, ; = V =0) = tt or CA F oy g =V

@) = tt. In the first case we have

a(v) C p where a € A. Then o = V C Ujerq) W/ and we have

= max(¥'; ;), (see construction of U~(p, q) in the

4.6. Completeness and Decidability 81
- = = =6C
BPAp6I, 7, - f _,) [RO /ﬁa(@) §Cq

and in the second case we have

BPA«SI,-W—/ 5 c/ =/ c
POL Vi w€V (’U) T Jugmex(b; ;) v<max(¥; ;) e

Hence, BPApél,a - p C ¢ and by symmetry also BPApél, a I- ¢ C p from which we
obtain BPApSL,a b p=gq.

If p,q are not both in interval prefix normal forms, then we can rewrite them
into ;04 :— p; and ¥, 0; :— ¢; respectively, where {a;}, {f;} are partitions
and p;, g; are interval prefix normal forms. Then a(p,q) = Vi A 8; A a(p;, g;)
Since {a; A §;}:; is a partition it is sufficient to show that for each (¢,7) we have
BPApSL, ;A BjAe(p, q) b p = ¢ which reduces to BPApSL, oy A B Aapi, ;) F o = ¢
and we are ready.

If p or ¢ are not in prefix normal form then we have

a(p, q) GE—(Efa(ppn 1 Gpny) Moreover we have BPApSI & p = ppny and thus

BPApSL a(p, q) F P = Phns = Qhns = ¢

Theorem 4.6.7 (Completeness of BPApél) Vp, g € T(BPApSI)
pe*g == BPApflLatlp=g

Proof. In BPApSI we have CA + (8 = ') = tt and BPApSL, §' + z = 2/ imply
that BPApSL, B+ z = 2’ as well.

Hence, the completeness follows direct from CA & (o = a(p, ¢)) = tt and Lemma
4.6.6. O

Note, that the completeness and decidability of BPApél are heavily dependent
on the characterizing condition lemma {Lemma 4.6.3), that depends in turn on
the refinement lemma for conditions (Lemma 4.2.2). These lemmas motivate the
restriction to prefixed integration. Due to the restriction to subsets that can be
described by our conditions we can use our the refinement lemma. Due to the
restriction that every integral must preceed directly the action that uses the bound
variable we can construct characterizing lemmas.

82

4. BPA with Prefixed Integration

5

ACP with Prefixed Integration

5.1 Introduction

In this section we extend BPApSI with the operators ||,|, L and 8. The set
T(ACPpl) is defined by the following BNF sentence, where @ € As, o € Condy, b &
Bound and H C A.

p = [ye() | [a)-p)|p+p|p-plb>p|la:—pla(p)]
plip | plp | plp | Ou(p)

There is no need any more for the operator p > b, as will be discussed later. We
extend the definition of the set fv of free time variables, see Subsection 4.3.3, by
putting fv(pllg) = fv(plg) = fv(pllg) = fu(p) U fv{g) and fv(3x(p)) = fu(p).

The action rules will not be given in this chapter, they can be gathered from
the Tables 2.3, 3.5, 4.6, 4.4. and Table 4.6. The action rules for substitution for a
term semantics for the additional ACPpl operators, such as given in Table 4.6 for
BPApd, are left to the reader.

We inherit the definition of bisimulation equivalence for time open process terms
from Chapter 4, Definition 4.4.1. It is left to the reader to prove that bisimulation
equivalence for time open terms is a congruence for ACPpl. As in the previous
chapter one has to give a Y-semantics in the path format of Baeten and Verhoef,
and one has to prove that the bisimulation equivalence of this X-semantics coincides
with the bisimulation equivalence of the term semantics.

5.2 The Axiom System ACPpl

‘We obtain the axiom system ACPpl by adding the axioms of Table 5.1 to the axiom
system BPApél, where p, g range over T(ACPpI). We have the following theorem.

Theorem 5.2.1 p,q € T(ACPpI)

ACPplbp=q = ptgq

83

84

5. ACP with Prefixed Integration

CFr foa()fsb(v) = [ors7(@,B)(¥) + Jy (a8 6(v)
CM1 »plig = pllg+qllp+plg
CM2; v ¢ fu(p)
Jaa(v)lp = forv (@) D) + Jp, (ap 6(V)
CM3; v € fulg)
lua() -p)lg = [oa, (@) (Pll9) + Ju,(aq ()

CM4 (p1 +p)lg = pllg+pllg
CM5; [, (a(v) - p)|(J5 b(v))

= Jans(7(a,8) D) + fu (0 8(v)
CM6; [, a(v)| f5(b(v) - p)

= [ons(7(a,b) - p) + Jv(a) 8(v}
CM7; [, (a(v) - p)| f5(b(v) - 9)

= Juns(¥ (@ 0)() - (0ll0)) + Ju,(ap 6(®)

CM8 (p1+m)lg = pilg+p2lg
CM9 pl(es +a2) = plg1 +plge
D1} Ou(J,a(v)) = [,a(v) a¢ H
D1} Bu(f(a(v)-p)) = [(a(v)-Ou(p)) a ¢ H
D2} 9u(f,a(v)) = [, 6(v) acH
D2} Ou(f(a(v) - p)) = [,6(v) a€H
D3 dulp+gq) = 9u(p) + Ou(q)

((1,, be Aé)

Table 5.1: Additional axioms for ACPpl

5.2. The Axiom System ACPpl 85
Proof. Omitted. O

We use the following abbreviations.

Uy(e) Dy (1, 8(0))

Sy 8(v) abb Tvu(ayav (s 6(v)

Jv(op) 6(v) abb Jvu(@)av. () 8(v)
Note that U,(«) = U, ([, P(v}) for arbitrary P(v), in other words, U,(«) expresses
the idle behavior of an arbitrary process term [, P(v). Furthermore U,{c, §) ex-
presses the idle behavior of terms like f, P(v)|| [P(v), f, P(v)| f; P(v) and
I, P@)L J; P(v).

The axioms CF;, CM2,3; and CM5;-7; have a f; (,6(v) summand on their
righthand side for the case that the other summand on the righthand side is of the
form f ﬁP(v). For in this case we have to guarantee that the process terms left and
right from the =-sign have the same idle behavior.

Consider the axiom CFr, and take p = [, alv) and g = [, b{v),s0 a = (v £ 1)
and 8 = (v = 2). Obviously @ A B = ff, which means that no communication is
possible. Hence, plg can not execute any actions, and since plg is able to idle until 1,
the axiom CF; must imply plg = 6(1). Hence, we have to add a § summand on the
right hand side of CF; that has the same idle behavior as plg. We denote this par-
ticular §-summand by [y, (y<1 =2 6(v), that abbreviates f;; f, o, SONAT S, _, 8) 8(v),

that reduces t0 f,«; p< 6(v), that reduces further to [, 8(v). Finally, we note that
f,<1 6(v) indeed equals §(1). N

In ACPp we need the auxiliary operator p >> t to axiomatize the left. merge, see
Table 3.3:

CM2, a{r)lp = (a(r)> U(p))-p,

since the a(r) is enabled only in case U(p) > r. In the context of prefixed integration
we can easily express this phenomenon in the condition of the integral, as is done
in the axiom CM2;. Hence, there is no need for the operator p >» b in ACPpl. For
example, take po = [,c5a(v), ;1 = [,55a(v) and ¢ = b(3). Then U,(5(3)) = (v < 3).
The expressions fy,(u<s,q) 6(v) and [y, (55,4 6(v) both denote processes that equal

fv§3 8(v).

pollg plg

Jocs a(v) L5(3) Jos5a(v)LE(3)

Jocsrvea(@(v) - B(3)) + [<5 6(v) Lossavcs(a(v) - 5(3)) + [,<3 6(v)
Jocs(a(v} - B(3)) + [,<36(v) Jgla(v) - 6(3)) + f,<3 6(v)

= [ficsla(v) - b(3)) 6+ foe3 6(v)

fv§3 6(v)

I
]

o
T

86 5. ACP with Prefixed Integration

5.3 Elimination and Completeness

Theorem 5.3.1 (Elimination Theorem for ACP)
Vp € T(ACPpl) 3p’ where p' is in prefiz normal form and ACP - p = p'

Proof. The proof is a combination of the proof of Theorem 1.3.1 (the Elimination
Theorem for ACP) and that of Theorem 4.6.2 (every term in BPApél can be reduced
to a prefix normal form).

In the proof of Theorem 4.6.2 we defined the auxiliary notion of an U-prefixed
normal form, that is a term that is “almost” in normal form, in the sense that
conditions of the form Uy(p) are still allowed and summands may still bind different
variables.

Following the proof of Theorem 4.6.2 it is sufficient to show that for any two
U-prefix normal forms z and 2’ and 0 € {||, L, |} there is a U-prefix normal form u
such that ACPp 202 = u. As usual we show this by induction; as norm for the
induction we take depth{z + 2',0) as in the proof of Theorem 1.3.1. Also we can
show by induction on z, where z is a U-prefix normal form, that there is a U-prefix
normal form u such that ACPp b 9g4(2} = u, this case is left to the reader.

There is only one complication with respect to the previous elimination proofs;
in some cases we have to take “fresh” variables in some of the components.

fpa)llz =
fa[v’/v]/\U,,{z‘}(a’(v’) <2} + fUc:(a,z‘) 6(v)
for some o' € fv(f, a(v) + 2')

J(av)-)l =
Japr pointr ey (@) - (20l /0]112) + fy, (a2 (V)
for some v' & fv([, (a{v) - 2) + 2')

(20 + 2Lz = zll2' 4+ L7

(m+ =)l = =zl +ald
A +2) = zzm+2g

fa a‘(”ﬂ)i fﬂ b('vl)
= fa[v/vo]/\ﬁ[ﬁfﬂlf (e, b)(v) + '(Uv(a[”/’lO]»g{”/”lD 8(v)
for some v & fu(f,a(vo) + [5b(v1))

Jola(vo) - 20)| f5 b(v1)
= Jafomnsturen) (Y(0,)(©) - 20[v/v0]) + Ju, (afe/uo), 10 /01)) 6 (2)
for some v & fo(/,(a(vo) - 20) + f5 b(v1))

5.3. FElimination and Completeness 87

Ja0(vo)| f5(b(v1) - 25)
= fa[u/vo]/\ﬁ[vm](’Y(aa b)(v) - zglv/w]) + fUu(a[v/vo],ﬂ[v/vl]) 6(v)
for some v & fu(f, a(vo) + [5(b(v1) - 25))

Jala(vo) - 20)] f5(b(v1) - 2g)
= fa[v/vg]Aﬂ[v[vl](fy(a? b)(?}) ' {ZO[D/QOM’@{’){U/@]D)

+ fU”(a[v/vg])ﬁiv/m]) 5('0)
for some v & fu([(a(vo) - z0) + f;z(é(?}l))]

zl|e = 2l + 22+ 2]d

Finally, we have the completeness for ACPpl.
Theorem 5.3.2 (Completeness for ACPpl) p,¢ € T(ACPpI)
pfg = ACPplatlp=g

Proof. In the proof of the completeness for ACPp (see Theorem 3.6.2) we have
shown how the completeness follows from the Elimination Theorem. |

88

5. ACP with Prefixed Integration

Part 111

The Silent Step in Time

89

6

Branching Bisimulation and Time

6.1 Introduction

In this chapter we propose a notion of branching bisimulation for Real Time Process
Algebra. An earlier presentation of the contents of this chapter can be found in
[K1u92].

In Section 6.2 we argue that when we deal with time, a 7-transition can be
matched with an idle transition, and vice versa. We will show this by various
examples.

In Section 6.3 we give the formal definitions of branching bisimulation in the
context of the idle semantics. We show as well that we need a rooted version to
obtain a congruence.

In Section 6.4 we present a law for branching bisimulation equivalence over
BPApéT, and we encounter various conditions on the time stamps involved. This
law allows us to remove at 7, if it does not determine a moment of choice.

In Section 6.5 we generalize this law to the setting of prefixed integration and
we obtain a law that corresponds closely with the branching law B2 of Section 1.4.
We encounter non trivial conditions on the bounds involved.

We discuss in Section 6.6 the embedding of BPAé7 in BPApérl.

In Section 6.7 we develop a definition of a term branching bisimulation by chang-
ing the definition of idle branching bisimulation step by step. Finally, in Section 6.8
we show that rooted branching bisimulation equivalence is a congruence.

The proof that the law for branching bisimulation equivalence with integration
is complete, is postponed to Chapter 7. We weaken the definition of branching
bisimulation to delay and even further to weak bisimulation in Chapter 8. Branching
bisimulation in the context of guarded recursion is discussed in Chapter 9, and in
Chapter 10 we verify a protocol using rooted branching bisimulation equivalence. In
Chapter 11 we define branching bisimulation in the context of a two phase semantics,
that is a semantics in which consecutive actions at the same point in time are
allowed. We show that in such a semantics the notion of branching bisimulation
and the resulting equivalence differs from the one in the present chapter. In the
last chapter of this thesis, Chapter 12, we relate our work on abstraction with other

91

92 6. Branching Bisimulation and Time

papers, that discuss weak bisimulation only.

6.2 Some Examples

In untimed branching bisimulation it is allowed that

a T-transition on one side may be matched
with no transition at all at the other side.

if this 7-transition does not determine a choice. Take for example:

Y ————.

5]
I

B e ——

4 / b
d /

In our real time context each transition increases the course of time and we relate
states with the same time value only. A statement analogous to the above one is

a (timed) v-transition on one side may be matched
with an idling at the other side.

In the sequel we will give examples of (timed) branching bisimilar process terms by
giving their process diagrams and showing the crucial points in time at which the
underlying transitions systems can be related by a branching bisimulation.

Example 6.2.1 p = a{l) - 7(2) - b(3) is branching bisimilar with ¢ = a(1) - 5(3):

T
el I S

0
_______ I I T
a
......... f... 1 2 \'a
T
¥ 13 .Y
T
.4 Lo_ ...

6.3. Branching Bisimulation in BPApé 93

Next, we give some examples of process terms which are distinguished by branching
bisimulation.

Example 6.2.3 a(1)-(7(2) - (b(3) +¢(3)) +¢c(3)) is distinguished from a(1)- (b(3) +
c(3)), since in the first process term it may be the case that at 2 it is determined

that the ¢ will be executed ot 8, while in the latier process term the choice between
the b and the ¢ at 3 can not be done earlier than 3.

0

In timed branching bisimulation no “r-stuttering” is allowed afterwards; we en-
force that two bisimilar process terms terminate at the same points in time.

Example 6.2.4 a(1) differs from o(1) - 7(2) as the a(1) terminates succesfully ot 1
and a(1) - 7(2) at 2. Moreover, a(1) - b{(2) is certainly not branching bisimilar with
a(1) - 7(2) - b(2) since the laiter process term has a deadlock.

6.3 Branching Bisimulation in BPApé

The examples have shown us that the idle steps play a vital role when we deal with
branching bisimulation. Therefore, we will define branching bisimulation equivalence
in the context of the idle semantics first.

Before giving the definition of branching bisimulation for these transition systems
we have to define < p, ¢t > == < ¢,r >, which means that < p,t > can evolve into
< g¢,t > by idle transitions and 7-transitions only. In the rest of this chapter x and
' denote arbitrary elements of {r,¢}.

Definition 6.3.1
= C ((T%(BPApSTI) x Time) x Time x (T (BPApérI) x Time)
is defined as the least relation satisfying:
e <pt>=><pi>
s if<pit>=><gr>and<gr> @<q',r’ > then
<pt>=<g,r>

Remember from the definition of (untimed) branching bisimulation that a transition
p — p' (where p £ ¢) can be matched with a series of transitions g => z —*» ¢
such that p ©2 2z and p' =% ¢’. In the timed setting we have to consider idle
transitions as well and we will identify idle transitions with 7 transmons as is
shown in the previous examples.

Moreover, in the untimed setting the so called Stuttering Lemma (see [GW89])
holds, which states that if

94 6. Branching Bisimulation and Time

o o @ = g
then
psgandp S g, implyp e s for0<i<n

This Lemma is characteristic for branching bisimulation.

In the timed setting we start with a definition of branching bisimulation in which
this stuttering property is put in the definition itself. In the sequel we simplify the
definition, and we prove the Stuttering Lemma for this simplified definition for the
the case where the states are process terms in 7%(BPApé71). We do not start with
this simplified definition right away as it is not clear whether we can prove the
Stuttering Lemma for more general cases with for example recursion.

We need an auxiliary definition for expressing that all intermediate states along
a sequence are related as well.

Definition 6.3.2 (< p,t > “, o p,r >JR{< q,t > &) < g, r >) denotes that
<p,r >R < ¢,r > and that there is a sequence

< gg,to > L)<q1,t1 -&3)<qﬂ,t >L-)a<q >

with gy = ¢ and ty = t such that for each i € {0,...,n} and 5 € {t;,t;1), where
tos1 =7, it holds that < p,s > R < ¢;,5 >.

Similarly we define (< p,t > L 99 P, >IR(< ¢t > = < ¢,7r >) and (< p,t >

o) VIR(< g, t > A /). Using these definitions we can define timed branching
bisimulation.

Definition 6.3.3 (Idle Branching Bisimulation)
R C (T4(BPApé7I) x Time)? is an idle branching bisimulation if whenever
<p,t>R <q,t> then

o)

1 <pt>—) < p,r > (a € A) implies that there is ¢ ¢’ such that
afr) '

(<pt>—<p, r:>)'R(<q,t>=:;<q T >).
2 <pt> L2 g% ¢, 1 > implies that there is ¢ such that

{(<pt> ()<p",?‘>)R(<q,t>=><q',?’>).

3. <pt> o), — / (a € A,) implies that
(<pt>2 NR(<qt>2d)

4. Respectively (1), (2) and (8) with the role of p and q interchanged.

Note that < p,t > —5 \/ implies that a € A,.

6.3. Branching Bisimulation in BPApé 95

Definition 6.3.4 (Idle Branching Bis. Eq.)
< pt > 2 < g,t > iff there is an idle branching bisimulation R such that
<p,t>R<qg,t>.

We define <% on T (BPApérl) by requiring that p <4 ¢ iff forall ¢t € Time it holds
that < p,t > <} <gq,t>.

Proposition 6.3.5 < is an equivalence over T(BPApérl).
Proof. Omitted. g
As expected, £¢ is not a congruence as is shown by the following two examples.

Example 6.3.6 b(2) + ¢(3) £ b(2) +7(2) - ¢(3)

On the other hand, we have

Example 6.3.7 b(2) + ¢(3) +d(3) £ b(2) + 7(2) - ¢(3) + d(3)

|, ek,
LTI L

Hence, £} is not a congruence, and we need a rootedness condition as in the untimed
case.

Definition 6.3.8 (< p,t >-rooted) < p',r > is < p,t >-rooted f

pP=pandr=t, or<p,t>ﬁ><p T >,

We define when R is rooted w.r.t. the pair of states (< p,t >, < q,¢ >).

Definition 6.3.9 An idle bisimulation R is rooted w.r.t. < p,t > and < ¢,t > if
<p,t>R<q,t> and < p',r > R < ¢',r > implies that < p',r > zs<p,t>-
rooted iff < ¢',r > is < gq,t >-rooted.

Finally, we define rooted idle branching bisimulation equivalence, denoted by <,

Definition 6.3.10 (Rooted Idle Branching Bis. Eq.)
<pt> £ <gq,t> if there is an idle branching bisimulation R that is rooted
w.r.t. <p,t> and < q,t >.

96 6. Branching Bisimulation and Time

We obtain rooted idle branching bisimulation equivalence on process terins by put-
ting p £2¢, q iff forall ¢t € Time we have < p,t > 2!, < g,t>. Note, that we have
a{2) + b(3) £,a(2) + 7(2) - b(3).

In Section 6.8 we motivate that 2%, is a congruence over BPApér, and in Section
6.7 we define (rooted) branching bisimulation equivalence in the context of the term
semantics.

6.4 A Single Law for the Silent Step
A typical identity is given by the following example.
Example 6.4.1 b(2) + ¢(3) =2 b(2) + 7(2) - ¢(3)

0

[=R
LT

This example shows us that for some ¢ € Time we have that

p < po+p 2 po+T() P

where py denotes that part of p which starts before or at ¢, and p; denoctes that
part of p which starts after £. Since in this case ¢t > py £2* 6(t), we have as well
Py po+7(t) - p.

In order to express py properly we introduce a variant of the operator p > ¢,
that allows also actions of p af time £. We denote this operator by p > ¢, its defining
axioms are given in Table 6.1, its action rules are left to the reader. In case t < U(p)
we have

P p>it+t>p 2 p2t+7(t)-p

Note that in case ¢ = U(p) we have

r<t alry >t = a(r)

r>t a(r) >t = §(t)
P+ 2t = p2t+g>t
P>t = (p21)¢

Table 6.1 Axioms for > -operator

8.5. The Extension with Integration 97

p o pH+d() © p>t+t>p
4
p+T(t)-6 2 p2t+r(t)-p
and if ¢ > U(p) we have
p 2 p2t
;_L)—L
p2t+t>»p £ p+(t)

To obtain an identity for rooted branching bisimulation, we have to consider the
above terms in a context a(r) « (...). We have, for t < U{p},

alr)-p 2 afr)-p2t+t>p) 25 alr) (p2t+7())
if 7 < t, whereas for ' > ¢t we have

ary-p £ al(r)-(p>t+7({) p) 2 alr)-§
‘We can express this algebraically by the following real time 7-law:

Tl, r<t<U(p) a(r)-p=alr)-(p>t+7(t) p)

In Chapter 8 we explain the connection between this law and the untimed law T1
in more detail.

6.5 The Extension with Integration

6.5.1 A first generalization of the axiom T1,

First we give a few examples.

Example 6.5.1 In the calculus without integrals we have the following typical ex-
ample

a(1)- (b(2) +c(3)) 2w a(l)- (B(2) +7(2) - ¢(3))
We can adapt this example to

a(1) - ((2) + () = a(1)- @) + [(0)-e(3))

0
__________ o T
a a

P T— %t
¥ Y
I 1 3
C C

98 6. Branching Bisimulation and Time

Example 6.5.2 If we can make a choice for the c(3) before time 2 (by allowing o
T before 2) this pair 13 not bisimilar anymore;

a(1) - (6(2) +c(3)) £ a(1) - (b(2) + foeqr 5,3 T(v) - €(3))-

- 0
__________ — 1 e
a a
TAT5T v
—qe- 2 Lo, --
b b ‘
r
..... -3 S
c c

In the sequel we denote by f, {r(w))}-p the term (f,(7(w)) - p, that is, we stress that
p is not in the scope of the integral [,.
The above examples suggest us to generalize T1, to the setting of prefixed inte-
gration as follows.
[@@-p = [@w) Gzb+[(w)p)
« o wedbo,b1)
under the following conditions.

o The interval {by, b)) may not be empty, since otherwise
Juwe ooy (T(w)) - p reduces to & and f,(a(v) - p) is in general not equal to
Jolav) - (p = bo + 6)).

» We must require that v < by, since otherwise there may be a deadlock on the
righthand side after the execution of the a at some ¢t > b |t/v].

o We do not allow a deadlock after the execution of the 7 in
fweq%’blp(¢(w)) - p), that is, we require that p is able to idle till ;. This is
expressed by the condition Uy, (p).

The above observations are summarised by the law T1;; the I in the name refers to
integration.

Tl; a = ({bo,Bi) #0 A v<b A Uy(p))

fa/\ﬂ(a(v) p) = fa/\ﬂ(a(”) “(p> b+ fweqbo,blp(‘*'(w)) *p))

So, we have

Example 6.5.3

a(1) foeq,ay 0(v) 255 a(1) (fpe a3 B(0)+7(3) feqa.4 b(v)) This identity can be derived
as follows. Note, that we can apply T1; with {bo, b1} = [3,3], and p = [,c(5 4 b(v).
The condition

6.5. The Extension with Integration 99
Un(p) = Us([b)) = B<4
W) = Us([_ b)) = (3<9)

reduces to tt. Hence,
=1 A ({3,3 A 3 AU b
v=1 A (33#£0 A v<3 AU([00)

reduces to v = 1. We have the following derivation within BPApél + B;.

F b a(1) - fve(2,4) b(v)
b
a;} fv:l G(’U) ' f’ué(?,‘l) b(’i))
= =i aiav<anva(f,) a(v) - Joe(a,a B(v)

2 a(1) (e b(v) 23 + 7(3) fuea (1))
a(1l) - (foeay b(v) + 7(3) - (3> fiepo b(v))
a(1) - (fv€(2,3] b(v) + 7(3)- fve(3,4) b(v))

i

6.5.2 The Timed Branching Law

However, not all identities can be covered by T1;.

Example 6.5.4
a(1) - (foe,y 7(v) - (B(3) + c(4)) + c(4)) 223, a(1) - (b(3) + c(4))

S

[

and

Example 6.5.5
a(1) - (foeqz,n 7(v) - (6(5) + c(4)) + c(4)) 27, a(1) - (b(5) + c(4))

0
_______ + }1
| a 0 a
?f J 3 ¥
Sio 4 ———
[+ [+ C
] o L]

These identities look like an instance of the (untimed) second branching 7-law:

100 6. Branching Bisimulation and Time

B2 z-(r-(p+q)+p)=2-(p+q)

When adding time to this law we have to be very careful with the conditions on
all the intervals as is shown in the following example. The process terms in this
example differ only with the process terms in the previous example, in that respect
that in the process term on the left hand side both components b(5) and ¢(5) can
idle after 4, that is the upperbound of (2, 4).

Example 6.5.6
a(1) - (fueqa,ay 7(v) - (5(5) +¢(5)) +¢(5)) £24 a(1) - (b(5) + c(5))

0
________ 4 1 L______J
a 0 a
1 3
T
L J__|.f- /\;_ 5 Loago._.J
b "¢ ¢ b ¢

Consider the next two examples.

Example 6.5.7

The transition system of the left hand side of the second pair has a deadlock at 4
caused by the possible execution of the T at 4. The transition system of the right
hand side of the first pair does not have such a deadlock.

a(1) - (ueq T(v) - (B(3) +¢(4)) +¢(4)) <7, a(1) - (b(3) +c(4))
a(1) - (Joea,q 7(v) - (0(3) +c(4)) +c(4)) #£7 a(1) - (6(3) +c(4))

Example 6.5.8 Consider the following two pairs, of which the first is a bisimilar
one. In the transition system of the left hand side of the second pair, the choice for
doing the b might be done at 10, while at the right hand side it may be postponed
until 11.

a(1) - (fue(mo) 7(v) - (fweu,zo] b(w) + fze(o,w) c(z)) + fw€(1,20] b(w))
)
a(1) - (Jueq,2005(w) + Lreqo,10) €(2))

a(1) - (foe,0y T(¥) - e 20 0(w) + Lieqo,i1y €(2)) + S 20 8(w))

L
b

(1) - (1,20 8(w) + Loeqo) ©(2))

The previous examples and the discussion of T1; show us that

L@@ (f @) @+a)+r)

6.6. The Embedding of BPAéT into BPApé7l ' 101

is rooted branching bisimilar with

[@)+ >)

under the conditions that
» The interval (bo, b1]) is not empty.
s After execution of the a not all 7's are deadlocked, that is, v < b;.

e At by the choice for p or g is determined in the process term p -+ ¢. That is,
one of the two summands cannot idle till b;, while the other summand can.
More formally, either Uy, (p) A =(Us, () (p can idle until 4, and ¢ cannot), or
~{Us, (p)) A Uy, (g) {p cannot idle untill b;, while ¢ can). :

And finally we obtain the timed branching law By, as given in Table 6.2.

By o = (qbg,blbséﬂ A ’U<b1/\
(Un (p) A ~(Un (9))) V (=(Un, (p)) A Uy (2))))

Jang(@(¥) - (Joe@opp(T(w)) - (0 +q) +p)) =
Joungla(v) - (p+bo > q))

Table 6.2: The timed branching law

Unfortunately, the condition « of the law By is rather complicated. We can make
a case distinction, and give for each case a simpler version of By, see Table 6.3. We
have the following Theorem.

