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Introduction

1.1. Image Analysis

Computer analysis of pictorial data is an important field in computer science,
mathematics and electrical engineering. The human visual system shows in-
credible performance in handling such data. It can process huge amounts of
information quickly and with great flexibility, and does this apparently without
any effort.

The problem of programming a computer to make it 'see' has appeared
to be very difficult. While even very simple computers surpass humans in
numerical tasks and modern chess playing programs can beat all but the very
best human players, even very primitive animals outdo any computer vision
system in the task of seeing.

Yet there are image analysis problems where the machine performs bet-
ter than human beings. Such problems are concerned with images displaying
objects and situations known in advance. Typical examples are counting ob-
jects, measuring objects and quality checks on artifacts. For such problems,
image analysis systems have been designed which perform their task quickly,
accurately and, sometimes just as important, without getting tired.

The central issue in image analysis is making image contents explicit.
Which aspect of the information present in an image is relevant, depends on
the application at hand. Therefore, image contents can be described at various
levels, ranging from the raw image data to a symbolic description using domain
dependent symbols.

An image represents a series of measurements, performed on some set
of physical objects called the scene. These measurements are arranged on a
regular grid. Various quantities can be measured, corresponding to different
imaging methods. Most commonly, the intensity of reflected light is measured,
possibly in various bands of the electro-magnetic spectrum. There are also
techniques which measure the reflection of sound waves (ultrasound medical
imaging and seismology), the density of hydrogen atoms in a sample (MRI) or
the transmission of X-rays, to mention a few.

11



12 Introduction

The spatial arrangement of measurements corresponds to the spatial ar-
rangement of the scene. This correspondence can be direct, for example if flat
surfaces are recorded by a camera, or indirect in the case of MRI or ultrasound
imaging. If a 3-D scene is recorded by a camera, the relation between the geom-
etry of the scene and the geometry of the image is described by the perspective
transform. In this situation, problems such as occlusion may occur.

In a raw image, all information is present implicitly, but not in a useful
form. Image analysis systems must detect structure in such an—often very
large—set of measurements. Image analysis always involves the identification
of specific subparts of the image. These subparts can correspond to specific
objects in the scene or to specific structures in the image. When the relevant
subparts of the image have been detected, they can be analyzed in order to
extract useful information on the image contents.

There is a large number of techniques for manipulating image subparts,
corresponding to the large amount of image analysis applications. If image
analysis is performed for object recognition, for example in a robot manipula-
tion environment, the selected image subparts are compared with models in a
database, and a list of recognized objects and their locations is produced. If
image analysis is used for measuring properties of materials, numerical mea-
surements are performed on the identified image subparts. Here, one can think
of counting and measuring the holes and grains in a soil sample. The results of
image analysis can also be output in a visual form, for example by overlaying
the input image with colored overlays of specific image subparts. Such output is
important when image analysis is performed in an interactive environment [81].

Although these examples show that specific problems require specific
solutions, a large amount of generally applicable image analysis techniques
has been developed over the years. Yet, the construction of a general purpose
vision system, comparable in its abilities to the human visual system, is far from
feasible at the moment. Neither is there a single, all-embracing theory of image
analysis and computer vision.

The subjects discussed in this thesis are centered around a particular type
of image representations, namely hierarchical ones. The purpose of the research
presented here is to gain an insight hi the possibilities of such representations
and to develop a number of methods using them. The choice for a particular
representation, rather than some specific problem, implies that the techniques
described in this thesis are general purpose ones. At some instances, however,
domain dependent knowledge is introduced in our methods, when they are
applied in a specific situation.
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1.2. Hierarchical Methods

An important class of image analysis methods is formed by hierarchical tech-
niques. This field started in the mid seventies, when Tanimoto and Pavlidis
presented the grey level pyramid [100] and Horowitz and Pavlidis presented
the split-and-merge segmentation method [45]. Rosenfeld [88] wrote: "Pyra-
mids, in general, are data structures that provide successively condensed rep-
resentations of the information in the input image. What is condensed may
be simply image intensity, so that the successive levels of the pyramid are
reduced-resolution versions of the input image; but it may also be descriptive
information about features in the image, so that successive levels represent in-
creasingly coarse approximations to these features." When Rosenfeld wrote
this in 1983, the phrase pyramid referred to a regular pyramid: an ordered
stack of images defined on a regular grid whose dimensions were reduced by
a factor of 2 between successive levels. Later, other data structures providing
successively condensed image representations have been developed, such as
the irregular pyramid [57, 76]. There are also image analysis methods which
have the characteristics mentioned by Rosenfeld, without the use of an explicit
representation of successively condensed image descriptions.

An important characteristic of hierarchical methods is the fact that global
structures become local in higher levels of a hierarchy, in the sense that each
descriptive element on a high description level integrates information over a
larger part of the image plane. This integration can be performed by averaging
image values over increasingly larger regions or by some more advanced method
of approximating image contents. It is also possible, that image primitives which
have significance at a larger scale are the only ones which survive in the higher
description levels.

There are several motivations for using hierarchical techniques. First of
all, the scale at which interesting structure is present in an image is in general
not known in advance. For example, the size at which an object in a 3-D scene
is represented in an image depends on the distance to the camera, which may
vary. Therefore, it is attractive to perform analysis of image contents at several
scales simultaneously. Many images contain interesting structures at various
scales. Usually, there is not a single 'best' description of an image. It depends
on the application at hand and on the availability of domain specific knowledge,
which parts of a description are relevant. Therefore, it can be attractive to have
a hierarchical image description, which can be inspected by other parts of the
image analysis system.

A second motivation is efficiency of computation. In many applications,
most of the operations can be performed initially on a coarse representation
of an image. The information obtained by processing a coarse description is
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then used to restrict the more costly processing of the fine representation of the
image to specific parts of the image plane. A divide-and-conquer approach can
result in faster algorithms, even if computations are not performed on parallel
hardware. This is for example the case for the computation of special types
of convolutions, such as those occurring in the computation of the Gaussian
and Laplacian pyramids [17]. The construction of specialized hardware is
most attractive when the image is represented by regular data structures [107].
Mapping irregular data structures to parallel hardware is also feasible, but can
lead to a large communication overhead [111].

A third motivation for the use of hierarchical methods is the fact that such
methods allow uniform treatment of the image at different scales, thus bridging
the gap between the most elementary descriptive elements such as pixels, and
richer descriptive elements such as regions in an image. This is expressed by the
fact that the operations performed for the construction of a hierarchy are scale
invariant or that the same operations are performed in each level of a hierarchy.

1.3. Scale Space and Image Pyramids

Hierarchical image descriptions can be classified by the type of condensation
represented by the hierarchy, i.e. the sense in which information is reduced in
higher levels of the hierarchy. In scale space and image pyramids, the higher
levels of the hierarchy contain information integrated over a larger part of the
image plane or they represent larger parts of the image plane. The regions over
which information is integrated in these representations, is fixed in advance.

In such descriptions, each level in the hierarchy is itself an image. These
images are created by considering the input image at successively coarser res-
olutions or scales. The motivation for this approach is the observation that
important structures in an image are visible at low resolutions, whereas details
are only visible at high resolution.

A desirable characteristic of this type of methods is recursive computabil-
ity: a coarse or low resolution version of an image can be computed from any
image at a less coarse resolution, without having to consider the initial image.
This means that images at progressively coarser resolutions contain less and
less information.

In the continuous case, the levels of the hierarchy can be created by a
convolution of the original image with Gaussian kernels of increasing size.
Koenderink [53] has shown that the simplest convolution kernel which does not
create any new grey values in the image, is the Gaussian kernel. Thus, an image
ƒ : IR2 —»• IR is described in scale space by the function

F(x,y;s) = (f*G t)(x,y), (1.1)
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where x and y are spatial coordinates and s is the scale parameter; Gs is a
Gaussian function of width s. In scale-space, both the image plane and the
scale parameter are continuous. The relation between the scale parameter s and
the region over which information is integrated is determined by the width of
the Gaussian convolution kernels.

Marr [63] was particularly interested in the evolution of the zero crossings
of the Laplacian* in scale space. He conjectured that these zero crossings con-
tain important information on the structure of images. Hummel and Moniot [46]
have shown that Marr's conjecture on the significance of zero crossings of the
Laplacian was correct: under some weak conditions, the original image can
be reconstructed from the zero crossings of the Laplacians of the successively
blurred images, combined with the values of the gradients of the Laplacians at
those zero crossings.

Lindeberg [60] has proposed a version of scale space for images defined on
a discrete grid, but with a continuous scale parameter. He imposed conditions
similar to those of Koenderink, and derived a continuous family of discrete
convolution kernels.

In the discrete case, a hierarchical representation can also be created by
repeatedly filtering and sub-sampling an image. In this case, an image on a
grid of size 2fe x 2fc is represented on a family of grids of size 2fc~* x 2fe~*
(i = 0, . . . , k). Each pixel in one of these grids corresponds with four pixels in
the grid beneath it. Such a structure is called a pyramid. Although the pyramid
in which the image dimensions are reduced by a factor 2 in each step is used most
commonly, other possibilities exist. An overview is given by Kropatsch [56].

If each pixel contains the average grey value of the four corresponding
pixels in the next lower level, the result is the pyramid which was originally
proposed by Tanimoto and Pavlidis [100]. This pyramid is sometimes called a
quad-tree.

A different type of pyramidal image description was introduced by Burt
and Adelson [17]. Their pyramid also consists of a stack of square images,
whose dimensions are reduced by a factor 2 in each step. In stead of storing the
average value of four pixels in a level in a cell on the next level, they compute a
weighted average over a larger number of pixels. The weights are chosen such
that the images in higher levels of the pyramid approximate the convolution
of the original image with a Gaussian. Therefore, this pyramid is called the
Gaussian pyramid.

The Laplacian pyramid is computed from the Gaussian pyramid by sub-
tracting subsequent levels, after a suitable interpolation of the higher level. The
resulting levels can be interpreted as band-passed filtered versions of the original

The Laplacian is the differential operator d /dx + d /dy .
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image. This allows for the interpretation of the levels of the Laplacian pyramid
as the description of the structure which is present in an image at a given scale.

The successive levels of a pyramid need not be computed through a linear
filter. Another possibility is the use of morphological filters, in combination
with a suitable sampling scheme [42, 102]. Subtracting adjacent levels in the
morphological pyramid also produces images which can be interpreted as the
structure present at a given scale.

Pyramidal structures can also be used for the representation of curves. In
this case, each cell in a level of a pyramid represents a square region in the
base level of the pyramid, which corresponds to the image plane. The cells
do not store the exact shape of the curve part within this square region, but
only a condensed representation. This corresponds to the averaging process
in the grey scale pyramid. In the chain pyramid due to Meer [70], each curve
part represented in a cell is linked to curve parts in adjacent cells, yielding a
doubly linked list in each level of the pyramid. In the most simple form of
the chain pyramid, the cells carry no extra information and all the information
is represented in the structure of the doubly linked list. If each cell carries
the centroid of the curve segments it represents as an attribute, a smoothed
version of the curve can be obtained by connecting these centroids. In the
curve pyramid by Kropatsch [55], the information carried by each cell in the
pyramid consists of the sides of the cell through which the curve enters and
leaves the cell. Kropatsch used a 2 x 2/2 pyramid, hi which the length of a
curve description does not increase with the description level.

In the examples of size based hierarchies discussed so far, problems can
occur if a structure in an image has more than one characteristic size. Consider
for example an elongated object in a grey scale image. If this image is blurred,
the object will disappear when the width of the convolution kernel is of the
same order of magnitude as the width of the object. Yet, the length of the object
seems to be just as good a measure for the object size.

1.4. Primitive-Based Hierarchies

In the previous section, we discussed hierarchical methods hi which the levels
of the hierarchy have a regular spatial structure. In this section, we will discuss
some hierarchical methods hi which the levels of the hierarchy are not fixed,
but constructed adaptively to the image contents.

The descriptive elements used in these methods are primitives, which
represent some aspect of the spatial structure in an image. As the primitives
hi the higher levels of the representation are not ordered on a regular grid,
a graph formalism is natural for the representation of their arrangement: the
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primitives in each level are the vertices of a graph, while their interrelations
are described by edges. Building a hierarchical representation using the graph
formalism yields a hierarchical graph. An important application area for graph
representations is image representation.

1.4.1. Primitives and Attributes

A primitive is defined as a condensed representation of the spatial structure
present in a localized part of the image. The motivation for the choice of the
phrases 'condensed representation', 'representation of spatial structure' and
'structure in a localized part of the image' is as follows.

A condensed representation is used in stead of the raw image data because
we want to retain only relevant information. When primitives are used to build
a hierarchical image description, the use of condensed information enables the
description of image structure at progressively coarser scales or at progressively
higher abstraction levels.

For many image analysis applications, the precise values of the grey value
at a given location is far less important than the geometric arrangement of the
grey value pattern. In fact, in many situations no calibration of the grey value
scale is performed, such that attributing a very precise meaning to a given grey
value is not possible. Therefore, in this thesis emphasis is laid on the geometric
or spatial structures in images.

The choice for localized primitives enables the construction of a hierarchy
through aggregation of primitives which are spatially close to each other. Prim-
itives can for example correspond to a point in the image, a line segment or a
region.

A primitive can possess attributes, which provide a specification of some
of its properties. The attributes of a region can be its area and average grey
value or some other grey value statistics. A line segment or curve can carry
its length, center of mass or the response of an edge detection filter along its
outline, as an attribute.

In the methods to be described, primitives are handled through their at-
tributes. Therefore, the attributes should represent all the properties which are
essential for the application at hand. The extent to which a primitive is de-
scribed by its attributes can vary. A region usually does not carry its shape
as an attribute, so it cannot be reconstructed from its attributes. On the other
hand, a line segment which carries its end points as it attributes is determined
completely by them.

The purpose of the description of an image by a set of primitives is to
make relevant information explicit and accessible and to discard irrelevant in-
formation. Therefore, reconstruction of the original raw image data from the
describing primitive set is not always possible. What should be possible is the
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reconstruction of the image contents up to a given level of abstraction, depend-
ing on the application at hand. Perhaps the simplest illustration of this concept
is found in optical character recognition. An optical character recognition sys-
tem converts printed or hand-written text into an ASCII representation. All
information on the visual appearance of the document is lost, but the infor-
mation of the text is retained. It is possible to synthesize an image from an
ASCII representation by printing it in a fixed font, resulting in a standard visual
appearance.

This thesis presents a number of primitive-based hierarchical image de-
scriptions. The development of such a description requires the choice of a
primitive type, a method for extracting primitives from the image, and a way
of aggregating primitives in order to generate more condensed descriptions. In
this thesis, the construction of a hierarchy and the analysis of image structure
go hand in hand. In the case of, for example, curve approximation (section 4.3),
pairs of line segments are replaced by single, approximating line segments. This
process reflects both the construction of a hierarchy and the piecewise linear
approximation of a curve.

In this thesis, all levels of the hierarchy contain primitives of the same type.
The aggregation of a group of primitives in a lower level produces a primitive
of the same type in a higher level of the hierarchy, providing a more condensed
representation of image structure. This approach is different from the one taken
in structural pattern recognition [30], where primitives occur only in the lowest
level, and hierarchical (treelike) structures composed of these primitives occur
in the higher levels.

The primitive types to be used must enable the construction of a hierarchy.
This means that they must have a meaning at all levels of abstraction and that
they must permit aggregation into more condensed primitives of the same type.
Suitable primitives are regions, line segments and curves. Using one of these
primitive types, an input image can act as the lowest level of the hierarchy.
If regions are used as primitives, pixels can be seen as (degenerate) regions.
If the primitives are curves, the boundaries between pixels can be treated as
(degenerate) curves.

In such an approach, corners are not suitable primitives. They can be
present in every level of the hierarchy, but they cannot be aggregated, because
a corner in a curve cannot be thought of as being composed of a number of
smaller corners. It is of course possible to extract corners from a hierarchical
description by curve parts, as was shown by Fermiiller and Kropatsch [28].

If a grey scale image is considered as the height map of a mountain area,
various primitives such as peaks, ridges and valleys can be detected. Sometimes,
the development of such primitives is traced as the image is blurred [59], but it is
also possible to detect these primitives in the original image and then manipulate
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with the primitives themselves [32]. This type of analysis can be performed
on the original grey scale image, but is often applied to a gradient image.
In mathematical morphology, a wide variety of segmentation algorithms, all
based on the watersheds of a gradient image, has been developed [72]. The
detection of ridges can also be performed on distance transformed images,
yielding the skeleton [5]. Similar techniques have been used for multi-resolution
terrain modeling in order to obtain elevation databases for flight simulators, e.g.
Scarlatos and Pavlidis [91]. Topographic primitives such as peaks and ridges
have the advantage that their definition does not require the selection of a 'magic
number', such as a grey value threshold. On the other hand, they may not be
robust in the sense that a small change in an image can cause a large change in its
topographic structure. When topographic primitives are used, much information
on the distance between various primitives is lost. Especially the instability of
the skeleton is notorious: a small bump or indentation in the object border may
cause the creation of long branches in the skeleton.

1.4.2. Hierarchies of Graphs

Every level of a hierarchical description consists of a number of primitives.
Relations between these primitives can be defined implicitly by their arrange-
ment on the image plane but they can also be represented in a more explicit
form. An appropriate formalism for the description of interrelations between
primitives is based on graphs [36]. Primitives act as the vertices of a graph and
their interrelations are represented by edges. The edges of the graph can carry
attributes, providing a specification of the relation between primitives. A graph
will be denoted as G — (V, E), where V is the set of vertices and E is the set
of edges.

A classical example of a graph representation of a set of primitives and
their relations is the region adjacency graph, which is illustrated in figure 1.1.
Such a graph represents a partition of the image plane in a number of regions. A
region is a connected subset of the image plane. Each region is represented by a
vertex; vertices representing adjacent regions in the image plane are connected
by an edge. The attributes of each region can be its area and average grey
value; the attribute of an edge can be the length of the boundary between the
corresponding pair of adjacent regions. The main application area for region
based representations is in image segmentation, but they have also been used
for object recognition [27].

When a hierarchical image representation is built from a number of prim-
itives, embedded in a graph, the resulting structure is a hierarchy of graphs, as
shown in figure 1.2. Each level in such a representation is a graph, in which
primitives are used as vertices and the edges represent interrelations between
them. Each primitive in a higher level in the graph comprises a number of
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Figure 1.1: An image and its region adjacency graph, in which each vertex
carries the grey value of its region as an attribute.

Figure 1.2: An example of a hierarchy of graphs, consisting of three levels.
Edges in each level are indicated by solid lines and parent-child relations
by dashed lines. The groups of children of each parent are encircled; these
groups are represented by their parent on the next level.

primitives in the level below. The primitives in the lower level of an image
description which are represented by a single primitive in the higher level, are
called the children of that primitive; the higher level primitive is called the
parent. The parent-child relations impose a tree-like structure on the vertices of
the hierarchy of graphs. Formally, a hierarchy of graphs is defined as follows.
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definition 1.1 A hierarchy of graphs is a sequence (Go,... , Gn) of graphs
and a sequence (TTQ, ..., 7rn_i) of mappings TT» : Vi —> Vi+i such that:
(1) for i = 0,..., n - I, KiW = Vi+1 ;
(2) for each i = 0, . . . , n - 1 and each x £ Vi+i , TT; 1(x) is a connected

subset of G i ;
(3) for each i = 0,..., n - 1 and x,y € Vi+i , (x, y) G Ei+i if and only if

there are x' e Tr"1^) andy' e ir"1 (y) such that (x', y') 6 Ei.

For x £ Vi, the vertex 7Tj(:r) 6 Vi+i is the parent of z; the vertices in irjl^z)
are the children of x.

It is possible to discern bottom-up or data-driven image analysis methods
and top-down or model driven image analysis methods. Bottom-up methods
process image data in a uniform manner and apply general methods in order
to aggregate data into primitives of gradually higher levels of representation.
Top-down methods use application-specific knowledge, often in the form of
object models. Such a model is then searched for in the image data. The image
data is not processed uniformly, but goal-directed, in order to find support for
or against the presence of a particular structure in the image.

This thesis is mainly concerned with bottom-up methods hi which the same
type of primitive is used in every level of the hierarchy. As such methods do
not employ domain specific knowledge, they have a large potential application
area. The choice for a single primitive type for all levels of the hierarchy allows
for a uniform treatment of structures at different scales.

The applicability of bottom-up methods is restricted by the fact that not
all types of knowledge or expectations on image contents can be used in a
bottom-up context and because "errors" made during the construction of the
hierarchy can not be repaired later. In this thesis, such limitations will show;
in chapter 6, it will be indicated how a hierarchical representation, built in a
bottom-up fashion, can be processed top-down in order to extract relevant image
information and to remove artifacts created in the bottom-up pass.

1.4.3. Image Segmentation

Image segmentation is a poorly defined problem. There is general agree-
ment [35, 45, 112] on the fact that a segmentation is a partition of the image
plane such that each part satisfies some homogeneity criterion and such that
the union of two adjacent parts does not. This definition, however, does not
determine a unique segmentation for a given homogeneity criterion. Moreover,
segmentation methods are often judged on subjective criteria, such as the extent
to which they produce the same result a human would when segmenting an
image.

Many approaches to image segmentation have been proposed (see Haralick
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and Shapiro [34] or Pal and Pal [82] for a review). Some techniques, such as
those based on thresholding or edge detection, do not use regions during the
segmentation process, but produce them only as a result. Other techniques
do manipulate regions during the segmentation process. In such approaches,
a set of regions is operated on by merging and/or splitting procedures, until a
satisfactory segmentation is obtained. Although the goal of image segmentation
is usually a single partition of the image plane, and not a hierarchical description,
the hierarchical approach is very useful.

As it is not possible to search the space of all possible image partitions, an
efficient search can be made by repeatedly splitting and merging regions. The
region merging scheme of Brice and Fennema [IS] can be seen as a hierarchical
method avant la lettre. In this method, each connected component of the image
grid which has a uniform grey value, is used as an initial region. Then regions
are merged, until maximal regions are formed which still satisfy a homogeneity
criterion. The application of a uniform merging criterion for regions varying
between the small seed regions up to the final regions is typical for hierarchical
methods.

The split-and-merge segmentation scheme of Horowitz and Pavlidis [45]
starts with an initial segmentation of the image. Then, regions which do not
satisfy a homogeneity criterion are split recursively, while groups of regions
are merged if the resulting region satisfies the homogeneity criterion. After the
split-and-merge procedure, merging of the remaining regions must be performed
in order to remove artificial boundaries.

Another region based segmentation technique is segmentation by relinking,
first described by Burt, Hong and Rosenfeld [18]. It manipulates a regular
pyramid, in which each cell represents some region in the image plane. This
region is not fixed, but depends on a set of parent-child links which assign to
each cell in the pyramid (a child) one cell (its parent) in the next level. The
parent-child links define a tree structure in which the pixels in the input image
are the leaves. Each cell defines a subtree which has this cell as a root; and
the cell is considered to represent the region in the image which consists of the
leaves of this subtree. These parent-child links are updated iteratively, until the
regions represented by the cells of some high level in the pyramid represent a
suitable segmentation.
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1.5. Morphological Approach to Image Analysis

The second class of image analysis methods discussed in this thesis is multi-
scale mathematical morphology. Mathematical morphology [95,66] is a theory
for image analysis based on set theoretic notions such as inclusion, union and
intersection. Morphological operations require the selection of a probe called a
structuring element. An image is analyzed by inspecting its interaction with the
structuring element as this is moved around the image plane. Both the choice of
the structuring element and the operation being performed with this structuring
element determine the effect of a morphological operator. The structuring
element acts as a kind of elementary building block. Image analysis using
mathematical morphology usually consists of two steps: a transformation step,
in which one or more morphological operations are performed on an image,
extracting some geometric structure from the image, and a measurement step,
in which certain geometrical characteristics of the transformed image (such as
its area) are measured.

Initially, mathematical morphology was constructed for binary images, but
it can also be applied to grey scale images and recently, it has been extended to
the abstract framework of complete lattices [40].

Among the translated and scaled versions of a convex structuring element
which are included in a binary image, there are maximal ones. An image can
be considered as the union of maximal structuring elements contained in the
image. These maximal structuring elements can be represented by their location
and size. Decomposing an image as a union of maximal structural elements is a
way of making global information local: a maximal structuring element covers
a part of the image plane, while it can be represented by its center and size.

In order to provide an axiomatic treatment of size, Matheron [66] defined
a class of morphological filters called granulometries. Such filters successively
remove all image subparts smaller than some minimal size. As will be shown
in chapter 9, granulometries are strongly connected with the representation of
an image as the union of a collection of maximal spheres. Filtering an image by
computing the union of its maximal structuring elements which exceed a given
minimal size is an example of a granulometry.

For morphology on binary images, the structuring element is often chosen
to be a sphere, but other choices are possible. For grey scale morphology,
so-called flat structuring functions, which are constant on their support can
be used, but other structuring functions such as the parabola have specific
advantages [10].
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l .6. Overview of this Thesis

In this thesis, several hierarchical image analysis methods using primitives are
presented. This section gives an overview.

The chapters 2 through 6 present a number of methods for line detection and
image segmentation, based on the recursive aggregation of small primitives into
larger ones. The methods vary in the amount of structural information present
in the image representation they use, and in the way groups of primitives which
are to be aggregated, are computed.

Chapter 2 describes the detection of linear structures in an image by clus-
tering short line segments. These line segments act as the primitives, which
carry their end points as their attributes. Using a stochastic model of image
formation, a metric on the set of all primitives is derived; this measures the
probability that two primitives originate from the same structure in the scene.
The distances between primitives defined by this metric define the relations
between the primitives; no explicit representation in the form of a graph is used.
The spatial arrangement of primitives in the image plane is used indirectly, as
the metric takes the distance of primitives in the image plane into account.

Chapters 3 through 5 describe a number of image segmentation methods.
The segmentation methods to be presented in this thesis all use hierarchies of
region adjacency graphs as the image representation. They differ in the way the
groups of regions to be aggregated into a single region are selected and in the
type of information used in the process.

In chapter 3, groups of regions are formed by selecting a number of char-
acteristic regions and assigning other regions to them. Each group consisting of
a characteristic region and the regions assigned to it, is aggregated into a single
region. The structure of the region adjacency graph is used here in two ways.
Firstly, it is used to enforce the connectedness of all regions. Secondly, a cost
function on paths in the graph is used for the computation of the assignments
of regions to characteristic ones. A hierarchy is built by repeated application of
the grouping procedure.

Chapter 4 presents a method for building a hierarchical description of an
image by repeated aggregation of adjacent primitive pairs in a graph. The
method can be used for arbitrary primitive types and is demonstrated both with
line segments (for polygonal curve approximation) and with regions (for image
segmentation).

The edges in the graph play an important role here: vertices can only be
merged into a single primitive if they are connected by an edge. A homogeneity
model for primitives is used to label each edge with a merge score which
describes how well the merge of the two primitives attached to that edge would
match the model. Thus, the measure used in this chapter evaluates the 'quality'
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of a condensed primitive after the aggregation, rather than the similarity of
primitives before their aggregation.

The edge labels are used to guide the selection of pairs of primitives to be
merged. Merges in the graph are independent and can therefore be performed
in parallel. The corresponding action on a graph is called a parallel graph
contraction [89].

In chapter 5, a hierarchical image segmentation method based on relinking
is presented. The classical relinking method of Burt et al. [18] is adapted in
such a way that connected regions are obtained. This requires the application
of the hierarchy-of-graphs formalism. Relinking can be used in a completed
hierarchy as well as during the construction of the hierarchy, each time a new
level is created.

Then, the edges of the region adjacency graph are used to represent, in
an explicit form, the boundaries between regions in the image. This is used in
order to combine region and boundary information in the segmentation process.

In this chapter, edges are used in two ways. Firstly, they are used for
the enforcement of connectivity of regions during the relinking procedure.
Secondly, they are used for the representation of boundaries between regions in
the image.

Chapter 6 presents a number of top-down operations which can be per-
formed on the hierarchies that were described in chapter 5. Such operations
are required in order to extract information from the hierarchical description,
especially if the bottom-up construction phase has led to artifacts. If a model
for image contents is available, this can be used to guide a top-down proce-
dure. As an example, we present two methods for the detection of cells in
muscle tissue. The first method performs a top-down search for combinations
of regions which are convex and fall within a given size range. The second
method performs a top-down refinement of region contours by using dynamic
programming for detecting optimal paths in different levels of the hierarchy.
This yields a coarse-to-fine approximation of object contours.

Chapters 7 through 9 discuss a number of basic and advanced operators
in mathematical morphology, using chamfer discs as structuring elements. The
notion of size is defined through the choice of a parameterized set of structuring
elements. By performing morphological operations with such a set of structur-
ing elements, a size-dependent analysis of image structure can be performed.

It will be argued in chapter 7 that the set of spheres defined by a so called
chamfer metric is an attractive set of structuring elements, because they are good
approximations of Euclidean discs on the discrete grid. This chapter describes
a number of properties of chamfer metrics and is meant as a preparation for the
following chapters.

The medial axis is closely related to the description of an image as a union
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of maximal structuring elements. Chapter 8 describes the characterization and
computation of the medial axis defined by chamfer metrics.

The representation of an image as a union of maximal structuring elements
leads to various questions concerning the distributions of the locations and the
radii of these structuring elements. Size distributions can be seen as operations
which filter an image by retaining only the image subparts which are larger than
some minimal size.

The opening transform is a useful tool for the computation of a size dis-
tribution. This transform, which maps a binary image onto a grey scale image,
will be discussed in chapter 9. There, we will also point out the relation with
the pattern spectrum [61].

The last chapter of this thesis is chapter 10, in which the conclusions of
the research described in this thesis are presented. Some open problems, loose
ends and possible directions for further research are mentioned.
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2.1. Introduction

This chapter describes the extraction of image structure by progressive aggrega-
tion of primitives. As an example, the analysis of linear structures is discussed
in detail. The primitives used are described by parameters in some space U,
which is a manifold.

A metric is constructed, which measures how well two line segments can
be merged into a single line segment. This metric is used in a simple clustering
algorithm in order to extract linear structures from an image containing many
small line segments.

The detection of linear structure in images is an important task in computer
vision. In order to detect a large linear structure in an image, information from
many locations must be combined. Many authors, like Nevatia and Babu [79]
or Burns, Hanson and Riseman [16] have described the detection of lines in
grey scale images. For each location in the image, they calculate the magnitude
and the orientation of the gradient. A large value of the magnitude of the
gradient at some location in the image is an indication for the presence of a Une
in the direction perpendicular to the direction of the gradient at that location.
Information from different locations in the image is combined to find a large
number of locations in the image where support for the presence of a line can
be found.

In stead of looking at grey scale images, it is also possible to look at images
which contain a number of short line segments. These line segments can be
the output of an edge detection and line segment fitting algorithm, or they can
be derived from a line drawing. A line segment is not considered as a group
of collinear pixels in the image, but as a separate geometric structure, defined
for example by its end points or by its center, length and orientation. This
semi-symbolic representation of a line segment is the primitive with which the
image representation presented in this chapter is built.

In many cases, short line segments lie along long straight lines. As these
longer lines are the relevant structures in an image, information from different
line segments must be combined in order to find the large linear structures.

