The Numerical Computation of Time-Dependent,

Incompressible Fluid Flow

The Numerical Computation of Time-Dependent,

Incompressible Fluid Flow

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam, op gezag van de
Rector Magnificus dr. S.K. Thoden van Velzen,
hoogleraar in de Faculteit der Tandheelkunde,
in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 441, hoek Spui)
op woensdag 7 september 1988 te klokke 13.30 uur

door

Johannes Hendrikus Maria ten Thije Boonkkamp

geboren te Neede in 1959

1988
Centrum voor Wiskunde en Informatica

De numerieke berekening van tijdsafhankelijke, onsamendrukbare vloeistof-
stromingen

Promotor : prof.dr. P.J. van der Houwen
Co-promotor : dr. J.G. Verwer
Faculteit : Wiskunde en Informatica

PREFACE

The main subject of this thesis is the numerical computation of time-dependent

incompressible fluid flow. The thesis consists of two parts. Part I is an intro-

ductory part, and gives a short account of the mathematical formulation of
incompressible fluid flow. Some important solution techniques are discussed.

Part II is the main part of the thesis, and consists of five papers on the
numerical computation of time-dependent, incompressible fluid flow and
related topics. Two of these papers have been published in, respectively, Appl.
Num. Math. and SIAM J. Sci. Stat. Comput., and a third one has been
accepted for publication in ZAMM. The other two papers have been submitted
for publication. The papers are:

1. On the odd-even hopscotch scheme for the numerical integration of time-
dependent partial differential equations, Appl. Num. Math. 3 (1987), 183-
193. (together with J.G. Verwer).

2. The odd-even hopscotch pressure correction scheme for the incompressible
Navier-Stokes equations, SIAM J. Sci. Stat. Comput. 9 (1988), 252-270.

3. The odd-even hopscotch pressure correction scheme for the computation of
free convection in a square cavity, (submitted for publication).

4. Vectorization of the odd-even hopscotch scheme and the alternating direction
implicit scheme for the two-dimensional Burgers’ equations, (submitted for
publication). (together with E.D. de Goede).

5. Residual smoothing for accelerating the ADI iteration method for elliptic
difference equations, ZAMM, (to appear).

I would like to express my gratitude to all of those who contributed in some
way or another to the realization of this thesis. I want to mention some of
them explicitly. In particular, I want to express my gratitude to dr. J.G.
Verwer for his stimulating supervision and for his many contributions to this
thesis. I am also grateful to prof. dr. P.J. van der Houwen for his guidance as a
promotor and for his many valuable suggestions during the preparation of the
last paper. I wish to thank drs. E.D. de Goede for his co-operation in writing
the fourth paper and drs. J.G. Blom for her assistance in using the computer
system. Finally, I would like to thank the Centre for Mathematics and Com-
puter Science for giving me the opportunity to carry out the investigations
which led to this thesis.

Amsterdam, May 1988
J.H.M. ten Thije Boonkkamp

Contents

PART 1. TIME-DEPENDENT INCOMPRESSIBLE FLUID FLOW: A BRIEF ACCOUNT

1. Introduction

2. General description of incompressible fluid flow

3. Some solution methods for the primitive variable formulation
3.1. Pressure correction methods
3.2. Implicit methods

References

PART II. THE FIVE PAPERS

1. On the odd-even hopscotch scheme for the numerical integration of time-
dependent partial differential equations

2. The odd-even hopscotch pressure correction scheme for the incompressible
Navier-Stokes equations

3. The odd-even hopscotch pressure correction scheme for the computation of
free convection in a square cavity

4. Vectorization of the odd-even hopscotch scheme and the alternating direc-
tion implicit scheme for the two-dimensional Burgers’ equations

5. Residual smoothing for accelerating the ADI iteration method for elliptic
equations

Samenvatting

Part |. Time-dependent incompressible fluid flow:

a brief account

1. INTRODUCTION

Part I of this thesis gives a short mathematical formulation of incompressible
fluid flow, and serves as a background to the five papers presented in Part IL
These papers are concerned with numerical methods for time-dependent,
incompressible fluid flow and related topics.

Part I contains the following. In Section 2, three possible ways to formulate
incompressible fluid flow are presented, viz. the primitive variable formula-
tion, the vorticity-streamfunction formulation and the streamfunction-
biharmonic formulation. The difference between these formulations originates
from the choice of the variables. In the primitive variable formulation, the
variables are the velocity and the pressure of the flow field. This formulation
is, especially for three-dimensional computations, most frequently used. In this
thesis, we restrict ourselves to the primitive variable formulation.

The most important solution techniques for the equations in primitive vari-
able formulation are discussed in Section 3. We can roughly distinguish two
types of methods, viz. implicit methods and pressure- correction methods. In
implicit methods, the velocity and the pressure are computed simultaneously
by iteration. In this thesis, the term pressure-correction method is used to
denote methods for which the computation of the velocity and the pressure is
decoupled. In these methods, the pressure is directly computed from a Poisson
equation. In the literature, the term fractional-step methods is also used for
these methods. However, we use the term pressure-correction methods, since
the term fractional step methods also denotes another class of integration-
techniques for time-dependent partial differential equations. In this thesis we
concentrate on the pressure- correction methods.

In the pressure-correction methods, we can globally distinguish three

4

computational stages:

— space discretization

— time-integration

— solution of a Poisson equation for the pressure.

For space discretization there are basically three possibilities, viz. the finite
difference method, the finite element method and the spectral method. Each of
these methods has its own advantages and drawbacks. In this thesis, we will
only consider the finite difference method.

There are many time-integration techniques, which one can use in the
pressure-correction methods. We can distinguish explicit methods, implicit
methods and splitting methods. In this thesis, mainly splitting methods are
considered. Examples of splitting methods are the odd-even hopscotch (OEH)
scheme and the alternating direction implicit (ADI) scheme.

In the first paper, the OEH scheme is discussed for multi-dimensional
convection-diffusion equations. In particular, the von Neumann stability for a
class of linear convection-diffusion equations is examined. The scheme is tested
by applying it to the Burgers’ equations, which is a simplified model for the
equations of incompressible fluid flow in primitive variable formulation.

The fourth paper is devoted to vectorization aspects of both the OEH
scheme and the ADI scheme, for solving the Burgers’ equations. Both schemes
are implemented on the vector computers Cyber 205 and Cray X-MP/24. Data
structures and techniques employed in vectorizing both schemes are discussed.
An assessment of the performance of both schemes is given.

In the second paper, the OEH time-integration scheme is combined with an
efficient Poisson-solver for the computation of incompressible fluid flow. The
resulting scheme is called the odd-even hopscotch pressure-correction (OEH-
PC) scheme. Accuracy and performance details of the scheme are examined for
a simple test problem. A more practical test problem concerns the flow
through a reservoir. The third paper is an extension of the second paper. In
this paper, the OEH-PC scheme is used to compute free convection in a cavity,
i.e. the flow in a cavity caused by a temperature gradient. In this case, the set
of equations has to be extended with a convection-diffusion equation for the
temperature.

Although there are nowadays many efficient Poisson-solvers available such
as e.g. the Fast Fourier Transform method and many multigrid methods, the
fifth paper still presents another approach to solving general elliptic equations
(including the Poisson equation). In this paper, the classical ADI iteration
method is combined with residual smoothing. Residual smoothing is a simple
technique, which can be useful to accelerate the convergence of iterative
methods for elliptic difference equations. When applied in the proper way, resi-
dual smoothing can considerably reduce the number of iterations and the com-
puting time of the ADI iteration method.

2. GENERAL DESCRIPTION OF INCOMPRESSIBLE FLUID FLOW
The flow of fluids and gases plays an important role in many fields of science
and engineering. With the aid of modern computers, it is nowadays possible to
simulate complicated flows. An important class of flows are the incompressible
flows. A fluid flow is said to be incompressible when the density p of a fluid
particle is constant along its trajectory in the flow. In most cases one usually
assumes that p is constant in the whole flow field, so that this condition is
satisfied. In general, the flow of a fluid and the flow of a gas at low speed (low
compared with the speed of sound) can be considered incompressible. A few
examples are the flow in a channel [3,1524], the flow in a cavity
[8,9,10,11,15,23,25] and the flow past a blunt body [7,13]. This section gives a
short mathematical description of incompressible fluid flow, which is the basis
of many computer simulations. For a more comprehensive discussion of the
matter the reader is referred to e.g. [1,21].

The flow of an incompressible fluid is governed by the conservation of mass
and momentum. The conservation of mass is described by the continuity equa-
tion

V-u=0, 2.1)

where u = u(x,?) is the velocity field of the flow. The Navier-Stokes equations
(or momentum equations) describe the conservation of momentum of the fluid
flow. These equations read

u,+(u-V)u=—Vp+RLeV2u+f. (2.2)

In (2.2) p = p(x,1) is the (scaled) pressure of the flow and f = f(x,7) represents
an external force acting on the fluid (e.g. the gravitational force). The parame-
ter Re is the so-called Reynolds-number. The system (2.1)-(2.2) is defined on
an connected space domain @CR? (d =2 or d =3) and has to be completed
with the following initial- and boundary conditions:

initial conditions:

u=u fort=0 (2.3)
boundary conditions:

u=ur on ' =0Q, (24)
or more general

Bu=0onTI =92, 2.4)

where B is a general boundary operator. In (2.3), the initial field u" has to
satisfy the constraint V-u’ = 0. If (2.4) applies, then ur must satisfy the condi-
tion

gur -nds =0, (2.5)

where n is the normal unit vector to I'. There are in general no pressure

6

boundary conditions available. The flow of an incompressible fluid is fully

described by the equations (2.1)-(2.4). These equations are often referred to as

the primitive variable formulation of the flow.
For numerical computation, the main difficulties associated with the primi-
tive variable formulation are

(i) Equation (2.1) does not contain a time-derivative, therefore the applica-
tion of a time-integration technique to (2.1)-(2.2) is not straightforward.

(i) The lack of boundary conditions for the pressure.

(iti) The momentum equations (2.2) are nonlinear. Especially for large Re,
when the convective term (u- V)u dominates, these equations are therefore
difficult to solve.

The flow of an incompressible fluid can also be formulated in terms of the
vorticity @ and the stream function . The vorticity w is defined by

©=VXu 2.6)

An equation for w can be derived by applying the curl-operator to equation
(2.2); the pressure term is then eliminated. This gives

w,+(u-V)w—(w-V)u:Riev2w+v><f. 2.7
Since the velocity field u is solenoidal, i.e. u satisfies (2.1), u can be written as
u=YvV Xy with V-¢=0, (2.8)

where ¢ is the solenoidal streamfuntion. The condition ¥ -y =0 is usually
imposed on the streamfunction, but is not strictly necessary in order to obtain
a solenoidal velocity field. From (2.6) and (2.8) one can easily derive the fol-
lowing equation for the streamfunction

T+ =0, 2.9)

The equations (2.7) and (2.9), together with appropriate initial- and boundary-
conditions, is called the vorticity-streamfunction formulation of the flow.

The vorticity-streamfunction formulation becomes especially attractive for
two-dimensional flow problems. Let in this case the velocity field be given by
u(x,?) = u(x,y,0)i + v(x,y,1)j. Then one can easily see that both w and ¢ have
only a component in z-direction, i.e. ® = w(x,y,t)k and ¢ =y(x,y,r)k. The
equations for w and ¢ reduce to

0 + (@ Vo = TI%VZ“ Q7)

Vi +w=0. (2.9)
Note that in (2.77) we have assumed that the external force f satisfies

¥ Xf= 0. The velocity components u and v can in this case be computed from
the streamfunction ¢ via the rule

u= ‘Py, V=Y. (2.8)
If the velocity u is known on I' =0%, then both Dirichlet- and Neumann-

7

boundary conditions for ¢ can be derived (Cf (2.8')). Boundary conditions for
w are generally not available. Techniques to derive artificial boundary condi-
tions for w are extensively described in [20].

In conclusion, we can say that the vorticity-streamfunction formulation is a
feasible method for two-dimensional flow problems, since the number of vari-
ables is only two. For three-dimensional problems, however, the number of
variables is six, and therefore the method is difficult to apply in this case. A
major difficulty of the method, for both two- and three-dimensional problems,
is the lack of boundary conditions for the vorticity.

A third way to describe incompressible fluid flow is the so-called
streamfuction-biharmonic formulation. Since this formulation is (practically)
never used in three-dimensional computations, we restrict ourselves to the
two-dimensional case. Elimination of the vorticity in the vorticity-
streamfunction formulation gives the following equation for ¢ (Cf. (2.7')+(2.9'))

(V) + (T2 — () = 2= T 210)

Supplied with the proper Dirichlet- and Newmann- boundary conditions for ¢,
equation (2.10) completely determines the flow.

The primitive variable formulation is often used, both for two-dimensional
and three-dimensional flow problems, see e.g. [6,8,12,13,14,15]. The vorticity-
streamfunction formulation is also often used, but almost always for two-
dimsional flows, see e.g. [3,9,22]. An exception are [17,18], where this method
is described for three-dimensional flow problems. The streamfunction- bihar-
monic formulation is seldom used, see e.g. [2]. An evaluation of all three
methods for steady plane flow is given in [4].

In what follows, we will restrict ourselves to the primitive variable formula-
tion (2.1)-(2.4). Section 3 gives a short description of some important solution
methods for these equations. This section serves as a background to the five
papers in Part II, and is of a rather technical nature.

3. SOME SOLUTION METHODS FOR THE PRIMITIVE VARIABLE FORMULATION

In this section we consider some important solution methods for the equations
of time-dependent, incompressible fluid flow in primitive variable formulation.
This section does not contain a comprehensive survey; it merely serves to
demonstrate the essential features of some important solution methods. Con-
sider to this purpose the equations (in primitive variable formulation) for
incompressible fluid flow

u = fu)— Vp with flu) = —(u- V)u + ﬁvlu, xe®, 1>0 (3.1)

V-u=0,xe, t>0. (3.2)

We assume that there are no external forces acting on the fluid. Appropriate
initial- and boundary- conditions for the velocity field u are assumed, but play
no essential role in what follows.

For introducing the various solution techniques, we follow the method of

8

lines approach. Thus, suppose that by a suitable space discretization technique
(e.g. the finite difference technique) the set of partial differential equations
(3.1)<(3.2) is converted into the following set of ordinary differential equations
coupled with a set of algebraic equations

U =F(@U)—GP 33)
DU=B. (34)

In (3.3) and (3.4), U and P are gridfunctions defined on a space grid covering
© and F(U) is the discrete approximation of f(u). G and D are the discrete
gradient- and divergence-operator, respectively, and B is a term containing
boundary values for the velocity u.

We basically distinguish two classes of methods, viz. the pressure-correction
methods and the implicit methods. In the pressure-correction methods, the
computation of U and P is decoupled and the discrete pressure P is computed
from a Poisson equation replacing the continuity equation. In the implicit
methods, however, U and P are computed simultaneously from the momentum
equations and the continuity equation, by an iterative procedure.

3.1. Pressure-correction methods
Many pressure-correction methods are inspired by the projection method of
CHORIN [6]. Therefore, this method is briefly described first. Then an outline of
some pressure-correction methods is given.

The principle of the projection method of Chorin can be explained as fol-
lows. Equation (3.1) can be written in the form

fw)=wu, + Vp. @3.1)

The vector f(u) is thus decomposed into the sum of a vector with zero diver-
gence (u,) and a vector with zero curl (p). This decomposition exists and is
uniquely determined.

Let U" denote a fully discrete approximation of u(x,¢) at time level ¢, = nr,
where 7 is the time step (similar for P"). At the first stage of the projection
method, an auxiliary field U" is computed from the rule

U + 3 o) U 17 = §U):= ByrF(U") + 3 BrR(U" 1)), #)
j= J=

Equation (3.5) can be interpreted as a linear multistep scheme [16] for (3.3),
from which the pressure terms GP" !~/ are omitted. Other time-integration
techniques, which do not fit into this formulation (such as e.g. ADI) are also
possible.

In general, the auxiliary field U" is not (discretely) divergence free. There-
fore, U" is projected onto the subspace of (discretely) divergence free vectors in
the following way. Analogous to (3.1"), we perform the decomposition
HU)=aU" + 3 aU "' = (qU' ! + FoU+177) + GP L (3.6)

J=1 J=1

9

In (3.6) the term between brackets is an approximation of U" and P"*! is an
approximation of P at time-level 1, = (n +1)r. Since the vectors U" "'~/
(j =1(1)r) are (discretely) divergence fre, it is sufficient to perform the decom-
position

U’ = U ! + GP" !, (3.7a)
where U" ™! is (discretely) divergence free, i.e. (Cf. (3.4))
pUrtl = gl (3.7b)

The variables U"*! and P"*! have to be solved (simultaneously) from (3.7a)
and (3.7b). The solution method proposed by Chorin is therefore an iterative
method. '

An alternative approach, which we adopt in the second an third paper of
Part I, is to multiply (3.7a) by D, which gives (using (3.7b))

LP"+! =gy (DU" — B"*1), (3.8)

where L:=DG is the discrete Laplace operator. The approximate pressure
P"*! is computed from the ‘Poisson’ equation (3.8) and U"*! is then com-
puted from (3.7a). To summarize, we get the following scheme

aU + 3 U7 = BrRUY + S BAFU) (39)
j=1 j=1

LP"+! = qy(DU" — B (3.9b)

Ut =U" —a5' GP"TL. (3.9¢)

This scheme is the general form of many pressure-correction schemes.
A very simple explicit version of this scheme is the following one proposed
by FORTIN et al [8]

U = U + F(U") (3.10a)
L+l = %(DU' R (3.10b)
Ut =U" —rGP" . (3.10c)

At the first stage, the auxiliary field U" is computed by the explicit Euler rule.
This scheme is very similar to the well-known MAC-method of HARLOW and
WELCH [12]. An advantage of this scheme is its simplicity, however, a draw-
back is the severe time step restrictign for stability.

An implicit pressure-correction scheme, based on the Crank-Nicolson
scheme, is the following

U=u+ %T(F(U*) + F(U™)) (3.11a)
[:%(DU' — Bt (3.11b)
Ut =0 —rGP"*!, - (3110

10

This scheme is , in a certain sense, unconditionally stable, however it requires
the solution of a nonlinear set of equations each time step. To overcome this
problem, MoIN and KiM proposed the following pressure-correction scheme

[15]. Let F(U)= —N(U) + RLCV%, where N(u) is the discretization of the

(nonlinear) convective term in the Navier-Stokes equations (Cf. (3.1)). Their
pressure-correction scheme then reads

U = U" = $r3NU") — N 1) + 22=(V2U" + 920" (3.129)
LP"H! = —i—(DU' — Bt (3.12b)

Utl=U" —+Gprtl, (3.12¢)

At the first stage (3.12a) the auxiliary field U" is computed using the second
order Adams-Bashforth scheme for the convective term and the Crank-
Nicolson scheme for the viscous term. Note that this scheme is only condition-
ally stable with respect to the convective term, but has no viscous stability res-
triction.

Another pressure-correction method, which is slightly different from (3.9a)-
(3.9¢) is due to VAN KAN [14]. To introduce this method, consider the Crank-
Nicolson scheme for (3.3)

Ul = U+ SoFU) + FQUY) — 37(GP" ! + GP™), (3.13)
coupled with the set of algebraic equations (3.7b). Note that the pressure P has
to appear implicitly in (3.13), in order to satisfy (3.7b). The computation of
U"*! and P**! from (3.13) and (3.7b) is decoupled in a predictor-corrector

fashion. First, substitute P" for P"*! in (3.13). This defines a predictor U" as
follows

U' = U" + 3r(F(U*) + FQU")) — 1GP". (3.14)

Substitution of U” in the right and side of (3.13) (instead of U" *1) defines the
corrector, also denoted by U" *!:

Ut = U + 2o(FU) + FUY) — 37(GP" "' + GP™). (3.15)
2 2
From (3.14) and (3.15) one can easily see that
Ut - U = — 51GQ", Qn=P"+ — p7., (3.16)

Applying the operator D to (3.16) and using (3.7b), we obtain the following
‘Poisson’ equation for the pressure-increment Q":

LO" = %(DU' — B, 3.17)

After the computation of Q", the new velocity field U" "' and the new pres-
sure P"*! can be directly computed from (3.16). To summarize, we get the

11

following scheme

U =U" + 3o(FU) + FU") — 7GP" (3.182)
LQ" :%(DU' — B, P =P+ Q" {.180)
Un+1 =U - %TGQ") (318(3)

Note that the schemes (3.11) and (3.18) are very similar. They only differ in
the treatment of the pressure-term. Finally, it should be noted that van Kan
[14] uses the ADI scheme for the time integration, rather than the Crank-
Nicolson scheme.

In the second paper of Part II, a pressure-correction scheme similar to (3.18)
is used for the computation of incompressible fluid flow. The time-integration
scheme used in this paper is the OEH scheme instead of the Crank-Nicolson
scheme. An extension of this scheme, for the computation of free convection, is
discussed in the third paper of Part II.

3.2. Implicit methods
Another class of methods are the implicit methods. These methods are based
on an implicit discretization of the momentum- and continuity - equation. The
resulting (nonlinear) algebraic system is then solved by iteration. We stress,
that for these methods the equation of continuity is not replaced by a Poisson
equation for the pressure. We demonstrate this technique by two examples.
The first example is due to PEYRET [19]. Consider again the Crank-Nicolson
scheme (3.13) coupled with the set of equations (3.7b). Thus, for the sake of
completeness, consider the following system

Ut — %TF(U"+1) s %TGP"-H =U" + %TF(U") — %TGP" (3.19a)
DUt = gl (3.19b)

Due to its implicitness, the scheme (3.19) has favourable stability properties.
Let in the two-dimensional case U = (U, V), then the system (3.192)-(3.19¢)
can be written in the symbolic form

E,,(U"+I,V"+1,P"+l):0 (3203)
QV(U"+1,V"+],P"+1):0 (320b)
Uty hy=0. (3.20c)

The first two equations represent the momentum equations and equation
(3.20c) represents the continuity equation. The iterative procedure for (3.20)
proposed by Peyret is the following

Un+l,k+] _ Un-H,k +a[?u(Un+I,k Vn+l,k Pn+1,k):0 U"*LO = " . (32]a)
Vn+l,k+1 _ Vn+l,k +aEV(U"+1’k+1 Vn+l,k Pn+],k):O Vn+1,0 s V"(321b)
Pn+1,k+1 _Pn+1,k +,BGD(U"+1’k+1 Vn+1,k+1):O Pn+1,0 = pn. (3.21(:)

12

The superscripts k and n denote, respectively, the index of iteration and the
time-level. The iteration parameters a and B have to be chosen properly, in
order to ensure convergence. In general, the performance of the iterative
method is very sensitive to the choice of the parameter values @ and B, and it
is very difficult to determine the optimum values of these parameters.

Another very interesting example is due to SoH and GOODRICH [23]. Their
method is also based on the system (3.19). If we write U"*! =U"+68U",
P"t1=pP" 4+ §P" and B"*! = B" + 8B", then the equations (3.19a)-(3.19b)
can be rewritten as

dU" — a(F(U" + 8U") — G(P" + 8P™)) = a(F(U")—GP") (3.22a)
D(8U") = 8B" (3.22b)

where a = 7/2. In the spirit of the method of false transient [17], we can asso-
ciate with (3.22a)-(3.22b) the auxiliary system

d
ot”

3

where ¢” is a (non-physical) pseudo-time, B is the so-called artificial compressi-
bility coefficient and 8U = U" — U", §P = P* — P"; here the asterisk denotes
a transient value in pseudo-time. From (3.22) and (3.23), we can see that the
solution of the (nonlinear) system (3.22) is equal to the steady solution of the
‘transient’ system (3.23), assuming the latter exists. Thus , a time-integration
technique for (3.23) can be interpreted as an iteration method for the solution
of (3.22). Various explicit or implicit schemes can be used for the time-
integration of (3.23). Soh and Goodrich use a factored ADI scheme [23]. Since
no accuracy in the pseudo-time ¢* is required, the corresponding time step 7"
can be chosen such that the convergence to a steady state is optimal. In this
case, the parameter value B should be chosen carefully, for optimal perfor-
mance. Notice that this method is very similar to the artificial compressibility
method, which is a time-marching technique for the computation of the solu-
tion of the steady Navier-Stokes equations [5], applied at each time step.

6U) + 8U—a(F(U" + 8U) — G(P" + 8P)) = «(F(U") — GP") (3.23a)

?, (8P) + (D(U) — 8B") = 0, (3.23b)

13

REFERENCES

[1]1 G.K. BATCHELOR, An introduction to fluid dynamics, Cambridge University
Press, Cambridge, 1983.

[2] M. Bourcikr and C. FRANGOIS, Intégration numérique des équations de
Navier-Stokes dans un domaine carré, Rech. Aérosp. 131 (1969), 23-33.

[3] J.S. BRaMLEY and S.C.R. DENNIS, A numerical treatment of two- dimen-
sional flow in a branching channel, Lecture Notes in Physics, No. 170, E.
Krause, New York, 1982, 155-160.

[4] T. CeBecl et. al., Studies of numerical methods for the plane Navier-Stokes
equations, Comput. Meth. Appl. Mech. Eng., 27 (1981), 13-44.

[5] A.J. CHORIN, A numerical method for solving incompressible viscous flow
problems, J. Comput. Phys., 2 (1967), 12-26.

[6] A.J. CHORIN, Numerical solution of the Navier-Stokes equations, Math.
Comp., 22 (1968), 745-762.

[7] S.C.R. DenNIs and A.N. STANIFORTH, A numerical method for calculating
the initial flow past a cylinder in a viscous fluid, Lecture Notes in Physics,
No. 8, M. Holt, New York, 1971, 343-349.

[8] M. ForTiN, R. PEYRET and R. TEMAM, Résolution numeérique des équations
de Navier-Stokes pour un fluide incompressible, J. Méc., 10 (1971), 357-390.

[9] - U. GHia, K.N. GHIA and C.T. SHIN, High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method, J. Comput.
Phys., 48 (1982), 387-411.