Theorem 6.5.9 (Soundness) p, ¢ € T¢(BPApsTI)
BPApéTI +BrhFp=q = pSryg
Proof. Omitted 0

In the next chapter we prove the completeness of BPApSI+ By w.r.t. 2.

6.6 The Embedding of BPAéT into BPApd7]

Baeten & Bergstra have given an embedding of BPAS into BPApS which interprets
every (untimed) atomic action a as f, a(v). Let us denote this translation by

RT : T(BPA6T) — T(BPApéTI).

102 6. Branching Bisimulation and Time

B o = ({bo,b1) 0 A v<b AUy(p))

Jang(@(®) - (Juequopy (T(w)) - (P+ ¢ 2 b1) +p)) =
Jans(a() - (p+ b0 > ¢ > 1))

BY o = ((bo,b) #0 A v<b AUy(q))

Jans@(0) - (Juegopy(TW)) - P2 b1 + @) +p 2> b)) =
Jang(a(v) - (p = b1 + by > q))

Table 6.3: Simpler versions of timed branching law

We have
Vp,q € T(BPAS) p=2g <= RT(p) = RT(g).

However, this does not hold any more after adding the 7 and working with branching
bisimulation equivalence. For example, in the untimed case we have a - 7 25 a but

Lo [r@) £4 [a@

This is caused by a difference in the design decisions of BPA§ respectively BPA p6l.
In BPAS§ the intuition is that the execution of an action may take some time, see
for example [Gla87]. This is exactly the motivation behind the first 7 law p- 7 = p.
But in real time process algebra [, a(v) executes an a at some point 7 such that
= a[r/v] and terminates successfully at r. A possible embedding of BPAé7 into
BPApé7l1 is given by interpreting an untimed atomic action a as

e [@),

expressing that the action ¢ is executed somewhere in time after which it terminates
some time later. This translation has been pointed out by Jos Baeten ([Bae92]). Let
us denote this translation by RT;, then we have the following Proposition.

Proposition 6.6.1 p,q € T(BPA6T)
“nq <= RT.(p) = RT.(9)

Proof. Omitted. O

6.7. Branching Bis. in a term semantics 103

6.7 Branching Bis. in a term semantics

In this Section we focuss on T#(BPA pé7I) and we give several alternative character-
izations of idle branching bisimulation, by which we obtain, step by step, branching
bisimulation in a term semantics. ,

A first simplification is to weaken the requirement that all intermediate states
are related. This is done in the next definition of simple idie branching bisimilar.

Definition 6.7.1 (Simple Idle Branching Bisimulation)
R C (T*(BPApSTI) x Time)? is a simple idle branching bisimulation if whenever
<p,t>R <gq,t> then

1. <p?i>m<p’,r> (a € A) implies that there ave z,¢' and s such that
a(r) ',
¢ < t>=—><z,8>—><q,r>, and
s <ps>R<zs>and<p,r>R<qg,r>.

2. <pt> Lo p', 1 > implies thet there are z,¢', &' and s such that

» <q,t>=><z,s>m<q’,r>, and
e <ps>R<z,s>and<p,r>R<q,r>.

3 <pt> =), V (a € A}) implies that there are z and s such that

e < g t>=><z,8> &) v, and
o <p,s>R<zs>
4. Respectively (1), (2) and (3) with the role of p and q interchanged.

For a simple idle branching bisimulation R we can prove a timed version of the
Stuttering Lemma [GW89].

Lemma 6.7.2 (Stuttering Lemma for finite process terms)
If p,q € TY(BPApé7I) and

<p,t>ﬂ><p,?‘> and < g,t>=><q,r >,

and R is a simple idle branching bisimulation such that

<pt>R<qt> and <pr>R<g,r>

then also (< p,t > LA <pr >IR(< gt > ==> < ¢,r>).

104 6. Branching Bisimulation and Time

Proof. We give give only a sketch of the proof.

Take 7 = r. For < p,t > dro) < p,7p > there are ¢§ and ¢} and there is a

such that < ¢,t > = < g8, 7; > and < ¢}, 7, >§§z92<qé,ro >and <p,rg> R <
1
qo,‘?‘o >-

Since 1} < 1o we have < p,t > LG < p, 71 >. Hence, there are ¢, ¢} and 7, such

that < ¢,t > = < ¢%,r; > and < 0,7y > stry) <gl,mm>and <pr > R <

g}, >. Furthermore, since < p,r; > Hro) < p,7p > there is also a < ¢%, 79 > such
that < gl, 71 > = < ¢}, ro>and < p,ry > R < g}, 5>

If we repeat this argument we get the picture below. Since ¢ is a finite process
term, that is a process term without recursion, this argument cannot be repeated
infinitely many times and we are done

(1) oty _ (1) oty _ (¢

A
Il
N
-a(_—_

<p,'Fo> ooy @) () <q3,

~simple

3

We denote simple idle branching blSlmula,tion by &,
Lemma 6.7.3 p,q € T<(BPApér])

-stmple

<pt> <gt> &= <pt> 2 <gqt>

Proof.
== It follows from the Stuttering Lemma.

<== Trivial. O

The next change is, that we consider only sequences of T-transitions in the premises

of the clauses of the definition of a branching bisimulation. We have that < zy, fp >

. alty
L) —4 < 21, > alta) < 23,13 > implies < 2,8 > olt2) < 23,ty > as well. Hence

6.7. Branching Bis. in a term semantics 105

f<gt>=><zs> 2 < g.,7v >, then we can find < 2,5’ > such that

<gt>=»< 5> a—0r3><q’,r> as well.

Here, == denotes that there are only 7-transitions allowed along the sequence.

Definition 6.7.4 (Semi Idle Branching Bisimulation)
R C (T9(BPApé7l) x Time)? is a semi idle branching bisimulation if whenever
<pt>R<q,t> then

1. <p,t> o) P, 7 > {a € A) implies that there are z,¢' and s such that

e <gt> <> g,

e <pt>R<z,8>and <p,r>R <¢,r >.
2. <pt> &) < ¢',r > implies that there are z, ¢,k and s such that

. <q,t>§><z,s>w<q’,r>,
s <pit>R<z,s>and<p,r>R<g,r>

3 <pt> o) v/ {a € A.) implies that there are z and s such that
. <q,t>§><z,s>i@> v
e <p,t>R <z,8>.
4. Respectively (1), (2) and (3) with the role of p and q interchanged.
We denote the resulting equivalence by <225 And we have the following Lemma:

Lemma 6.7.5 p,q € T¢(BPApé71), t € Time

<pt> VS o cpts osemi s

Proof. Omitted. (]

Next, we give a similar definition in the context of the term semantics. Before doing
that, we need a way to express idle transitions in term semantics.

Definition 6.7.6 (shift,)

shift (a(t)) = 73> a(t)

shift(p+q) = r>(p+q)

shift.(p-q) = shift.(p)-q

shift(t > p) = r>p ifr>t
t>»p otherwise

For technical reasons we take shifi_. (p) = p and U_n.(p) for every p.
We can express an idle transition in the term semantics as follows

106 6. Branching Bisimulation and Time

D “n, p' abbreviates U.(p) A p' = shift,(p)

We redefine == , such that is defined on pairs of process terms. Since the course of

time is not obvious anymore from the states, we add it to the label of ==> . As base

case we have p == ymep P, and p ==>¢ ¢ with ¢), o implies p =5, ¢'. For the

definition of time(p) we refer to Definition 2.6.4. We have the following proposition,
where we take ¢t > —oo for all £.

Proposition 6.7.7 p € T¢(BPApéI)
¥ p Dy
<= Vit > time(p) < strip(p),t> 4, strip(p),r >
= U(p)

Proof. Omitted. =

And finally we define term branching bisimulation.

Definition 6.7.8 (Term Branching Bisimulation)
R C T¢(BPApé7I)? is a term branching bisimulation if whenever pRq then
Lp o), v (a € A) implies that there are z,q' and s such that

e g2 g,
o shift (p)Rz and p'Re'.

2. p =) ¢’ implies that there are z,q', k' and s such that

WES PR
e shift.(p)Rz and Y Rq'.
3 p 2, V (a € A) implies that there are 2z and s such that
¢ g, 2 atr) v,
o shift (p)Rz.
4. Respectively (1), (2) and (3) with the role of p and q interchanged.
We denote the resulting equivalence by =3.

Definition 6.7.9 (p-rooted) p' is p-rooted, if P = p or there is an r such that

€,

Definition 6.7.10 A term bisimulation R is rooted w.r.t. to (p,q) if pRq, and
PRy’ implies that p' is p-rooted iff ¢' is q-rooted.

6.8. Rooted Branch. Bis. Eq. is a Congruence 107

Definition 6.7.11 p <. g if there is a term branching bisimulation R, that is
rooted w.r.t. {(p,q).

And finally we have the following proposition.
Proposition 6.7.12 p,q € T%(BPApéT])
Py g &> Yt <pt> 275 <qt>
Proof. Omitted.]

Corollary 6.7.13 p,q € T%(BPApérl)

pE g = peig

6.8 Rooted Branch. Bis. Eq. is a Congruence

First we give a timed version of strongly rooted branching bisimulation equivalence,
by requiring that it behaves from the roots as if it were strong bisimulation. As
soon as left and right an action in A, has been executed the definition of (unrooted)
branching bisimulation is applied.

Definition 6.8.1 (Strongly Rooted Idle Branching Bis. Eq.)
P Sare 4 2’.&

L p 0, ' with a € A, implies that there is a q' such thai
¢ X ¢ andp 24 q.

2. p), ¢’ implies that there is a ¢' such that
q A, q andp 2, ¢

3 p “r), \/ implies that g)

4. Respectively (1),(2) and (3) with the role of p and q interchanged.

As in the untimed case the definition of strongly rootedness is not stronger than the
one of rootedness, in the case of branching bisimulation.

Proposition 6.8.2 p,q € T9(BPApsI)
D ey g s Py q
Proof. Omitted. a

Theorem 6.8.3 2 is a congruence over T%(BPAp67I).

Proof. It follows from 6.3.5 and 6.7.13 that 23 is an equivalence.
It is easy to show that £, is a congruence, and hence, £2,,, is a congruence as
well. O

108 6. Branching Bisimulation and Time

6.9 Some Additional Notations

If we give a diagram like

a(r)

p — 7
haé iy
¢ 9 ¢
we mean that p LA v, q =) ¢, p < qand p £ ¢ and a diagram like
p oy
= =
q =T_i>r q

means that p LON RN ¢' such that p &4 g and p’ &% ¢

The first clause of the Definition 6.7.8 can be expressed as well in the following
way

p 2y (a € A) implies that there are z,q' and s such that

p = 4
=

P PN o
2, o

g =, z Y

Finally, we define term branching bisimulation inclusion, which will be used in the
proof of the main theorem of the next chapter.

Definition 6.9.1 (Term Branching Bisimulation Inclusion)
p &, g whenever

1Lp o), 7' (a € A) implies that there are z,¢' and s such that

o shift,(p) S, zandp = q.

2. p) ¢ implies that there are z,¢', ' and s such that
b q%.ﬁ z IEL(—Q qf;
o shift,(p) S, 2z andp = ¢

3. p =0 V (e € A;) implies that there are z and s such that

6.9. Some Additional Notations 109

e g5,z By,

e shift,(p) &, z.
c

Note that the definition does not have a “symmetric” part. &, is the semantic
equivalent of summand inclusion in BPApél+ By.

110 6. DBranching Bisimulation and Time

7

Completeness for Branching
Bisimulation

7.1 Introduction

In this chapter we prove that the axiom By, together with the axiom system BPApél,
axiomatizes 2,4 completely.

We define a rewriting that constructs for each process term its branching ba-
sic term. The main theorem of this chapter is that if two branching basic terms
are branching bisimilar, then they are strongly bisimilar as well. From this result
the completeness result for branching bisimulation equivalence is reduced to the
completeness problem for strong bisimulation equivalence which we have tackled
already.

7.2 An Intermezzo on Time Variables
In this chapter we consider prefix normal forms only. We recall that we omit the
binding brackets in these terms, i.e. we write [a(v) - p for [(a{v)-p).

In this chapter we rewrite a term like a(1) - [,ciz5 7(¥) * fueqs blw) to a(1) -

fwega,z B(w). The difficulty with this rewriting is that in this example the time
variable v, of the integral that is to be removed, occurs later on in the term.

Example 7.2.1

BPApSI - a(1) - / ey) /w oy P0) = (1) fw o, 20)

We will give a derivation which starts with a(1) - [,c o5 b(w)

111

112 7. Completeness for Branching Bisimulation

a(l) - quz,s) b(w)

a(l) - fve(2,3) (v) - fwe(2,5) b(w)

a(1) - foepy T(v) - (v > fueps) B(w))

a(1) " foea T(V) - foe@srvcw O(w)

a(l) - fve(z,s} T(v) - 2<v:i— fwe{z,s)x\v<w b(w))

a(1) - fve(m) T(v) - (2<vi—> fw€(2,5)/\2<?}<w b(w))

The ezpression w € (2,5) A2 < v < w abbreviales 2 < vAv <wA2<wAw <35,

which has a subcondition 2 < vAv < WA2 < w that can be reduced to 2 < vAv < w.
By which we obtain 2 <vAv<whAw<5b. We continue.

Q'é a‘(l) ' fvE(Z,S) ?-(?)) : (2 <v:i— JF2<1n'\1.v<1.4::/\w<5 b(w)}

g a(1) - fue<2,3) T(0) - (2 <V = [cpawas B(w))
2 a(1)- Joe2sy T(V) + fueqs b(w)

By
RTl;
RT2;

3

c2

We will use the following identity

[, o) -p=[o) plnf(v)

which is derivable if the variable v occurs only as lower bound of initial integrals of
p. To formalize this we define fv*(p) C fu(p) where p is supposed to be a prefix
normal form that contains only bounds in normal form, with that respect, that v+0
is rewritten to v.

e alv)) = var(b)

bg TVar fv*([oepuy (V) = var{b+V)
v (Lequwy 8(v) -p) = war(¥)U fo(p)\{v}

b TVar fv*(fuepapa(v) p) = wver(b+¥)U fu(p)\{v}
fv*(p+q) = fo'(p) + fv*(9)

Proposition 7.2.2 Let p be a prefix normal form and b a bound such that v &
Fo*{p) Uvar(b) then

BPApél - a(v) -p= / a(v) - plb /2]

aAb<y arb<v
Proof. Omitted, the proof is analogous to the derivation in Example 7.2.1. O
A similar, but semantic, proposition is the following.

Proposition 7.2.3 Let p be a prefix normal form where v & fv*(p) and r1,79 < 8
then

8> plr/v] 2 5> pra/v]
Proof. Omitted. a

7.3. Branching Basic Terms ' 113

7.3 Branching Basic Terms

In this section we will present some rewrite rules by which each prefix normal form
can be rewritten to its so called branching basic term. These terms are constructed
such that if they are branching bisimilar, then they are strongly bisimilar as well.
To give the reader an idea we will give several process terms and their branching
basic terms.

Example 7.3.1

a(1) - 7(2) - 5(3) — a(1) - b(3)
a(1) - (Juezy T(v) - 8(2) + (2)) — a(1) - (2)
a(l) - (fue{l,z] b(v) +7(2) - fve(?,S) b(v)) — a(1)- fue(l,s) b(v)

7.3.1 Introducing 7’s for each moment of choice

In order to rewrite each process term into a cancnical form we have to rewrite all
three process terms below into the same form.

Example 7.3.2 BPApSl +B;

a(l)- (7(2)- b(3) + c(3))
a(1)- (7(2)- 83) +7(2)- (3))
(1) (b(3) +7(2)- <(3))

This example shows us that it is not possible to have as few as possible 7’s in a
process term. Therefore we add a 7 for each moment of choice; in the above example
both outermost process terms are rewritten to the process term in the middle.

In case of (non trivial) prefixed integration we have to do some more work. If
we counsider the process term p where

~ b
p /vE(O,S) a(v) +/ve[z,6} ()

then we can split (0,86) into (0, 2], (2,5] and (5, 6}, such that the potential of p does
not change by idling within one of the resulting intervals.

In order to reflect these intervals of potential at the syntactical level we introduce
a 7 for each moment of choice. A moment of choice is the upper or lower bound of
one of these intervals. (Only for the time stamp 6 we do not add a 7.) Furthermore,
we will have only intervals of the form (b,5'); a summand of the form [(4 P(v)
is rewritten to [,eqyy P(v) + P(V). ,

]

Example 7.3.3 p = [,cn5 a(v) + [iepas) b(v) will be rewritten to

Loeo a(v) +a(2) + 5(2)
+ 7(2) - (e a(V) + fueps b() + 5(5)
+ 7(8) - foeipe) b))

114 7. Completeness for Branching Bisimulation

In case of a process term with free time variables such as

o a{w +/ bw
e wev,w+1) () w€{v,2v) ()

we introduce a partition. Each condition in this partition is an assumption on the
ordering of the bounds of the process term ¢. Therefore each condition determines
which 7’s have to be added.

Example 7.3.4 ¢ = [,c0, 01y 0(W) + fucto00 0(w) will be rewritten to

v+1=2v - fwé(n,v+1) a{w) + fwe(v,vﬂ) b(w)
v+H1<20 = fuewerny (W) + fpeqpry Bw) + (v +1)
+7‘('U + 1)) fwé('v-i—lﬂ'()) b(w)
v+1>20 - we{v,2v) (L(’LU) + fwé{o,?v) b(’lU) + a’(z?})
+T(2’U) : wa{?v,v«}—l) b(w)

7.3.2 Partitioning a process term

As we have seen in Example 7.3.4 we have to consider all possible orderings on the
bounds of a process term p. Therefore we need the notion of an ordered partition of
a finite set S. The sequence (Sy,...,S,) of subsets of S is an ordered partition if
{S1,...,8x} is a partition of S.

Consider a set B of bounds. We construct the set of conditions on B, each
defining an ordering on the bounds. -

e Construct all possible ordered partitions of B, let us assume that there are m
different partitions of B.

o For each ordered partition (By,..., Bx) we construct a condition . We take
a representative b € By for each [€ {0,...,k}. For each b € B the condition
o contains b = ;. Furthermore for [< I’ the condition o contains b < byp.

In this way we obtain the partition {e;} = {a,..., &} associated to B.

In the following we will denote @ by By < ... < B; whenever « is constructed
from the ordered partition {B, ..., By) of B.

‘We define the bounds of p, where p is an interval prefix normal form.

bounds(feqpp P(w) = {bV}
bounds(p + q) = bounds(p) + bounds(q)

The process term p will be partitioned by considering the set of ordered partitions
of bounds(p) U {v}, where v is a parameter of the construction.

In case p occurs in a context [,y a{v') - p, then we construct the partition of p
that depends on o'

Assume p is of the form

Zi:]we{;sé,u;];; B(w)

7.3. Branching Basic Terms 115

where each P is of the form a(w) or a(w) - p’. Consider @ = By < ... < By where
{By,...,B,) is one of the ordered partitions of B = bounds(p) U {v}.
We construct p(e, 1) for I < n:

Eiia:’sa'ﬁbx A by S fwe(b;,f;;_;_l} Pt(w)
+ Ei:a:»sigbz Abp=u; R(’H}) [bH'l/w]
+ Ei:a:}s;:bH.l =u; A (=] A }i=] Pi(w)[bl+l/w}
+ Zi:a:vsisz.; <u; A =] R(w){b;+1/w}

And for | > n we take p(e,[) >~ §. We have the following proposition.
Proposition 7.3.5 [<n

BPApSLa b plo,) =b > p > by
Proof. By construction. (]

Next, we define

v(e) = 1 suchthat v € B
u{a,p) = 1| such that ! is the smallest index > v{e)
with I’ > 1 implies p(o, ') = 6

Note that o = ~(Us, . (v > p). Finally we define p(a, [).

u (e, p)
pa,l) ~ 6 if 1 > ule,p)

o l) i1 = u(oyp) - 1
o,) + m(biy) -pla, 1+ 1) il <u(a,p)—1

1R

Proposition 7.3.6

BPApéL,a b pla,) > b =46
BPApSL a & by > pla, 1) = p(a, 1)

Proof. By construction.]

The rewrite rule that partitions p, depending on v, by adding all possible 7’s, is

L s = Tien.mies — plas,0(a)

where {0y} is the partition associated to bounds(p) U {v}. Finally we have a propo-
sition which states that there is a derivation in BPApSI+ B that corresponds with
the above rewriting.

Proposition 7.3.7 If p —, ¢’ by Rule 1 then

BPASL+ By F [a(v)-p = [a(v) ¥

116 7. Completeness for Branching Bisimulation

Proof. p'isof the form ¥ cq, my{e; = p(oj,v(e;))}. Take an arbitrary j and
take 0 = ay. Let {8; Av € V;} the v-refinement of 8. It is sufficient to show that

BPASI + B; p=]) - pla,
PLEBLE | roew a(v) - p W’.Mwa(t) pla, ()

BPApsI +
fa/\ﬂim}evi a(v)-p

= fa/\ﬂi/wev,- a(v) {6 NveEV: :— p}

= Jangirvev; a’(v)) {163' ANveV > {a - p}}

= fansirvev; &(v) - {a == p}
We use as well BPApSI, =(Uy(p)) F b 3> p = 8(b), and BPApSL, ~(U(p)) Fp > b=p.

First we prove that for [with v(a) <1 < u{a,p)
BPASI - a@)-p = [a@)-(p2b+peD)
aAB;AVEV; aAG;AvEV]

by induction on u{w, p) - I. There are three cases to consider.

1. v{a) €= ulw,p). This case is trivial since & = ~(U,,(p)). Thus BPApéL, a
P > b = p, moreover p(o, u(e, p}) = 6. And we have the following derivation.

fw\ﬂ;/\vev,- 6(7’) : (p > b+ ple, 1))
= fu/\ﬁ,-/wev,- af{v) - {Q’ = (p > b+ plo, l))}
= fansrveV; a(v) - {a:— (p+6)}
= faA;},«AeeV; a(v)-p

2. v(a) <= ula,p) — 1.
fa;‘\ﬁgAvEV} a(’l)) P
= fa/\,@;/\vel’g a(v) {a:—= P2 b+b>p> b}

= aAB;AveV; a(’v)) {Of = (p 2 i’i +’Z(a} l)}
= arf;AvEV; a‘(jv) . {Ct' Band (p .>;> bl +p(&‘, l)}

3. v{a) 1 < ufa,p)—1. We use BPAPSI (p > b) > b = p > b and
BPApSI b > p > b= 6(b).

fa/\ﬂmvéVg a{v) -p

l::'d fa/\ﬁ,«/\vev; a(v) - (p 2 by +ple, [+ 1))
= Sonpirwev: () - ((p 2 b1 + plo, L+ 1)) > by
p +7(bi41) - (p 2 b1 +pev, 1+ 1))
ropTas Janginoev; @(0) - (P 2 bipy + 7(bigr) - pla, 1+ 1))
= Jansirvevs av) 2 b+ > p>bn 7
+7(bi1) - ple, 1+ 1))
ProE.?Aa,s

fa/\ﬁi/\vew a(v) - (p 2 b+ pla, 1)
+7(big1) - pla, L+ 1))
= fat\{}i)\ve\«‘; a(v) - (p = b +plo,l))

7.3. Branching Basic Terms 117

We continue

fa/\ﬁgz\'vEVi a(”) P
= Janpirvew; (V) - (2 2 v + p(e, v(e)))
= J{O.'f\ﬂ,'f\vé‘/g a(v)) ('U >p2vt+v> p(&, ?)(Ct)))

= fa/\ﬂ,»/wew a(v) - ple, v(a))

7.3.3 Removing 7’s
‘We have to introduce a rewrite rule that handles the following examples.

Example 7.3.8

a(1) - (Jweqs T(W) - (Leepw,s o(2) +6(3)) + fueq s a(w) + b(3))
= a(1) - (fueq,z o(w) +b(3))

This example shows us that we need a rule for a process term of the form
Jwepsy T(w) - p + g where ¢ is a summand of p[b/w].

In the sequel we present rewrite rules of the form p —, p' that abbreviates
p— fa = P} + {~() i).

3 (w ¢ fv(p)

Jwewp) T(w)-p+gq plb/w]

e S bl

A similar, but more advanced, example is the following process term which has a
7(2) which does not determine a choice.

Example 7.3.9

0(1) - (e 7() - (reqoy 6(2) +B(3)) + foeqnz o)
+7(2) - (e 4(2) + 6(3))
= a(1) - (Lienz a(2) +5(3))

So, we need an additional rule for process terms of the form
Jweppy T(w) - p+ g+ 7(V) - ¢ where ¢ + ¢’ is a summand of p[b/w].

3 (wg for(p)

fwe(b,b') (w) p+g+7(') ¢ plb/w]

(g+¢' & plb/ul)

118 7. Completeness for Branching Bisimulation

Note that in both of the Rules 3* and 3° the summand ¢ may be 6.
Rule 1 rewrites the process term

/uao,q a(v) + /ue(l,;r) a(v)

into
/ o 2 Fa() +7(1)- / a4

though there is no moment of choice at time 1. Hence, we need to rewrite that
process term t0 [,e(.2 a{v). Some more involved examples of 7’s which may be
removed similarly are given below.

Example 7.3.10

Joeqrzy a(v) + a(2) + 7(2) - [oeqa, a(v)
must be rewritten to [,¢q 5 a(v)

Joeqzy 6(v) +a(2) + 7(2) - (Joez 9 a(v) + 5(3))
must be rewritten to [, 5 a(v) + 5(3)

fve(l,2] a(v) +b(2) +7(2) - (fve(z,s) a{v) + fue(z,a} b(v))
must not be rewritten

In the sequel we denote an arbitrary a(b) - p or a(b) by P(b). If by < by < by and

P = Yier fvé(bo,tq} Pz‘(”) + ZjEJ P}(bl)
¢ ~ ke fve(bl,bg} Qi(v) + Tier Qi)

then the 7(b;} can be removed in p+ 7(b;) - g if for each k there are corresponding

indices ¢ and j such that [,c(, 4,0 Qx(v) can be taken together with [,c, b,y Pi(v)

and Pj(51) t0 [oe(po 5y @r(v). We have a similar requirement for each j and each k.
This condition is denoted by p ~ ¢ and it is defined as follows:

Ner { Vjer Pidb) « Pi(b1)
AN Viek Joepopn) B(¥) £ focpopn Qr(v))
A Ner (0 Vier Bi(hr) S Pi(b1)
A Viex Fj(b1) = Qu(b1))
A Mex (0 Vit Liepopn Fi(0) 2 fogppon @e(v)
A Vjes Pi(b) =2 Qi(b1))

where z £ 2’ denotes the characterizing condition for 2z and 2’ (see Lemma 4.6.3).
For p,q of the above form we have the following Rule, where g¢[by/;] denotes the
process term ¢ in which the lower bound b; is replaced for bg. Thus, each summand

Joe(v: sy @r(v) of Q is changed into [, 5,y Q(v)-

7.3. Branching Basic Terms 119

4 p+7() g @~y qlbo/bi]

However, the Rules 3%,3” and 4 are only applicable if there are no double 7-summands.
For example, the process term

/ve((},l} a(v) +a(l) + (1) - L)a(v) +7(1)- /vem,z) a{v)

&(1,2
can, in its present form, not be rewritten by Rule 4, though we want it to be rewritten
{by Rule 4) to f,c0. a(v). Hence, we have to take all double 7-summands together
before applying either of the Rules 3¢, 3% or 4 which is done by the following Rules
2¢ and 2%.

2¢ v g fo*(p+q)
Socwwy T P+ Locpon T0) -8~/ 2 qba))
fve{b,b’) mv)-p

2 7)) p+T)q —pey TP

7.3.4 The construction of branching basic terms

We combine the rewrite rules to construct branching basic terms. A branching basic
term is a term of the form §7; o; *— p;, where {a;} is a partition and each p; is an
interval prefix normal form.

We take a prefix normal form p and we perform the steps given below.

{Begin of construction.)