27
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One way of combining information in this case is the Hough transform [25].
In the Hough transform, all possible lines in the image plane are considered.
For each line, the image is inspected in order to detect how strongly the image
data support the presence of this line. As all possible lines must be considered,
memory requirements for this technique are high. The performance, both in
computational efficiency and in quality of the resulting image description, can
be improved using a hierarchical technique [86].

Other techniques for detecting linear structures in images are based on
grouping [9, 90]. In grouping techniques, linear structures are detected by
replacing a number—often two—of short line segments by a single longer one,
and repeating this until the large linear structures in the image are found. Such
techniques usually consist of two independent parts. First it has to be determined
which pairs of line segments will be (or may be) replaced by a single longer
one. This "groupability" of two line segments depends for example on their
collinearity and on the distance between their end points. Then, the actual
replacement must be carried out. The detection of groups of line segments
which are to be replaced is often based on a number of thresholds: the difference
in orientation must not exceed a given value; the distance between the end points
of two segments must not exceed a given value (which possibly depends on the
length of the line segments), etc. Such criteria produce binary relations between
line segments.

Scher et al. [92] describe the grouping of line segments on a single known
carrier line into larger line segments. They introduce an evaluation function
which measures how well the group of line segments being evaluated can be
replaced by a single line segment. This evaluation function has a high value
for groups of line segments with small gaps between them and for large groups
of line segments. The evaluation function is used in various grouping schemes.
The clustering method of Scher et al. can not be used to detect linear structures
in two dimensional images, because the Une segments must lie on a single,
known carrier line. In the two dimensional case, such a carrier line is not
known a priori and Une segments which form a linear structure in an image do
not lie exactly on a single carrier line, due to noise.

The purpose of this chapter is the construction of a metric on the set of all
line segments which measures how likely it is that two segments are part of the
same larger linear structure in the image. This depends on various aspects of the
geometrical relation between two line segments, such as the distance between
their end points and the collinearity of the segments. The metric expresses the
geometrical relation in a single number.

There exist measures for different aspects of the geometrical relation be-
tween two line segments, but they do not describe all aspects. Collinearity,
for example, can be measured as the average distance of the four end points of
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two segments, to a line fitted to those four end points. This is a good measure
for collinearity but it does not depend on the distance between the segments.
The distance between end points, on the other hand, is a good measure for the
nearness of two segments, but it does not depend on their collinearity.

The appropriate type of measure to determine whether two Une segments
belong to a single linear structure is a metric. This is the case because of the
transitivity of the collinearity relation. If two line segments A and B belong to
a single linear structure and B and a third line segment C belong to a single
linear structure as well, then A and C belong to a single linear structure. This
is expressed by the triangle inequality, the essential characteristic of a metric.
Transitivity does not only hold for the collinearity of line segments, but also for
other relations such as the cocircularity of arc segments. There are, however,
also geometrical relations for which transitivity does not hold, for example for
line segments being sides of the same square.

In this chapter, a metric on the set of line segments will be constructed
in a number of steps. These are subsequently the choice of a parameter space
U, describing the set of all line segments in the plane, the association of each
line segment in the plane with a function—which will be called the neighbor-
hood function—on this space U, and the definition of a metric on the set of
all square-integrable functions on U. The construction is based on well known
mathematical techniques. It can be seen that a suitable choice of the neighbor-
hood functions will indeed produce a metric which measures the groupability
of line segments.

The metric described in this chapter can be used in a variety of clustering
algorithms [48]. A numerical description of the relation between line segments
provides a larger variety of choice of clustering algorithms than a binary de-
scription. In this chapter, a very simple grouping technique is used to verify the
usefulness of the metric.

The rest of this chapter is organized as follows: In section 2.2, some general
aspects of metric spaces are discussed and some examples are given. Section 2.3
describes how neighborhood functions can be used to construct metrics on the
set of all primitives of a given type. The construction is illustrated by two
simple examples. The metric for lines segments is discussed in section 2.4. In
section 2.5, the usefulness of the metric is verified by using it in a simple line
segment grouping scheme. Section 2.6 presents the conclusions of this chapter.

2.2. Metrics

Before the construction of metrics on sets of primitives is discussed, some
general remarks on metric spaces are made. IR>0 is defined as the set of
non-negative reals.
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Definition 2.1 A metric space is a pair (X, d) where X is some set and d is a
function X x X — »• IR>0 such that for all x, y and z in X:
(1) d(x,y] = 0&x = y.
(2)d(x,y) = d(y,x).
(3) d(x,y) + d(y,z)>d(x,z).

The third axiom in the definition of a metric is called the triangle inequality.
It is this inequality that is not satisfied in many of the measures proposed in
literature.

Let y be a subset of X, where (X, dx) is a metric space. Then Y can be
provided with a metric in a straightforward way: for each pair (yi , 3/2 ) € Y x Y,
the distance is defined as dy (yi, y 2) = dx(yi,y2)- This metric on Y is called
the induced metric.

If X is a vector space provided with a norm || • || [23], then X can be
provided with a metric. This metric is defined by d(x,y) = \\x — y\\ , for all

The set of all primitives of a given type, such as line segments, can be
parameterized by some parameter space U. The dimension of this parameter
space is equal to the number of degrees of freedom which each primitive has.
Some parameters may have values in IR, but some parameters, for example those
describing orientation, can have values only in a more limited range, like [0, TT).
Therefore the parameter space U can have a structure which is more complicated
than the structure of IR™. In many cases, the parameter space corresponding
with a set of primitives will be the Cartesian product of the spaces in which
the different coordinates can assume values. Such spaces can be IR for position
coordinates, IR>0 (the set of positive reals) for lengths and radii, or the unit
circle for direction coordinates.

The construction described in this chapter requires a metric for measuring
the distance between two functions defined on U. Actually, this metric wiÜ
not compare any two functions described on U, but just square integrable
ones, i.e. functions for which J^ /2(t)dt exists and has a finite value. This
set of functions is called £2(U). (Actually, instead of using functions, one
should use equivalence classes of functions, defined by the equivalence relation
ƒ ~ g & /^(/(t)— 0(t))2dt = 0. In this chapter only continuous functions are
used, so this has no practical consequences. For details, the reader is referred
to Dieudonné [23])

£2(E7) is a vector space. An inner product on this vector space is defined
by

(f\9) = f f(t)9(t)dt. (2.1)
Ju

This inner product induces a norm by || ƒ || = \/{/|/). The corresponding
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metric is given by d( ƒ, g) = \\f - g\\, that is

F f 11/2

<*( ƒ , * ) = / ( ƒ ( * ) -ff(*))2d* - (2.2)
L/u- J

The subset S(U) = { f e £2(Z7) | ||/|| = 1} is called the unit sphere in C2(U).
From now on S(U) will be provided with the induced metric. Because all
functions in S(U) have norm 1, we have for all ƒ, g e S (U):

d* (f, g) = 2-2 f f(t)g(t)Ü. (2.3)
Ju

Note that d( f, g) decreases as /^ ƒ (t)g(t)dt increases.
The construction of a metric f or comparing primitives such as line segments

is performed in a number of steps. Each line segment u is identified with a
function ƒ„ in«S(ï7). AsS(U) isasubset of £?(U), the set of all line segments
is identified with a subset of £2 (£/"). Then £*(U) is provided with the metric
as described above and the set of all line segments is provided with the induced
metric.

2.3. Metrics on Sets of Primitives

Let us now return to our original problem. Let X be the set of all primitives
of a given type, for example line segments. Assume that the primitive set can
be parameterized by points in a parameter space U. Line segments can, for
example, be parameterized by coordinates (z,y,0,J) G IR2 x [0,?r) x IR>o.
The point (JE, y] is the center of the line segment, the coordinate 6 indicates that
the direction of the line segment is (cos 0, sin 0) and / is the length of the line
segment.

If U is embedded in some IRn, the simplest conceivable metric on U is the
one induced by the Euclidean metric on IRn. This metric, however, does not take
into account the geometric properties we want to measure. For the example of
line segments, the Euclidean distance between two line segments («i , y\ , 0\ , l\ )
and (*a> jj.fc./i) is [(*! - 32 )

2 + fa - y2)2 + (0! - 02)2 + (/i - /2)2]1/2.
The distance between two line segments with the same direction and length
depends only on the Euclidean distance between the two center points. Thus,
the induced metric is not sensitive to collinearity of line segments, a property
which we want to measure. In general, the metric induced by an embedding of
the parameter space U in some Euclidean space IRn does not work well, because
it does not take into account the geometrical interpretation of the parameters for
the primitives they describe.
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If primitives are parameterized by coordinate vectors (xi,... , o;n), their
nearness can also be defined using thresholds. If a set of thresholds 9i is defined,
two primitives x and y are said to be related if \Xi — j/j| < 0» for all i. In relation
to this approach, a metric d can be defined as d(x,y) = max» \Xi — y»|/0i.
Then two primitives are related if their distance is less than 1. This metric
suffers from the same problems as the metric induced by the Euclidean metric,
since the geometric interpretation of the coordinates is not taken into account.
It would, for example, be nice to allow a larger deviation of the angles of short
line segments, because the measurement of the direction of line segments is
more uncertain for short line segments than for long ones.

We introduce a metric which overcomes the objections raised above. It
takes into account the geometrical interpretation of the different parameters and
their interactions. This is done by letting the metric depend on the model of
image formation. This metric is constructed by embedding the parameter space
U in the function space S(U) in a very specific way. Then the metric on S(U)
induces a metric on U. The basic idea is to associate with each point u € U
a so called neighborhood function. This neighborhood function must satisfy
ƒ„ € S(U) and ƒ„(<) > 0 for all t e U. Neighborhood functions are chosen in
such a way that different points in U have different neighborhood functions.

As a simple example, consider the case where the primitive set is the set IR
of real numbers. Let the neighborhood function of u be the indicator function of
an interval of length 1 centered at u: fu(t) = l[u_i/2,u+i/2] (*)• The primitive
set has now been identified with a subset F(U) of S(U). F(U) is provided
with the induced metric. In order to let d have a maximal value of 1, it is divided
by \/2. Equation (2.3) then gives:

r r i1/2
d(u,v)= 1- / ƒ„(*)ƒ„(*)<!* . (2.4)

L Ju J

For the example mentioned above, it can easily be seen that

/ fu(t)fv(t)dt = max(0,1 - |u - v\). (2.5)
./IR

The metric thus defined on IR is

d(u, v) = ^l -max(Q,l - \u-v\) = min(l, \/\u - v\). (2.6)

This metric is illustrated in figure 2. la. Both fx(t) and d(x, y) are translation
invariant since fx(t) = f0(x - t) and d(x, y) = d(x — y, 0). The upper curve
shows fo(t) and the lower curve shows d(x, 0).
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The neighborhood function has a nonzero value only on an interval of
length 1. It can be seen that d(x, y) has the maximal value 1 when x and y are
so far apart that the intervals around x and y do not overlap. The larger the
overlap of these intervals is, the smaller the value of the metric. The metric
therefore measures the disjointness of the intervals, which can be interpreted as
influence zones of the points x and y.

0.5

(a)

Figure 2.1: Two examples of metrics on IR. The upper curves show a
neighborhood function f0(t) and the lower curves show d(x, 0) for the metric
defined by this neighborhood function.

Another metric on IR can be obtained by taking the Gaussian neighborhood
function

W2. (2.7)

The metric defined by this function is

d(u,v) = (2.8)

This metric is illustrated in figure 2.1b. There is again translation invariance,
as fx(t) and d(x, y) depend only on x - t and x - y, respectively. The upper
and lower curves show /0(i) and d(x,0). Note that the use of a Gaussian
neighborhood function has the practical advantages that, firstly, the product of
two Gaussian is again a Gaussian and, secondly, that the integral of a Gaussian
over IR can be expressed in a closed form.

In this example, the neighborhood functions have a nonzero value ev-
erywhere. The metric now expresses the extent to which the neighborhood
functions have different values at different locations of the parameter space IR.
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Let us now return to the case of segments as primitives. The neighborhood
function must be chosen in such a way that the metric it defines expresses the
groupability of primitives. Therefore, the choice of a neighborhood function
depends on how a structure in a scene gives rise to primitives in an observed
image. Suppose that an image is created by measurement of some real structures
in the scene. The measurement process is not perfect, so deformations occur.
Let us choose the neighborhood function ƒ„(*) to be the probability that a
measured primitive u stems from measurement on a true structure t in the
scene:

ƒ„(*) = P(Ttrue = 11 Tmeas = «). (2.9)

This neighborhood function contains information on both the distribution of
linear structures in the scene and on the characteristics of the measurement
process. Using Bayes rule, we can write

r>(T — + I T> *.\ Corneas = U -^true = *) J3(T _ j\
^Vtrue — I | Jmeas = U) = —— —— X -P(Jtrue = t).

•* (.-tineas — u)
(2.10)

The second term in the right hand side of (2.10) describes the probability
distribution of structures in the scene, i.e. a priori world knowledge. No a priori
knowledge is assumed, so this distribution is taken uniform. This yields an
improper distribution (i.e. it integrates to oo in stead of 1), but as various factors
will cancel in our calculations, this causes no problems. The denominator
on the left hand factor describes the probability distribution of the primitives
obtained by measurement. This distribution depends on the distributions of
structures in the scene and on the image formation model. The numerator of the
left hand factor describes the probability distribution of the primitives obtained
by measurement, given the presence of a structures in the scene. Hence, this
distribution represents the image formation model.

If it is assumed that different primitives in the image are generated by
measurements of independent realizations of the distribution of structures in the
scene, ƒ„ (t) fv (t) is a measure for the probability that both u and v are generated
by a measurement of the same structure t. Integrating this product over t gives
a measure for the probability that both u and v are produced by measurements
of the same structure in the scene. This integral can be regarded as a measure
of nearness of the two primitives.

Thus, the choice of the neighborhood function depends on the underlying
model for image formation. It is also possible to put a priori demands on
the behavior of the metric (as we will see when the length of gaps between
collinear line segments is discussed). These demands impose conditions on the
neighborhood function and therefore on the image formation models which can
be chosen.



The Metric on Line Segments 35

In many cases, the relation between two primitives is invariant under the
operation of some group G. In the case of line segments, for example, collinear-
ity and nearness only depend on the relative positions of the primitives; they are
invariant under translations and rotations of the whole primitive configuration.
It is natural to choose neighborhood functions which are transformed into each
other under the action of the group.

If G is transitive, only one neighborhood function needs to be defined;
the others can be constructed from mis function. This reduces the number
of degrees of freedom in the choice of neighborhood functions. However, in
many applications the number of symmetries will be so small that the symmetry
group is not transitive. In the case of line segments, for example, there will be
invariance under translation and rotation, but no scale invariance. Therefore,
independent neighborhood function must be defined for each /0- The neigh-
borhood functions belonging to different x0, y o and ÔQ are then fixed by these
choices through the action of the group of Euclidean motions.

Note that the choice of a probability density function for fu(t) implies
f u /«(*)d* = l- T*16 construction however required that fv fu

2(t)dt = 1
for all u. If we restrict to bounded probability density functions, the integral
Ji; /u(*)dt will be finite. If the symmetry group of the problem is transitive, the
ratio between the integral of ƒ„ and the integral of its square is fixed, as can be
derived from the fact that all neighborhood functions can be transformed into
each other by a simple coordinate transformation. If the value of J^ /„(i)di
has a value not equal to 1, fu(t) should be multiplied with some normalization
factor.

If the symmetry group is not transitive, it may still be possible to choose the
neighborhood functions in such a way that fv fu(t)at does not depend on u. In
the example of line segments discussed in the next sections, the neighborhood
functions will be chosen in such a way that they satisfy this condition.

Note that it is not necessary for the construction of the metric that the
integral of ƒ„ is constant. Yet it is required if a probabilistic interpretation is
given to the metric.

It is also possible to take ƒ„(*) = \/P(TtIue = t \ Tmeas = u), implying
ƒ«(*) = ^(2true = t I Tmeas = u). The distance between u and v defined in
this chapter is then equal to the so-called Hellinger distance [19] between the
probability distributions f*(t) and f£(t).

2.4. The Metric on Line Segments

In the previous sections, the construction of a metric on a set of primitives
has been presented. In this section, this procedure will be used to obtain a metric
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on the set of all line segments. The most important step in our construction is the
choice of a model of image formation, leading to the choice of an appropriate
neighborhood function.

If linear structures are computed by edge detection, followed by line fit-
ting, distortions can occur. Lines can be interrupted or displaced from their
original location and orientation. Additional processing is then necessary for
the extraction of the complete linear structure in the scene.

Now let MO = (xo , î/o » 00 j Jo ) be the coordinate representation of a line seg-
ment in the parameterization discussed previously. In order to define a metric,
the neighborhood function ƒ„„ (x, y, 0, 1) must be defined, which indicates how
likely it is that a given measured segment UQ stems from a measurement on a
true linear structure with coordinates (a;, y, 0, 1).

Note that there is a desirable property of the metric which imposes an extra
condition on the form of the neighborhood function. If two line segments lie on
the same support line while they are separated by a gap which is large compared
with their own lengths, the distance between them should be large, even if they
could be caused by a single, very long, linear structure in the scene. If such a
long structure is indeed present, the gap will be filled with other line segments,
making a detection of the linear structure in the scene possible. In other words,
it is assumed that distortions in the measurement process do not create large
gaps in linear structures, but only short ones.

In order to implement this criterion, a neighborhood function must be
chosen which does not extend very far in the direction of the line segment.
Then, the length of a measured line segment gives no information on the length
of the linear structure to which it belongs.

From equation (2.10) we have:

ƒ„(*) = P(Ttrue = 1 1 Tmeas = «)

_ P(Tmeas = u | Ttrue = t) _ (2.11)
"

The prior distribution of position and orientation of the linear structures in the
scene is assumed to be uniform. Hence the second factor in the right hand side
depends only on It- The local measurement property discussed above implies
that the first factor does not depend on the length lt of the linear structure in the
scene. Hence we can take fu(t) of the form

ƒ«(*) = lM*.,lfc,

There is no need to specify (j> since

ƒ (ƒ«„ - Ao)2<U*(t) = f #02dJ ƒ (K - M2axdyd6 (2.13)
JU J\R>0 J
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and ƒ 0(/)2d/ is a constant, which can be disregarded when the values of the
metric are compared.

We will now describe our model of image formation, leading to the choice
of a neighborhood function. We will assume that the position and the orientation
of a measured line segment are normally distributed around the true values for
the linear structure in the scene. The neighborhood function of a point UQ will
have its maximum in the point UQ itself and will decay towards 0 when moving
away from UQ. Because position and orientation are normally distributed, the
neighborhood function can be constructed using Gaussian functions, which
depend on a single parameter (their width).

- The direction which is measured for the line segments can be corrupted.
Therefore, a line segment should be "near" to other line segments at the
same position but having a somewhat different direction. This is expressed
by the width of the neighborhood function in the 0-direction (in U). The
direction measured for a long line segment is a better indication for the
direction of the underlying linear structure than the direction measured for
a short segment. Therefore the width in the 0-direction of the neighborhood
function of a short segment is larger than the width in the neighborhood
function of a long segment.

- If a linear structure is broken into pieces, several short segments can result.
The midpoints of these segments are displaced from the center of the
original structure, in the direction of the linear structure. Therefore the
neighborhood function of a line segment must have a relatively large width
(proportional to the length of the measured line segment) in the direction
in which the linear structure lies.

- A line segment can also be displaced from the linear structure in the
direction orthogonal to the structure. The displacement in this direction
will not be too large and does not depend on the length of the line segment.

The neighborhood function is now chosen as follows: For fixed 0, the function
•0UO fa» 2/> 0) is a two-dimensional Gaussian-like function centered at (x0,y0)
with its long axis oriented in the 0-direction of the x-y-p\ane. The width 07 in
the 0-direction. i.e. the length direction of the line segment, is proportional to
the length 10 of the line segment. The width crw is fixed to some small value.
The amplitude of the Gaussian-like function varies with direction: it is large for
0 close to the direction 00, while it is small for values 6 further away from the
Une direction ÖQ.

Thus, the neighborhood function is described by:

fuo(x,y,0,l) = GVm(h)(e-e0)GflWaw(R^(x-xo,y-yo)^(l) (2-14)
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Here G„(x) is a Gaussian-like function of width a:

(2.15)

(2.16)

G is a two-dimensional Gaussian-like function:

-

.Re is a rotation over 0. As mentioned before, the factor <j> cancels out in later
calculations.

The symmetry group underlying this situation is the group of Euclidean
motions of the image plane. There is no scale invariance, since the uncertainty
in the orientation of a segment depends on its length. Note that, once the choice
for Gaussian neighborhoods is made, there are only three degrees of freedom
left: <TJ(/O), <?w and a0(/o). Note that the values of these parameters depend
only on the length /0 of the line segment. The value of Jv fuo (t)dt is

r
Jo

(2.17)

This value does not depend on UQ if the product <ri(lo)crwcra(lo) does not depend
on IQ. In the next section, the values of <TJ(/O), (rw and ^„(/o) will be chosen
such that this condition is satisfied.

2.5. Experimental Results

To verify the usefulness of the metric defined in the previous section, a hier-
archical clustering method based on this metric is examined. The clustering
method used is a standard hierarchical clustering method [48]. It acts on a
configuration of a number of primitives. The algorithm proceeds step by step.
In each step, the two nearest primitives are replaced by a single one, such that
a hierarchy of configurations with smaller and smaller numbers of primitives is
created.

Let {si, . . . , sn} be the set of all primitives in the original configuration.
Let Z/*) = {s[k\ . . . , a^jt } be the configuration in the fc-th iteration step. L^
is equal to {si, . . . , sn}. Successive levels are built by replacing the primitive
pak having minimal distance by a single primitive:

u {c(4*>, 4fc>)}. (2.18)
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Here 4*° and 4*° are chosen such that d(s(
p

k\ s(
q

k*>) = min^ rf(sf \s^)

and c(4 ,4 ') is the join of «£*' and 4 > a line segment which replaces the
original two segments.

The join of two line segments is defined as follows. First, the line is
constructed which minimizes the mean squared distance of the four end points
to the line. The join of the two segments is a segment of this line. The end
points of the join are calculated by looking at the orthogonal projections of the
two segments on the line. The join is the smallest segment of the line which
contains both projections.

The clustering method is applied to a number of line segment configura-
tions, derived from natural images. A Sobel gradient filter is applied to the
original image. The edges in the image are detected by a peak filter. The edges
detected by the peak filter are one pixel thick. Line segments are then fitted to
the curves by connecting the first and the last point. If a curve is longer than a
given number of pixels (in this case 6), the curve is cut into shorter pieces before
fitting the line segments. In this way, line segments are fitted with reasonable
accuracy to curves which contain bends or angles.

ir r
l

ggp

~w

Figure 2.2: The house image and the extracted segments

We still have to choose the parameters a\ (lo ), aw and aa ( 10 ). The following
approach is taken to estimate a good set of values. Suppose that the end point of
each line segment is displaced in the direction orthogonal to the underlying linear
structure in such a way that the distance from the end point to the underlying
line is uniformly distributed in the interval [-D, D], for some constant D. It
is assumed that the shifts in the position of the two end points are independent.
The dislocation of the end points generates a sideways deviation of the center of
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the line segment and a distortion of the orientation of the line segment. In a first
order approximation, the standard deviation of the orientation is \/2/3£>/Zo
and the standard deviation of the sideways displacement is ^/l/6D, where IQ
is the length of the line segment.

If these values are used for aa(lo) and aw, then CTJ(ÎO) must b6 linear in
IQ in order to guarantee that the product of the parameters is a constant. This
implies that larger gaps can be bridged between long line segments, while only
short gaps can be crossed between short line segments. Therefore, <7i(/0) must
be of the form Clo, for some constant C.

A cut-off lmax for the length /0 of the line segment is used: line seg-
ments having a length larger than /max have the same neighborhood function
as line segments of length lmax. This has two effects. Firstly, a minimal value
<\/2/3D/lmax is introduced for the uncertainty in edge direction. Secondly, the
spread in the length direction of the line segment is bounded by C7max, thus
avoiding that large gaps between line segments can be bridged.

The parameters for the metric are:

(7i(/o) = Cmm(/o,/max)

<rw =

For most results presented here, the values (7 = 1, /max — 40 and D = 2 were
used. The size of the images is 256 x 256.

Line segment clustering was performed for the house image 2.2. The initial
configuration contained 509 une segments. Figure 2.3 shows the stages of the
clustering process in which 250, 200, 150 and 120 segments are left. When
250 line segments are left, the linear structures begin to show quite clearly.
When 150 segments are left, the detection of the linear structures in the image is
more or less completed. At this stage, there are stray line segments left. When
the clustering process is continued, unnatural groupings occur, which do not
correspond to linear structures in the image. This can be seen in the picture
where there are 120 line segments left.

It is therefore best to stop the clustering before undesirable clusterings
occur. The distance at which such clusterings start to occur, depends on image
contents. Therefore, it is not possible to prescribe a generally applicable distance
threshold at which the process should be halted. Practical examples indicate
that undesirable clusterings often occur if one of the two segments is a short
noise segment which is not the result of previous clusterings, but has survived
for a long time on its own without participating in the process.

In order to evaluate the noise sensitivity of the clustering algorithm, the
algorithm is run on a number of synthetic images with a varying number of ad-
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(c) (d)

Figure 2.3: Stages in the clustering process with 250, 200, 150 and 120
segments left.

ditional noise segments. The signal consists of a number of short line segments
forming a long horizontal line in the image. The positions and orientations
of each of these line segments are distorted. The lengths of the line segments
and of the gaps between them are distributed normally with an average of 6
and a standard deviation of 2. The noise consists of a varying number of line
segments with uniformly distributed position and orientation.

The clustering process is continued until no line segment pairs with a
distance smaller than 0.9998 remain. The results are shown in figure 2.4. In
the result pictures, line segments which have not participated in the clustering
process are not shown.

In all cases, the linear structure is detected. As the number of noise
segment grows, the number of accidentally aligned noise segment grows as
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Figure 2.4: Results for synthetic images with noise. From left to right: 25,
75 and 150 noise segments.

well. Therefore, a number of linear structures is detected in the noise. The
number of these accidental linear structure increases as the number of noise
segments increases. In a more sophisticated approach, the image formation
model could take into account that noise segments can be aligned accidentally
and the neighborhood functions could be adapted accordingly.

The noise sensitivity has also been tested with the house image. The
house image is contaminated with 100, 300 or 500 uniformly distributed noise
segments and the clustering is performed until the number of remaining line
segments is 170 larger than the number of added noise segments. The results are
shown in figure 2.5. Line segments which have not participated in the clustering
process are not shown. In all cases, the most important linear structures are de-
tected, but there is also a number of linear structures detected in the background
noise.

In order to examine the range of images for which the method gives good
results, the clustering is applied to two other images, taken from the Cranfield
benchmark set, which contain curved structures. The results are shown in
figure 2.6. The pictures show, from left to right, the original image, the initial
line segment configuration and the line configuration which is reached after a
number of clustering operations, just before unwanted clusterings start to occur.
The moment at which the clustering stops is selected such that the resulting
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Figure 2.5: Results for house image with additional noise. From left to
right: 100, 300 and 500 noise segments.

configuration is visually pleasing.
The linear structures in all images are detected quite well. If curves are

present, a number of short segments is fitted along these curves.
Note that there is a number of long lines which are broken up in a staircase-

like pattern, for example the diagonal line in the lower left hand comer of the
image in the second row. This effect is caused by the discretization, in our
implementation, of the line orientations: a line with the correct orientation can
not be represented. This problem can be solved by increasing the orientation
resolution.

In order to test the sensitivity of the clustering process to parameter
changes, the clustering process is applied to the house image with various
parameter settings.

The results are shown in figure 2.1. In all cases, the clustering process
proceeded until there were 150 segments left. The parameters C, /max and D
are varied in the left, middle and right column, respectively. For each of the
parameters C, /max and D, a smaller and a larger value are tried. The results
obtained with the smaller values (the normal values divided by 2) are presented
in the top row and those with the larger parameter (the normal value multiplied
by two) in the bottom row.

For all parameter settings, the most important linear structures are detected.
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Figure 2.6: Result for different images.

Figure 2.7: Results for different parameter settings. From left to right, C,
/max and D are varied. On the top row, the parameter is smaller, on the
bottom row, it is larger.



Conclusions 45

In the left column, it can be seen that a large value of C encourages the bridging
of large gaps (e.g. between the door and the window) and the formation of long
segments (e.g. in the gutters). In the middle column, the effect of the cut-off
length can be seen. A large cut-off length encourages the formation of large Une
segments, as can be seen for example in the roof. The right column shows the
effect of the parameter D. A large value of D encourages merging long parallel
line segments, as can been seen in the gutters. As such merges are discouraged
by a small value of D, other merges, such as the one between the top of the
window and the top of the roof, occur.

In a previous publication [77], the results with a different choice for a\ (/o),
<TO and a0(/o) have been presented. Those results are comparable to the ones
resented here. This also shows the robustness of our metric.

2.6. Conclusionsr
In this chapter, a metric for comparing line segments has been presented. This
metric measures how well two line segments could be replaced by a single
longer one. The metric has been constructed using a new technique, based
on neighborhood functions. This technique is applicable to other situations as
well. The behavior of the metric depends on the choice of the image formation
model, which is reflected in the choice of the neighborhood functions. In the
chapter, such a model and the corresponding neighborhood function have been
presented. The number of free parameters left which must be fixed to "tune"
the metric, is limited.

The metric has been tested by using it in a very simple Une segment
clustering process. This process detected large linear structures in images
containing a number of short line segments, produced by edge detection and
line fitting. The clustering process can detect large linear structures in images
quite well, especially with regard to the simplicity of the clustering algorithm.
This shows that the metric is indeed a good measure for the groupability of
line segments. It has been demonstrated that our method is robust and shows
graceful degradation, both in the presence of noise and under variation of the
parameters.



Connected Clusterings in a Graph

3.1. Introduction

An important task in image processing and pattern recognition is finding clus-
ters of 'similar' primitives in a large set [48]. In image processing, this typically
amounts to image segmentation. An image is a collection of measurements,
arranged in some spatial order. Therefore, two sets play a role when performing
clustering on image data. The first set is the one that defines the spatial arrange-
ment of the measurements. For raw images, this set is typically a continuous
space IRn or a regular grid 7Ln. This set is called the spatial support. The other
set is the set of possible measurement values. It usually contains a number of
allowed grey values, represented by integers, but it can also be higher dimen-
sional, like in the case of multi-spectral images. This set is called the range of
the image.

In this chapter, clustering of grey values in an image will be discussed in the
context of the region adjacency graph. In such graphs, each vertex represents
a connected subset of the image plane. This subset can be as small as a single
pixel. Two vertices are connected by an edge if the subsets they represent are
adjacent. Repeated merging of regions in the image leads to the construction of
a hierarchy of region adjacency graphs (cf. section 1.4).

Each level in the hierarchy of graphs acts as the spatial support of an image.
The range of these graph images is a set of grey values, represented by integers.
The image grid of the input image is considered as a 4-, 6- or 8-connected graph.
This allows for a uniform treatment of all levels.