[10] K. GustarsoN and K. HaLAsI, Vortex dynamics of cavity flows, J. Com-
put. Phys., 64 (1986), 279-319.

[11] K. GustarsoN and K. HAvLAsI, Cavity flow dynamics at higher Reynolds
number and higher aspect ratio, J. Comput. Phys., 70 (1987), 271-283.

[12] F.H. HARLOW and J.E. WELCH, Numerical calculation of time-dependent
viscous incompressible flow of fluids with free surface, Phys. Fluids, 8 (1965),
2182-2189.

[13] CW. Hirt and J.L. Cook, Calculating three-dimensional flows around
structures and over rough terrain, J. Comput. Phys., 10 (1972), 324-340.

[14] J. vAN KAN, A second-order accurate pressure-correction scheme for viscous
incompressible flow, SIAM J. Sci. Stat. Comput., 7 (1986), 870-891.

[15] J. KiM and P. MoIN, Application of a fractional-step method to incompressi-
ble Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.

[16] J.D. LAMBERT, Computational methods in ordinary differential equations,
John Wiley & Sons, London, 1973.

[17] G.D. MALLINSON and G. DE VAHL DAVIS, The method of false transient
for the solution of coupled elliptic equations, J. Comput. Phys., 12 (1973),
435-461.

[18] G.D. MALLINSON and G. DE VAHL DAvis, Three-dimensional numerical
convection in a box: a numerical study, J. Fluid Mech., 83 (1973), 1-31.

[19] R. PEYRET, Unsteady evolution of a horizontal jet in a stratified fluid, J.
Fluid Mech., 78 (1976), 49-63.

14

[20] R. Peyrer and T.D. TAYLOR, Computational methods for fluid flow,
Springer-Verlag, New York, 1983.

[21] H. SCHLICHTING, Boundary-layer theory, Mcgraw-Hill, New York, 1979.

[22] W.A. SHAY and D.H. ScHULTZ, A second-order approximation to natural
convection for large Rayleigh numbers and small Prandtl numbers, Int. J.
Num. Meth. Fluids, 5 (1985), 427-438.

[23] W.Y. Son and J.W. GOODRICH, Unsteady solution of incompressible
Navier-Stokes equations, accepted by J. Comput. Phys.

[24] T.D. TayLorR and E. NDEFO, Computation of viscous flow in a channel by
the method of splitting, Lecture Notes in Physics, No.8, M. Holt, New
York, 1971, 356-364.

[25] S.Y. TuaNN and M.D. OLSON, Review of computing methods for recirculat-
ing flows, J. Comput. Phys., 29 (1978), 1-19.

THE FIVE PAPERS

Applied Numerical Mathematics 3 (1987) 183-193 17
North-Holland

ON THE ODD-EVEN HOPSCOTCH SCHEME FOR THE NUMERICAL
INTEGRATION OF TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

J H.M. TEN THIJE BOONKKAMP and J.G. VERWER
Centre for Mathematics and Computer Science, 1098 SJ Amsterdam, The Netherlands

This paper is devoted to the odd-even hopscotch scheme for the numerical integration of time-dependent
partial differential equations. Attention is focussed on two aspects. Firstly, via the equivalence to the combined
leapfrog-Du Fort-Frankel method we derive the explicit expression of the critical time step for von Neumann
stability for a class of multi-dimensional convection-diffusion equations. This expression can be derived directly
by applying a useful stability theorem due to Hindmarsh, Gresho and Griffiths [9]. The interesting thing on the
critical time step is that it is independent of the diffusion parameter and yet smaller than the critical time step
for zero diffusion, but only in the multi-dimensional case. This curious phenomenon does not occur for the
one-dimensional problem. Secondly, we consider the drawback of the Du Fort—Frankel accuracy deficiency of
the hopscotch scheme. To overcome this deficiency we discuss global Richardson extrapolation in time. This
simple device can always be used without reducing feasibility. Numerical examples are given to illustrate the
outcome of the extrapolation.

1. Introduction

The subject of this paper is the odd-even hopscotch (OEH) method for the numerical
integration in time of time-dependent partial differential equations (PDEs) (Gordon [2], Gourlay
[3-5]). Attention is focussed on two aspects. First we consider the d-space dimensional convec-
tion-diffusion equation

u+(q-v)u=edu, >0, x€R’ (1.1)

where u(x, t) € R represents the convected and diffused variable, the vector ¢ = (¢,..., q,) the
(constant) velocity, and e€>0 a diffusion parameter. When combined with simple central
differences the OEH method shows an equivalence to the combined leapfrog-Du Fort—Frankel
method. Via this equivalence we derive the explicit expression of the critical time step for von
Neumann stability for problem (1.1). This expression is easily found by applying a useful
theorem due to Hindmarsh, Gresho and Griffiths [9]. This theorem plays an important role in
their stability analysis of the forward Euler-central difference scheme.

The interesting thing on the critical time step is that it is independent of € whereas it is smaller
than the critical time step for zero diffusion, but only in the multi-dimensional case. We wish to
remark that this pathological behaviour of the leapfrog-Du Fort-Frankel method has been
observed earlier (see [13] and the references therein). However, to the best of our knowledge, the
explicit expression of the critical time step is new.

An immediate consequence of this pathological behaviour is that adding artificial diffusion to
the OEH central difference scheme may render the process unstable. This observation is in clear

0168-9274/87,/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

18 J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme

contrast to the common practice which teaches us that introducing artificial diffusion has a
stabilizing effect. We note that this remark does not contradict the findings of Gourlay and
Morris [6] in their investigation of the OEH scheme for nonlinear shock calculations as they
restrict their attention to the one-dimensional case.

The second aspect of the OEH method considered in this paper is the drawback we refer to as
the Du Fort-Frankel (DFF) accuracy deficiency. The consequence of the DFF deficiency is that
convergence takes place for a smaller set of rules for refinement of the time-space mesh than
allowed by stability [12]. To overcome this deficiency we discuss global Richardson extrapolation
in time. This simple device can be placed on top of any OEH implementation without reducing
feasibility. We present two examples to illustrate the technique.

2. The OEH method

In this section we briefly recall the OEH method which was first suggested by Gordon [2]. For
an extensive discussion we refer to the work of Gourlay who invented the name hopscotch and
made a thorough study of various techniques. Here we adopt his formulation.

Let the general form u,= Lu represent an evolutionary problem for a system of PDEs in
d-space dimensions. Boundary conditions will not be specified here as we do not discuss their
influence. So our study of the OEH method will be carried out as if we were studying the pure
initial value problem. We let L, be the finite difference replacement of the space operator L.

Hence at the gridpoint x;, where j represents a multi-index (jy, ..., j), 4, = Lu is replaced by
the continuous time ordinary differential equation
U= LU, (2.1)

In what follows it is supposed that in each coordinate direction L, is based on second-order,
three-point central differences on a uniform mesh. The restriction to uniform meshes in each
coordinate direction is not essential. The OEH scheme allows a nonuniform mesh, but at most a
three-point coupling in each coordinate direction. Hence one might also consider the use of
simple one-sided spatial differencing. With regard to the convection-diffusion equation (1.1) we
note that diffusion terms of the type v - (e- Vu), € a d X d matrix [9], are not allowed because
of the cross-derivatives.
According to Gourlay [3-5] the OEH scheme for problem (2.1) is given by

l]jn+1 — [Jjn + Tojnth]jn 4 Tojn+1th]]_n+l, (22)
where 7=1,,,—t,, U" approximates u at (x;, t,) and
1 if (n " Zj,.) is odd,
6" = ! (2.3)
0 if (n+2ji)iseven.

If we take n fixed and consider only the odd points, for this n, (2.2) is just the forward
Euler-central difference scheme. On the other hand, at the even points we recover the backward
Euler-central difference scheme. Consequently, if we let n fixed and first apply the forward

J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme 19

scheme at all odd points and then the backward scheme at all remaining even points, we have
carried out one step with the OEH scheme (2.2).

Due to the three-point coupling in each coordinate direction and the alternating use of
forward and backward Euler methods, the process is only diagonally implicit. When applied to
problem (1.1) it is even fully explicit (only division by scalars). This is also true for the nonlinear
Burgers equation in divergence form

u,+a(u)=eAu, a(u)=v - (u;u). (2.4)

The convective form, a(u)=(u-V)u, requires that per gridpoint a d X d system of linear
algebraic equations must be solved. Of course this is still very cheap.
By writing down two successive steps of scheme (2.3),

l]jn+1 - l]jn o Tojnth]jn + Tajn+1th]jn+l,

n+2 _ n+1 n+1 n+1 n+2 n+2
U2 =Uu""+0" LU + 10" LU,

(2.5)

its connection to the Peaceman—Rachford method [3-5] is shown. In particular, if we let A fixed,
(2.5) may be interpreted as a second-order integration formula using stepsize 27 for the ODE
system defined by (2.1) (see also [10]). From formulation (2.5) one can also derive the attractive
fast form [3-5] which halves the computational work of the complete step n—>n+2. A
particularly advantageous feature is that this fast form can be implemented such that only one
array of storage is required. It is evident that this may be of considerable interest for
multi-dimensional problems. Finally, when applied to the problems (1.1), (2.4) the fast form
implementation requires roughly the same number of operations per step as the forward Euler
scheme. However, the OEH method has much better stability properties. We discuss this in the
next section.

3. Von Neumann stability for the linear convection-diffusion equation

In this section we derive the critical time step for von Neumann stability of the OEH central
difference scheme for the convection-diffusion equation (1.1). Let 4, be the constant mesh width
in the kth direction and H, and 87 the corresponding finite difference operators for the first
and second derivative, respectively. Then L, can be written as

q
LU=Y|- EthH,(+
k

€
;l—isf U,

where the summation is from 1 to 4.

The stability analysis exploits the equivalence to the leapfrog-DFF scheme. This equivalence
emerges by eliminating variables at the time level n + 1 in (2.5). For the odd points we then get
the relation

an+2 - U]_n + TLhUj" + 'TLhUj"+2, (31)
and for the even ones

an+2=2an+1_ Uj". (32)

20 J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme

By evaluating the linear expression L,,Uj"+2 at the odd points and inserting (3.2) at the occurring
even ones, relation (3.1) can be written as

(1+ Z20,)ur*2 = (1= D201) U7 - X (cul— dom) U7, (33)
k k k

where p, is the standard averaging operator in the kth direction and
o, =e1/h2, o =q1/hy. (3.4)

Scheme (3.3) is the combination of the leapfrog and DFF scheme (the case d = 1 was studied
earlier in [6]). Noteworthy is that (3.3) contains only grid values at the uncoupled set of
odd-numbered points in space and time. Thus, if we ignore the start and completion of the OEH
process and consider only the odd-numbered points, we may proceed with (3.3) for the
investigation of linear stability. Note that Uj"” in (3.2) is a grid value at an odd point. Hence if
the computation at the uncoupled set of odd-numbered points is stable, we have also stability at
all even points.

We shall now examine the stability of scheme (3.3). For this purpose we employ the classical
method of von Neumann [12]. So we introduce the Fourier mode

U =7, w=(w,...,w,) €R?, ¢ecC, i’=-1,
and substitute into (3.3) to give

(1+0)8+ (chki sin 8, — 4a, cos 0k)g— (1—0)=0,
k

where 0, = w, h, and 0 =2(0, + -+ +0,). In what follows we demand von Neumann stability
in the strict sense, that is

[§] <1, all|6,|<m.
Bearing in mind that o, > 0 it then follows immediately from [11, Theorem 6.1] that we have
stability iff the complex number A given by

A=Y r,cos 0, —c,isin b, r,=20,/0,
K

satisfies |A| <1 for all |6, | <m.

At this point we can make fruitful use of an interesting stability theorem due to Hindmarsh,
Gresho and Griffiths [9] which they used in their stability analysis of the forward Euler-central
difference scheme. As Lr, = 1, A can be written as

A=1-1iY ¢, sin 6, + Y ry(cos 6, —1).
k k
Their stability theorem then says that |A| <1 for all |6, | <= iff ¥r, <1 and

Ye/n<l. (3.5)
k

Hence we can conclude immediately that this condition is sufficient and necessary for von
Neumann stability (in the strict sense) of scheme (3.3).
Equation (3.5) may be rewritten as

2
Zci/rk=2(hi) Yai<l, (3.6)
k k LS

J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme 21

and observe that the diffusion parameter € is absent in this condition. This is plausible because
the DFF scheme is unconditionally stable for the pure diffusion problem u,=eAu. Next an
interesting situation arises if we put ¢ = 0. Then scheme (3.3) reduces to the leapfrog scheme
which is known to be stable in the strict sense of von Neumann iff the CFL condition holds:

.
Zh—klfhl<1~ (3.7)
k

Consequently, from the Cauchy inequality

2 2
T T
(Ziial) <) Za (3.8)
k Tk k k7 k

it follows that the stability conditions are more restrictive for € > 0 than for € = 0. Hence if we
add artificial diffusion to the OEH scheme for the pure convection problem we might destabilize
the process. This observation is in clear contrast to the common practice which teaches us that
introducing artificial diffusion has a stabilizing effect.

Observe that we have equality in (3.8) iff 4, | g, | is independent of ., so that only in this case
the restrictions on 7 and 4, in (3.6), (3.7) are identical. Of course, this is trivially so for d=1
(see also [6]). If we put h, = h, then (3.6), (3.7) lead to the time step restrictions

<h/(dLat), (3.6)
k
% ji2 i
<h/(Zlal] - (3.7)
k
We see that when one of the velocities g, dominates, the critical time step is approximately Vd
times smaller than the critical time step imposed by the CFL condition.

We remark that the above pathological behaviour of the leapfrog-DFF scheme, and thus of
the OEH scheme, has been observed earlier (see [13] and the references therein for numerical
evidence). However, as far as we know, the expression for the critical time step implied by (3.6) is
new.

Just for the sake of comparison we finally give the sufficient and necessary conditions for von
Neumann stability of the forward Euler-central difference scheme for problem (1.1) [9]:

2eT q,fr ‘

Y=—x<1, Y- >—<L
x hi . 2e€

The second of these is known as the convection-diffusion barrier. It shows that the forward

Euler-central difference scheme becomes unconditionally unstable as € — 0. In contrast, the
OEH central difference scheme is stable for all € > 0 under condition (3.6).

4. The DFF deficiency and global Richardson extrapolation
This section is devoted to the second aspect of the OEH method considered in this paper, viz.

the DFF accuracy deficiency by which we mean that convergence takes place for a smaller set of
rules for refinement of the space-time mesh than allowed by the stability condition [12]. For

22 J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme

example, if 7,h, — 0 while satisfying (3.6) the solution of the leapfrog-DFF scheme (3.3) will
converge to the solution of the problem

T2

u,+(q-v)u=eAu—eau,, a= lim (4.1)

0T RE
Hence for convergence to (1.1) it is necessary that 7> = o((Zh;2)~'). Through the equivalence
property the same conclusion is valid for the OEH scheme [2-5]. The equivalence to the
leapfrog-DFF scheme cannot be derived for the nonlinear convection-diffusion equation. How-
ever, the DFF deficiency due to the viscous term eAu does still exist.

An immediate consequence of the DFF deficiency is that for a given space grid the OEH
scheme may produce relatively inaccurate results unless 7 is taken significantly smaller than
necessary for stability. To a great extent, this disadvantage is compensated by the fact that per
step the scheme is very cheap while on fixed space grids the fast form implementation (same
costs as forward Euler) generates approximations which are second-order in 7. For those
applications where the disadvantage is still pertinent we suggest the employment of global
Richardson extrapolation in time. The idea is to eliminate the term 72u,, in (4.1). If we succeed
in this elimination we have the usual convergence property because for stability 7 must satisfy
2= O(Zh ™).

The basis for global Richardson extrapolation is formed by the existence of asymptotic
expansions for the global error. Without attempting full rigor we shall briefly sketch this. For
this purpose we shall instead of examining the leapfrog-DFF scheme for linear problems directly
consider the OEH scheme (2.5), but on a fixed space grid. Hence we follow the ODE approach
and interpret (2.5) as a one-step, second-order integration formula using stepsize 27 (f, = t,.,).
The advantage is that we then do not need to distinguish between linear and nonlinear problems
since the theory of asymptotic expansions for one-step methods for ODEs applies generally.
Numerical evidence which shows that our ideas are correct will be provided in Section 5.

For convenience of presentation we introduce the operator notation

Urtt=srur, n=0,2,..., (4.2)
for the OEH scheme (2.5). Suppose that this scheme is applied from =0 up to zy = N(27), N
even, on a fixed spatial grid. Let

& = U - Uty) (43)
be the global error at ty for the intermediate ODE problem (2.1). Now if we let L, be

sufficiently smooth then it follows from numerical ODE theory [7, 8, 15] that grid functions e®,
e®, ... exist independently of 7 such that

¥V =(2r)e@(ty) + (27)°eP(1y) + -+, 0. (4.4)
The error term (27)%(?(ty) can be eliminated in the standard way by forming the combination
g =34y - vY), (45)

where U" and V" are obtained from the two different integrations
Urtt=8U", n=o(2)2N-2),
VO=U®, VPt =SIV, n=o(4)(2N - 4).

J J

(4.6)

J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme 23

Consequently,

0" = U(tn) = $@r) e (ty) + -+ . (47)

Obviously, the error functions e, e, ... do depend on the grid spacing. In fact, due to the

DEFF deficiency they grow beyond bound if the grid spacing is refined. Of course, this growth is
annihilated by the simultaneous reduction of = which is necessary for stability. In connection
with the DFF deficiency we now hypothesize that the lack of convergence is entirely due to the
first term (27)2ej(2)(tN) in (4.4). If this hypothesis is true the elimination of this term by global
Richardson extrapolation trivially implies that when the grid is refined and 7 is reduced
according to the requirement of stability, that then L7J-N will converge to u(x;, y).

In contrast to its ease of implementation, the OEH scheme (4.2) is not very amenable to error
analysis so that we have not attempted to analyze the expression (4.4). Numerical experimenta-
tion with a nonlinear problem (see Section 5) indicates that the hypothesis is true and even more,
namely that by the simple extrapolation device we get a truly second-order behaviour upon
simultaneous reduction of the time and space mesh.

Global extrapolation as formulated in (4.6) is easy to implement. Having computed an
approximation at ¢ = t,, one simply repeats the process but now with a double stepsize. This can
be done in parallel or after completion of the first integration. The additional computational
effort is 50% and an extra array of storage is required. Above we tacitly assumed that 7 is
constant. However, the process can also be carried out for variable stepsizes [7, 8, 14-16] on the
coarse grid without any additional difficulty. Finally we remark once more that a prerequisite for
success of the extrapolation is that the asymptotics hold and thus that both integrations must be
stable. Even marginal instability is not allowed because we then cannot count on a smooth global
error. Lest we miss the obvious, the extrapolation makes no sense if the space error U;(7y) —
u(x,, ty) dominates the time error (4.3).

5. Numerical examples

We have applied the OEH central difference scheme to two initial /boundary value problems
of the first type for the inhomogeneous Burgers equation in divergence form (cf. (2.4)). We recall
that for this type of equation the OEH central difference scheme is essentially explicit (only
division by scalars). Because so far nothing has been mentioned on the treatment of time-depen-
dent boundary values and inhomogeneous terms we first give the necessary details on the actual
implementation we applied. Consider the semi-discrete approximation (cf. (2.1))

U= LU+ F(1), (5.1)

where F(¢) is the contribution of the inhomogeneous term at the gridpoint x;. It is supposed
that the prescribed solution values on the boundary are contained in L,U(t) (at the relevant
places).

While omitting the fast form modifications our odd-even hopscotch implementation is then
based on the one-step scheme (¢, = 7,.,)

Ut = U+ o7 LU + 767 LU + 1E (1, +),

5.2
ljjn+2= l]jn+1 +Tojn+thl]jn+l +70j"+2th]j"+2+ TI;}(I""' ’T), ()

24 J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme

where it is of importance to notice that any prescribed solution value from the boundary
occurring in LU has been set at the stage n. This can be motivated by the observation that
each of the two stages is consistent with (5.1). The inhomogeneous term is computed at ¢, , in
both stages in order to exploit fully the advantage of the fast form. When we apply the scheme

only the points ¢, ¢,,, are used for output.

g ';’;’;';"v"'v;y"v 'v”
L 51 e ’W
2|

Fig. 1. Exact solutions (5.4) for three values of the
parameter e.

.50

Y

SRR RRIRR ’.’
Sk i
SEOAN) (AL
I S e

A ;50

W
QAN A7

Fig. 2. Corresponding approximations generated by the
OEH central difference scheme. We have used 4 = 7,
T=1k for €=0.1 and h=g;, 7= for e=0.01,
0.001.

J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme 25

Table 1 Table 2
Number of significant digits of the OEH scheme Number of significant digits of the extrapolated OEH
scheme
7! h!
7! h!
20 40 80 160 320
20 204 20 40 80 160 320
40 2.66 2.03 40 3.19
80 324 2.63 2.03 80 3.30 2.98
160 3.27 3.26 2.62 2.03 160 3.26 4.03 2.94
320 3.27 3.84 3.23 2.62 2.03 320 3.26 3.87 4.66 293
640 3.26 3.88 3.86 3.23 2.62 640 3.26 3.86 4.50 4.35 293
1280 3.26 3.87 4.45 3.84 3.22 1280 3.26 3.86 4.47 5.21 4.29
2560 3.26 3.87 4.48 4.47 3.83 2560 3.26 3.86 4.47 5.08 5.97
Problem 1. The one-space dimensional problem
u+L(u?), =eu,, 0<t<l1l, 0<x<1, (5.3)
with the exact solution given by Whitham [17, Chapter 4]:
r I
u(x, 1)=1-09 ! —-0.5 e 5.4
() n+rntn n+r+rn (5.4)
where
. (x—05 99:) , ex(x—05 3t o %= %
rh=exp| ——5— — : = S |y = ;
1T 9P T T0¢ T 400¢)0 2T P e 16y HTERTT

We have integrated this problem for € = 0.1, 0.01, 0.001. For these parameter values Fig. 1 and
Fig. 2 show plots of the solution (5.4) and of corresponding numerical solutions, respectively. We
see that when € approaches zero the solution contains two shocks one of which is overtaken by
the other. The plot for e = 0.001 in Fig. 1 clearly shows this. Noteworthy is that the correspond-
ing OEH central difference approximation reproduces this behaviour in a very acceptable way.
Of course, the wiggles in the approximation are due to the difficulty of fitting the shock on a too
coarse grid.

For € = 0.1, Table 1 shows the minimum number of significant digits at ¢ = 1, min ;(—,,log(abs.
error at (x;, 1)), for various values of 7 and /. Note that since max(u(x,)) =1 the critical time
step for von Neumann stability is 7 = A. All computations with 7 < & are indeed stable. Let us
examine the results somewhat more closely. One then immediately recognizes the DFF de-
ficiency: for a fixed mesh ratio 7/h the scheme fails to converge. Further, if we let 7 — 0 and &
fixed and sufficiently small, one can observe the second-order behaviour of the OEH integration
formula (,olog 4 = 0.6). For € =0.01, 0.001 these phenomena remain hidden due to too large
errors in space. Also recall that the DFF deficiency originates entirely from the second-order
term eu,,.

For € =0.1 we present in Table 2 results of the extrapolated OEH scheme (4.5)—(4.6) (the
meaning of the entries is the same as in Table 1). Let us examine the mesh ratio 7/h = . For
this ratio the extrapolated scheme still suffers from the DFF deficiency, although the accuracy
has improved. We think this is due to the fact that for the extrapolated scheme the mesh ratio

7/h =1 is critical for von Neumann stability. Despite stability in such situations one may

26 J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme

encounter a nonsmooth global error so that Richardson extrapolation cannot be of much use.
For the mesh ratios 7/h= ¢, %,..., the extrapolated scheme appears to be free of the DFF
deficiency. More precisely, for these ratios the extrapolated scheme behaves as a second-order
scheme as we expected. For the ratio 7/h =} the extrapolation works for 7= g5, 165, 329, but
then yields no further improvement. We again think that this is due to a nonsmooth global error
caused by a very weak instability. For clarity, we recall that the DFF deficiency may become
visible at the moment that the space error becomes smaller than the time error. Of course, only
then the extrapolation in time can be fruitful. Our tables illustrate this clearly. We also
emphasize that in all these cases the outcome of the extrapolation is positive, including those
where the DFF deficiency is still visible due to a too large mesh ratio.

Problem 2. The inhomogeneous, two-space dimensional Burgers equation
u 4 (u?),+ (w), =edu+fi(x, y, 1), 0<1<1, 0<x, y<l,
v+ (uw) + (v?), =edv+f,(x, y, 1),

where
u(x, y, t)=2w sin(2mx) cos(y)z(x, y, 1),
v(x, y, t)=cos(2mx) sin(y)z(x, y, t), (5.6)
z(x, y, 1) =2e exp(— (472 + 1)et) /(2 + exp(— (47> + 1)et) cos(2mx) cos(y).

The functions u, v constitute an exact solution of the homogeneous Burgers equation in
convective form [1]. Note that this solution is purely artificial as both u and v vanish as € = 0 or
t — co. However, it is acceptable for our numerical illustration purpose which concerns the DFF
deficiency and the Richardson extrapolation procedure. In Tables 3 and 4 we present results of
the OEH central difference scheme (h, =h,=h) and of the extrapolation, respectively, for
€=0.02 and = 1. The results concern the u-component. The numbers in the tables have the
same meaning as in Table 1.

Noteworthy is that in Table 3 the DFF deficiency again manifests itself very clearly. On the
other hand, the extrapolated OEH scheme turns out to be free of this deficiency as is shown in
Table 4. It nicely shows the expected second-order behaviour, in particular for the mesh ratio
T/h=1%.

Our experience with the two numerical examples justifies the conclusion that the extrapolated
OEH scheme possesses the normal convergence property. A very attractive feature of the global

Table 3 Table 4
Number of significant digits of the OEH scheme Number of significant digits of the extrapolated OEH
1 e scheme
10 20 40 80 L h!