1. We replace each summand [, a(v)-p' by [, a(v)-pi,, where pj, is the branching
basic term of p'.

The term pj, is of the form ¥ ;¢4 :— p;, and by the Lifting Lemma we can
rewrite [, a(v) - py, further to 32, [.. a(b) - pi.

2. Each summand of the form [a(v) - p is rewritten to [, a{») - ¢, such that
p—, P by Rule 1.

Take an arbitrary summand of p/, then it is of the form ~ :— ¢, such that ¢ is
of the form

go[+7(01) - (g + 7(b2) - .7 (bn) - gn)]

120

7. Completeness for Branching Bisimulation

(where z]+7'] denotes a process term which is either of the form z or z + 2').

Next, we have a loop, starting for k = n, that applies the other rewrite rules
for each level k. Each turn we start with a term 2z of the form 3,7 oy :— 2.
We take 2z, =t :— q,.

(Begin of loop.)
For each i € I, we apply the following on 2i.

(a) If k = n, then we take b, such that g, has a summand [,cq, 4.,y P(v)
or a summand P{b,11).

We remove all summands of the form f,c, 4, ,,) 6(v) and 6(bg41).
If, for k = n, all summands have been removed then we add a summand
8(bny1)-
(b) Take the double 7-summands together by applying the Rules 2° and 2°.
{c) Apply the Rules 3%, 3%, and then the Rule 4.

We rewrite the term that we have obtained further by taking all conditions
together in a partition, and we obtain {3, :— u}.

If k > 0 then we lift the partition {8;} over the r(bs), and we construct

oy Eﬂj = (gr-1 +7(be) - ul)
3

If £ = 0, then we are ready. (End of loop.)

We do this for each summand of p’. We rewrite the obtained term further by
taking all conditions together in a partition, and we obtain

/aa(”) : Zi:ai Py

. We apply the Lifting Lemma again, and we obtain

3 OB

i

Finally, we construct for each a A ¢, its v-refinement {a;; Av € V;} and we
rewrite the above term to

D i / a(v) - pi
i vEV;,;

(End of construction.)

7.3. Branching Basic Terms 121

7.3.5 Some properties of branching basic terms

The construction of a branching basic term corresponds with a derivation in the
axiom system BPApél+ By, as is stated by the following proposition.

Proposition 7.3.11 Let py, the branching basic term of p then
BPApST+B; F [a(v) = [alv) -
13 44

Proof. We will only give a sketch of the proof. By Proposition 7.3.7 we know
that there is a derivation for each application of Rule 1. The Rules 2° and 2* are
direct instances of the axiom p + p = p and the Rules 3%,3* and 4 are instances of
the axiom Bj. O

The following two propositions state that branching basic terms are indeed basic
terms. First we have a proposition, that says that the time stamps in a branching
basic term are always increasing.

Proposition 7.3.12 If p is a time closed branching basic term, then

p 25 ¢ = I pY=r>p adr>p ep

Proof. We only give a sketch of the proof. If z —, 2’ by Rule 1, then it is
guaranteed that any lower bound b of an initial intervals of 2’ is in the scope of a
condition v < b. 0

Proposition 7.3.13 If p,q are time closed branching basic terms, then p < ¢ im-
plies depth(p) = depth(q).

Proof. We give only a sketch of the proof. Assume p 2 ¢ and depth(p) < depth{(q),
then we motivate that there is a contradiction.

It must be the case that there are p’ and ¢’ such that p’ <2 ¢, and 7' is reachable
from p and ¢ is reachable from ¢, and ¢ has a summand of the form [, ¢ Q(v)
with ¢ < ¢. For if there is no such ¢’ then p can never be bisimilar with ¢.

But, in the construction of branching basic terms, especially the first rewrite
rule, it is guaranteed that every summand of the form [, P(v) is in the scope of
a condition « such that a = b < ¥’. Contradiction. o

A process term p is an interval branching basic term if it is a branching basic term

such that each summand is of the form [,.,, P(v). Note, that for such a p there
are bounds b, ¥ such that each interval V is either of the form (b, 5"} or of the form
[t/,#']. For an interval branching basic term p we define the functions S(p) and
U(p) syntactically. S(p) denotes the start time; S(p) = b if there p has a summand
Joewy P(v). If it does not have such a summand, then it must have a summand
o 4y P(v), and we take S(p) = . U(p) denotes the ultimate delay, as usual, and
we take U(p) = ' if p has a summand [,¢ 4y P(v) OF [epy 57 P(0).

122 7. Completeness for Branching Bisimulation

Lemma 7.3.14 Let p,q be branching basic terms with fo(p + q) € {ve} and each
forvg € S, where |S| > 1, we have

plro/ve] £ glro/vo)

shen there is a relation R which relates subterms of p with subterms of g such that
f

R, q) implies:
» S(p)) = S5(¢) and U (p =U(q).
e Vo e X o(p) 2 o(¢).

Proof. If fu(p) C {v} and we write p ~> p' then we mean that p' is a subterm
of p and that there is a a sequence of transitions

() ai{r l) (pl) . “'_7_0_(_'_'3) o_(p!)

where o(v;} = r; for some rg € S.

Note that since p is also a prefix normal form we may indeed assume that for
each transition in such a sequenxe a different variable is bound.

First we prove that there is a relation R such that R(p',¢') implies

* S(p') = S(¢) and U(p) = U(¢).
¢ Forall o with p~?3 p' and g ~5 ¢’ we have o(p') = o(¢).

First we show that it holds for R(p, g}, and then we assume that we have proven it
already for R(p/, ¢') and we prove it for subterms of p' and ¢/, that have depth(p’) —

e By assumption plre/vo] & g[ro/vo] for all ry in S. Since for every ro in S
we have S(plro/ve]} = S{glro/vo]) and S has more than one element we have
S(p) = S(g). Similarly we obtain U{p) = U(g). Finally, by assumption we
have for any o with p ~3 p, ¢ ~3 ¢ that o(p) £ o(q).

e Consider a summand [,¢q4y a{w) - p” C p’ and take o such that p f\»f pasp
is & branching basic term we know o({b,¥)) can not be empty. Hence there is
a finite set

{ &l focppyo(w)-¢"Eq Fo e 3t eo((ht))
olt/wl(p") 2 oft/wl(¢") }

Note that S(p") and S(¢"), for ¢" € Q, are hyperpla,nes with dimension smaller
or equal to d+1, where d is the depth of p’ in p, that is the length of the trace
Py .

For any o such that p ~»3 p’ there is a ¢" € Q such that.g ~5 ole/w) 4 ¢"[t/w]
where ot/w](p") = oft/ wf(q 7). In other words, for any such o thereisa¢” € Q
such that o[t/w]((S(p")) = o[t/w](S(¢")), which means that the hyperplane
S(p") is completely covered by the hyperplanes S{g") for ¢" € Q.

We find a ¢” € @ with S(p") = S(¢") in finitely many steps. Take an arbitrary
gy € Q. At each step 7 > 0, there are two cases to consider

7.3. Branching Basic Terms 123

— S(@") # S(¢gf}. Note, that the intersecting plane of S(p") and S(¢) is
one dimension smaller than the one of S{p”). Hence we can find a o and ¢
such that olt/w]is “outside” the subplane that has already been covered,
i.e. outside the intersections of S(p") with all S(g;)’s with j < @

We take ¢, from @ that differs from any ¢; with j < 4, such that

oft/wl(p") = olt/wi(gf}s)-
— S(p") = S(g") and we are ready.
It can not be the case that for every ¢’ € Q we have S{p") # S(¢"}, for this

would imply that an n-dimensional hyperplane can be covered by finitely many
n — 1-dimensional hyperplanes.

Similarly we can deduce that there is a ¢” (in Q) such that U(p") = U(¢") as
well.

Now we have to show that R(p,¢'} implies
Vo : o(p) = 0(q)

which we will do by induction on p’. The base case will not be discussed, as it is
similar to the case discussed below.

By construction of R there must be a ¢’ such that p ~3 p/, ¢ ~5 ¢ and
o' (p') =2 o'(¢'). Assume

P Y ey @(v) - pi+ 25 0,(0) - 0 + 1"
7 = T foepy (V) ax+ T did) g + 4"
where
depth(p") = depth{p’) — 1 = depth(q¢") — 1 = depth(q")
Take an arbitrary ¢ and consider a transition o(p') 2 #. If it originates from

p" then we have already proven that there is a transition o{g") o) 29, originating
from ¢”, such that z; £2 z,. So, assume it does not originate from p”, then there are
two cases to consider:

s o(b) <r < o(b'). Then there is an index ¢ such that a = a; and
7 = olr/v](v > pi) 2 olr/v](p)
Since o’(p') 2 o'{¢’) and o'({b,¥')) # 0 there is a t € o’({b, ') such that
o) “O ot/i)(v > pi) = lt/o]p)

So, there is an index & such that

o'(@) 2 ot/ul(v > a) = o'lt/v](a)

124 7. Completeness for Branching Bisimulation

and

o'[t/v](pi) 2 '[t/v](qn)

Hence R{p;, gx), for which we have already proven that
olr/v)(p:) = olr/vl(ar))

o 7 = o). Similar to the previous case.
[

From this Lemma we obtain a corollary that motivates the usage of the Rule 4.

Corollary 7.3.15 If we have time closed interval branching basic terms p,q and
to <ty such that

/ a{v)-p &= / a(v)-q
vE{to,t) vE{to,t1)

and [y 10y (V) - P, with ty < by, is also a branching basic term, then
Joettortsy V) - ¢ is a branching basic term as well for which

/ a{v) -p & / a{v) - q.
vE(tg,iz) ‘vE(to,tg)

Corollary 7.3.16 If fu(p) = @ and for allr in S, where |S| > 1, we have p £ q[r/v]
then fu(g) = 0 as well.

Finally we have a proposition that relates branching bisimulation inclusion with
branching basic terms: :

Proposition 7.3.17 Let p be an interval branching basic term with a summand
Joev T(v) - P such that v & fo*(p') and t € V then

t>Pltfv] S, t>p
Proof. Consider a transition

t > plt/v] A,
take an arbitrary s € {¢,7), then by Corollary 7.2.3 we have

s> pltfv] 2 5 > pls/v]
There is a summand [, .y a(v) - p” T p' such that z = r > p”[t/v][r/w]. Moreover,
since v € fv*(p) we know that v ¢ fu(p”). Hence, z = r 3> p”[r/w] and thus we
have (for a € A,):

t > p'[t/v]) z

o

t>pltfy] =5 s> pt/v] a
c

ey ﬁ..b

t>p s> ps/v] 5 2

7.4. A Theorem for Branching Basic Terms 125

7.4 A Theorem for Branching Basic Terms

In this section we prove the main theorem for branching basic terms, saying that two
branching basic terms are strongly bisimilar whenever they are branching bisimilar.

Theorem 7.4.1 If p,q are time closed branching basic terms then
prhg = p=yg

Proof. We prove four Facts for p and ¢, in the given order.
Take U(p) = u.

e Fact 1 (r < w)

p B syl
2 R == v ¢ fo*(p)
P ~f£52> T>p
o Fact 2 (r < u)
7(r) 7
P =5 > pfr/v]
=y £
p @9, »>p

s Fact 3 (r < min{U(p), U(g))

™

P =, 7
2% 2y = p=yp
¢ sy

o Fact 4
pEyq == piig

In the proof of Fact 3 we assume that Fact 2 has been proven already for p only.

Hence, if p &2 ¢ and we have proven Fact 2 already for ¢, then in case of p) 4

the condition that there 3t, z, ¢’ such that

P e P
2

)
7 - > p o X
hand =
g =, z o) q

126 7. Completeness for Branching Bisimulation

reduces to J¢' such that

p Gy
= =N
¢ B¢

If z is a time closed branching basic term with S(2) = ¢t and U(z) = ¢/ and there
is an 7 € (4,t') then 2, denotes the process term which is constructed from z by
replacing each summand [¢ ¢y P(¥) by [oe(r,ey P(v). Note that 7> 2 < .

s Proof. Fact 1
Assume for r < u that

0 s plr/]
hacs)

or)
— TP

'@Li'd

then we have to prove v & fo*(p').

Take an arbitrary ¢ € {r,u) and consider the transition

> p RAC > plt/v],
we have to find a corresponding series of transitions starting from r > p'[r /v].
Note that p’ is smaller than p, thus we may assume that Fact 2 has already
been proven for p'.

First we assume that there is a p” such that
7(t) 1]
TP —5 t > p'[t/v]
2 2y
r> /] 25t pi/]
Since p is a basic term
plt/vl 2t plt/v] 25 t > p"[t/v] £ p"[t/4],

by induction p'[t/v] £ p"[t/v] and by Proposition 7.3.13 we have
depth(p'[t/v]) = depth(p"[t/v]). But this cannot be the case since depth(p”) <
depth(p'}, as p” is a proper subterm of p'.

Hence, it must be the case that

r>p O s pt/0)
2 f?)
r>plr/i] X5t plr/

7.4. A Theorem for Branching Basic Terms 127

Let &, be the lower bound resp. the upper bound of the initial integrals of
7, then every summand of p' is either of the form f,c.,y P(v) or P(¥).

There are two cases to consider:

- The case where b = v. Note that
plt/ol = ¢ plt/v] = ¢ plr/v] 2 (@'r/v])e.
By induction p'[t/v] = (P'[r/v])e.
Take an arbitrary summand [, a(w) - z of p. We will show that
v & var(t) U fu(z).
Since p'[t/v] = (p'[r/v]): there is a z* such that
Jueepan aw) - (2t/0]) © /Y]
R

Jwew iy a(;) (/) E @ [;—/“U])t

Then there must be a summand [,y a{w) - 2° of p' and an infinite
subset S C {r,u) such that ¥t &€ S

/we{w(t» atw) - (=[t/0]) = /we{t,b’(r)) a(w)- (Zr/o)

from which we conclude that
* U(t) = V(r) for more than one t, thus it must be the case that
v € var(y) and thus ¥ € T(S).
* Vt € S it holds that z[t/v] = 2'[r/v]. Hence, by Corollary 7.3.16, we
obtain v &€ fo(z).

For summands [,¢(, 4, a{w) we can conclude similarly that v can not
occur in b'.

~ The case where b # v. Then since p is a basic term r < b(r). 7 = b{r)
(for arbitrary r) implies b = v which case already has been considered.
So there are r < b(r) and we may assume as well that we have taken ¢
such that » < t < 8(r}. Hence

Plr/v] 2t plr/v] < t > plt/o] &2 plt/v].
By induction p[r/v] & p/[t/v]. Since this holds for all t € {r,b(r)) we
conclude v ¢ fv{p').

For summands a(b') - p” and a(¥') of p’ we can conclude similarly that v can
not oceur in &. Hence, v &€ fo*(p)).

e Proof. Fact 2
We assume for r < u that

128

7. Completeness for Branching Bisimulation

p r >3 plr/v]
2 2y
p D orsp

and we will show that this assumption leads to a contradiction. Take s = S{p).
First we note v & fv*(p’) (by Fact 1) and that there is a z % § such that

P2 7(v) - p +2
v€{s,u)

For if z =2 § then Rule 3° could be applied. Moreover
z Z[)é{s)Z;(v) + ZZ;(u)
i bt i

We will show that the assumption r 3> p'lr/v] =25 7 > p leads to the conclusion
that either the Rule 3 or the Rule 3" is applicable. We will do this in two steps.
First we show for each i that f,¢(, .y Zi(v) & p'[s/v]. Then we show for each
7 that either Zj(u) & p'[s/v] or that Zj(u) is of the form 7(u) - 2’ such that
2 & p'ls/v]. Moreover, we show that there is at most one such summand
7{u) -2, in which case z is of the form 2" + 7(u) - 2’ such that 2" + 2’ T p[s/v]
and Rule 3° is applicable. If there is no such summand 7(u) - 2’ then obviously
z & pls/v] and Rule 3° is applicable.

= I foe(sny Zi(v) is of the form f¢

each transition

a{v) then we obtain direct that for

8 ’u)

PR-CA y/ there is a transition r > p'[r /v] =0, Vv

and thus r > p'[s/v] o8, +/ as well. Hence, [,e(, . a(v) & pls/v].
Next, assume [,¢(, 9 Zi(v) is of the form [¢,) a(v) - 7/, then

PR-CAFEN Z[tfv] teru)

since we assume 7 3> p'[r/v] <2 7 >> p there must be corresponding series
of transitions starting from r > p'[r/v]. Note that we have proven Fact
2 alveady for r >> p'[r /v].
First we assume that ¢ = 7 and that for infinitely many ¢ the transition
is matched with and idling:

r>p O s 2|t/

s § s S

r>plrfo] St plr/ol

Since v ¢ fv*(p') and p is a basic term

7.4. A Theorem for Branching Basic Terms 129

Plt/v] 2t pit/v] 2t > plr/v] 2 t > 2'[t/v] = 2t/v]

By induction p'[t/v] = 2'[¢/], for infinitely many t. Since v & fv*(p) we
have as well v ¢ fv*(2') (see Corollary 7.2.2). Hence, p has two double
T-summands, e.g. foe(,. T(v) P and [, 7(v) - Z', and thus Rule 2% is
applicable. Contradiction.
We have obtained that for each transition

r>z s 2/,
where 7 < u, there is a p” such that

> plr/o] <O ¢ 't/
and

Z[t/v] 2t > 2t/v] = t > p"[t/v].

By induction z’[t/v] £ p"[t/v]. Hence
(3) Vre(su) / ,)a,(v) 2 & P/l
vel{r,u
From which we obtain that
/ a(v) -2 & o[s/v]
€ (s,u)
For if not, then there must be a transition
/ a{v) - 2' LSRN 2’ fv]
vC{s,u}

which cannot be matched by p'[s/»]. But this cannot be possible since
we may choose r arbitrary close to s in (3).

Concluding, we may say
S/ 7 & pls/ol
7 JrE{s,u)
— Now we have to consider 37, Z(u). For a transition

af{u)
p—
we obtain directly that there is a transition
r>plr/o] <4 v

and, hence, a(u) L p[s/v].
So, assume a summand Z; of the form a(v) - 2’ then

r>p oy w7

and either

130 7. Completeness for Branching Bisimulation

* a =7 and

T — u>7
el hmd
r>pfr/] % us gl
Since v € fv*(p') we have u > p/[r/v] < plls/v] & p'[s/v] and we

have
pLls/v] 2 u> pllr/v] 20 u > 2 2

By induction p[s/v] £ 2’ and thus 2/ & p'[s/v].
Note that there is at most one summand 7(u) - 2 such that » >
2 & ou > plr/v] For if r(u) - 2 + 7{u) - 2" C 2z such that u >
z" &2 u > p'[r/v] then we can deduce, using induction, that 2/ & 2"
and Rule 2* would be applicable.

* or there is a p’ has a subterm p” such that

>y) w2

= oy
r>plrfl S ws pu/ul
and we have
Z 2w 2 u>pu/v] 2 /vl
by induction 2’ £ p”[u/v] and thus a{u) - 2’ = a{u) - p"[u/w] from
which we conclude a(u)- 2 & p'[s/v]

s Proof. Fact 3
We have to prove for r < min{U(p), U{q))

p =, P
) i = p=yp
q & T>q

Since r < U(p) also p € p, and by branching bisimulation there is a ¢'

such that ¢ =%, ¢ and 7 > p 2% ¢'). We have, using Proposition 7.3.17,

r>p 2 ¢ S, r>g
r>»qg =2 p &, v>»p

by which we obtain that r > p =5 p’ and then we conclude, using Fact 2 and
the Stuttering Lemma, that p ==, p' is an empty sequence and p = p'.

e Proof. Fact 4

Pg = p2g

7.4. A Theorem for Branching Basic Terms 131

It is sufficient to show that U(p) = U(q), as this implies for any ¢ that
Ui(p) <= U(g). Assume U(p) < U(g), then we may assume as well that
p is of the form

zo + (1) - (21 + 7(w1) - (o 7(¥n) - 2Zn--.))
for some n > 0. We take ug = 3, uns1 = U(g). Furthermore we take

Pn d=ef Zn

7 d-—gfz,: + 7(#i41) * Pipa fori € {0,...,n— 1}
Then we have
P; £ ug 2> q
and
Ulgy>Up) = n>0

and we will show that n > 0 implies that Rule 4 is applicable from which we
obtain that n = 0 and, hence, U(p) = U{qg).

We have
Zn1 + T(Un) * 20 b U1 > ¢ 2 Gu,_y-
For each r € {(up-1, un) we have

Zpi atr) 2 o= 3¢ qu.,), g where 2’ 25 g, _,

Gun s) ¢ = 37 z, &), 7 where 2’ 23 g, _,

Hence, using Corollary 7.3.15 and induction, for each summand
Joe(uny uny &(v) - 2’ Of zp_y there is a corresponding summand
fve(un—x,un} &(’t}) - ¢ of gu,_, such that

/ aw)-# = [a(v)-¢,
VE(Un—1 ,Un) VE{Un1,Un)

and by Lemma 7.3.14 also

!

alv) - 2 :i/ a(v) - ¢,
[’E(un—l;un-;-l) () VE(Un—1,Un41} () ¢

and vice versa. Similarly for each summand a(u,) - 2’ of #,.1, apart from
7(tn) * Za, and each summand f,eq,, u,,q) Z(v) Of Zn.

Hence z,,..; ~ z, and Rule 4 can be applied.

132 7. Completeness for Branching Bisimulation

7.5 Completeness for Branching Bis. Eq.

We construct for each basic term its rooted branching basic term:

1. We replace every summand f, a(v})-p’' by [, a{v)-ply, where pj, is the branching
basic term of p'

2. Each p}, is of the form 3,04 :— p;, and we rewrite [, a(v) - pj, further to

Zi fa/\ag a,('z;) *Di-

Lemma 7.5.1 Let p,qg € T(BPApS]) and p.w, g are the rooted branching basic
terms of resp. p and g, then

=259 = s 2% g

Proof. First we note that BPApC + B; & p = Dros, ¢ = Gros, Dy soundness we
obtain that forall ¢ € ¢ we have o(p) 2 0(pms) and o(q) 2 o(gw). By
transitivity of =25, we obtain that forall o € [a] we have o(prw) b 0 (grs).

By the definition of strongly rootedness and Theorem 7.4.1, we obtain

a(pros) £ 0(Grss)- 0

Corollary 7.5.2 (Completeness) p,q € T(BPApSI)
pSq = BPApSI+Bralp=gq

Proof. Directly by the previous Lemma and the Completeness for =% (Theorem
4.6.7).

8

Delay and Weak Bisimulation and
Time

8.1 Introduction

In this Chapter we discuss briefly delay bisimulation equivalence and weak bisimu-
lation equivalence.

In the untimed case, delay bisimulation can be found by taking branching bisim-
ulation and relaxing one condition. Next, weak bisimulation is obtained by taking
delay bisimulation and allowing r-transitions afterwards. This is shown in the fol-
lowing figure which is copied from Chapter 1.

Figure 8.1: Three bisimulations with 7

In Section 8.2 we take the definition of timed branching bisimulation and we
derive timed delay bisimulation from it.

Baeten & Bergstra have suggested in [BB91] to interpret 7-transitions as idle
transitions. In order to obtain “well behaved” transition systems one has-to apply
the transitive closure on idle and step transitions. In Section 8.3 we investigate
this idea in greater detail and we show that the resulting equivalence coincides with
strongly rooted timed delay bisimulation equivalence of section 8.2.

In Section 8.4 we study the axiomatization of timed rooted delay bisimulation.

133

134 8. Delay and Weak Bisimulation and Time

In Section 8.5 we define timed weak bisimulation equivalence, by taking delay
bisimulation and allowing r-transitions afterwards. However, as this equivalence is
not a congruence for ACPp it will not be studied in detail. In Chapter 11 we discuss
delay and weak bisimulation in a so called two phase semantics, in that setting weak
bisimulation will be a congruence.

This chapter is based on [K1u92], though Section 8.3 originates from [Klu91a].

8.2 Rooted Delay Bisimulation Equivalence

The first clause of the definition of Idle Branching Bisimulation (see Definition 6.3.3)
is

o <p,i> o) « p,r > {(a € A) implies that there is a ¢’ such that

(<pt>25 L >)R(< g,t>2 g r).

We relax this clause, by removing the condition that the intermediate states must
be related, and we obtain the following clause for delay bisimulation.

o <> atr) < 9,7 > (a € A) implies that there is a ¢' such that
<q,t>==2»<q,r>and <p,T>R<q,r >

In this way we obtain the following definition for delay bisimulation.

Definition 8.2.1 (Idle Delay Bisimulation)
R C (T9(BPApé1) x Time)? is an idle delay bisimulation if whenever
<p,t>R <q,t> then »

1. <pt>) < P,r > (a € A) implies that there is a ¢ such that

<q,t>=;<q',7"> and <p,r>R<qg,r>.

2. <pt> =) < p,r > implies that there is a ¢’ such that

<gtr>=><gd,r>and<p,r>R <, 7>

3 <pt>=25 \/(aeA)zmplzesthat<q,t>=;\/
4. Respectively (1), (2) and (3) with the role of p and q interchanged.

We define (rooted) idle delay bisimulation equivalence <{,,; analogous to (rooted)
idle branching bisimulation equivalence.

If we define delay bisimulation equivalence in the context of the term semantics,
then we identify

L 1y 7) - 0(3) +5(3) and / (v) - a(3) + b(3),

which are certainly not identified by 4, as the idle transition

8.3. Closure Rules and Idle Transitions 135

P2

. @) f . 9
<] oy T 0@ +53),0> B< [7o) -0(3) +b(3),2 >
cannot be properly matched by
< / T 0(3) 5(3),0>

Hence, we do not define (rooted) delay bisimulation in the context of the term
semantics. But, we have another characterization of (rooted) delay bisimulation,
that is called semi delay bisimulation..

Definition 8.2.2 (Semi Delay Bisimulation)
R C (T(BPApSI) x Time)? is a semi delay bisimulation if whenever
<p,t>R<g,t> then

1 <pt> o o P,r > (a € A) implies that there is o ¢ such that
< q,t> O g,r> and<p,r>R<qg,r>.

2. < p,t > =% <p,r > implies that there is a ¢’ such that
<qt>=<gd,r> and<p,r>R<qg,r>.

3 <pt> 3-(*3 v (a € A,) implies that < g,t > = v,

4. Respectively (1), (2) and (8) with the role of p and q interchanged.

We define semi delay equivalence <24°*™ and rooted demi delay equivalence ¢ ;7e™
analogously and we have

Lemma 8.2.3
<pt> 20, <gt> = <pt> 2 <gt>

Proof. Omitted. 0

8.3 Closure Rules and Idle Transitions

In their original paper [BB91] Baeten and Bergstra spend a few words on abstraction,
that we work out in more detail in this section. They propose to replace each label
7 by ¢ in the transition systems. To guarantee that the transition systems obey
the standard properties of timed transition systems, one has to apply a transitive
closure on the idle and step transitions. We can perform this transitive closure by
an action rule like:

<p,t>ﬂ<p’,r> <p’,'r>€i‘—(i2<p”,s>

<p,t>a°—(sl<p”,s>

136 8. Delay and Weak Bisimulation and Time

We require that (strong) bisimulation remains a congruence, also after application
of this action rule. This implies, that we may not apply this action rule at the root
level, as 7(1) - o(2) must not be identified with 7(1) - a(2) 4 «(2). From the previous
discussions on branching bisimulation we know that such an identity is not allowed.

In order to distinguish root states (states that are reachable from the start state
by idle transitions only) from internal states, we add a boolean value to each state,
initialized on ff (false). As soon as an action ¢ € A, or an idling that originates
from a 7, has been performed, the boolean value switches to £t and remains &
throughout the execution of the rest of the process. For example, we have the
following transitions:

<7(2)-p,0,f>), <7(2)-p, L, >), <p,2,tt >

In Table 8.1 the action rules for the closure semantics is given.