Suppose that a number of characteristic vertices has been selected for some
graph image. A clustering can then be devised by assigning other vertices to one
of those characteristic vertices. Each characteristic vertex then represents the
cluster of all vertices which have been assigned to it. The assignment of vertices
will be performed such that each vertex is assigned to a characteristic vertex
that is 'close' to it. The selection of characteristic vertices will be discussed
later on in this chapter.

47
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The fact that we have to deal with two sets—spatial support and image
range—can lead to difficulties. Should a vertex be assigned to a characteristic
vertex to which it is near in spatial support, or to a characteristic vertex that has
a similar grey value, or both?

If we consider only spatial support and ignore the range and assign each
point to the nearest characteristic point, we obtain the Voronoï diagram of the
set of characteristic points. If we consider only the range and ignore the spatial
support, assignment of each primitive to the nearest characteristic primitive
boils down to multilevel thresholding. Such a clustering procedure will result,
in general, in groups of vertices which do not constitute connected subsets of
the spatial support.

In this chapter, we will discuss clustering methods which take into account
both the spatial support and the image range and which have the property that the
vertices assigned to a given characteristic vertex constitute a connected subset
of the spatial support.

In section 3.2, we will consider a number of criteria for clustering primitives
which correspond to increasing path distances. It will be shown that, for such
criteria, it is possible to construct a clustering in which each vertex is assigned
to a characteristic vertex in an optimal way. The same algorithm can be used to
compute a non-optimal connected clustering for other types of distances.

In section 3.3, some examples of hierarchies built based on various clus-
tering criteria will be presented. Section 3.4 presents the conclusions of mis
chapter.

3.2. Optimal Clusterings for Increasing Path Distances

This section discusses clustering algorithms based on increasing path distances.
First, we define this type of distances. Then, it is shown that there is an algorithm
that computes clusters which are both optimal with respect to this distance and
connected in image space.

Let G = (V, £7) be a graph with vertex set V and edge set E. This graph
will be the measurements space of an image, i.e. there is a value g(v) in the
range R associated with each vertex v of the graph.

Definition 3.1 Let G = (V, E) béa graph and let v, w E V. A path from v
to w is a sequence VQ = v, v \ , . . . , vn =w of vertices such that (vi,'Vi+i) e E
f or all i.

Various costs can be associated with a path v0 , . . . , vn. The value of such a cost
function is often a nonnegative integer, but, as we will see later, other totally
ordered sets N can be used. The smallest element in such a set will be denoted
byO.



Optimal Clusterings for Increasing Path Distances _ 49

Definition 3.2 A function C assigning a cost in N to each path v0,. . . ,vn

is called an increasing path cost if there is a fonction <j> : N x N — » N and a
function d : R x R — > N such that

C(v0, ...,«„) = <j>(C(vo, . . . , n„_!), d(flK-i), $(«„))) (3.1)

and C(t;o) = 0» where 0 satisfies the following conditions:
1. (j)(Q,x) =x.
2. (l>(x,y) < $(x',y) ifx < x'.
3. (j>(x,y) > x.

This definition implies that the cost of a path can be computed iteratively.

Definition 3.3 Let C be a minimal path cost. Then an increasing path distance
D is defined by

D(v,w) =

min{C(tJo, . . . , vn] \ v = v0, v\, . . . , vn = w isapath from v to w}

Thus, the increasing path distance between two vertices is simply the minimal
path cost over all paths between these two vertices. The following lemma shows
that such a path can be chosen in an optimal way.

Lemma 3.4 Let v, w be two vertices in a graph. Then there is a path
vo = v,vi , . . . ,v n=w such that

1 , . . . ,v i) (3.2)

for every i. Such a path is called an optimal path from v to w.

PROOF. This lemma can be proved with induction in D(v, w). The lemma is
true for D(v, w) = 0, since for every path VQ = v, v\ , . . . , vn = w with cost 0,
D(v, Vi) = 0 holds for all i. (use definition 3.7, property 3.)

Now suppose that the lemma holds for all vertices u with D(v,u) <
D(v,w). Consider the path VQ = v,vi , . . . ,vn = w with cost D(v,w)
and let k be the last index for which C(VQ,- •• ,Vk) > D(vo,Vk). This
implies D(VQ, . . . , V k ) < D(v, w). Replace the first part u0, . . . ,«», of the
path by an optimal path v = v'0,v' l,...,v'k, = Vk from v to vj,. Then
V 0 i - - - j ^ j f e ' j ' t f f c+ i ) - - - , vn is an optimal path. In order to show this, it is sufficient
to show that

(j>(D(v,vk),d(g(vk),g(vk+i))} = D(v,vk+i).
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Using property 2 in definition 3.2, it can be seen that the left hand side is smaller
than or equal to

, . . .,vk),d(g(vk),g(vk+i))) = C(v0, . . .,vk,vk+i) = D(v,vk+i),

but as D(v, Vk+i) is smallest possible path cost for a path from v to vk+i,
equality must hold. I

We present some examples of increasing path costs. If ^(51,52) = 1 for
all gi and g2 and <f>(a, b) = a + b, then D(v, w) is the length of the shortest path
from v to w, that is

D(v, w) = min{n | VQ, . . . , vn is a path from v to w}. (3.3)

If d(ffi,ff2) = \9i - 92\ and (/>(a, b) = a + b, then D(v, w) is the length of
the shortest path from v to w , where each edge («1,02) is weighted by the
difference between g(vi) and g(vz), that is

D(v,w) — min{^ |</(i;i+1) — g(vi)\ | vj., . . . ,vn is a path from v to«;}.
(3.4)

It is not necessary to take </)(a, b) = a + b. If we take, for example,
0(a,&) = max(o,6) and d(gi,gz) = \9i — 52]. then D(v,w) is the minimum
over all paths from v to w of the largest grey value step between adjacent vertices
in such a path, that is

D(v,w) = min{max|</(i;j+i) — d(vi)\ | vi,.. . ,vn path from v tow}.

(3.5)
It is even possible to allow D to have non-numerical values. Suppose that

we use only integer grey values. Consider the set of polynomials in X, and
define a total ordering on these polynomials by

p(X) < q(X) O lim q(X) - p(X) = +00. (3.6)
Ji. — *"OO

It is then possible to define an increasing path distance by choosing </f>(a, b) =
a + b and d(gi,gz) = A"lfll~S2l. This distance function corresponds with a
path cost function which defines the cost of a path to be ̂  niX

i, where n» is
the number of times a grey value step of height i occurs in the path. Thus, the
distance is defined by

w 0 j . . . ,«„ is a path from v tow}.

(3.7)
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Suppose a subset V* C V of characteristic points of a graph image is
given. We consider the problem of assigning each vertex in V to that vertex
in V* to which it is closest. Closeness will be measured by an increasing path
distance D. We describe an algorithm which computes an assignment with the
following properties:

1. If a vertex v is assigned to a vertex v* e V*, then the equality D(v*, v) =
min^gv d(w, v) will hold.

2. The set of vertices assigned to each characteristic vertex v* e V* is
connected.

In other words, we provide an algorithm which generates clusters which are
both optimal with respect to the distance used, and connected in image space.

In the algorithm, three variables a(v), 8(v) and S'(v) are associated with
each vertex v. The variable a(v) represents for each vertex v the characteristic
vertex to which it is assigned. The variable S(v) represents the distance to this
vertex and has value oo as long as the correct characteristic vertex has not been
found. The variable S'(v) represents the smallest cost of a possible path to a
characteristic vertex through vertices v' for which S(v') has already been set.

Algorithm 3.5 Computation of an optimal, connected clustering in a graph
image for an increasing path distance.
Let G = (V,E) be a graph with vertex values g(v). Let V* be a set of
characteristic points. Let three variables S(v), 8'(v) and a(v) be associated
with each vertex v e V.

1. Puta(v) := v andS(v) := 0 for each v e V* andS(v) := oo for all other
vertices.

2. Put all vertices in N(V*)\ V* in a list;
putS'(v) := mia,.ejv(w) <f>(6(x), d(g(x), g(v)))forall vertices vin the list.

3. Select the vertex v with the smallest value ofS'(v). Put S(v) :- 8'(v)
and put a(v) := ct(w), where w is a neighbor ofv which satisfies 8(v) =
<f>(S(w),d(g(V),g(w))).

4. Remove v from the list; put all neighbors wofv for which 8'(v) = oo in
the list and put 6'(w) := mmx€N(w) <j>(8(x),d(g(x),g(w))).

5. repeat steps 3 and 4 until the list is empty

Theorem 3.6 Consider the values a(x) computed by algorithm 3.5. Then,
for each v* e V*, the set {v e V \ ot(x) = v*} is connected.

PROOF. It can be seen from the algorithm that each time an assignment a(v) :=
w is made, w 6 V* holds.

After step 1, we have for each v* e V the equality {v e V | a(v) =
v*} = {v*}, so {v £ F | a(w) = v*} is a connected subgraph.
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Further assignments to a are made in step 3. When the assignment a(v) :=
v* is made, there is a neighbor w of v such that a(w) = v*. Therefore,
connectedness of {v 6 V \ a(v) = v*} still holds after the assignment.
Repeating this argument for each assignment to a shows that, after termination
of the algorithm, {v € V \ v e V*} is connected for each v* € V*. I

Theorem 3.7 Consider the values a(v) and S(v) computed by algorithm 3.5.
Then for each v € V :

6(v) = min^ D(v*, v) = D(a(v), v). (3.8)

PROOF. Write Dmin(v) for min„.6v. D(v*,v). We will show that the at-
tributes 6(v) of all vertices v will be assigned the value Dmin(v) in increasing
order of DmiD(v).

In the first step, the assignment 6(v*) := 0 is performed for each v* e V*.
Now suppose that the assignment 6(v) = Anin(«) has been performed

for all vertices v with Dmin(v) < d, for some d. It will be shown that in
the subsequent series of assignments, e(v) will be put to d for all v with
Dmin(v) = d, before any 6 receives a value larger than d. Let « be the next
vertex for which an assignment to 6 is made and let v* = vo,vi , . . . ,vn — v be
an optimal path (lemma 3.7) from v* 6 V* to v. There is a k in {0, . . . , n} such
that Anin(vi) = d for i e {k, . . . , n} and Dmin(f i) < d for i e (O, . . . , k — 1}.
This implies 6(vi) = Dmin(vi) for i E {O, . . . , k - 1}. If d = O, then k = O,
but as «o G V*, it is sure that the equality 6(v0) = 0 already holds.

We will assume that some value larger than d will be assigned to 6(v)
and deduce a contradiction. If some value larger than d is assigned to v = vn

in step 3, then 6'(v) > d when this assignment is made. This implies that
a(vn-i) > d when the assignment to 8'(v) was made in step 4, for otherwise,
o'(v) would have been put to (j>(S(vn^i),d(g(vn-i),g(vn))) = d, where that
last equality holds because of the optimal path property. By repeating this
argument, it can be seen that some value larger than d has been assigned to
6(k). (Note that this claim holds both in the case d > O, k > n and in the case
d = O, k = 0.) But the assignment S'(vk) := d was made after the assignment
6(vk-i) := .Dmin(vfc-i), so the assignment 6(vk) := d would have been made
earlier. Therefore the value d will be assigned to S(v).

Note that, in step 3, a(v) is given a value such that S(v) = D(v*,v) is
satisfied. I

Algorithm 3.5 computes connected optimal clusterings for increasing path dis-
tances. For other types of distances, such clusterings may not exist. Yet
algorithm 3.5 can be used to compute sub-optimal connected clusterings for
such distances.
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3.3. Application to Hierarchical Clusterings

Algorithm 3.5 computes clusterings in graph images in which some set of
characteristic points has been marked. The result of this computation can be
represented as a graph in which each vertex represents all the vertices in a
single cluster of the input graph. This section describes some results when
algorithm 3.5 is applied repeatedly in order to compute a hierarchy of region
adjacency graphs.

Application of the clustering algorithm requires the definition of a distance
measure between vertices, which expresses similarity and nearness of vertices.
This determines, which vertices will be clustered in a single region. Two
distance measures will be used. The first one is the grey value weighted path
length as defined by equation (3.4). This distance is an increasing path distance,
so the clustering computed by algorithm 3.5 is an optimal one.

Figure 3.1: A situation where no optimal connected clustering exists. If the
vertices at the top are the characteristic ones and the grey value difference
is used, the optimal clustering consists of two non-connected groups, as
indicated.

The second distance is the grey value difference defined by

C(v0,..., vn) = \g(v0) - g(vn)\. (3.9)

This cost depends only on the grey values of the end points of a path, not on
the vertices between them. This distance is not an increasing path metric, so an
optimal connected clustering will not exist in general. In figure 3.1, it can be
seen that the optimal clustering defined by such a metric can be disconnected.
On the other hand, this distance has the advantage that it induces a multilevel
threshold if an optimal clustering is determined without regarding connectivity.
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Therefore, clusterings computed with this measure represent a compromise
between thresholding and the preference for connected clusters.

In each level of the hierarchy, characteristic vertices are chosen by a random
process in such a way that for each level, 25% of the vertices are selected as
characteristic points. If some grey level occurs often in some part of the region, it
is likely to be put into a larger cluster. In the construction of the next level, larger
regions must therefore have a larger chance of being selected as characteristic
regions.

Figure 3.2: The original 256 X 256 image on which clustering is performed.

Therefore, characteristic regions are selected by the following process. A
series of random points is generated with a uniform distribution over the image
plane. A region is selected if it contains at least one point from the random set.
Thus, regions with a large area have a larger chance of being selected.

Figure 3.3 shows the results obtained for the original image 3.2. The
original image is 256 x 256 pixels large. Figure 3.3 shows the second, fourth
and sixth levels, which contain 4096,256 and 16 regions, respectively. The top
row was constructed using the grey value difference criterion; the bottom row
was constructed using the weighted path length criterion.

In Gaussian scale space, images are often described as a configuration of
light and dark blobs and the evolution of these blobs is tracked when the scale
parameter increases [103]. In the context of this section, light and dark blobs
correspond to vertices which are lighter or darker, respectively, than all of their
neighbors.

Therefore, we consider the type of hierarchy that can be constructed when
all local minima and maxima are selected as characteristic points. In this case,
the top level of the hierarchy does not consist of a single vertex, but of a graph
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Figure 3.3: Clustering results. The top row was constructed with the grey
value difference criterion, the bottom row with the weighted path length.
From left to right, levels with 4096, 256 and 16 regions are shown.

in which each vertex is either a minimum or a maximum, for then each vertex
is selected as a characteristic primitive. For this situation, some interesting
properties can be derived. A cycle in a graph is a path in which the begin and
end points coincide, and in which all other vertices are distinct. The number of
distinct vertices in a cycle is called its length.

Lemma 3.8 Let G be graph at the top level of a hierarchy created by selecting
local extrema as characteristic points. Then each cycle in G has even length.

PROOF. Upon stabilization, every vertex in the graph is either a minimum or a
maximum. No two minima can be neighbors in the graph, nor can two maxima.
Therefore, the vertices in a cycle form an alternating sequence. As a cycle is
closed, this is possible only if it contains an even number of vertices. I

If the original graph is 4-connected or 6-connected, each level is a region
adjacency graph is a planar graph. In a planar graph, faces are regions of the
plane which are surrounded by edges and vertices which form a cycle, in such
a way that this region contains no other vertices. The number of edges (or
vertices) which surround a given face is called the degree of that face.

Kropatsch and Montanvert [57] have shown that the degree of the faces in
a hierarchy of graphs does not increase with level, i.e. for each face in a higher
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level of the hierarchy, a face in a lower level of the hierarchy can be found which
has at least the same degree. They state their result only for a particular class
of hierarchies, but their proof is is applicable without change to the structure at
hand.

If the original image is considered as a 6-connected graph, this has some
interesting consequences.

Theorem 3.9 Let G be the top level of a hierarchy which was constructed
from a 6-connected image using extrema as characteristic points. Then G is a
tree.

PROOF. Suppose G is not a tree. As it is a planar graph, it must contain a closed
face. As the degree of the faces in a 6-connected grid is 3, the degree of such a
face in G can be at most 3. Each face of degree d defines a cycle of length d
and according to lemma 3.8, d must be even. As d < 3, d must be equal to 2.
Yet faces of degree 2 do not occur in a region adjacency graph (although it may
be possible that multiple edges between vertices are required in order to retain
the bounded face degree property [HO])- This leads to a contradiction, so G
must be a tree. I

Hierarchies based on extrema can be very high, because some configura-
tions can contain many extrema, such that the number of vertices is reduced
only slightly between successive levels. This is for example the case when a
homogeneous region contains lighter and darker noise pixels. Figure 3.4 show
three levels of a hierarchy constructed by selecting extrema as characteristic
vertices. The 4th level (with 1136 vertices, figure 3.4a), the 16th level (with
681 vertices, figure 3.4b) and the 481st, top level (with 31 vertices, figure 3.4b)
are shown. The lower levels of the hierarchy form a poor representation of
the image, but major structures are lost in the top level. This is caused by the
fact that the description as a nested sequence of light and dark blobs is not
appropriate for this image: the brain, which is a major structure in the image,
is connected to both lighter and darker structures, and therefore it disappears.

3.4. Conclusions

In this chapter, we have presented a clustering method which operates on graph
images and generates connected clusters. We have shown that, for a particular
class of clustering criteria, the clustering computed by this algorithm is optimal.
The algorithm can be used for other types of distances as well, in which case it
computes non-optimal clusterings.

This sub-optimal clustering has been demonstrated with the grey level
distance, which is closely related to segmentation by thresholding. Hence, this
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Figure 3.4: Three levels in a hierarchy defined by intensity extrema. The
levels contain 1136 (a), 681 (b) and 31 (c) vertices.

method provides a compromise between segmentation by thresholding, and the
desire to generate connected clusters.

Repeated application of clustering generates a hierarchical image descrip-
tion. If grey value extrema are selected as characteristic vertices, the top level
of the hierarchy will contain only local extrema. If the base level graph is
6-connected, the graph structure in the top level contains no loops, i.e. it is a
tree.



Model-Based Bottom-Up Grouping
of Image Primitives

4.1. Introduction

Both grey level image segmentation and polygonal curve approximation can be
considered as grouping problems. For grey-level image segmentation, pixels
must be grouped in such a way that (1) the regions which they represent satisfy
some homogeneity condition and (2) adjacent regions have distinct properties.
For polygonal curve approximation, pixels must be grouped such that (1) the
curve segments they represent can be approximated by a line segment and (2)
adjacent groups (segments) have different orientations. This chapter presents a
graph-based bottom-up grouping scheme in which both problems can be treated
in a uniform manner.

Every segmentation algorithm must (implicitly or explicitly) adopt a model
for homogeneous image regions. The most simple model for grey level image
regions assumes a constant grey level value within each region. In some cases
(e.g. for the segmentation of textured images) more intricate models may be
required. Segmentation also requires an error measure for determinmg the
deviation of an image region from the model. For the piecewise constant grey
level model one often uses the root-mean-square value of the residues.

Many techniques for image segmentation have been proposed. They can be
divided into two groups: those computing the homogeneous primitive groups
(regions or curve parts) and those computing the boundaries between such
groups. Region-oriented techniques compute connected groups of pixels which
satisfy the region model. Edge-detection methods detect points in the image
which satisfy a discontinuity model. It is not possible to evaluate all groupings.
Groups of pixels which satisfy the model are typically found by splitting and/or
merging groups repeatedly until the result fits the model within a given error.

Among bottom-up grouping schemes, region merging and region growing
can be discerned. Region merging methods [IS] first consider each pixel as an
individual region. Two regions are replaced by their union if the latter satisfies
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the model. Merging continues until no union of adjacent regions satisfies the
model. Region growing methods [112] first select a special set of pixels called
seeds. Regions are grown by aggregating pixels to the seeds. This growth
process continues until the image plane is covered by regions which satisfy the
model. Each region in the final segmentation contains exactly one seed. The
selection of appropriate seeds is a difficult problem, which requires procedures
that are adapted to a particular class of images (e.g. [72]).

Bottom-up techniques use only local information, i.e. information from
a restricted area. The regions over which information is collected increase
progressively as the grouping process evolves. When global information be-
comes available, a clustering performed in the early stages may prove incorrect.
Relinking methods [18] can be invoked to revise incorrect clusterings.

This chapter presents a merging scheme in which primitives are merged
pairwise and in parallel. Primitives act as the vertices of a graph. The edges
in the graph correspond to pairs of primitives which might be merged. In
contrast to stochastic pyramid schemes [68, 76], in which an arbitrary number
of adjacent regions can be replaced by their union, the bottom-up grouping
scheme performs pairwise region merging.

The rest of this chapter is organized as follows. In the next section, group-
ing is presented in a hierarchical graph context and our method is described.
In Section 4.3, the grouping method is applied to the problem of polygonal
approximation of curves. In Section 4.4, some results in gray scale image
segmentation are presented. In section 4.5, the results are discussed and some
concluding remarks and suggestions are made.

4.2. Grouping with Hierarchical Graph Structures

A set of primitives can be represented by a primitive adjacency graph. The
vertices of this graph are the image primitives (e.g. regions or curve parts) and
its edges represent the adjacency relations between the primitives. The primitive
adjacency graph plays an important part in our grouping scheme, because only
prinitives which are connected by an edge may be grouped. Henceforth, a graph
is indicated by the symbol G and its vertex and edge sets by the symbols V and
E, respectively. If G = (F, E) is a graph, a subset H of V is called connected
(with respect to G) if, for all x, y € H, there is a sequence x = XQ, ..., xn = y
such that (xi, EÎ+I) 6 E for all i. The graphs representing the results of two
successive steps of the iterative bottom-up grouping procedure are called the
child graph and the parent graph respectively. The parent graph represents the
result of the grouping procedure applied to the child graph.
An iteration step in a bottom-up grouping procedure involves three stages.
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(1) Group selection Non-overlapping groups of vertices in the child primi-
tive adjacency graph are selected to be merged. These groups are chosen
such that each group of vertices is a connected subset of G, and the prim-
itives obtained by merging the primitives corresponding to the individual
vertices in the group closely fit the region-model. In this chapter, groups
will consist of one or two vertices.

(2) Vertex construction The primitive adjacency graph is transformed such
that each group of vertices (the children) in the child graph maps to a
single vertex (the parent) in the resulting parent graph. A parent represents
a primitive which equals the union of the primitives corresponding to its
children.

(3) Edge construction Vertex pairs of the parent graph that represent adja-
cent primitives are joined by edges. Two parent vertices are adjacent if
and only if they have a pair of adjacent child vertices.

Formally, the iteration step can be defined as follows:

definition 4.1 Let G = (V, E) be a graph and letH^...,Hk be connected
subsets of V such that Hi n H3-, = 0 for i ^ j and UHi = V. A graph
G' = (V',E') is said to result from a grouping step in G according to the
groups Hi,...,Hk if there is a function TT : V —» V' such that
(1) 7T(V) = V' ;
(2) ir(x) = x(y) for each x, y e V if and only if there is a group Hi which

contains x and y ;
(3) two vertices x' and y' in G' are neighbors ((x',y') e E') if and only if

there are two vertices x and y in V such that TT(X) = x', Tr(y) = y' and
(x ,y)eE.

The first condition implies that all vertices in the parent graph are derived
from the vertices of the child graph. The second condition implies that each
vertex in the parent graph corresponds exactly to one of the groups Hi. The
third condition describes adjacency between vertices in the parent graph.

Starting with the initial graph representing the input image a hierarchy of
graphs (cf. subsection 1.4.2) is built by recursive application of the grouping
process.

We now present a grouping scheme in which each pair of adjacent vertices
is considered for merging. For each candidate pair, the fit of the union of the
two vertices to the primitive model is computed. This information is used to
select those pairs that are actually grouped, as described previously.

The selection of pairs for merging poses a transitivity problem. If, for
example, three vertices x, y and z are mutually adjacent, both the pair (a;, y)
and the pair (y, z) are candidates for merging. However, they cannot both
be selected, because y is a member of both groups, and only two vertices
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can be merged at a time. Each choice of a number of pairs to be grouped
corresponds to the selection of a subset of edges in the primitive adjacency
graph. An admissible choice of pairs, for which no transitivity conflicts occur,
corresponds to a set of edges such that no vertex in the graph lies on more than
one edge in the subset. In graph theory, such a set of edges is called a matching
[36].

The line graph [36] is used to perform the selection of pairs to be merged.

definition 4.2 Let G = (V, E) be a graph. The line graph L(G) = (V, E')
is the graph for which each vertex v' € V' corresponds to an edge («i, v^) G E
such that two vertices v' and w' € V' are connected by an edge if and only if
the corresponding edges {v\, v% } and {w:, w2 } € E share a common point.

If two vertices in the line graph are connected if and only if the corresponding
primitive pairs overlap, a matching corresponds to a subset of the vertices of
the line graph hi which no two adjacent vertices are present. Such a subset of
vertices is called an independent set.

The line graph defined by the primitive adjacency graph is used to select
pairs of primitives to be merged. A merge score is assigned to each vertex in
the line graph. This merge score is equal to the error of the associated candidate
pair with respect to the primitive model. Vertices which have a merge score
above a threshold value t are not selected. Then, an independent subset V' of
the remaining vertices is computed.

A large number of groups is indeed merged in each step if the set V'
satisfies the following two properties:
(1) no two vertices in V' are adjacent;
(2) each vertex which is not in V' but has a merge score below threshold t has

at least one vertex in V' as a neighbor.
In graph theory, a set satisfying these properties is called a maximal independent
set (MIS) [36].

The following method [76,49] can be used for the selection of a maximal
independent set in the line graph. First, a numerical value is assigned to each
vertex. This value can be a random number, or it can be determined by properties
of the vertex. Vertices which have a larger label than all their neighbors are
selected as members of the maximal independent set. Their neighbors are
rejected. As a result, two neighboring vertices of the graph can not both be
selected as members of the maximal independent set. It is possible that there are
unselected vertices which are not adjacent to a selected vertex. In this case, all
vertices that have been neither selected nor rejected are attributed a new label,
and the selection procedure is repeated until each vertex has been either selected
or rejected. The selection process usually converges after a few iteration steps.

In this chapter, two kinds of label assignment are Investigated. In the
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first case, the labels are random numbers. This implies that the MIS which
is computed is not influenced by vertex properties. In the second case, the
label is determined by the merge score associated with each vertex: the higher
the merge score, the lower the corresponding label. This implies that vertices
corresponding to a low merge score have a high probability of being selected.
An additional random label is used to resolve ties between vertices with equal
merge scores. Using this choice of labels, the structure of the MIS which results,
is adapted to the properties of the vertices. The two choices of labels described
above will be referred to as adaptive and non-adaptive.

4.3. Polygonal Approximation of Curves

The grouping process described in the previous sections can be applied to the
polygonal approximation of curves. In this case, the vertices of the graph
represent line segments. Each vertex in the initial graph represents a line
segment of pixel length. The initial graph can be derived from a chain code
description [29]. The edges are defined from the adjacency relations along the
curve. Each vertex which is not an end point of the curve has exactly two
adjacent vertices.

Each pair of adjacent line segments is evaluated as a possible group. Two
such line segments share an end point. The union of these two line segments
is the line segment that connects their unshared end points. There are several
measures for determining the quality of the approximation of a curve by a line
segment. Four types of error measures have been investigated.

Figure 4.1: The approximation of a curve by a line segment. See the text
for an explanation.
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• The measure proposed by Wall and Danielsson [108]. The curve and the
line segment cut out regions from the plane. The difference between the area
of the regions to the right of the line segment and those to its left is called
the signed area between the line and the curve. The error measure proposed
by Wall and Danielsson is the absolute value of the signed area between the
line segment and the curve, divided by the length of the line segment. A nice
property of this measure is that the signed area between the union of two line
segments and the curve can be calculated from the signed areas between the two
individual line segments and the curve. Therefore, the error of a candidate pair
can be computed from the properties of the constituting line segments, without
having to consider the curve itself.

In figure 4.1, the Wall and Danielsson error measure is | A — B \ /PQ, where
A and B are the areas of the shaded regions and PQ is the length of the line
segment.

• The measure proposed by Borgefors [13] is based on the closest distance of
points on the line segment to points of the curve. This distance is calculated for
each point on the line segment, and the root-mean-square value of this distance
over the line segment is computed. The error measure of Borgefors can be
computed efficiently from the distance transformation of the original curve.

In figure 4.1, the error measure defined by Borgefors is

-,1/2

l2(x)dx/PQ\ , (4.1)
IPQ J

where l(x) is the shortest distance from a point x on the line segment to the
curve.

• The average unsigned area is the area between the the curve and the
approximating line segment, divided by the length of the line segment. This
measure is similar to the one proposed by Wall and Danielsson, but no sign
information is taken into account. If the curve does not contain extreme turns,
this measure equals the average distance of the curve to the line segment.

In figure 4.1, the average unsigned area is (A + B)/PQ, where A and B
are the areas of the shaded regions and PQ is the length of the line segment.

• The maximal distance between the Une segment and the curve is defined as
the maximum (over all points on the curve) of the distance to the line segment.
In figure, the maximal distance to the line segment is h.

The construction of a polygonal curve approximation starts with the con-
struction of an initial graph that contains "line segments" of the size of a single
pixel. Clustering is performed until the error measure of all pairs of adjacent
line segments exceeds a threshold.

Figures 4.2 and 4.3 show the result of the polygonal curve approximation
procedure with non-adaptive and adaptive computation of the MIS, respectively.

[/„
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Wall & Danielsson

average unsigned area (distance

Figure 4.2: Polygonal curve approximations computed using non-adaptive
MIS computation.

The threshold was 2.0 pixel sizes for all error measures. The size of the complete
image was 128 x 128 pixels.

It can be seen that the approximations computed by the adaptive method
follow corners in the curve more accurately. Note that the curve approximation
contains a stochastic component, such that different runs of the same algorithm
produce slightly different segmentation results. There are no major differences
between the outcomes of different runs based on the same error measure.

The characteristics of the different error measure can be seen best from
figure 4.3, because the effect of the error measure is more important for the
adaptive method than for the non-adaptive one. The result from the maximal
distance method gives the most accurate impression. This is caused by the fact
that it uses the maximum distance between the curve and the approximating
polygon, while the other measures are based on average values. Note that,
using the Borgefors measure, the structure at the top right comer of the curve is
cut, while this does not happen with the Wall and Danielsson measures. Yet the
error according to the Wall and Danielsson error would be small for the segment
which is found with the Borgefors measure, because there are areas between the
curve and the segment on both sides of the segment. But, each segment results
from joining smaller segments. These smaller segments would have a larger
error according to the Wall and Danielsson error than to the Borgefors error.
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average unsigned area

Figure 4.3: Polygonal curve approximation computed using adaptive MIS
computation.

Note also that the approximation produced by the average unsigned error
measure looks far less accurate than the approximation produced by the Wall
and Danielsson measure, although the definitions of these measures seem very
similar. This is caused by the different effects of noise on both measures. If
a wiggly line is approximated by a straight line, parts of the curve will lie on
both sides of the line segments. The corresponding areas cancel in the Wall
and Danielsson measure, while they are added for the average unsigned are
measure. Therefore, the distinction between straight but noisy lines and more
significant structures is less strong with respect to the average unsigned area
measure than with respect to the Wall and Danielsson measure.