20 2.71 2.78 10 20 40 80

40 2.66 345 2.73 40 2.64 322

80 3.32 3.39 271 80 323 3.80
160 4.06 334 160 3.83 430

320 4.00 320 4.43

J.H.M. ten Thije Boonkkamp, J.G. Verwer / Odd-even hopscotch scheme 27

extrapolation in time is its simplicity. This classique technique can be placed on top of any OEH
implementation, even for variable time steps. This allows the possibility of using it for stepsize
control purposes, e.g. to avoid instabilities. In this section we have concentrated on convection-
diffusion problems. The technique may also prove useful for pure diffusion problems. For such
problems the OEH scheme has better stability properties so that the need for more accuracy in
time will exist more frequently. Finally, we stress once more that the extrapolation idea assumes
that the asymptotics hold. A prerequisite is thus that on both grids in time we have stability. In
this respect, pure diffusion problems are even more attractive for application of the OEH
extrapolation scheme.

References

[1] C.A.J. Fletcher, A comparison of finite element and finite difference solutions of the one- and two-dimensional
Burgers equation, J. Comput. Phys. 51 (1983) 159-188.

[2] P. Gordon, Nonsymmetric difference equations, SIAM J. Appl. Math. 13 (1965) 667-673.

[3] A.R. Gourlay, Hopscotch: a fast second order partial differential equation solver, J. Inst. Math. Appl. 6 (1970)
375-390.

[4] A.R. Gourlay, Some recent methods for the numerical solution of time-dependent partial differential equations,
Proc. Roy. Soc. London A 323 (1971) 219-235.

[5] A.R. Gourlay, Splitting methods for time dependent partial differential equations, in: D. Jacobs, ed., The State of
the Art in Numerical Analysis (Academic Press, London/New York/San Francisco, 1977) 757-791.

[6] A.R. Gourlay and J.LI. Morris, Hopscotch difference methods for nonlinear hyperbolic systems, /BM J. Res.
Develop. 16 (1972) 349-353.

[7] E. Hairer and C. Lubich, Asymptotic expansions of the global error of fixed-stepsize methods, Numer. Math. 45
(1984) 345-360.

[8] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York/London, 1962).

[9] A.C. Hindmarsh, P.M. Gresho and D.F. Griffiths, The stability of explicit Euler time-integration for certain
finite-difference approximations of the multi-dimensional advection-diffusion equation, Internat. J. Numer.
Meth. Fluids 4 (1984) 853-897.

[10] P.J. van der Houwen and J.G. Verwer, One-step splitting methods for semi-discrete parabolic equations,
Computing 22 (1979) 291-309.

[11] J.J.H. Miller, On the location of zeros of certain classes of polynomials with applications to numerical analysis, J.
Inst. Maths. Appl. 8 (1971) 397-406.

[12] R.D. Richtmyer and K.W. Morton, Difference Methods for Initial-Value Problems (Interscience, New York/
London/Sydney, 1967).

[13] U. Schumann, Linear stability of finite difference equations for three dimensional flow problems, J. Comput.
Phys. 18 (1975) 465-470.

[14] L.F. Shampine and H.A. Watts, Global error estimation for ordinary differential equations, ACM Trans. Math.
Software 2 (1976) 172-186.

[15] H.J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations (Springer, Berlin/Heidelberg/
New York, 1973).

[16] J.G. Verwer and H.B. de Vries, Global extrapolation of a first order splitting method, SIAM J. Sci. Statist.
Comp. 6 (3) (1985).

[17] G.B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, New York, 1974).

28 Applied Numerical Mathematics 3 (1987) 361-362
North-Holland

CORRIGENDUM

J.G. BLOM, J.HM. TEN THIJE BOONKKAMP and J.G. VERWER

Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

“On the odd-even hopscotch scheme for the numerical integration of time-dependent partial
differential equations”, J.H.M. ten Thije Boonkkamp and J.G. Verwer [Applied Numerical
Mathematics 3 (1, 2) (1987) 183-193]

In Section 4 global Richardson extrapolation is suggested as a means for eliminating the Du
Fort—Frankel deficiency. Then, in Section 5, on the basis of two numerical examples the
conclusion is drawn that the deficiency is truly absent in the extrapolated scheme. This
corrigendum serves to show that this conclusion has turned out to be incorrect.

First consider the linear heat flow equation u, = u,, which is a special case of (4.1). Suppose
that we compute a solution on successively finer grids, using the stepsizes 7= 1, 37, T, -.-
and h = hg, 3hy, 3hg, ..., with either the hopscotch scheme or the Du Fort-Frankel scheme. It is
thus assumed, through the equivalence property, that the two schemes generate the same
approximate values. As 7,h — 0, these approximations converge to the solution values of the
related problem v,=v,, — (72/h*)v,. Let (x, t) be a point shared by all grids. Obviously
v(x, 1) =wv,,(x, 1), that is, apart from initial and boundary data, v(x, 1) is determined
exclusively bh the ratio of 7 and A.

Let us now consider the suggested extrapolation procedure. In the limit, that is 7,h -0 as
above, we herewith form the values

1
w(x, 1) =w,,(x, 1) =30, (x, 1) = 305,(x, 1).
A trivial calculation shows that w(x,) is a solution of the differential equation
_ 4 2 2 :
W, = Wix + 3(7 /h)(Ul'r/h = U-r/h)”’

which still contains a (72/h?)-term. This implies that the extrapolation cannot have the effect
which was aimed at. Also observe that w_ ,(x, 1) =W,) (s 2(X,).

Next we consider the numerical example Problem 1 of Section 5 with the aim of presenting the
correct interpretation of Table 2 and illustrating more comprehensively the effect of the
extrapolation. For this purpose we show, in addition to Tables 1 and 2, the new Tables 1, 2" and
5. Their entries have the following meaning. Table 5 gives the accuracy obtained in the spatial
discretization (5.1). Its entries contain the minimum of the number of significant digits in the
space errors, i.e., min ;(— olog | u(x;, 1) — U;(1) |). Tables 1’ and 2’ give the accuracy obtained in
the time integration of (5.1) by means of scheme (5.2) and the extrapolation thereof, respectively.
Their entries contain the minimum of the number of significant digits in the time errors, i.e.,
min (—olog |Uj(1) = U™ |) for Table 1" and min (—,clog|U,(1) - UJN |) for Table 2’. Recall
that the old Tables 1, 2 refer to the full error, being the sum of the space error and the time error.

0168-9274/87,/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland)

Corrigendum 29

Table 1 Table 2’
1 PRl 1 PR
20 40 80 160 320 20 40 80 160 320
20 2.03 40 2.93
40 2.63 2.03 80 4.28 293
80 3.23 2.62 2.03 160 5.53 4.28 2.93
160 3.84 322 2.62 2.03 320 6.74 5.53 4.28 2.93
320 4.44 3.83 3.22 2.62 2.03 640 7.95 6.74 5.52 4.28 293
640 5.04 443 3.83 322 2.62 1280 9.15 7.95 6.74 5.52 4.28
1280 5.64 5.03 4.43 3.83 322 2560 10.37 9.15 7.95 6.74 5.52

2560 6.24 5.63 5.03 4.43 3.83

Table 5

! 20 40 80 160 320
3.26 3.86 4.47 5.07 5.67

Inspection of Table 1 reveals two relevant features of the hopscotch scheme (5.2), namely its
second order in time for fixed & (N.B. ;olog 2 =0.3) and the h~2dependence of the error
function e® occurring in the global error expansion (4.4). Of course, this 4~ >-dependence is due
to the Du Fort—Frankel deficiency. In passing we note that when the numbers in Table 1 are
slightly larger than the minima of the corresponding numbers in Tables 1" and 5, that is due to
cancellation of time and space errors. We next consider the more interesting Table 2’ of the
extrapolated scheme. Surprisingly, this table shows fourth order in time for fixed 4 (the entries
increase approximately with 1.2 upon halving of 7), which means that the error function e in
(4.4) is absent. However, it also shows a &~ *-dependence of the next error function e, which in
turn implies that the deficiency is still there. This observation illustrates our proof above for the
heat equation.

Comparison of Tables 2" and 1" clearly shows that the extrapolation does reduce the time
integration errors. In fact, the decrease is so large that for many of the entries the spatial error
becomes dominant. This explains .why in the greater part of the full error Table 2 second order
shows up upon simultaneously halving 7 and h and, consequently, why the extrapolation in
connection to the Du Fort-Frankel deficiency was misinterpreted.

SIAM J. SCI. STAT. COMPUT. © 1988 Society for Industrial and Applied Mathematics 31
Vol. 9, No. 2, March 1988 003

THE ODD-EVEN HOPSCOTCH PRESSURE CORRECTION SCHEME FOR
THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS*

J. H. M. TEN THIJUE BOONKKAMPY

Abstract. The odd-even hopscotch (OEH) scheme is a time-integration technique for time-dependent
partial differential equations. In this paper we apply the OEH scheme to the incompressible Navier-Stokes
equations in conservative form. In order to decouple the computation of the velocity and the pressure, the
OEH scheme is applied in combination with the pressure correction technique. The resulting scheme is
referred to as the odd-even hopscotch pressure correction (OEH-PC) scheme. This scheme requires per time
step the solution of a Poisson equation for the computation of the pressure. For space discretization we use
standard central differences. We applied the OEH-PC scheme to the Navier-Stokes equations for the
computation of an exact solution, with the purpose of testing the (order of) accuracy of the scheme in time
as well as in space. Furthermore we applied the OEH-PC scheme for the computation of a model problem.
Finally, a comparison between two Poisson solvers for the computation of the pressure is presented.

Key words. Navier-Stokes equations, odd-even hopscotch method, pressure correction method
AMS(MOS) subject classifications. 65M20, 76D05

1. The OEH-PC scheme: time-integration. In this section we consider the odd-even
hopscotch (OEH) scheme applied to the incompressible Navier-Stokes equations in
conservative form. The OEH scheme is an integration scheme for time-dependent .
partial differential equations (PDEs), and it is applicable to wide classes of problems.
In addition, it possesses attractive computational properties which make the scheme
relatively easy to implement. For a detailed discussion of the OEH scheme the reader
is referred to [5] and [6]. Application to the compressible Navier-Stokes equations of
a scheme related to the OEH scheme is discussed in [16] and [17].

We adopt the pressure correction approach, which means that during the time
stepping process the computation of the velocity and the pressure is decoupled in a
predictor-corrector fashion. In what follows, the resulting scheme will be referred to
as the odd-even hopscotch pressure correction scheme (OEH-PC scheme). A discussion
of the pressure correction approach can be found in [1], [2] and [12].

Consider the incompressible Navier-Stokes equations in conservative form in d

space dimensions (d =2 or d =3) [15]
1,
(1.1) u,=f(u)—Vp, withf(u)=-V- (uu)+E; Vau, t>0, xe€Q,

(1.2) V-u=0, t>0, xe(,

where u is the (scaled) velocity, p the (scaled) pressure, and Re the Reynolds number.
Boundary conditions, to be specified for the velocity field u on the boundary I' of the
connected space domain (), will be introduced later. We shall present the OEH-PC
scheme for (1.1), (1.2) by following the method of lines approach [11]. Thus we suppose
first that by an appropriate finite difference space discretization the PDE problem (1.1),
(1.2) is replaced by a system of (time-continuous) ordinary differential equations
(ODEs) coupled with a set of (time-continuous) algebraic equations

(1.3) U=F(U)-GP,
(1.4) DU=B.

* Received by the editors October 22, 1986; accepted for publication (in revised form) May 6, 1987.
t Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands.

32 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

In (1.3) and (1.4), F(U) is the finite difference replacement of f(u), G and D are the
finite difference replacements of the gradient- and divergence-operator, respectively,
and B is a term containing boundary values for the velocity u.

At this stage of development of the OEH-PC scheme, there is no need to be precise
on the form of (1.3), (1.4). It suffices to mention that U, F and P are grid functions
(vectors) defined on a space grid covering Q. G and D are (nonsquare) constant
matrices and B is a vector. In what follows, j = (ji, - - -, js) is @ multi-index connected
to the grid point x; of the space grid under consideration and U, the component of U
in the x-direction (and likewise for P, F, B).

We are now ready to define the OEH-PC scheme for the semidiscrete PDE problem
(1.3), (1.4). First we consider only the ODE system (1.3). (Suppose for the time being
that P is a anown forcing term.) For this system the OEH scheme is given by the
numerical integration formula

(1.5) Ut =76 ((F(U)["' = (GP)[*) = U] + 76 (F(U)] = (GP))).

Here 7=1,,,—1, is the time step, U] stands for the fully discrete approximation to
U;(t,), and 6 is a grid function whose components 6] are defined by [5],[6]

1 if n+Y j; is odd (odd points),
(1.6) 6] = !
0 if n+Y j; is even (even points).

Note that if we keep n fixed, then (1.5) is just the explicit Euler rule at the odd points
and the implicit Euler rule at the even ones. Alternating between the explicit and
implicit Euler rules over the time-space grid is the essential feature of the OEH scheme.
We return to this point later in the paper.

Writing down two successive steps of scheme (1.5) yields

(1.7a) Ut =U] +76]F(U)] + 78] 'F(U); "' = 7(GP);,

(1.7b) U/ =00 470 F(U) I + 76) P PF(U) P - 7(GP)] .

Notice that in (1.7a) P is set at time level 1, = n7 and in (1.7b) at level t,,,=(n+2)7.
On a fixed space grid (1.7) may be interpreted as a second order integration formula,
using stepsize 27, for the ODE system (1.3). A somewhat more convenient form of
(1.7) is, using stepsize 7 instead of 27,

(1.8a) U=U"+17F,(U")+17F¢ (U)-17GP",

(1.8b) U™ =U+17Fg (U)+37Fo(U"") —37GP™ ",

v_vhere Fo is the restriction of F to the odd points, etc. Note that Fo+Fg =F. In (1.8)
U is interpreted as a result from an intermediate time level like in a Runge-Kutta

formula. We shall use this formulation in the remainder of the section.
Consider (1.8a), (1.8b) coupled with the (time-discretized) set of algebraic

equations
(1.8¢) DU"'=B"*",

The computation of U"*' and P"*' requires the simultaneous solution of (1.8b) and
(1.8c). We compute on approximation to U"*' and P"*', by following the well-known
pressure correction approach [1], [2], [12], in which the computation of the velocity
and pressure at the new time level is decoupled in the predictor-corrector fashion.

J. H. M. TEN THIJE BOONKKAMP 33

~
=

Substitution of P" for P""' in (1.8b) defines the predicted velocity U:
(19) U=0+37F (0)+1rFo(0) -1 1GP"
The corrected velocity and pressure (which we hereafter also denote by U"*' and P"*"

and hence should not be mixed up with the approximationg in (1.8a), (1.8b) and (1.8c))
are then defined by replacing Fo(U™™") in (1.8b) by Fo(U):

(1'10) U"H:ﬂ‘*‘%TFE(ﬁ)+%TFO('~=J)—%TGP"H,

together with the discrete continuity equation (1.8c). From (1.9) and (1.10) we trivially
obtain

(1.11) U —0=-1:GQ", Q"=p"t'—pn

The trick of the pressure correction approach is now to multiply (1.11) by D and to
write, using (1.8¢),

2 z
(1.12) LQ"=;(DU—B"*'), L= DG.

Note that (1.12) is a Poisson equation for Q" (L = DG is a discretization of the Laplace
operator V - (V)). The correction Q" for the pressure can be computed from (1.12),
and once Q" is known, the new velocity U""" can be directly determined from (1.11).

To sum up, the OEH-PC scheme for the semidiscrete Navier-Stokes problem
(1.3), (1.4) reads

- 1 1 ~ 1
(1.13a) U=U"+ETFO(U")+§TFE(U)—ETGP",
= o~ 1 - 1 2 1
(1.13b) U=U+5TFE(U)+ETFO(U)—ETGP",
n 2 & n+1 n+1 n n
(1.13¢) LQ"==(DU-B"""), P"'=P"+Q",
n+1 x l n
(1.13d) U =U-27GQ".

When combined with a suitable space discretization, the OEH-PC scheme possesses
various advantageous features. We shall discuss this in greater detail in the next section
for symmetric finite differences on a staggered grid.

For the boundary conditions for the intermediate velocities we take the first order
approximations U= u(t,+,,,) and U= u(t,+,) onI', where u is the exact boundary value
for the velocity. The initial pressure P° is computed from the Poisson equation

(1.14) LP°= DF(U°) - B°,

which can be easily derived from (1.3) and (1.4).
We conclude this section with some remarks. First, the second stage (1.13b) can
be economized by using its equivalent fast form (cf. [5], [6])

1 1
Go+5 TFO(B)—E (GP")o.

(1.13b") GE=2GE—UZ~, 60

Our implementation is based on this fast form. Second, in the derivation of scheme
(1.13) no use has been made of the particular definition of Fy, and Fg, except that
Fo +Fg =F.Consequently, in the spirit of the method of lines formulation [11], pressure

34 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

correction schemes using other splittings of F, such as ADI, can also be described by
(1.13) (see e.g., [12], where an ADI splitting is used). It is of further interest to note
that when considered as a solver for the ODE system (1.3) coupled with the set (1.4),
the OEH-PC scheme is of second order, for the computation of U and of first order
for the computation of P.

Finally, the OEH-PC scheme requires roughly the same number of operations per
time-step as the forward Euler scheme (we will demonstrate this in § 2.1), but has
much better stability properties. To illustrate this, consider the convection-diffusion
equation which models the convective and viscous effects of the Navier-Stokes

equations
(1.15) u+(q-V)u=eVu, 1>0, x€R
Here u(x, t) represents the convected and diffused variable, the vectorq=(q,, - - -, 94)"
the (constant) velocity, and £ > 0 a viscosity parameter. Suppose that for space discretiz-
ation we use standard central differences, with constant grid size h in all space-
directions. If the OEH scheme is formulated like in (1.8), then von Neumann stability
analysis applied to this scheme yields the following necessary and sufficient time step
restriction [21]

N4
(1.16) d(—) 5 giza.

h] =
For the forward Euler-central difference scheme, the time step restrictions for von
Neumann stability are [10], [21]

2der d gir

1.17 =1 ==l
() h2 ’ kZ_—:l 2¢

The secona inequality of (1.17) (convection-diffusion barrier) shows that the forward
Euler-central difference scheme becomes unconditionally unstable as £ -0, whereas
the OEH scheme is conditionally stable uniformly in ¢, i.e., 7= O(h) independent of
e. Observe that the first inequality for the forward Euler-central difference scheme
implies 7= O(e 'h?), which is disadvantageous for larger values of &. It is fair to say
that, in general, a disadvantage of the OEH-central difference scheme is the so-called
Du Fort-Frankel deficiency [5], [21]. However, as we will point out in § 3.2, in the
present application this disadvantage is of minor importance.

2. The OEH-PC scheme: space discretization. In § 2.1 we will discuss the space
discretization on a staggered grid of the Navier-Stokes problem, which defines the
fully discrete OEH-PC scheme. We will show that due to the conservative form, our
fully discrete OEH-PC scheme is in fact an explicit scheme, which needs only one
array of storage for the computation of the velocity. In § 2.2 we will discuss the Poisson
equation for the pressure, and in § 2.3 we will discuss (briefly) the space discretization
ontwo other grids. For the sake of presentation, we restrict ourselves to two-dimensional
rectangular domains.

2.1. Space discretization on a staggered grid. Consider the two-dimensional incom-
pressible Navier-Stokes equations in conservative form

(2.1a) u, = fi(u, v) = px With fi(u, v) = = (), — (uv), +é (U tuy,),

(2.1b) v, =fo(u, v)—p, withfi(u, v)=—(uv), —(vz),.+é (vex + 0555

(2.2) u,+v,=0,

J. H. M. TEN THUUE BOONKKAMP 35

with boundary conditions
(2.3) u=up, v=v on[l=9Q.

Note that there are no pressure boundary conditions available, although we have to
solve a Poisson equation for the pressure. We will return to this point later in the section.

For the space discretization, we use the staggered grid first introduced by Harlow
and Welch [8], see Fig. 1. The application of standard, second order central ditferences
on this grid converts (2.1a) and (2.1b) into (cf. (1.3))

(2.4a) ('j,}_—-Fl_,j(U, V)—d.P,, i=1(1)N—-1, j=1(1)M (interior X -points),

(2.4b) V F,;(U, V)—d,P i=1(1)N, j=1(1)M -1 (interior O-points),
where
Fy (U, V)=~ (U:H; Ui- |,)— L (Uu+l et = Ui Vi)
(2.5a)
1

+———Reh2-(Ui+|,j—2U.,+U)+ kz(U,]H 2U;+ U j-y),

1 - -
Fz_.-,-(U, V)=_2_h(U.'+l,jV.'+:,j“Ui~1,jVi—|,,) (V.,H %,,"1)
(2.5b)

1 1
+Re—h2"(v.'+|,j—2vij+v)+R kz (Vi,jn 2V +V; l)

1
(2.5¢) dePy="1 (Pt ;= Py),

1
(25d) dy P,j =E (Pi,jﬂ - Py)

Note that in the above formulation U, V and P are time-continuous grid functions
whose components U, V;; and P; approximate the velocities u, v and the pressure p,

o o VY o o Vo
J \J \Y4 U A4 \J
MX e X o X ¢ X o X o X o X v,
J O O O O O— O ,(
1 <o A4 A4 A4 < < 3 ©
X © X o X o X o X o X o X k pe X U
101616166106 —— Y
X © X e X o X e X e X e X . celli,
VY O Ve O O VoY
J A\ 4 \ 4 7 J U
] X ¢ X @ X o X o X e X e X
& O O o O O
A4 J \J J J A4
1 —i N
h

F1G. 1. The staggered grd.

36 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

respectively, at the corresponding gridpoints. In (2. 5a) V, i Tepresents an approximation
to V in the X-points (points where U is defined); llkew1se U, represents an approxima-
tion to U in the O-points. The values of V,; and Uj are determmed by averaging over
neighbouring values of V;; and U respectively, in such a way that the odd-even
coupling between the variables is preserved. This means that a variable in an odd point
is only coupled with variables in even points and vice versa. This leads to

(2.6) : Uy =3(U+ Uiy), Vy=2(Vy+ Viey j00).

The space discretization of (2.1), as defined in (2.4), (2.5) determines the vector-function
F(U) and the operator G in (1. 3) Let U=(U, V)", then F;(U)=(F,;(U,V),
Foi (U, v))" and GP;=(d,P;, d, P)

Concerning the boundary conditions for the velocity we note the following.
Consider, for example, (2.1a) in the x-points (i,1)(i =1(1) N —1). Discretization of
the derivatives (uv), and u,, would require values outside the computational domain.
Therefore we replace the central difference approximations to (uv), and u,, by the
following noncentered first order differences [15], which preserve the odd-even coupling
between the variables

(272) ((uv),) =3ik (Uis Via— u(ih, 0)o(ih, 0)),

4
(27b) (u‘)),|=ﬁ(u,2_3ul+2u(lh, 0))‘
Second order noncentered approximations to (uv), and u,, would destroy the odd-even

coupling.
Space discretization of (2.2) in all --points (using central differences) yields

(2.8) (DU); =7 (U= U, ;+B(V; -V, ;1)) =0,

S| -

where B = h/k Note that boundary values for U or V occurring in (2.8) are written
in the right-hand side B (cf. (1.4)). For example, for j=1, (2.2) is discretized as

(2.8") (DU);y = (Un U_,+BVa)=B,= T Vto-

Having defined the operators G and D, one can easily deduce the following
expression for the operator L

1
(LQ);=D(GQ); =h (d:Q; —d.Qi_, ;+B(d,Q;—d,Q,;_,))
(2.9) "
'—’? (ﬂzoi,j—l + Qi—l,j —(2+2B2)Qij+ Qn+l.j+BZQi,j+l),

which is the standard 5-point molecule for the Laplace operator. Near a boundary
(2.9) takes a different form, because of the different definition of the operator D. For

example for j =1, one finds

(LQ)in=D(GQ) =% (d, Qun—dy Q-1+ Bd, Qn)
(2.9) i
=P (Qi—l,l - (2+ﬁ2)Q:| + Qi+l,l +1320.~z)-

J. H. M. TEN THIJE BOONKKAMP 37

Now, consider (1.13c) at the --points (i, 1)(i = l(l)N). Using (2.8), (2.8), (2.9) and
(2.9"), it is easy to see that (Q— QM)/k=2(Viy "' = Vi)/ =0, which is the (central
difference) approximation of (8Q"/an),,=0, where n is the outward unit normal on
x =0. A similar argument applied to the Poisson equation for the initial pressure P°
((1.14)) leads forj = 1 to the boundary condition (3P°/an).= V% — Fiio(U°, V°), which
is in accordance with the Navier-Stokes equations. Hence we see that a Neumann
condition for the pressure (-increment) is automatically involved in the scheme.

Thus the scheme implies aP"/an =3P°/an onT atevery time level t, = n7, although
the exact pressure does not in general satisfy this condition. Most methods involve
artificial pressure boundary conditions, like, for example, the projection method [2],
[4], [15], [20]. In [20] Temam defines a projection method, which is a predictor
corrector method like the pressure correction method, in which in the predictor step
the pressure term is completely omitted. This scheme implies the “‘unphysical” boundary
condition 3P/an = 0. Nevertheless, he proves the convergence of his scheme. Therefore,
it is believed that our OEH-PC scheme does converge too, although the artificial
pressure condition will lead to some loss of accuracy. This is demonstrated with a
numerical example in § 3.1. A proof of convergence is out of the scope of the present
paper.
Having defined the space discretization, we now discuss in some detail the merits
of the resulting fully discrete OEH-PC scheme. Consider (1.13a) and (1.13b) of the
OEH-PC scheme. The order of computation is

(2.10a) Uo=UL+17F,(U") -1 7(GP")o,
(2.10b) Up = UL +37Fe (0) =3 7(GP")e,
(2.10c) UE—UE ZTFE(fJ) 1 +(GP")g =2Ug - UL,
(2.10d) U, =00 +17Fo(0)-47(GP™)o.