An idle transition of the form

<pt, > <yt >,

80, where the boolean value is ff in both states, originates from a “real” idle tran-
sition, i.e. one that does not originates from a 7. We use this in certain premises,
where we have to distinguish “real” idle transitions from the idle transitions that
" originate from 7’s. For example, in case an alternative composition inherits an
idle transition, then the other components are dropped in case the idle transition
originates from a 7, otherwise the other components are not dropped. Thus,

<7(2)-a3),1,F> 2 <a(3),2,tt> and thus

<7(2) - a(3)+b(3),1,f > —= £, . a(3),2,tt > as well
though

<a(3),1,0> 2 <a(3),2,f> and thus

< a(3) +b(3) L,AF> B < a(3)+5(3),2, >

We say that two states < p,t,b > and < ¢,%,b > are closure bisimilation eguivalent,
denoted by < p,t,b > ¢ . < g,t,b >, if there is a strong bisimulation R, that
relates < p,t,b > and < ¢,¢,b >.

Lemma 8.3.1
<p > 24, <, tLfF> = <pt> 24, <gt>
Proof. Omitied. O

Here, £ _, denotes strongly rooted idle delay bisimulation equivalence, which can
be defined analogously to strongly rooted idle branching bisimulation equivalence,
see Definition 6.8.1.

8.3. Closure Rules and Idle Transitions

t<r
< afr),t,b> —> =) v

t<r<s

< a,s(8),t,6> 4, a.5(8),7,b >

<p,tﬁ>———><p r >

t<r
<r(r),t,b> 4

<p>tﬁ>—'_><ps'rﬁ>

<g}+q,tb> <p’+q,rb>

<g},t,b>f-‘-§3 V4
<p+q,t,b>(—li(~r~3 4

<ptb>2 o it >

<p-+gqtb> —;<p,7",tt>

a{r)

<p-q,t,é>—i(—2<p cq, 1, b >

<ptb>—<p,r¥>

s<r <’p,t,ﬁ>a—‘@<p’,r,tt>

< s> ptb> M<p’,?‘,tt>

t<r<s

<q+p,t,b>——><q+p’,r,b>

<p,tb>a~‘(3 4

a(r)

<g-+ptb>—s

<pt,b>20 <p r, tt >

<q+p,t,b>—3<p,mt>

<pt,b> 20 v

<pgt,b>" D cgrit>

r>s <p,t.b>?ﬂ V
< s> p,t, b>a"(r) v

s<r <p,tﬁ>i§f~3<p’,r,ﬁ>

<s>>p,tb>—><s>>p,rb>

r)

s> ptb> =5 <y, rb>

Closure Rules

<ptit>T v

<ttt r s
< p,t,tt > ol <p'lrtt>

<p,ttt>—(t—-)><p,t' tt >

<t tt>2

<ptt>20

(a€A a €A, as€ Ay, 1,t,s€ Time)

Table 8.1: Action Rules for BPApd7 with Closure Rules

138 8. Delay and Weak Bisimulation and Time

8.4 Axioms for Rooted Delay Bis. Eq.

Untimed rooted delay bisimulation equivalence is completely axiomatized by the
axioms T1 and T2.

TL p-7 = p
T2 7-p = 7-p+p

8.4.1 'The first r-axiom

We have seen already in Section 6.2 on timed branching bisimulation that p-7 =p
cannot be transformed straightforwardly to the timed case as a(1) - 7(2) cannot be
identified with a(1).

An option for a generalization is the identity T1s.

Tly o = ({bo,bi) #0 A v<b A Us(p))

Jang(@(v) - Jueqpopy (7)) -P) = fanplalv) - bo > p)

However, this identity is derivable from the law T1;, that has already been discussed
in Chapter 6, Section 6.5.

Ty a = ({bo,bi) #0 A v<by A Up(p))

Jang(@(v) 1) = Japg(a(v) - (P 22 bo + fuegoopy (7(w)) - P))

Hence, we consider T1; as the most appropriate generalization of the untimed T1.
Proposition 8.4.1 BPAp6l + T1r + Tl9

Proof. Take « as in T19. Without proof we state that BPApSIF (b>>» p) > b=
8(b).

fa/\ﬂ(a({u) “by > p)
2 Lans(0(®) - (B0 > P) 2 bo + fuepop) (7)) - (b0 > P))
= Jars(a(®) - (6(50) + fueqpo) (T(w)) - D))

= Jans(@(®) - fuegpopny (T(w)) - P))

8.4. Axioms for Rooted Delay Bis. Eq. 139

8.4.2 The second m-axiom

A typical example is

Juetay T(W) * Juen g 0(0)
=0 we(1,2) T(w) - fv€{1,3] b(v) + fue(i,z} b(v)

Note, that

P = fuep T(W) " fueq 3 b(v)
£re 4= fwea,z) 7(w) - fve(m} b(v) + fvé{l,S] b(v),
as the idle tramsition < ¢,0 > 42, < ¢,2 >, where < ¢,2 > i8 < ¢,0 >-rooted,
cannot be matched by < p,0 >, due to the rootedness condition. These examples
suggest to us the following timed version of the second r-axiom, T2.

T21 foc@opd(TW@) P = fucopp(TW)) - p+bo>p>b

In the following example we show how the above pair of terms can be identified
within a certain context.

Example 8.4.2
BPApSI + Tl + T2, Fa(l) - (p+¢(2)) = a(1) - (g+ ¢(2))

a(1) - (fueqz T(w) * Juen,5 b(v) + (2))
2 a(1) (e T®) - Uueqng 50) +7(2) fuepps (1)) +(2))
2 0(1) - (uepn T®) - e 00) + 72+ ez b))+
13> (fue.q 0(0) + 7(2) - fuera b)) 2 2+¢(2))
= a(1) (Jueas (W) (fueq,y b(v) +7(2) - fwe(m b(v))+
Jueq,a 00) + 7(2) - fueq b(v) +¢(2))

= a(1) Unepn 7®) fuens bO) + fuens b) +¢(2))

As in the untimed case we can derive B; from T1; and T2;.
Proposition 8.4.3
BPApéL + T1; +T2; + B;

Proof. Omitted.]

Theorem 8.4.4 (Soundness)

BPAp§I+T1;+T21 f-p:q = pSgq

140 8. Delay and Weak Bisimulation and Time

Proof. Omitted. 0

The law T2; is not sound for strongly rooted delay bisimulation equivalence. There-
fore, we formulate T2¥, by applying T2; in a context.

T2

| Ja(a(v) - (Juego sy (T(w)) - p+4)) =

1 Jo(a() - (Joeqopy (T(w)) P+ b0 > p 2> b1+ q)
We do not study whether T1; and T2, axiomatize 2!, completely, but we think
that it can be proven, using the techniques from the previous chapter.

8.4.3 Delay bisimulation without integration coincides with
branching bisimulation

If we formulate the axiom T2; in the context of T(BPApé7), then we obtain
t).p = 1) p+t>p>t.

Without proof we state that ¢ >> p 3> t reduces to 6(¢). Hence, the axiom T2; does
not add any new identities over T{BPApér).

8.5 Weak Bisimulation and Time

The first clause of the definition of Idle Delay Bisimulation (see Definition 8.2.1) is

o <pt> 20 < 7,7 > (a € A) implies that there is a ¢’ such that

<q,t>g<q‘,r>and <p,r>R<{,r>

We extend this clause, by adding an additional sequence of 7 and idle transitions
afterwards, in order to get a corresponding clause for idle delay bisimulation.

o <pt> - P, > (a € A) implies that there are z,¢' and ' such that

ccqt>E cars Iy <ot >,
- <pt'>R<q,t >,

ar{r'

e "
- <p’,r>—(t—~)><p’,t’>and <p,r> #- foralle € {rt]

We need the condition that < p/,r > € < 7.t > as only states with the

e (r)
same time value can be related. Furthermore, the condition < p/,7 > #—
for all v € (r,t] is needed, since the weak bisimulation skips all behavior
in between r and t' anyway, so we require that there is no behavior in that

interval.

8.6. The Third T axiom 141

We define weak bisimulation eguivalence, denoted by <., and rooted weak bisimu-
lation eguivalence, denoted by 2.

Definition 8.5.1 (Idle Weak Bisimulation})
R C (TH(BPApSI) x Time)® is an idle weak bisimulation if whenever < p,t >
R < q,t > then

1. <p,t> o), <g,r> (a € A) implies that there are z,q' and t' such that
. <q,t>“:(r3»<z,r> ==y < gLt >,
o <P >R <>
. ar ('
o <pr> 8 cpt'>and<p,r> 4 forallr € (r¢]

2. <pt> i < p',r > implies that there is a ¢ and t' such that

o < g t>==><qg,t >,
o <P >R <¢, >,

’ Q‘T(T,)
e <pr> «) <p, ¥ > and <p,r> 4= forallr' € {r1]

3. <pt> =0, V (a € A.) implies that there are z and s such that

o<q,t>-—:><zs>(—)> s

e <pt>R(<gt>=><2135>)

4. Respectively (1), (2) and (3) with the role of p and q interchanged.

8.6 The Third 7 axiom
First we give a typical example.
Example 8.6.1
a(l) - (7(2) - b(3) +¢(2)) 2rw a(1) - (7(2) - B(3) + ¢(2)) + a(1) - b(3)
This identity looks like an instance of the untimed axiom T3
a-(rT-ptg=a(r-p+q+a-p

We generalize this axiom to the timed case.

142 8. Delay and Weak Bisimulation and Time

T3, r<t

afr) - (7(t) ' p+q) = a(r)-(v(t) - p+g) +alr)-7(t) - p

T3; a=(<[bo,b1}};é(b/\v<b1)

Jans(a(¥) - Juegopny (T(w) - P) +9)) =
Janpla(v) - (fweqbg,bﬁ (T(w) -p) + q) + fors a(v) - fwe\[bg,blb(’r(w) 'p))

We obtain new identities without 7, such as BPApé, as well, these are characterized
by combining T1, and T3,.
Let r <t < U(p) A Ulg) <¢then
T
a(r)- (t>p+q) ;” a(r) - (r(t) - p+q)
;" a(r) - (r(t)-p+q) +alr)-7(t) - p
= a(r) - (t>p+g) +a(r)-(t>p)

Theorem 8.6.2 (Soundness) p, g € T(BPApSI)
BPAp«(ST+TII+T2]+T31f"p=q = P2 g

Proof. Omitted

8.7 The Extension to ACPp

In Chapter 1, Section 1.4, we have discussed briefly the extension of untimed delay
and weak bisimulation to ACP.
In the timed case we have similar phenomena. Cousider for example the pair

. Hl« . -
'/"6(1’2) i ve(1.2) o) = /véim)) /ue(l,z) alv) + /»e{l,z) al2)
If we take v(a,b) = ¢ # 6, then

(/UE{I,2) 7(v)- we(1,2) a(v) + -/1;6(1,2) a(v))l/vem} b(v)

has a summand [,¢(, o ¢(v). However, according to the operational semantics of this
chapter the process term (foe(9 7(2) - feqr,2 @(¥) fogqr,0) b(v) has no transitions at
all. ‘

Hence, £2,4 is not a congruence for ACPp. We think that 2,4 is a congruence
over ACPp without the auxiliary operators L and |, in which case we need a CCS
alike expansion theorem for the axiomatization of ||. We discuss an expansion the-
orem for a slightly different setting in Chapter 12. Another way of repairing the

8.7. The Extension to ACPp 143

above example, is to add action rules to the term semantics, that are similar to
the closure rules we have discussed as well. These problems are subject for further
research.

For the case of time weak bisimnulation the case is even worse, as weak bisim-
ulation is not a congruence for the merge (]|). Take p = d(1) - (a(3) + 5(2)) and
¢ = d(1) - (a(3) + b(2)) + d(1) - a(3) where, y(b,b) = ¢. Then we have BPAps+
T3, p=q. But in a context they can be distinguished. In Ay (pl[B(2)) at time 2
a communication of b(2) with 5(2) is forced since it is the only option for the whole
process not to deadlock at 2. However, 0:;(g|[6(2)) has a deadlock at time 2.

ACPpt 0py(pllb(2)) = a(1)-c(2)
ACPpt 9y (glb(2)) = all)-c(2)+a(1)-8(2)

This counterexample is due to Jan Bergstra {[Ber92]). Hence, weak bisimulation
is not a congruence in ACPp. Therefore, we think that weak bisimulation is not
appropriate for extension with time, at least in the context of ACPp. This problem
is due to a interaction of our operational semantics and weak bisimulation. In our
operational semantics every transition takes time and consecutive actions cannot
occur at the same point in time.

In Chapter 11 we discuss a two phase semantics for ACPp, in which rooted weak
bisimulation equivalence does not suffer this latter problem. In Chapter 12 we show
that weak bisimulation in such a two phase semantics corresponds to other notions of
timed weak bisimulation as can be found in the literature [Wan91a],iMT92], [Che93]
and [QdFA93].

144 8. Delay and Weak Bisimulation and Time

Part 1V

Guarded Recursion

145

9

Prefixed Integration and Guarded
Recursion

9.1 Introduction

In this chapter we generalize the definitions and results of Section 1.5, where we
have introduced recursion and guardedness in BPAS7, into the context of BPApéTL.

The main difference with the untimed setting is that we parameterize recursion
variables with a time variable, For example, when we define

X)) o) xw+1)

then X(1) is the process that executes an a at time 1,2,3,.... For simplicity we
will restrict ourselves to the case where each recursion variable is parameterized by
exactly one time variable.

9.2 Some Definitions

We assume a set RVar of recursion variables, with typical element X. If R is a

subset of RVar then we denote by T(R, BPApdrl) the set of process terms over

BPApé7I in which the instantiated recursion variables, that are expressions of the

form X(b) where b is a bound, from R may occur as atomic constructs. We put
fo(X(b)) = var(b).

A timed specification E is a finite collection of declarations of the form

{XO(vi) défp(): '")Xn(vn) defp’n}

where p; € ({Xo, ..., X}, BPApé7I) and ¢ # j implies X; # X;. We will restrict our-

selves to time closed declarations, i.e. fu(p;) C {v;}. We denote the set {Xo, ..., Xu}
by rvar(E). For X € rvar{E) we denote the right hand side of the declaration of
X(v)in E by pX(B} U X ¢ rvar(E) then pX(») denotes 4.

147

148 9. Prefixed Integration and Guarded Recursion

We parameterize the action relations of our operational semantics by a specifi-
cation E. We have two additional action rules, which are given in Table 9.1. We
obtain equivalences like =, <+F and «£ in the obvious way.

—s) ——} —rb

Piwlt/v] e pEylt/v] eV
X(@t) gy X(t) eV

Table 9.1: Action Rules for Recursion

If p is a process term and there is a time variable v such that fu(p) C {v},
then we denote p[b/v] by p(b). If fu(p) = {v}, then the time variable v can be find
easily when we write p(b), and in case fv(p) = @, then it doesn’t matter which v we
take as p[b/v] can be reduced to p. Moreover, when we write p(b), then we assume
implicitly that | fo(p)| < 1.

Definition 9.2.1 (the notion of a solution) p € T(rvar(E), BPApS7I), with
|fv(p)] < 1, is a b-solution for X in E modulo £, if p(b) = p%(b).

We have similar definitions for =2, and .
In order to define the notion of guardedness we (re)define the auxiliary boolean
function GE ? on process terms, see Table 9.2.

Proposition 9.2.2 For ¢l E, R and p € T{RVar,BPApé7I) there is a boolean
ezpression «, either tt or ff, such that A4,5+ G199+ B1,2+ GE(p) =«

Proof. As in the untimed case, see Proposition 1.5.3.]
Definition 9.2.3 {(Guardedness) The specification E is guarded if for all X €
rvar(E) A4,5+ G1-9+ B1,2F GF(X(v)) = tt.

And, of course, if a specification E is guarded then all process terms over E are
guarded as well.

1The above definition of G (p) is rather syntactical. For example, in case

def

X{v) = m(w) - X{v+1) + a(v + 10)

we(v,10}
we could say that X(0) is guarded as there are only finitely many unfoldings possible. We have
chosen not to do this. It complicates the notion of guardedness since it has to be a conditional
expression. Moreover, it is not clear that Proposition 9.2.2 can be proven, take for example
def

Y{v) = (w) - Y {(w) + alv + 10)
we(0,10)

9.3. Axioms for Recursion and Projection 149

Gl GE(J,a(v)) =
G2 GE(f,7(v) =
G3 GR(falv)-p) = tt
G4 GR(J,7(v)-p) = GR(p)
G5 Grlp+4q) = GE(p) A GE(g)
G6 GR(X(b) = GRup %)

if X € rvar(E)-R
G7 GR(X(1)) = ff otherwise
G8 GR(X(b)-p) = GREux®%-p)

if X € rvar(E)—R
G9 GR(X(b)-p) = f otherwise

Table 9.2: Axioms for the (boolean) guardedness function

Proposition 9.2.4 Let FE be a guarded specification and
p € T(rvar(E), BPAp6rl) then A4,5+ G1-9+B1,2+ G§(p) = tt.

Proof. Omitted. 0

9.3 Axioms for Recursion and Projection

REC? X(b) = p§[b/v]

RSPE p(b) = px[p/X10), 90) = pxl@/XI0) = B() = 7(b)

Table 9.3: Additional axioms for recursion

As in the untimed case we have two axioms, REC# and RSPE, they are given in
Table 9.3. And we redefine the projection operator as well, see Table 9.4.

If P = (p1,....ps) Is & vector of process terms (such that |fv(p;)] < 1) and
b= (bs,...,b,) is a vector of bounds, then we denote by 7(}) the vector of process
terms (p1(b1),...,pa(b,}). For the other notations that are used in Table 9.3 we
refer to Section 1.5.3.

150 9. Prefixed Integration and Guarded Recursion

PR1 mo(f, a(v)) = 4§
PR2 mun(fo(®) = Jia(v)
PR3 ([, 7(v)) = [7(v)
PR4 mo(f,a(v)-p) = &

PRS mo1(f,(alv) - p))
PR6 m.(f,(7(v)p))
PRT ma(p+49)

Ja{a(v) - ma(p))
Jo(r(v) - m(p))
Tn(p) + 7n(q)

i

i

i

a€ A, n>0

Table 9.4: Axioms for the projection operator

9.4 The Soundness of the Restricted Recursion
Specification Principle

‘We formulate the notion of a head form as in the untimed case and we have a similar
proposition:

Proposition 9.4.1 Let E be a guarded specification and
p € T(rvar(E),BPApéTI), then there is a ¢/ such that p is in head form and
BPApSI + RECP + PR1-7+ m,(p) =9

Proof. See the proof of Proposition 1.5.6. o

Lemma 9.4.2 If E is a guarded specification and p € T(rvar(E), BPApérl), then
for each n there is a finite process term P/, without occurrences of the projection
operator, such that

BPApSI + RECE + PR1-TF m,(p) = ¢/

Proof. See the proof of Proposition 1.5.7. O

Lemma 9.4.3 Lei E be a guarded specification with X € rvar(E) and
p € T(rvar(E), BPApbr1) with | fv(p)| < 1 such that p is a b-solution for X (v), then
for all n we have m,(p(b)) £24w) T (X (b)).

Proof. The proof is almost identical to the proof of the untimed version (see
Lemma 1.5.8).

Since p is a b-solution for X(v) in E we have m,(p(b)) £ ma(px[p/X][b/v]).
Consider the derivation between 7, (px(w[b/v]) and hnf (. (px(w[b/v])), note that
the latter process term is a finite process term, so X does not occur in it. For each

9.4. The Soundness of the Restricted Recursion Specification Principle 151

identity in this derivation for which REC® X (b) = px(.[b/v] is used we apply p(b) =
Px)[p/X]|b/v] instead. This gives us a derivation between 7, (px([p/X][b/v]) and
haf (ma(px|b/v])) and we are ready.

Lemma 9.4.4 (Projection Lemma) If E is a guarded specification with
X € rvar(E) such that both p,q € T (rvar(E), BPApsTI), with fo(p) < 1, fvig) <1,
are b-solutions for X (v) in E modulo 2., then for all n we have

To(p(b)) 2(rey Ta(g(b)).

Proof. Immediate from Lemma 9.4.3. O

Recall that p == p’ denotes that there is a sequence of timed 7 transitions from '
ptop.

Proposition 9.4.5 If F is a guarded specification and p € T (rvar{E), BPApS7I)
then the set

{P'lp’ is a subterm of p,30 p = '}
is finite.
Proof. By induction on I(p). o

Again we have AIPE:

AIPEZ ¥ : m(p)=m.(9) = p=g¢

And we prove

Theorem 9.4.6 (Soundness of AIPg) If E is a guarded timed specification and
P, ¢ € T{rvar(E), BPApérl) then

Yni: Ta(p) ﬁﬁé) m(e) = p=lg

Proof. Let p’ be a subterm of p such that p’ can be reached from p in more than
zero transitions. Similarly we take a subterm ¢’ of g. We define for each m a relation
~m sSuch that

Pomd &= ’”m(p’) &2 ()
and we put p’ ~ ¢ if for all m we have p' ~,, ¢
We show first that ~ is a branching bisimulation. Take 9/, ¢' such that p' ~ ¢'.

afr),

o Consider p” such that p’ — p”, where ¢ € A, and put

Sn = {(5,4v,0) | ¢ =>0(2) “D olr/ol(g"),
P o (¢ == 0(2)), P~ ofr/vl(g")}

152

9. Prefixed Integration and Guarded Recursion

and
S9m = {(240) |30(20"v,0) € 5.)

Then we have
1. 8y 2 81 D 832 ..., since u ~pyy ¥ implies u ~ o/, Thus 37" D $7¥™ 2
S¥™ D .. as well.
2. For all n S,, # @ since p' ~py1 ¢ Thus S5¥™ = @ as well.
3. For all n S5¥™ is finite, by Proposition 9.4.5.

Hence 52, S2™ # B and we can take a tuple (z,¢",v) € N2y S¥™. Then

=0

there is a o such that {2,¢",v,0) € M52y Sp, such that
¢ == 0(2) = alr/v)(¢"), P’ ~ (¢ = o(2)) and p" ~ o[r/v](¢").

The other cases and the rest of the proof can be derived from the above case and
the proof of the untimed version of the Theorem (see Theorem 9.4.6). O

Theorem 9.4.7 (Soundness of RSPE) If E is a timed guarded specification with
X € rvar(E) such that both p, ¢ € T{rver(E), BPApdrl) with fu(p) < 1, fo{g) < 1,
are b-solutions for X (v) in E then p(b) «2Z q(b).

Proof. Direct by the Projection Lemma and the Soundness of AIPE. o

10

Protocol Verification

10.1 Introduction

Process algebra, i.e. untimed process algebra such as ACP [BWY0], can be used to
prove that the implementation of a protocol meets its specification, for a reference
see [Bae90]. The standard example is the alternating bit protocol, see [BW90].

In this chapter we will show that the techniques for protocol verification which
are used in untimed process algebra can be used in the timed case as well. We give
a verfication of the PAR-protocol (Positive Acknowledgement with Retransmission),
that has been specified in [BB91]. An earlier version of this verification has been
published already in [Klu91a|.

We will encounter some new concepts. If we have a process like

X@) Y r0) (V0 +2) + (0 +1) - X (v +3)}

one would like to be able prove that

oo
Xw)=7() - {d rlv+1+3-n)-Y(v+2+3-n)}

n=0
The n in the summation of the second process term corresponds with the number
of recursion loops in the first process term. This identity cannot be proven within
the axiom systems we have seen so far. In the next section we will introduce the so
called Unwind Principle by which we obtain the above identity.

If one is not interested any more in all internal moments of choice one could also

argue that

a(1) - (r(2) - b(3) + ¥(3)) = a(1) - (b(3) + ¥'(3))

In Section 10.4 we introduce a so called 7-erasing bisimulation that identifies these
two process terms. Of course, this equivalence is not a congruence over ACPp, as
these two terms can be distinguished by the context 8,3(... [[b(3)), if ¥(b,d) = ¢,
and y(¥',b) = 6. This equivalence allows us to simplify the above identity for X (v)
into)

153

154 10. Protocol Verification

X@)=r(v)- {3 Y(w+2+3 n)}

=0

The main part of this chapter is devoted to an algebraic reasoning by which we
can rewrite the implementation of the PAR protocol into an expression that still
contains all external behavior and all possible internal moments of choice. With a
little handwaving we use the 7-erasing bisimulation to get rid of all the internal mo-
ments of choice, and finally we sketch that the resulting expression is trace included
by some more {time-)abstract expression.

10.2 The 7-swap and 7T-removal

In the verification of this chapter we make use of two identities. One of them is the
T-swap, that allows to swap the 7 from one summand to the other. For example

a(1) - (7(2) - 5(3) + ¢(3)) = a(1)- (6(3) +7(2) - c(3))

The next one is the r-removal, for example

a(1) - (7(2) - 5(3) + ¢(2)) = a(1) - (6(3) +¢(2))

The formal definitions of these identities are given in Table 10.1.

T-Swap faAUb(p}/\Ub(g) G,(’U)) (T(b) ‘p+ q) =
fu/\U;,(p)AUb(q) a(v) - (p+7(b) - 9)

T-removal [oap, -y @(¥) - (7(0) -p+q) =
Jort@n-aiay @(¥) - (P +9)

Table 10.1: The 7-swap and 7-removal

10.3 The Unwind Principle

In Table 10.2 we formulate the so called unwind principle, that allows us to unwind
a recursive specification infinitely many times. As motivation we give the following
pseudo derivation.

10.4. A r Erasing Bisimulation 155

X(w) = 7(0)-{Y(w+b) +7(v+b) X{v+b)}

UP Y(w)

i

w» Y(w), bp < min(b,b) =

X(w) = 7(0) {Z2rw+bo+n-b) Y(w+b+n-b)}

Table 10.2: The Unwind Principle

>
—~
L4
R
i

(o) - {Y{(v+b)+7(v+bp) - X(v+b1)}
T{v) - {r{v+by) - Y{o+b) +X(v+b)}
r{v) - {r{v+b) Y{v+b+
7‘(?) +b1)‘
{Yw+b+b)+7(v-+by+b) X(v+2 5)}}
(v} - {r(v+b) Y{v+b)+
{Y(v+b+b1)+'r(v+bg+b1) X(v+2bl)}}
= 7(v) - {r(v+by) Y(v+b+
Tw+by+b) - Y{w+b+b)+X{w+2-b)}

o

L 7(v) (W b+ b)Y (v b+ b))

The dots in the derivation below express that this principle is not provable within
the theory BPApdl, or BPApbI, in a finite derivation.
10.4 A 7 Erasing Bisimulation

Definition 10.4.1 (7-Erasing Bisimulation)
R C (T x [0,00))? is an T-erasing bisimulation if whenever pRq then

1.p 20 7 (a € A) implies that there is a ¢ such thai ¢ o g and p'R¢’
2. p 2 W/ (o € As) implies that g oA Ve

3. Uy(p) implies that there is a z such that ¢ == ¢ and U(¢').

4. Respectively (1), (2), (8) with the role of p and q interchanged.

Recall that ¢ == ¢ means that there is a 7 sequence of length zero or more from
g to ¢’. And we have

156

10. Protocol Verification

Definition 10.4.2 p <., q if there is a (rooted) erasing bisimulation R such that

pRq.

. is an equivalence over BPApd7, but not a congruence. .. is a congruence over
BPApéT, but not over ACPp.
We can formulate the following law:

o = (’U <b A Ubl(p))

Te fars a(v) - (fwe([bg,blb T(w)-p+gq) = fal\ﬁ a(v)- (b > p+q)

10.5 The Specification and the Implementation
of the Protocol

First we define the individual components.