4.4. Gray Level Image Segmentation

This section presents the application of the grouping procedure described in
section 4.2 to grey-level image segmentation. The input image is represented
by a 4-connected graph in which each vertex represents an individual pixel. The
first region model we tested is the constant grey level model. The error-of-fit is
the RMS value of the residue, i.e. the standard deviation within the region.
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Figure 4.4 shows a synthetic image and its segmentation. The image size
is 128 x 128 pixels. The image consists of bands with grey values 64, 128,
160 and 176, i.e. it contains step edges of heights 64, 32 and 16. The image is
corrupted with additive Gaussian noise of a = 16. The threshold on the merge
score was 17. Note that the standard deviation within each of the bands is about
16, and that the standard deviation within the union of two adjacent bands is
about 36, 23 and 18 for the left, middle and right pair of bands, respectively.

(b)

Figure 4.4: A synthetic image (a) and its segmentation (b).

Therefore, the boundary between the two bands to the right is just de-
tectable with our method. If the merge score threshold were larger than 18,
these two bands would be merged, while the individual bands would be frag-
mented if the threshold were lower than 16. The just detectable boundary to
the right is very jagged; the other two boundaries are detected more accurately.
Smoothness of a boundary is a global property. Therefore, every bottom-up
segmentation procedure will have difficulties with the detection of weak smooth
boundaries and accurate detection requires a post processing step.

Figure 4.5b shows the segmentation result for a 256 x 256 grey scale
image (figure 4.5a), with grey values between 0 and 255. The threshold take
for figure 4.5b was 20.

The next model we tested assumes a linear grey level function for each
image region. Again, the RMS value error of the residue is used as the merge
score. Finding the best fitting linear model is a straightforward regression
problem. Figure 4.6a shows a synthetic image consisting of four bands. In
each band, the grey level is a linear function of the coordinates. The regions
have been chosen such that the grey levels are continuous across the region
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Figure 4.5: A grey scale image (a) and segmentations achieved with the
standard deviation (b) and the grey level difference (c) as merge scores.

Figure 4.6: A synthetic image (a) consisting of four bands with linear grey
scale functions, and a segmentation (b) based on the linear grey scale model

boundaries. The image has been corrupted by additive Gaussian noise with
standard deviation 16.

Figure 4.6b shows a segmentation based on the linear grey scale model.
The threshold used was 17 grey scale values. The synthetic image has been
constructed such that merging two adjacent bands would produce regions with
a RMS error value of about 18, 24 and 30, including the added Gaussian
noise. Therefore, the two bands to the left are just discernible. If the threshold
were increased, these regions would be merged; if it were decreased, individual
bands would be fragmented. Note that all edges between boundaries are jagged,
although the two bands to the right are clearly discernible with our criterion.
This is caused by inaccurate merges which occur in the early stages of grouping:
fitting a linear region to a small number of regions is not very stable. In the
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first stages of the grouping, information is integrated over small regions only. If
small regions on both sides of the boundary between two bands are considered,
the residue of a linear fit to their union is small. Only when broader regions
on both sides of the edge are taken into account, will this residue be large
and can the different bands be discerned. Meer et al. [69] suggest the use of
least-median-of-squares estimators for this type of models.

Application of the linear model to natural images produces unsatisfactory
results [78]. This is caused by the noise sensitivity of the linear model mentioned
before, but also by the fact that linear regions can be fitted to blurred step edges,
which occur frequently in natural images. This leads to severe edge dislocations.

One way to avoid problems caused by erroneous merges in the early
stages of the process is to use a number of models in succession. Grouping is
started with the constant grey level model. After stabilization, a linear model
is assumed. As such models are more flexible, there are pairs of regions
which can now be merged. After that, a third grouping step is performed
assuming a quadratic region model. Figure 4.7 shows the image of a rod (a), the
segmentation achieved with a constant region model (b) and the segmentation
achieved through the three stage process (c). Although there has been some
merging in the second and third phase, the bands of different brightness have
not been detected as single regions.

(b)

Figure 4.7: An image of a rod, a segmentation based on the constant grey
level model and a segmentation based on a three stage grouping process
with, successively, a constant, linear and quadratic model.

If two adjacent regions are very different in size, the standard deviation
within their union will be close to the standard deviation in the largest region,
even if the difference between the average grey values of the regions is large.
This implies that small regions can easily be absorbed by larger ones. In order
to avoid this, it is possible to use the difference between the average grey values
of two regions as the merge score in stead of the standard deviation within their
union. A result based on this merge score is shown in figure 4.5c. The threshold
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was 20 grey scale values. Note that a number of small regions is present which
are not visible in figure 4.5b.

There is only one, global, threshold which determines whether or not
two regions are allowed to merge. It is possible that not-so-similar regions
are merged in the early stages of the process. This impedes the later stages
of the segmentation. In order to avoid this problem, grouping can be started
with a lower threshold and performed until stabilization. Then the threshold is
increased, and grouping is performed in the primitive adjacency graph which
resulted from the previous grouping procedure. Grouping is again performed
until stabilization and then the threshold is increased. This can be repeated
several times. In the most extreme case, just one pair of regions—namely
the pair with the smallest merge score—would be merged in each step. This
situation is similar to the clustering algorithm used in chapter 2.

The segmentation produced using an increasing threshold are not very
different from those computed a single threshold. The adaptive construction of
the MIS already encourages the "best" merges to be performed first.

4.5. Conclusions

In this chapter, a new grouping scheme for image primitives has been presented.
The scheme has been described in a hierarchical graph context. Primitives are
represented as the vertices of a primitive adjacency graph; compatibility of
pairs of primitives is expressed through a merge score, which is derived from a
primitive model.

The method is based only on the primitive adjacency graph and the merge
scores associated with the edges in this graph. The merge scores are used to
select pairs of adjacent primitives which are then grouped. The new technique
has been applied to two type of image primitives: line segments for polygonal
approximation of curves and regions for grey-level image segmentation .

In contrast to previous stochastic methods, the main role in our method
is played not by the image primitives themselves, but by the adjacency and
compatibility relations between them. Thus, the primitive model can influence
the selection of groups of primitives which are to be merged, in a more direct
way.

For polygonal curve approximation, four kinds of merge scores have been
evaluated and the differences in the results have been discussed. It has been
demonstrated that adaptive selection of pairs of line segments to be merged
yileds better results than non-adaptive selection. The error criterion of Borgefors
and the maximal distance error criterion produce the visually most pleasing
results.
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For grey level image segmentation, constant and linear grey level region
models have been investigated. Synthetic images, corrupted with noise, have
been segmented in order to assert the power of our method to separate similar
regions.

Segmentation of natural images produces acceptable results, although the
method poses a number of problems. These problems are caused by erroneous
groupings which can occur because (1) the regions considered in the first stages
of the metging process are very small and (2) because the primitive model and
the merge score thresholds are global, not adapted to the image contents.

Within the present context, these problems can be reduced, but not solved
completely, because these limitations are inherent to single pass, non-adaptive,
bottom-up segmentation methods. In chapter 5, these problem will be attacked
by using adaptive merging criteria, combining region and edge information and
applying relinking.



Segmentation by Relinking
in Irregular Structures

5.1. Introduction

In this chapter, the extension of pyramid relinking to hierarchies of graphs is
developed. This approach allows the segmentation of an image into connected
regions and the use of boundary information in the relinking process.

Pyramid relinking, which was originally described by Burt et al. [18],
is a powerful and conceptually attractive method for image segmentation. In
the past, a number of techniques have been proposed to reduce some of its
weaknesses, such as border effects, the fixed number of regions and artifacts
occurring for specific input patterns (e.g. [1, 6]). Several extensions have been
made, which allow the application of relinking to other image types, such as
flow fields [37] or textured images [84].

Conventional image segmentation by relinking uses a regular pyramid
structure, as illustrated in figure 5.1. This is a stack of regular grids of sizes
2n x 2n, 2""1 x 2""1 1 x 1. In the lowest level of the pyramid, each cell
corresponds to a pixel in the image grid. Each cell in level i + 1 represents a
cluster of cells in level i. The cells which may be contained in such a cluster
form a 4 x 4 square in level i. These squares overlap in such a way that each
cell on level i can belong to one out of four clusters. The cells in the cluster
represented by a given cell are called the children of this cell; the representing
cell is called the parent of its children. Each cell has one parent. Note that, for
cells near the image border, the number of possible parents and children of a
cell is smaller than 4 and 16, respectively.

The parent-child links induce a tree structure in the hierarchy. Thus, each
cell in the pyramid represents a region in the image plane, which can be found by
tracking all series of parent-child links leaving from a given cell, in a downward
direction.

Segmentation by relinking is performed by iteratively updating the cluster
membership of cells, i.e. by adapting parent-child links. This is done in such a
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Figure 5.1: The regular pyramid structure used in conventional relinking.
The lines between levels show the relative positions of cells in different levels.
On the left, the sixteen shaded cells in the lower level are the candidate
children for the shaded cell in the higher level. On the right, the four shaded
cells in the higher level are the candidate parents for the shaded cell in the
lower level.

way that the standard deviation of the grey levels of the clusters represented in
each cell decreases. Thus, the relinking procedure converges towards a state in
which the cluster represented by each cell is as homogeneous as possible.

In this chapter, some drawbacks of the relinking method are discussed
and a relinking scheme based on hierarchies of graphs is presented, which
solves these problems. The drawbacks originate from the fact that the levels
in a relinking pyramid do not represent a region adjacency graph, but merely a
subdivision of the image points in a predefined number of classes. Moreover,
not all subdivisions corresponding to a subdivision of the image in the correct
number of classes, can be represented [8].

The first problem is the fact that the clusters represented by a cell need not
correspond to connected regions in the image plane. The relinking process takes
the spatial structure of the image into consideration by allowing only a fixed
set of possible children for each cell. The algorithm does not use connectivity:
cells which are adjacent in some higher level grid of the pyramid need not
represent adjacent regions in the image plane, or vice versa. This can cause
the creation of regions which are scattered over the image plane and which
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consist of many connected components. If the pyramid structure is adapted by
increasing the number of candidate children for each cell, regions can become
increasingly scattered and the process becomes similar to isodata clustering of
grey values, in which no account is taken of spatial structure. (See Kasif and
Rosenfeld [50] for a discussion of the relations between pyramid relinking and
isodata clustering.)

The second problem is caused by the regularity of the grid of cells in each
level of the image grid and the associated set of 16 possible children for each
cell. In such a configuration, not all possible subdivisions of the image plane
can be represented, as was shown by Bister et al. [8]. Therefore, artifacts can
occur in the segmentation of particular shapes such as elongated ones. This can
be repaired by allowing irregular structures, in which the number of levels and
the number of neighbors for each vertex is not fixed in advance.

The third problem is related to the first one. As the concept of a connected
region can not be represented in the conventional relinking pyramid, it is also
not possible to manipulate or represent the boundary between two classes or
regions. Therefore, it is not possible to use information on boundaries between
regions, such as length and average response of an edge detection filter, in a
relinking based segmentation method.

In this chapter, we attack these three difficulties by using the hierarchy of
graphs formalism. In section 5.2, we describe new relinking rules that force the
regions represented by each cell to be connected.

However, this relinking strategy fails to detect strongly elongated objects,
such as spirals, as a single region. Moreover, the number of regions represented
by the hierarchy is fixed. In section 5.3, a method for the adaptive construction
of subsequent levels in a hierarchy of graphs is presented, in which arbitrary
image subdivisions can be represented.

The methods discussed in sections 5.2 and 5.3 require the application
of the hierarchy of graphs formalism. In this formalism, information on the
boundaries between regions can be represented as the attributes of the edges of
the region adjacency graphs. In section 5.4, it is described how this possibility
can be exploited for the combination of region and boundary information in
order to improve the segmentation process.

In section 5.5, the integration in a single system of the methods described
in the previous section is described and some segmentation results are shown.

Section 5.6 presents the conclusions of this chapter.

5.2. Connectivity Preserving Relinking

In the classical relinking method [18], the spatial arrangement of cells in a
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regular grid in higher levels of the pyramid does not reflect the spatial arrange-
ment or connectivity of the regions represented by such cells. In this section,
an adaptation of the relinking rules is proposed. If these new rules are used,
regions are guaranteed to be connected and the adjacency relations between the
regions can be represented by a region adjacency graph.

Let G i = (Vi, Ei) for i = O, . . . , n be a hierarchy of graphs (cf. subsec-
tion 1.4.2). For each level of the hierarchy, there is a mapping TT» : Vi — » Vi+i
which assigns to each vertex & parent in the next level. The mapping KJ : Vi -*
P(Vi-i) assigns to each vertex v e Vi its children {w € Vi_i 1 7Tj_i(«;) = v}.
Where no confusion can occur, the subscripts of TT and K are omitted.

We will use notations such as n(X) for {K(V) \ v € X}, where X is a set
of vertices at a fixed level. Sometimes K(V) will be identified with the subgraph
consisting of the children of v. We will write N(v) for the set of neighbors
of v in the graph. If v 6 Vi, the set K\K,Z . . . KÎ(V) is the set of vertices in the
base level graph which corresponds to the region in the image represented by
vertex v. This region is called the receptive field of v and is denoted by R(v).
If v e Vi, then vk(v) will denote Tr^*"1 . . . Tr^+V^) and Kk(v) will denote

The lowest level graph GO = (VQ,EQ) corresponds to the image grid,
which is considered as a 4-connected graph. It is also possible to use a 6-
connected or 8-connected grid. The latter has the disadvantage that it is not a
planar graph. This is not a problem in the present chapter, but it would be a
problem for the method described in chapter 6.

The edges hi the higher levels represent the adjacency structure for the
receptive fields of the vertices in that level. These edges depend on the parent-
child relations and on the structure of the base level graph. Two vertices v
and w on level i are connected by an edge if they have children v' € K(V) and
w' e K(W) which are connected in level i — 1. Recursive application of this
criterion allows for the construction of all levels of the graph from the base
level.

During the discussion of the connectivity of regions, the following result
will be used.

Theorem 5.1 Consider a hierarchy of graphs GÎ = (Vi,Ei) with parent
assignments TT; and child assignments «;. Suppose that the edges ofG0 are
fixed and that the edges in higher levels are induced by the base level and the
parent assignments. Then the following statements are equivalent.

1. For each i and for each vertex v e Vi, the subgraph of Gj_i induced by
the vertices in «»(v) is connected.

2. Each vertex v has a connected receptive field.

PROOF. Suppose that the first statement holds. It will be shown with induction
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in the level i that each vertex v € Vi has a connected receptive field in GQ. For
i = 0, this is obviously true: each vertex in the base level is its own receptive
field. Now suppose that the first statement holds for level i — 1 and let v € Vi.
Consider two vertices wi, w2 in the receptive field R(v) of v.

As Ki(v) is connected, there is a path from TTÎ~I(U;I) to •jrl~1(w2) in
K(V) C Vi_i. Denote this path by HI, ... ,un. For each edge (uj,Uj+i) in
this path there is an edge (u'.j,u"+1) in the base level with u'j 6 R(UJ) and
u'j 6 R(UJ). By the induction hypothesis, each R(UJ) is connected. As u'j
and u" are both in R(UJ], there are paths in the base level from u" to u'j. For
the same reason, there are paths from wi to u( and from u'„ to w2 in the base
level. Concatenation of these paths yields a path from wi to w2 in the base
level, which is entirely contained in R(v). Thus, there is a path from wi to w2

in the receptive field R(v) and R(v) is connected.
Now suppose that the second statement holds. Consider a vertex v € Vi.

Let w\ and w2 be two vertices in Ki(v) C Vi-\. It will be shown that there is
a path in K(V) from w\ to 102- Let w[ € K l~ i(u>i) and it;^ € re1"1 (102) be two
vertices in the base level. Then there is a path w{ = ui, u 2 , . . . , un = w'2 in
R(v) from w( to w'2. Consider the vertices u'j = 7rl~2 ... 7r17T°('U:,) in I^_i.
For each pair (uj, Uj+i), either u'j = ^+1 or (•UJ,MJ+I) is an edge in K(V).
Thus, by deleting repetitions, the sequence u'1:...,u'n yields a path in K(V)
from wi = u{ tow2 = u'n. I

The second property in theorem 5.1 (connectivity of receptive fields) is the
one we are interested in; yet the first one (connectivity of the set of children
of a given vertex) is the most manageable one, because it is a local property.
Therefore, in the sequel, only connectivity of sets of children will be discussed.

Consider a hierarchy of graphs G i in which each vertex represents a con-
nected region in the base level. Suppose TT(V) = p0ld f°r some v £ VJt, for
some k. Consider the adapted stack of graphs G'{ which is constructed from
G i by putting n(v) = pnew and adapting the edge structure accordingly. In
a relinking process, the hierarchy of graphs is adapted repeatedly in this way,
until an optimal segmentation is achieved. All vertices can be relinked to a new
parent simultaneously or they can be relinked one at a time.

We now discuss, for which vertices the connectivity of the receptive field
is lost by this relinking step. Edges change only in levels k and higher and the
receptive fields of vertices in the levels i < k do not change. Vertices in level
k + 1 and vertices in levels i > k + l will be discussed separately.

5.2.1. Connectivity Preservation in the Parent Level

Suppose a vertex v in level k with parent p0id is relinked to a new parent pnew. In
level k + 1, the receptive fields of p0\d andpnew change. After the relinking step,
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Figure 5.2: The two ways in which connectivity can be lost at the par-
ent level by relinking. The receptive fields that become disconnected by a
relinking step are marked.

the children of p0\^ are t(p0ld) \ {'"}'•> me children of pnew are «(pnew) U {^}-
The receptive fields of other vertices in this level do not change.

Connectivity of receptive fields in level k + 1 is lost in two cases (see
figure 5.2). The first case (shown to the left) is the situation where «(pnew) U {v}
is not connected. This happens when v is not connected to some vertex in
K(pnew)> i-e- when pnew is not the parent of some neighbor of v.

The second case (shown to the right) is the situation where removing v
from /c(pold) changes the number of connected components of re(pold)- Such a
vertex v is called an articulation point or cut point [36] of «(p0ld)- Note that
this also includes the case where v is the only child of p0ld> m which case p0ld
would have an empty receptive field after the relinking step.

The time required for the computation of the articulation points of the
subgraph /c(p0ld) is CK|/c(]>0id)|) [94]. They need only be recomputed when
K(V) is changed by a relinking step.

Summarizing, retaining the connectivity of the receptive fields of vertices
in level k + 1 imposes two conditions on the relinking rules:

1. A vertex v which is an articulation point of K(TT(V)) may not be relinked
to a new parent.

2. A vertex v may choose only a new parent from the set ir(N(v)), i.e. a
parent of a neighbor of v.
Wharton [109] has tried to find a connectivity preserving relinking method,

but overlooked the second criterion, and the possible loss of connectivity on
higher levels of the pyramid which will be discussed in the following subsection.

It may be desirable to perform relinking for many vertices of a level in
parallel. Then, extra care must be taken in order not to loose connectivity:
two vertices which can be relinked individually from a given situation may not
always be relinked simultaneously. Only a subset of the vertices in a level can
be relinked to a new parent in each step. A safe strategy is to relink a vertex v
only if none of the other vertices in K(TT(V)) or N(v) is relinked.

A suitable subset of vertices which may be relinked in parallel can be
computed by a stochastic procedure, similar to stochastic decimation [68, 76] as



Connectivity Preserving Relinking 79

described in chapter 4. Each vertex v for which a relinking might be performed
draws a random variable from some distribution. If that random number is
larger than that drawn by all the vertices in K(TT(V)) U N(v) which may not be
relinked simultaneously, the vertex v 'wins the right' to be relinked, and the
other vertices in K(TT(V)) U N (v) are prohibited to relink. New random numbers
can be drawn and new vertices selected as long as there are vertices which are
neither selected for relinking nor prohibited to relink.

5.2.2. Connectivity Preservation in Higher Levels

Thus far, we have ignored the connectivity of receptive fields of vertices at
levels i > k +1. If the pyramid is constructed bottom-up, as will be the case in
section 5.3, such levels do not exist at the moment of relinking: first, levels 0
and 1 are built and the parent-child links between levels 0 and 1 are processed
by relinking. Then level 2 is constructed and the parent-child links between
levels 1 and 2 are processed by relinking, et cetera. In this case, no higher levels
are present during the relinking steps.

Figure 5.3: If edges in the parent level disappear by a relinking step, the
connectivity in some higher level can be lost.

If relinking is performed when higher levels are present, the connectivity
of receptive fields in higher levels of the pyramid can be lost, as illustrated
in figure 5.3. Suppose a vertex v 6 V& with parent p0\& e Vfc+i is relinked
to a new parent pnew e Vk+i. For a vertex w 6 Vk+n+i, n > 1, the set
K(W) is not changed by relinking. Connectivity of the receptive field of w
can only be lost by the removal of edges between vertices in K(W). On level
k + n, an edge which might be removed has the form (7rn(v), nn(v')), where
v' € N(v). Removal of this edge may destroy the connectivity of R(irn+l(v)).
If the connectivity of a connected graph is lost by the deletion of a single
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edge, this edge is called a bridge [36]. The edge is indeed removed if all the
edges in level k between Knirn(v} and KnTrn(v') have v as an end point, i.e.
Knirn(v) n N(KnTrn(v')) = {v}. Moreover, v must not end up in the receptive
field of Kn(v) or Kn(v') after the relinking step. Therefore, the condition
^"^(Pnew) £ {irn(v),irn(w)} must hold.

Summarizing, relinking of vertex v e Vfctopnew = it(v'), withv' e N(v),
destroys the connectivity of the receptive field of Trn+1(v) if the following
conditions are satisfied:

1. (7rn(v),Trn(v')) is abridge in Kirn+1(v).
2. Kn7Tn(-i;) H N(KnTTn(v')) = {v}.

3. w«-1^) g {**(«), *n(iO}.
These conditions can be tested for each vertex v and new parent pnew- For
each vertex v this requires inspection of a set of vertices of the form -Km (v), up
to the level where \irm(N(v) U {v})\ < 2. Using these conditions, the set of
possible parents for each vertex can be restricted in such a way that connectivity
of receptive fields is not destroyed by relinking.

Just like we described in the previous subsection, it is possible to generate
sets of vertices which can be relinked in parallel. Again, there are combina-
tions of vertices which cannot be relinked simultaneously. As before, a random
procedure can be used to compute such a set. In the present situation, however,
vertices which may not be relinked simultaneously can be far apart, and propa-
gation of information through the levels of the pyramid is required to compare
the random labels for all mutually exclusive pairs. This makes the resulting
algorithm is rather complicated.

Figure 5.4: With the classical relinking algorithm, noise can scatter points
of each class in the image. With the new method, classes are connected.
From left to right: a synthetic image, corrupted with noise; its segmentation
by the classical algorithm; its segmentation by the connectivity preserving
algorithm.
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5.2.3. The Relinking Method

In the previous subsections, it has been described how a set of candidate parents
for a vertex can be computed. This subsection describes the relinking procedure.
In the present method, vertices are visited one by one. For each vertex, a set
of allowed candidate parents is computed, depending on the actual structure of
the hierarchy. This set plays the same role as the fixed set of four (disregarding
boundary effects) candidate parents in the classical relinking scheme. Then, a
new parent is chosen from the set of allowed candidate parents. The vertex is
relinked to the new parent and the graph structure and attributes of vertices are
updated accordingly. This procedure is repeated until a stable configuration is
reached.

The new parent pnew is chosen for each vertex v such that the difference
between g(v) and ff(pnew) is minimized.

The rales which determine the selection of a new parent for a vertex can
be formulated as an energy minimization problem. For each level m in the
hierarchy, an energy

^region(m) = £ n(v)[g(v) - g(*(v))]* , (5.1)
«€Vm

can be defined. Here, n(v) denotes the area of the receptive field of v and g(v)
denotes its grey level.

The choice method used here is a steepest descent method: a vertex v € Vfc
is relinked to a new parent in such a way that jEregion(*0 is reduced as much
as possible in each step. This can cause the energy to converge in a local
minimum. Spann [96] proposed a stochastic relinking algorithm, similar to
simulated annealing, which tries to avoid local minima.

The relinking method can be shown to converge by an argument due to
Cibulskis and Dyer [20]. Whenever a vertex in level k is relinked, the energies
-Ercgion(0 with t < k are not changed, while the energy -Eregion(fc) is reduced.
This implies that the energy of the base level is non increasing. As there is
only a finite number of possible configuration for the links between the two
lower levels, these links must reach a stable configuration in a finite number of
steps. When this has happened, -Eregion(O) will remain constant and the energy
.Eregion(l) will start to decrease monotonically. Therefore, the links between
GI and <J2 will finally reach a stable configuration, et cetera.

A different way of formulating the region based relinking criteria uses the
score £? region defined by

(5.2)
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The new parent will be the one which maximizes this score. When the maximal
score equals -\g(v) — g(p0\&)\ for all vertices, the relinking procedure has
converged.

The effect of connectivity preservation in relinking can be seen from fig-
ure 5.4. The initial image contains four regions of grey values 64, 128, 128
and 192, corrupted with Gaussian noise with standard deviation er = 32. If
the image were divided in four squares along horizontal and vertical lines, the
initial configuration of the parent-child links would already represent the cor-
rect segmentation, and no conclusions can be drawn from the segmentation of
such an image. Therefore, the image is segmented along diagonal lines. The
middle image shows, in false grey scale, the subdivision in 4 classes computed
by the classical algorithm of Burt et al. [18]. The image to the right shows the
classification into four classes, obtained by connectivity preserving relinking.
In can be seen that Burts algorithm scatters the points in each class over the
image, while the connectivity preserving method generates connected classes,
which are less affected by noise.
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Figure 5.5: The number of connected components generated by Burt's
algorithm at various noise levels

The number of 8-connected components generated by Burts relinking al-
gorithm depends on the amount of noise added. In figure 5.5, the number of
connected components is shown for a number of realizations of Gaussian noise
with varying standard deviations. It can be seen that the number of connected
components is large, even for very low noise levels. Moreover, the number of
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connected components for a given noise level assumes values in a rather broad
range.

It can also be seen that the boundaries detected by the connectivity preserv-
ing method are not always smooth. This is caused by the fact that relinking is a
steepest descent procedure. In order to remove the indentations present in some
parts of the boundary, a number of relinking steps would have to be performed
in which the difference between parent and child grey values is incremented
temporarily.

5.3. Adaptive Construction of Successive Levels

As mentioned before, classical relinking suffers from a number of problems.
Firstly, not all segmentations can be represented in a regular structure: elongated
objects cannot be represented [8]. Moreover, the number of regions in each
level is fixed. Originally, relinking was used for images containing a single
light object on a dark background, for which this restriction is not a problem,
but for segmentation of more general images, the number of regions must be
adapted to image contents. Various authors [6,44, 97] have described methods
for root detection, i.e. the marking of cells in the pyramid as the representatives
for a region in the final segmentation. This can improve the results, but the
methods still operate in a regular structure.

These problems can be avoided if a hierarchy of region adjacency graphs
is built level by level, adaptive to image contents. In this section, level by level
construction of a hierarchy is combined with relinking. This is done as follows:
from the base level GO , the next level GI is constructed and the parent-child links
between these levels are initialized. The parent-child links which are created in
this phase have the same role as the regular structure in the classical relinking
scheme: they serve as an initial configuration which is adapted by relinking.
This adaptation is performed by the procedure described in section 5.2. Then
the second level GI is constructed. The parent-child links between GI and GI
are initialized and updated by relinking, et cetera.

In order to create the vertices of a new level in the hierarchy, the vertices
of the lower level are partitioned into a number of connected sets or clusters.
Each of these clusters will be the set of children of a vertex on the next level.
Like in graph decimation [76], each cluster will consist of central vertex and a
number of its neighbors.

In order to avoid adjacent, but dissimilar regions to be merged into a single
cluster, such vertices are forbidden to become members of a single cluster.
Dissimilarity of adjacent vertices is defined using an edge strength measure.
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We consider two choices for the edge strength. The first one is defined by

qSU«,«) = l*(«) -*(«)! - !(»(*) + »(«)). (5-3)

where 0(v) is the average grey value within the receptive field of a vertex and
a(v) is the standard deviation of the grey value. The second choice is

„A l0(f)-0MI

Both measures depend on the difference of the grey values of the regions,
corrected for variations within each region. The measure S^v has the advantage
that it is dimensionless. On the other hand, the estimation for a(v] and a(w)
can be bad for small regions, yielding a large uncertainty in the value of 5^j.

If each vertex stores the size, the average grey value and the standard
deviation of its receptive field, these values can be recomputed for each vertex
by considering only the corresponding values of its children after each relinking
step. Therefore, local communication in the hierarchy suffices for the execution
of these computations.

In the lower levels of the hierarchy, receptive fields are very small, maybe
just a single pixel. Small receptive fields are relatively homogeneous, so the
corresponding edge strengths are high. Therefore, the strength of the boundary
between small receptive fields must be corrected for region size. This is achieved
by multiplying all edge strengths with a geometry factor of the form

(5-5)

where A(v) is the area of the receptive field of v and 6 is some small number.
This factor approaches 1 for large regions, but is small for small regions. For
single pixel receptive fields it is approximately equal to S2. Thus, survival of
small noise regions to higher levels of the hierarchy is suppressed. Vertices are
said to be dissimilar when the strength of the edge between them is larger than
some predefined value.

Now that dissimilarity of vertices has been defined, the determination of
clusters can be performed. Clusters will have the following properties:

1. For each cluster C C V, there is a center vertex c e C such that C C
N(c) U {c}.

2. No cluster contains a pair of adjacent, dissimilar vertices.
3. Two center vertices c\ and C2 can be neighbors only if the cluster of c\

contains a dissimilar neighbor of c2 or vice versa.
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The difference with graph decimation is that, in graph decimation, pairs of
dissimilar vertices in a cluster are forbidden only if one of these vertices is the
center of the cluster, while here, all pairs in a cluster are to be considered. If
conventional graph decimation were used here, undesirable merges of regions
can occur when there is a small region on the boundary between two large
dissimilar regions, and this small region is selected as the center of a cluster.

The computation of clusters is similar to stochastic decimation, but some
changes have to be made in order to avoid dissimilar vertices to be put in a
single cluster. Clusters are computed by repeated application of the following
steps

1. Every vertex Vi which is not yet part of a cluster is given some label Aj.
2. Every vertex whose label is larger than that of all of its similar neighbors

is selected as the center of a new cluster.
3. For each newly selected center c, a maximal subset of N(c) containing no

dissimilar pairs is added to complete the cluster.
The label Ai can be a random number, but it can also be some image dependent
value. Throughout this chapter, the area of the receptive field of a vertex is
used as its label. An additional random number is assigned to each vertex for
resolving ties between regions of equal size.

The difference with the stochastic decimation procedure is in the order of
the steps. In stochastic decimation, the computation of a maximal independent
set by repeated selection of local maxima is completed before the clusters are
computed by assignments of neighbors; here, a number of clusters is computed
in each selection of local maxima.

Figure 5.6: Three 128 x 128 images, each containing four regions.

The effect of adaptive construction of subsequent levels is shown by com-
paring the segmentations of some spiral images (figure 5.6). These are 128 x 128
images, each containing four regions. Figure 5.7 shows the segmentation of
these images. The top row shows the segmentation according to the method
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(I)

Figure 5.7: Segmentation of images with four connected regions using the
regular pyramid (top row) and adaptive construction of levels (bottom row).

described in the previous section; the bottom row shows the segmentation com-
puted with adaptive construction.