This scheme is in fact an explicit scheme. To demonstrate this, consider the computation
of U Clearly the computation of U, is explicit. Equation (2.10b) for the computation
of U reads for the U-component in an even point (i, j) (substitute (2. 5a), (2.5¢c) and

(2.6))
-~ -~ T -~ -~ -~
Uy = U; (U.+| i Uiz—u)_g‘,;(ui,jﬂ(vi_jﬂ‘*' Vi+|,j)

- ~ -~ T -~ - o~
(2-11) - Ui,,'-l(vi,j—|+ Vi+|,j—2))+ z(Ui+1_j"2Uij+ Ui—l,j)
2Reh

T T T n n
2 Re kz(Un,H 2ij+ Ui,j—l) AL (PH-l,j— Pij)-
The values of U,tl_,, U,,tl, V,,“ and V., _j—2 are odd numbered values which were
already computed with (2.10a). This means that (2.11) is only diagonally implicit, since
U is the only unknown, and hence explicit. In the same way, the computation of Ve
is expllcn A similar argument applies to the computation of U.

In scheme (2.10a)-(2.10d) the steps (2.10b) and (2.10c) are considered as one
computational step; first compute Ug in a point, store this value in a dummy-variable,
and then compute U in the same point, using the fast form. Taking this into consider-
ation, we easily see that only one array of storage is required for the computation of
U, which is especially advantageous for multidimensional problems.

2.2. The Poisson equation for the pressure. The pressure increment Q" is computed
from (1.13c), where the operator L is defined as in (2.9) and (2.9°). In fact

38 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

L is the 5-point discretization of the Laplace operator with Neumann boundary
conditions. Considered as a matrix, L has a few attractive properties, such as symmetry,
negative definiteness and a pentadiagonal structure. There are many methods available
for the solution of a set of equations with matrix L. Since the OEH scheme is very
cheap per step, it is essential that we combine it with a fast Poisson solver in order to
obtain a fast OEH-PC scheme. In our computations, we used the incomplete Choleski
conjugate gradient (ICCG) method [13], [14] and a multigrid (MG) method [9], [19].
A comparison between these two methods will be presented in § 3.3.

2.3. Space discretizations on other grids. For the space discretization, one can also
use the ordinary grid or the half-staggered grid, see Fig. 2; cf. [15]. In the ordinary
grid, the components of the velocity and the pressure are all defined at the nodes of
the grid. The advantage of this grid is its simplicity, especially treatment of the boundary
conditions for the velocity is straightforward.

r r

r
(2) ' (b)

FIG. 2. The ordinary grid (a) and the half-staggered grid (b).

However a disadvantage of this grid is the fact that the pressure is defined at nodes
on the boundary. Therefore, computation of the pressure in a pressure correction
fashion requires pressure boundary conditions, which are generally not available. In
the half-staggered grid, the components of the velocity are defined at the nodes of the
grid and the pressure is defined at the centre of each cell of the grid, cf. [4], [15]. The
pressure is not prescribed on the boundary anymore, and hence no pressure boundary
conditions are required. A disadvantage of this grid is the fact that the discretization
of the gradient- and divergence-operator is slightly more difficult than on the ordinary
grid or on the staggered grid.

The major drawback of the ordinary grid and the half-staggered grid is the fact
that these grids are not suitable for the computation of the pressure in a pressure
correction fashion. To make this plausible, consider the molecule fcr the operator
L= DG on the ordinary grid and the half-staggered grid, respectively, when standard
central differences are used for the discretization of the gradient- and divergence-
operator; see Fig. 3. The operator L on the ordinary grid is again the usual 5-point
discretization of the Laplacian, but now on a grid with double gridsize. The consequence
is that there exist four uncoupled networks of pressure points (see Fig. 3). This leads
to the existence of four independent solutions for the pressure, which differ from each
other by arbitrary constants. Furthermore, due to the double gridsize, the pressure on
the ordinary grid will be less accurate than on the staggered grid. The operator L on
the half-staggered grid is a 9-point discretization of the Laplacian unless B = 1(h = k),
then L is a 5-point discretization of the Laplacian denoted by the solid lines. In the
latter case, the pressure field is decoupled in two independent pressure fields, which

J. H. M. TEN THUE BOONKKAMP 39

¢
o s) Y
O----X¢-----0
i
o
L
@) (b)

F1G. 3. Molecule of the operator L, on the ordinary grid (a) and on the half-staggered grid (b).

differ from each other by an arbitrary constant. Because of this decoupling, the ordinary
grid and the half-staggered grid are not suitable for the computation of the pressure
using a pressure correction scheme. However, the pressure gradient is not affected by
this decoupling, and therefore one can still use these grids for the computation of the
velocity. In § 3.1 we will present a numerical illustration which clearly favours the
staggered grid.

3. Numerical examples. Combined with the ICCG method and an MG method .
for the solution of the Poisson equation, we have applied our OEH-PC scheme to two
Navier-Stokes problems. The first is a simple test problem, of which the exact solution
is known [2]. We used this problem to test the accuracy and the order of accuracy of
the OEH-PC scheme, in time and in space (see § 3.1). Our second problem is a model
problem that comes closer to practical applications. It concerns the flow through a
reservoir [12] (see § 3.2). In § 3.3 we will present a comparison, based on our experien-
ces, between the two Poisson solvers.

3.1. Accuracy and order test. In this section we discuss results of the OEH-PC
scheme applied to the incompressible Navier-Stokes problem with the exact solution

u(x,y,t)=—cos A(x—a)-sinA(y—a)- e—ZA’:/Re’

-2A%t/Re

p(x,y,t)=—45+(cos2A(x—a)+cos 2A(y —a)) - o A M/Re

(3.1) v(x,y,t)=sinA(x—a)-cosA(y—a)-e

In our computation we prescribed Dirichlet boundary conditions for u, v and for the
parameters A, a and Re we took: A =, a=0, 0.25 and Re =100. The velocity field
and the isobars for these values of A, a and Re are displayed in Fig. 4. The computational
domain is Q =(0, 1) x (0, 1) and the time-integration interval is [0, 1]. While referring
to our comments on the artificial pressure boundary condition, we notice that for a =0,
ap/an=0 on the boundary I' and for a =0.25, dp/dn #0 and a function of ¢t on I'.
Computations were performed on a staggered grid as well as on an ordinary grid, with
grid sizes h=k=15, 35, a and stepsizes 7=15, 35, -°, fes(T=h). Since
max (u(x, y, t)) =1 and max (v(x, y, t)) =1, the critical time step for von Neumann
stability for the related convection-diffusion equation is 7= h (cf. (1.16)).

With the purpose of testing the (order of) accuracy of the OEH-PC scheme in
time, as well as in space, we compare the numerical solution to the exact solution
(3.1). Let ,(h, 7) be the l,-norm of the absolute error in f(f=u, v or p) at t=1,
obtained for gridsize h=k and stepsize 7 Then the number of significant

40 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

, s 1 2 1 2 11 2t
L .01
-,LIIII}‘ il
_o//,,,l ‘
Y IR i\
| e s 77271110\
e r 77771V AAN
eaaar P27 1N AN
IS A B B SN
I L L
e & . B i
saamanar S S SNENE N BV AV S g cnana
F——SSSNN\A\\ LV W W0 e
——~SSNNA\N\\ LV L U2 0277 T
—=~SNALY) 110247777
F~SSVL)) 1117777
—~\\\\\ { ll//{':‘
-\\\\\)} (llll'
LR 2R 2 20 U 30 3R SR IR
/// N
N 7

e A

p? o ettt . . % N\) § & & &

rTrTTT TSIy

!
/
’
/’
’

,,_,,_-.\\\\\
,,,——\\\\\\
,,,,_s\\ \

e

l,,,-\\

\
\
1
!
’

i P

XY

I/J—‘-—-.—...\\\\\\ ViVl 2277

| A Attt N NN\ \ | | 7 7 7]

pasispers
v
tso-

4 &®

[
e

A I
NS

Y
\\\5..——-

F1G. 4. Velocity field and isobars.

digits in fA,(h,7), is defined as: A (h, 7):=—log,\(&,(h, 7)). Table 1 displays
Au(h, 7), A (h, 7) and A,(h, 7) for the numerical solution computed on the staggered
grid. For a =0, when looking along rows (7 fixed, h—>0), one can observe second
order behaviour in space (log,,(4) = 0.6), and when looking along diagonals (7/h fixed,
7-0), one observes second order behaviour in time and space of the OEH-PC scheme.
Note that the error in the solution is dominated by the space error. In the same way,
one observes that for a =0.25 the velocity components u and v behave second order
in space and time, and the pressure p at least first order. Comparing both solutions,
we see that the solution for a =0.25 is less accurate than the solution for a =0, this
due to the artificial pressure boundary condition for a = 0.25 (see § 2.1). However, the
OEH-PC scheme clearly does converge for a =0.25.

The same computations were performed on the ordinary grid, the results of which
can be found in Table 2 (we only present results for the velocity for a =0). The same
conclusions concerning the order of accuracy of the OEH-PC scheme apply to this
case. Comparing the results on the ordinary grid and the staggered grid, one sees that
the velocity on the staggered grid is approximately ten times more accurate than on
the ordinary grid. The reason for this is the inaccurate computation of the pressure
(-gradient) on the ordinary grid. This clearly demonstrates that the staggered grid is

J. H. M. TEN THUE BOONKKAMP 41

TABLE 1
A (h,), A (h,7) and A, (h, 7) for the staggered grid.

a=0.0
Au(h, 7) A (h, T) A, (h,)

h—l h—l h_l

! 10 20 40 ! 10 20 40 ! 10 20 40
10 2.53 10 247 10 1.93

20 2.53 3.22 20 2.47 3.16 20 1.91 2.63

40 2.53 3.23 3.85 40 2.47 3.16 3.79 40 191 2.56 3.45
80 2.53 3.23 3.86 80 2.47 3.15 3.79 80 1.91 2.55 3.26

160 2.53 3.23 3.86 160 247 3.15 3.79 160 1.91 2.54 3.19

a=0.25
Ay (h,) A (h, T) A, (k1)
-1 h! h!
! 10 20 40 ! 10 20 40 ! 10 20 40
10 2.01 10 1.81 10 1.72
20 2.01 2.79 20 1.81 2.60 20 1.74 2.09
40 2.01 2.79 3.50 40 1.81 2.60 3.36 40 1.75 2.11 2.62
80 2.01 2.79 3.50 80 1.81 2.60 3.35 80 1.75 2.12 2.64

160 2.01 2.79 3.50 160 1.81 2.60 3.35 160 1.75 2:12 2.65

TABLE 2
A, (h, 7) and A, (h, 7) for the ordinary grid, a =0.

A (h,) A, (h, T)
h! B!
! 10 20 40 ! 10 20 40
10 1.52 10 1.52
20 1.52 2.19 20 1.52 2.20
40 1.52 2.19 2.81 40 1.52 2.20 2.82
80 1.52 2.19 2.81 80 1.52 2.20 2.82
160 1.52 2.19 2.81 160 1.52 2.20 2.82

to be preferred to the ordinary grid, when solving the Navier-Stokes equations in a
pressure correction fashion.

In order to test the accuracy of the OEH-PC scheme when considered purely as
a time-integrator, it is convenient to compare the numerical solution to the exact
solution of the system of ODEs which results after space discretization. As an approxi-
mation to this exact solution, we take the numerical solution computed with stepsize
7=1/1280. The /,-norm of the absolute time error, ef(h, 7), is defined with respect to
this solution, and Af(h, 7)== —log,, (¢f(h, 7)) (f=u, v or p). We only present results
on the staggered grid for a =0.25, which can be found in Table 3. The experiment
clearly demonstrates the second order behaviour of the OEH-PC scheme for the
computation of the velocity, when considered as an ODE time-integrator. For the
computation of the pressure, the OEH-PC scheme is first order in time, though this is
not quite clear for h=1/20, 1/40. This is probably due to the fact that for these values

42 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

: TABLE 3
A%(h,7),A¥(h, 7) and A%(h, 7) for the siaggered grid, a =0.25.

A%(h,7) A¥(h, 7) A% (h, 1)
h! h! h!
7! 10 20 40 7! 10 20 40 7! 10 20 40
10 320 - 10 3.23 10 2.60
20 3.90 3.97 20 3.99 4.03 20 3.31 3.27
40 4.59 451 4.68 40 4.59 4.57 474 40 3.74 3.79 3.59
80 5.10 5.08 5.15 80 5.19 5.14 5.25 80 4.09 4.26 4.16
160 5.70 5.67 5.68 160 5.79 5.73 5.78 160 4.42 4.70 4.74

the asymptotics still do not hold (7 too large). We emphasize that columnwise the
number of digits found correspond to different ODE systems.

Next we discuss briefly the DuFort-Frankel (DFF) deficiency [6], [21]. Consider
the convection-diffusion equation (1.15), which models the convective and viscous
eflects of the Navier-Stokes equations. The OEH scheme for this equation is equivalent
to the leapfrog-DFF scheme at the odd points, cf. [21]. Let H, be the central difference
approximation to the first space derivative in the kth direction and wu, the standard
averaging operator in the kth direction, then the leapfrog-DFF scheme for problem
(1.15) reads

d
(3.2) (142do) U= (1-2do) U = ¥ (c Hi—4ow) UJ™,
k=1

where o =e7/h’, ¢, = q,7/h and h is the constant gridsize in all space directions. By
the DFF deficiency we mean that for 7, h - 0 the solution of scheme (3.2) will converge
to the solution of the problem

2

(3.3) u,+(q-V)u=£V2u—ed(%) u,.

In general, for convergence it is thus necessary that 7 = o(h). Through the equivalence
property, the same conclusion is valid for the OEH scheme. The DFF deficiency also
exists for the nonlinear Burgers equation, although the equivalence to the leapfrog-DFF
scheme cannot be derived in this case. Experiments in [21] showed that the OEH
scheme applied to the nonlinear Burgers equation failed to converge for a fixed ratio
7/h when 7, h-0. In our example, however, the OEH scheme does not suffer from
this deficiency. The reason for this is that the term edu,, is very small, and hence the
DFF deficiency is practically absent. In general the DFF deficiency will have some
negative influence on the accuracy. Fortunately, there is clear practical evidence (see
also [21]) that in most cases this will be of only minor importance.

3.2. Flow through a reservoir. In this section we discuss results of the OEH-PC
scheme when used to compute the flow in a reservoir [12] (see Fig. 5). Computations
were performed subject to the following initial conditions and boundary conditions:

initial conditions: u=v=0 for t=0
boundary conditions:
no slip: u=0, v=0

J. H. M. TEN THIJE BOONKKAMP 43

L inlet 4 free slip
2
no slip no slip
1
8
outlet
0 no slip 1

Fi1G. 5. The reservoir.

free slip: u, =0, v=0
inlet: u=0, v=-432(x—3)’x(1—-¢")
outlet: u=432G—y)y(1—e™"), v=0.

Notice that the boundary conditions satisfy

J‘ u-nds=J’I V-udS=0,
an Q

where n is the unit normal on 4Q2 (conservation of mass). The outlet boundary condition, -
which is a Poisseuille profile, is not very realistic, especially not for high Re-numbers
since it causes an artificial numerical boundary layer at the outlet. This boundary layer
may cause oscillations in the solution in the interior domain [18]. Therefore, we have
to look for other outlet boundary conditions with minimal influence on the interior
flow field. A very suitable outlet boundary condition is the so-called traction-free
boundary condition. This means that there are no viscous normal and tangential stresses
at the outlet (cf. [7]), i.e.,

2 1
(3.4) ‘r,x——-—p+R—e u, =0, fxy=-ﬁ;(uy+vx)=0.

However, these boundary conditions do not easily fit in the OEH-PC scheme. Another
possibility we adopt is to extend the computational domain with a horizontal pipe
connected at the outlet (extended domain). The assumption here is that the flow has
fully developed into a Poisseuille flow at the end of the pipe, which is a realistic
assumption, provided the pipe is long enough. In our computations we did not bother
about the length of the pipe, and took it equal to 1. The horizontal walls of the pipe
are no-slip walls.

We have computed the solution for =100(100)800 on the original domain as well
as on the extended domain, on a staggered grid with gridsize h=k =1/32. Time-
integration was performed from t=0 to t=4. The time step 7 was bounded by the
linearized stability restriction 7/h =v2/u,,., where u,.. is the (modulus of the)
maximum velocity (cf. (1.16)). Consequently we have chosen 7=%h for Re=
100(100)700 and 7=gh for Re =800, although these values for 7 are not the optimal
ones. However, especially for increasing Re, we prefer to remain on the safe side in
order to prevent nonlinear instabilities. Another reason to be careful is the fact that
we use the pressure correction method, the influence of which on stability is not yet
fully clear. The Poisson solver we used is the MG algorithm MGD5YV (see § 3.3). Figs.
6 and 7 prescnt the velocity and the isobars for, respectively, Re=100, 500 and

44 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

0 . . - - - = =~

~~ = = e, e e s e e e .,

\
N\
NN SN —— == ===

Re =500

e e e e e e NN \

—_—
~

7/
| 4o e eSS N N
N N N NN

Vs
T2 R D N |

\
NN ST
\\\‘\\'__..A// A=
\\‘\‘N_'W/'/A‘*\\

v P

e
e
T

%/
|
;

A A = A

IR P P o
NS

7/_..// ¢

.

'/
j
/

7
!

Re =800

— —— — — e NN 1

7 e = = SNNN NN AN
(20 T T R B}

A
__._—4/’/'///._-\

ST

;7
;
i
L L/ 1

Y
?
;
4

B =

R o -
LSS

T T v —

’

b 4
7
!

Fi1G. 6. Velocity field at 1 =4 for Re =100, 500 and 800.

800 at 1t =4 computed on the extended domain (the pipe of the extended domain is
not shown in these figures).

From our numerical experiments we can draw the following conclusions. For
small Re-numbers (Re =200), there is hardly any difference between the velocity field
and the isobars computed on the original domain and on the extended domain. The
velocity fields computed on both domains are almost free of oscillations. However,
oscillations do occur in the velocity field for Re > 200. In this case, the velocity field
computed on the extended domain is slightly better (smaller oscillations) than the
velocity field computed on the original domain. The isobars computed on the original

J. H. M. TEN THIJE BOONKKAMP 45

F1G. 7. Isobars at t =4 for Re =100, 500 and 800.

domain for Re> 200 are not correct, whereas the isobars computed on the extended
domain are much more realistic.

We borrowed this model problem from van Kan [12]. He computes the flow
(without pipe) using a pressure correction Crank-Nicolson ADI scheme (ADI-PC
scheme). The outflow boundary conditions he uses are a Poisseuille profile and the
traction-free boundary conditions. Comparing his results with ours, we can conclude
the following. Our velocity fields are in good agreement with the corresponding ones
computed by van Kan. However, his results are more disturbed by oscillations than
ours, and this is due to the numerical boundary layer at the outlet occurring in his
computations. We note that for the corresponding linear convection-diffusion problem
(1.15) the ADI scheme is unconditionally stabie, whereas the OEH scheme is only

46 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

conditionally stable. In practice the ADI scheme is often only conditionally stable,
especially for high Re-numbers, because of the nonlinearity of the convective terms
[12]. Nevertheless, the ADI scheme possesses better stability properties than the OEH
scheme, so that with respect to stability he normally can take larger time steps. The
computational costs per time step for the OEH scheme are less than those for the ADI
scheme, since the OEH scheme is in fact an explicit scheme and the ADI scheme
requires the solution of a number of tridiagonal linear systems every time step.
Therefore, it is not clear which scheme is to be favoured regarding the computational
time required. Another point is that extension of the computational domain is rather
tedious using an ADI technique, whereas for the OEH scheme this extension is
straightforward to implement.

3.3. A comparison between the Poisson solvers. The OEH scheme is a fast scheme
per time step. Therefore, in order to construct a fast OEH-PC scheme per time step,
one needs a fast Poisson solver. In this section we will compare the ICCG method
[13], [14] with the MG method MGDS5V [9], [19] we employed for the model problem.
This comparison is focussed on the computational time required for both methods.

The storage requirements for both methods are approximately the same, and are
substantial compared to the storage requirements for the OEH scheme. With respect
to the storage requirements, an excellent candidate to combine with the OEH scheme
is the MG method MGOO [3]. Unfortunately, at the time of carrying out this research,
MGO00 was not available in our computer centre, so we decided to compare ICCG -
with MGDSV.

The ICCG method is an iterative solution method for linear systems of which the
coefficient matrix is a symmetric M-matrix, and hence this method can be used for
the computation of the pressure. It is an incomplete decomposition method, combined
with the conjugate gradient method (cf. [13] and [14]). We used the ICCG (1,3)
method from [14]. The MG method MDGS5YV is a sawtooth multigrid iterative process
(i.e., one relaxation-sweep after each coarse grid correction) for the solution of linear
second order elliptic boundary value problems, cf. [9] and [19]. This multigrid method
uses incomplete line LU-decomposition as relaxation method, a 7-point prolongation
and restriction, and a Galerkin approximation for the coarse grid matrices. The ICCG
(1,3) process and the MG process were repeated, until the ,-norm of the residual
was less than 107°.

Using both Poisson solvers, the computations of § 3.1 (for a =0) were repeated
on a staggered grid with gridsizes h=k=1/8, 1/16, 1/32 and stepsizes 7= h,
3h™' - -+ 1/1024. Computations were performed on a Cyber 170-750 computer, and
all codes were in standard Fortran 77, except the code for the ICCG method which
is written in standard Fortran 66. Parameters of interest in our comparison are: the
(CPU-) time (in seconds) needed for the OEH scheme (TOEH), the time needed for
the ICCG method (TICCG), the time needed for the MG method (TMG), the ratios
a,=TICCG/TOEH and a,=TMG/TOEH, and the average number of iteration steps
(average over the number of time steps) for either the ICCG method or the MG method
(ANIT). In Table 4 we present the results for h~' = k™' =8, 16, 32.

From this table, we can draw the following conclusions. For the ICCG method
ANIT (and hence a,) is approximately proportional to h™' = k™', whereas for the MG
method ANIT (and hence a,) is approximately constant. One iteration step of the
ICCG method is faster than one iteration step of the MG method, and therefore the
ICCG method is faster on coarser grids and the MG method is faster on finer grids.
It should be noted that in the ICCG method, the decomposition of the matrix L is

J. H. M. TEN THUJUE BOONKKAMP 47

TABLE 4
Comparison between the ICCG method and the MG method.

ICCG method

b=t =g hl=k"'=16 hre =32
r' TOEH TICCG &, ANIT TOEH TICCG a, ANIT TOEH TICCG a, ANIT

8 0035 009 257 7.00

16 0070 0.159 227 6.06 0.191 1.026 537 11.38
32 0131 0313 239 5091 0.410 1.847 450 10.09 1.291 14.329 11.10 21.07
64 0273 0555 203 5.02 0.784 3.401 434 9.14 2.543 25901 10.19 19.17
128 0563 0973 173 427 1.561 6.144 394 8.29 5.093 47.019 9.23 17.21
256 1.070 1.582 148 3.16 3.100 9.247 298 596 10.324 84.165 822 15.16
512 2161 2956 137 282 6.234 15991 2.57 4.87 20.558 143.051 6.96 12.68
1024 4348 4819 1.11 200 12566 27.302 2.17 3.96 40.657 201.660 4.96 8.59

MG method

hi=kt=g h'=k"'=16 b
+' TOEH TMG a, ANIT TOEH TMG a, ANIT TOEH TMG a, ANIT

8 0029 0207 7.14 500

16 0.071 0389 548 4.69 0.197 0936 475 5.06
32 0137 0.669 4.88 4.03 0384 1.785 465 4.78 1.274 5246 4.12 5.00
64 0.279 1.281 459 3.77 0.770 3.044 395 4.02 2.546 10.049 395 4.78
128 0.543 2.099 3.87 3.01 1.543 5801 3.76 3.81 5.046 17.075 3.38 4.00
256 1.084 3161 292 213 3.143 9588 3.05 3.00 10.099 32.406 321 3.77
512 2154 6.078 2.82 200 6.286 18.024 287 282 19.874 52385 2.64 3.0l
1024 4448 12209 274 200 12.595 27.252 216 2.00 40210 97.593 243 271

computed at every time step, whereas in the MG method this is done only once. This
will not affect our conclusions seriously, since the computational time required for
this decomposition is negligible compared to the computational time needed even for
a small number of iterations [13]. Therefore, we may conclude that the MG method
is to be preferred to the ICCG method. Also observe that ANIT (and hence the
computational time per time step) decreases if we take smaller time steps. The obvious
reason for this is that the initial guess of the pressure increment Q”, for which we use
Q" from the previous time step, improves if we take smaller time steps 7. Finally,
although the ICCG method and the MG method are generally considered as fast
Poisson solvers, they still require a considerable part of the computational time in the
OEH-PC scheme. In our test problem this varies from 53-92 percent for the ICCG
method and from 68-88 percent for the MG method (see the columns under «, or a;
in Table 4). This clearly demonstrates that it is very important to use a fast Poisson
solver for the construction of a fast OEH-PC scheme.

4. Concluding remarks. In this paper we have constructed the OEH-PC scheme,
and demonstrated by two examples that it is a feasible scheme for the computation
of incompressible fluid flow. The scheme has a few attractive properties. First, the
scheme is very simple as it is (almost) explicit. Therefore, extension to arbitrary domains
(also three-dimensional) and to nonuniform grids is straightforward. Also the use of
standard upwind differencing renders no problem. Second, the scheme is fast per time
step, provided we have a fast Poisson solver for the computation of the pressure. Since
the scheme is in fact an explicit scheme, it is easy to vectorize for applications on a

48 HOPSCOTCH SCHEME FOR NAVIER-STOKES EQUATIONS

supercomputer. Finally, the scheme requires only one array of storage for the computa-
tion of the velocity, which is especially advantageous for three-dimensional problems.
A drawback of the scheme is the so-called DFF deficiency (see (3.3)), which has in
general a negative influence on the accuracy. For many flow problems however, this

deficiency will be of only minor importance. ,
Considered as an ODE time-integration technique, the OEH-PC scheme is second

order accurate for the computation of the velocity and first order accurate for the
computation of the pressure. Comparing the underlying OEH scheme with the ADI
scheme, we note the following. The ADI scheme has in general better stability properties
than the OEH scheme. However, the ADI scheme is stepwise more expensive than the
OEH scheme, and it would also require more memory. Therefore, we believe that the
OEH-PC scheme is a simple alternative to the ADI-PC scheme for many flow problems.