A

Al (b) ’U)
Ag(b, (i, ’l))
A3(b, d, ’U)

K
K'(v)

L
LI

B
B;(b)
By (b)
By(b)
Bs(b, ’E})

o

o

i

o

Al(O: 0)

ZdGD fw>’u T3 (é:) ('UJ)) Ag(b, d) w)

s3(db)(v + 0.001) - A3(b,d,v)

fwe{v+o.001,v+o.01} rs(ack)(w) - Ai(1 — b, w) +
time.out(v - 0.01) - 45(b,d,v + 0.01)

Lrenxs JusoT3(f)(w) - K'(w) <
{s4(f)(v + 0.002) + errorg(v +0.001)} - K

Jusomslack)(w) - L'
{ss(ack)(v + 0.002) + errory(v +0.001)} - L

By (0)

By (b) + By(b)

3 aeD Jwwo Ta{db)(w) - s2(d)(w + 0.001) - B3(1 — b, w)
Faep fusoTa(d(b — 1)) (w) - B3(b, w)

sg(ack){v + 0.002) - By(b)

10.6. Expanding the Definitions 157

10.6 Expanding the Definitions

We expand the definitions, for each new configuration a new recursion variable is
chosen. In this way we obtain the parameterized recursion variables Xo— X3, ¥1—Y3
and Z 1s Zg.

PAR'impl = XO(O:O)

Xo(b,v) Or (A1 (b, v)[| K| L]| B(8))

= Jusv Laep T1(d)(w) - X4 (b, d, w)

i

Xl(b, d, 7))
= 0g (A dv)[[K| LI B(®))
= 3;; (Sg(db)(?)+0001) 'A3(b, d, ’U)
H ZferB fw>0 7'3(f)(w) - K'
L

| Bu(b)

)
= ¢3(db)(v+0.001) - X2(b,d,v)

Xz(b, d, “U)
= 0r ([fwe[v,v—}-&ﬂl} rs(ack, w) - A(1 - bw) +
time_out(v + 0.01) - A3(h, d, v + 0.01)]
| [s4(db)(v + 0.003) + errorg (v + 0.002)] - K
I L
| Eiep Jusora(db)(w) - sa(d)(w + 0.001) - B(1 - b,w) + B;(b)

= q(db)(v -+ 0003) . Sg(d)(’v -+ 0004) . Zl(b, d, ’U) +
errorg{v + 0.002) - téme_out(v + 0.01) - X(b,d, v + 0.01)

Zl (ba d; ’U)
= BH (Ag(b, d,’U + 0001)
I K
| JusoTelack)(w) - L'
Il ss{ack}(v + 0.005) - B{1 — &)
)
= gglack)(v + 0.005) - Zo(b,d,v)

Z?(b» d? ’U)
= 9 ([Iw€[9,9+{).01) rs(ack, w) - Ai(1 —b,w) +
time.out(v + 0.01} - A3(b, d, v + 0.01)]
K

158 10. Protocol Verification

|| {ss{ack)(v + 0.007) + errory(v + 0.006)] - L
I Bi(1-b)

cs{ack)(v + 0.007) - Xo(1 — b, v +0.007) +
errory(v + 0.006) - time_out(v + 0.01) - Y1(b,d, v + 0.01)

Yi(6,d,v)
O (Asbd)| K| L|IB{L-b))
BH (Sg(db)(?} + 0001) . Ag(b, Cg, ?})
” ZferB fw>0 ?'3(.{)(“))
[34(f)(w + 0.002) + errorg(w + 0.001)] - K
L
| Bi(1-0)

0ol

)
= c3(db)(v+0.001) - Ya(b,d,v)

Y3(b,d, v)
= Op ({fwe[v,wo.m) rs(ack, w) - A (1 —b,w) +
time_out{v + 0.01) - Az(b, d, v + 0.01)]
| [sa(f) (v + 0.003) + errorg (v + 0.002)] - K
I L
| Edep fusoTa(d(l — 5))(w) - 55(d)(w + 0.001) - By (b, w) +
Bj(1 -)

)

= ¢y{db)(v + 0.003) - Zy(b,d,v) +
errorg (v + 0.002) - time_out{v + 0.01) - Y1(b,d, v -+ 0.01)

10.7 Abstracting from Internal Steps

We apply the renaming operator 7r which renames every atomic action a(v) to 7(v)
except for the actions r1(d)(v) and sy{d}{v).

7r(Xo(b, v)) Juso Zaep r1{d)(w) - 71(X1(b, d, w))

r1(X1(b,d, v)) (v + 0.001) - 7(X2(b,d,v))

T1{X>(b,d,v)) 7{v + 0.003) - s5(d)(v + 0.004) - 77(Z:(b,d, v)) +
(v +0.002) - 7(v + 0.01) - (X1 (b, d, v + 0.01))
7{v + 0.005) - 71(Z2(b, d, v))

(v + 0.007) - 74(Xo(1 ~ b, v + 0.007)) +

7(v + 0.006) - 7(v + 0.01) - 7, (Y1(b,d, v + 0.01))

I

ot

TI(Z'I (b> d) ?"))
71(Z3(b, d, v))

InH

71{Ya(b,d,)
71(Ya(b,d,v))

T('U -+ 0‘001) . ?')’(Y:z(b, dy ’0))
(v +0.003) - 7(Z,(b,d, v)) +
7(v +0.002) - 7(v + 0.01) - 74(Y3 (b, d, v + 0.01))

10.7. Abstracting from Internal Steps 159

Now we can apply the 7-law and its implied identities (such as the r-swap and

the 7-removal).

7i{X1(b, d,2))

Ty ()’3 (b, d, U))

T(’U + 0001) ' TI(Xg(b, (i, ‘U))
(v + 0.001) -
{ 7(v+0.003) - 53(d)(v + 0.004) - 7(Z1(b, d,v)) +
(v + 0.002) - 7(v + 0.01) - 77(X; (b, d, v + 0.01)) }
7{v -+ 0.001) -
{ sa(d)(v + 0.004) - 7{v + 0.005) - 7{Z2(b,d,v}) +
7(v+0.002) - 77(X1(b,d, v + 0.01)} }
7(v +0.001) -
{ sa(d)(v + 0.004)-
{ (v +0.007) - 71(Xo(1 — b, +0.007)) +
(v + 0.008) - 7(v + 0.01) - 7 (Yi(b,d, v + 0.01)) } +
7{v+ 0.002) - 7 (X1{b,d,v + 0.01)) }
7{v + 0.001) -
{ s2(d)(v + 0.004)-
{ T](Xo(l -— b,t -+ 0007)) -+
(v + 0.006) - 77 (Yi(b,d, v + 0.01)) } +
’3‘"('1) -+ 0002) . T;(Xl(b, d,v+ 001)) }

(v +0.001) - 7 (Ya(b,d,v))
7(v +0.001) -
{ T(’U + 0003) . 7'1(21(5, d, 'U)) +
7(v +0.002) - 7(v + 0.01) - 7 (Y3 (b, d,v + 0.01)) }
(v +0.001) -
{ T('U + 0005) . TI(Zg(b, d, @)) +
7{v + 0.002) - 7 (Y1(b,d, v + 0.01)) }
7{v -+ 0.001) -
£ { (v +0.007) - 7 (Xo(1 — b, t + 0.007)) +
7(v +0.006) - 7(v 4 0.01) - 7, (Y1(b,d, v +0.01)) } +
(v +0.002) - 74 (Y1(b, d, v + 0.01)) }
7{v + 0.001) -
{ 71(Xo(1 — b,t + 0.007)) +
7(v + 0.006) - 77(¥1(b, d,v + 0.01)) +
(v +0.002) - r7(Vi(b,d,v + 0.01)) }

By applying the Unwind Principle:

1(X1(b, d,v)) = 7(v + 0.001)-

TR (v + 0.002 + n - 0.01)-
$2(d)(v + 0.004 + 7 - 0.01)-
{ 71(Xo(1 = b, v + 0.007 + n - 0.01)) +
7(v 4+ 0.006 +n -0.01) - 7 (¥1(b,d, v + (n+ 1) - 0.01)) }

160

10. Protocol Verification

r(Yi(b,d,v)) = 7(v+0.001)-

o o T(v +0.002 4+ n - 0.01)
{r1(Xo(1 = b, v + 0.007 + n - 0.01)) +
7{v + 0.006) - 7, {Y1(b,d,v + 0.01))}

If we abstract from all internal activity we come to the following sequence:

Read the data at port 1 1
It takes n time outs before it is delivered at the sender 2
The data is sent over port 2 3
Either the system is back in its starting position 4q

or another round is needed for the acknowledgement 4b

An “acknowledgement round” is similar, though no read at port 1 an send at port 2
occur. Below we give a more formal presentation of this high level view. We define
Q(b,v) and Q'(b,v) as follows. @'(b,v) i8 the “acknowledgement round”.

Q(b7 'y) = fw>v ZdeD rl(d)(w) 1
5% o T{w + 0.002 + n - 0.01)- 2
s2(d)(w + 0.004 + n - 0.01)- 3
{Q1 - b, w + 0.007 +n-0.01)+ da

7(w+0.006 +n-0.01) - Q' (b,w +0.006 +n-0.01)} 4b

Q'(b,v) = 7{v+0.001) -T2, 7(v + 0.006 +n - 0.01)
{Q(1 - b,v +0.007 + 7 - 0.01)+
(v + 0.006 + n - 0.01) - Q'{b,v + 0.006 + n - 0.01)}

If we take

PARint—chmfce = Q(O, 0)

spec

then we can prove

ACPp + B, + RSP - PARD: P9 = PAR0

10.8 Some Tougher Methods and Handwavings

The definition of PAR{:;“***** still contains all internal moments of choice, hence
the suffix. At this point in our verification we are not interested any more in these
moments and we define

PARZH™ = P(0,0)

where

10.8. Some Tougher Methods and Handwavings 161

P(ba 1)) = fu,->v szD L (d)(w)
T2 o so(d)(w + 0.004 + n - 0.01)-
{P(1 - bw +0.007 + n - 0.01)+
P'(b,w +0.006 +n-0.01)}

P'(bv) = 52{P(1—b,v+0.007+n-0.01)+
P'(b,v + 0.006 + n - 0.01)}

We have obtained a description that contains all possible timings which are observ-
able by external actions. If we allow ourselves the freedom to do some handwaving
by which we can apply the axiom E infinitely many times then we obtain that
PAR‘;?;te;ckmce — PARext«tzm'

spec

Finally we define

S(b,v) = r(d : sa(d - S(b,w
o) = [, E o) [s 56,w)
We take PAR,p.c = S(0,0), and we argue that all traces of PARZZ..®™ are traces of
PAR .. as well. o

PARgxtﬂtdm Strace PARspec

spec

Of course the reasoning at the end of this chapter is not very precise and formal.
If protocol verification in real time process algebra is to be used, then we expect
that the Unwind Principle, T-erasing bisimulation, dealing with infinite sums and
preorders, can be of use. However, these concepts have to be studied in much more
detail, which is subject for further research. o

162 10. Protocol Verification

Part V

Urgent Actions and Related Work

163

11

Real Time ACP with Urgent
Actions |

11.1 Introduction

In this chapter we introduce a variant of Real Time ACP by introducing so-called
urgent actions in a relative time setting. Urgent actions are actions that may be
executed consecutively at the same point in time. Note that this is not the case in
ACPp where a(1) - b(1) equals a(1) - §. We refer to this variant by ACPur, the u
stands for urgent actions and the r for relative time. The motivation for this variant
is that other timed process calculi have also urgent actions in a relative time setting.
In the next chapter we will show how several other time calculi can be expressed in
ACPur. .

This chapter can, in principle, be read independently of the previous ones. For
some definitions, however, we refer explicitly to the sections where they can be
found.

ACPur consists of the ingredients given below.

¢ Relative time; the time stamps of the actions are interpreted relatively to
the time of execution of the previous action, or 0 in case of an initial action.
Relative time has already been introduced in real time ACP by Baeten and
Bergstra in [BB91|, where they use square brackets.

o Urgent actions; we assume that for each (symbolic) action a we have its urgent
variant, denoted by 4. The difference between d[¢] and af#] is that the first
action idles until ¢ (¢ included) after which it executes the @ action without
taking any time. a[t], however, idles till ¢ (¢ excluded) and the execution of the
@ action coincides with the proceeding to point 1 in time. Another example,
b{0] means that b has to be executed immediately, while b[0] equals a deadlock
at time 0, since it cannot do the b nor can it idle.

o Prefixed multiplication; as constants we have timed deadlocks only.

165

166

11. Real Time ACP with Urgent Actions

e The standard operators +, ||, 1L, |,y and p;. The operator p; has not been
discussed in the previous chapters on parallelism and synchronization, though
it is a standard operator from the literature. The symbol f denotes a mapping
from atomic actions to atomic actions, and the operator py takes a process term
p and applies this mapping f on all the atomic actions of p.

¢ Two new operators.
— The shift-operator, (b)-p. If r > 0 then {r)-p is the process that becomes

p after idling r time units, if r < 0 then (r) - p is the process which is
reached after p has idled 7 time units, and finally, (0) - p equals p. For

example:
(2) - (foepg 8le) - b +3]) = o] - blo + 1]
(=2) (Joepsg @lv] - Olv +3]) = fve [v] blv + 5]

It is used, among other places, in the axiomatization of the left merge,
for example

a[1)Lb[3] = af1] - (1) - b[3] = a[1] - bf2].

The notation (b) - p originates from Moller & Tofts [MT90], for a time
element ¢t they have (¢).p. The shift operator can also be found in the
work of Chen [Che93]. The axioms of (b) - p in this chapter resemble the
ones of Chen, though Chen does not give action rules for it.

Hennessy & Regan [HR90] have introduced a similar construct in discrete
time, they denote (1) - p by o(p). Baeten & Bergstra [BB92] have also
defined a shift operator, for which they use the notation of Hennesy &
Regan. They denote (r) - p by o,.(p). We have chosen to use the notation
(b} - p of Moller & Tofts and not the notation o4{p) of Baeten & Bergstra,
as the o denotes already an arbitrary substitution.

~ In the next chapter we encounter several timed process calculi that as-
sume mazimal progress, i.e., a process cannot idle any more after the
internal action T has been enabled.

For maximal progress in the context of real time process algebra we refer
to Wang. Nicollin & Sifakis [NS91] have introduced action urgency, and
they can consider maximal progress of an instantiation, namely 7-urgency.
Bolognesi & Lucidi [BL91] have defined an urgency operator p(H)p in a
discrete time context. The operator p(H) makes all actions in H urgent in
its argument. We define this operator as well in our more general setting.
Since we associate the symbol p already with renaming, we denote the
urgency operator by Uy. So, as soon as a the action &, with a € H, is
enabled in p then Uy(p) cannot idle any more.

For example

11.2. Syntax Definitions ' 167

Uray (fve[z,s] afv] - p+ fvé(l,fl] EM) = B
fve[z,z] &[v] P+ fvgg,z} blv] - ¢
Utay (Joezz vl - p) = 6[2]

The second identity shows us that the urgency operator may introduce
a deadlock. This observation can also be found in a paper of Jeffrey
{Jef91c], in that paper deadlocks are called time-stops.

The urgency operator can be axiomatized like the priority operator of
Baeten and Bergstra [BB93a), though we will use a slightly different ax-
iomatization.

The semantics for ACPur has a so-called two phase pattern [NS91}; it has time
phases and action phases. In a time phase all components agree in synchronizing
in idling, that is, the whole process idles for a finite or infinite amount of time such
that for each pair of points in the time interval there is a connecting idle transition.
In an action phase the components execute their actions, either independently or by
synchronization. An action phase does not take time, the behavior of the different
components in an action phase is very similar to the behavior in untimed ACP. In
short, a two phase semantics has timed transitions, which increase the time, and
{(untimed) action transitions. Other examples of two phase semantics can be found
in the Timed CCS calculi of Wang, Moller & Tofts and Chen, and it can also be
found in ATP of Nicollin & Sifakis.

We axiomatize ACPur by adapting the axioms from ACPpl. Furthermore, we
present branching, delay and weak bisimulation in the context of ACPur and we
discuss the differences between branching bisimulation in a two phase semantics
with the one of Chapter 6.

11.2 Syntax Definitions

We take the definitions of bounds and intervals of Chapter 4, Section 4.2. We recall
that a bound is a time expression, that is a linear expression over time variables. The
set of bounds is denoted by Bound, a typical bound is denoted by 4. The symbols
—co are oo are not part of Bound, we denote BoundU {00, 00} by Bound.. . c.

A condition is a boolean expression over time variables. Atomic conditions are of
the form ft, ff, by < by and by = by. Furthermore, we have the operators A,V and —.
The set of conditions is denoted by Cond, a typical condition is denoted by a. We
extend Cond to Condy by allowing conditions of the form Uy(p) that corresponds
with the ultimate delay; the condition Uy(p) reduces to true if p can idle till b. In
Chapter 4 we have defined a predicate k= on conditions, intuitively = « whenever
o reduces to .

The set of variables that occur in a bound b or a condition « is denoted by var(b)
and var (o) respectively. A substitution is a mapping from time variables to bounds.
The set of substitutions is denoted by ¥, a typical substitution is denoted by o. The

168 11. Real Time ACP with Urgent Actions

set of time closed substitutions, that is the set of ¢ such that for any time variable
v we have var(c(v)) = 0 is denoted by T,

We have (ranging over {(, [} and) ranging over {),]}. An interval, typically V
or W, is an expression of the form (by, b} where by, b, € Bound_o . We have the
additional requirement that b; # —oo, and that b; = oc implies that) =). Similarly,
bg # oo and finally by = —oo implies that {= (. We introduce the abbreviation V +b
that expresses that b is added to the bounds of V.

(b0, b1} +b 2 (b +b,by +b)

Furthermore, we abbreviate V + (—1)-bby V —b.

With respect to conditions we allow curselves several abbreviations and expres-
sions that denote conditions. For example, b < oo denotes &t and v € [bg,) (where
[bo,b1) is an interval) abbreviates by < v A v < b;. So, v € [b,o0) abbreviates
b < v Aw < 00, which denotes in turn b < v A ¢, which can finally be reduced to
b<w.

The set of process terms over ACPur is denoted by T(ACPur), and it is defined
by the following BNF sentence, where a € A, b € Bound, o € Condg, cel, HC
A, and furthermore f is a mapping from 4 to A.

S0 | fualvl-p | p+p | aiop | crp) | ®)-p | 2>V
pli’ | pllp’ | olp’ | 8r(p) | ps(p) | Un(p) | P<up

The operator p 3> V can be considered as a generalization of p 3> b and b >» p; the
process term p > V behaves as p, restricted to the interval V. We have an auxiliary
operator < gz that is used in the :g.xioma.tization of Uy.

Process terms of the form [, 8[v] - p are redundant, as they are equal to [, 8[v].
Hence, they can be removed from the set of process terms without any problems.
We allow these terms as they simplify the axiomatization; without process terms
Jo60[v] - p one has to give axioms for the case [, a[v]-p (where a € A), and also for
the case f, 6[v].

In examples we allow ourselves to abbreviate f, a[v] - f,, 6[w] by f, &[v]. So, @[1]
abbreviates [,_; a[v] - f,, 6[w]. We allow ourselves the following abbreviations:

52 [
] 2 Jfyal]
We have also

Up({bo, 1)) 2 (b0, b:) # DAL € (—00,b1)

So, for some t € Time the expression U;((1, 3)) abbreviates (1,3) # 0At € (—o0, 3),
which denotes in turn the condition (1,3) # @ At < 3, that reduces finally to ¢ < 3.
This latter condition can be reduced to ¢t or ff, depending on ¢.

In f,a[v] - p all free occurrences of the time variable v become bound by the
integral f,. We denote the set of free time variables of a process term p by fv(p).

11.3. A Two Phase Operational Semantics 169

The formal definition of fv{p) is omitted, as it corresponds closely to the definition
of free variables for terms in T'(ACPpl), as given in Subsection 4.3.3 and Section
5.1. Recall that a term without free time variables is time closed, otherwise it is
time open.

11.3 A Two Phase Operational Semantics

In Table 11.1 and Table 11.2 we give the action rules for the two phase semantics
for ACPur. The inference rules for the evaluation of time closed conditions, and the
action rules for time closed terms with substitutions, have been omitted.

The rule

Et>0 EUV)

fveV é,{'lf] P —t"' fvEV-—t é[’l}] : p[?} + t/’l)]

says that the bounds of an interval can be considered as timers which decrease in
time. As soon as the timer of the lower bound becomes 0 it remains 0. Whenever
0 € V then [,.y d[v] - p can execute an o and evolve into plo/v], which is expressed
by the rule

E=0eV

Joev@lvl - -2 plofv]

Consider the process term [, g G[v] -blv+1]. We expect that if & is executed after
idling 5 time units, then the process will evolve into 5[6]. In order to obtain this
formally we have to substitute v + ¢ for v in the first rule above and 0 for v in the
second rule above.

Joeqay alv] - Bl +1) = e alv] - blo + 6] 2 B[]

Similar rules can be found in the work of Wang, Chen and others.
The process term Uy (p) can idle ¢ time units if it cannot perform an action 4,
with a € H, before t. This latter requirement is expressed by the negative premise

afr]
Ya € HVr <tp . For this reason, we have to introduce an auxiliary transition
relation p), 7', that is defined easily by the last rule in Table 11.2.
The definition of a bisimulation and of bisimulation equivalence is completely

straightforward.

Definition 11.3.1 (Bisimulation)
R C THACPur) x T9(ACPur) is a bisimulation if whenever pRq then

Lp -t o (ne AU(0,00)) implies 3¢’ such that g =+ ¢ and p'Ryq’.

2. q -5 ¢ (ue AU(0,00)) implies 3p' such that p - p' and PRy’

170

11. Real Time ACP with Urgent Actions

Ei>0 EUV)

Joev ds[v] - p - Joev—1 Gs[v] - plv + /2]

Loev Et>0 EUWV)
hevall o = pl0/] v o] 5 eyt o1

Fa=8 [Ph] 57
[Pl] 5 7

t
p—p ¢ —¢ p—=p g A
ptqg — ¥ +¢ p+g > 9, g+tp — P
p 2y Fo p-5p
p+qg S0, q+p Sy a—p Ly
m
p—p
1) p = (7). s
475 -5 ()3 T
p——>yp p -5 t-p-Hp Er=t
(-n)-p 5 (rp 5S¢
p 5 EUWV) p -5y E0eV
p>V g >Vt p>»V = p

{ae A, as€ A5, pe AU{D,00))

Table 11.1: Two phase action rules for BPAuré

11.3. A Two Phase Operational Semantics

|1 } t !
P —p qg-—q

phq - p'O¢’

p— p
plle — 7lig

p - p
plg == Pllg

p —

du(p) — ()

p -y a¢H
Ou(p) - Ou(y’)

alr]
p - p VacHVr<tp /—

@e{lLLIH

c=v(a,b) #6
p -2y ¢ ¢

plla = Pld

c=7(a,b) #6
pp g g

plg = pl¢

¢ G
p —p

ps(p) — ps(p)

G !

p—— p
ps(p) ps(p)

» > p agH

Un(p) — Un(p)

P17 q -—tﬁ[q;
Yo HVr<tg 4

Un(p) 2> Uy(p')

i
P9 g i
Vo HVr<tgqg #—

pduyg > panq

é /
p — p

p<yg —— Un(p)

pdpq = Un(p)

pmt_)pe p'—&——>p"

p Ly

P>y
p L p

Table 11.2: ‘TWO phase action rules for ACPur

171

172 11. Real Time ACP with Urgent Actions

Bisimulation equivalence is now defined by

Definition 11.3.2 (Bisimulation Equivalence) p,¢q € Tc‘(ACPu’r)
p =2 q iff there is a bisimulation R relating p and g.

We generalize 2 to time open terms by taking p £ ¢ if for any ¢ € £ we have
o(p) £ o(g). Without proof we state that £ is a congruence over T%(ACPur),
the proof is similar to the one in Chapter 4. First one has to give a semantics
analogous to the so-called 2-semantics of Chapter 4, and one has to prove that both
bisimulation equivalences coincide. In the operational semantics we have also the
auxiliary transition relation 2, ; the path format result of Baeten & Verhoef tells us
that bisimulation equivalence in which related states must also have corresponding
s a congruence. For the negative premises we use the generalized format that
is discussed by Verhoef in [Ver93al. So, one has to show as well that this extra

requirement does not change the bisimulation equivalence.

11.4 The Axiom System ACPur

In the Tables 11.3 and 11.4 the axioms for ACPur are given. The axioms for
substitutions and a-conversion are not given here, they can easily be obtained by
adapting the axioms of Table 4.5.1,

Most of the axioms are adapted ones from BPApSI and ACP pl. In BPApél neither
Joeqr,2 6(v) DO [,e(1 5 6(v) can reach time 2. In other words we have:

Uv(fue(1,2) 8(v)) = v<sup({1,2)) = v<2
Usfocq6(v)) = v <sup((1,2]) = v<2

In ACPur, however, [,c(9 6[v] cannot reach time 2, while Joeq2) 4v] can. And in
ACPur we have

Uslfueagy 8 = U((1,2)) = ve(-00,2) = v<2
Us(foen g 0lv]) = Un((1,2]) v € (~00,2] = v<2

We use Uy(V), already defined in Section 11.2. Furthermore we take UP(V) o
Uy(V) Vb = 0. In the axioms we use also the following abbreviations.

I

(bo,brdso#0 2 (bo,bi) #OAD >0

b < inf({lbg,blbzg) o Qb(),blb # B A
(bp<0=56<0
vbOZ()::»bSbg)

be (bo,bidso+0 2 (B<0=>be[t,b+¥)
Vg2 0=be {bg+b,b +8])

11.4. The Axiom System ACPur 173

Where oo + b and —co + b abbreviate oc and —oc respectively.
Instead of these abbreviations it is also possible to introduce an operation like
>p as an abbreviation on intervals:

b by < 0:— [0,b)
{bo,b1)>0 = { U by > 0:— {bo, bi)

In this case, one has to introduce so-called conditional intervals, that are expressions
of the form Usey; :— V;, where {&;} is a partition and each V; is an interval. Then,
for every abbreviation concerning intervals, like b € V and V = §, one have has
to give a corresponding abbreviation. For example, v € Uy :— V; abbreviates
Via; A v € V;. Similarly, one can introduce inf(V') as a conditional bound, that is
a bound of the form ¥, o; :— b;, where again, {&;} is a partition and each V] is a
bound. For technical reasons we have chosen not to deal with conditional bounds
and intervals.

In Table 11.4 we have also the following abbreviations, [y (, . 6[v] expresses the
idle behavior of (f, a[v] - p)lLg, and [y, (. 5) expresses the idle behavior of ([, &[v] -

)z blv] -). We have the following abbreviations.

abb

Justogy 001 Jou(f, sapntite O12]
abb <

ooy O] & fu,,(jaé[u])/\u,,(fﬁﬂv])‘5[11}

In axiom CM3,. we have [, yo,) and not [.y, (), as p can execute immediate

actions (i.e., at time 0) in the context pll 8, where U,(8) = U,(fﬁg[w}) = ff.

The ounly difficulty of Table 11.4 is the axiomatization of the urgency operator,
Uy (p), and its auxiliary operator p<igq. All the behavior of the process term p<d g
originates from p. The process p <ty ¢ can execute an action if p can do so and ¢
cannot execute an action a, with ¢ € H, at an earlier point in time. So, the right
argument of <1y limits the behavior of the left argument.

The axioms UR1-URS can be considered as a kind of algorithm. First we rewrite
Un(p) to p<t gp by axiom UR1. Then < g is distributed over all summands of its left
argument, by as many as possible applications of UR2. Then, we take a summand
of its right argument; if it is an 4 summand, with ¢ € H, then [, blv]- p can execute
its b action no later then the a action is enabled by a A v € V (see axiom UR3). If
it is an a-summand, with a ¢ H, then the summand is simply skipped (see axiom
UR4). In this way we compare each summand of the right argument with every
summand of the left argument. We are ready if the right component has become §,
and finally we apply Uy on a smaller depth.