In can be seen that the regular pyramid is too rigid for the detection of
strongly elongated regions. The adaptively constructed pyramid, on the other
hand, finds these regions exactly.

5.4. Combining Region and Edge Information

Image segmentations can be based on a variety of criteria. Two important groups
of criteria are those using properties of regions and those using properties of the
boundaries between regions. In a hierarchy of graphs formalism, both types of
information can be represented. In this section, it is described how region and
boundary information can be combined in a relinking scheme.

Region based methods presuppose a model for homogeneous regions. It
can for example be assumed that each region has a uniform grey value, or that
the grey value of each pixel is drawn from some distribution, which is the same
for each pixel in a homogeneous region. Models for different types of images,
such as flow fields [38] or textured images [84], can also be used. In relinking
methods using region information, the new parent is chosen in such a way that
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the fit of the receptive fields of the old and new parent vertices are improved in
each step.

Segmentation methods based on boundary information detect differences
between the properties of adjacent locations in the image, for example by the
application of an edge detection filter. Boundaries between regions are then
detected, for example by the application of a peak filter on the gradient or by the
computation of the zero crossings of a second order difference operator, which
correspond to the extrema of a first order difference operator. Segmentation
methods using peak filters can have problems with the generation of compact
regions, because if a small part of the boundary between two regions is missing,
these regions will be merged. Segmentation methods based on zero crossings
do generate compact regions, but have problems with situations where three
regions meet in a point.

In conventional relinking schemes, there is no representation available
for connected regions and the boundaries between such regions. Therefore,
these schemes cannot handle boundary information. Such information can
be represented in a hierarchy of graphs. This was done for the first time by
Montanvert and Bertolino [75], using a randomized edge detector which can
detect edges at all scales simultaneously [7].

The segmentation method presented in the previous section consists of two
parts: the relinking procedure and the procedure for the adaptive construction
of new levels. In both parts, the combination of region and edge information
can be used.

5.4.1. Combining Region and Boundary Information for Relinking

In the previous section, we described the selection of a new parent in terms
of energy minimization. The same approach will be taken here in order to
incorporate boundary information in the relinking procedure.

In grey level based relinking as described in section 5.2, the energy being
minimized was.

which corresponds with a choice criterion using the score

Qregion = -\9(v) - 5(Pnew)|- (5-7)

Boundary-based segmentation evaluates regions by considering the edges
surrounding each region. The response of an edge detector should be strong on
the boundary of a region, while it should be weak in the interior of a region.
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The strength of each edge is measured as the average response of an edge
detector along the boundary represented by the edge. For the results presented
here, the Sobel edge detector was used. Boundary-based image segmentation
in a hierarchical structure can be performed by minimization of the sum over all
regions of the average edge strength over the boundary of each region. When
each edge carries its length and its average edge detector response as attributes,
the average edge response of an edge can be computed recursively. When
relinking is performed for a given level in a hierarchy, each vertex on the upper
level corresponds to a region, and the boundaries of such regions are composed
of active edges in the lower level.

Let Tj(R(v)) denote the average response of an edge detection filter along
the receptive field of a vertex v. Our boundary based relinking criterion will be
based on the minimization of the energy

), (5.8)

In each level of the hierarchy, the boundary around a vertex v, represented
by edges between v and its neighbors, consist of boundary parts on the previous
level. These boundary parts correspond to edges between vertices in K(V) and
vertices not in K(V). An edge (v, w) for which n(v) = K(W) is not part of some
boundary in the next level; such an edge is called inactive. If 7r(t>) ^ Tr(ty),
the edge (v,w) represents a boundary fragment which is part of the boundary
between the receptive fields of TT(V) and n(w). Such an edge is called an active
edge.

If a vertex v is relinked from an old parent p0ld to a new parent pnew» some
active edges become inactive and vice versa. The edges which become inactive
are the edges (v, v') with K(V') = pnew; the edges which become active are the
edges (v, v') with ir(v') = po}d.

When a vertex v is relinked from p0\& to pnew> the only average edge
strengths which change are those of the receptive fields of p0ld andpnew. Thus,
the total change in the average edge strength is

r,(R(pM)\R(v)} + 7,(Ä(pnew)) -rj(Ä(pold)) -^(pnew) \Ä(u)), (5.9)

where ?/(•) denotes the average edge strength along the boundary of a region.
In order to maximize the average edge strength, in each time the new parent

must be chosen such that the score

Qedge = V (Ä(pnew)) - r, (Ä(pnew) \ R(v)) (5.10)

ismaximal. When the maximal score is equal to ?/(A(pold)) -r)(R(p0id)\R(v))
for every vertex v , the relinking procedure has converged. Convergence of this
relinking procedure can be proven with the argument used before.
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Combining region and edge information in a relinking method can be done
by using a combined score

Qa = «Qedge + (1 - a)Qrcgion, (5.11)

where a is a weight factor between 0 and 1. Again, the relinking method can
be shown to converge with the argument used before [20]

5.4.2. Combining Region and Boundary Information for Construction
of New Levels

The second part of our segmentation method is the construction of new levels,
which is performed adaptively to image contents through the influence of vertex
dissimilarities. It will now be shown how region and boundary information can
be combined in the definition of these dissimilarities. This can be done simply
by choosing a region dissimilarity measure which depends on both region and
edge information.

In section 5.3 we considered the edge strengths

global = \9(v) - 0MI - fav) + <r(w)) (5.12)

and

These edge strengths are based on the average grey values of adjacent regions,
i.e. on global properties. Local properties of the boundaries between adjacent
regions can be measured by considering the average response of an edge detector
along this boundary. Let s2(v,w) denote the average response of an edge
detector along the boundary of the receptive fields R(v) an R(w) and let s\(v)
denote the average response within the receptive field R(v).

Then the strength of an edge, corrected for the structure within regions,
can be expressed as

or as

A combined dissimilarity measure can then be defined as

S*a(v,w) = oSJ^tMi;) + (1 - a)S|lobal(t>,«,), (5.16)

where £ denotes either 'div' or 'sub'. In all cases, the value of a used here
will be the same values as the one used previously for weighing scores in the
relinking method described earlier in this section.
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5.5. Results

The elements described in the previous sections have been combined in a seg-
mentation algorithm. A hierarchy is constructed in a bottom-up order. Alter-
natingly, a new level is constructed by decimation of a region adjacency graph,
and the parent-child links between the lower and the upper level are updated
by relinking. Relinking is performed in a connectivity-preserving manner, and
region and edge information are combined both in the construction of the simi-
larity graph and during relinking. This section presents the segmentation results
for some synthetic and natural images.

U a

Figure 5.8: A synthetic image (a), contaminated with noise and its seg-
mentations with a = .95 (b), a = .50 (c) and a = .10 (d).

The effect of combining region and edge information is illustrated in
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figure 5.8. It shows an 128 x 128 image consisting of four ramps with grey values
from 112 to 144, contaminated with Gaussian noise with standard deviation
a — 8. The four regions cannot be discerned based on their average grey values,
because these are all the same. Therefore, boundary information must be used.
On the other hand, in the lower levels, information on average grey values is
more suitable for the classification of pixels, because boundary information is
rather noisy for small regions. Therefore, some intermediate value of a must
be used for the optimal segmentation of the ramps image.
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Figure 5.9: The number of misclassified pixels as a function of the param-
eter a with edge strength S£ub.

The segmentations, computed with edge strength 5£ub, are shown for
a = 0.95, a = 0.5 and a = 0.1. If a is too large, the region boundaries are
disturbed because of disturbances in the lower levels of the hierarchy. If, on the
other hand, a is too small, the average grey level criterion dominates and the
regions are split. Increasing the threshold with low values of a causes all the
regions to be merged, possibly leaving some small noise segments.

Figures 5.9 and 5.10 show the number of misclassified pixels (with respect
to the original four bands image) for various values of a and for different
realizations of the noise. Figure 5.9 shows the situation for the strength measure
S*ub and figure 5.10 shows the situation for S%v. It can be seen that the quality
of the segmentation is good for a wide range of a values. Note that, in one
case in figure 5.9, the segmentation with a = 0.65 has a large number of
misclassified pixels. This is caused by a 'wrong' link in a high level of the
hierarchy, in which a large receptive field is involved.
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Figure 5.10: The number of misclassified pixels as a function of the pa-
rameter a with edge strength S^.

When 5*v is used, a satisfactory segmentation can be obtained with a = 1.
On the other hand, the segmentation method breaks down for a < 0.5. A wider
range of possible values for a is available when S^ub is used.

Figure 5.11: Segmentation with edges strengths S$™ (a) and 5^ (b).

Figure 5.11 shows the results obtained for the head image, both for the
edge strength 5^ (figure S.lla, threshold 1.5) and the edge strength
(figure 5.1 lb, threshold 20).
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Figure 5.12 shows the segmentation result for an image of muscle tissue
without (a) and with (b) relinking. As the individual muscle fibers do not have
a strictly homogeneous grey value, edge information must be emphasized more
in the segmentation process. Therefore, a = 0.75 was used.

Figure 5.12: Segmentation for the muscle image without (a) and with (b)
relinking. The edge strength S%v was used with a = 0.75 and threshold
1.25.

It can be seen that the construction without relinking extracts some of the
structures from the image, but improvement can be made by applying relinking.
The segmentation obtained when relinking is used shows more individual fibers
than the segmentation obtained without relinking. This can be understood as
follows. Each time a level is constructed by graph decimation, the boundaries
between the resulting regions are not located optimally. Therefore, the response
of an edge detection filter will not be maximal on the boundaries found by the
procedure, but more in the interior of some regions. Similarly, the regions
found by graph decimation do not correspond exactly with the boundaries
between homogeneous regions in the image. Therefore, a region detected by
the decimation process can contain pixels from different regions in the image.
This causes an increase in the standard deviation of the grey levels in a region.

If the boundaries are not corrected in the subsequent relinking phase, these
effects reduce the edge strengths 5^v and 5^ub. More adjacent vertices will
be similar and therefore, more regions will be merged in the construction of
subsequent levels.
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5.6. Conclusions

In this chapter, we have presented the extension of pyramid relinking to hier-
archies of graphs. This approach solves a number of problems associated with
conventional relinking methods.

The first problem we solved was the problem of connectivity preserva-
tion. Conventional relinking does not produce connected regions, but classes
which may be scattered in the image plane. We have been able to adapt the
relinking rules in such a way that connectivity of regions is guaranteed. When
the pyramid is built level by level, two criteria (illustrated in figure 5.2) must
be used to select suitable relinking steps. When relinking is performed in a
complete pyramid, in which all levels are present, a third criterion (illustrated
in figure 5.3) must be used in order to avoid the destruction of the connectivity
of receptive fields of vertices in higher levels.

The artifacts from which relinking in regular pyramids suffers were avoided
by constructing the hierarchy level by level, adaptive to image contents. The
construction of a new level can be seen as a first guess for the aggregation of
region primitives which is improved by the relinking procedure.

The solution to the connectivity preservation problem required the intro-
duction of a graph structure. The edges in this graph correspond with the
boundaries between receptive fields in the image plane. This provides the pos-
sibility to represent information on these boundaries in the data structure and to
combine region and boundary information in the segmentation process. It has
been shown that the combination of region and edge information can be useful
and that the corresponding segmentation scheme is robust under the change of
the parameter a.

Some segmentation results for natural images have been presented, show-
ing that satisfactory results can be obtained in practice.



Top-Down Processing
in Hierarchical Structures

6.1. Introduction

In the previous chapter, we have investigated methods for the description of an
image by a hierarchy of region adjacency graphs. Such a description reflects
the structure of the image, but some effort must be made to extract relevant
information.

Each vertex in the hierarchy of graphs corresponds with a region in the
image. Often a significant object in the image will coincide with such a region,
but sometimes this is not the case. It is possible that an object is represented
by several vertices in one level, while it is only a part of the receptive field of a
vertex in the next level. Moreover, not all vertices have the same significance.
Some search method is required to detect the most significant structures in the
hierarchy.

In this chapter, some examples of top-down search methods in a hierarchy
of graphs are discussed. These methods use a priori knowledge of image content
and are therefore adapted to a particular problem. Our specific application is
the detection of fibers in a microscope image of muscle tissue (figure 6.1). The
individual fibers appear in the image as more or less convex regions with a
uniform grey value which are bounded by a curve on which the image gradient
is large.

In section 6.2, atop-down tree traversal method is described which searches
for clusters of vertices which form more or less convex regions in the image
plane and which fall within a given size range. The information used by
this method is only of a geometric nature. The information on the grey level
distribution of the image which was used for the construction of the hierarchy,
is no longer used.

In section 6.3, a method for boundary refinement based on dynamic pro-
gramming is presented. Dynamic programming (e.g. [21]) is a well-known
technique for many optimization problems and has been used for a long time in

95
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Figure 6.1: An image of muscle tissue, on which our top-down methods
will be tested.

image processing for edge detection, e.g. by Montanari [73] and Martelli [64,
65]. Recent contributions have been made by Gerbrands [31] and Orange [81].

In these techniques, some initial guess for the approximate location of the
curve must be supplied. In section 6.3, the boundary of the receptive field in
a high level of the hierarchy is used as an initial guess, while the boundaries
of receptive fields in an intermediate level of the hierarchy are used as possible
parts of the exact boundary.

6.2. Top-Down Selection of Convex Objects

This section describes the detection of muscle fibers in the hierarchical structure,
based on convexity. Convex regions in the image are detected by a searching
method which operates in a hierarchy of region adjacency graphs. Only geo-
metric information is used in this process, but grey value information, which
was used in the construction of the hierarchy, is no longer used.

Two measures for the convexity of a set X are used. Both measures are
invariant under translation, rotation and scale. The measure ca measures the
relative area of the concavities of X, while Q measures the largest relative depth
of such concavities. Let C(X) be the convex hull of the set X. Let p(X)(-)
denote the distance transform of a set, defined by p(X)(x) = miriygx d(x, y)
and let A(X) denote the area of a set. The area-based convexity measure is

_ A(X)
- (6.1)
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This measure is called the indice de concavité en surface (concavity index by
surface) by Coster and Chermant [22]. The distance transform based convexity
measure is

m _ j _ xgx

p(C(X))(x)

Both measures have values between 0 and 1 and the value 1 is reached only for
convex sets. The measures are illustrated in figure 6.2, where the light region
denotes X and the complete region its convex hull.

Figure 6.2: The measure ca(X) is the quotient of the light area and the
total area and the measure Cd(X] is 1 minus the quotient of the lengths of
the segments p and q.

Fibers must not only be convex, but they must also have an area in a certain
range. Therefore, the convexity of each region X is multiplied with a size factor

(\X\/Amin i f \ X \ < A m i n
f(X) = t 1 if Amin < \X\ < Amax (6.3)

where \ X \ i s the area of the region and Amin and ^max are l°w and high values
for typical fiber areas. The value of the size factor is 1 for regions with an area
between Amu, and Amsai and gradually decreases to 0 for regions with areas
outside this range. The products of ca and cj with ƒ will be called the corrected
convexities.

The search procedure operates on clusters, i.e. the child sets of vertices. All
connected subsets of a cluster are considered and their corrected convexities are
computed. Then, the subset with the highest corrected convexity is selected. If
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its corrected convexity is higher than some predefined value, the region outlined
by this subset is marked as a fiber, and the corresponding vertices are removed
from the cluster under consideration. Then, the most convex connected subset
is selected from the remaining cluster. This process continues until no more
connected subsets with a given minimal convexity exist.

After all convex subsets of a cluster have been computed and removed
from the cluster, the remaining vertices are considered in the next step. For
each of these vertices, the child set is determined, and each of these child set is
searched for convex connected subsets. This procedure is repeated in top-down
order.

Figure 6.3 shows the result obtained for a hierarchy describing the muscle
tissue image. Figure 6.3a is the highest level of the initial hierarchy. An under-
segmentation is used here in order make the effect of convex cluster search more
visible. The other two figures show the results obtained using the measures ca

and Cd with thresholds 0.8 and 0.5 for the corrected convexities, respectively.
The values used for Amin and -Amax were 500 and 2000.

Figure 6.3: The top level of the hierarchy (a) and the clusters detected
with the area measure (b) and the distance transform measure (c).

Note that the search procedure used here has rather limited possibilities:
when a fiber is found at a given level in the hierarchy, no further effort is made
to produce some refinement of the object by considering lower levels in the
hierarchy. Moreover, all resulting regions are the union of a set vertices which
are children of a common parent. In some cases, it can be impossible to describe
a fiber in such a way. The method described in the next section does not have
these weaknesses.

6.3. Boundary Detection by Cost Minimization

The edges in a region adjacency graph correspond with boundaries between
regions in the image. By selecting a proper set of edges in the region adjacency
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graph, the outline of an object in the image can be constructed. This section
presents an optimization approach for the computation of edge sets which
correspond to fiber boundaries.

Object boundaries correspond to closed paths in the dual of the region
adjacency graph. This is explained in subsection 6.3.1.

Subsection 6.3.2 presents an optimization approach for the detection of
fiber boundaries. Based on our model of boundaries—more or less round
curves through points with a large gradient in the image—a cost function is
constructed, such that minimal cost paths correspond to fiber boundaries. Dy-
namic programming is used to detect optimal paths.

In subsection 6.3.3, the optimization approach is used in a hierarchical
structure in order to achieve a stepwise refinement of object boundaries. In
subsection 6.3.4, some results are shown and the effect of parameter choices is
illustrated.

6.3.1. Boundaries as Paths in the Region Adjacency Graph

Edges in the region adjacency graph correspond to boundary parts in the image
plane. In order to select series of consecutive boundary parts, a representation
is required in which it can be seen, which edges of the region adjacency graph
represent consecutive curves in the image plane. In the region adjacency graph,
this ordering is not represented explicitly.

For this purpose, the dual [36] of a region adjacency graph must be con-
structed.

Definition 6.1 Let G be a planar graph with vertices V_and edges E. Its dual
graph is denoted by G and its vertex and edge sets by V and E, respectively.
Each vertex in G corresponds with a face (a region surrounded by a closed path
and with no interior edges) ofG. Two vertices of G are connected by an edge
if the corresponding faces in G share an edge.

The faces of the dual graph correspond to vertices injhe original graph.
There is a one-to-one relation between the edges of G and G.

Dual graphs are defined for graphs which are embedded in the plane;
for regions adjacency graphs, such an embedding exists obviously. This is
illustrated in figure 6.4. In the present context, it is necessary to take double
edges into account. Double edges occur when the boundary between two regions
consists of more than one connected component. This is the case, for example,
for the two vertices marked by a * in figure 6.4: the boundaries between the
corresponding regions consists of two connected components.

It is useful here to consider the image grid in terms of pixels, cracks and
points. In this view, pixels correspond to open squares of the form (x,x +
1) x (y^U + 1) with x,y € Z, in the Euclidean plane. Pairs of directly
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(a)

Figure 6.4: Figure (a) shows a region adjacency graph (in thin lines) and its
dual (in bold lines). Note the correspondence between faces of one graph and
vertices of the other one. Note also the correspondence between mutually
intersecting edges of both graphs. In figure (b), the edges of the dual graph
have been redrawn in the shape of the curves they represent in the image
plane. There is a double edge between the vertices marked by a * because
the boundary between the corresponding regions consists of two connected
components.

adjacent pixels (4-neighbors) meet at cracks, which are line segments of the
form (x, x + 1) x {y} or {x} x (y, y + 1). Four pixels meet in points (x, y).
This description corresponds with the topological notion of a cell complex, as
noted by Kovalevsky [54].

Edges in the dual region adjacency graph correspond to boundaries between
regions in the image plane. These boundaries are formed by series of cracks,
connected at points. The vertices in the dual region adjacency graph correspond
to points in the image plane where boundaries between regions meet.

Let ÏÏQ , v i , . . . , vn be a path in the dual graph and let e; be the edge between
ïJ;_i and Ui. Then ei, e2, • • •, en corresponds with a series of contiguous curves
in the image plane.

From a hierarchy of region adjacency graphs, a hierarchy of dual region
adjacency graphs can be constructed. This has been described in detail by
Kropatsch et al. [58] for the situation where the hierarchy is built by graph
decimation, but their description is also valid for more general hierarchies. The
levels of the dual hierarchy are constructed by constructing the dual graph for
each level independently. Each edge in a higher level of the dual hierarchy
corresponds to a series of contiguous edges in a lower level. In terms of curves
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in the image plane, this means that each edge in a higher level represents a curve
which consists of a number of consecutive parts, which are each represented by
an edge in a lower level.

Consider a path in some higher level of a hierarchy of dual region adjacency
graphs and the curve it represents in the image plane. This curve can also be
represented by a path in some lower level of the dual hierarchy. This path can
be constructed by considering all the edges occurring in the higher level, and
computing the corresponding edges in the lower level graph. Concatenating all
of these edges yields the desired path in the lower level.

6.3.2. Construction of the Cost Function

Closed paths in a dual region adjacency graph correspond with closed curves in
the image plane. In this subsection, a cost minimization procedure will be used
in order to detect closed curves which correspond to fiber boundaries. This
will be done by means of a hierarchical method. This subsection describes
the procedure used in each level; the next subsections describe the hierarchical
procedure and present some results.

In this section, three issues must be addressed: a suitable cost function
must be constructed, a set of allowed paths must be defined and an optimization
algorithm must be chosen.

The optimization procedure will be carried out by dynamic programming.
Using dynamic programming, we will minimize a cost function of the form

Cr(v„,t>i,...,t;„) = ( l - a P f a . V j + O + a ^g(t7;_i,t;i,î;;+i). (6.4)

We consider closed paths, so vn+i must be read as «i for t = 1,2. The terms
P(VÏ, Vf+i ) represent the cost contributed by pairs of adjacent vertices, i.e. by
edges. The terms Q(vt,Vi+i,Vi+t) represent the cost contributed by triples
of consecutive vertices, i.e. by pairs of contiguous edges. In the rest of this
section, P and Q will be chosen such that P depends on the extent to which
the curve follows maximal gradient paths, while Q depends on the circularity
of the curve. The weight factor a can be adapted to make one of these curve
characteristics more dominant. As the costs P and Q will be positive, dynamic
programming can be used for the computation of a minimal cost path.

Fiber boundaries are characterized by two properties:
1. Fiber boundaries separate regions of different brightness.
2. Fiber boundaries are more or less round.

The cost function will be chosen such that this type of curve can be detected.
The terms P(Vi, v j+1 ) will be used to express the extent to which the curve

separates regions of different brightness. Each pair (tJj, tJj+i ) corresponds with
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a curve in the image plane. Let ci , c2 , . . . , c* be the cracks that constitute this
curve, where k is the length of the curve. As we are interested in the actual
localization of curves in the image plane, and not in the number of edges by
which they are represented, the cost function $^4 P(U< , Vi+i ) should not depend
on the number of parts from which a curve is constituted, but only on the layout
of the curve on the image plane. Therefore, P must have the form

(6-5)

where P(CJ) is a measure for the contrast across a single crack. A common
choice in literature for the contrast function p(cj) is M — |V/(cj)|, where M
is some large constant and V ƒ (cj) is a measure of the image gradient at the
crack; usually, it is simply the difference of the grey values of the pixels on both
sides of the crack. This choice has an undesirable property: because all p(cj)
must be positive, M must be larger than the largest gradient value in the image.
This can be a large number, implying that most of the times, p(cj) will be quite
large. Therefore, short curves will be favored, which may lead to artifacts. In
our application, parts of fibers might be cut off, as a shorter path through the
interior of a fiber may have a lower cost than the actual boundary, which is
longer.

A more suitable choice is therefore

' (6'6)

where e is some small number (in our implementation 0. 1 ) which avoids division
by zero, and V /(c) is an estimator for the image gradient. In our case the
difference of the grey values of the pixels on both sides of the crack. With this
choice, the presence of large gradients in the image does not enforce an increase
of the cost of all the cracks. Moreover, this choice has a clear interpretation:
a path with a given length and grey value contrast has the same cost as a path
which is twice as long, but has also twice the contrast.

The second criterion for fiber boundaries is that they are more or less
round. In the previous section, we used convexity as a measure. This is,
however, a global measure and cannot be expressed by a cost function of
the form (6.4). The roundness measure proposed in this subsection uses an
estimation c = (xc, yc) of the center of the fiber. Consider a curve segment
with end points pi = (xi , y\ ) and p2 = (z2 ,2/2)- If this curve part is part of a
round curve around c, the vector p2 — Pi is perpendicular to the vector between
c and the center (l/2)(pi + p2) of the line segment pip2. The deviation 6 of
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the angle between the vectors p^ — Pi and (l/2)(pi +pz)-c from the optimal
value of 7T/2 is a measure for the non-roundness of the curve.

This observation is used for the construction of Q(vi,Vi+i,Vi+2)- The
three vertices define two adjacent curve segments. The curve represented by the
concatenation of the two corresponding edges is considered, and the direction of
the line segment between its end points is compared with the optimal direction
given the estimated center c. Let 9 denote the deviation from the optimal angle
and let / denote the length of the line segment between both end points. Then
Q is defined by

Q(vi,vi+l,vi+2) = W2. (6.7)

The square is introduced to reduce the cost of small deviations, while increasing
the cost of large deviations. This allows more deviations from exact circularity
than a linear cost function. The length / is used again because the cost must be
proportional to the actual length of the curve in the image plane and not to the
number of edges by which it is represented.

The boundary shape is evaluated using two edges instead of one. This
is done in order to avoid undesirable effects which can occur if the curves
represented by edges become short at the lower levels of the hierarchy. This
can be especially disadvantageous in the lowest level, where edges correspond
with individual cracks and only horizontal and vertical directions are possible.

We still have to define the set of allowed paths over which cost minimization
must be performed. As we will work in a top-down procedure, there will be an
initial coarse guess, which was computed at some higher level._This guess is
some closed curve in a dual regionjidjacency graph. Let X C E be the set of
edges in this path. Then a set Y C S of edges is constructed which lie in a strip
around the coarse path. An edge ê € E is in Y if and only there is a face in the
dual region adjacency graph which is bounded by both e and some edge in X.
Thus, the allowed paths all lie in a narrow strip which follows the initial guess.

The set of allowed paths is the set of all paths containing only edges in Y.
One restriction must be made: in order to avoid artifacts, paths which do not
go around the estimated center c must be excluded. This is done by allowing
certain pairs of adjacent vertices to occur only in a particular order in the path,
effectively making the edges in the dual graph directed.

6.3.3. The Hierarchical Search Method

The cost minimization approach described in the previous subsections can be
used for top-down boundary refinement in a hierarchical structure. In the exam-
ples presented here, we use a hierarchy of region adjacency graphs constructed
by the method presented in chapter 5.

As the initial guess for the curve boundary, the boundary of the receptive
field of some vertex in the hierarchy of region adjacency graphs is used. An
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estimation for the center of the corresponding fiber must also be given. At
present, these initial guesses are generated by a human operator, but they can
also be generated automatically.

The circumference of the selected region corresponds with a closed path
in the top level of the dual region adjacency graph. Top-down search is started
at some intermediate level in the hierarchy, typically the third one. The curve
corresponding to the initial guess is represented as a closed path in this level.
Then the allowed paths are defined by selecting a set of allowed edges, and the
minimal cost path is computed, yielding the first refinement of the initial guess.
This path is then represented at the next lowest level, where it is again used
as an initial guess, which is refined by cost minimization. This procedure is
repeated, until the final curve in the base level of the hierarchy is reached.

6.3.4. Results

Some results are presented in figure 6.5. The pictures show the initial guess,
generated at the top level, the allowed edges in the third level of the hierarchy,
the minimal cost path detected at the third level of the hierarchy and the final
path, detected at the base level. Note that the initial guess shows some large
deviations from the true fiber boundary. In terms of the hierarchy, these de-
viations are small, because they correspond to just a few 'wrong' parent-child
links. Therefore, the path refinement procedure has no difficulties in finding the
correct boundary. The method described here detects almost all fibers correctly.
In practice, errors occur only when the structure of the hierarchy is deformed so
much that the correct fiber boundaries cannot be detected by repeatedly applying
relatively small changes in successive levels.

The parameter a in equation (6.4) was chosen to be 0.01. With this choice
the P and Q terms have about the same order of magnitude, and both shape
and gradient information are taken into account. The value of a for which both
terms have the same order of magnitude is image dependent. The contrast cost
function depends on the grey values present in the image, while the shape cost
function does not. Therefore, the optimal value of a is related to the contrast
or the grey value range of the image. In practice, it appears that one value of a
suffices for all fibers in an image.

Figure 6.6 shows the effect of modification of a. In the middle image,
a = 0.01 and the fiber boundary is detected correctly. In the left image,
a = 0.002 was used. The cost function is dominated by contrast terms and the
boundary traces strong contrasts, yielding an undesirable bump on the boundary.
In the right image, a = 0.05 was used. The cost function is dominated by the
shape terms and a more or less circular boundary is generated, although this
one does not follow brightness edges.
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Figure 6.5: Boundary refinement by cost minimization: the initial guess
(a), the set of allowed edges in the intermediate level (b), the minimal cost
path at the intermediate level (c) and the final path in the base level (d).

6.4. Conclusions

If a hierarchical image description is constructed in a bottom-up fashion, some
post-processing or top-down search methods are required for the extraction of
image content from this description. In this chapter, some possibilities of how
this can be done have been presented.

Top-down search methods require some image model or a priori knowledge
of image content. We have described two methods for the detection of more
or less convex objects with smooth boundaries, uniform grey values and step
edges at their boundaries.

The first method searches for convex combinations of regions and uses no
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Figure 6.6: Optimal boundaries detected with a = 0.002 (a), a — 0.01 (b)
and a = 0.05 (c).

grey value information. Most fibers are detected reasonably well, but problems
occur when a fiber is not the union of a number of children of a common parent.
Moreover, no extra refinement is performed after a boundary is detected at a
given level.

The second method searches for object boundaries which are optimal with
respect to a cost function, which is constructed based on a priori knowledge
of image content. This method requires the extension of well known curve
detection methods, used on pixels grids, to region adjacency graphs. It consists
of a number of optimization steps, performed in top-down order on the levels
of the hierarchy. The objects are detected with satisfactory accuracy and the
method is able to correct for errors in the tree structure of the hierarchy, which
originate from the bottom-up procedure. There is one free parameter. It has
been argued that this parameter must be chosen in such a way that the two terms
in the cost function have the same order of magnitude. It has been demonstrated
that changing this parameter has the expected effect on the result.

Model-based image processing techniques, such as those based on active
contours or snakes [51] and parametrically deformable models [98] have become
popular recently, and their combination with hierarchical methods might become
a fruitful field of research.



Chamfer Metrics
and Mathematical Morphology

7.1. Introduction

Mathematical morphology [66,95] is an approach to image processing based on
set theoretic notions such as inclusion and intersection. Recently, mathematical
morphology has been extended to grey level images [95] and even complete
lattices [87, 41,40], but originally mathematical morphology dealt with binary
images. Mathematical morphology models binary images as sets, by consider-
ing the foreground as a subset of the image plane. The image is analyzed by
inspecting the containment or intersection relations of the image with translates
of some set B, the structuring element.