Acknowledgment. The author would like to thank J. van Kan for reading the
manuscript.

REFERENCES

[1] T. CEBECI, R. S. HIRSCH, H. B. KELLER AND P. G. WILLIAMS, Studies of numerical methods for the
plane Navier-Stokes equations, Comput. Meth. Appl. Mech. Engrg., 27 (1981), pp. 13-44.

[2] A.J. CHORIN, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), pp. 745-762.

[3] H. FOERSTER AND K. WITSCH, Multigrid software Jor the solution of elliptic problems on recianguiar
domains: MGO0 (release 1), in Multigrid Methods, W. Hackbusch and U. Trottenberg, eds.,
Springer-Verlag, Berlin, 1981, pp. 427-460.

[4] M. FORTIN, R. PEYRET AND R. TEMAM, Résolution numérique des équations de Navier-Stokes pour
un fluide incompressible, J. Méc., 10 (1971), pp. 357-390.

[5] A. R. GOURLAY, Hopscoich: a fast second-order partial differential equation solver, J. Inst. Maths.
Applics., 6 (1970), pp. 375-390.

[6] A.R. GOURLAY AND G. R. MCGUIRE, General hopscotch algorithm for the numerical solution of partial
differential equations, J. Inst. Maths. Applics., 7 (1971), pp. 216-227.

[7] P. M. GREsHO, R. L. LEE AND R. L. SANI, On the time-dependent solution of the incompressible
Navier-Stokes equations in two and three dimensions, in Recent Advances in Numerical Methods
in Fluids, Vol. 1, C. Taylor and R. Morgan, eds., Pineridge Press, Swansea, Wales, 1981, pp. 27-79.

[8] F. H. HARLOW AND J. E. WELCH, Numerical calculation of time-dependent viscous incompressible flow
of fluids with free surface, Phys. Fluids, 8 (1965), pp. 2182-2189.

[9] P. W. HEMKER AND P. M. DE ZEEUW, Some implementations of multigrid linear system solvers, in
Multigrid Methods For Integral And Differential Equations, The Institute of Mathematics and Its
Applications Conference Series, D. J. Paddon and H. Holstein, eds., Oxford University Press, New
York, pp. 85-116.

[10] A.C. HINDMARSH, P. M. GRESHO AND D. F. GRIFFITH, The stability of explicit Euler time-integration
for certain finite difference approximations of the multi-dimensional advection-diffusion equation,
Internat. J. Numer. Meth. Fluids, 4 (1984), pp. 853-897.

[11] P. J. vAN DER HOUWEN AND J. G. VERWER, One-step splitting methods for semi-discrete parabolic
equations, Computing, 22 (1979), pp. 291-309.

[12] J. VAN KAN, A second-order pressure correction method for viscous incompressible flow, this Journal, 7
(1986), pp. 870-891.

[13] J. A. MEUERINK AND H. A. VAN DER VORST, An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[14] , Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they
occur in practical problems, J. Comput. Phys., 44 (1981), pp. 134-155.

[15] R. PEYRET AND T. D. TAYLOR, Computational Methods for Fluid Flow, Springer-Verlag, New York,

1983.
[16] S. M. ScaLA AND P. GORDON, Reflection of a shock wave at a surface, Phys. Fluids, 9 (1966), pp.

1158-1166.
. Solution of the time-dependent Navier-Stokes equations for the flow around a circular cylinder,

AlAA J., 6 (1968), pp. 815-822.

[17]

J. H. M. TEN THUUE BOONKKAMP 49

[18] A.SEGAL, Aspects of numerical methods for elliptic singular perturbation problems, this Journal, 3 (1982),
pp- 327-349.

[19] P. SONNEVELD, P. WESSELING AND P. M. DE ZEEUW, Multigrid and conjugate gradient methods as
convergence acceleration techniques, in Multigrid Methods For Integral And Differential Equations,
The Institute Of Mathematics And Its Applications Conference Series, D. J. Paddon and H.
Holstein, eds., Oxford University Press, New York, 1985, pp. 117-167.

[20] R. TEMAM, Navier-Stokes Equations, North-Holland, Amsterdam, 1977.

[21] J. H. M. TEN THUE BOONKKAMP AND J. G. VERWER, On the odd-even hopscotch scheme for the
numerical integration of time-dependent partial differential equations, Appl. Num. Math., 3 (1987),
pp- 183-193.

51

The Odd-Even Hopscotch Pressure Correction Scheme for the
Computation of Free Convection in a Square Cavity

J.H.M. ten Thije Boonkkamp

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The odd-even hopscotch scheme is a time-integration technique applicable to large classes of time-
dependent partial differential equations. In this paper the scheme is applied to the incompressible Navier-
Stokes equations in Boussinesq approximation. The odd-even hopscotch scheme is combined with the
pressure correction method in order to decouple the computation of the pressure from that of the velocity
and temperature. The resulting scheme is called the odd-even hopscotch pressure correction scheme, and
when combined with a suitable space discretization this scheme proves to be efficient regarding computing
time and storage requirements. The scheme is used for the computation of steady and periodic free con-

vection in a square cavity.

1980 Mathematics Subject Classification: 65M20, 65N05, 76D05
Keywords & Phrases: free convection, Navier-Stokes equations in Boussinesq approximation, odd-even

hopscotch method, pressure correction method.

1. INTRODUCTION

In this paper we consider the free convection of a fluid in a square cavity, i.e. the flow in a cavity
caused by a temperature gradient. For this problem we use the primitive variable formulation (velo-
city, pressure, temperature) and the governing equations are the Navier-Stokes equations in Bous-
sinesq approximation [3].

We consider the fully transient Navier-Stokes equations in Boussinesq approximation. For the
time-integration of these equations one can choose an explicit scheme, an implicit scheme or a combi-
nation of both. Explicit schemes are very cheap (per time step), but stability of these schemes is sub-
ject to severe time step restrictions. Implicit schemes are usually unconditionally stable, but are much
more expensive since they require the solution of large sets of algebraic equations at each time step.
The time-integration technique we use is the odd-even hopscotch (OEH) method, which is a combina-

tion of the explicit and implicit Euler rule [5, 6, 10]. When combined with a suitable space

52

discretization, the OEH scheme is almost as cheap (stepwise) as the explicit Euler rule, but has much
better stability properties.

In order to decouple the computation of the pressure from the computation of the velocity and the
temperature, the OEH scheme is combined with the pressure correction method [2, 11]. The scheme
thus obtained is called the odd-even hopscotch pressure correction (OEH-PC) scheme. The OEH-PC
scheme we will describe in this paper is an extension of the OEH-PC scheme for the incompressible
Navier-Stokes equations described in [16].

The purpose of this paper is to give a description of the OEH-PC scheme for the free convection
problem and to demonstrate that it is a feasible time-integration technique for this problem. To that
end we apply the OEH-PC scheme to a steady free convection problem and a periodic free convection
problem.

The contents of the paper is the following. In Section 2 a description of the free convection prob-
lem is given. The OEH-PC scheme is introduced in Section 3 and the space discretization combined
with this scheme is given in Section 4. Section 5 is devoted to the pressure computation and Section 6
gives a survey of the stability results for the OEH scheme based on linear stability theory. In Section
7 the computational results are presented for both the steady and periodic free convection problem.

Finally, some conclusions are formulated in Section 8.

2. PHYSICAL PROBLEM AND EQUATIONS
Consider the free convection of a viscous fluid in a two-dimensional square cavity of width / as shown
in Fig. 1. [13, 18]. The direction of the gravitational acceleration g is along the negative y-axis and the
physical boundary conditions are:
- no slip conditions for the velocity on all 4 walls
- constant temperatures T and 7,(T;>T,) on respectively the left and right vertical walls
- adiabatic horizontal walls or a linearly varying temperature at the horizontal walls.
The equations governing the fluid motion, in the Boussinesq approximation [3], are:

equation of continuity
u +v, =0 2.1

equations of motion (Navier-Stokes equations)

u tuu, +vu, = —ipx +rv2u (2.2a)

v tuv, tw, = —;lgpy-kvvzv —g(1—a(T —Ty)) (2.2b)

53

temperature equation
T,+ul, +vT, = aV’T. (23)

In the above equations u and v are the components of the velocity in x- and y-direction, respectively,
p is the pressure and T the temperature. The unknown quantities u,v,p and T are all functions of x,y
and ¢, whereas py is the (constant) density at some properly chosen mean temperature T¢. In this

problem T, = %(Tl +T,). The coefficients »,a and a are respectively the kinematic viscosity, the

coefficient of volume expansion and the coefficient of thermal conductivity.

u=vy=0
Y
T,=0or T=(T,~T)x+T,
/
l 8
T=r, T=r,
u:y:O u:V=0
T,>T,
0
u=y=0 / x

T,=0o0r T=(T,~T)x+T,

Fig.1. Geometry and boundary conditions.

54

In order to make the above equations dimensionless, we introduce the following (dimensionless)

quantities:

’

= X oo B obon Bt o 3
X l,y I t t, u au, v v, 24

Il

N ;-
P = P[)az(p phydr)yT = TI_T2~

Note that p’ is the dimensionless deviation from the hydrostatic pressure py,,, = const. —pogy. After
P Y P Phy &

substitution of these variables, the governing equations take the following form (after dropping the

primes)
u+v, =0 (2.5)
u +uu, +vu, = —px+PrV2u (2.6a)
vt +w, = —p,+Prvdv+RaPr(T —7) (2.6b)
T, +uT, +vI, = VT, @7

where Pr and Ra are the Prandtl number and the Rayleigh number respectively, defined by

gl =Ty

va

= X
Pr=2 R (2.8)

In the dimensionless variables the computational space domain is € = [0,1]X[0,1] and the boundary

conditions we consider read

y=0lu=v=0, T:V =QorT=—x+1.

Initial conditions will be specified later.
In what follows we will consider the dimensionless equations and refer to them, for convenience, as
the Navier-Stokes equations in Boussinesq approximation. Finally we note that the equations (2.6a)-

(2.7) can be rewritten as
u+ W) +w), = —p+Prviu (2.62)

v H @)+, = —p,+Prtv +RaPr(T—7) 2.6b")

55

T+l +0T), = V'T. @7)

The equations (2.6a)-(2.7) are written in the so-called convective form and the equations (2.6a’)-(2.7")

in the conservative form.

3. THE OpD-EVEN HOPSCOTCH PRESSURE CORRECTION SCHEME
In this section we consider the odd-even hopscotch (OEH) scheme for the time-integration of the
Navier-Stokes equations in Boussinesq approximation. For a detailed discussion of the OEH scheme,
the reader is referred to [5,6,10,17]. The OEH scheme is combined with the pressure correction
method, which is a predictor-corrector method for the decoupling of the pressure computation. The
resulting scheme will be referred to as the odd-even hopscotch pressure correction (OEH-PC) scheme,
and is an extension of the scheme given in [16]. A description of the pressure correction method can
be found in [2, 11].

The Navier-Stokes equations in Boussinesq approximation in d space dimensions (d =2 or d =3)

can in general be written as:

u, = f(u,7)—Vp 3.1
T, = h(u,T) (32)
Vu =0, 3.3)

where u is the velocity, p the pressure and T the temperature. For the time being, the exact form of
f(u,T) and h(u,T) (convective/conservative) is not important. The partial differential equations
(PDEs) (3.1)+(3.3) are defined on a connected space domain £ with boundary T, on which conditions
for the velocity u and the temperature T are specified. Notice that the boundary conditions for u must

satisfy
gunds = / ‘{ VudS = 0, (3.4)
where n is the unit outward normal on I" (conservation of mass).
We present the OEH-PC scheme for the PDEs (3.1)-(3.3) following the method of lines approach

[10]. Thus suppose first that by a suitable finite difference space discretization the PDEs (3.1)-(3.3) are
replaced by the following set of ordinary differential equations (ODEs) and algebraic equations

U = F(U,T)-GP 35)

T = HU,T) (3.6)
DU = B. 3.7

In (3.5)-(3.7) the variables U,P and T are grid functions defined on a space grid covering £, and
F(U,T) and H(U,T) are the finite difference replacements of f(u,7) and h(u,T), respectively. The
operators G and D are the finite difference replacements of the gradient- and divergence-operators
and B is a term containing boundary values for the velocity u.

First consider the ODEs (3.5), (3.6) and suppose for the time being that GP is a known forcing
term. Let x; be a gridpoint corresponding to the multi-index j = (ji,..,js) and let U} denote the

approximation to u(x;,t,) (and likewise for P,T,F and H), then the OEH scheme for (3.5), (3.6) reads
(6]

Urtl—ogn H1F,U), T~ (GP)) +') = UJ +18](F;(U", T")—(GP)]) (3.8a)
T = P H, U, T Y = Tr 8 H (UM, T, (3.8b)
Here 7 = 1, 1| —1, is the time step and] is the so-called odd-even function defined by
lifn +2j‘ is odd (odd points)

J = 10if n+ 3 is even (even points). ()

Note that in the odd points the OEH scheme reduces to the forward Euler rule and in the even points
to the backward Eules rule.
An alternative form of (3.8a), (3.8b) is

Un+l

U +1F (U, T") +1Fg(U" 1, T * 1) = 1(GP™)p —H(GP" *1)g (3.10a)
Tntl = T"+TH0(U",T")+’THE(U"+],T"+]), (3]()b)

where F is the restriction of F to the odd points (etc.). Note that Fp+F; = F and Hp +Hp = H.
We shall use this formulation in the remainder of the section. It is customary to write down two suc-
cessive steps of (3.10a), (3.10b) with stepsize /2, where the order of implicit and explicit calculations
alternate [17]

U = U+ 21Fo(U", T")+ 3 7F (U, T) — 3 7GP" (.11a)

T = T"+31Ho(U", ") +57Hp(U, T) (3.11b)

57
Ul = U+ 31Fp(U, T)+ 3 1Fo(U 1, T)~ SrGPn ! (3.110)
T4 = T3 rHg(U, T)+ 3 7Ho(U 1, T 1), (3.11d)

This is a second order accurate integration formula for the numerical integration of the ODE systems
(3.5), (3.6) using stepsize 7. The variables U and T can be interpreted as results from the intermediate
time level (n +%)'r, like in a Runge-Kutta formula. Note that in (3.11a) P is set at time level 7, = nr
and in (3.11c) at time level ¢, 4, = (n +1)7. An alternative for maintaining second order is to com-
pute P at time level (n+1/2) in both stages. However the choice made in (3.11a), (3.11c) is better
adapted to the pressure correction approach.

Consider (3.11a)-(3.11d) coupled with the (time discretized) set of algebraic equations
DU+l = pntl, (3.11e)

The computation of U"*! P"*! and T"*! requires the simultaneous solution of (3.11c)-(3.11e). In
order to avoid this, we follow the known pressure correction approach [11] in which the computation

of P"*! is decoupled in the predictor-corrector fashion. Substitution of P" for P"*! in (3.11c)

defines the predicted velocity U and the predicted temperature T. The corrected velocity, pressure and
temperature (which we hereafter also denote by U"*! P**! and 7""! and hence should not be

mixed up with the approximations in (3.11c), (3.11d)) are then defined by replacing Fo(U" *!, 7" 1)

in (3.11c) and Ho(U"*', ") in (3.11d) by respectively Fo(U,T) and Ho(U,T):

Ut = U4 eFg(0, 1)+ 3 7Fo(U,)~ 31GP"+! (3.12a)
Tn+l s i”"‘%THE(fJ,i)“’%THO(ﬁ,;'), (312b)

together with the discrete continuity equation (3.11e). From (3.12a), (3.12b) and the modified equa-

tions (3.11c), (3.11d) one can easily see that

Ut -U = —316Q", Q" = Pn+i—pr (3.13a)

T"H T = 0. (3.13b)

The trick of the pressure correction method is now to multiply (3.13a) by D and to write, using
(3.11e),

Lo" = %(DI~J—B"+‘),L = DG. (.14)

58

Since L = DG is a discretization of the Laplace operator V+(V7), the correction Q" for the pressure
can be obtained by applying a Poisson solver. Once Q" is known, the new velocity can be directly
determined from (3.13a).

To sum up, the OEH-PC scheme for the semi-discrete system (3.5)-(3.7), reads

U = U+ 2 Fo (U, T")+ 3 F (U,)~ 3 1GP” (3.15a)
T = T+ TrHo(U", ") + 5 rHp(U, T) (3.15b)
U= fJ+%TFE(ij)+%TFO(IzJ, T"+1)—21GP" (3.15¢)
Tnl = i+%THE(O,h+%THO(§,T"+') (3.15d)
LO" = %(DTJ—B"“),P"“ = Pr4Qr (3.15¢)
U+l = ﬁ,%TGQn_ (3.15f)

When combined with a suitable space discretization, the OEH-PC scheme possesses various advanta-
geous features. We shall discuss this in greater detail in the next section for symmetric finite
differences on a staggered grid.

We conclude this section with two remarks. Firstly, the second stage (3.15c), (3.15d) can be

economized using its equivalent fast form (cf. [5, 6])

e = Up—UL, T3 = 2T —T% (3.16a)

R

Up = Up+37Fo(U, T"*)= 21(GP™)g, Th*! = To+51Ho(U,T"*). (3.16b)

Our implementation is based on this fast form. Secondly, in the derivation of scheme (3.15) no use
has been made of the particular definition of Fy,Fg,Hy and Hp, except that Fp+Fr = F and
Hp+Hg = H. Consequently, pressure correction schemes using other splittings of F and H, such as
ADI, can also be described by (3.15).

59

4. SPACE DISCRETIZATION

Consider the two-dimensional Navier-Stokes equations in Boussinesq approximation (see Section 2)
U = fl(ll,V,T)_Px, with fl (u,v,T) = _(uz)x —(“v)y +Pr(uxx +uyy) (413)
v = fou,v,T)—p,, with fr(u,v,T) = —(uv), —(vz)y + Pr(ve +vy,)+ RaPr(T — %) (4.1b)

T, = h(uy,T), with h(uv,T) = —uT,—vT,+T,+T, 4.2)
u,+v, = 0. (4.3)

Note that the equations of motion are written in conservative form while the temperature equation is
written in convective form. The reason for this will become clear later. Boundary conditions for the
velocity and the temperature are specified. There are no pressure boundary conditions available for
(4.1)<(4.3). In [7] it is shown that the semi-discrete system (3.5)-(3.7) combined with the central
difference space discretization on a staggered grid, to be discussed below, automatically involves pres-
sure boundary conditions. Furthermore, in [2] it is shown that for the pressure correction method no
pressure boundary conditions are needed. This relieves us from specifying extra numerical pressure
boundary conditions.

For the space discretization we use the staggered grid of Fig.2. (see also [12,16]). The application of
standard, second order central differences converts (4.1a)-(4.2) into (Cf.(3.5), (3.6))

U,j = F;(U,V,T)—d.P; i = I()N —1, j = I(1)M (interior X —points) (4.4.a)
17,-1- = F;(U,V,T)=d,P; i = I()N, j = I(1)M —1 (interior O —points) (4.4b)
7’,,- = Hy(U,V,T) i = ()N —1, j = ()M —1 (interior *— points) 4.5)
where
1 1 = =
Fi(UV,T) = —E(Uizﬂ,j_U.z—l.j)*ﬁ(ui.jﬂ Vijy1=Uyj1Vij-1) + (4.6a)

P P
U1y =2y Ui)+ 7 U1 =205+ Uy)
= = — 1
Fi(UV,T) = T(UHIJV.'+|,j_Ui—l,jVi—|,j)—§(V:2,j+l Vi + (4.6b)

P P = i
TV =Wy Vi) 3 Vi =2V Vi) Rapr (T - 3)

60

%
@
*
°
x
°
X
®
*
°
*
—
=
o
\
)
<

® O @ (
*—%
®

D ® (

2P e

>1 | h

Fig.2. The staggered grid.

—-17 17
Hy(U,V,T) = h Uij(T:+I,j_Ti—l,j)_—2;V:j(Ti‘j+l =T+ (4.6¢)
1 1
h—2(Ti+l‘j_2Tij+Ti—l'j)+F(Ti,j+l_2Tij+Ti,]~l)
1
deij = ;(Pi-fl,/_Pij) (4.6d)

1
dyP," = T(P,"jq,l '_P,]) (4.66)

In (4.6a) I_/,-j represents an approximation to ¥ in the X-points (points where U is defined); likewise

l_],-j and T;; represent approximations to U and T in the O-points. The values of U,,,V,-j and 7',-, are
determined by averaging over neighbouring values of respectively U;;,V;; and T}, in such a way that
the odd-even coupling between the variables is preserved. This means that the variables in an odd cell

are only coupled with variables in even cells and vice versa. This leads to

- 1 = 1 = 1
j = Wit Ui j) Vi = 2(Vii+Visj-0). Ty = 3(T+Ti-y). 4.7)

61

The same argument leads to the definitions

1 - 1
Uy = 3Wy+Uygs)Vy = 704V, 48)

where ?J,j and ;/,-j are approximations to U and ¥ in the *-points. In case we use the convective form
of the equations of motion or the conservative form of the temperature equation, one can see that the
odd-even coupling between the variables is lost. This explains our choice of writing the equations of
motion in conservative form and the temperature equation in convective form. Observe that the gra-
dient operator G (Cf.(3.5)) is defined by GP;; = (deij,dyP,-j)T.

Concerning the boundary conditions for the velocity we note the following. Consider e.g. equation
(4.1a) in the X-points (i, 1)(i =1(1)N —1). Discretization of the derivatives (uv), and u, would
require values outside the computational domain. Therefore we replace the central difference approxi-
mations to (uv), and u,, by the following noncentered first order differences [12], which preserve the

odd-even coupling between the variables

(@) = (Ui T2 —u(ih, O i, 0) 499
)1 = 505 (U2 =30 +2u(h 0). (4.9b)

Second order non-centered approximations to (uv), and u,, would destroy the odd-even coupling,

Space discretization of equation (4.3) in all --points (using central differences) yields
1
DU); = (U= Ui+ BV =Vij-1) = 0, (4.10)

where B = h/k. One should note that boundary values for U or V occurring in (4.10) are written in

the right hand side B (Cf. (3.7)). For example for j = 1, equation (4.3) is discretized as

v 4.10')

(DU); := %(Uil_UiAI'l‘*'BVil) =By = X

Having defined the operators G and D, one can easily deduce the following expression for the

operator L
(LQ); = D(GQ); = -}l"(deij—dei—l.j+B(dyQij_dyQi.j—l» = (4.11)

h%(ﬂzQi,j—l +0i1j—Q+28)Q;+0i 1+ Qij+1)

62

which is the standard 5-point molecule for the Laplace operator. Near a boundary (4.11) takes a

different form, because of the different definition of the operator D. For example, for j = 1 one finds
] ’
(LQ)i1 = D(GQ);y = ;(deil —d Qi 1,1 +Bd, Qi) = 4.11)

Q11— @B + Q11+ 00).

Now consider equation (3.15¢) at the --points (i, 1) i = 1(1)N). Using (4.10), (4.10), (4.11) and

(4.11') it is easy to see that %(Q,-o—Qn) = %(V,"oH —T/,o) = 0, which is the (central difference)
imation 0 22— Lh o) - - _
approximation to on (G —=5)h,0) = 0, where n is the outward unit normal on x = 0. Hence we see

that a Neumann condition for the pressure increment is automatically involved in the scheme (see
also [2]).

We conclude this section with a few remarks. The essential feature of the OEH scheme is the alter-
nating use of the forward and backward Euler rule. Consider the equations (3.152)-(3.15d) of the
OEH-PC scheme (3.15). The order of computation is:

Up = Up+31Fo(U", T")—21(GP"), (4.12a)
Tp = Th+51Ho(U",T") (4.12b)
U = Up+57F(0,)~ 37(GP")g (4.12¢)
Ty = T +57Hg(U,T) (4.12d)
Ug = Ug+3Fp(0, 1)~ Tn(GP™); = 205~ U} (4.12¢)
T3 = Te++eHe(0,7) = 2T~ T} (4.12f)
Uo = Uo +3Fo(U, ") —31(GP"), (4.12g)
Tyt = To+ SrHo(U,T"). (4.12h)

Because of the odd-even coupling between the variables and the alternating use of the forward and
backward Euler rule, the algorithm (4.12) is only diagonally implicit. This means that per cell a 3X3
system of linear equations has to be solved, which is of course very cheap. Hence the OEH-PC

63

scheme is almost as fast as the explicit Euler rule, but has much better stability properties as we shall
see in Section 6. From (4.12) one can also see that only one array of storage is required for each vari-
able (a known feature of the OEH scheme [5, 6]), which is especially of interest for multi-dimensional

problems.

5. COMPUTATION OF THE PRESSURE

For the computation of the pressure (-increment) we have to solve the Poisson equation
n — 2 — s n+l
LQ" = Z¢, ¢ = DU-B"*, .1)

where L is the operator defined in (4.11) and (4.11). Considered as a matrix, L has a few attractive
properties such as symmetry, non-positive definiteness and a pentadiagonal structure. However, L is
singular with Le = 0, where e = (1,...,1)7, and therefore the set of equations (5.1) has only a solu-

tion if (e,c) = 0. The condition (e,c) = 0 is equivalent to

Sk vty + Shome v = o, (5.2)
=1

Jj i=1

which is a second order approximation to (3.4) at time level ¢, .; = (n + 1)7. In our case (5.2) is trivi-
ally satisfied due to the zero boundary values for the velocity. For arbitrary boundary values ur, it
may be necessary to make small adjustments in the right hand side ¢ in order to satisfy (5.2).