174 11. Real Time ACP with Urgent Actions

Al p+q = g+p
A2 p+tg)+2 = p+(g+2)
A3, Joafv]-p+ Jzafv]-p

= javﬁ Zi[v] p
A6 p+d =p ~
A6y v fo(p) p+ f,B[o] = P+ Jar-(w.on 010
ATwr [L6]-p = [6[v]
RTOur Jadlv]-p = Janvzo@le] - p
RT1ur fﬁr&{v} -p = §
RT11,, () (p+4q) = (b)-p+(b)-q
RT11,, () (@~ p) =

= ((5) - p) + ~a i)

=

RT13,, v € var(b) (b)- foev a,{ } p)
Joevaors @[V] - plv — b/v] + 0]b]

RT14,, P+ >V
RT15,v € var(V) (f,a[v]-p) >V

i

fa/\veV &[’U} 4

il

C1 o= {p+q) = @ ptai—q
C2 véwar(e) o= (fpdP] p) = fiagdlv]-p

G3 Jualv]-p = Jyaly] (o= p)
U1 Us(p +) = Uy(p) v Un(g)
U2 Up(ee :— p) = a A Ulp)

U3 Us(foev @lv]-p) = Uy(V)

a € As, b€ Bound

Table 11.3: Axioms for BPAuré

11.4. The Axiom System ACPur 175

CM1 pllg = pllg+qllp+plg
CM3., v & fu(g) (Jadlv] p)lg)
= [anvo(g @lv] - (PL(=0) - @) + Jy,(aq) 61V

CM4 (pr +p2)llg = mlg+ple

CM7ar (-fa &{’U}) p)l(&‘i}z[v] : Q) N
= Jang 7(9‘% b) {’t}] . (PHQ) + fU‘,(a,ﬁ) é{?‘}}

CM8 (m +p2)lg = plg+palg

CM9 (@ + ¢2) = pla +plg

Dl,aegH Ou(fydl]l-p) = [,é[v]- 9u(p)

D2, a€ H aﬁ(fa &{U} . I)) = fa é[v]

D3 8y(p+q) = Ou(p) + 9ulq)

RN2., pr(ile]-p) = Lf@M] prp)

RN3 ps(p+q) = ps(p) + ps(q)

UR1 Uy (p) = pdyp

UR2 (}9'1‘*(])4[{2 = pdyz2+qgdyz

UR3 a € H, v,w ¢ var(a) Uvar(V)
(fﬁ b{?}}) p) <y (fa/\weV &{’&}}“ q+ Z)
= (fﬁ:\((aAVZO#@):vginf(Vzo)) blv] - p) Ay 2

URdag H ([blv] - p) 9w ([, @] - g + 2)
i = (fpdlv] - p) a2
URS ([shlv] -p) <du 8 = [gbv] - Un(p)
a,b € A

Table 11.4: Additional axioms for ACPur

176 11. Real Time ACP with Urgent Actions

11.5 Branching Bisimulation

We have already discussed that the behavior of process terms with urgent actions
at one point in time is like the behavior of untimed processes. This implies that
for the definition of branching bisimulation in a two phase semantics, the clause
forp —» p (a € A,) can be taken from the definition of untimed branching
bisimulation. Moreover, the clause for p —— p' can be derived from Definition
6.3.3; if p is related with ¢, then one has to find a ¢ such that ¢ =L 4 {g evolves
into ¢’ within ¢ time units, by idling and executing internal actions) such that every
state along p - ¢’ can be related with a corresponding state along ¢ =Ly . We
denote this correspondence by (p —— p')R(g == ¢'), which is formalized by the
following definition.

t

Definition 11.5.1 (p —— p)R(g == ¢') denotes that there are to,...,t, and
G0y Ggs - - - > Gns §, Such that

¢ by —

Eq = QG =
such that tg + ... +t, =t and for every i in {0,...,n} we take s; =0 in case 1 =0
and s; =ty + ...+ 1;_1 otherwise, such that Vs € [s;, s; + ;] we have piRq} where

8:+8 & to s s
p = piandg —> ...qs — g

We define branching bisimulation in a two phase semantics as follows.

Definition 11.5.2 R C T9(ACPur7) x T%(ACPurt) is a two phase
branching bisimulation if whenever pRyq then

1. Ifp LN o' then either a = 7 and PRy

or 3z,q such that ¢ => z ~> ¢, pRz and p'Ry'.
2. If p = o' then 3¢’ such thatq == ¢ end (p —> P)R(¢ == ¢).
3. Respectively (1) and (2) with the role of p and ¢ interchanged.

For p,q € T(ACPur) we say that p and ¢ are (two phase) branching bisimilar
equivalent, denoted by p £ ¢, if there is a two phase branching bisimulation that
relates p and ¢. As usual £2; is not a congruence, therefore we have the following
definitions.

Definition 11.5.3 (p-rooted) A process term p' is p-rooted if g = p orp — p'
for some t.

Definition 11.5.4 (Rootedness) A bisimulation R is rooted w.r.t. p and q if
PRy implies that ' is p-rooted iff ¢' is q-rooted

We say that p and g are rooted branching bisimilar, denoted by p £, g, if there is
a branching bisimulation that is rooted w.r.t. p and q. Without proof we state that
£, 18 a congruence.

11.6. A Law for Branching Bisimulation A 177

11.6 A Law for Branching Bisimulation

A very easy example of rooted branching bisimilar process terms is given by the
following process terms

af1] - (7[2) - 1
af) - (7[2] - (-
£, afl]- 6{3]

We generalize this example to the following identity:

alt] - (F[r] - o_.(p) + p) Sws aft] - p

+b[3})
)-

[1+o[3))
—2) - b[3] -+ 6[3])

It

where 7 > 0.
Note that we obtain the following identity as well:
a[1] - (7[2] - b[1] + b[3] + d[1])
e aft] - (72] - (O[1] +6) + b[3] + d[1]) }
= af)]- (72 ((=2) - ([3]) + (~2) - (d[1])) + b[3] + d[1])
= a1] - (7(2] - (=2) - (B[3] + dl1]) + b[3] + 1))
2y afl] - (b[3] +dft])

Let us now consider integration by copying Example 6.5.5.
Example 6.5.5

a(1) - (foep,a 7(v) - (B(5) + c(4)) + c(4)) 2o a(1) - (B(5) +c(4))

_______ % Lol
a 1 9 a
7‘{ J 1 3 i]
Tl | 4 -
I L]

)
We see that in cases where there are no variable dependencies in absolute time
there are such dependencies in relative time. This example suggests us the following

variant of the branching bisimulation law. We give a small example to recall the
need of by > g. Here, by > ¢ abbreviates g >> {bg, 00).

Example 11.6.1

1) (reqny 7ol - (B4 o] + &3 — o]) + 54)
Jor every t € (1,3) we have (d1 -1 = 6)
1)~ s 7101 - Gi4 — o] + 13 — o] + d[1 — v]) + 4])
a[1] - (foeq 7lo] - (=v) - (0[4] + 23] + d[1]) + b[4])
v G[1]- (b[4] + &3] + d[1)) :

i

178 11. Real Time ACP with Urgent Actions

B w ¢ fo(p+9q)
o = ((Ibo,bﬂ) 1/:@ A
(Us () A ~(Un,(@))) V (=(Un (p)) AU ())

fam’i é{u] : (fwé{bo,bﬂ) %{w} : (_w) : (P + Q) +P)

foev @] - (p+ b0 > ¢

Table 11.5: The branching law for relative time with urgent actions

The condition

Uer () A (U (9))) V (=(Un () A Ui (9))

expresses that at b; one of the two components of p + g is still “active”, while the
other component has already been dropped from the computation. For furter details
we refer to Section 6.5.

We will not discuss the soundness and completeness of ACPur +B,, w.r.t. £2.,
but we think that the techniques of Chapter 7 suffice to obtain it.

11.7 Branching Bisimulation with and without
Urgent Actions

In BPApbr, BPA with absolute time and without urgent actions, we identify the
following two processes by branching bisimulation:

B(2) + 7(2) - c(3) =2 b(2) + ¢(3)
In relative time this identity looks like
b[2] + 7[2] - e[1] =25 b[2] + ¢[3]

The point is that at time 2 a choice is made; either the b is executed or it is decided
to idle further in which case the ¢ will be executed one time unit later.
However, in the two phase branching bisimulation semantics we have:

b2] + 7[2] - €[1) #2, B[2] + &3]
After idling two time units the processes have evolved into
bl0] + #[0] - €[1] and [0} + &1

respectively. We cannot match the transition

11.7. Branching Bisimulation with and without Urgent Actions 179

Blo] + 7[0] - &1] - 1]
of the left hand side somehow with a transition on the right hand side, since b[0]+¢[1]
does not have a 7 transition, and we cannot relate #[1] with 5[0] + &[1] either.
Hence, to reobtain this identity we propose to add a 7 transition
Blo] + &1 > 1]
as well, which expresses the decision not to execute the b but to continue with idling.
Then, we can conclude that the two processes are indeed branching bisimilar.
In order to obtain this 7 transition we add a new operator «(p). t(p) is like p, it

only blocks the immediate actions of p. Its action rule and its axioms are given in
Table 11.6.

il

P | upto) up) + (q)
(p) — 7 t(fa é{?}} p) = Jarvso d[?}} P ‘

|

Table 11.6: The action rule and axioms for «(p)

By adding the action rule of Table 11.7 we obtain for each moment of choice a
7 transition which expresses the decision to idle further.

P> p-5p

P~ ip)

Table 11.7: Action rule that adds a 7 transition for each moment of choice

We denote the (rooted) branching bisimulation equivalence which we obtain by
adding the action rule of Table 11.7 by <7,

B'fprp Ut(q) =1l

afr] - (7lt]-p+q) = alrl- (7 -p+ 7 - (1) - @) +¢>> [0,4])

We will not discuss the equivalence 27y, any more in this thesis, though we think

that it is an interesting question whether or not process terms like a[1]- (b[2] + 7[2] -
¢[1]) and a[1] - (8[2] + ¢[3]) should be identified.

1t appears that the choice for a two phase semantics interacts in a subtle way
with the notion of branching bisimulation.

180 11. Real Time ACP with Urgent Actions

11.8 Delay and Weak Bisimulation

As usual we obtain the definition of a delay bisimulation from the definition of a
branching bisimulation by omitting the requirement that the intermediate states are
related as well. So, in the first clause we omit the requirement that pRz and in the
second clause we relax the requirement (p —— P)R(g == ¢') to simply p'Rq'.

Definition 11.8.1 R C T¥(ACPurt) x T¥(ACPurt) is a two phase delay bisim-
ulation if whenever pRq then

1. Ifp Ly o' then either a = 7 and p'Rg
or 3z,q' such that ¢ == z — ¢ and p'Rq.

2. Ifp —t+ ¢ then 3¢ such that ¢ == ¢ and PRy
3. Respectively (1} and (2) with the role of p and ¢ interchanged.

Moreover, we obtain the definition of a weak bisimulation by allowing a sequence of
7’s “afterwards” in the first clause:

Definition 11.8.2 R C T*(ACPurr) x T¥(ACPurr) is a two phase weak bisim-
ulation if whenever pRq then

1. Ifp 5 o' then cithera =1 and pP'Ryq
or3z,7,¢ such that ¢ = z =+ 2' = ¢’ and PR¢’.

2. Ifp ~> p then 3¢ such that ¢ == ¢ and p'Rq.
3. Respectively (1) and (2) with the role of p and q interchanged.

We define (rooted) delay, denoted by £,y4, and (rooted) weak bisimulation equiv-
alence, denoted by £2(,)., along the standard way.
Without proof we state that =,4 and rwbis are congruences for ACPur

11.9 Laws for Rooted Delay and Weak Bisimu-
lation

We can construct the laws for rooted delay branching bisimulation with relative
time and urgent actions by adapting the laws T1; and T2; from Section 8.4, and we
obtain the laws T1,, and T22,.

In BPApér with delay bisimulation we have the following identity:

. ot .
/ve[i,z)T(v) Le[u] a(w) —rd Le{l,z) ’r(v) /ve[;,z] &(w) +/v€{1,2] a()

In the context of urgent actions (and relative time) we have

11.10. Alternative Definitions for Weak Bis.) 181

]1:6[1,2) TM ’ /né[(},?-v] a[w] ﬁ‘rd Le[m) T[U] ‘ [ue[m—u] a[w] + /ue{l,z] a[w]

as the process term on the right hand side can idle untill 2, after which it can execute
an d. Due to the rootedness requirement we can not match this idling properly on
the left hand side. We have the following identity instead:

e - {1 £ T+ . a 7
/vé[l,?) TM [116[0,2-—1)] a[w] —rd /ue[l,z} TM /yefi,z-u] a[w] + /-ue[l,z} &{w}

So, in case of [, 7[v] - p, we may put that part of p “outside” of the [,y 7[v] that
is restricted to V; we denote this part by p > V.

The law T3,, is rather simple, only “immediate” ¥’s are allowed after the action
@ in the first clause of weak bisimulation, and therefore we can adapt the law T3;
of Section 8.6 to our setting only in case of 7[0].

There is also a typical pair of rooted delay bisimilar process terms for which
there is no equivalent pair in the case without urgent actions:

fwe{1,31 Flw] - %[0} +p B
ra fwepa Flwl - b0] + fuep g 0lv] +p
This identity follows from the fact that for any ¢ € [1, 3] we have

Jwepa Flw] - Bl0] + p s

} 3 fwe[o,s—t] Fluw] - 5{0} [+2]
Joepa Flw] - b[0] + foen s 0lv] +p -)
Jweo,a-1 Flw] - b0] + fuepoa-4 blv] [+p']

where we have the p summand only in case p —— p'. And we can match the
transition

/1;;&[0,34] T{w] .
with the sequence
~ 3 0 7 F 3 b i

Lcios 7He1 01 L2 T B0} [B

on the left hand side. (Note that [, a[v] abbreviates f, a[v] - f,, 8[v].)
We generalize this identity to the law T2% . The laws for delay and weak bisim-
ulation for the two phase semantics are given in Table 11.8.

ol + [, Bl) o [B

11.10 Alternative Definitions for Weak Bis.

We define p =L pbydz, 2 p = 2z ~—‘~1-> 7 = ¢ for @ £ 7. Moreover, we
define p = p by p == p. So, p == p’ may be an empty sequence in case
a=7. '

Using this definition we can give a redefinition of Definition 11.8.2:

182 11. Real Time ACP with Urgent Actions

Tle w ¢ folp) o=({bo,br) #0AUn(p))

Jang 810) - Lueqoopny Tl - (—w) - P = Jong @[0] - (bo > p)

T2, w ¢ fo(p)
fw&{bo,h} Flw] - (~w)-p = fwe((bo,blp Flw]- (~w)-p+p>V
T2;,

fa f[w]) (fvE

yapl p+2) =
'7'['10} (Joepppy 810 - p+ 2) + [, &[w] - p[0/]

T3ur

Jotle]- (F[0] - p+q) = [iafp]- (F[O)-p+q) + [@] -p

Table 11.8: 7-laws for rooted delay and weak bisimulation. -

11.11. The Embedding of ACPur into ACPpl 183

Definition 11.10.1 R C T¥(ACPurt) x T*(ACPurT) is a two phase weak bisim-
ulation if whenever pRq then

1 Ifp £ o then 3¢ such that ¢ == ¢ and PR¢.
2. Ifq - ¢ then 39 such that p == p' and pRy'.
We can generalize the definition of a weak bisimulation as follows:

Definition 11.10.2 R C T{ACPurr} x T{ACPurv) is a generalized two phase
weak bisimulation if whenever pRq then

1. If p =& ¢/ then 3¢ such that ¢ =% ¢ and PRy
2 Ifq =% ¢ then I such that p == p' and PRY.
We can show that Definition 11.8.2 and 11.10.2 are in fact equivalent.

Proposition 11.10.3 R is a two phase weak bisimulation iff R is o generalized two
phase weak bisimulation

Proof. Omitted.]

11.11 The Embedding of ACPur into ACPpl

Baeten & Bergstra express relative time process terms in absolut time real time ACP
by means of the so-called tick operator, /v.p. The expression 1/v.p is like a function;
when we start it at time ¢ then ¢ is substituted for v in p. Baeten & Bergstra have
a reduction rule that is similar to the f-reduction rule in the A-calculus:

t>» (Vvp) = t> plt/v]

In [BB93b] Baeten & Bergstra have introduced urgent action in real time ACP
by taking non standard reals in the time domain, as is shortly explained below.

We denote the set of non standard reals by R'. Intuitively, for every real number
t there is an “environment” S; C R such that each r € S, is infinitary close to t.
By I we denote the set of positive non standard reals that are infinitary close to 0.
As time domain we take

RuU{t+eteR ecI}

The process @[t] - p can now be expressed by the following expression:

Vo (a(w) - (p))

we{r{de r=ttvte}

where (p) is the absolute time process expression for p. In this setting the process
@0] - b[0] - p executes first the action a and then the action b infinitary close to 0.

Note, that we do not have the above process in prefixed integration, as we cannot
define the set {r|3Je r = ¢ + v + €} by a boolean expression.

184 11. Real Time ACP with Urgent Actions

11.12 The Embedding of ACP into ACPur

Assume that we have generalized ACPur with general multiplication, then there are
several embeddings possible for (untimed) ACP.

As we have discussed in Section 6.6 we can embed ACP into ACPur by trans-
lating the atomic action a into [, d[v] for strong bisimulation and f, a[v] - f,, 7lw] in
the case of branching, delay or weak bisimulation.

However, there is also another embedding possible, namely by simply translating
a into &[0}, or even aft] for a fixed ¢t. This embedding relies on the fact that in a
two phase semantics the behavior in one point in time corresponds with untimed
behavior.

12
Related Work

12.1 Introduction

In this chapter we discuss some related work. The major part of this chapter is
dedicated to the translation of several time calculi into the calculus ACPur, that
we have introduced in the previous chapter.

In the last section of this chapter we refer very briefly to other interested areas
of research that deal with time, though we do not claim to be complete..

In this chapter we translate the following real time calculi into ACPur:

o TCCS of Moller & Tofts ([MT90],]MT92]),

e Wang’s Timed CCS ([Wan90],[Wan91b] and [Wan91a]),
o Chen’s Timed CCS ([Che91],[Che92],[Che93]),

s ATP of Sifakis & Nicollin ([NS90],[NSY91})},

e TPL of Hennessy & Regan ([HR90]),

e TIC of Quemada et. al. {JQdFA93)).

We also discuss the axiomatizations of weak bisimulations, that can be found in
[Wan91a], [MT92], [Che93] and [QdFA93].
For every timed calculus C we define a translation function

() : ¢— ACPur

We apply the convention that process terms from a certain calculus C are denoted
by P, @ and Z. Process terms from ACPur, however, remain denoted by p, ¢ and z.
In certain calculi we encounter constructs which we cannot express in ACPur. In
these cases we introduce a similar construct in the context of ACPur; we provide it
with two phase action rules and we give the characterizing axioms.

In this chapter we use the following abbreviations.

185

186 12. Related Work

S e

610 2 2 fmdlelp (v fo(p)
fudl]l @-p 2 el -p (v ¢ fo(p))

Note that in ACPur we have § = 4, in this chapter we prefer to use § instead of &
as it is more conform the use of 4 for a € A.

For p € T(ACPur) the condition U,(p), for arbitrary v, reduces to a condition
of the form v € {—o0,t)), and we denote by U(p) the interval {—oo,).

We will encounter two kinds of prefixes, immediate and delayable prefixes. A
prefix a.p is immediate if the action ¢ has to be executed immediate. A delayable
prefix allows the action a to be executed at an arbitrary point in time. An immediate
prefix corresponds to our & - p and a delayable prefix corresponds to our &.p. Some
of the calculi also have a time prefix that corresponds to our (¢} - p.

In most of the other calculi we encounter also an operator for encapsulation (9
in ACPur) and renaming (py in ACPur). In the next section we discuss how the
parallel merge appears in the timed calculi.

Ont oy
g g

12.2 The Parallel Merge

The parallel merge of most of the calculi correspond to our parallel merge; both
components have to proceed in time equally. The left merge (IL) and communication
merge (|) are not present in several other calculi. In fact, we can remove them from
ACPur as well. The price to pay is a more complex axiomatization of the parallel
merge, for which we need the following ezpansion law, in case 1L, | are not available:

Proposition 12.2.1 (Expansion Law for ACPur)

Let
p o~ Tl] p
q = ijﬂ,«bj[v]'%'
then
pllg = bR Jonvge @lvl - (2ill(=v) - @)
+ % Ionvem bilv] - (=) - pllgy)
+ Xijtachrs Jains, Y(ai, b)) - (pillg;)
+ Jo.nvg O]

The expression U2(g) abbreviates the condition U,(q) V v = 0, that is, in case of
Jaiava(q) @slv] - [- .] then we can execute an action @ at points in time to which ¢ can
idle, or immediate at time 0. Similar laws can be found in the work of Wang and
Chen. '

In the previous chapter we have introduced delay and weak bisimulation in
ACPur. In the Chapters 1 and 8 we have discussed briefly that the combination
of delay and weak bisimulation, and the communication and left merge is a little
problematic. Again, we do not work this cut in more detail. A possible way out,

12.3. TCCS of Moller & Tofts 187

however, is to disgard these auxiliary operators and their axioms and to add the
above expansion law to the axiom system of ACPur.

The expansion law above shows us the need of the time variables; if we consider
pllg where p executes an action at some time ¢, then the way ¢ proceeds may depend
on t. For example, take a simple process like

@9l (v-2-9),

and note that there are no variable dependencies at all in this process. If we remove
the || then we obtain the following term

[abl-0=v) b8+ (0-bad+ ()2
in which a variable dependency has been introduced.

This idea has been formalized by Larsen & Godskesen [GL92]. They proved
that there exists no expansion theorem for some dense timed calculi without time
variables. This was proved by translating such a calculus into timed graphs [AD90].
The number of parallel components in a process expression corresponds with the
number of clocks in the corresponding timed graph. An expansion theorem would
imply that a timed graph with n + 1 clocks is equally expressive as a timed graph
with n clocks. They showed, however, that a timed graph with n+1 clocks is strictly
more expressive than a timed graph with n clocks.

12.3 TCCS of Moller & Tofts

Moller and Tofts have presented in [MTO0] a first version of their TCCS. In that
paper they considered an arbitrary time domain and strong bisimulation equivalence.
The expansion theorem and the completeness were proven only for a discrete time
domain. In [MT90] TCCS has an immediate prefix a.P and a time prefix (¢).P.
Moreover, it has two alternative compositions, the strong choice, denoted by +, and
the weak choice, denoted by @.

The strong choice of P and @ can idle only whenever both P and @ can idle, so
no summands can be dropped from the computation by idling. The weak choice of
P and @ corresponds to our real time ACP +; if P can idle to a point in time to
which @ can not idle, then the weak choice of P and @ can idle to this point as well
and all summands of @) are dropped from the computation.

In [MT90] Moller and Tofts do not have a delayable prefix. To allow the process
a.nil to idle they introduce the delay operator 6.P. 6.F delays all immediate prefixes
of P. Moreover, it drops all summands of P that are forced to idle first, for example
a summand like (1).P'. The delay operator is not expressible in ACPur with prefixed
integration, though in the context of general integration it is: construct as follows:

GP) = [@ P)> Do)

188 12. Related Work

Alp) > Alp) gf?)_ip’—p,
Al Alp+q) = A(p)+Alg) 3
A2 A(f,ap)-p) = (af0/v]:— alv] - p[0/v]) + (mal0/v] :— &)

Table 12.1: Action rules and axioms for A(p)

We introduce the delay operator in ACPur (with prefixed integration) for the sake of
the translation. We denote this new operator by A(p). Its action rules and axioms
are given in Table 12.1.

In [MT92] Moller & Tofts give other notations for the strong and weak choice,
instead of + and @ they use # and + respectively. Their motivation is that the weak
choice occurs in the normal forms of the Expansion Theorem of [MT90] and that
other calculi have only one choice construct, which for the most cases correspond
with their weak choice. '

Moreover, in [MT92] they replace the delay operator 6.FP by a delayable prefix
a.P and the delay nil 0.

The translation of TCCS into ACPur is given in Table 12.2.

©® =
Only in [MT92] (0) = ¢
wP) = ()
Only in [MT92] (e.P) = a-(P)
(®.rP) = @-(P)
Only in [MT90] (6.P) = A((P))
In [MT90] as + (P-+Q) = ((P)+(QD) > U((P)) nU{QD)
In MT90]as® (P+Q) = (P)+(Q) ‘
(Plg) = (PDII(QD
(P\a) = 0uz((PD)
(PIFI) = »oe(CPD)

Table 12.2: Translation of TCCS (Moller and Tofts) into ACPur, where y(a,@) =7

12.4. Moller & Tofts’s weak bisimulation 189

12.4 Moller & Tofts’s weak bisimulation

Moller & Tofts [MT92] have defined weak bisimulation equivalence as in Defini-
tion 11.8.2. They call it 7-bisimulation equivalence, they define (observational }7-
congruence by applying a rootedness condition which coincides with ours. They
show that the obtained congruence is indeed the largest possible congruence. They
have four 7-laws, these are given in Table 12.3.

1 &-p =a Fp
T2 T-p =T-p+p
3 T-(p+(@-g+2) =I-(p+(@ g+-2)+é-q
4 @-(p+(L-q+2) = a-(p+(Z-qg+2)+d¢

Table 12.3: Tau laws of Moller & Tofts

The law 71 follows direct from our T1,,. We have
T2 b - b[1] =z - b{1] + B[1],
and thus as well
72 - b[1] + &[1) = = b[1] + B[1] + &[1]
This example shows us that the law 72 is not sound for 224, and thus, that it is not
sound for £2,4 either.
Proposition 12.4.1
p=z O]+ 1] Lar-b1]+b1]+é1]=g¢
Proof. We show that the transition
g —> r-b[1]+b0] + 0] = ¢
cannot be matched by p. Note that ¢’ can execute both a b and a &
There are two candidates for a == sequence, which will both fail:

1. p == b[0], no action is enabled.

2. p == 7-b[1] + 0], no b action is enabled.
n

The point is that for sound instan ces of 72 only the “immediate” summands of p
may be put outside of the 7, as is shown also by our law T2%_. Note, that the two
processes of proposition 12.4.1 can be expressed as well in the Timed CCS calculus
of Moller and Tofts, since @[t} - p can be written in their calculus as (¢).(ap ++0).
Hence, it is not clear to us how the law 72 can be sound in TCCS.

To derive the laws 73 and 74 we reformulate them as given in Table 12.4.

190 12. Related Work

73
T4

(d-p+q)+id-p
(T p+g)+a-p

a-p+gq)
F-p+aq)

=
o~
~h 2

& 1

Table 12.4: Alternative formulations for the laws 73 and 74 of Moller & Tofts

Proposition 12.4.2 We can derive the law 78 from the laws for strong bisimulation
of [MT92] and 73'.

Proof. We list some of the axioms of Moller and Tofts which are sound for strong
bistimulation equivalence. We give also one identity 11 which will be used in the
final derivation. ap must be read as &[0] - p. Note that these laws can be derived as
well in ACPur.

AX1 pH(g+2) = (p+a)+(p+2)
AX2 G-p+(g+4¢) = @ ptty
AX4 @-p = a-p+a-p

ID1 (p+é& q+z = (pH2)+ad ¢
" First we derive the identity ID1:

(p+d-q) +2)
(pH2)+ (2 g+2)

= (pH)+(zH8)+dq
(p+d)+2)+i-q

= (pHz)+ag

And then we can derive 73:

(p+(a-g++2)
(p+((@ g+ d g +2)
{p+a-g+(a g+2)
(p+a-q+(@ qg+H2)+d-q
(p+(@-g+2))+i-g

M

il

e

Similarly we can derive 74 from 74'.

The law 73’ can be derived from our law T2% and the law 74’ is a direct instance
of our law T3,,.

12.5. Wang’s Timed CCS 191

12.5 Wang’s Timed CCS

In [Wan90] Wang Yi proposes a dense timed CCS calculus with a delayable prefix
a.P (delayable for actions a # 7), a time prefix (¢).P, maximal progress and a
strong choice. In that paper he does not have time variables yet, so he can not
give a proper expansion law. Therefore, he introduces in [Wan91b], (Wan91a] the
construct ¢(b).P, where b is a bound in which time variables may occur, and the
construct a@u.P, where v is a time variable of which the occurences in P become
bound by the prefix a@v. This construct idles till it executes the action a at time ¢,
after which it evolves in P{¢/v]. Due to the addition of time variables, Wang could
deduce an expansion law. The translation of Wang’s Timed CCS into ACPur is
given in Table 12.5. Note that we cannot put {(a@uv.P}) = & - (P]), as the time
variable » may occur in (PJ.