The elementary operations in mathematical morphology are the dilation,
the erosion, the opening and the closing. They are defined as follows:

dilation: X © B = (J{Bh \ h € X}
erosion: X Q B = {h E E \ Bh Q X}

opening: X o B = ( X Q B ) ® B
closing: X • B = (X®B)QB

Here, Bh denotes the structuring element B translated over the vector h. The
image space, typically IR2 or a square grid, is denoted by E.

Mathematical morphology is a useful tool for the analysis of the geomet-
rical structure of an image (see Heijmans [39] for a review). The geometrical
properties of morphological operators, such as invariance under rotations, de-
pend on the geometric properties, such as rotation symmetry, of the structuring
elements used.

The notion of scale can be introduced in mathematical morphology by
considering the operations defined by a family of structuring elements in stead
of a single one. Such a family of structuring elements is typically parameterized
by a scale parameter and larger scale parameters correspond to larger structuring
elements.

107
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On the discrete grid, a family of structuring elements is defined most
commonly by successive dilations of a structuring element with itself. A
typical basic structuring elements B would be a square, corresponding to the
8-connected grid, or a diamond, corresponding to the 4-connected grid. The
corresponding family of structuring elements is then defined by B(n) = B ©
... © B (n terms). The scale parameter assumes positive integer values.

In the continuous case, where images are subsets of the Euclidean plane,
discs of increasing radius are an appropriate choice for a family of structuring
elements. The fact that these structuring elements are denned by a metric
provides a natural interpretation of the scale parameter.

In practice, mathematical morphology is performed on the discrete grid.
For many applications, it is favorable to use a family of structuring elements
which is a good approximation of the family of Euclidean discs. Families
defined by successive dilations of a single structuring elements are not good
approximations of Euclidean discs. On the other hand, the family of structur-
ing elements defined as the intersections of Euclidean discs with the discrete
grid can only be used for more complicated morphological algorithms at large
computational cost.

As chamfer metrics can approximate the Euclidean metric closely, spheres
defined by the chamfer metric seem to be a suitable choice as a family of
structuring elements, at the same time allowing the formulation of efficient
algorithms. Such a choice however poses some other problems, for example
caused by the fact that larger spheres are in general not invariant under an
opening by smaller spheres.

The goal of this chapter and the two following ones is the integration
of chamfer metrics into mathematical morphology, both by presenting new
theoretical results and by providing efficient algorithms for morphological op-
erations with chamfer discs. Efficient algorithms for morphological operations
have been described by a number of authors. Groen and Foster [33] use lookup
tables in order to speed up decisions based on inspection of the neighborhood
of a pixel. Vincent and Schnürt [106,93] use queues in which only those pixels
which must be processed are stored; pixels which need not to be processed are
ignored. Van den Boomgaard and Van Balen [11] use a decomposition of the
structuring element combined with a bit-mapped storage structure for the image
in order to construct efficient algorithms. The algorithms described by these
authors are not applicable to operations based on the chamfer metric.

The next section presents some results on discrete metrics. Section 7.3
introduces chamfer metrics and some of their properties. This chapter ends with
some conclusions. The following two chapters use the results presented in this
chapter for the description of the medial axis and the opening transform based
on chamfer metrics, respectively.



Discrete Metrics 109

7.2. Discrete Metrics

In this section, discrete metrics are defined and some of their properties are
described.

A metric on a set E is a function d : E x E —> [0,00] satisfying the
following conditions:
(1) d(x, y) = O O x = y for all x, y € E.
(2) d(x, y) = d(y, x) for all x, y € E.
(3) d(x, y) + d(y, z) < d(x, z) for all x, y, z e E.

Note that we allow metrics to assume the value oo. This is necessary because
later on, metrics will be constructed for which the distance between two points
is defined as the length of a shortest path between them. If there is no path
between two points, the distance between these points will be oo. For chamfer
metrics, which are a special case of shortest path metrics, all distances will be
finite.

Let d be a metric on a set E. Let D denote the set {d(x, y) \ x, y 6 E};
this set is called the range of the metric. For each d e D open and closed
spheres can be defined.

Definition 7.1 Let d be a metric on a set E and let D be its range. Let r e D
and x E E. The closed sphere with radius r and center x is the set

B(x,r) = { y < E E \ d ( x , y ) < r } . (7.1)

Definition 7.2 Let d be a metric on a set E and let D be its range. Let r 6 D
and x € E. The open sphere with radius r and center x is the set

B(x,r) = {yeE \d (x ,y )< r} . (7.2)

The rest of this chapter will be concerned only with metrics which have a
discrete range. Such metrics will be called discrete metrics:

Definition 7.3 A metric d o n a set E is called a discrete metric if its range
(d(x,y) | x,y € E} has no limiting points.

Thus, for each value r > 0 in the range D of a discrete metric d, there is a value
s e D which is the largest value in D smaller than r and for each r e D there
is a value t € D which is the smallest value in D larger than r. Therefore, for
a discrete metric each closed sphere of radius r is also an open sphere of some
larger radius s, which is the smallest number in D larger than r. Each open
sphere of radius r > 0 is also a closed sphere of some smaller radius s which
is the largest number in D such that s < r. In the sequel, we will sometimes
write B(r) for B((0,0), r) and B(r) for B((0,0), r).

If X is a subset of a discrete metric space E, it is possible to define for
each point the shortest distance to a point outside the set.
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Definition 7.4 Let d be a discrete metric on a set E and let D be its range.
Let X be a bounded subset ofE. The external distance transform p<%1 ofX is
the function E —>• D defined by

p^(x)=mmd(x,y). (7.3)

Note that the value of p^l(x) = 0 for a; £ X. The definition implies
B(x, pjfl(x)) c X for all x £ X. Using the definition of a metric, it can
be seen that p^l(x) < p^l(y) + d(x, y), for all z, y £ E. For a function
ƒ : E -> IR, the support Supp(/) of ƒ is defined as the set {x £ E \ f(x) £ 0}.
The support Supp(p^) of p^ is the set X itself.

For each point x in a bounded subset X of a discrete metric space E, it is
possible to determine the largest closed sphere centered at x and is contained in
X, This leads to the notion of the internal distance transform.

Definition 7.5 Let d be a discrete metric on a set E and let D be its range.
Let X be a bounded subset ofE. The internal distance transform p$ ofX is
the function X -* D denned by

p^(x) = max{r e D \ B(x, r) C X}. (7.4)

The internal distance transform can be calculated from the external distance
transform. The value of (fx(x) for an a; e A" is the largest number r £ D such
that r < pexl(x). Such a number exists because d is a discrete metric.

Note that he following equivalences describe the relation between distance
transforms and the inclusion of structuring elements in an image:

B(x,r)CX O pj?(*)>r

B(x,r)CX & fi?(x)>r

As morphological operations are based on inclusion and intersection of a struc-
turing element with an image, these equivalences will be central in the discussion
of mathematical morphology using chamfer discs.

For chamfer metrics, the external distance transform can be computed using
a two-pass algorithm, while the computation of the internal distance transform
requires an extra step. Therefore, the external distance transform can be handled
more easily; it is used in section 9.2. The algorithms in sections 8.2, 8.3, 8.4
and 9.3 use the values of p*x(x) — p^(y) for point pairs x, y. This value is in
general not equal to pjfl(x) — p<xl(y) and the external distance transform cannot
be used here. Note that the terms internal and external distance transform are
used sometimes in the literature to denote the distance transforms of X and
Xe, respectively.

Another ingredient for the algorithms to be presented later is the recon-
struction. A reconstruction is the computation of a set as a union of spheres,
which can be performed if the centers and radii of these spheres are given.
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Definition 7.6 Let d be a discrete metric on a set E and let D be its range. Let
ƒ : E —* D be a function of bounded support. The open sphere reconstruction
R(f) off is defined by

= U *(*.ƒ(*))• (7-5)

Thus, the reconstruction is a union of open spheres: an open sphere with center
x and radius ƒ (a;) is inserted in the set for each x 6 E with ƒ (z) > 0. An
equivalent definition for R(f ) is

R( ƒ ) = {x £ E | d(x, y) < f(y) for some y e £}.

It is also possible to define a reconstruction using closed spheres.

Definition 7.7 Let d be a discrete metric on a set E and let D be its range.
Let X be a bounded subset of E and let ƒ be a function X -» D. The closed
sphere reconstruction R(f) off is defined by

= \jB(x,f(x». (7.6)

The closed sphere reconstruction builds a set as a union of closed spheres. An
equivalent definition is:

S( ƒ ) = {y € E I d(x, y) < ƒ (x) for some x £ X}.

If d is a metric on a set E, a point y 6 E is said to lie between two points
x, z 6 E if d(z, y) + d{y, z) =• d(x, z). If d is the Euclidean metric, y lies
between a; and z if y lies on the line segment from x to z, which is the intuitive
meaning of 'between'. Later we will need metrics for which, given two points
x and y and a value r in the range of d, a third point z can be found at a distance
r from y, such that y lies between a; and z.

Definition 7.8 Let dbea metric on a set E and let D be its range. The metric
d is called, extending if, for each x, y e E and r E E, there is a z CL E such that
d(x, y) + d(y, z) = d(x, z) and d(y, z) = r.
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7.3. Chamfer Metrics

The chamfer metric was introduced by Borgefors [12]. Her goal was the
construction of a metric on the square grid which is a good approximation of
the Euclidean metric and allows efficient computation. The chamfer metric
is a metric defined on the square grid {p(l,0) + q(Q, 1) | p, q € 7Z.} or on
the hexagonal grid (p(l,0) + q(l/2, l/2\/3) | p, q € TL}. These grids are
illustrated in figure 7.1.

They are invariant under rotations and reflections. The group of symmetries
of the square grid (leaving the origin fixed) contains four rotations, including
the identity, and four line reflections. The symmetry group of the hexagonal
grid contains six rotations, including the identity, and six reflections. Both
the square grid and the hexagonal grid are representations of TZ?. The only
difference lies in the different symmetries of the two types of grids.

(a) (b)

Figure 7.1: The square grid (a) and the hexagonal grid (b) with a number
of primitive vectors. The primitive vectors divide the grid in a number of
wedges. In each grid, one of these wedges has been shaded.

A metric on Z2 can be defined as follows. Let V = (»i, ...,«*) be a set
of vectors in Z2 such that v € V implies — v € V. These vectors are called
prime vectors. Let / be a function V —> IN such that l(v) = l(—v] and l(v) > 0
for all v. The numbers l(v) are called the weights of the prime vectors. It is also
possible to use real numbers as weights, but that is not done in this paper. This
is not a real restriction: if rational weights are to be used, they can be multiplied
by a suitable scaling factor, yielding integer values. In practice, operations will
be performed on a bounded grid and real numbers can be approximated with
sufficient accuracy by rational numbers.
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If x and y are two points in Z2 , a path from x to y is defined as a sequence
POîPi j - •• iPfeOf points such that po =a;andpfc = y and such that p^— p»_i € V"
for i — 1 . . . k. The length of this path is defined as :

If x = y, we allow p0 = x = y as a path from a; to y. The length of this path is
0.

Let x = po, . . . ,pk = y be a path from x to y. The differences «i =
Pi — pi-i are called the steps in the path. Any permutation a of die steps Ui
yields another path p'0, . . . ,p'k from z to y given by p'i = p'i_i + cr(ui). Note
that permutations do not affect the length of the path. Any sequence ui, . . . , u*.
of prime vectors such that £)"=! Ui = y — x defines a path from x to y: take
P j = X + £i=l Uj-.

Theorem 7.9 With (ui, . . . , vn) and l, L as defined above, a metric d :
Z2 x Z2 -» [O, oo] is defined by

d(x, y) = min{L(po, • • • ,Pfc) | k 6 IN; p0, • • • ,Pk is a path from x to y}.

The proof of this theorem is simple: the first two properties of a metric are sat-
isfied by construction and the third property can be verified using concatenation
of paths. Note that d(x, y) = oo if there is no path between x and y.

The construction described above defines a metric, but the chamfer metrics
to be investigated in this paper will have some additional properties. Before
these properties can be formulated, some definitions have to be made.

Definition 7.10 Let {vi,...,vn}beaset of prime vectors and let I be a weight
function. Then the normalized prime vectors $1 , . . . , vn are denned by

Vi = Vi/l(Vi).

Note that the normalized prime vectors are in general not points on the grid.
Let IR-° denote the set of nonnegative reals.

Definition 7.11 Let u and w be two independent vectors in IR2. The wedge
between these two vectors is the set

wUtW = {Am + A2™ l Ai, A2 e IR-0}.

The wedge between two vectors is indeed a wedge shaped set, bounded by two
half lines in the directions of the vectors (see figure 7.1).
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Definition 7.12 Let V = {vi,..., vn} be a set of prime vectors. Two
independent vectors u,w € V are adjacent if Wu>w contains no prime vectors
other than u and w.

An adjacency relation is defined for normalized prime vectors in the same way
as for prime vectors. Note that û and v are adjacent if and only if u and v are
adjacent.

Lemma 7.13 Let V be a finite set of vectors in Z2 such that V contains a
pair of independent vectors and suppose that for each v € V, — v e V as well,
and that —v is the only vector in V which is collinear with v. Then for each
x € 2Z2 there are two adjacent vectors u and w in V such that x € WUiW.

PROOF. The lemma can be proved by ordering the prime vectors according to
their angle with the positive x-axis. Under the given conditions, no two prime
vectors have the same direction and two prime vectors are adjacent in the sense
of lemma 7.12 if they are adjacent in the ordering according to their direction.
Under the given conditions it can easily be seen that the plane is covered by
wedges spanned by pairs of adjacent prime vectors. I
Two different wedges intersect only in the origin, or they have a bounding half
line in common.

If u = (ux,uv) and w = (wx,wy) are two points in Z2, the determinant
det(u,w) is defined by det(u,w) = uxwy — uywx. Note that u and w are
linearly dependent if and only if det(u, w) == 0.

Although a set of weighted prime vectors can define a metric as in the-
orem 7.9, the metrics referred to in the literature as chamfer metrics form a
subclass of such metrics. The next theorem gives a formal definition of this
subclass; the consequences of this definition are described in the following
lemmas.

Definition 7.14 A metric as denned above is called a chamfer metric if the
following properties hold:
(1) The set V of prime vectors contains a pan- of linearly independent vectors.
(2) Jfv 6 V, the only other vector in V which is collinear with v is —v.
(3) If u and w are two adjacent prime vectors, then det(n, w) = ±1.
(4) The normalized prime vectors vi , . . . ,vn lie on the boundary of a convex

polygon.

Condition (3) in definition 7.14 implies that each grid point which lies in a
wedge can be written as an integer combination of the prime vectors generating
the wedge:

Lemma 7.15 Letu andw be two adjacent prime vectors and let p = Xu+fiw 6
Z2 for some X , f J , € IR+. Then det(it, w) = ±1 implies A and /x are integer.
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PROOF. From the equality

w. Py
(7.8)

it follows immediately that

- Wxpy

det(u,w) \ uypx -uxpy
(7.9)

Both wypx — wxpy and uypx — uxpy are integer, so A and // are integer if
dei(u,w) = ±1. I

As there is a pair of independent prime vectors, it follows from lemma 7.13 that
each grid point lies in some wedge. Lemma 7.15 implies that each grid point
in a wedge can be written as an integer combination of the two prime vectors
generating this wedge. This also immediately produces a path from 0 to each
point in which only two prime vectors occur as steps. Because of translation
invariance, it follows that for each x, y € 72?, there is a path from x to y that
contains at most two different prime vectors as steps. From property (4) in
definition 7.14 it follows that such a path is a shortest path:

Lemma 7.16 Suppose p = mini + m^u^ where ui and u2 are adjacent prime
vectors and m i,m2 € IN. Thend(Q,p) —

PROOF. The proof of this theorem is illustrated in figure 7.2 for the 2-3-metric,
with p = (2,1).

Figure 7.2: Illustration of the proof of lemma 7.16 with the 2-3-metric.
The prime vectors, the polygon defined by the normalized prime vectors and
the points p = (2,1) and vp — (2/5,1/5) are indicated.
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It is clear that a path P of length mii(«i) + m^l(u^) from 0 to p exists.
Now let Q be a path from 0 to p which contains each prime vector Vi Hi times.
Then the length of Q is £"=1 riilfa). We show that L(P) < L(Q). We have

where

is a convex combination of prime vectors Vi. We also have

/ i/ \ il \\ f wii/mi) X AI Irny,l(u2) X uy \
= (rnil(ui) + 77i2»('U2)) i — 7—r H 7—\ 7—r r

= L(P)vPi

where

VP — —TT—T-; r,—rûi H TI—ri ^—^2

is a convex combination of two adjacent normalized prime vectors ÄI and U2-
These are two ways of writing p as a multiple of a convex combination of

normalized prime vectors, so

L(Q)vQ = L(P)vP.

Therefore, the two convex combinations of normalized unit vectors point in the
same direction. The convex combination v p lies in the polygon. As ui and U2

are adjacent vectors and lie on the boundary of a convex polygon, the convex
combination VP of ui and U2 lies on the boundary of the polygon. The point
VQ lies on the line segment between the origin and VP, so the length of v p is
at least as large as the length of VQ. As L(P)\vp\ = L(Q)\VQ\ it follows that
L(Q) is at least as large as L(P). I
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There are many different sets of prime vectors and weights which generate
the same metric. If u and w are adjacent prime vectors, the addition ofu+w and
—u — w with weight l(u) + l(w) to the set of prime vectors produces the same
chamfer metric as the one generated by the original set of prime vectors. The
number of shortest paths between two points is however increased by enlarging
the set of prime vectors, because two steps u and w in a path can be replaced
by a single step u + w. There is, however, the following theorem:

Theorem 7.17 Suppose V is a set of prime vectors provided with weights,
generating a chamfer metric such that the normalized prime vectors are the
comers of a convex polygon. Suppose p = miu\ + rn-zu^, where ui and u^
are two adjacent prime vectors and mi, ma €! IN. Then a shortest path from 0
top contains only steps HI and u?.

PROOF. Let P and Q be paths as described in the proof of the previous theorem.
Suppose that L(P) = L(Q), i.e. that vp = VQ. It must be shown that the only
nj which have a nonzero value are those corresponding to u\ and 112- The
line segment between the normalized prime vectors u\ and «2 is an edge of
the convex hull of the set of normalized prime vectors and they are the only
normalized prime vectors on this edge of the polygon. The equality v p = VQ
can be written as

r«i +
i==1 \2^j=inj t(vj)J mm«i;-t-m2H«2.

As there is only one way of writing a point on a edge of a convex polygon
as a convex combination of the corners of the polygon, it follows that the two
convex combinations above are the same, and that the only nonzero n»'s are
those corresponding to u and w. I

If not all normalized prime vectors are corners of a convex polygon, dif-
ferent types of shortest paths can occur. Suppose for example that vx = (1,0)
and Vy = (0,1) are prime vectors with weight 1 and vxy = (1,1) is a prime
vector with weight 2. Then (0,0)—(1,1) is a shortest path from (0,0) to (1,1)
containing a single step vxy, but the path (0,0)—(1,0)—(1,1) contains steps
vx and Vy and is a shortest path as well. If the weight of vxy is 3, the path
(0,0)—(1,0)—(1,1) is even shorter than the path (0,0)—(1,1).

The definition of chamfer metrics can be extended to higher dimensions.
For ZZ3, for example, the adjacency relation is defined for triples of vectors and
the determinant is replaced by a 3 x 3 determinant.

Some often used chamfer metrics are represented in figure 7.3. Each
square containing a number corresponds with a prime vector. The position of
the square relative to the center square is the prime vector and the number in the
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square is the weight of this prime vector. For the p-q-metric, for example, there
are eight prime vectors. The prime vectors (1,0), (0,1), (—1,0) and (0, -1)
are called prime vectors of type p; their weight will be denoted as p. The prime
vectors (1,1), (-1,1), (-1, -1) and (1, -1) are called prime vectors of type
q; their weight will be denoted as q. Often used p-q-metrics are the 2-3-metric,
the 3-4-metric and the 5-7-metric.
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Figure 7.3: The masks describing chamfer metrics. The top line shows the
masks for the city block metric, the chess board metric, the 5-7-metric and
the 5-7-11-metric, respectively. Metrics defined by choosing other weights
are referred to as p-q-metrics or p-q-r-metrics.

Verwer [105] has analyzed the accuracy of chamfer metrics on a square
grid as an approximation to the Euclidean metric. The city block metric and
the chess board metric are accurate within 17.16%. The 5-7-metric is accurate
within 4.21% and the 5-7-11-metric is accurate within 1.79%.

The examples in this chapter and the next one will use the 5-7-metric and
the 5-7-11-metric, although similar results can be obtained for other metrics.
The reasons for this choice are the following. The city block metric and the
chess board metric are not good approximations of the Euclidean metric. The
chamfer metrics on the hexagonal grid have the disadvantage that there are no
imaging devices producing images on a hexagonal grid. Both the 5-7-metric
and the 5-7-11-metric are good approximations of the Euclidean metric. The
medial axis algorithm for the 5-7-11-metric is different from the one for the
5-7-metric. Therefore, both are used in examples.

As the distance between two points in a chamfer metric is always an
integer, every chamfer metric is a discrete metric. If the weights of adjacent
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prime vectors in the definition of a chamfer metric have greatest common divisor
(gcd) 1, something more can be said. In that case, the range of the metric is the
set of all but a finite number of natural numbers.

Theorem 7.18 Let D be a chamfer metric and let D be its range. Let h and
/2 be the weights of two adjacent prime vectors such tftatgcd(/i, h) = 1. Then
IN — D is finite.

PROOF. Suppose /i is the weight of vi and 12 is the weight of i;2. For each
ni,n2 G IN the vector x = n\v\ + n^v-i € WVltV2 satisfies d(0,x) = ni/i +
Ti2/2- Therefore, D contains every number which can be written as niZi + 712/2
with ni, HI e IN. As gcd(ii, It) = 1, there are integers mi and rri2 such that
any integer t can be written as an integer combination of /i and ly in exactly the
following ways [99]:

t = (mit + I2k)li + (m2t - Iik)l2 ( k & Z ) .

The possibilities using only nonnegative coefficients for /i and 12 are found by
solving the equations mit + I2k > 0 and m2t - lik > 0. These inequalities
imply that k must lie in the segment [-7^-*, ^*]- The length of this interval
is t/lil2, so if t > /i/2, the length of the interval is at least 1 and an integer
value for A; can be found in the interval. Therefore, any integer t> l \ l 2 occurs
as a distance value. Therefore, there are at most Zi/2 natural numbers which are
not in the range of the metric. I

If it is known that all integers above a known bound are contained in the
range, the range can be determined by checking the natural numbers below this
bound. The range of the 5-7-metric, for example, is IN - {1,2,3,4,6,8,9,
11,13,16,18,23}. This structure of the range of a chamfer metric enables
the computation of the internal distance transform from the external distance
transform. For each point, the internal distance transform value of a point with
external distance transform value r is the smallest s € D such that s < r. For
r larger than a certain bound, this value is r — 1; for other values a lookup table
can be constructed in order to facilitate easy computation.

Distance transforms and reconstructions can be computed efficiently for
chamfer metrics. Both can be computed in two image scans: a forward scan,
in which pixels are scanned from top to bottom and from left to right, and a
backward scan, in which pixels are scanned from bottom to top and from right
to left. In the forward scan, pixels values are updated using information from
so-called backward neighbors; in the backward scan, pixel values are updated
using information from forward neighborhoods.

The forward and backward masks associated with the 5-7-metric are shown
in figure 7.4. This figure should be interpreted as follows: if (xi,x2) are the
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msm

Figure 7.4: The backward and forward masks for the 5-7-metric.

coordinates of a pixel, its backwards neighbors are n\ = (x\,xz — 1) and
na = (x\ — l,x%) at distance di = d3 = 5 and n-i = (xi — l,x% — 1) and
n4 = (xi + l,xi - 1) at distance d2 = ^4 = 7. The forward neighborhood
mask should be interpreted in the same way.

The algorithms for the distance transformation and the reconstruction are
well known from the literature [12] and are described here only for the sake of
completeness. They use a rectangular grid where the pixels are denoted by Xi
and their values by Vi.

Algorithm 7.19 The external distance transform of an object X with respect
to a chamfer metric.
(1) Initialize: TÎ := oo if Zj € X, Ti := 0 otherwise.
(2) For all pixels Xi in forward scanning order.

if min{r-j + dj \ Xj backward neighbor of Xi} < rit then replace r» by
this value.

(3) For all pixels Xi in backward scanning order:
if min{rj + dj \ Xj forward neighbor ofxi} < r*, then replace r i by this
value.

Algorithm 7.20 The computation of the internal distance transform of a
bounded set X for a chamfer metric with range D.
(1) Compute the external distance transform ofX.
(2) For each Xi 6 X: replace r i by max{r e D \ r < r i}.

Algorithm 7.21 The open sphere reconstruction of a function ƒ with respect
to a chamfer metric.
(1) Initialize: r i := f(xî).
(2) For all pixels Xi in forward scanning order.

ifmax{rj — dj \ Xj backward neighbor of Xi} > r», replace r» by this
value.

(3) For all pixels Xi in backward scanning order:
ifmax{r_j — d j \ Xj forward neighbor of Xi} > ri, replace r i by this value.

(4) Determine the set of pixels Xi with TÎ > 0.
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Algorithm 7.22 The closed sphere reconstruction of a function ƒ on support
X with respect to a chamfer metric.
(1) Initialize: n = ƒ (xi) ifxi e X; T-J := -oo otherwise.
(2) For all pixels Xi in forward scanning order:

if max{rj — d j \ Xj backward neighbor of Xi} > TÎ, replace r i by this
value.

(3) For all pixels x^ in backward scanning order:
if max{rj -dj \ Xj forward neighbor ofxi} > Ti, replace TÏ by this value.

(4) Determine the set of pixels Xi with TÎ > 0.

7.4. Conclusions

In this chapter, the relation between mathematical morphology, geometry and
scale has been pointed out and it has been argued that families of discs defined
by chamfer metrics possess attractive properties as structuring elements.

In this chapter, chamfer metrics and some of their properties have been
introduced. Chamfer metrics have been defined using linear combinations of
prime vectors. This definition is equivalent to the more common definition
based on shortest paths.

It has been established, which values can be assumed by a chamfer metric
and what paths can occur as a shortest path between two points. For this
purpose, the notions of adjacent prime vectors and normalized prime vectors
have been introduced. The internal and external distance transform have been
introduced, and their relation has been established. The connection of these
distance transforms with the inclusion of structuring elements in an image
will be central in the discussion of mathematical morphology using chamfer
discs.
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The Medial Axis and the Medial Line

8.1. Introduction

Binary images, modeled as subsets of the image plane, can be analyzed as a
union of subsets, which are then considered to be the primitives in the image.
Images can be decomposed into subsets in several ways.

Montanvert [74] uses a skeleton to partition an image into (more or less)
convex subsets, which may be overlapping and which are bounded at narrow
parts or necks in the objects. The interrelations between the sets are represented
by a graph, which is derived from the skeleton. Pavlidis [83] decomposes
polygons into maximal convex subsets. He considers convex polygons as more
simple shapes than non-convex ones. Therefore, his decomposition is a decom-
position of composed images into primitive ones. Pitas and Venetsanopoulos
[85] describe a recursive morphological decomposition scheme which generates
an image decomposition into non-overlapping sets. First, the largest value r
is determined for which spheres of radius r are included in the image. Such
spheres are then removed from the image and the remaining image is analyzed
in the same way.

In this chapter, images are described as a union of maximal structuring
elements. In its most general form, maximal structuring elements can be
denned as follows. Let E denote the image plane (typically IR2 or the square
or hexagonal grid), on which translation is denned.

Definition 8.1 Let X C E be an image and let B be a set of subsets ofE,
called structuring elements. A structuring element B\ e B is called a maximal
structuring element in X if
(1) B! C X.
(2) B i C B z C X implies B\ = B2 for all B2 € B.

In the sequel, it will be assumed that the family of structuring elements
consists of the translated and scaled versions of a single simple shape. In this
case, there is a one-parameter family [B(r) \ r e R} of structuring elements,
where R is the set of 'radii' (e.g. IR or IN) and B(r) C B(r') if r < r'. The
origin of the underlying space is defined to be the center of the structuring

123
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elements. The complete set of structuring elements is found by translation, i.e.
B(h,r) = B(r) + h.

Since each structuring element has a center, it is possible to consider the
set of all centers of maximal structuring elements. This set is called the medial
axis [95].

Definition8.2 LetX C Ebeabinaryimageandlet{B(h,r) \ r € R,h e E}
be a set of structuring elements. The medial axis MX is the locus of the centers
of maximal structuring elements contained in X.

Each structuring element is completely defined by its center h and its
radius r. Therefore, the set of maximal structuring elements present in an
image is determined completely by the medial axis combined with a function
which assigns to each medial axis point the radius of the corresponding maximal
structuring element. This function is known as the quench function.

When some (very mild) conditions are satisfied, knowledge of the medial
axis and the quench function—i.e. of the maximal spheres present in the
image—allows for the reconstruction of the original image. When chamfer
discs are used as structuring elements, reconstruction is possible whenever the
image is bounded. For the continuous case, using closed Euclidean spheres,
reconstruction is possible whenever the image is bounded and topologically
closed.

When continuous images are considered, one often uses Euclidean discs
as structuring elements. This is a suitable choice, because Euclidean discs are
rotation invariant and because their relation to the Euclidean metric allows an
interpretation in terms of size.

On a computer, images are commonly represented on the square grid or
sometimes on the hexagonal grid. On such a grid, structuring elements can be
defined by repeated dilation of a simple structuring element with itself. This
is done for example by Maragos [62, 61]. This choice of structuring elements
allows the construction of efficient algorithms, but does not result in an accurate
approximation of the results which are obtained when using Euclidean discs in
the continuous case. A better choice is therefore the use of discs defined by a
chamfer metric [12], which can provide an accurate approximation of Euclidean
metrics.

In this chapter, the results from chapter 7 are used to derive characteriza-
tions and efficient algorithms for the medial axis defined by the p-q-metric (sec-
tion 8.2) and the p-q-r-metric (section 8.3). The algorithms for p-q-r-metrics
are more complicated than those for the p-q-metrics but the p-q-r-metric can
provide a more accurate approximation to the Euclidean metric. In section 8.4,
a medial line will be presented which contains the medial axis. Such a medial
line allows for reconstruction of the original object, while preserving object



The Medial Axis for the p-q-Metric 125

homotopy.
In chapter 9, the results obtained in this chapter will be used to construct

algorithms for morphological operations such as size distributions, anti-size
distributions, the opening transform and the pattern spectrum.

8.2. The Medial Axis for the p-q-Metric

In this section, we present the medial axis algorithm for p-q-metrics. This
algorithm uses a no-upstream condition for the internal distance transform
which is analogous to the no-upstream condition which holds for the medial
axis in IR2, provided with the Euclidean metric [67]. Recall that, if X is some
open subset of IR2, its distance transform p is the function from IR2 to IR defined
by p(x) = inf{d(a;, y) \ y 6 Xe}. A point x 6 X is a medial axis point if and
only if there is no y ^ x such that p(y) = p(x) + d(x, y).

The algorithm presented in this section for p-q-metrics uses the fact that
these metrics are extending.