There are many methods available for the solution of (5.1). Since the OEH scheme is very cheap
per time step, it is essential that we combine it with a fast Poisson solver in order to obtain a fast
OEH-PC scheme. In our computations we used the multigrid method MGD5V [8, 15]. The multigrid
method MGD5V is a saw tooth multigrid iterative process (i.e. one relaxation sweep after each coarse
grid correction) for the solution of linear second order elliptic boundary value problems. It uses
incomplete line LU-decomposition as relaxation method, a 7-point prolongation and restriction, and a
Galerkin approximation for the coarse grid matrices. The multigrid process is repeated until the /,-
norm of the residual is less than 10~*. We wish to emphasize that MGD5V was designed for more
general elliptic problems than our simple Poisson equation. Consequently, the computation of the
pressure-increment, which is considerable anyhow, can probably be done faster with a solver

specifically designed for the Poisson equation.

64

6. LINEAR STABILITY ANALYSIS
In this section we present the conditions for stability based on von Neumann analysis [14]. Consider
the linearized equations (Cf.(2.6a)-(2.7))

u+qiu+qau, = —pHPrviu (6.1a)
v+ qiv+qav, = —p,+Pro?v+RaPr(T —7) (6.1b)
T+ T +q, T, = VT, 6.2)

where ¢, and ¢, are properly chosen approximations to u and v. Note that the computation of T is

now decoupled from the computation of u and v, and hence the term RaPr(T——;-) in (6.1b) can be

considered as a source term, which has no influence on stability. Therefore we can leave out this term
in our analysis. For the sake of simplicity we also leave out the terms —p, and —p,, and thus con-

sider the equation
fi+(@V)f = eV2f, t>0, xeR4, (6.3)

where f = uyvor T, q = (41,-94)" is the constant velocity and €>0 the viscosity parameter. This
equation models the convective and viscous effects in (6.1a)-(6.2).

Suppose that for space discretization of (6.3) we use standard central differences with mesh size h in
all space directions. Then von Neumann stability analysis yields the following necessary and sufficient

time step restrictions [17].
d.(%)2 ﬁj g <4 (6.4)
k=1

Observe that the time step restriction is independent of the viscosity parameter e. In our actual com-
putations (d =2), the value of 7 is based on the choice ¢; = Umax,§2 = Vmax» Where umay and vmax
are estimates of the maximum values of respectively u and v.
For the sake of comparison, we give the necessary conditions for von Neumann stability of the for-
ward Euler central difference scheme for (6.3)[9]
2der _ 1%_1

< 1

h? o 2

< 1, (6.5)

The second inequality (convection-diffusion barrier) shows that the forward Euler central difference
scheme becomes unconditionally unstable as € — 0, whereas the OEH scheme is conditionally stable

uniformly in ¢ ie. 7= O(h) independent of e. The first inequality of (6.5) implies that

65

7 = O(e 'h?) for stability, which is disadvantageous for large values of e. From the above it is clear
that the OEH scheme has much better stability properties than the forward Euler central difference

scheme.

7. COMPUTATIONAL RESULTS

We have computed the solution of the free convection problem (2.5)-(2.9) with adiabatic horizontal
walls and with perfectly conducting horizontal walls, i.e. walls with a linear temperature profile. In all
computations, the Prantl number is set equal to 0.71 (air). The first problem, with adiabatic horizontal
walls, has a steady solution for at least Ra<< 107 [13] and is referred to as the steady free convection
problem. The second problem, with a linear temperature profile at the horizontal walls, has a solution
which undergoes a Hopf bifurcation at approximately Ra=3*10° and beyond this value the flow is

periodic [1]. This problem is referred to as the periodic free convection problem.

7.1 Steady free convection

We have computed the solution of this problem for Ra=10%,10%10° and 10°. Computations are per-
formed on a 20*20 and a 40*40 grid, until the steady state is reached. We assume that the solution
has reached its steady state if |U" ! —U" ||, <ér, [[V"*! —V"||; <67 and |T"*! —T"||, <br, where &
is a sufficiently small number. In our computations we take §=10"2. As initial condition, the steady
solution at the next lower Ra-number is used, except for Ra=10° for which we take the trivial solu-
tion u=v =0, p =0 and T =0.5. Figure 3 and 4 show the steady state streamlines and isotherms com-
puted on the 40*40 grid.

At this point we emphasize that the OEH-PC scheme is a solution technique for the fully time-
dependent Navier-Stokles equations. Here we use it to compute the solution of the steady free con-
vection problem which enables us to test the accuracy of the scheme in space by means of a com-
parison with a very accurate benchmark solution, computed by de Vahl Davis [18]. For that purpose
we introduce the following characteristic values of the flow. In Table 1 we compare these for the

benchmark solution of the Vahl Davis and for our solution.

Ra=10°

L)

Ra=10*

67

Upax the maximum horizontal velocity on the line x =0.5 (together
with its location)
Vmax the maximum vertical velocity on the line y =0.5 (together with
its location)
Ymid the absolute value of the stream function at the point (0.5,0.5)
Ymax the maximum absolute value of the streamfunction (together with
its location)
Nu the average Nusselt number throughout the cavity
Nul e average Nusselt number on the line x =0.5
Nug the average Nusselt number on the line x =0
Nup, the maximum absolute value of the local Nusselt number on the
line x =0 (together with its location)
Nupyi, the minimum absolute value of the local Nusselt number on the

line x =0 (together with its location).

Concerning the characteristic values in Table 1 we note the following. The streamfunction ¥(x,y) is

computed from the Poisson equation
VA = u, vy, (7.1

subject to the boundary condition ¢ = const.(=0) on 3§ (the boundary is a streamline). The local

Nusselt number is the local heat flux in the horizontal direction, and is given by [18]
Q(xy) = uT—T,. (7:2)

Through any vertical line x = xg, the total heat flux is given by

1
Nuy, = [Q(xo,p)dy. (1.3)
0

Nu,, is called the average Nusselt number on the line x = xo. In a cavity with adiabatic horizontal
walls, Nu,, must be independent of x,. Finally, the average Nusselt number Nu throughout the cavity

is given by
—_— l .
Nu = fNu,dx. (7.4)
0

The integrals in (7.3) and (7.4) have been computed using Simpson’s rule, and the term T, in (7.2) is

evaluated using a second order finite difference approximation (also on the boundary x =0). The

68

maximum and minimum values in Table 1 (and their locations) are computed by numerical
differentiation, using a least squares polynomial of appropriate degree.

From Table 1 we can conclude the following. The 40*40 solution is in close agreement with the
benchmark solution, except for the characteristic ~values in the boundary layer
(V max>Nug, Nut ax, Nt yin) occurring for Ra=10° (see Fig. 3 and 4). Thus, the 40*40 solution is an
accurate representation of the flow, except in the boundary layers for Ra= 10°. The 20*20 solution is
still a fairly accurate solution for Ra=10%,10%, but not for Ra=10°,10°.

We conclude this section with a few remarks about the time step restriction and the computing
time. The time step restriction for von Neumann stability of the OEH scheme is given by (6.4).
Especially for large values of Ra, this inequality implies a rather small time step due to the large velo-
city values. To be more specific, the time steps used in the computation of the 40*40 solution are the
following: r=10"3 for Ra=10>, 7=5*10"* for Ra=10%, r=2*10"* for Ra=10° and r=2.5%107°
for Ra=10°. Thus, especially for large values of Ra, the computation of the steady solution requires
a lot of time steps. However, since one time step of the OEH-PC scheme is cheap, this is not very
trouble some. To get an impression, the computation of the steady solution for Ra=10° on a 40*40
grid requires approximately 7200 time steps and one hour CPU time on a Cyber 170-750 computer.

However, this CPU time can be reduced considerably if we use an optimal Poisson solver.

U nax V max Yrmax _ Nupax | Numin
Ra 5 % Ymid ¥ Nu | Nul | Nug 9 ¥
3649 | - 3697 1505 | 0692
10° 1.174 118 | L8 | 1117
0813 | 0178 0092 | 1.0
16178 | 19.617 3528 | 0.586
104 5.071 2243 | 2243 | 2238
0823 | 0.119 0.143 | 1.0
3473 | 6859 9.612 7717 | 0.729
10° 9.111 4519 | 4519 | 4509
0.855 | 0.066 0.285/0.601 0.081 10
6463 | 219.36 16.750 17.925 | 0.989
10 16.32 8.800 | 8.799 | 8.817
0.850 | 00379 0.151/0.547 00378 | 1.0
Solution on 4040 grid
U max V max Ymax s Nupax | Nupin
Ra . % Ymid wli Nu | Nul | Nug " 3
3647 | 3697 1.176 1504 | 0695
10° 1.176 L7 | L7 | 1119
0813 | 0178 0.5/0.5 0.09% | 1.0
16172 | 19.624 5.080 3531 | 059
104 5.080 2240 | 2237 | 2.245
0823 | 0.118 0.5/0.5 0147 | 10
34564 | 67.925 9.581 8000 | 0.744
10° 9.077 4519 | 4511 | 4.604
0.856 | 0.065 0.281/0.600 0088 | 10
64.656 | 213.575 16.608 21437 | 1070
10 16.106 8927 | 8919 | 9.858
0867 | 0.036 0.157/0.553 0055 | 1.0
Solution on 20X 20 grid
U max V max Yrmax — Numax | Numin
Ra P % Ymid e Nu Nu_; Nug g 9
3642 | 3694 1.130 1495 | 0702
10° 1180 L4 | s |7
0813 | 0178 0.5/0.5 0.098 | 1.0
16.144 | 19.645 5.104 3612 | 0.601
104 5.104 2231 | 2218 | 2273
0823 | 0.116 0.5/0.5 0152 | 10
34507 | 66.940 9.528 923 | 0.777
10° 9.070 4565 | 4513 | 5.063
0861 | 0.060 0.291/0.613 0.110 | 099
62.978 | 219.216 15.772 24260 | 0.648
10 15.153 9.425 | 9.096 | 12.635
0.891 | 0.030 0.147/0.559 0.086 | 0981

Table 1. Some characteristic values of the free convection flow.

69

70

7.2 Periodic free convection
We have computed the solution of this problem for Ra=2.5*10°, 5*10° and 8.5*10°. Because of
accuracy considerations, we used a 40*40 grid (see Section 7.3). For r—o0, the solution for
Ra=2.5*10° tends to a steady state and the solutions for the other two Ra-numbers become periodic
[1]. The initial conditions are given by the trivial solution u=v =0, p =0 and 7=0.5. Thus, at 7=0
the fluid is at rest with a pressure equal to the hydrostatic pressure and a temperature equal to the
mean wall temperature.

For illustrating the transient flow behaviour, we shall present plots of the (dimensionless) kinetic

energy defined by

K= %fﬁ[(uuvz)ds, 15)

and the average Nusselt number throughout the cavity Nu, defined by (7.4). First, consider the case
Ra=2.5*108. Figure 5 shows the kinetic energy K and the average Nusselt number Nu as a function
of the (dimensionless) time. We see that both K and Nu show a damped oscillatory behaviour. The
steady solution is reached for approximately =0.05. The small oscillations for #>0.05 are due to
space discretization errors. The steady state streamlines and isotherms are plotted in Figure 6. A
usable time step is in this case =107 and the total CPU time required to step to #=0.08 (8,000
time steps) is approximately 80 min.

The kinetic energy and the average Nusselt number as a function of time, for time, for Ra =5* 106,
are shown in Figure 7. From this figure we see that both K and Nu rapidly tend to a periodic
behaviour for increasing 7, with a period of approximately to=7*10"3. Thus, the oscillatory
behaviour already observed for Ra=2.5*10° has now become undamped. In [I] a very regular
periodic flow with constant frequency was observed for Ra=5*10°, which is in agreement with our
results. Note that the periodic pattern for K and Nu is disturbed by space discretization errors. Espe-
cially in the boundary layers these are still rather large. Also in this case 7=10"° and the total CPU
time needed to compute the solution for #<<0.1 (10,000 time steps) is approximately 105 min. Note
that the time step 7 has to be chosen rather small in order to satisfy the stability constraint. However,
since the solution is rapidly varying in time, the time step 7 has to be chosen small anyhow for accu-
racy. Figure 8 and 9 show the streamlines and isotherms during two periods of the flow. The flow
contains one main vortex and a few secondary vortices which alternate in size and position. The isoth-
erms are nearly horizontal, except in a small region near the walls. Their shape oscillates with the
periodic growth and decay of the vortices. These two figures clearly demonstrate the periodic nature
of the flow.

Finally, we consider the case Ra=8.5*10°. The kinetic energy and the average Nusselt number are

20.0
15.0
10.0

S.0

0.0 1 T T T 1
0.00 0.02 0.04 0.06 0.08

14.0
__10.5
Nu 7.0

3.5

0.0

1 T T T 1
0.00 0.02 0.04 0.06 0.08

> ><1[]3

Fig. 5. The kinetic energy and the average Nusselt number as a function of time for Ra=2.5* 10°,

Fig. 6. Steady state streamlines and isotherms for Ra =2.5*10°.

71

72

Fig. 7.

Fig. 10

32.0
24.0
16.0
0
0

~ %10°

18.
13:

O »
o un o u1 O

I T T T T 1
0.00 0.02 0.04 0.06 0.08 0.10

The kinetic energy and the average Nusselt number as a function of time for Ra =5* 10°.

=~ x10°

O = N 1 W
O - N 1

20.
__ 15,
M e,
5.
0.0

O O o o

T T T T T 1
0.00 0.02 0.04 0.06 0.08 0.10
The kinetic energy and the average Nusselt number as a function of time for Ra=8.5*10°.

—_—

ké\“\{(é‘i

\\ —.

Fig. 8. Streamlines during two periods of the flow for Ra=5*10°

73

74

%

Fig. 9. Isotherms during two periods of the flow for Ra =5* lO6

070
0 074

0

76

NSl ' = e

Fig. 11. Streamlines during two periods of the flow for Ra =8.5*10°.

t=0.0580

'///"’-“ ‘ — A <

t=0.0590

7— S—— Ty

¢

—

1=0.0600

]

Fig. 12. Isotherms during two periods of the flow for Ra=8.5%10°.

77

78

shown in Figure 10. Like in the previous case, K and Nu rapidly tend to a periodic behaviour. In [1],
for Ra=8.5*10%, two stable modes of flow were observed with a slightly different frequency. From
Figure 10 we see, however, that both K and Nu are periodic functions of time with a constant fre-
quency (period). The period #o is approximately 7o=5.5*10">. The reason for this discrepancy is
probably the space discretization error. Thus, in order to find the two modes of the flow with
different frequencies, it is necessary to compute the solution much more accurately. Observe, that for
increasing Ra the period decreases (or equivalently: the frequency increases). The time step is in this
case 7=5*10"% and the total CPU time for the computation of the solution for r<0.1 (20,000 time
steps) is roughly 3h 15min. The streamlines and isotherms during two periods of the flow are shown
in Figure 11 and 12. These figures clearly show the periodic behaviour of the flow.

For time-dependent problems, the OEH scheme suffers from the so-called DuFort-Frankel (DFF)
deficiency [17]. We close this section with a short discussion of this deficiency. Consider to this pur-
pose the convection-diffusion equation (6.3). The OEH scheme for this equation is equivalent to the
leapfrog-DFF scheme at the odd points [17]. Suppose that for space discretization we use standard
central differences with gridsize A in all space directions. By the DFF deficiency we mean that for

7,h—0 the solution of the leapfrog-DFF scheme converges to the solution of the problem.
@V =V f e fa (7.6)
@) = V-

In general, for convergence it thus is necessary that 7=o(h). Through the equivalence property, the

same conclusion is valid for the OEH scheme. In our computations, however, % and the viscosity

parameter e are relatively small, so that the DFF deficiency has only a minor influence on the accu-

racy.

8. CONCLUSIONS

In this paper we have discussed the OEH-PC scheme for the computation of incompressible fluid
flow. The OEH-PC scheme is a combination of the OEH scheme for the time integration of the
Navier-Stokes equations and the pressure correction method for the computation of the pressure. The
scheme has a few attractive properties. First, the scheme is very simple as it is (almost) explicit.
Therefore, extension to arbitrary domains (also 3-dimensional) and to non-uniform grids is straight-
forward. The scheme is also easy to vertorize for use on a vectorcomputer. In [4] it is shown that a
vectorized OEH scheme for the Burgers’ equations is indeed very fast. Second, the scheme is fast per
time step, provided we have a fast Poisson solver for the computation of the pressure. Finaly, the

storage requirements of the scheme are very modest. A drawback of the scheme is the DFF-deficiency,

79

which has in general a negative influence on the accuracy. For many flow problems, however, this
deficiency is only of minor importance. Furthermore, the scheme is only conditionally stable, which
can be rather restrictive for highly convection dominated flows.

We have applied the OEH-PC scheme to two free convection problems, viz. steady free convection
and periodic free convection. The results for the steady free convection problem are in good agree-
ment with a very accurate benchmark solution for this problem. For the periodic free convection
problem, there is (to our knowledge) no benchmark solution available. Therefore, we have compared
our results with experimental results in [1], showing that the qualitative behaviour of our solution
agrees with the experimental data. These two examples demonstrate the feasibility of the OEH-PC

scheme for the computation of incompressible fluid flow.
REFERENCES

[1]1 D.G. BriGGs and D.N. Jongs, J. Heat Transf. 107 (1985), 850-854.

[2] T. CeBici, R.S. HirscH, H.B. KELLER and P.G. WiLLiams, Comp. Meth. Appl. Mech. Eng. 27
(1981), 13-44.

[3] S. CHANDRASEKHAR, “Hydrodynamic and Hydromagnetic Stability,” (The Clarendon Press,
Oxford, 1961).

[4] E.D. pe Goepk and J.H.M. TEN THUE BooNkkaMP, Centre for Mathematics and Computer Sci-
ence Report NM-8720, 1987 (submitted for publication).

[5] A.R. GourLAy, J. Inst. Maths. Applics. 6 (1970), 375-390.

[6] A.R. GOURLAY, and G.R. MCGUIRE, J. Inst. Maths. Applics. 7 (1971) 216-227.

[71 P.H. GresHo and R.L. Sany, Int. J. Num. Methods Fluids 7 (1987), 1111-1145.

[8] P.W. HEMKER, and P.M. DE ZEEUW, in: “Multigrid methods for integral and differential equa-
tions,” The institute of mathematics and its applications conference series, edited by D.J. Paddon
and H. Holstein, Oxford University Press, New York (1985) p.85-116.

[9] A.C. HINDMARSH, P.M. GresHO and D.F. GRIFrITH, Int. J. Num. Meth. Fluids 4, (1984) 853-
897.

[10] P.J. vaN DER HOUWEN, and J.G. VERWER, Computing 22, (1979) 291-309.

[11] J. van KaN, SIAM J. Sci. Stat. Comput. 7, (1986) 870-891.

[12] R. PEYRET, and T.D. TAYLOR, “Computational methods for fluid flow,” (Springer-Verlag, New
York, 1983). '

[13] P. LE QUERE, and T. ALZIARY DE ROQUEFORT, J. Comput. Phys. 57, (1985) 210-228.

[14] R.D. RicHTMEYER, and K.W. MorrtoN, “Difference methods for initial value problems,”

(Interscience Publishers, New York, 1967).

[15] P. SONNEVELD, P. WESSELING and P.M. DE ZEeuw, in: “Multigrid methods for integral and
differential equations,” The institute of Mathematics and its applications conference series, edited
by D.J. Paddon and H. Holstein, (Oxford University Press, New York (1985)), p.117-167.

[16] J.H.M. TEN THUE BoONKKAMP, SIAM J. Sci. Stat. Comput. 9, (1988), 252-270.

[17] JHM. TEN THUE BoONkkAMP, and J.G. VERWER, Applied Numerical Mathematics 3 (1987),
183-193.

[18] G. DE VAHL Dauvis, Int. J. Num. Meth. Fluids 3, (1983) 249-264.

81

Vectorization of the Odd-Even Hopscotch Scheme and the Alternating
Direction Implicit Scheme for the Two-Dimensional Burgers’ Equations.

E.D. de Goede & J.H.M. ten Thije Boonkkamp
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A vectorized version of the odd-even hopscotch (OEH) scheme and the alternation direction implicit (ADI)
scheme have been implemented on vector computers for solving the two-dimensional Burgers' equations
on a rectangular domain. This paper examines the efficiency of both schemes on vector computers. Data
structures and techniques employed in vectorizing both schemes are discussed, accompanied by perfor-
mance details.

1980 Mathematics subject classification : Primary 65V05, Secondary 65M05, 76DXX

Key words and Phrases : vector computers, Burgers’ equations, odd-even hopscotch scheme, alternating
direction implicit scheme, vectorization.

Note : This report will be submitted for publication elsewhere.

1. INTRODUCTION

This report is written as a contribution to a project to develop numerical software for vector- and
parallel computers. Vectorized versions of the odd-even hopscotch (OEH) scheme and the alternating
direction implicit (ADI) scheme are developed in FORTRAN 77 for the two-dimensional Burgers’
equations. In the near future, the vectorized codes will be combined with a pressure correction tech-
nique [8,13] in order to solve the time-dependent, incompressible Navier-Stokes equations.

The OEH scheme and the ADI scheme are integration schemes for time-dependent partial differential
equations (PDEs) and are applicable to wide classes of problems. The OEH scheme has shown to be
an efficient scheme on serial (scalar) computers, in the sense that it is fast per time step. Moreover,
the scheme is relatively easy to implement. Due to its near-explicitness the OEH scheme is also very
suitable for use on vector computers. A detailed discussion of the OEH scheme is given in [4]. The
ADI scheme we consider in this report is the Peaceman-Rachford scheme [11]. The ADI scheme is
more expensive per time step than the OEH scheme since it requires the solution of tridiagonal sys-
tems of equations. However, the ADI scheme is more robust than the OEH scheme. For the solution
of the tridiagonal systems we use the Gaussian elimination method, a variant of the partition method
of Wang [16], which is described in [3,9], and a method developed by Wubs and De Goede [3]. By
the approach of Wubs and De Goede, the tridiagonal systems are solved by a combination of explicit
and implicit calculations, thus resulting in an alternating direction explicit-implicit (ADEI) scheme. It
appears that the variant of the partition method and the method developed by Wubs and De Goede
are suitable methods for use on vector computers.

The purpose of this paper is to report our experience in vectorizing both schemes for the two-

Report NM-R87xx
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

82

dimensional Burgers’ equations. Much effort has been spent in optimizing the FORTRAN code for
vector computers, avoiding the explicit use of assembler code. The experiments have been carried out
on a (2-pipe) CDC Cyber 205 and a Cray X-MP/24. We used one (portable) code on both machines.

Section 2 contains a brief summary of the conceptual features of vector computers, which are relevant
to the present application. In Section 3 a description of the OEH scheme and the ADI scheme is
given. Section 4 is devoted to the description of the techniques used for vectorizing both the OEH
scheme and the ADI scheme. In Section 5, we compare the accuracy and performance of both
schemes. Finally, Section 6 contains some concluding remarks.

2. VECTOR PROCESSING

Many scientific and technical problems use a large number of data, and can only be solved by using
today’s supercomputers. In general, identical calculations have to be performed on these data. This
has led to the development of vector computers. Vector computers belong to the class of Single
Instruction stream - Multiple Data stream (SIMD) machines, since they can perform the same opera-
tion on a set of data (i.e. a vector) by means of one vector instruction. On a conventional (scalar)
computer each operation on each single pair of data requires one single instruction (SISD machines).

The vector instructions fall into two main categories : those that perform floating-point arithmetic,
and those that may be called data-motion instructions (for example, instructions to compress or
expand an array using an index-list). If data cannot be structured into vectors, vector computers do
not out-perform fast conventional computers. The need for vector data-motion instructions also
becomes apparent when one considers the definition of a vector on a CDC Cyber 205 : a vector is a
set of similar elements occupying consecutive memory locations. The reason for this vector definition
is that when performing vector operations on a CDC Cyber 205 the input elements stream directly
from the memory to the vector pipes (arithmetic units) and the output elements stream directly back
into the memory. A Cray-computer accepts vectors for which the number of memory locations
between consecutive elements (the so-called stride) is constant.

The time required for completing a vector instruction has two components. The first is the start-up
time, that is the time elapsed before the first result is computed. The second component is propor-
tional to the vector length and is called the streamtime. For example, for a (2-pipe) CDC Cyber 205
the result rate for an add or multiply instruction is two results per cycle (clock period). Due to the
start-up time it is beneficial to work with longer vectors [6].

For an efficient use of vector computers, the compiler plays an important role. The compiler
translates FORTRAN DO-loops into vector machine instructions, if possible. This process is called
vectorization. The nature of vector operations is such that only DO-loops might be translated into
vector instructions. Specific characteristics of a given DO-loop determine its vectorizability [1]. It is
not always possible to vectorize a code, like in the following example :

DO 10 I=1N
Ad+1)=Ad) + S 2.1)
10 CONTINUE
Because in vector processing the arguments must be determinable before the operation starts, this

loop cannot be vectorized. This restriction is known as recursion; it conflicts with the nature of vec-
tor processing.

In many situations the compiler can be instructed to generate more efficient code. We have used such
instructions, e.g., in the following situation. The compiler can be instructed to vectorize DO-loops,

83

ignoring possible vector dependencies, by inserting a so-called comment-directive :
for the CFT77 compiler (Cray X-MP/24) : CDIRS$ IVDEP
and for the VAST compiler (Cyber 205) : CVD$ NODEPCHK

To enhance an effective data flow rate in order to match the computation rate of vector computers,
the memory is divided into memory banks that may operate concurrently. For example, the memory
of the CDC Cyber 205 is divided into sixteen memory stacks, each of which is divided into eight
independent banks. When one memory stack is busy with a memory request, further references to the
same stack cannot be made. If a vector operation calls for an operand whose elements are located w
words apart in the memory (i.e. stride w), then the data flow rate might be reduced due to the
memory conflicts and thus result in a longer vector operation time. So, in order to obtain a good per-
formance on vector computers it is important to consider the data structure very carefully (see Section
4).