QML]) =%
(e®).P) = (b)-(P)
(0@.P) = J,afol-((PD)

(P+@Q) = ((P)+(@D) > U((F)) nUQD)
(PIQ) = Ur((PDIRD)

(PAH) = oau((P))

(Pl = »s((PD)

Table 12.5: Translation of Wang’s Timed CCS into ACPur, where v(a,d) =7

Jeffrey gives in [Jef91b] a generalization of Wang’s timed CCS [Wan91a]. He has
a non-delayable prefix, a time prefix et.P and maximal progress. The special feature
is the generalized sum } P where P is a set of processes. He can express Wang's
a@u.P by T {et.a.P | t € T} where T is the underlying time domain. Moreover, he
gives a sound and complete axiom system.

12.6 Wang’s weak bisimulation

Wang [Wan91b] [Wan91a] has defined weak bisimulation equivalence as in Definition
11.10.2. Also Wang imposes a rootedness condition on a weak blsxmulatlon which
coincides with ours, to obtain a (largest possible) congruence.

In Section 12.5 we have discussed that Wang’s calculus is based on maximal
progress. This means, in ACPur terms, that every process term must be considered
in a context Upry(. ..}, and we can reduce every [, 7[v]-p to either 7[b]-p or &[] -p.
More precisely:

U ([7017 = (o, bad # 0) = 7l Uiy (o)

192 12. Related Work

‘pHp = Tp

R

7l
72 a-(f-p+gq) = a (f-pttg++-a-p

C(EF ()@ m) .
a- (S () - (& po) H 7] ZF =) - @ - pi))

[

73

TS

Table 12.6: Tau laws of Wang

and
Ups ([TP = (oo, 0a) #0) = Bl

Thus, for the image of Wang’s Timed CCS in ACPur we can reduce the laws of
Table 11.8 considerably.

For example, if we use the strong choice p ++ g as abbreviation for (p+ ¢} >
U(p) N U(g) then we can reduce the law T22_ to

T2] -p=7-p+H()-p

and no > [t,t] is needed as in T22,.

In Table 12.6 we formulate the tau laws of Wang in ACPur, where p ++ ¢ must
be considered as an abbreviation as given above. The symbol 3% denotes the
generalized strong plus, thus E?Z{l....,n} pi abbreviates py + ...+ Pn.

The law 71 is an immediate consequence of the above identity T2} . The law 72
is an immediate consequence of our law T3,,, and, finally, 73 can be derived from
our branching law B,,, that on its turn is derivable from T1,, and T22,.

12.7 Chen’s Timed CCS

In [Che91],{Che92],[Che93] Liang Chen [Che91],[Che92],[Che93] presents a Timed
CCS calculus with a weak choice and the prefix construct a(v)|¢.P, where e, e’
are so called time expression. These time expressions are similar to our bounds.
The difference is that his time expressions may be of the form meaz(e,e’), so he
allows conditional time expressions as well. For r,7' in the time domain a(v)|}'.P
executes an a at some t, where t € [r,7'], after which it evolves into P[t/v]. The
process expression a(v)|!.P is very close to our Joepr,m olv] - P, the difference is that
a(¥)|F'.P is always allowed to idle until 7/, even if r > 7.

Chen’s Timed CCS is not based on maximal progress. The translation of Chen’s
calculus into ACPur is given in Table 12.7. The translation of (&) P is not completely
sound, as we do not have conditional bounds in ACPur. Formally, we have to define

12.8. Chen’s Weak Bisimulation 193

the translation of (¢} P by induction to the structure of e, and we need defining rules
like

((maz(e,e)P) = { + s’iee, : gzl)](I{IPPDD

and similar rules for the other constructors of his time expressions.

Chen obtains a decidability result along a different route than we do. He intro-
duces for every pair of processes P, Q a first order formula WC(P, Q) which is the
least condition such that P and @ are bisimilar. Decidability now follows from the
decidability of the first order theory of the underlying time domain.

This method, however, is not at all constructive and does not lead to a complete-
ness result. Therefore, he introduced a conditional axiom system. If two process
expressions P, (2, possibly containing free time variables, are equal under the condi-
tion «, then he has a + P = Q. He constructs a boolean expression (P, @), which
is also a condition in our terminology, that is equivalent with the first order formula
WC(P, Q). He then shows that o(P,Q) P = @ from which the completeness
follows.

So, Chen has derivations which are relative to some condition and he has proof
rules for dealing with the conditions. Intuitively o F p = ¢ corresponds to our
F{a :— p} = {a :— ¢}, the difference, however, is that his derivation uses proof
trees while ours fits within pure equational reasoning,.

(NIL) = §)
(a(IEP) = fogeenalv] - (P +6le]
(P+Q) = (P)+(Q)

{(e)P) = (e)-(P)
ex>P) = (—¢-(P)
(PIQD = (PYI(QD
(P\a) = Oz ((P))
(P = p;((PD)

Table 12.7: Translation of Chen’s Timed CCS into ACPur, where v{a,@) = r

12.8 Chen’s Weak Bisimulation

In his thesis [Che93] Chen has defined weak bisimulation, that he calls behavioral
abstraction. His definition does not correspond directly with some of the definitions
of weak bisimulations given before, as he does not have a two phase semantics. His
tau laws are given for ACPur in Table 12.8.

194 12. Related Work

We have already discussed that there are some subtle differences between Chen’s
time expressions and our bounds. Due to this difference we have to present his 7
laws a little different than he does. For example his first 7-law his given below.

1 r(w)g-(@-pt+q =)5 (a-p+a)+é-p

His bounds are always positive, i.e. for all substitutions. Hence, no condition that
e > { is needed.

Chen denotes the ultimate delay, or mazimal delay as he calls it, of a process
term P by |P|, following Moller & Tofts. Some of its axioms are given below.

L4

la(v)e . P
P+ Q|

[4

max(| P}, Q)

Note, that the time expression |P| is a conditional one, as max{e,e’) abbreviates
{€ <e—me}l+{e<e :—e}
Chen formulates his third 7 law as follows.
w ¢ fu(Q) and |P| < b < B
bl
a()gy - (P +7(w)y - (w > (0)Q) + (%)Q)

a()ly - (P+7(w)y} - (0> (B)Q)

According to Chen the condition |P| < by < by must be read as “if |P| < b < ¥
is valid for all substitutions”. Indeed Chen does not have an axiom system for
his time expressions and conditions. This interpretation is rather strict as in case
v € [y, b] = |P| < by < b) is valid for all subsitutions (i.e. reduces to true in the
context of an axiom system like CA) the law is sound as well, though it is not clear
how such an identity can be derived. Take for example by =1, b =2, b = v, b = 2
and P = a/(w)}, then obviously v € [1,2] = 1 <v < 2.

In the context of ACPur we have our ultimate delay instead of |P|. Since we
do not want to deal with conditional bounds we have decided to define the ultimate
delay on terms with prefixed integration as a condition. The condition |P} < b
expresses that P may not contribute any bebavior after b,. In ACPur we express
this by putting the process term in the scope of ... > b}, where p > b abbreviates
p > (—c0, b|. Hence, no reference to the ultimate delay of p is needed. Furthermore,
we put the condition by < &, within the process terms and we obtain the following
formulation. So, we formulate Chen's third 7-law as follows, where &[v}gé - p denotes

Locipo] a[v] - p.

w ¢ fo(Q) ,
afo]g - b < B o (p 2 8 + Flwlyt - (—w) - (B)) -+ (8) - q)

alolty - By < B i (p 2 b+ Flulyf - (~w) - (0)q)

12.8. Chen’s Weak Bisimulation 195

L7l (@-p+q) = 7§ (&-p+q)+b>0:— §-p[0/v]
2 aly - (F-p+q) = ol -p+ally - (F-p+q)

3w & fv(q) ‘

afoly - B < By i (02 B+ Flul - (—w) - () - g+ (5) - 9)}

[elby - {8 < B = (p 32 b+ Flul - (—w) - (6) - 0)}

hw g fo((Bh)p+ (B1)8)
afols - {th < ¥ o (Flwl - (—w)- (5) - p+ (B) - 6))}

afelyy - {bh < b = (%) -+ (B) - O}

75w & fo((t) - p+ (br) - §) o)
alolpy - B < B = (p 2 B+ Flwli - (~w) - (6) - g+ (#) - §))}

i1

afoly - b < by == (02 b+ (%) - g+ (8) - §)}

Table 12.8: 7-laws of Chen

196 12. Related Work

Note, that this formulation results in an identity for by = 1, b; = 2, b, = v, b} = 2
and p = @[w]l. The law 71 can be derived from our law T2%, and the law 72 can
be derived from our law T3,,. Moreover, 73 follows from T1,, and T2Z, as is shown
below.

Proposition 12.8.1 ACPur + T1,, +T2,, + 73
Proof. It is left to the reader to proof that ACPur + Tl,, + T2,, - T2,, where

T2:H’ w e f’l)(p) a = (Ibm blb 73 @

Jargdlv] - (fwe{bo,blb Flw] - (—w)-p+g > b)
= fang @[v] - (fuegrony Tlw) - (~w) P+ b >p+q 2 br)

By this identity, Our reformulation of Chen’s third r-law is a direct consequence of
this derived identity T2, .

afolfy - {8y < B} = {(p 22 b + Fluly) - (—w) - () - @)}
E Al {th < b} o {(p 2 B+ Fluly - (—w) - (B) - g+ (8) - 0)}
)

Similarly we can derive 74 from Tl,,. Finally, 75 follows from our branching law
B..

12.9 ATP of Nicollin and Sifakis

In {NRSV90] and [NS91] Nicollin et al. introduced the discrete time process algebra
ATP (Algebra for Timed Processes). ATP is built from operators from CCS and
ACP. It has an immediate prefix aP and a strong choice, denoted by @. The
additional feature is the binary unit delay operator | P|(¢2) which either executes
an immediate action from P or it idles one time unit and evolves into Q. The unit
delay operator is generalized to | P]*(Q) which allows actions from P until ¢ time
units has passed after which it evolves into Q. In [NSY91] Nicollin et al. generalized
ATP with a general time domain. In that paper they denote the immediate prefix by
aP and they also introduce a delayable prefix aP. Furthermore, the (discrete) delay

operator |P|*(Q) is generalized to the time out operator P & Q). For a discrete
time domain these operators coincide.

The processes in ATP are deadlock free, i.e., each process can either do an action
or it can idle. This is certainly not the case in real time ACP, and in ACPur in
particular. As a consequence the translation of the encapsulation operator is not
that straightforward. In ATP we have d(,){aP) = 6 where the ATP § corresponds
to our §, and aP is an immediate prefix like .p. Hence, we need a variant of our
encapsulation that can rename ¢ into §. We denote this encapsulation by 8% and

12.9. ATP of Nicollin and Sifakis V 197

) =
Only in [NSY91] (aP) = §¢-{P)
In [NS90] as o P {aP) = g-{P)
(PoQ) =

(QPD +(Q)) > U((PD)y nU((QD)
In [NS90] as |P|Y(Q) (P > Q) Py>»o0H+@-Q

(Ple) = (PIQD
Only in [NS90] (PLQ) = (P)L(QD
Only in [NS90] (PlRy = (P)IQD

(u(P)) = oF((PD)
Only in [NSYO1] ([P1(@)) = [(PDI*((QD)

Table 12.9: Translation of ATP into ACPur

we call it the time stop free encapsulation. It action rules and its axioms are given
in Table 12.11. For a time €losed process term p we can describe 3% (p) as follows;
if 8x(p) = ¢ + 8]t] where ¢’ does not contain dy and p' cannot idle till ¢ (i.e.,

~(Us(p'})), then 83 (p) = p' + & Otherwise, it 8% (p) is just . Some examples are
given below.

ey (Juepo,2) @lv]) =
%y Uoepo) @lv1)

3% (e @l0] +0[1]) =
a{a}(v€(0,2] &[U] [) =

The unary operator 9%{p) is axiomatized by means of an auxiliary binary operator,
denoted by p 95 q. This latter operator distributes over all the summands of its
left argument p. Since § 8F § = § we have as well

§05q¢ = (g=48):—38
where ¢ = § is an abbreviation that expresses that all conditions of the lmtlal
integrals of ¢ are false.

([abod p+ 3 [8ol = §) 2 ~(viasvv,s)

For similar reasons we have the conditions ~(a) Ag = §, and V =0 Ag = § in the
axioms IE3-6. We have also the following abbreviations:

e [2]
M
=
S
el

[¢]

Ql o 2
S ot
i)

(b0, b1)>0 =0 abb (bo, i) =0VO<b if)=)
agb {bo, i) =0V 0 < b otherwise
(Ib(); leZO # @ agb "'(Q:bo, blbzo == @)

198 12. Related Work

p— p t<r g % ¢
P"(g) —— [P1(a) p1%q) - ¢

p——p g ¢
[plHe) =5 ¢

Py a#€ t>0 p -5 >0
BROEIAR0) Pl > o
ED1 [p+4q]*(2) = [p1*(2) + [q1%(2)
ED2 v ¢ var(b) ;
[[€0]-P1%(a) = Japocs€lV]- P+ Usla) = (b) -¢

ED3 a # &, v & var(h)

[Joa[v] - p]*(9) Sanocp 810) - ([P1°77¢) + Up(a) :— (b) - ¢

]

Table 12.10: Action rules and axioms for the execution delay [p]®(g)

In [NSY91] Nicollin et al. also introduce the ezecution delay, denoted by [P]™(Q).
It behaves as P until time r; at time r process P is aborted and @ is started.
However, if P performs the special action £, called the cancel action, then the delay
is cancelled, and the subsequent behavior is that of P after £&. The cancel execution
is internal, i.e. it is renamed to . This operator is not expressible in ACPur and
we have to add it as well. Its action rules and axioms are given in Table 12.10.

12.9. ATP of Nicollin and Sifakis 199

P LN P P 8, pj ag H
ax(p) — ax() % (p) — oFW)

Yrp ;/—’r—» YVece A-Hp 751)

o 5 5
t ; t ¢ t ; !
p—9p g —q p — p g F
pdF g > poFd pdF q — ()
t t
Vip A= Vtg Ao
p -5 9 agH VocA—Hp /s
poF g = oF() pdgq 8
IE1 9% (p) = pdFp
1E2 (p+q) 07 = = p8F z2+q0F =
IE3 (a:—p) OF ¢ =
{o = (p 0% 9)}

+ {(~(e)Ag=06 — 8}
B4 a & Hs ([,eviv] p) 0% ¢ =
Voo #0 = fevaly] - 97 (p)}
-+ {VZQ=@AQ=5 T3 é}
IE5a € Hs (foeqop) @] p)OF g = _
{(bo,bulzo #BAUs (@) = focquons) SV}
+ {{bo, bi]y0 # O A (U (q)) — &}
=+ {Qbo,b1120=@/\q= é s ..6_}
IE6 o € Hs (fyeqpopy @lv]-P) OF ¢ = _
{0, b1}y50 # 8 = Jue oot 6[v]}
+ {{bo,b1)r0=0Ag=¢ — 4}

Table 12.11: Action rules and axioms for the time stop free encapsulation 9% (X)

200 12. Related . Work

12.10 TPL of Hennessy & Regan

Hennessy and Regan have presented in [HR90] a timed CCS variant, called TPL
{Temporal Process Language). TPL has a delayable prefix (for external actions),
maximal progress and a strong choice. Due to the delay prefix 0. P, which expresses
the delay P by one time unit, the underlying time domain is discrete. The main
difference is that Hennessy & Regan use preorders based on testing equivalences as
their semantic domain, instead of bisimulation equivalence. Therefore, we will give a
translation that corresponds only to their operational semantics modulo bisimulation
equivalence, see Table 12.12.

({nil) = 5__

119))] = ¢

(o.P) = (1)-(P)

(a.P) = &-(P)

(P} = 7 (P)

(P+Q) = ((P)+(QD) > (U((P))nUWQN)
(LPI@) = (P)>[0,0]+ (1) (Q)

(PIQ) = U(PII(QD)

(PI7/D = pi((PY

(P\a) = 03((PD)

Table 12.12: Translation of Hennessy & Regan’s TPL into ACPur, where ¥(e,@) = 7

12.11 TIC of Quemada, de Frutos and Azcorra

Quemada, de Frutos and Azcorra have presented in [QdFA93] a timed calculus,
based on the syntax of LOTOS [ISO87]. The calculus has a discrete time domain,
furthermore it has timed deadlocks, a time stamped prefix and weak choice. It
has also a prefix construct which corresponds with our prefix integration where the
bounds are taken from the time domain, so no time variables occur. Moreover, it
has an auxiliary construct, similar to our (¢)-.... The translation of TIC into
ACPur is given in Table 12.13. In that Table we denote by H — 7 the mapping
that maps all actions in H to 7 and that leaves all actions not in H unchanged. It
is also possible to translate (a[t, ¢]P) into f,¢p . dlv] - (P) + é[t']. We have chosen
for the translation into ¢ 3> (&- (P)) > ' + 6[t'] in order to stress that (alt,] P)
does not introduce any time variables.

The authors give also an expansion law, similar to the one we showed in Sec-
tion 12.2. Since the time domain is discrete their generalized sum can indeed be

12.12. Weak bisimulation in TIC 201

(stop()) = Bl

(Idle) =38

(at; P) = af]-(P))
(alt, ¥'1P) = (a-(P]) > [t.¥'] + 4[t']
(PogQ) = (P)+(Q)

(PIH|QD = d4-u((PDICQD)
(hide Hin P) = pu-..((P])

(Pf1) = ps((P))

(Age(t,P)) = (-t)-(P))

Table 12.13: Translation of TIC into ACPur, (y{e,a) = a)
considered as an abbreviation of a finite sum, and no time variables are needed.

12.12 Weak bisimulation in TIC

Quemada et al. define weak bisimulation a little different from Definition 11.10.2.
Their 7 laws are given in Table 12.14.

Tl at;Ttp = at; Age(—~t',p)
72 18D = Age(—t,p)0rt;p
73 at;(pOrt’;q) = at; (pOrt’; q)0at; Age(—t', q)

Table 12.14: The tau laws in TIC
The first law can be formulated in ACPur as follows
at] - 7t - p=alt] - (t) - p,

which is a direct instance of our law T1,,. The law 72 can be formulated in ACPuras
follows

il -p=7lt]-p+{®)p
which is a direct instance of T2¢,. Finally, 73 is formulated as

alt] (X +7[t] Y)=alt]- (X +7[]-Y)+at]- (&)Y

202 12. Related Work

This identity is certainly more general than our T3,,, which corresponds only with
the case where i’ = 0. As a matter of fact, the law 73 identifies the following.

3+ a1 - (B[1) + 7[2] - e1]) = al1] - (1] + 7[2] - &[1]) + a1 - &3]

Though these process terms can be distinguished within 2., by the context

B4 (...[16f2]).
(a[1] -
(

all] - (o[1] +7[2] - 1
af1] - (

il
b{1] + 7[2] -

A(
a() =
al1] - b[1] + a[1] - 6[1]
This example is similar to the counterexample against weak bisimulation in BPApé,
see Section 8.7.

12.13 Other related work

In the previous sections we have discussed the papers that can be explained in detail
by a translation into ACPur. However, there are several other papers, that can not
be discussed in detail in the context of ACPur, these papers are discussed briefly
below.

Timed CSP

Mike Reed & Bill Roscoe have presented (dense) Timed CSP in [RR88], they have
given a denotational semantics based on timed traces and timed failures. In [Sch92]
Steve Schneider has given an operational semantics for a slightly simplified version
of Timed CSP. Alan Jeffrey has developed Discrete Timed CSP ([Jef91a]), due to
this simplification he could give a complete axiomatization.

Other references to timed process algebras

An extension of the specification language LOTOS with time is discussed in [BL91].
For a combination of time and probability we refer to [Han91]. For a presentation
of a real timed theory incorporating true concurrency and event refinement we refer
to [Mur91].

Assertional Methods

In this thesis we consider an algebraic approach to real time systems. Besides the
algebraic approach, also other approaches exist in the literature. ‘
Prominent are approaches based on temporal logic extended with quantative
time. An example of this approach with applications to real time distributed sys-
tems is [Koy89]. Also, we can find the approach of extending Hoare triples with
quantitive time, see e.g. [Hoo91]. It seems that a logical approach is more snited
to express high level properties of systems, that abstract from the time points of

12.13. Other related work 203

internal choices. On the other hand, the algebraic approach seems more suited for
system specification. Perhaps, the most promising future line of research would be
to try to combine algebraic specification featuring equational reasoning with logical
properties featuring proof systems.

Another interesting development is the extension of graphs and eutomate with
time (JAD90], [MMT91] [LV91]). An advantage of timed graphs is that they are
finite systems, so model checking is possible. In {NSY91] a translation from ATP
into timed graphs is given.

204 12. Related Work

Appendix A

Bounds and Conditions

A.1 Introduction

In this appendix we elaborate the bounds and conditions in detail. First we give a
very simple construction that gives for each bound a bound in normal form. Then,
we give an axiom system CA for bounds, see Table A.1.

Using the axioms of CA we can prove the Refinement Lemma, on which the
decidibility of BPApSI depends. Finally, we prove that if two conditions are equiva-
lent, i.e., they coincide for all possible substitutions, then they can be proven equal
within CA.

A.2 Bounds in normal form

Proposition A.2.1 (Bounds in Normal Form) For every b € Bound there is o
bound V' of the form

’I‘]_'(b’l-‘f-‘..'*'?'n"ﬂn‘*'t (?120)
such that all v;’s are different and r; € Time\O, and b=1'.

Proof. Due to the axioms of an ordered field, we may consider the bounds modulo
associativity and commutativity of the +.

o We rewrite b into b + 0, such that we obtain a bound of the form ¥ + ¢, and
we rewrite each v into 1 - v, to guarantee that it occurs in the form r - v.

e We rewrite each - {(bg -+ b;) into r < by + 7 - by and 7y - (ry - b) into (re-71) > b,
such that we obtain a bound of the form. 71 - v 4+ ...+ rp v+t + ...+t
where r;,t; € T(S5).

e We rewrite 7 - v + 7' - v into (r + #') - v whenever possible.

We replace each ¢ € T(S) by its ¢; € Time. Finally, we remove all summands
0-v.

205

206 Appendix A. Bounds and Conditions
[

This Proposition implies that we can consider the set of bounds (# —oo, 00) to be
closed under division since '

rt.b
= 7l (ryom T v+ E)
= ((rlor) oo+) v+ (77
and we can replace every ™! - ¢ by some ¢’ € Time.

In the sequel a bound & will be in general taken from Bound, unless otherwise
stated.

A.3 A Proof System for Conditions

Proposition A.3.1 For any tp, 1, € Time and bg, by € Bound we have the following
identities in CA:

o<ty = ff ftodta
t()‘—':tl = ift(;:tl
to =1 = f fto#t
b = it
arff = f
aVvff = «
oV -(a) = it
—(aV B) = -(a) A(B)
bo<by Vb <bgVby=b =

VAaWA@eVvVreW) VaWAveVUW
T <Tr-C = e <c¢ ifr<g

Proof. Omitted.

A.4 The Refinement Lemma

Lemma 4.2.2 ([Refinement Lemmal) Fiz a time variable v. For each condition
« there is an equivalent condition of the form V;(8; Av € V;), where var(8;) U
var(Vy) C var(a)\{v} for oall j.

Proof. We reduce ¢, using equalities from the axiom system CA for conditions
(see Table A.l). First, rewrite « to a condition of the form V;v;, with each v; of
the form A;(b; < b;) A Ax(ck = ¢;). Reduce the bounds in ; to normal form (see
Proposition A.2.1), i.e., to the form 7y - vy + ... + 71 - v + ¢. In each (in)equality,
collect factors - v at one side, and collect the remaining parts of the bounds on the
other side, such that either v is deleted from the (in)equality, or it takes the form
r-v<borr-v=>5 withr s 0 and v & var(h). In the latter case, multiply both

A.4. The Refinement Lemma 207

aAf = Pra
(@A) Ay = an(BAy)
aA(BVy) = (@nf)V(aAry)
an{avi) = a
aAlt = o
aVvVit = i
~(@AB) = —av-B
-(=a) = «
(b =b1) = (bo <b1) V(b <o)
—l(bg<b1) = (bg-_—'bI)V(bl<bg)
o<t = <ty = it
60=b1/\b0=b — b=b1/\b0=b
by <biAby=b = b<bAby=b
bg+b<b1+b = b()<bl
t>0=> t-by<t b = bo<b1
by <bAb<biAbg<bh = by<bAb<l

(?f, tg, 11 € T(S), b, by, by € Bound)

Table A.1: The axiom system CA for conditions

208 Appendix A. Bounds and Conditions

sides with v~ € Time, and replace 1- v by v. Hence, we can reduce each ~; to an
equivalent condition 4} of the form

YA Abj<v A Av<a A Av=d
jeJ keK ter
where v does not occur in v,b;, cx,d;. We show that such a] is equivalent to a
condition of the form V;(8; A v € V}), with v € var(8;) U var(V}). ,
First, suppose [# 8. Fix an ly € L and put d = d;,. Then the following
condition is equivalent to .

(YAANb<dAN Ad<anANd=d) A veldd

jed k€K lel

So we may assume L = . Moreover, we may assume J # @ and K # §, because
we can always add conditions ~0o < v and v < oo, as they abbreviate {t. Then the
following condition is equivalent to /.

V (’)’/\Abjlgbj/\ /\Ckﬁ(ﬁy/\?)&(bj,qc}}
(Fk)EIXK jlet kKeK

A.5 An Axiomatization for Conditions

Finally, Table A.1 contains an axiom system CA for conditions. We have the fol-
lowing proposition:

Proposition 4.2.1] Soundness and Completeness of CA]
Fa=# <> CAla=p

Proof. The soundness, i.e., the case <, is left to the reader.

For the completeness, i.e., the case ==>, we use induction to the number of
variables that occur in & or 3. In case this number is zero it is left to the reader to
check that @ and § reduce to either &t or ff.

So assume that we have proved the case for n variables, and let « and 3 contain
n -+ 1 variables. Fix a variable v that occurs in « or in 8. Using the construction
from the proof of the Refinement Lemma, we can deduce in CA:

a = VinAweVyV..Vve Vi)
B = ViuA{veWyv..Vvoe W)

where v does not occur in the v;, V;;, Wij;, and moreover {+;} is a partition and the
Vi; and W;; are non-empty in the context of ;. Apply the identity

VaWAweVVveW) = VaWaveVUW

A.5. An Axiomatization for Conditions 209

so that under condition ; both the Vi; and the W;; are pairwise disjoint.

Fix an interval Vj; = (bo, bp]). Since [¢] = [f], and since the V;; and the W;; are
pairwise disjoint, it follows that there is exactly one k such that V;; is equal to the
interval Wy, = {b;, 5]} under condition 4;. In other words, for this k we have

[inve Vil =nnave Wyl

This implies [v; A by = b; A by = b}] = [tt], and so by the induction hypothesis
CAF~v Al =61f\b6 =b£1 == ¢t. Hence, v, Av € Vz‘j = v;Av & Wy in CA. This
holds for all intervals V;;, and counversely for all intervals W;;, so

CAl_ Vz%[\(@evd\f,VvGVEm,)
= VimA@weWyVv..VoeWy)

210 References

References

[AD90] R. Alur and D. Dill. Automata for modeling real-time behaviour. In
M. Paterson, editor, Proceedings 17** ICALP, Warwick, LNCS 443, pages
322-335. Springer-Verlag, 1990.

[AH92] L. Aceto and M. Hennessy. Termination, deadlock and divergence. Jour-
nal of the ACM, 39(1):147-187, Januari 1992.