Definition 8.3 Let d be a metric on a set E with range D. A value r e D
is called an extending value if for each x, y C. E there is a z € E such that
d(x, y) + d(y, z) = d(x, z) and d(y, z) = r.

Definition 8.4 A metric dona set E with range D is called extending if each
r E D is an extending value.

The Euclidean metric is extending. Given x,y and r, the point z as
described in the definition can be constructed using simple geometry: it is one
of the intersections of the line xy with the circle with center y and radius r. Of
the two intersection points, the one must be chosen for which y lies between x
and z.

All p-q-metrics are extending as well. This can be shown by constructing
a point z, as we did in the previous paragraph for the Euclidean metric. Let x
and y be two points in Z2 and let r 6 £>p_9. The vector y — x can be written in
the form n\v\ + n^v^, where vi and v^ are adjacent prime vectors and ni and
n2 are non-negative integers. It can be assumed without loss of generality that
l(vi) = p and l(vz) = q. As r e Dp-q, r can be written as m\p + m^q, where
mi and 7712 are nonnegative integers. We can take z = y + mivi + m^vy.
Then z — y = m\v\ + m^v^, so d(y,z) = mip + m^q = r. Moreover,
z — x = (ni+mi)vi+ (712+7712)^2, so d(o;, z) = (mi+7ii)p+(7712+712)9 =
d(x,y) + d(y,z).

The following theorem presents the no-upstream condition for medial axis
points for extending metrics.
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Theorem 8.5 Let d be a metric on Z2. Let X be a bounded subset of Z2.
A point x E X for which p(x) is an extending value is the center of a maximal
sphere if and only if there is n o y ^ x such that p(y) > p(x) + d(x, y) ("x has
no upstream").

PROOF, 'only if': suppose that there exists any ^ x such that p(y) > p(x) +
d(x, y). In that case every z Ç. B(x, p(x)) satisfies

d(z,y) < d(z,x) + d(x,y) < p(x~) + d(x,y) < p(y).

Therefore B(y, p(x)} is a sphere containing B(x, p(x)) and contained in X.
Therefore, x is not the center of a maximal sphere.

'if: Suppose x is not the center of a maximal sphere. Then the sphere
with center x and radius p(x) must be contained in a closed sphere with center
y ^ x and radius p(y). Let z be a point such that d(y, x) + d(x, z) = d(y, z)
and d(x, z) = p(x). Such a points exists because p(x) is an extending value.
Fromz 6 B(x,p(x)) Ç B(y,p(y)) it follows that d(z, y) < p(y). From these
relations it can be deduced that

P(X) > d(z,y) - p(x) = d(z,y) - d(x, z) = d(x,y).

Corollary 8.6 Let d be an extending metric on 2Z2 and X a bounded subset.
Then x E X is a medial axis point if and only if there is no y e X such that

p(x) + d(x,y).

This theorem provides a characterization of the medial axis points, but
it cannot be used for the construction of an efficient algorithm: in order to
determine whether x is a medial axis point of X, all points y must be inspected.
In the case of the p-q-metric, the search can be limited to the neighbors of
x.

Theorem 8.7 Let X be a bounded subset of 2Z?, provided with a chamfer
metric whose set of prime vectors is V and let x e X. If there is a point y such
that p(y) > p(x) + d(x, y), then there is also any' &7Z? satisfying y' — x £ V

+ d(x,y').

PROOF. Let x and y be points as described in the theorem. Then

B(x,p(x))ÇB(y,p(y))ÇX.

There is a pair of adjacent prime vectors vi and ̂ 2 suchthatx— y =
and HI and n2 are non-negative. Without loss of generality, it can be assumed
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that m > 0. We can now take y' = x - v\. This implies d(x, y) = d(x, y') +
d(y', y) and y' — x 6 V. It is now sufficient to prove that

B(x,p(x)} C B(y',p(x) + d(x,y')) Ç B(y,p(y».

The first inclusion follows from

d(x,p) < p(x) => d(y',p) < d(y',x) + d(x,p) < d(y',x) + p(x).

The second inclusion follows from:

d(y,p) < d(y,y') + d(y',p) < d(x,y') + d(y',y) + p(x) =
d(x,y) + p(x) <

Corollary 8.8 Let X be a bounded subset of TZ?, provided with the p-q-metric.
Then x £ X is a medial axis point if and only if there is no 8-neighbor yofx
such that p(y) > p(x) + d(x, y).

This theorem suggests the following algorithm for the computation of the
medial axis in the p-q-metric.

Algorithm 8.9 The computation of the medial axis of a bounded subset X of
7L2 with respect to the p-q-metric.
(1) Compute the external distance transform ofX.
(2) Compute the internal distance transform p ofX from the external one.
(3) Mark all points x having no 8-neighbor y with p(y) > p(x) + d(x, y).

This algorithm requires four image scans, and local computation only. It
is possible to perform steps (2) and (3) in a single scan, but this makes the local
operation to be performed in this step much more complicated, so this is not a
good approach.
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Figure 8.1: Horizontal, vertical and diagonal vectors partition the plane in
eight parts, which can be labeled according the vector of type q they contain.

8.3. The Medial Axis for the p-q-r-Metric.

A p-q-r-chamfer metric can approximate the Euclidean metric more accurately
than any p-q-metric [105]. On the other hand, the algorithms for the p-q-r-
metric are more complicated than those for the p-q-metric. The medial axis
algorithm described in the previous section can not be used, because the p-q-
r-metric is not extending. This can be seen from the example in figure 8.2 for
the 5-7-11-metric. The small sphere of radius 5 is contained in the larger one
of radius 11, but the distance of their centers is 7, while the difference of their
radii is only 6. This sections presents an algorithm which is suitable for the
p-q-r-metric.

For the p-q-r-metric, there are three types of prime vectors: type p of the
form (±1,0) or (0, ±1) with weighty, type q of the form (±1, ±1) with weight
q and type r of the form (±1, ±2) or (±2, ±1) with weight r. Each vector of
type r is adjacent to a vector of type p and a vector of type q, but no pair of
vectors of type p and type q are adjacent (see figure 8.1). As a consequence,
each shortest path between two points contains either vectors of type p and type
r, vectors of type q and type r or vectors of a single type. The range Dp-q-T
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of the p-q-r-metric consists of the points which can be written as px + ry or
qx + ry, for nonnegative integers x and y. Note that integers larger that qr can
be written in both forms.

Like in the previous section, our aim is to determine for each point x
whether there is a point y ^ x such that 5(z, p(x)) C B(y, p(y}). We will not
try to find a criterion which decides whether this relation holds for two arbitrary
points x and y. Rather, we will show that if, for a given x, such a point y
exists, there is also a 16-neighbor y' of x such that B(x, p(x)} C B(y', p(y')).
It is then sufficient to check for each 16-neighbor yo fx whether B(x, p(x)) C
B(y, p(y)). If there is no such point, then rr is a medial axis point, otherwise it
is not.

Figure 8.2: An example showing that the no-upstream criterion for the
medial axis can not be applied to the 5-7-11 metric.

Theorem 8.10 Let X be a bounded subset of Z2. A point x 6 X is
a medial axis point if and only if there is no 16-neighbor y of x such that
B(x,p(x))cB(y,p(y)).

Note that, if p(x) £ pIN + HIM and p(x) € çlN + rIN, p(x) is an extending
value and theorem 8.5 can be used. It can then be argued, like in the proof of
theorem 8.7, that x is a medial axis point if there is no 16-neighbor y of x such
that p(y) > p(x) + d(x, y}. Yet, for the p-q-r-metric, there are values of p(x)
which are in p IN + r IN but not in q IN + r IN, or vice versa.

The proof of theorem 8.10 consists of three parts. First, some concepts
are defined and some auxiliary results on convex polygons are shown. The it
is show (lemma 8.17) that it is sufficient to inspect a star-shaped region, whose
shape depends on p(x). From this result, it will be derived (lemma 8.18) that it
is sufficient to inspect a 16 point neighborhood.
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Preparation

Before we come to the actual proof of theorem 8.10, the extension of
the p-q-r-metric to the continuous plane and some result on convex sets are
presented.

Definition 8.H Let V be the set of prime vectors used to define the p-q-
r-metric and let I be the corresponding weight function. The p-q-r-chamfer
metric on IR2 is defined by

d(x,y) = inf{^ \n,\l(v) \ £ nvv = y - x, nv 6 IR} (8.1)
«ev «ev

It is not difficult to see that the p-q-r-chamfer metric is indeed a metric, and
that the "spheres" defined by this metric are polygons with 16 corners. The
restriction of the p-q-r-chamfer metric defined above to the grid Z2 yields the
p-q-r-chamfer metric on Z2.

Spheres in the continuous plane are defined as follows.

Definition 8.12 For each r 6 IR, r > 0 and z € IR2, the continuous sphere
S(x, r) is defined by

Continuous and discrete spheres are related as follows. Suppose x G Z2 and
re IR,r >0. Then

S(z,r)nZ2 = .B(a;,r-), (8.2)

where r ~ is the number max{s e D \ s < r}. This implies that, for x e Z2

and r e D,
B(x,r) = S(x,r)n2Z.2. (8.3)

For continuous spheres, the equivalence 5(aj, r) Ç S(y, s) & s > r + d(x, y)
holds. From figure 8.2, it can be seen that this is not true for discrete spheres.
The figure uses the 5-7-1 1-metric. The smaller sphere of radius 5 is contained
in the larger sphere of radius 11, but the distance between their centers is 7,
while the difference of then- radii is only 6.

Definition 8.13 The relation Ç between subsets A and B of IR2 is defined by

A^B iff A n Z2 C B n Z2.

Obviously, A C B implies AC. B, but the reverse is in general not true.
The following lemmas describe the behavior of convex sets under seal-

ings. The scaling M(c, X)(X) of a subset X of IR2 with center c e IR2 and
magnification factor A € IR is defined as the set {\(x - c) + c \ x e X}.
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Lemma 8.14 Let X be a convex subset of IR2 and let x € X, A > 1. Then
X CM(x,\)(X).

Lemma 8.15 Let P be a convex polygon. Suppose that the carriers of two
of its sides AB and CD intersect in a point Z, and that B is closer to Z
than A and C is closer to Z than D. Suppose A is a scaling factor such that
B' = X(B -Z) + Z lies between B and A and C' = X(C - Z) + Z lies between
C and D. Then the only part of P which is not contained in M(Z, A)(P) is
the polygon bounded by the boundaries of the polygons between B and C and
between B' and C', and the segments BB' and CC'.

This lemma is illustrated in figure 8.3. It can be proven by considering, for
all lines / through Z, the intersections of / with P and M(Z, A)(P). These
intersections are either both equal to 0 or partially overlapping segments of /.

Figure 8.3: Illustration of lemma 8.15. The only part of the small polygon
ABCDE which is not contained in the magnified polygon A'B'C'D'E' is the
shaded area.

Restriction to a star-shaped neighborhood

We now come to the first part of the proof of theorem 8.10. In order to simplify
the discussion, we will suppose that x is the origin. We divide 22 in eight
octants, as shown in figure 8.1. The octants will be called the (2, l)-octant,
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the (1,2)-octant, the (—1,2)-octant, etc., after the prime vector of type r they
contain. Note that the symmetry group D4, which consists of four rotations
(including the identity) and four reflections in horizontal, vertical and diagonal
lines, maps a point in one octant to a point in each of the other octants. Therefore
we can assume without loss of generality that y lies in the (—2, — l)-octant.

Suppose that z is a point in the (2, l)-octant. Let z\ = z, z ^ , . . . , zs be the
images under D± of the point z. It can easily be seen that d(y, Zi) < d(y, z) for
all i. Consequently, the sphere B (0, p(0)) is completely contained in B (y, p(y))
if the intersection of the sphere centered at 0 with the (2, l)-octant is completely
contained in the sphere centered at y.

n o

Figure 8.4: The geometry of the situation under consideration. See the
text for an explanation.

As a consequence of the two previous paragraphs, we can restrict to the
situation depicted in figure 8.4. Let /, m and n be the lines through the origin in
the directions (1,1), (2,1) and (1,0), respectively. Let P and Q be the points
(Lp(0)/pJ,0) and(Lp(0)/gJ, [p(Q)/q\) and let P' = (-[p(Q)/p\, ~Lp(0)/pJ)
and Q' = (— |_p(0)/<?J, 0) be their projections on the lines / and n in the (2,1)-
direction. The shaded region represents the intersection of 5(0, p(0)) with the
(2, l)-octant. This region will be referred to as the opposite part of the sphere.
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It lies above the line PP' and below the line _ _
Letj/beapointinthe(-2,-l)-octantwith5(qLp(0)) Ç B(y_Lp(y)). We

are now ready to construct a point y' near 0 such that B(0, p(0)) C B(y', p(y'))
as well.

Lemma 8.16 Let y be a point in the (-2, -l)-octant for which the inclusion
5(0, p(0)) Ç B(y,p(y)) holds. Then 5(0, p(0)) Ç B(y',p(y')) ify' satisfies
the following conditions:
(1) y' lies in the (-2, -l)-octant.
(2) d(y,z) = d(y,y') + d(y',z) foreveryz in the opposite part of the sphere.

PROOF. It is sufficient to show that

5(0, p(0)) Ç BW, ply) - d(y,y')) Ç B(y,p(y)).

As y' lies in the (—2, — l)-octant, the first inclusion can be proved by showing
that d(y', z) < p(y) - d(y, y') for each point z in the opposite part, i.e. for each
z in the (2, l)-octant with d(z,0) < p(0). But according to (2), we have for
such points z: d(y', z) = d(y, z) - d(y, y'). Because 5(0, p(0)) Ç B(y, p(y))
we know d(y, z) < p(y), so d(y', z) < p(y) - d(y, y').

The second inclusion holds because d(z, y') < p(y) — d(y, y') implies
d(z,y)<d(z,y')

Lemma 8.17 Let X be a bounded subset of Z2. A point x 6 X is a medial
axis point if there is no point y with B(x, p(x)) Ç B(y, p(y}) and one of the
following holds:
(1) y-x = (a, 0) or (0, a), with |a| < p(x)/q.
(2) y — x = (a, a) or (a, —a), with |a| < p(x)/p.
(3) y-x = (±l,±2)or(±2,±l).

PROOF. Without loss of generality, we can consider the situation of figure 8.4.
We will construct a point y' which satisfies the conditions mentioned in lemma
8.16. The point y lies in one of five regions (see figure 8.5).
Region 1. y = -a(2,l) - 0(1,1) with a > 0,ß > j_p(0)/pj. Then we
take y' — P'. Clearly, P' lies in the (-2, -l)-octant. We have P' - y =
a(2, 1) + (ß - [p(Q)/p\ )(1, 1), a nonnegative linear combination of (2, 1) and
(1, 1). Because all points in the opposite part of the sphere lie above the line
PP' and below /, it is possible for each point z in the opposite part to write
z - P' as a nonnegative linear combination of (1, 1) and (2, 1) as well. This
implies d(y, P') + d(P', z) = d(y, z).
Region 2. Suppose y = -a(2, 1) - /?(!, 1) with a > 0,0 < ß < [p(0)/P\.
Then we take y' = -ß(l, 1). Clearly, this y' lies in the (-2, -l)-octant. We
have y' — y = a(2, 1). Because the opposite part lies below the line / and above
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Q'(-R/q,0)

(-R/p,-R/p)

Figure 8.5: The construction of the points y' from the points y on the left.
The points y' are found by moving in the (2, Indirection until the line / or n
is hit. If the line is hit to the left of P' or Q', move rightward along the line
to one of these points. Regions 1, 2, 4 and 5 are the shaded areas; region 3
is the half line ending at (-2, —1).

the x-axis, it is possible for all points z in the opposite part to write z — y' as
a nonnegative linear combination of either (1,1) and (2,1) or (2,1) and (1,0).
In both cases, d(y, y') + d(y', z) = d(y, z}.
Region 3. Suppose y = —a(2,1) with a > 0. Then we take y' = (—2, —1).
Clearly y' lies in the (-2, -l)-octant. Wehavey'-y = -(a-l)(2,1). Asthe
opposite part lies below the line / and above x-axis, it is possible write for each z
in the opposite part to write z — y' as a nonnegative linear combination of either
(1,1) and (2,1) or (2,1) and (0,1). In both cases d(y, y') + d(y', z) = d(y, z).
Region 4. Suppose y = -a(2,l) - 0(1,0) with a > 0,0 < ß < [p(0)/q\.
Take y' — —0(1,0), as we did for y in region 2.
Region 5. Suppose y = -a(2,1) - 0(1,0) with a > 0,0 > [p(0)/q\. Take
y' = Q', as we did for y in region 1. I

We have now arrived at a local neighborhood of the origin which must
be inspected in order to determine if the origin is a medial axis point. This
environment contains [p(0)/q\ points in each of the four horizontal or vertical
directions, [p(0)/p\ points in each of the four diagonal directions and eight
points at a knights jump from the origin. Of course, similar environments for
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Figure 8.6: The neighborhood which must be investigated for a point with
a distance transform value of 31.

other points can be found by translation. Note that the size of the environment
depends on the value of p(x). Figure 8.6 shows the environment corresponding
to p(0) = 31 for the 5-7-11-metric. The environment contains horizontal and
vertical branches of length [^J = 4, diagonal branches of length [^J = 6
and eight points at a knights move from the center.

Restriction to a 16 point neighborhood

We will now show that it is possible to restrict the neighborhood to sixteen
points. Therefore, we must consider the case where y is a point on an axis or
on a diagonal, but not a neighbor of x.

Lemma 8.18 Let p, T e D, a € IN with a > 1.
(1) IfB((Q, 0), p) C B((-a, 0), r}, then there is an p' € D such that

£((0,0), p) Ç B((-l,0),p') Ç B((-M),r).

(2) IfB((0,0), p) Ç B((-a, -a), r), then there is an p' € D such that

B((0,0), p) Ç B((-l, -1), p') Ç B((-a, -a), r).

PROOF. We will prove only the first part of the lemma, as the second part can
be proved in a similar way. It can be assumed without loss of generality that T
is the smallest value in D for which B((0,0), p) Ç B((-a, 0), r) holds. The
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theorem is shown by considering continuous spheres in stead of discrete ones.
We will prove that there is an p' e IR such that

S((0,0),p) C 5((-l,0),p') C 5((-o,0),r). (8.4)

The lemma follows immediately from this relation by applying (8.2) and defi-
nition 8.13.

Figure 8.7: The relative positions of two spheres,
explanation.

See the text for an

Consider the octagons 5((0,0), p) and S((-a, 0), r). Parts of these poly-
gons are depicted in figure 8.7. The center of the small sphere is the origin O.
Some of its corners, P, Q, R, S and T, are marked. The center of the larger
sphere is A — (—a, 0); some of its corners, P', Q', R', S' and T', are marked.

There must be a grid point on the segment RS or on the segment ST. If
5' lies below the line ST, both the segments RS and ST lie outside the larger
sphere, and so does at least one grid point. This would violate the inclusion
relation. Therefore, 5' lies above the line ST.
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If 5" lies above the line RS, the smaller sphere would be included in the
interior of the larger one, and it would be possible to find a value s' < s for
which 5((0,0),r) Ç S((0,-a),s') holds. This would imply 5((0,0),r) ç
.B((0, — a), s'~), violating the assumption that s is the smallest value for which
this inclusion holds. Therefore, S' lies below the Une RS.

The boundaries of the spheres intersect in the points X and Y. The
projection of these points in the (2, 1)— and the (2, —1)— direction, respectively,
is the point B. Note that two degenerate cases can occur. The points R and R'
can coincide, or the point S' can lie on the segment ST. In these situations, X
will be chosen to be 5 or S', respectively.

Note that the relation S((0, 0), p) Ç S((-a, 0), r) holds only if R and R'
coincide. On the other hand, since S((0,0),p) E 5((— O,O),T), the shaded
area YQRSXR' does not contain any points from Z2.

The the proof is as follows. We construct a parameterized family of spheres
S((-t, 0), r(t)) such that r(0) = p, r(a) = r and

(8.5)

if t < t'. This implies

S((0,0),r(0)) Ç S((-t,0),r(t)) Ç S((-a,0),s) (8.6)

for any t e [0, a]. Then (8.4) follows directly by taking t = l in (8.6).
The family S((-t, 0), r(t)) is found by transforming 5((0, 0), p) gradually

into 5((— a, 0), r). Intuitively, the family can be described as the sequence of
spheres which is obtained by gradually shifting and enlarging £((0,0), p) in
such a way that 5 moves along the segment SX to X, and then along the
segment XS' to S", while the center of the sphere moves from (0, 0) to (—a, 0).

The family consists of two parts. The first part is obtained by applying the
transformation M(Z, A) to S((0, 0), r) with A ranging from 1 to \R'X\/\RS\.
This yields the spheres S((—t, 0), r(t)) with t between 0 and 6.

The second part of the family is obtained by applying the transformation
M(R', A) to the sphere S((-b, 0), r(6)), with A ranging from 1 to \HS'\/\B?X\.
This yields the spheres S((-t, 0), r(t)) with t between b and o.

It remains to be shown that the family thus obtained satisfies (8.5). For
the first part of the family, this follows from lemma 8.15, combined with the
fact that the shaded area in figure 8.7 contains no grid points. For the second
part, increasingness with respect to C follows immediately from lemma 8.14.
Therefore, increasingness with respect to Ç certainly holds. I

Now theorem 8.10 follows directly from lemma 8.17 and lemma 8.18.
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Theorem 8.10 implies that it is sufficient to consider 16 point neighbor-
hoods in the detection of medial axis point. We will now describe the operations
which are to be performed in such a neighborhood, and the resulting algorithm
will be presented.

Let x € X be a point of a set X C 2Z2. In order to determine whether x
is a medial axis point, it must be checked for each neighbor y of X in a sixteen
point environment, whether

B(x,p(x))CB(y,p(y)) . (8.7)

holds. There are three cases to be discerned: y is a direct (4-connected) neighbor
of x, y is an indirect (8-connected but not 4-connected) neighbor ofx, or y is at
a knights move from x.

In the last case, d(y,p) = d(y,x) + d(x,p) = r + d(x,p) for all p in
the (2, l)-octant. Therefore, B(x,p(x)) Ç B(y,p(y)) if and only if p(y) >
msx{d(y,p) | p e B(0, p(0,0))} = r + p(0).

Now suppose that y is a direct neighbor of x. It can be assumed without
loss of generality that x = (0,0) and y = (-1,0). Then (8.7) is true if and
only if p((—1, 0)) > p((0,0)) + Ap, where Ap is given by

Ap = max{d((-l, 0), z) - p(0) \ z E B((0,0), p((0,0)))} (8.8)

Consider again figure 8.7, and suppose that A is the point (—1,0).
The point z which maximizes d((—1,0), z) in (8.8) is a grid point on the

boundary of the larger sphere which is also included in the smaller sphere. If
S' lies strictly above the line ST, z lies on the segment R'X, but if S' lies on
the segment ST, then z can also lie on the segment XT.

In the first case, d((0,0),z) = max{s 6 pIN -f HN | s < p((0,0))}, so
d((-l, 0), z) = p + max{s € pIN + r IN | s < p((0,0))}. In the second case,
d((-l, 0), z) = d((0,0), z) + r - q = p((0,0)) + r - q. Using the notation
S(pr) = max{s' € pIN + r ' < s}, we find IN | s

Ap = max(r - q, p(x)(pr) - p(x} + p}. (8.9)

For all but a finite number of values for p(x), p(x) 6 pIN+HIM. In this situation,
the point z which maximizes d((—1,0), 2) in (8.7) lies on the segment RS,
therefore p(a;)(pT.) = p(x) and Ap = p. Therefore, a table of the values of Ap
can be precomputed for those values of p(x) which are not in pIN + rIN, while
for other values Ap = p can be used.

A expression similar to (8.9) can be found for the case where y is an
indirect neighbor ofx. Note that for p-q-r-metrics with small values of p, q and
r, we have p + q — r = l, such that Ap will always be equal to p or p — 1.

These observations lead to the following algorithm.
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Algorithm 8.19 The computation of the medial axis of a bounded subset X
of Z2 with respect to the p-q-r-metric.
(1) Compute the internal distance transform p ofX.
(2) For each x €X:

- If a direct neighbor y of x satisfies p(y) > max(p(x) + r — q,
p(x)(pr) + p), mark x as a non-medial axis point;

- If an indirect neighbor y of x satisfies p(y) > max(p(o;) + r —
Pi P(x\qr) + ?). mark x as a non-medial axis point;

- If a knights move neighbor y ofx satisfies p(y) > p(x) + r, mark x
as a non-medial axis point;

- otherwise mark x as a medial axis point.

8.4. The Medial Axis and the Medial Line

The literature shows great confusion concerning the terms 'medial axis' and
'skeleton'. There are two types of sets which are denoted by these terms. One
is the locus of centers of maximal spheres in an object, the other one is a thin
subset of an object which lies (more or less) in the middle of the object and has
the same homotopy as the object. In the continuous case, this does not lead
to great difficulties, because usually, the differences between these two sets are
very small [67].

In the discrete case, this confusion is more serious, because the locus of
centers of maximal spheres often is a set with much more connected components
than the object itself. In general, it can be said that authors from the field of
mathematical morphology [61,95] use the term skeleton for the locus of centers
of maximal spheres, while others [4, 24, 80] call this set the medial axis and
use the term skeleton for a thin set having the same homotopy as the object.
There are, however, exceptions to this rule [71]. Other names occurring in the
literature for the different types of sets are medial line, symmetric axis and
homotopic thinning. In this thesis, the term medial axis denotes the locus of
centers of maximal spheres and the term medial line denotes a thin set of the
same homotopy as the object.

We repeat the following definitions from chapter 7, now specialized for the
case where the structuring elements are discs defined by some discrete metric.

Definition 8.20 Let d be a discrete metric on a set E. Let X be a bounded
subset of E. A sphere B(x,r) C X is called a maximal sphere in X if, for
each sphere B(y, s), the inclusion B(x, r) Ç B(y, s) Ç X implies x = y and
r = s.
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Definition 8.21 Let d be a discrete metric on a set E and let X be a bounded
subset ofE. The medial axis MX ofX is the set of centers of maximal spheres
inX.

If the medial axis of an object is given, together with the value of the external
distance transform in the medial axis points, the object can be reconstructed
using the equality

X = (J {x 6 Z2 I d(x, a) < pe/(s)}. (8.10)
s€Mx

The restriction of the distance transform to the medial axis is sometimes called
the quench function [95]. The reconstruction property can be seen as follows:
for each x € X, the set of spheres B(y, s) containing x and contained in X is
not empty because B(x, 0) = {x}, which is also an open sphere of some radius
(d is discrete), is such a sphere. The set of all such spheres is partially ordered
by inclusion. Because X is bounded, it has a finite number of elements. Hence,
there is a maximal ball B(y, R) containing x where y is included in the medial
axis. Therefore, x e {z e Z2 | d(z,y) < pfl(j/)} Ç [Js€Mx{z 6 Z2 |
*(*,.)</#(•)}•

The inclusion in the other direction can easily be verified using the defini-
tion of the distance transform.

For a general metric, it can be difficult to compute the medial axis, but for
p-q-metrics and p-q-r-metrics, algorithms 8.9 and 8.19 can be used. In general,
the medial axis of an object will have more connected components that the
object itself. Therefore, it is interesting to look at medial lines. A medial line
Sx of a bounded subset X of Z2 is a subset of X which is thin, has the same
homotopy as X and lies in the middle of X. The medial line can be used as a
description or a compact representation of shape. A medial Une of a subset of
IR2 can be defined without too much trouble [67], but the definition of a medial
line for discrete sets is much more intricate.

Many authors have worked on the problem of defining a medial line for
discrete sets. One approach [3, 24, 71, 74, 80] starts with choosing some
"special configuration" points, such as maxima or saddle points of the distance
transform, as a subset of the medial line. In general, this set will not have the
correct homotopy. This is repaired by computing arcs between the points already
selected in such a way that the resulting set has the correct homotopy. The
difficult part is to prove that the resulting set has indeed the correct homology.
Some authors provide strict correctness proofs [71,74,80], some [3,24] do not.

Another approach [95, 43] is based on thinning. All object pixels are
scanned in some order, and they are removed if this can be done without
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changing the homotopy of the object. At the end, a set of pixels remains, none
of which can be removed without changing the homotopy of the set. This set is
a medial Une.

We present a medial line which contains the medial axis. The knowledge
of the medial line, together with the value of the distance transform on the points
in the medial line suffices for the reconstruction of the object.

Our medial line algorithm is based on the work of Hilditch [43]. Her
algorithm is based on thinning. In the present situation, thinning is performed
under the condition that a medial axis point can never be removed, even if
this removal would not change the homotopy. The resulting set is sometimes
called an anchor skeleton. An example of a medial line of this type is shown in
figure 8.8. It can be seen that the end points of the branches of the medial axis
are detached from the central part. The medial line has the same homotopy as
the original object.

(a)

i i

X X
Figure 8.8: A binary object (a), its medial axis defined by the 5-7-11-metric
(b) and the medial line calculated by Hilditch anchor skeletonization (c).

The author conjectures that a homotopy-preserving medial line can also be
derived from the medial axis using a path-climbing algorithm but has not been
able to prove the correctness of his algorithm. This algorithm is based on the
work of Dorst [24] and Niblack et al. [80]. It is a steepest path climbing type
of algorithm. Our algorithm differs with those of Dorst and Niblack et al. in
the choice of starting points for the paths: the starting points in our algorithm
are the medial axis points and those points which form a one or two pixel wide
connection between larger parts of the object. Although this algorithm seems
to produce medial lines of the correct homotopy, the author has not been able to
find a proof for this. The problem lies in necks of an object, which are narrow
connections between two wider parts of the object. It must be shown that there
are centers of maximal spheres in such a narrow part, and that paths of steepest
ascent leave in both directions to the wider parts of the object.
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8.5. Conclusions

In this chapter, a characterization of the medial axes defined by p-q-metrics
and p-q-r-metrics has been given and efficient algorithms for their computation
have been derived. From the medial axis, a medial line has been derived. This
medial line can be derived from the medial axis using thinning, as described by
Hilditch; such a thinning provably yields a homotopy preserving medial line.
It is conjectured that a second algorithm using path climbing also computes a
homotopy preserving medial line.

\

(.o)

-j'.--

(c.)

Figure 8.9: An image containing five Euclidean discs (a) and its medial
axes as defined by (b) the square structuring element, (c) the 5-7-metric
and (d) the 5-7-11-metric

The characterization of the medial axis defined by the p-q-r-metric is
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based on the fact that p-q-metrics are extending. As p-q-r-metrics are not, a
more complicated analysis is needed for that case. This analysis requires the
extension of chamfer metrics to the continuous plane.

These are useful results, because discs defined by chamfer metrics provide
a much closer approximation to Euclidean discs than the structuring elements
which are used more commonly in mathematical morphology on discrete im-
ages. Yet the computational cost of our algorithms is of the same order of
magnitude as the cost of conventional medial axis algorithms. The use of
chamfer discs as structuring elements provides better rotation invariance, as can
be seen in figure 8.9, which is similar to the one presented by Verwer [104]
in his discussion of skeletonisation based on chamfer metrics. When square
structuring elements are used, artifacts can occur.