3. THE OEH SCHEME AND THE ADI SCHEME FOR THE TWO-DIMENSIONAL BURGERS’ EQUATIONS
Consider the two-dimensional Burgers’ equations

u = fi(u,v) with fi(uy) = —wuu, —vu, + (uy + u,)/Re
v = folu,v) with fo(uy) = —uve — vy, + (e +v,) /Re,

with u and v the velocities in x- and y-directions and Re denoting the Reynolds number. On the
boundary T of the connected space domain £, we prescribe the Dirichlet conditions

3.0)

The Burgers’ equations have the same convective and viscous terms as the incompressible Navier-
Stokes equations, although the pressure gradient terms are not retained. Also a solution to the
Burgers’ equations would not, in general, satisfy the continuity equation. These equations possess the
desirable property that exact solutions can be constructed by means of the Cole-Hopf transformation
[2]. This enables us to compare the numerical solution of the Burgers’ equations with the exact solu-
tion.

In this section we give a description of the OEH scheme and the ADI scheme for the Burgers’ equa-
tions. The space discretization is discussed in Section 3.1 and the time integration in Section 3.2.

3.1. Space discretization _

For the space discretization the computational domain is covered by a N X M rectangular staggered
grid, with h and k being the grid sizes in x- and y-directions respectively (see Fig. 1). In a staggered
grid different variables are defined at different grid points. The reason for this choice is that in con-
tinuation to this report we want to apply the OEH scheme and the ADI scheme to the incompressible
Navier-Stokes equations for which a staggered grid is most suitable [13].

In what follows, U is a grid function approximating the velocity u (likewise for V, F; and F,) with
components U;. The components Uj; are numbered lexicographically. The application of standard,
second-order central differences converts (3.1) into the system of ordinary differential equations
(ODEs)

U,j = Fl‘,j(U,V), i=1,.,N—1, j=1..,M (interior X —points)

32)
= F,,(UV), i=L.,N , j=1.,M—1 (interior O —points),

84

© \S4 © © -© ©
M x x X X b ¢ x X Vv,
{ o t+o+o+ot+oe+1-o° [i
X b 4 b 4 X X x X k X U,
Vo0 41—6-—1©- O =
/'x X X X X X X Gell &
& e+o0 1010060 1+°
1 x X X X X p b 4
1 5§ N
h
Fig 1. The staggered grid
where
Ui+ —U-y) = WU+ —Uj-)
Fi; = — Uy L 2 e Vi L 2k WS 4+ (3.3a)
1 Uiy, —2U0; + Uiy + L (Uj+1 —2U0; + U;-1)
Re h? Re P
— (Vier; — Vicrj Viiew — Vi
FZ,ij - U,] (i+1,j = |,j) o V, (,j+1 = i I) + (33]3)
1 Wiy =2V + Vi) 1 Viyer = 2V + Vij1)
Re h? Re k? ’

In (3.3a) I—/,-j represents an approximation to ¥ at the X -points; likewise in (3.3b) l_/,-j represents an
approximation to U at the O -points. The values of U; and Vj; are determined by averaging over
neighbouring values. For the ADI scheme U;; and Vj; are trivially defined by

-] = 1

Uj=7 U+ Uij+i tUi-1;+Ui-1+1), I/ij:?(l/'zj+l/i,j—l +ViejtVie-1). (342
However, for the OEH scheme we choose

— 1 - 1

Ut'jZE(Uivl,j+Ui,j+l)» ij:E(Vi,j—l"‘ViH,j)- (3.4b)
The reason for this choice will become apparent in Section 3.2.1.
For the treatment of the boundary conditions, we apply a simple reflection technique. Consider e.g.
(3.3b) at the O -points (1,5), which involves the outside value Vo ;. The reflection technique consists

of writing the boundary value ¥, ; as a mean value of its neighbouring values Vo ; and V), so that
Voj = 2V, — Vi, (see Fig. 1).

85

3.2. Time integration
Let U = (U,V)T and F(U) = (F;(U,V), Fo(U,V))7, then (3.2) can be written in the vector form

dy—
@ U =FQU). (3.5)
For reasons of computational feasibility, we apply a two-term splitting formula for the numerical
integration of (3.5). Let

FU) = F,(U) + K,(U),

and consider the two-stage formula

U4 = U + %T[FI(U"+%) + Fy(U")]
1 ‘ (3.6)
Un+| = Un+% R ET[Fl(Urﬁ/z) + FZ(U"+])].

with r denoting the time step. It can be easily verified that this integration formula is second-order
consistent for any ODE system (3.5) [7]. Both the OEH scheme and the ADI scheme are special cases
of (3.6).

3.2.1. The OEH scheme. In what follows, Uj; denotes the discrete approximation to u at the grid
point (ih, jk) at time level 1, = nr (likewise for V};). The OEH scheme for (3.5) is given by the numer-
ical integration formula [4]

Uf}“ — 705}“1“,7(U"+‘) = U + 10, F;(U"), 3.7
where Uj; = (Uj, V}})T (likewise for Fj; (U")). The function 0} is defined by
1 if n+i+j isodd (odd points)
0:} - {0 if n+i+j iseven (even points) . (3
Writing down two successive steps of (3.7) yields
U}}-“ = U + 70 F;(U") + 702t F ety (3.9a)
U‘g}_+2 _ U;}H + Togfll:lj(unﬁ-l) + 70;}” F‘_j(Un+2)‘ (3.9b)

Let F,(U) and Fg(U) denote the restriction of F(U) to the odd and even points respectively, then by
replacing by 7/2, (3.9) can be rewritten in the form

U = U+ 2 FeU %) + Fo(U)] (3104

Ut = U 4 Za[FgUM) + Fo(U). (3.10b)

The order of computation for the OEH scheme is

Bt = Up + 5 7Fo(U") (=2Up - Up " if n>1) (3.11a)
ULt = Un + %,FE(UM%) (3.11b)
URt = U+ SoFe(UY) (= 2UF% - U) @319
Ut = Unt + %,FO(UM) (3.11d)

Notice that (3.11a) is just the forward Euler rule at the odd points, whereas (3.11b) is the backward
Euler rule at the even points. For (3.11c) and (3.11d) it is just vice versa. Substituting (3.4b) into
(3.3), it can be verified that in (3.11) there exists an odd-even coupling between the variables, i.e. a
variable at an odd point is only coupled to variables at even points and vice versa. Because of this
odd-even coupling and the alternating use of the forward- and backward Euler rule, scheme (3.11) is
only diagonally implicit. Notice that the computation of the forward Euler rule in (3.11a) and (3.11c)
can be economized by using a simple interpolation formula. The scheme thus obtained is called the
fast form of the OEH scheme [4].

3.2.2. The ADI scheme. For the ADI scheme we use the splitting formula
F(U) = F,(U) + F,U),

where F, and F, represent the space discretizations of the terms containing the x- and y-derivatives
respectively. For the Burgers' equations such a splitting is possible, because there are no mixed
derivatives. So, the ADI scheme for (3.5) is [11]

U = U+ A [RU) + U] (3.12a)
U = U+ AR UT) + B (3.12b)
Notice that (3.12a) is explicit in the y-direction and implicit in the x-direction, and vice versa in
(3.12b). Since there is a 3-point coupling in each direction, the ADI scheme can be implemented such

that only nonlinear tridiagonal systems have to be solved in each step.

In order to obtain linear systems, the terms F,(U"**) in (3.12a) and F,(U" ') in (3.12b), which can
be written in the form (cf. (3.3))

FX(Un+’/1) = A(U'l+%)Un+‘/z and Fy(un+l) — B(Vn+])Un+l , (3133)
are linearized as follows :
F (U't%) = AU Ut and F,(U"*') = BHU*! (3.13b)

with 4 and B tridiagonal matrices and U" and V" approximations to U"** and V" *!, respectively.
To maintain second-order accuracy, the approximations U" and V" are given by (see [12])

‘_l n_l n—1
U—2U 2U

Vo=2pmts -y
Now, the ADI scheme requires the solution of linear tridiagonal systems. In Section 4.2 we will dis-

cuss some algorithms for the solution of tridiagonal systems. Due to the linearization process, it is
not possible to formulate a fast form for the ADI scheme, like for the OEH scheme (cf. (3.11c)).

87

3.3. Stability
Finally, we make some remarks about the stability of both the OEH scheme and the ADI scheme.
Consider to this purpose the linear convection-diffusion equation

U = —q1ux — QY + (uxx + uxv)/ Re (314)

Here, the vector (¢1,¢2)" represents a constant velocity. Now suppose that for the space discretiza-
tion we use standard central differences, with constant grid sizes 4 and k in x- and y-directions
respectively. Then von Neumann stability analysis applied to the OEH scheme (3.10) yields the fol-
lowing necessary and sufficient time step restriction [13,14] for (3.14)

11
12(h—2 + F)(tﬁ +gh)<4.

This inequality shows that the OEH scheme is conditionally stable (r = O(h)), independent of Re.
The ADI scheme for the linear equation (3.14) is unconditionally stable in the sense of von Neumann
stability [10].

REMARK
A drawback of the OEH scheme is the so-called Du Fort-Frankel (DFF) deficiency [13,14]. By this
we mean that for 7,h,k — 0, the solution of the OEH scheme converges to the solution of the prob-
lem

= —uu, — vu, + (e, + u)/Re——l—-rz(i-i-L)u,,

t x i d XX »y Re h? k2
1 (3.15)
Re

In general, for convergence it is thus necessary that 7 = o(max(h,k)).

1 1
v = —uv, —w, + (e tvy) /Re — ’Tz(h_2 + F)v,,.

4. IMPLEMENTATION

In this section we describe implementation techniques for vectorizing both the OEH scheme and the
ADI scheme on vector computers. It is our goal to implement the schemes in such a way that they
perform efficiently on vector computers. We utilize the vector processing concepts discussed in Sec-
tion 2. The implementations have been written in the ANSI FORTRAN language known as FOR-
TRAN 77. Thus, the resulting software is portable and auto-vectorizable.

4.1. The OEH scheme

The OEH scheme is based upon the alternating use of the forward and backward Euler rule. Because
of the 5-point coupling that exists between the variables, the OEH scheme is diagonally implicit (see
Section 3.2.1). Specifically, the scheme only requires scalar divisions and no nonlinear equations have
to be solved.

The obvious choice for the ordering of the grid points is the red-black or chess-board ordering, where
all the four neighbours of each point belong to another colour. The grid points may be subdivided
accordingly into two vectors, which contain the red and black points respectively. The grid points are
numbered along horizontal grid lines. The OEH scheme is performed in four stages (see (3.11a-d)).
For example, in the first stage the values in the red points are updated using the value in the red
point itself and old values in neighbouring black points (i.e. the forward Euler rule), then in the
second stage the values in the black points are updated using the old value in the black point and
new values in red points (i.e. the backward Euler rule). Throughout the code the elements of the two
vectors are stored in consecutive memory elements (i.e. stride 1), which is in general an advantage on

88
vector computers. Moreover, no data reorderings have to be performed.

Notice that the two vectors are not confined to one horizontal grid line, but they extend over the
whole grid. This was done in order to achieve improved performance through utilization of longer
vectors. As a penalty for using those longer vectors, the values in the boundary points are overwrit-
ten, thus destroying the correct boundary values. To restore the correct boundary values, these values
are stored separately. Moreover, the first and the last grid points of each horizontal line have to be of
the same colour to maintain the red-black ordering. Thus, the number of grid points in horizontal
direction (= N) has to be odd.

The OEH scheme requires minimal storage. In our implementation we used only one extra array of
length NM/2, which is one fourth of the total number of unknowns. Hence, the total storage
amounts approximately 2.5NM memory locations.

4.2. The ADI scheme

The ADI scheme for two-dimensional problems involves the solution of tridiagonal sets of equations
along horizontal and vertical grid lines respectively. These sets of equations can be viewed in various
ways. For example, for (3.12) we have M tridiagonal (linear) systems of order N. However, the M
individual systems can be combined to a single tridiagonal system of order NM. We prefer the latter
choice in order to obtain longer vectors. As a consequence, extra memory is needed. Due to the
large memory capacities of today’s vector computers, it is possible to execute programs with large
memory requirements. For example, on the Cyber 205 and the Cray X-MP/24 the maximal memory
size is about 4 million 64-bit words.

Tridiagonal systems form an important class of linear algebraic equations. Consequently, efficient
algorithms have been developed for the solution of such systems. The Gaussian elimination method
has proven to be an efficient method on scalar computers. Unfortunately, due to the recursive nature
of this method, the operations have to be evaluated one at a time. Therefore, the (sequential) Gaus-
sian elimination method is unsuitable for use on vector- and parallel computers. Several methods
have been proposed to achieve efficient methods on vector computers. In this report we use a variant
of the partition method of Wang [3,9], which will be discussed briefly now. First, the tridiagonal
matrix is partitioned into a / X [block tridiagonal matrix with each block a m X m matrix. The
method starts by reducing the tridiagonal system to a tridiagonal system of order / using vector opera-
tions. Then the reduced system is solved by Gaussian elimination. Finally, the other unknowns are
solved by back substitution using again vector operations. Although the variant of the partition
method has a higher operation count than the Gaussian elimination method, the method is more
efficient on a vector computer because of its vector operations.

For this variant of the partition method, it is plausible that the off-diagonal elements of the reduced
system are very small relative to the main diagonal elements [3,5], which is confirmed by numerical
experiments. Following Van der Vorst [15] and Wubs and De Goede [3], the solution of the reduced
tridiagonal system is approximated by a truncated Neumann series. The resulting explicit-implicit
method is advantageous for use on vector computers. The prize to be paid for the approximation of
the reduced system, is a possible drop in accuracy. However, due to the relatively small off-diagonal
elements, this approach hardly affects the accuracy.

As said in Section 2, for the performance on vector computers the data structure is very important.
For the ADI scheme tridiagonal systems have to be solved along horizontal grid lines and vertical
grid lines respectively. If the arrays are ordered horizontally, then the x- differences can be calculated
efficiently. Likewise, if the arrays are ordered vertically, then the y- differences can be calculated

89

efficiently. These two orderings imply that during the performance of the ADI scheme reorderings
have to be performed to change from horizontal to vertical lines and vice versa. The reordering
operations have been implemented as efficient as possible.

Moreover, during the solution of the tridiagonal systems, the variant of the partition method requires
vector operations with stride m. The Cray-computer is hardly hampered by a stride unequal to one.
However, the CDC Cyber 205 requires contiguous vectors (i.e. stride 1). Therefore, compress/expand
instructions are necessary to restructure the vectors. The alternative is to reorder in advance the data
structure to obtain contiguous vectors. On the CDC Cyber 205 this alternative may be useful. Both
versions have been implemented.

For each of the implementations, the storage requirements are significantly larger than for the OEH
scheme, viz. about 9NM memory locations.

Summarizing, the following implementations for the ADI-type schemes have been used :

ADIW the Peaceman-Rachford scheme in which a variant of the partition method of Wang is
used for the solution of the tridiagonal systems (stride m),

ADIW1 ADIW with an extra reordering of the data structure (stride 1),

ADIGE the Peaceman-Rachford scheme in which Gaussian elimination is used for the solution of
the tridiagonal systems,

ADEI the Peaceman-Rachford scheme in which the method developed by Wubs and De Goede
is used for the solution of the tridiagonal systems (stride m).

ADEI1 ADEI with an extra reordering of the data structure (stride 1).

5. PERFORMANCE

In this section we report on the accuracy and performance of the OEH scheme and the ADI scheme
on vector computers. For this purpose, we have applied the schemes to a moving wave front prob-
lem. In general, moving wave front problems are difficult to compute since the solution contains
sharp gradients, both in space and time. This necessitates the use of small time steps and, when
employing a uniform grid, a small grid size. Therefore, such problems are time- and memory consum-
ing and the application of vector computers is obvious.

In our experiments the following vector computers and FORTRAN compilers have been used :
(i) (2-pipe) CDC Cyber 205 (SARA, Amsterdam, The Netherlands), max. 200 MFLOP/s, FOR-
TRAN 200 compiler, (the VAST (version 1.22W) precompiler of Pacific Sierra Research Cor-

poration is used),
(i) Cray X-MP/24 (Cray Research, Bracknell, U.K.), max. 235 MFLOP/s, FORTRAN CFT77 (ver-

sion 1.3) compiler.

An exact solution of the Burgers’ equations can be generated by using the Cole-Hopf transformation

(21,

- _2 % - 2%
U= " Re ’ and v = Re ¢ (5.1a)
where ¢ is the solution of
1
o = E((pxx & ¢yy)- - (Slb)

In our test problem we choose ¢ = f; + f; [17], with
S1Gep,t) = exp((—12(x +y)+9t)*Re / 32)

Faxgnt) = exp((—4(x +2y)+51)*Re / 16) 62

920

which yields the exact solution

_1,3a%26 3 1, 1 5.3)
4 fit+f 4 4 1+exp((—4x+4y —1)*Re/32) :
_1,34i+4H _3 1, 1
VEA TR A S 4T 4 Trep(—4x 4 —0'Re/ D) {5:3b}

The solution represents a wave front at y = x +0.25z. The speed of propagation is 0.125 V2 and is
perpendicular to the wave front. For increasing values of Re, the wave front becomes sharper. In
Fig. 2 the exact solution for u is shown at 1 = 2.5 for Re = 100,1000,10000.

With the purpose of testing the (order of) accuracy of the schemes, we first compare the exact solution
of the Burgers equations with the numerical solution obtained for grid sizes
h =k =1/17,1/33,1/65,1/129 and for time steps 7= 1/10,1/20,1/40, 1/80,1/160,1/320 (provided
that the time integration is stable). The computational domain is € = [0,1]X[0,1] and the time
integration interval is [0,2.5]. We prescribe time-dependent Dirichlet boundary conditions which are
taken from the exact solution and we choose Re = 100. For the time integration we use the OEH
scheme, the ADIW scheme and the ADEI scheme (see Section 4).

To measure the accuracy of the numerical solution we define
cd,, = —'"Clog(|| global error at 1 = 2.5 ||), (5.4)

denoting the number of correct digits in the numerical approximation at the endpoint 7 = 2.5.

Since max |u(x,y,¢)| =0.75 and max |v(x,y,r)| = 1.0, von Neumann stability analysis applied to
the OEH scheme suggests the time step restriction

Ts%\/ih. : (5.5)

In Table 5.1 we list the cd,,-values for all three schemes. We only list the cd,,-values for the u-field;
for the v-field we obtain nearly the same results.

91

correct digits for u-field (oo - norm)
scheme | A= || r=1/10 | v=1/20 | r=1/40 | +=1/80 | r=1/160 | r=1/320
17 254 255 255 255 255
33 3.05 321 320 320
OEH | & 282 337 373 385
129 284 344 3.98
17 1.92 229 248 251 252 252
33 210 256 289 307 315 318
ADIW | &5 224 275 319 351 368 377
1209 | 225 277 326 167 3.99 419
17 1.92 229 248 251 252 252
3 212 257 2.89 307 315 318
ADEL | 224 275 319 351 368 377
120 | 225 278 326 367 3.98 417

Table 5.1. cd, -values for the OEH, ADIW and ADEI scheme.

First consider the OEH scheme. From Table 5.1 we can conclude the following :

(i) For small time steps (e.g. 7=1/320) the time integration error is neglectable, and one can
observe the second-order behaviour in space ('’log(4)~0.6). On a fine grid (e.g. h =1/129) one
can observe the second-order behaviour in time since the space discretization error is neglectable.

(ii) For 7 fixed and # — 0 the accuracy decreases if 7/h is sufficiently large. This is caused by the
DFF deficiency (cf. (3.15)).

(iii) When looking along diagonals (7/h constant) one observes a second-order behaviour if 7/h is
small enough. For larger values of 7/ h the scheme fails to converge due to the DFF deficiency.

Now, consider both ADI-type schemes. In the same way as for the OEH scheme, one can observe
second-order behaviour in space and time. In general, the accuracy of the OEH scheme is compar-
able with that of the ADI-type schemes. However, especially on the finest grid the ADI-type schemes
are more accurate than the OEH scheme, because the latter suffers from the DFF deficiency. Note
that the accuracy results for the ADIW scheme and the ADEI scheme are comparable. So, the accu-
racy is hardly reduced if the tridiagonal systems are solved by the approximating method.

Table 5.2 presents the execution times obtained for a single example, namely for a 129 X 129 grid
with t = 2.5, 7=1/80 and Re = 100. We compare the OEH scheme with the five implementations of
ADI-type schemes (see Section 4). As an illustration, the implementations have also been performed
without vectorization on the CDC Cyber 205 (scalar code). In parentheses we list the ratio in perfor-
mance of the vectorized code to the scalar code. We emphasize that Table 5.2 contains the execution
times for the computation of 200 time steps without paying attention to the accuracy or stability.

92

Execution times (in seconds)

e — Cyber 205 Cray X-MP/24 Cyber 205

(vectorized code) (scalar code)
OEH 1.8 1.0 15.4 (8.6)
ADIW 213 8.7 181.6 (6.6)
ADIW1 18.6 8.9 187.1 (10.0)
ADIGE 54.1 16.6 1214 (22)
ADEI 225 6.1 176.6 (7.8)
ADEII 12.7 6.8 182.2 (14.4)

Table 5.2. Execution times in seconds for a 129 X 129 grid
with ¢t = 2.5, 7 = 1/80 and Re = 100.

From this experiment we can draw the following conclusions :

(i) On both vector computers the OEH scheme is considerably faster than the implementations of
the ADI-type schemes. This is due to the fact that no systems of equations have to be solved
and no data reorderings have to be performed. For the scalar code, it is fair to say that the ratio
of the execution time for the ADI-type schemes to the OEH scheme is misleading. For example,
the data reorderings (from x-ordering to y-ordering and vice versa) are uneconomical for use on
scalar computers. So, the scalar code for the ADI-type schemes is far from optimal.

(i) On the CDC Cyber 205 the vectorized code is much faster than the scalar code. However, for
the Gaussian elimination method the speed-up factor is only two. Due to its recursive nature the
Gaussian elimination method is unsuitable for use on vector computers.

(iii) On the CDC Cyber 205 it is beneficial to reorder the data structure to obtain contiguous vectors
(compare ADIW with ADIW1 and ADEI with ADEII). The speed-up in performance justifies
the overhead due to the data reordering. On the Cray X-MP/24 this does not hold since the
Cray is hardly hampered by a stride unequal to one.

(iv) In general, the Cray X-MP/24 is considerably faster than the (2-pipe) CDC Cyber 205. This is
due to a smaller clock cycle and a better compiler.

Finally we examine the accuracy behaviour of the OEH scheme and the ADIW scheme for increasing
values of Re. In this experiment we compute the numerical solution at 7 = 2.5 and use the grid size
values h = k = 1/33,1/65,1/129,1/257. Especially for large values of Re one may expect oscillations
in the solution. Therefore, the cd,-value, as defined in (5.4), is a too strict measure for the accuracy.
Instead, we define

cd; = —'%%og(|| global error at t = 2.5||;).

We start our computations for Re = 100 on a 33 X 33 grid. On each grid and for each Re-number
we choose the time step as large as possible such that cd; = 3. As soon as cd; <3 for each time step
we switch to the next finer grid and choose an appropriate time step. In Table 5.3 we list the cd,-
values for the u-field for increasing values of Re; for the v-field we find nearly the same results. For
the ADIW scheme the time step is listed in parentheses. In this experiment we used the ADIW
scheme; however, nearly the same results would have been obtained for the ADEI scheme.

93

correct digits for u-field (1- norm)
OEH scheme ADIW scheme
Re h=1/33 1/65 17129 17257 h=1/33 h=1/65 h=1/129 h=1/251
T=1/40 1/80 17160 1/320

100 4.05 3.30(1/10)

500 3.08 2.95(1/80) 337 (1/40)

1000 251 342 3.19 (1/80)

1500 3.06 2.91(1/160) 3.36 (1/80)
2000 2.86 374 3.15 (1/80)

3000 3.39 3.09(1/160)
4000 3.18 2.81(1/160) 3.01 (1/80)
5000 3.03 3.23(1/160)
6000 2.88 3.70 3.32(1/320)
7000 3.59
10000 335

Table 5.3. cd;-values for the OEH and ADIW scheme for increasing values of Re.

From Table 5.3 we can conclude the following :

(i) In order to obtain the prescribed accuracy, the ADI scheme requires in general a finer grid than
the OEH scheme. This is possibly due to the linearization process of the ADI scheme (see
(3.13)). Both schemes require a comparable time step. So, for large Re-numbers the OEH
scheme seems to be more suitable than the ADI-type schemes for the numerical solution of the
Burgers’ equations, at least for the present type of solution.

(i) The DFF-deficiency of the OEH scheme is virtually absent for large Re-numbers since the terms
u, / Re and v,, / Re are very small, except in a small region near the wave front (see (3.15)).

In Fig. 3 we present the numerical solution for the u-field for Re = 100,1000,10000 computed with the
OEH scheme.

6. CONCLUDING REMARKS

In this paper we compared the efficiency and performance of the odd-even hopscotch (OEH) scheme
and the alternating direction implicit (ADI) scheme on vector computers, viz. the CDC Cyber 205
and the Cray X-MP/24. For the ADI scheme we used the following three methods for the solution of
the tridiagonal systems: the Gaussian elimination method (ADIGE), a variant of the partition method
of Wang (ADIW) and the method developed by Wubs and De Goede (ADEI).

First, let us consider the advantages of the OEH scheme over the ADI-type schemes :

(i) On both vector computers the OEH scheme is considerably faster than the ADI-type schemes,
due to the near-explicitness of the OEH scheme.

(ii) The OEH scheme has minimal storage requirements. In our implementations we used about four
times more memory space for the ADI-type schemes than for the OEH scheme. This is due to
the way in which the tridiagonal systems are solved (see Section 4).