[Bae90] J.C.M. Baeten, editor. Applications of Process Algebra. Cambridge
Tracts in Theoretical Computer Science 17. Cambridge University Press,
1990.

{Bae92] J.C.M. Baeten. Personal communication, 1992.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of
Formal Aspects of Computing Science, 3(2):142-188, 1991.

[BB92] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. In
W.R. Cleaveland, editor, Proceedings CONCUR 92, Stony Brook (Inwvited
Talk), volume 630 of LNCS, pages 401-420. Springer-Verlag, 1992. A
full version has appeared as technical report 92/06 of the Eindhoven
University of Technology.

[BB93a] J.C.M. Baecten and J.A. Bergstra. Real space process algebra Journal
of Formal Aspects of Computing Science, 1993.

[BB93b] J.C.M. Baeten and J.A. Bergstra. Real time process algebra with in-
finitesimals. Technical report P9325, University of Amsterdam, 1993.

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency
of Koomen’s fair abstraction rule. Theoretical Computer Science,
51(1/2):129-176, 1987.

[Ber92] J.A. Bergstra. Personal communication, 1992,

[BG87} J.C.M. Baeten and R.J. van Glabbeek. Merge and termination in process
algebra. In K.V. Nori, editor, Proceedings 7% Conference on Foundations
of Software Technology and Theoretical Computer Science, Pune, India,
volume 287 of LNCS, pages 153-172. Springer-Verlag, 1987.

[BK82] J.A. Bergstra and J.W. Klop. Fixed point semantics in process algebras.
Report IW 206, Mathematisch Centrum, Amsterdam, 1982.

[BK84a] J.A. Bergstra and J.W. Klop. Fair FIFO queues satisfy an algebraic

criterion for protocol correctness. Report CS-R8405, CWI, Amsterdam,
1984,

References 211

[BK84b] J.A. Bergstra and J.W. Klop. Process algebra for synchronous commu-
nication. Informetion end Computation, 60(1/3):109-137, 1984.

[BK85) J.A. Bergstra and J.W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37{1):77-121, 1985.

[BK86] J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol
by means of process algebra. In W. Bibel and K.P. Jantke, editors, Math.
Methods of Spec. and Synthesis of Software Systems '85, Math. Research
31, pages 9-23, Berlin, 1986. Akademie-Verlag. First appeared as: Report
(CS-R8404, CWI, Amsterdam, 1984.

IBL91] T. Bolognesi and F. Lucidi. Timed process algebras with urgent inter-
actions and a unique powerful binary operator. In J.W. de Bakker et
al., editor, Proceedings of the REX Workshop ”Real-Time :Theory in
Practice”, volume 600 of LNCS, pages 124-146. Springer-Verlag, 1991,

[BV93] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured
operational semantics with predicates. Report CSN-93/05, Eindhoven
University of Technology, Eindhoven, 1993. This paper will appear in
the proceedings of CONCUR ’93, which will be published in the LNCS
series.

[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts
in Theeretical Computer Science 18. Cambridge University Press, 1990.

[Che91] L. Chen. Decidability and completeness in real-time processes. Technical
Report ECS-LFCS-91-185, University of Edinburgh, 1991.

[Che92] L. Chen. An interleaving model for real time systems. In A. Nerode and
M. Taitslin, editors, Proceedings of the second International Symposium
on Logical Foundation of Computer Science, Tver 92, volume 620 of
LNCS, pages 81-92. Springer-Verlag, 1992.

[Che93] L. Chen. Timed Processes: Models, Azioms and Decidability. PhD thesis,
The University of Edinburgh, 1993. Also appeared as report ECS-LFCS-
93-271, University of Edinburgh.

[CK90] C.C. Chang and H.J. Keisler. Model Theory, volume 73 of Studies in
logic and the foundations of mathematics. North-Holland, 1990.

[Ds89] J. Davis and S. Schneider. An introduction to timed csp. Techn. Mono-
graph PRG-75, Oxford Univ. Comp. Lab., 1989.

[FK92] W.J. Fokkink and A.S. Klusener. Real time process algebra with prefixed
integration. Report C3-R9219, CWI, Amsterdam, 1992. Submitted.

212

(GL92)

[Glag7]

(GV92]

(GWS89]

[GW91]

[Han91]

[Hoa85]

[Hoo91]

[HR90]

[1S087)

[Jef91a]

[Jefo1b]

References

J.C. Godskesen and K.G. Larsen. Real-time calculi and expansion theo-
rems. In R. Shyamasundar, editor, Proceedings 12" Conference on Foun-
dations of Software Technology and Theoretical Computer Science, New
Delhi, India, LNCS 652, pages 302-315. Springer-Verlag, 1992.

R.J. van Glabbeek. Bounded nondeterminism and the approximation
induction principle in process algebra. In F.J. Brandenburg; G. Vidal-
Naquet, and M. Wirsing, editors, Proceedings STACS 87, volume 247 of
LNCS, pages 336-347. Springer-Verlag, 1987.

J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Information and Computation, 100:202-
260, 1992.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction
in bisimulation semantics (extended abstract). In G.X. Ritter, editor,
Information Processing 89, pages 613-618. North-Holland, 1989.

R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction
in bisimulation semantics. Report CS-R9120, CWI, Amsterdam, 1991.
An extended abstract of an earlier version has appeared in G.X. Ritter,
editor, Information Processing 89, North-Holland, 1989.

H.A. Hansson. Time and probability in formal design of distributed sys-
tems. PhD thesis, Computer Science, University of Uppsala, Sweden,
1991.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall In-
ternational, 1985.

J.J.M. Hooman. Specification and compositional verification of real-time
systems, volume 558 of LNCS. Springer-Verlag, 1991.

M. Hennessy and T. Regan. A temporal process algebra. Report 2/90,
Computer Science Department, University of Sussex, 1990.

ISO. Information processing systems — open systems interconnection -
LOTOS - a formal description technique based on the temporal ordering
of observational behaviour ISO/TCO7/SC21/N DIS8807, 1987.

A. Jeffrey. Discrete timed CSP. Technical Report Memo 78, Chalmers
University, Goteborg, 1991.

A. Jeffrey. A linear time process algebra. In K.G. Larsen and A. Skou
{eds.), editors, Proceedings CAV ’91, Aalborg, Denmark, LNCS 575,
pages 432-442. Springer-Verlag, 1991.

References . 213

[Jef9lc] A. Jeffrey. Translating timed process algebra into prioritized process
algebra. Technical Report Memo 77, Chalmers University, Goteborg,
1991.

[Klu9la] A.S. Klusener. Abstraction in real time process algebra. Report CS-
R9144, CWI, Amsterdam, 1991. An extended abstract appeared in J.W.
de Bakker, C. Huizing, W.P. de Roever and G. Rozenberg, editors, Pro-
ceedings of the REX workshop “Real-Time: Theory in Practice”, LNCS
600, Springer-Verlag, 1991.

{Klu91b] A.S. Klusener. Completeness in real time process algebra. Report CS-
R9106, CWI, Amsterdam, 1991. An extended abstract appeared in
J.C.M. Baeten and J.F. Groote, editors, Proceedings CONCUR 91, Am-
sterdam, LNCS 527, pages 376-392. Springer-Verlag, 1991.

[Klu92] A.S. Klusener. The silent step in time. Report CS-R9221, CWI, 1992.
An extended abstract appeared in W.R. Cleaveland, editor, Proceedings
of CONCUR 92, LNCS 630, Springer-Verlag, 1992.

[Koy89] R.L.C. Koymans. Specifying message passing and time-critical systems
with temporal logic. PhD thesis, Technical University Eindhoven, 1989.

[Lvel] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations
for timing based systems. In J.W. de Bakker et al., editor, Proceedings
of the REX Workshop ”Real-Time :Theory in Practice”, volume 600 of
LNCS, pages 397-446. Springer-Verlag, 1991.

[Mil80] R. Milner. A Caleulus of Commaunicating Systems, volume 92 of LNCS.
Springer-Verlag, 1980.

[Mil&3] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267-310, 1983.

[Mil89] R. Milner. Communication and concurrency. Prentice Hall International,
1989.

[MMT91] M. Merrit, F. Modugno, and M.R. Tuttle. Time-constrained automata.
In J.C.M. Baeten and J.F. Groote, editors, Proceedings CONCUR 91,
Amsterdam, volume 527 of LNCS, pages 408-423. Springer-Verlag, 1991.

[Mol89] F. Moller. Azioms for concurrency. PhD thesis, Report CST-59-89,
Department of Computer Science, University of Edinburgh, 1989.

[MT90] F. Moller and C. Tofts. A temporal calculus of communicating systems.
In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90,
Amsterdam, volume 458 of LNCS, pages 401-415. Springer-Verlag, 1990,

[MT92] F. Moller and C. Tofts. Behavioural abstraction in TCCS. In Proceedings
ICALP 92, Vienna, LNCS. Springer-Verlag, 1992.

214

[Mur91)

[NRSV90]

[NS90]

[NS91]

[NSY91]

[Par8i]

[Plo81]

[QAFA93]

[RR88

[Sch92]

[Sto88]

[Ver93a)

References

D. Murphy. 3 papers on classical concurrency theory (IPA, nets, and
event refinement). Report CSC 91/RS5, University of Glasgow, Dep. of
Computer Science, 1991.

X. Nicollin, J.L. Richier, J. Sifakis, and J. Voiron. ATP: An algebra
for timed processes. In M. Broy and C.B. Jones, editors, Proceedings
IFIP Working Conference on Programming Concepts and Methods, Sea
of Gallilea, Israel, pages 155-177. North Holland, 1990. This paper has
also been published as IMAG report RT-C18.

X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory
and application. Technical Report RT-C26, IMAG, Laboratoire de Génie
informatique, Grenoble, 1990.

X. Nicollin and J. Sifakis. An overview and synthesis on timed pro-
cess algebras. In J.W. de Bakker et al., editor, Proceedings of the REX
Workshop ”Real-Time :Theory in Practice”, volume 600 of LNCS, pages
526-548. Springer-Verlag, 1991.

X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and
hybrid systems. In J.W. de Bakker et al., editor, Proceedings of the REX
Workshop ”Real-Time :Theory in Practice”, volume 600 of LNCS, pages
549-572. Springer-Verlag, 1991.

D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, 5* GI Conference, volume 104 of LNCS, pages 167—
183. Springer-Verlag, 1981. o '

G.D. Plotkin. A structural approach to operational semantics. Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

J. Quemada, D. de Frutos, and A. Azcorra. TIC A TImed Calculus.
Journal of Formal Aspects of Computing Science, 5(7):224-252, 1993.

M. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science, 58:249-261, 1988.

S. Schneider. An operational semantics for Timed CSP. Technical report,
Oxford Univ. Comp. Lab., 1992. To appear in Information & Computa-
tion.

A. Stoughton. Substitution revisited. Theoretical Computer Science,
59:317-325, 1988.

C. Verhoef. A congruence theorem for structured operational semantics
with predicates and negative premises. Technical report CSN 93/18,
Eindhoven University of Technology, Eindhoven, 1993.

References 215

[Ver93b] C. Verhoef. A general conservative extension theorem in process algebra.
Draft, Eindhoven University of Technology, Eindhoven, 1993.

[Wan90] Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten
and JW. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume
458 of LNCS, pages 502-520. Springer-Verlag, 1990.

[Wan9la] Y. Wang. A Gulculus of Real Time Systems. PhD thesis, Chalmers
University of Technology, Géteborg, 1991,

[Wan91b] Y. Wang. CCS + time = an interleaving model for real time systerms.
In J. Leach Albert, B. Monien, and M. Rodriguez, editors, Proceedings
ICALP 91, Madrid, volume 510 of LNCS. Springer-Verlag, 1991.

216 References

Samenvatting

Dit proefschrift behandelt de uitbreiding van proces algebra met tijd.

Proces algebra is de studie van parallelle processen op een algebraische grondslag.
Het is geinitieerd door Milner, die de proces algebra CCS entwikkelde [Mil80],[Mil89].
Bergstra en Klop ontwikkelden vervolgens de proces algebra ACP (Algebra van Com-
municerende Processen) [BK84b], waarvoor wij eveneens naar het leerboek [BW90]
verwijzen. Het eerste deel van het proefschrift geeft een korte inleiding in de proces
algebra, gebaseerd op [BW90].

Enkele jaren geleden hebben Baeten en Bergstra ACP uitgebreid met tijd [BB91],
door atomaire acties te voorzien van een tijdstip welke het tijdstip aangeeft waarop
de bewuste actie geacht wordt te worden uitgevoerd. Zo stelt a(5) het proces voor
dat de actie a op tijdstip 5 uitvoert. Om aan te kunnen geven dat acties ook in
een bepaald interval nitgevoerd kunnen worden, voerden Baeten en Bergstra het
integratie construct in. De expressie [.o p(v) stelt het proces voor, dat zich kan
gedragen als p(t) voor een willekeurig tijdstip ¢ in 5. De naam integratie ontleent
het aan het feit dat het de continue versie betreft van het gegeneraliseerde som
construct uit de proces algebra. In dit proefschrift beperken wij ons tot expressies
van de vorm [,y a{v) and [,y (a(v) - p), waarbij V een interval aanduidt in het
onderliggende tijdsdomein. Deze beperking op de toegelaten expressies noemen wij
prefiz-integratie.

In het tweede deel van het proefschrift bestuderen wij de operationale semantiek
en de axiomatizering van ACP met tijd en prefix-integratie. Het probleem van
prefix-integratie is het redeneren met expressies waarin tijdsvariabelen nog vrij voor
komen. Als oplossing bieden wij aan om de syntax uit te breiden tot expressies van
de vorm [, a(v) en f,(a(v) p), waarbij & een boolse expressie is over tijdsvariabelen.
Vervolgens geven wij een (eindige) axiomatizering waarvan wij bewijzen dat het
overeenkomt met de gelijkheid van transitiesysternen modulo sterke bisimulatie. Ook
geven wij een beslissingsprocedure die voor twee expressies (zonder recursie) bepaalt
of zij gelijk zijn of niet. Dit deel vindt zijn oorsprong in [BB91], [Klu91b] en [FK92j;
het is gedeeltelijk gezamenlijk geschreven met Willem Jan Fokkink.

Binnen de proces algebra worden er verschillende equivalenties gehanteerd die
betrekking hebben op abstractie, zoals vertakkende-, wacht- en zwakke bisimulatie.
In deel 3 van dit proefschrift definiéren wij deze equivalenties in ACP met tijd, en wij
introduceren bijbehorende axiomas. Eerdere versies van dit werk kunnen gevonden
worden in [Klu9la] en [Klu92].

Proces algebra kan gebruikt worden bij de specificatie en verificatie van parallelle
systemen. In deel 4 van dit proefschrift behandelen we eerst ACP met tijd en
beperkte recursie, daar wij eerst dan parallelle systemen met tijd daadwerkelijk
kunnen uitdrukken. Vervolgens geven wij een specificatie en een verificatie van een
protocol, waarvan een eerdere versie ook te vinden is in [Klu91a).

Een van de uitgangspunten van ACP met tijd is, dat opeenvolgende acties niet
op hetzelfde ¢ijdstip uitgevoerd kunnen worden. In deel 5 laten wij dit punt los,
en bestuderen wij een variant van ACP met tijd met urgente actie, dat zijn acties

die achter elkaar op hetzelfde tijdstip uitgevoerd kunnen worden. Ook introduceren
wij extra operatoren, waarmee ¢en phenomeen als mazimale progressie nitgedrukt
kan worden. Tot slot geven wij in deel 5 een vertaling van enkele andere proces
algebras met tijd naar ACP met tijd en urgente acties. In het bijzonder bestuderen
wij de axiomas voor zwakke bisimulatie met tijd, zoals ze door verschillende anderen
voorgesteld zijn.

Curriculum Vitae

e 25 juli 1965. Geboren te Nieuwveen (ZH).

® juni 1983. VWO-diploma behaald aan de Rijksscholen Gemeenschap Broklede
te Breukelen. Examenpakket: Ne, Eng, Gesch, Ec, Wil, Wi2, Nat, Schei.

s september 1983 - juni 1984. Vooropleiding Conservatorium, Utrecht {Cello).

e september 1984 - januari 1990. Informatica, Universiteit van Amsterdam.

In de eerste jaren heb ik het studieprogramma van de afstudeerrichting Be-
stuurlifke Informatica afgerond, op de afstudeerscriptie na.

Vervolgens ben ik overgestapt naar de (theoretische) programmatuurkunde en
ben daar onder leiding van prof.dr. J.A. Bergstra afgestudeerd.

Als onderdeel van mijn afstuderen heb ik enige maanden stage gelopen bij Phi-
lips Research, onder begeleiding van dr. L.M.G. Feijs en dr. H.B.M. Jonkers.

s maart 1990 - december 1993. Junior project medewerker aan het CWI {Cen-
trum voor Wiskunde en Informatica) te Amsterdam. Mijn aanstelling is voor-
namelijk gefinancierd uit de volgende twee projecten.

- maart 1990 - juni 1992. Esprit 2 Project ATMOSPHERE.

ATMOSPHERE was ecen Europees onderzoeksproject op het gebied van
software-ontwikkelingsomgevingen. Het CWI was binnen het project een
subcontractor van Philips Research.

Binnen dit project heb ik gewerkt aan het opstellen van een executeerbare
semantiek van een deeltaal van de specificatietaal COLD.

— juli 1992 - december 1993. RACE Project BOOST.

BOOST is een Europees onderzoeksproject op het gebied van de telecom-
municatie en intelligente netwerken.

In dit project heb ik mij beziggehouden met het formeel specificeren van
componenten van het model voor intelligente netwerken zoals het door
de CCITT is vastgelegd.

Naast het onderzoek in het kader van bovengenoemde projecten heb ik mij
gedurende deze periode ook bezig gehouden met onderzoek op het gebied van
de uitbreiding van de proces algebra ACP met tijd, onder begeleiding van de
promotores prof.dr. J.C.M. Baeten (TUE} en prof.dr. J.A. Bergstra (UvA).
Dit onderzoek heeft geleid tot het onderhavige proefschrift.

Stellingen behorende bij het proefschrift

“Models and axioms for a fragment of real time process algebra”
door A.S. Klusener
I

Gewortelde vertakkende bisimulatie equivalentie in ACP-met-tijd en prefix-integratie is volledig
geaxiomatiseerd door de wetten voor sterke bisimulatie en de extra wet

fa a(v) ’ (fwe(bo,b;) T(w) ’ (p+ Q) +p) = fo a(v) " (p+ &3 > q}

waarbij a nog condities oplegt aan v, by, by, en het wachtgedrag van p en ¢; zo moet een van de
procestermen p,g tot b kunnen wachten terwijl de ander dat niet kan (zie de hoofdstukken 6
en 7).

It

In de stijl var Baeten en Bergstra stelt a(t) het proces voor dat ¢of het tijdstip ¢ wacht {en niet
tot en mefl) waarna het op tijdstip ¢ de actie @ uitvoert. Deze zienswijze leidt ertoe dat de
procestermen b(2)+¢(3) en b{(2)+7(2)- ¢(3) binnen vertakkende bisimulatie als gelijk beschouwd
worden (zie hoofdstuk 6).

¢

[PREESN
LT

Binnen CCS met tijd hanteert men veelal de opvatting dat a(f) fof en met het tijdstip ¢ wacht
waarna het a uitvoert, evenzeer op tijdstip ¢ (zie boofdstuk 11). Dit betekent echter dat de
bovengenoemde procestermen niet meer gelijk ziju.

Zo blijkt dat een verschil in opvattingen, dat aanvankelijk nogal esoterisch lijkt, wel degelijk
tot concrete verschillen kan leiden.

m

De technieken uit dit proefschrift ten aanzien van prefix-integratie zijn ock van toepassing op
de analoge prefix-sommatie uit de procesalgebra met data.

Daarbij kan men overigens op de volgende manier prefix-sommatie eenvoudig uitbreiden tot
algemene sommatie. We gaan ervan uit dat een atomaire actie a voor elke datum d en elke
substitie o een transitie heeft. De procesterm ¥,., p “erft” het gedrag van p dat voldoet aan
v : o. Enkele van de benodigde SOS regels zijn hieronder gegeven.

d d
o2,y 2 O Vo pBowm 7 Fo P28,y
4 d
Ev:api(-)’a'\/ Zinapa(_d)'ap' P'qﬁa?”‘o’(‘})

De axiomatisering is tamelijk eenvoudig:

Zv:avﬂ P Ev:a (Zw:ﬁ I}) = Ev:a/\(ﬁ[v/m]} p[vfw]

Zv:a P+ Eu:ﬁ P =
Zv:a(p + q) = Yoalt+ el |W ¢ f”(p) u ”ar(a)
Ev:a (a . p) = Eu:a(a : Ew:u p)
Z,.4P =6 v € fo(p) Toup = p
Merk op dat de conditionele procesterm a :— p uitgedrukt kan worden door I,.,p voor
v & fu(p) Uvar{a).

Een dergelijke generalisatie van de prefix integratie in ACP-met-tijd is in principe ook mo-
gelijk, hoewel de operationale regels voor het tijdvoortschrijdgedrag van deadlocks complicaties
teweegbrengen. N

v

Stel een taal voo. met een alfabet 4 van atomaire acties, en een alfabet I van inverse acties. We
nemen ook een constante § ¢ AU S aan. De taal kent als operatoren de alternatieve compositie
met voorkeur, die wij noteren met < conform [BPvW93], en de algemene sequentiéle com-
positie, genoteerd met -. Verder is er een verzameling I" van toestanden v, v/, waarin expressies
P, g uit deze taal worden geinterpreteerd. Er is een partiéle functie vel : AU{8} x ' — I x T,
en een totale functie val : I xT' — T'. Als val(a,) = (i,') dan vereisen we dat vel(i,¥') = v,
waarmee we uitdrukken dat zo’n actie ¢ inderdaad de inverse actie van a in v is. Bovendien
nemen we aan dat voor elke -y de applicatie val(6,~y) ongedefinieerd is.
Deze taal is alsvolgt van een semantiek te voorzien (met o € AU {6},i € I}:

ptq O gy p-q L) ¢ a 2

P) 5 q L g o) § val(a,v) is not defined . (y,val(i)
B Gy o, =g
pdg = ¢ p-g s § a 88§

v

Protocold [Jon81] is voorgesteld als een deeltaal van de specificatietaal Cold [FJKR87] waaraan
een operationele semantiek gegeven kan worden. Echter, de Protocold-semantiek van een ex-
pressie kan subtiel verschillen van zijn semantiek binnen Cold.

Door het uitbreiden van Protocold met extra operatoren, zoals de zogenaamde soft-cuf en
hard-cut uit het logisch programmeren, zon het bovengenoemd verschil zoveel mogelijk syntac-
tisch uitgedrukt kunnen worden, wat het inzicht in de relatie van Protocold tot Cold vergroot.
(zie [K1u91)).

Vi

In tijd-grafen, zoals bijvoorbeeld die van Alur en Dill [ADY0], heeft elke component een eigen
klok. De uitgaande transities van zo'n component zijn eperzijds gelabeld met condities waarin
de klokwaarde een rol kan spelen, en anderzijds met een assignment, die bijvoorbeeld de klok
op nul kan zetten. Dergelijke grafen kennen een zekere redundantie, daar men ervan uitgaat
dat alle klokken even hard lopen.

Het is ook mogelijk om slechts één klok te hanteren, waar de componenten in hun condities
en assignments naar kunnen refereren, zonder dat zij deze klok echter op nul kunnen zetten.

Een mogelijk voordeel van dit alternatief is dat het verband tussen tijd-grafen en procesalge-
bra-met-tijd eenvoudiger wordt, waardoor resultaten gemakkelijker uitwisselbaar worden. Zo
zou het interessant ziju te weten of Fokkink’s eliminatie stelling voor reguliere processen met
tijd [Fok93] over te dragen is naar het model van de tijd-grafen.

Vil

Het conceptuele model voor intelligente netwerken van de CCITT [CCITT92] geeft een goed
beeld van de opbouw en indeling van deze netwerken. Echter, een aantal details wekt nog
vragen op, wanneer zij gezien worden in het licht van enkele basisprincipes uit de software
engineering. Zo wordt er een aantal Service Onafhankelijke Componenten (in Engelse afkort-
ing SIB’s) geintroduceerd, die onderling geen overlappende functionaliteiten geacht worden te
hebben.

Een van deze componenten, de Elementaire Bel Component (in Engelse afkorting BCP),
verzorgt zelf de communicatie met de gebruikers en de afrekening, terwijl deze taken toebe-
deeld zijn aan andere componenten, respectievelijk de Gebruiker Interactie Component en de
Afrekening Component.

Een ander voorbeeld is dat de parameters van de Gebruiker Interactie Component een vorm
van negatieve afhankelijkheid kennen. Indien een bepaalde parameter een bepaalde waarde
heeft, dan zijn andere parameters van geen enkel belang.

Teneinde tot een specificatie te komen waarin dergelijke details helder ziju nitgewerkt, ver-
dient het aanbeveling (gedeeltes van) het model te specificeren in een daartoe ontworpen for-
malisme als PSF [Mau91] of LOTOS [ISO87]. Een voorbeeld van een dergelijke studie is te
vinden in JKVW93].

VHI

Bij het opstellen van de Huurwet in 1950 was het slechts voor artikel 3 van deze wet van
belang zich uit te spreken over de vraag wanneer een ruimte als woon- dan wel als bedrijfs-
ruimte beschouwd werd, indien de ruimte beide bestemmingen had; dit leidde tot lid 6 van dit
artikel waarin een ruimte als woonruimte erkend wordt indien meer dan 60 % van de ruimte
daadwerkelijk als woonruimte in gebruik is.

Bij de wetswijziging van 1972 is woonruimte onder het Burgelijk Wetboek komen te vallen,
en derhalve is bovenstaande vraag nu in een veel groter verband aan de orde. Het wekt dan
ook bevreemding dat men bij deze wetswijziging bovenstaande 60 % regel, of een aangepaste
versie daarvan, niet een meer algemene zeggingskracht toebedeeld heeft.

X

Een nieuw idee geeft pas echt voldoening wanpeer men niet denkt het bedacht, 1naar het ontdekt
denkt te hebben.

Referenties

[AD90]

[BPvW93]
[CCITT92)

[FIKRS7]

[Foko3]

[1S087]

[Jon91]
[K1u91]

(KVW93)

[MauSi]

R. Alur and D. Dill. Automata for modeling real-time behaviour. In M. Paterson,
editor, Proceedings 17 ICALP, Warwick, LNCS 443, pages 322-335. Springer-
Verlag, 1990.

J.A. Bergstra, A. Ponse, and J.J. van Wamel. Process algebra with backtracking.
Technical report P9306, University of Amsterdam, 1993.

Study Group XI (WP XI/4). New Recommendation Q.1200- Q Series Inielligent
Network Recommendation Structure. CCITT, Geneva, 10-17 march 1992.

L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans, and G.R Renardel de Lavelette.
Formal definition of the design language COLD-K. Technical report, Philips Re-
search Laboratories, April 1987.

W.J. Fokkink. An elimination theorem for regular behaviours with integration. In
E. Best, editor, Proceedings CONCUR 93, Hildesheim, LNCS 715, pages 432-446.
Springer-Verlag, 1993. -

ISO. Information processing sysiems - open systems interconnection - LOTOS
~ a formal description technique based on the temporal ordering of observational
behaviour ISO/TC97/SC21 /N DIS8807, 1987.

H.B.M. Jonkers. Protocold 1.1 user manual. Technical report, Philips Research
Laboratories, August 1991.

A.S. Klusener. An executable semantics for a subset of COLD. Report CS-R9145,
CWI, Amsterdam, 1991.

A.8. Klusener, S.F.M. van Vlijmen and A. van Waveren. Service independent
building blocks-I; concepts, examples and formal specifications. Report CS-R9326,
CWI, Amsterdam, 1993.

S. Mauw. PSF, A Process Specification Formalism. PhD thesis, University of
Amsterdam, Amsterdam, 1941,