The structure elements used most commonly in mathematical morphology,
the diamond and the square, can be treated within our framework, because they
correspond to the city-block metric and the chess-board metric, respectively.

Recently, Borgefors [14] has presented (independently of us) a character-
ization of the centers of maximal discs in the 5-7-11-metric which is similar
to ours. Although her results are correct, she did not prove that it is sufficient
to consider only 16 neighbors for each point. As the 5-7-11-metric is not ex-
tending, some more elaborate analysis, as presented in this paper, is required.
Moreover, she did not present the 'general rule' for the evaluation of neighbor-
ing pairs, described by our equations (8.8) and (8.9). Arcelli and Frucci [2]
mention similar results, but do not present any details.

Now that the characterization of the medial axis in the p-q-r-metric has
been completed, the next challenge ahead is the characterization for chamfer
metrics with more than three types of prime vectors. Thiel and Montanvert [101]
describe a procedure for the optimal choice of such prime vectors and the
associated weights.
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9.1. Introduction

Granulometries or size distributions [66] are a morphological tool for measuring
the grain sizes in an image. Their definition is based on a formalization of
a sieving process. The rôle of the sieves is played by opening transforms
with various structuring elements. The openings are parameterized by a size
parameter and the corresponding structuring elements establish the relation
between the 1-D size parameter and the notion of size in a higher- dimensional
image.

As argued before, it is often attractive to base the notion of size on the
Euclidean metric in the plane. This can be one by choosing Euclidean discs
as the structuring elements defining the size distribution. For morphology on
the discrete grid, one would choose the intersection of Euclidean discs with the
grid as structuring elements.

Computing a size distribution with Euclidean discs can be done only at
high computational cost. On the other hand, the more commonly used types of
structuring elements, such as squares or diamonds, do not provide a reasonable
approximation to the Euclidean disc. Again, discs defined by chamfer metrics
are a good alternative.

In the next section, discs defined by chamfer metrics are used to define
size distributions and their adjoint operators, the anti-size distributions. These
operators will be analyzed using the results presented in the previous chapters,
and efficient algorithms for their computation will be derived.

Size distributions consist of a family of operators, each of which maps
one image into another. It is attractive to consider image operators which
generate acondensed description of the action of acomplete family of operators.
Such an operator is the opening transform, an operator which maps a binary
image into a grey scale image and represents the action of a complete size
distribution in a single image. Another example is the pattern spectrum, which
is an operating which describes a binary image by a function. This function
describes the relation between the scale parameter of a size distribution and

145
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the area of the transformation of the image with the corresponding operator
from the size distribution. In section 9.3, the opening transform and the pattern
spectrum defined by chamfer discs are defined and efficient algorithms for their
computation are defined.

9.2. Size Distributions and Anti-Size Distributions

In this section, size distributions and anti-size distributions based on the chamfer
metric are constructed and efficient algorithms for performing these operations
are derived.

Definition 9.1 Let E be some set and let A be some totally ordered set. A
size distribution [61, 95] is a family {&r}r€h of operators mapping subsets of
E to subsets of E such that for all X, Y C E, r, s 6 A
(1) XcY^a r (X)Ca r (Y) .
(2) ar(X) C X.
(3) a roa r = ar.
(4) a roaa = amax(T.iS).

The first three conditions are exactly the conditions which are used to define that
ar is an opening [95]. The fourth condition describes the composition behavior
of these openings. Note that the third condition is a consequence of the fourth;
it is written down in order to clarify the fact that each ar is an opening.

In the sequel, the index set A will be the range D of the metric under
consideration. The goal is to define a size distribution based on spheres in a
discrete metric. A first attempt could be to let each ar be a structural opening
[87] with the sphere B(r). This opening is defined by

B(h,r). (9.1)

Figure 9.1: Examples of the structural opening (a) and closing (b) of a
shape X with a structuring element B. The opening is found by fitting the
structuring element B in the object X. The structural closing is found by
fitting the structuring element B in the background of X.
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The structural opening is illustrated in figure 9.1. If X is the image and
B is the structuring element, X o B is defined as the union of all translates Bh
of B which fit in X. This family of structural openings satisfies the first three
conditions, but not the fourth one. This can be seen from a simple example
using the 5-7-metric. Let X = 5(7); as B(7) o B(5) = 5(5) we get that

(X o 5(7)) o 5(5) = 5(5) ̂ X = X° 5(7).

However, it can be seen [66] that the following function family is indeed a
size distribution:

a r(X)=\JXoB(s).
s>r

As each ar is an opening, size distributions are not only useful in the analysis
of sizes, but the individual operations can also be used as an alternative for the
structural opening with a single sphere.

Figure 9.2: An example object for which the opening and the closing are
computed.

An algorithm for the calculation of ar(X) is suggested by the following
theorem:

Theorem 9.2 Let d be a discrete metric on a set E and let D be its range. Let
X be a bounded subset of E and r & D. Then

<*r(X)= U B(x,pexl(x))
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PROOF. First suppose that x e aT(X). Then x e X o B(s) for some s > r.
Thus, there is a # 6 X such that £ e B(j/, s) C X. The second inclusion
implies p^y) > s > r, so x € 5(2/,s) C B(y,p%l(y)) C X. Therefore,

Now suppose that x € U ext/ \>r B(y, p^t(y))- Then there is a y such

that z e B(y,p^-(y)) C X. Because p^1 (y) >_r it holds that JB(»,p5?(iO) =
-B(y, TO) forjsome r0 > r. We now have x e B(y, r0) C X for some r0 > d,
so x € * o 5(7-0) C U.>r X o 5(«) = ar(X).

The second part can be proven in the same way. It can also be deduced from
the first part by observing that p$(x) > r & psxl(x) > r and ~B(x, plx(x)} =
B(x,p%l(x)). I

From this theorem, an algorithm for computing size distributions can be
derived. The algorithm can be used for chamfer metrics or any other metric for
which distance transforms and reconstructions can be computed. Let 0r be the
function defined by

Algorithm 9.3 Computation of the size distribution ar of a'bounded subset
X of 71? with respect to a chamfer metric.
(1) Calculate the external distance transform pj^.
(2) Remove values smaller than or equal to r from the distance transform: let

fx be the function 0r o pj^.
(3) Calculate the reconstruction of ƒx.

This algorithm requires five image scans: two for the calculation of the
distance transform, one for the removal of small values and two for the recon-
struction. In figure 9.3, an example of the calculation of the opening transform,
using the 5-7-metric, of the object shown in figure 9.2 is shown. Figure 9.3a
shows the distance transformation of the object, from which the pixels with
value 30 or less have been removed. The result in figure 9.3b is obtained by
reconstruction of the modified distance transformed image.

Definition 9.4 Let E be some set and let A be a totally ordered set. An anti-size
distribution [95, 61] is a family {$A}A€A of operators mapping subsets of E to
subsets of E such that for all X, Y C E, r, s e A;
(1 )XCY=> <t>r(X) C
(2) X C
(3) <$>r o <f>r =
(4) ^ ro^„ =
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(a)

Figure 9.3: The computation of the size distribution with radius 30 using
the 5-7-metric.

The first three conditions are exactly the conditions used for defining that each
4>\ is a closing [95]. The fourth condition describes the composition behavior of
these closings. As with the definition of the size distribution, the third condition
follows from the fourth. The index set A will be D.

The goal is to construct an anti-size distribution based on spheres in the
chamfer metric. Conceptually, size distributions and anti-size distributions are
very related, because the anti-size distribution of an object is equivalent to the
size distribution of its complement. This observation, however, does not lead
to useful algorithms, because the complement of a bounded set is not bounded.
Therefore the anti-size distribution is treated here separately.

Structural closings [87] are defined by

X.B(r)= f)

This operation is illustrated in figure 9.1. The structural closing of X with struc-
turing element B is found by fitting the structuring element in the background.
If a point x is contained in a translate Bh of the structuring element which does
not intersect X, x is not a point of X • B, otherwise it is.

As was the case with the structural opening and the size distribution, the
structural closing satisfies the first three conditions, but not the fourth one.
Analogously to the case of size distributions, a anti-size distribution can be
defined by

s>r
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Again, the anti-size distribution is not only useful for the analysis of sizes,
but it also provides an alternative for the structural closing. The operation
0r is the dual of the opening discussed above: (f>r(X) = [ar(X

c)]°. This
duality suggests a way of calculating (j)r(X}: first calculate the complement of
X; calculate the opening of this set with the algorithm presented above; take
the complement of the result. The problem is that Xe is not a bounded set.
Therefore, this algorithm cannot be performed.

Fortunately, the algorithm can be adapted in such a way that the com-
putation becomes finite. The algorithm for the p-q metric will be discussed.
Analogous algorithms exist for other chamfer metrics. Remember that R is the
open sphere reconstruction (definition 7.6).

Theorem 9.5 Let X be a bounded subset of Z2, provided with the p-q-metric.
Let p^c be the distance transform of the background of X. Let V be the set
{x e X \ p^c < r + q}. Let ly be the characteristic function ofV. Then

PROOF. Write ip(X) for the set V \ R(lv • Or o (/$,). Let z be a point
in Z2. If pext

c(x) > r + q then x £ V, so x g i/>(X). It also holds that
Tî(x, r + q) C Xe, sox£X*l3(r + q), so x <£ <t>T(X).

In the sequel it is assumed that p^l
c (x) < r + q. It will be shown that (1)

x g </>r(X) => x <£ $(X) and that (2) x $ i>(X) => x <£ <f>r(X).
(1) Suppose x g <fir(X). Then there is a y Ç- X and an s > r such

that x € B(y, s) c Xe. From the second inclusion it follows that r < s <
p*xc(y). Two cases must be discerned: (la) r < p^cü/) < r + q and (Ib)

(la) If r < p£c(y) < r + q, then lv(y) • Or(pfc(y}) ± 0. The point
y participates in the reconstruction step and x € B(y,p^t

c(y)) is a point not
contained in i^(X).

(Ib) If pexc(y) > r + q, let P be a shortest path from x to y. Let z be
the point on P which is nearest to y and satisfies p^l

c (z) < r + q. Due to
the construction of the chamfer metric, this point also satisfies pt

x
i
c(z) > r.

Therefore, ly(z) • 0rpJ^c(z) ^ 0, so z participates in the reconstruction.
Because z lies on a shortest path from x to y, we have d(x, z) = d(x, y) —
d(z,y) < p^c(y) - d(z,y). From the triangle inequality it follows that
P*xc(y) — d(z,y) < psxc(z). Therefore d(x,z) < pex~c(z). As z participates
in the reconstruction, this implies x E R(lv • Orp'xc)- Therefore x £ tf(X).

(2) Suppose that a; &i))(X}. Then there is an y e Z2 such that pe£lc (y) > r
and o; e B(y,ps

x
i
c(y}). Thereforex 0 X»B int /ys- Asp^c > r, this implies

C

This theorem suggests the following algorithm for the computation of
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Algorithm 9.6 The computation of the anti-size distribution </>r of a bounded
subset X of 71? with respect to the p-q-metric.
(1) Calculate p^c on a region which is large enough to contain V.
(2) Remove all points from the distance transform having a value smaller than

or equal tor.
(3) Remove all points having a distance transform larger than r + qas well.
(4) Calculate the open sphere reconstruction of the remaining function.
(5) Take the intersection of the complement of the reconstructed set with the

set of points x with p^l
c (x) < r + q.

In the first step, care must be taken at the image boundaries, because the pixels
outside the image boundaries must be considered to be part of Xe. The
execution of this algorithm requires five scans of a somewhat enlarged region,
because the region must be large enough to contain V.

This theorem can also be interpreted in the following way: in order to
compute the anti-size distribution, which is defined as an intersection of an
infinite number of sets, it is sufficient to perform finitely many — at most q —
structural closings and compute their intersection. Likewise, it can be seen that
size distributions can be computed as the union of at most q structural openings.
This observation, however, does not provide an efficient algorithm, because
there is no fast algorithm for performing structural openings with spheres as
structuring elements.

Figure 9.4 shows an example of the calculation of the anti-size distribution
of radius 30 of the object in figure 9.2 using the 5-7-metric. Figure 9.4a shows
the distance transform of the background. In figure 9.4b, only pixels with a
radius between 31 and 37 have been retained. Reconstruction of figure 9.4b
yields figure 9.4c. Intersecting the complement of figure 9.4c with the set of
pixels which have a value less than or equal to 37 in figure 9.4a yields the result
in figure 9.4d.

9.3. The Opening Transform and the Pattern Spectrum

In this section, we present the opening transform and the pattern spectrum, and
an efficient algorithm for their computation, based on the medial axis.

Size distributions have been presented in the previous section. Let (ar)rcD
be a size distribution. Suppose r, s € D with r > s. As each ar is an
opening, ar(X) C X so ar(X) = asaT(X) Ç as(X) for all images X. This
observation is the inspiration for the definition of the opening transform.

Definition 9.7 Let X be a bounded subset of 7Z? and let {ar} be a size
distribution. The opening transform AX is the mapping from X to D defined
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(D)

(d)

Figure 9.4: The computation of the anti-size distribution with radius 30
using the 5-7-metric.

by

Ax(x) = max{r e D \ x e ar(X)}.

Important information on the shape of X can be obtained by monitoring
the change of ar(X) as the parameter r is varied. Maragos [61] defines the
pattern spectrum for subsets of IR2, provided with the Euclidean metric, as

(9.2)

where A(X o B(r)) is the area of (X o B(r)).
For the discrete case, this produces the following
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Definition 9.8 Let X be a bounded subset of 7Z? and let ar be the size
distribution induced by a chamfer metric d. The the pattern spectrum [61] p(r)
is the function from D to IN defined by

= \a r (X) \ - \a r + (X) \ ,

where | -| denotes the number of points in a set and r+ = minJT-' e D \ r' > r}
is the smallest element of D which is larger than r.

Note that the pattern spectrum of a set is equal to the histogram of its opening
transform. It is therefore possible to compute the pattern spectrum directly from
the opening transform.

r r v ,v , t' j^ i
«

\
À

(D)

Figure 9.5: A binary image, its medial axis, its opening transform and its
pattern spectrum as defined by the 5-7-11 metric.
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From the definitions of AX and ar it follows that

Ax(x) = max{r e D \ x e ~B(y, r) Ç X for some y e 7Z?}. (9.3)

Because for each x € X, the largest disc centered at x and contained in X has
radius p(x), this can be reduced to

Ax(x) = max{p(2/) | y € 7Z2, x 6 B(y, p(y))}. (9.4)

Observe that for each x and j/ such that x € jB(y, p(y)), there is also a point m
in the medial axis MX such that x € jB(m, /o(m)). This leads to the relation

AX(X) = max{p(m) | m e MX,X € B(m, p(m))}. (9.5)

This relation can be used to compute the opening transform by successively
inspecting all maximal spheres in a bounded object X. First, all pixels in the
result image are given value zero. The medial axis is computed, and each medial
axis point is inspected in turn. If m is the medial axis point being inspected,
then all pixels in the sphere J3(m, p(m)) in the result image are visited. If the
present value if the pixel in the result image is smaller than p(m), the value is
updated to p(m). In the algorithm presented here, the medial axis points are
sorted in order of increasing distance transform value and visited in this order.
Thus, when the points in B(m, p(m)} are being visited, a pixel in the result
image can never have a value larger that p(m), and the pixels in B(m, p(m))
can always be assigned value p(m), without prior inspection of the present
pixel value. This strategy enhances the efficiency of the algorithm, because
a comparison of pixel values in the inner loop is replaced by a sorting of the
medial axis points, which must be performed just once. As p(m) assumes only
integer values smaller than some maximal value, the medial axis points can
be sorted in linear time in the number of medial axis points using distribution
sorting [52].

The efficiency of the algorithm depends on an efficient way of addressing
all pixels in a sphere B(m, p(m)). Certainly, computing such spheres in a two
scan reconstruction algorithm would be too costly. In stead, the pixels in the
sphere B(0, R), where R is the largest occurring value of p(m), are sorted in
order of increasing distance to the origin. When the sorted list is computed,
the pixels in each sphere .0(0, r) for r < R can be found by taking a suitable
first part of the list. The pixels in spheres with different centers can be found
by translation. In practice, the pixels in .0(0, R) are not sorted, but computed
in the correct order, and pixel positions are represented as relative offsets in the
image array in order to provide fast access to the image.
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offset

last-offset

-w -1 w -w+1 -w-1 w-1 w+1

-1
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-w+1

1
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Figure 9.6: The beginning parts of the tables offset and last-offset.
The closed spheres of radii 0, 5 and 7 are shown, and the relative offsets
of pixels with respect to the center are shown (v is the width of the image
grid.)

If images are stored in an array, positions of pixels in a sphere with respect
to the center can be represented effectively as an offset in the array, as illustrated
in figure 9.6. Two tables are required: a table offset with the offsets of pixels
at increasing distance to the center and a table last-offset which contains
the index of the last entry for each radius.

Summarizing, the opening transform can be computed by the following

Algorithm 9.9 The computation of the opening transform of a bounded subset
X of 2Z2 according to some chamfer metric d.
(1) Initialize the result image to 0.
(2) Compute the distance transforms p^1 and p and the medial axis MX-
(3) Sort the medial axis points in order of increasing distance transform value.
(4) For all medial axis points, in increasing order:

- Set the pixels in B(m, p(m)) to p(m).

As noted before, the size distribution of X is the histogram of AX, so it
can be computed from AX in a very straightforward way.

Figure 9.5 shows a binary image, its medial axis, its distance transform
and its pattern spectrum, all of them based on the 5-7-11-metric. Dark pixels
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correspond to large distance transform values. The execution time for the
opening transform depends on the image, because the number of spheres which
must be inserted, varies. For the image presented here, computation of the
opening transform took 0.43s, which is two orders of magnitude faster that the
45s required for executing algorithm 9.3 for all occurring values of the radius.
A similar reduction of computation time is found for other images.

9.4. Conclusions

This chapter has presented an integration of chamfer metrics and mathematical
morphology. Both theoretical aspects and efficient algorithms have been dis-
cussed. As chamfer metrics on a square grid can approximate the Euclidean
metric within an error of a few percent, morphological operations based on
chamfer metrics such as the 5-7-metric or the 5-7-11 metric are a good ap-
proximation of morphological operations using Euclidean discs, and are in
this respect to be preferred over operations using square or diamond-shaped
structuring elements.

A size distribution and an anti-size distribution have been defined using
chamfer metrics. The investigation of the relation between (anti-)size distri-
butions, distance transformations and reconstruction has lead to an efficient
algorithm for the computation of these operators. The algorithm requires four
image scans and is based on local operation only.

Based on size distributions, the opening transform has been defined. An
investigation of the relation between the opening transform, the medial axis,
distance transform and reconstructions has lead to an algorithm for the com-
putation of the opening transform based on chamfer discs. This algorithm is
50 to 100 times faster than the brute force method of applying algorithm 9.3
repeatedly for each value of the size parameter. The pattern spectrum of an
object can be derived from the opening transform by histogramming.

Summarizing, the integration of chamfer metrics into mathematical mor-
phology presented in this paper has lead to a number of morphological operators
which approximate morphological operations based on Euclidean discs accu-
rately and which can be calculated efficiently.
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Concluding Remarks

In this thesis, image analysis methods based on hierarchical graph representa-
tions and on multi-scale mathematical morphology were investigated. In this
chapter, some conclusions are drawn and some possibilities for further research
are mentioned.

A major part of this thesis is concerned with the exploration of the formal-
ism of hierarchies of graphs in image analysis. Hierarchies of graphs can be
seen as an irregular variant of conventional pyramids or quad-trees [100] but
have a richer structure. Recently, a particular type of hierarchies, called the
irregular pyramid, has been used for image segmentation [76].

Yet there are other types of hierarchies of graphs than the irregular pyramid
and there are possibilities of such structures which have not yet been explored.
In this thesis, we presented some of the possibilities of hierarchies of graphs.

The building blocks for image descriptions were primitives (condensed
representations of the spatial structure in some localized part of the image).
These primitives occur as vertices of graphs in the hierarchy. This general
approach enabled us, for example, to treat image segmentation an polygonal
approximation of curves in a uniform manner (chapter 4).
Some important advantages of the hierarchy of graphs formalism are

- It allows for the representation of both primitives and their interrelations.
- Many different primitive types can be used.
- It allows irregular data structures and can therefore avoid artifacts caused

by a superimposed regular sampling grid.
- It enables the description of topological aspects of the image representation,

such as connectivity and adjacency of regions.
- It provides a suitable data structure for model based image analysis by

top-down search.
A disadvantage of irregular structures is the fact that their representation in a
computer can be rather memory intensive and that implementation on parallel
hardware is much more complicated than for regular structures (e.g. [111]).

Properties of the primitives are represented by their attributes and opera-
tions on primitives only address their attributes and their location in the graph
structure.

Image description by primitives and attributes is common in structural
pattern recognition [30], but there collections of primitives are ordered in treelike

157
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structures whose leaves are primitives. The difference with our approach is that
we aggregate groups of primitives to create new primitives of the same type,
yielding a coarser or more abstract representation of the same image data. This
approach enabled us to use a uniform treatment of all levels in the hierarchy.

Relations between primitives can be defined from their attributes and nu-
merical measures for such relations can be constructed. Various functions on
attributes were presented, which were used to express relations between prim-
itives in such a way that the values of these functions could be used to guide
bottom-up processing. The metric for line segments, presented in chapter 2, is
such a cost function. The advantage of this metric over conventional measures
for collinearity [9, 90] is the fact that it was derived from an image formation
model in a systematic way. In order to evaluate its properties, the metric was
used in a hierarchical clustering method. The results for both natural and syn-
thetic images showed the robustness of the method. A possible direction for
future research is the extension of the derivation of metrics from image forma-
tion models to other primitive types, e.g. for the measurement of co-circularity
of curve fragments.

In chapter 3, it was shown that there is a class of cost functions, which we
called increasing path distances, for which clusterings in a graph exist which are
optimal with respect to this measure and for which all clusters are connected.
The definition of such a cost function is based both on attributes of primitives
and on the graph structure defined on these primitives. An algorithm for the
computation of such clusterings was presented.

This grouping method can also be used for other types of cost functions,
but then a non-optimal clustering is achieved. When the cost function, corre-
sponding with multilevel thresholding, is used, the resulting segmentation can
be seen as a compromise: the regions are connected, but each pixel is assigned
to a region to which it is as similar in grey value as possible.

When primitives are manipulated only through their attributes and their
location in the graph structure, algorithms can be formulated with great gen-
erality. This was done, for example, in chapter 4, where the same algorithm
was used for both image segmentation and polygonal approximation of curves.
The only difference in these applications was the choice of primitives and the
evaluation function for the fit of pairs of primitives to a model. In this sense, our
method is a general clustering method, but unlike most conventional clustering
algorithms [48], it takes the spatial arrangement of the primitives into account
through a graph structure. For image analysis applications, this is clearly an
advantage, because of the special role of spatial structure in such applications.

In the application of our method to polygonal approximation of curves,
various measures of fit were tested, some of them known from the literature.
It was shown that the measure proposed by Wall and Danielsson [108] and the
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maximal distance measure produce the best results.
In the application of our method to image segmentation, we used the

constant grey level model, which is the simplest possible choice. We also
considered the linear grey level model for regions. It was explained why the
segmentation of roof edges with the linear model is problematic for our method
and, in fact, for any bottom-up clustering method.

A hierarchy of region adjacency graphs enables the representation of con-
nectivity of receptive fields. This property was used in the segmentation methods
presented in this thesis. In chapters 3 and 4, hierarchical graph representations
were constructed in such a way that connectivity is guaranteed.

The problem of adapting an existing structure in such a way that connectiv-
ity is not lost, is more difficult. Conventional relinking segmentation methods
(which are all variations on the method by Burt et al. [18]) do not preserve con-
nectivity. In chapter 5, we presented a new relinking method which produces
connected regions. The algorithm can be implemented on parallel hardware.

Our relinking method requires the use of a graph structure. This enables the
application of both properties of regions and properties of boundaries between
them, in the segmentation process. We presented a method in which both types
of information can be combined. The relative importance of both information
types depends on a freely adjustable parameter.

Pyramids have been used for the top-down detection of particular image
features such as boundaries and for top-down template matching (see Dyer [26]
for a review). On the other hand, search methods for curves based on cost
minimization on a pixel grid, have been developed [31, 51, 81, 98]. We
combined these approaches in a top-down curve detection procedure which
performs cost minimization on successive levels of a hierarchy of graphs. This
was presented in chapter 6.

We considered a particular application: the detection of fiber boundaries
in a hierarchical description of a muscle tissue image. A model for muscle
fibers was built and criteria for the top-down search in a hierarchical structure
were derived from this model. Detection of fiber boundaries was performed by
minimization of the corresponding cost function. Conventional cost minimiza-
tion methods for curve localization [31, 51, 81, 98] use the pixel grid as the
underlying spatial structure. We introduced the generalization of such methods
to region adjacency graphs and to hierarchical optimization.

Since the cost functions used in literature [81, 73] tend to favor short
curves, resulting in parts of the fibers being 'cut off', we had to introduce a
new cost function. This cost function consists of two terms, one measuring
contrast along the curve and one depending on the shape of the curve. There is
one free parameter, determining the relative weight of these terms. It must be
chosen such that the two terms have the same order of magnitude. The optimal
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value depends on image contents. The resulting method is robust and reacts in
a predictable way to non-optimal parameter settings.

The results of our methods are promising and indicate that hierarchies
of graphs are suitable structures for top-down search methods. A topic for
future research may be the extension of other methods, such as snakes [51] or
parametrically deformable models [98], to hierarchies of graphs. It is not a
priori clear, which part of the analysis must be performed in the construction
phase of the hierarchy, and which part in the top-down phase. This problem
will also require further research.

A second important theme in this thesis was the investigation of mathe-
matical morphology [95, 66] using chamfer discs [12] as structuring elements.
The advantage of such structuring elements is the fact that they approximate
the Euclidean disc more closely than the conventional square structuring ele-
ments [105]. Our investigations concerned both theoretical work on the prop-
erties of chamfer metrics and the characterization of the medial axis defined
by such metrics, and the development of a number of efficient algorithms for
performing operations using these structuring elements.

In chapter 7, we presented results and rigorous proofs on some properties
of chamfer metrics, such as the structure of shortest paths between points.
We pointed out the important difference between extending and non-extending
metrics, and between the internal and external distance transform.

In chapter 8, we gave a complete characterization of the medial axes
defined by p-q-metrics and p-q-r-metrics, based on a rigorous mathematical
framework. Thus far, only partial results were known for the p-q-r-metric [2,
14]: for each p-q-r-metric, a number of special cases had to be worked out 'by
hand'. We have presented a general description for these special cases, valid
for all p-q-r-metrics.

Based on our characterization, efficient algorithms for the medial axis were
derived. The computational cost of these algorithms is of the same order of
magnitude as the cost for more conventional medial axis algorithms.

In chapter 9, the opening transform and the pattern spectrum [61], which are
important for the measurement of the size of image structures, were investigated.
Based on their relation with the medial axis, efficient algorithms for their
computation were derived.

Verwer [104] has presented a thinning algorithm based on chamfer metrics
and noted that the availability of such an algorithm would reduce the importance
of methods based on city-block and chess-board metrics, which correspond to
square structuring elements. This development will be enforced by the availabil-
ity of efficient algorithms for all relevant operations in multi-scale mathematical
morphology (dilations, erosions, openings, closings, size distributions, pattern
spectrum) based on p-q-r-chamfer discs.
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Some topics for future research are the extension of our methods to chamfer
metrics with more than three types of prime vectors [101] and the construction of
a connected skeleton from the medial axis. An other direction of research is the
extension to grey scale morphology, where efficient algorithms for morphology
with (approximations of) parabolic structuring elements are gaining interest [10,
47].
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Samenvatting

Het doel van beeldanalyse is het expliciet maken van de inhoud van een plaatje.
De representatie van een beeld als een lijst van grijswaarden bevat alle informatie
over de inhoud, maar niet in een bruikbare, toegankelijke vorm.

Nuttige informatie in een beeld heeft vaak te maken met de ruimtelijke
verdeling van grijswaarden over het beeldvlak. De afmeting van een interessante
structuur is echter vaak niet vooraf bekend. Daarom is het aantrekkelijk, een
beeld tegelijkertijd op meerdere schalen te bekijken in een hiërarchische of
multi-schaal analyse.

In dit proefschrift worden twee groepen methodes voor beeldanalyse be-
sproken. In het eerste deel wordt een aantal methodes besproken die zijn
gebaseerd op het formalisme van hiërarchieën van graphen. Zo een hiërarchie
is een stapel van graphen, die ieder een representatie van de beeldinhoud bevat-
ten. De knopen van de graph representeren structuren in het beeld (gebieden,
lijnsegmenten) terwijl de kanten de relaties tussen die structuren (aangrenzend-
heid van gebieden, collineariteit van lijnsegmenten) representeren. Graphen in
hogere niveaus van de hiërarchie beschrijven de beeldinhoud op een grover,
meer abstraherend niveau.

Verschillende beeldanalysetechnieken, gebaseerd op hiërarchieën van gra-
phen, zijn ontwikkeld. Deze methodes zijn toegepast voor beeldsegmentatie,
detectie van lineaire structuren en de detectie van randen van objecten.

Er is geconcludeerd dat die hiërarchie van graphen een aantrekkeleijk
raamwerk voor beeldanalyse is, dankzij zijn flexibiliteit in het hanteren van
verschillende structuren en doordat zowel structuren als hun relaties in één
representatie kunnen worden weergegeven. Beperkingen van de methodes
liggen in hun 'bottom-up' karakter, maar kunnen worden verholpen door 'top-
down' analyse in een latere fase van het proces.

Het tweede deel van dit proefschrift behandelt multi-schaal mathematische
morfologie. Mathematische morfologie is een techniek voor beeldanalyse, die
een binair beeld behandeld door er een klein testobject in de vorm van een
vierkant of cirkelschijf overheen te schuiven en de interactie met het beeld
(intersectie, inclusie) te beschouwen.

Multi-schaal mathematische morfologie beschouwt families van opera-
tors, die zijn gebaseerd op structurerende elementen van verschillende afmetin-
gen. Een gebruikelijke keus hiervoor is een serie vierkanten, omdat de corre-
sponderende operaties voor een vierkant rooster gemakkelijk kunnen worden
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geïmplementeerd. De invariantie van deze operaties onder rotatie is echter
slecht. Het is aantrekkelijker, cirkelschijven te gebruiken, maar de correspon-
derende operaties zijn moeilijk te implementeren.

Gebaseerd op nieuw verworven inzichten in de eigenschappen van zo-
genaamde gewogen metrieken zijn methodes ontwikkeld voor multi-schaal
mathematische morfologie met schijven, gedefinieerd door deze metrieken,
als structurerend element. Gewogen metrieken kunnen de Euclidische metriek
tot op een paar procent nauwkeurig benaderen. Dit proefschrift beschrijft al-
goritmen voor de elementaire morfologische operaties (dilatie, erosie, opening,
sluiting), alsmede enkele meer geavanceerde operaties, namelijk de mediale as,
de opening-transformatie en het 'pattern spectrum'. De kosten van deze algorit-
men zijn van de zelfde orde van grootte als die van de conventienele methodes,
gebaseerd op vierkante structurerende elementen.
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