(iii) It is very easy to implement the OEH scheme for both linear and nonlinear problems. For the
ADI-type schemes the nonlinear tridiagonal systems of equations have to be linearized in some
way (cf (3.13)). Moreover, the OEH scheme can be extended to multi-dimensional problems in a
straightforward manner, contrary to the ADI-type schemes. '

The OEH scheme has the following disadvantages over the ADI-type schemes :

94

Fig. 2. Exact solutions (5.3a)
for Re = 100, 1000, 10000.

Fig. 3.

Corresponding numerical solutions

95

(i) The ADI-type schemes have a better stability behaviour than the OEH scheme.
(i) The OEH scheme suffers from the Du Fort-Frankel (DFF) deficiency, which in general has a
negative influence on the accuracy.

Comparing the ADI-type schemes, it is evident that the ADEI scheme is in favour of the ADIW and
ADIGE scheme, because it has a better performance on vector computers while the accuracy of both
schemes is comparable. In the near future, we will extend the codes for application to the incompres-
sible Navier-Stokes equations.

ACKNOWLEDGEMENTS
We wish to express our gratitude to the ZWO Werkgroep Gebruik Supercomputers (WGS) for provid-
ing the necessary computer time on the CDC Cyber 205 and the Cray X-MP/24.

7. REFERENCES

1] CDC Cyber 200 FORTRAN reference manual, version 1, publ. number 60480200H.

[2] CA.J. FLETCHER, A comparison of finite element and finite difference solutions of the one-
and two-dimensional Burgers equation, J. Comput. Phys., 51 (1983), pp. 159-188.

[31 E.D. pE GOEDE AND F.W. WUBS, Explicit-implicit methods for time-dependent partial differential
equations , Report NM-R8703, Centre for Mathematics and Computer Science, Amsterdam,
1987.

[4] A.R. GOUuRrLAY, Hopscotch : a fast second-order partial differential solver, J. Inst. Maths. Appl-
ics., 6 (1970), pp. 375-390.

[5S] D. HELLER, Some aspects of the cyclic reduction algorithm for block tridiagonal linear systems,
SIAM J. Numer. Anal., 13 (1976), pp. 434-496.

[6) R.W. HockNEY AND C.R. JESSHOPE, Parallel computers : architecture, programming and algo-
rithms, Adam Hilger, Ltd., Bristol, 1981.

[7] P.J. vaN DER HOUWEN AND J.G. VERWER, One-step splitting methods for semi-discrete para-
bolic equations, Computing, 22 (1979), pp.291-309.

[8] J. vaN KAN, A second-order pressure correction method for viscous incompressible flow,
SIAM J. Stat. Comput., T (1986), pp. 870-891.

[9] P.H. MicHIELSE AND H.A. VAN DER VORST, Data transport in Wang’s partition method, Report
86-32, Delft University of Technology, Delft, 1986.

[10] AR. MitcueLL AND D.F. GRIFFITHS, The finite difference method in partial differential equa-
tions, Wiley, Chichester, 1980.

[11] D.W. PEACEMAN AND H.H. RACHFORD JR., The numerical solution of parabolic and elliptic
differential equations, J. Soc. Ind. Appl. Math., 3 (1955), pp. 28-41.

[12] B.P. SOMMEUER, An ALGOL 68 implementation of two splitting methods for semi-discretized par-
abolic differential equations, Report NM-NN 15/77, Centre for Mathematics and Computer
Science, Amsterdam, 1977.

[13] JHM. 1eN THUE BooNKKAMP, The odd-even hopscotch pressure correction scheme for the
incompressible Navier-Stokes equations, SIAM J. Sci. Stat. Comput., 9 (1988), pp.252-270.

[14] J.HM. TEN THUE BOONKKAMP AND J.G. VERWER, On the odd-even hopscotch scheme for the
numerical solution of time-dependent partial differential equations, Appl. Numer. Math., 3
(1987), pp. 183-193.

[15] H.A. VAN DER VORST, Large tridiagonal and block tridiagonal linear systems on vector and paral-
lel computers, Report 86-25, Delft University of Technology, Delft, 1986.

[16] H.H. WANG, A parallel method for tridiagonal system equations, ACM Trans. on Math. Softw.,
7 (1981), pp. 170-183.

[17) G.B. WHITHAM, Linear and nonlinear waves, Wiley, New York, 1974.

97

Residual smoothing for accelerating the ADI iteration method for
elliptic difference equations

J.H.M. ten Thije Boonkkamp

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Residual smoothing is a simple technique to increase the rate of convergence of iterative methods for ellip-
tic difference equations. In this paper, we combine residual smoothing with the ADI iteration method, which
can be done in several ways. When applied in the proper way, residual smoothing can considerably reduce
the number of iterations and thus the computing time of the ADI scheme. The parameter values of the
smoothed ADI scheme are chosen such that the high- and low frequency components in the iteration error
are damped very well. Due to the residual smoothing, the other components in the error are also properly
damped. Numerical examples demonstrate the performance results of the ADI scheme and the smoothed
ADI scheme.

1980 Mathematics Subject Classification: 65F10, 65N20.

Key Words & Phrases: elliptic difference equation, ADI iteration, residual smoothing, smoothed ADI itera-
tion.

Note: This report will be submitted for publication elsewhere.

1. INTRODUCTION
We consider the first boundary-value problem for the two-dimensional elliptic partial differential

equation (PDE)

(PO + (qOey)uy), —wxp)u = f(x,p), (x,y)e =[0,11X[0.1], (1.1
where p(x,y)>0, g(x,y)>0 and w(x,y)=0. As a special case of (1.1) we employ the Poisson equation
U T uy = f(x,p) (1.2)

as a model problem.

For space discretization, we cover { with a uniform space grid with gridsize h, where h=1/(M +1)
and M is the number of internal gridpoints in x-and y-direction. Space discretization of (1.1), using
standard central differences, yields a difference system

D,U+D,U=B. (1.3)

In (1.3) U is a vector, with components U;;, and B is a vector originating from the right hand side f
and the boundary conditions for u. The component Uj is the finite difference approximation to
u(ih,jh). The matnces D,, and D,, in (1. 3) are the ﬁmte difference replacements of respectively

0
—(p(x,y)a) = w(x,y) and ——(q(x,y)a) — 2w(x,y) and are defined by
(DxxU)ij: 2(P: 1*1] (P:—71+P.+ j)(jlj +P:+21 1+l]) WUUr‘ja (143)

(U)U h2 (‘I:,/ 1]‘1 (qi,j—% +qi,j+%) +qu+— 1]+l) wl]l]lj’ (l4b)

with p; 1 ; = p((ii%)h, Jh) (analogous definitions for ¢ ;+ 1 and w;;). The matrices D, and D,, are
tridiagonal, symmetric and negative definite.

98

For the iterative solution of (1.3) we examine the ADI scheme of Peaceman and Rachford [3,5].
For the model problem, the ADI scheme is known to be a fast scheme if one chooses its parameter
values in the right way. However, the scheme is very sensitive to the parameter values used, i.e., the
iteration count grows rapidly when the computation is carried out away from the optimal parameter
values. Therefore, the ADI scheme is in general not a fast iteration technique. It is the purpose of this
paper to apply residual smoothing for improving the rate of convergence of the ADI scheme and,
most importantly, to make the scheme less sensitive to the choice of the parameter values. This paper
is inspired by [2], where residual smoothing is applied to Jacobi iteration.

The contents of the paper is the following. In Section 2 a short outline of the theory of residual
smoothing is given. The ADI scheme and the smoothed ADI scheme are discussed in Section 3 and
parameter values for both schemes are given in Section 4. Section 5 is devoted to a numerical com-
parison between the ADI scheme and the smoothed ADI scheme. This comparison also involves a
nonlinear example. In Section 6, an alternative smoothed ADI scheme is briefly discussed. Some
conclusions are formulated in Section 7.

2. RESIDUAL SMOOTHING
In this section we give a short outline of the theory of residual smoothing as a means of accelerating
the convergence of iterative methods for elliptic difference equations. For a more extensive treatment
of the special type of explicit residual smoothing used here, the reader is referred to [2].

Consider the linear system

AU=B, (2.1)

obtained by discretizing a linear elliptic boundary value problem. We assume that A has negative
eigenvalues. Iterative methods for solving (2.1) are based upon the splitting 4 =P —Q, where P is a
non-singular and easily invertible matrix [1,5]. The iteration scheme thus takes the form

PU"+I = QUIl +B, (22)
or equivalently, in residual form,
PU"*! = PU"—(AU" - B). (2.2)

The idea of residual smoothing is now to multiply the residual in (2.2) by a matrix S such that the
condition number of S4 is much smaller that the condition number of 4. The iteration scheme then
reads

PU"*! = PU"—S(AU"—B). (2.3)

Thus, instead of solving (2.1), we solve the preconditioned system SAU=SB with the original itera-
tion method.

Following [2], S is taken of the form §=P,(D), where Py(z) is a polynomial of degree k satisfying
Pi(0)=1 and D is a scaled difference matrix with eigenvalues in the interval [-1,0]. In order to analyse
the residual smoothing technique we choose

1
D=—A4, 24
5 24

where p=p(4) is the spectral radius of 4. In [2], for this choice, an optimal smoothing matrix

S =Pi(D) is derived, in the sense that SA has negative eigenvalues and the smallest possible condition

number. The condition number y(4) of a matrix A4 is defined as y(4) = p(4)/8(4), where 8(A) is the

in absolute value smallest eigenvalue of 4. The polynomial Py (z) is given by

Tis1(1+22)=1
2k + 1)z

where Tj(z) is the kth degree Chebyshev polynomial of the first kind. Because of the factorization

Pi(z)= , (2.5)

99

properties of the Chebyshev polynomials, the smoothing matrix S can be computed very efficiently if
k =29—1 for some positive integer g.

We emphasize, however, that in actual computations we do not use the difference matrix D defined
by (2.4), because it is much too expensive in the general case. Instead, for one-dimensional problems,
the matrix D is given by

[0
-2 1
1 -2 1

(2.6)

(o]
Il
ENE

1 =21
0

For two-dimensional computations we do not use the two-dimensional analogue of (2.6) because the
computation of S =P (D) is then not attractive [2]. Therefore, we consider an alternative which only
uses one-dimensional smoothing matrices. The residual r=AU"—B in (2.2') can in the two-
dimensional case be written as r=D,,U" + D,,U" — B (Cf(1.3)). The residual is then smoothed by
applying the one-dimensional smoothing matrix to D,, and/or D,,. In other words, let the residual r
be arranged in a two-dimensional array in the natural way, then r is smoothed by applying the one-
dimensional smoothing matrix to all rows and/or columns of r.

3. ADI- AND SMOOTHED ADI ITERATION
Consider equation (1.3)

AU =B, A =D, +D,,. (3.1)
The ADI scheme for (3.1) can be written in residual form as [5]

(Dyx =0 U" = (D —v, 1)U" — (AU" —B) (3.2a)

Dy, — n Ut = Dy, —v,1)U" — (AU —B), (3.2b)

where »;,»,>0 and are supposed to be independent of n.

The first stage (3.2a) of the ADI scheme is implicit in x-direction and explicit in y-direction. This
suggests to apply in (3.2a) a smoothing matrix S, for the preconditioning of D,,. In other words, we
multiply each column of the residual in (3.2a) by a (one-dimensional) smoothing matrix S, where S,
is such that S,D,, has the smallest possible condition number. In the same way, we apply a smooth-
ing matrix S, at the second stage (3.2b) for the preconditioning of D,,. Each row of the residual in
(3.2b) is then multiplied by a (one-dimensional) smoothing matrix S,. The smoothed ADI (SADI)
scheme then reads

(Dyx — v D)U" = (Dyx — i 1)U" — S}(AU" —B) (3.3a)
(D, — U™+ =(D,, — ,IU" — S(AU" — B). (3.3b)

In the analysis, the operators S, and S, are defined by S, = Pk(plex) and S, = Pk(%Dyy) where
1
p1 = p(Dyy) and p, = p(D,,). We emphasize once more, that in practice the matrices Plex and
1

iDyy are replaced by difference matrices like the one defined in (2.6). The degree k of the

100

polynomial Il’k(z) will be specified laer.

If D,y — 5 (» —w)I and Dy, + 5 (v — »)I are negative definite then the ADI scheme is conver-
gent [5]. Likewise, the SADI scheme is convergent if D, — D, +S,4 —(» —»)] and
—D,. + Dy, + 5,4 + (i — »)I are negative definite. The proof is along the same lines as the proof
for ADL

In order to get an indication about the performance of both the ADI scheme and the SADI
scheme, we consider the eigenvalues of the iteration matrix of both schemes. These eigenvalues are
called the damping factors of the iteration scheme. In the remainder of the paper we consider the fol-
lowing two cases:

casel: Dyy) = p(Dyy) = p, Dyc) = (D) =3,
case 2: P = P(Dxx)#:Pz = P(Dyy)s 61 == B(Dxx)#SZ = S(Dyy)
For simplicity, we take »; = », = », unless stated otherwise, and assume that D,, and D,, commute.
First, we restrict ourselves to case 1. The damping factor of the ADI scheme is given by
A),)
_ P . T
E= 80NN = TR (34
where A, and A, are the eigenvalues of D, and D,, respectively (A,A, <0). It is convenient to write
£ as a function of the scaled eigenvalues p, : = A./p and p, := A, /p, so that

(a +), +w)
= X ;w = ’
§ = &es 1y 50) (e — o)y —)
where w:=»/p. The parameter w should be chosen in the range 0<w<1 [5]. In Fig. 1. §(p,,py ;) is
plotted for p, =p, and for ©=1,10"",1072,10". For p, = apm.(a71) the graph of |(p,,m;w)|
displays a similar behaviour.
From (3.3) one can easily see that the damping factor of the SADI scheme is given by

_”_Pko‘x/p)(xx +)‘y) Ax _v_PkO‘y/p)(Ax +)‘_y)

(3.5)

— I,
E=EAA) = pyp— - (3.6a)
or equivalently as a function of p, and p,
£= Bty) = iy — 0= Pr(pa)i 1) e — 0 — Pr(py s + 1) ' (3.6b)

I — @ b~

101

w=10""!

w:10"2 w:10—3
l.D—l_ ___________ ‘ 1.0 p-mmmmmmm e -
_____ . s
‘\‘ \
Nig \
0.8+ S 2.8)
N 1
\ [l
\
\ i
\
0.6 v 0.6
\
\
\
0.4 0.4+
0.24 0.2
0.0 T T T T 0.0 T T T T
=140 =08 =0:6° <0.4 =02 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
Fig. 1.a.

The damping factors for the ADI scheme and the average damping factors for
the SADI scheme on the interval -1<p<0 for «=1,10"T,1072,1073.
----- AD], —— SADL

102

w=10"2 w=10"3
1.0+ 1.0
0.8 0.84 N,
\
\
\
\
0.6 0.6 4 \
‘I
‘\
L}
0.4 0.4 !
\
\
0.2 0.2
0.0 T T T T 1 0.0 T T T T 1
-0.10-0.08 -0.06 -0.04 -0.02 0.00 -0.10-0.08 -0.06 -0.04 -0.02 0.00

Fig. 1.b. The damping factors for the ADI scheme and the average damping factors for
the SADI scheme on the interval -0.1<p<0 for ©=10"%,103.
----- ADI, —— SADL

Note that &(u,pm,;w)=1 in all points where Py (p.) = Pi(p,)=0. This implies that we should not
iterate with a fixed value of k and w. Therefore, we consider cyclic methods where k =k, and w=w,,
k, and w, being periodic functions of ¢:k, =k, +n, @, = g+ With N fixed. In our experiments we
cfxoose kg =27—1(g =0(1)N —1) since then the smoothing matrices can be computed very efficiently

[2]. The integer N will be specified later. In stead of & = & (.1, ;w,) We thus consider the average
damping factor

I/N

3.7)

w—1]?
Since &(—1,—1;w) = m and &(—1,—Lw,) =1 for ¢>0, we choose wy=1 in order to
damp the eigenvector components in the iteration error which correspond to values of p,,p, close to

-1. These components are the high frequency components. Likewise, the low frequency components

correspond to values of p,,p, close to 0. The other w, values are chosen equal: w, =w for ¢>0. The
average damping factor a = apes py50) 1= Ay 3 1, 0.....) of the SADI scheme is also plotted in Fig.
1. for p, = p,,N =6 and & = 1,107",1072,10°_ Also in this case, the graph of a(p,ap;w) (a1) is
very similar to the graph of a(u,,p, ;w).

Comparing both damping factors, we see that for small w-values (1073<w<10"?) the SADI
scheme has substantial better damping properties than the ADI scheme. In particular, with the excep-
tion of the lowest ones (p=0), SADI damps all error components with a factor of a least 0.6.

103

4. CHOICE OF THE PARAMETER VALUES
In this section we derive parameter values for the SADI scheme. The derivation of parameter values
for the ADI scheme (3.2) is extensively described in [5], therefore we only present the results.

The damping factor £(A,,A,;») of the ADI scheme in case 1 is given by (3.4). We choose the »-
parameter to minimize the function

Y= \P(V;P,s)i = B |§(>‘x~ \y sV 4.1)

Asymptotically, the eigenvector correspondmg to the maximum damping factor dominates the error.
Therefore, in order to minimize the number of iterations, we have to minimize {(»;p,6). We
emphasize, however, that this only applies if we compute the solution sufficiently accurate. For
moderate accurate computations, the p-value thus obtained can be far from optimal, ie., the
corresponding number of iterations is far from minimal. A simple analysis gives that the optimal
parameter is given by »" =(8p)” [5].

EXAMPLE 1. Con51der the Poisson equation. The eigenvalues A, and A, of D,, and D,, are given by

A=Ay = —;;snnz(—th)t—l(l)M with h=1/(M +1). In this case p(Dy) = p(Dys) = p~ h4

and 8(D,) = &D,,) = d~?, so that » ~2TW'
In case 2, the function ¥ to be minimized is defined by

¥ =Ur;p1,01,0m,8,): = o, [EAAy)] (4.1)
—p;<)\:S—5;
Assume that p;8,<p;8,. Then one can prove the following result for the ADI scheme [5]: if 8,=6,
or §; <82 and 8,p,=8,p, then v =(8|p,)7, and if py,=p, or p;<p, and &,p;<8,p, then
v =6
Consnder the SADI scheme. In case 1, the damping factor £QA,,A,;») is given by (3. 6a) Since
&AM A) =1 for all A, A, for which Pr(A./p)=Py(A,/p)=0, we have to iterate with varying k =k,

and v v, (see Section 3) Therefore, instead of £ = g()\x,)\y,vq) we consider the average damping fac-
tor a defined by (Cf. (3.7))

N-1 1/N
a= a(Axa),,Vo, ----- vVNfl):: {qr_lok(}‘x»)‘y Vq)l] 2 (42)

In order to damp the high frequency components, we require &(—p,A, ;%) = & (A, —p;70) =0, which
gives »y=p. For the other »,-values we choose »,=»,g>0. This r-value is chosen to minimize
a(—8,—8;»):= a(— 8, —8;p,,.....,») because of the foTlowing reasons

(i) the lowest frequency eigenvector corresponding to A, =A, = —8 has often a large weight in the

error

(ii) the eigenvalue A, =A, = —§ is either known or can be approximated.

In this way we construct a SADI scheme which damps the high- and low frequency components in
the iteration error very well. It turns out that a SADI scheme constructed this way also damps the
remaining error components very well, as illustrated before in Fig. 1.

So Consider a(—8, —38;»), which can be written as
N

a(—8, 81')—()anq(8,—8&v)| (4.3a)
with
£(=8,—8»=(1- P,((——)(H Y, k=21—1,¢g=1(1)N —1. (4.3b)

If £(—98,—8:»)=0 for some ¢>0 then a(—8,—8;7)=0, and thus a(—98,—8;») is minimal. From

104

(4.3b) one can easily see that £(—8,—8;»)=0 if »=», :8(2Pk(—%)—l), provided Pk(—%)>%. A

Taylor series expansion yields

Pk(—%)zl—ak%, o= Tk(k+2), @.4)

if b := 42—5(%)2(k +1)*<1. For k sufficiently small, this condition is fulfilled and », is approximately
given by », =0, ¢, 1= l—2ak%. In our numerical experiments we take »" =»; ~8 (see Table 1).

ExampLE 2. Consider again the Poisson equation for which pzhi and d~m*. In this case

2
8Pkt ot k]] Tt
P= 01 s =5 ad aml—e (G
k =29—1(¢ =1(1)5) and for M =39 are given in Table 1. Note that the value c3; does not make sense

since P3(——)<7. For the general elliptic case one finds similar results since the ratio %=0(h2)

Y. These values for

just as for the Poisson equation.

k | P(=8/p) by Cx

1 0.9979 1.69*107¢ | 0.9959

3 0.9918 2.71*107° | 0.9836

7 0.9671 433*1074 | 0.9342

15 | 0.8684 6.93*107% | 0.7368

31 | 0.4736 1.11*107" | -0.0528

Table 1. Pi(— ﬁ)—, by~ and ¢, -values for the Poisson equation for k =29 —1(g =1(1)5)
and M =39.
In case 2, the damping factor of the SADI scheme can be written as (Cf. (3.6a))
A= =P /p)AAN) A—n =P /p)Ax HA)

>‘x - A), %) (45)

g = g(AxaAy;ylvy2) =

Note that in (4.5) we assume that »,7»,. The corresponding average damping factor is given by (4.2)
with § = £(A,A,;v14,,) defined by (4.5). For the damping of the high frequency components we
require &(—p1,A,;710,%20) = §0(Ax, —p2:710,720) =0, which implies that we indeed should iterate with
two different »-values (Cf. (3.3)). This gives »;9=p, and vy =p;. For ¢ >0 we choose »,,=» and
vy, =7,. These two values are chosen to minimize a(—8), —8,;v1,#,), which can be written as

b~y = | B8 B N s " 46
a(—=8y,—by;p,m) = 010, p1+6, q:]|§(1, —0;71,m))| s (4.62)
with
. o _8_| 8, +8, _ _82 8 +8;
§(—=81,—8m.m) = (1—Py(o) .)(1=Pi(Pz) 8,+y,) (4.6b)

Also in this case, if &(—8;,—8,;,»)=0 for some ¢ >0 then a(—8;,—&;»,»;) is minimal as a
function of », and »,. From (4.6b) one can readily see that this condition is fulfilled if ») =»; ;=
Pk(—82/p2)(8| +82)“‘81 Or v, =y = Pk(—Bl/pl)(8] +82)-82 provided that

Pi(—8,/py)>8,/(8, +8,) or Pr(—8,/p;)>08,/(8, +8,). Substitution of the approximation
Pi(—8;/p;))=1—a,0;/p;(i =1,2) (see (4.4)) then yields the following expression for »; x

and vy i: vy =8 — ai(8,/py)(81 +8,) and vy =8, —ar(8,/p1)81 +8,).

105

As in case 1, we choose the following approximation: »; = ») ;&8 and »; = »; | ~8,.
For the computation of the parameter values for both schemes the values of 8(D,,), 8Dy, p(Dsx)

and p(D,,) are required. As we have seen, for the Poisson equation p(Dy)= p(D y)z— and
8(Dyx)= &(D,, ya~m*. For the general elliptic equation (1.3) these values can only be approyumated as
follows. Conmdcr the general matrix D,, defined by (l4a). Let p:= max Ip(x,y)
pi= mm p(x,y) and analogous definitions for g, q,q,w and w. Let the matrices DXX and Dy, be

deﬁned by replacmg pi=L; and w; in (l.4a) by p ' and W respecuve]y p and w. In other words,
=po— ;wl and D, = pSXX ;wl with 8,, denoting the standard Tentral difference approxi-

mation to aa— Then one can easily show that p(Dxx)<p(DXX)<p(Dxx) and 6(DXX)<8(D”)<(D”)
5%

The values p(D,,) and &(D,,) can then be approximated by p(Dy)~7 (p(DXX)+ p(gxx))—

7127@+p)+%(w) and 8(D,) 0(Don) +8(Dus))= (G +p)+ 5 +w). In the same way one

finds p(D,,)~ 2(_+q)+4(w+w)and8(y)“l;rzi@*i)*%(wﬁ)-

5. NUMERICAL EXAMPLES
In this section we present a few numerical examples, in order to compare the ADI scheme and the
SADI scheme. We restrict ourselves to Dirichlet problems. The solution is computed for

=30 410 810 with the parameter values derived in Section 4. In addition, we compute the solution
for h =0 for several v-values, in order to check whether the v-values derived in Section 4 are good
enough. Further, to demonstrate the power of residual smoothing, we apply the SADI scheme to a
nonlinear problem.

For the degree k of the smoothing matrices we choose k =k, =27—1, ¢=0(1)N — 1, such that ky -
is the largest k, smaller than M =h~'—1. The reason for this i is, that for k,>M for some ¢, the com-

putation of the smoothing matrices becomes cumbersome. Thus for h = 20°30° 30 we choose,

respectively, N =5,6,7. We emphasize once more that the choice k, =2¢—1 admits an efficient com-
putation of the smoothing matrices [2], which is a prerequisite for acceleratmg the ADI scheme. In all
computations, the initial approximation is defined by forming linear interpolations of the boundary
values on x =0, x =1 and on y =0, y =1, respectively, and by taking the average value of these func-
tions. The iteration is stopped if the scaled residual

l4U" - Bl
l4U° - B,

has dropped below a certain tolerance TOL.
The examples we consider are the following.
Example 1 [4, p. 427]

Uxx + uyy :f(x,)’)
u(x,y) =3e* P (x —xz)(y —p2), flx,y) = bxpe* P (xy +x +y —3)
P:p(Dxx):P(y)_ 8 8(Dxx)_8(Dy)*“'”2

r(n): = 5.1

106

Example 2
(e*u) +(€w), = flx,y)
u(x,y) = (xy)3, f(x,y) = 3xy ((2+x)yze" + x2(2 +y)e’)
)

p= D) = pD,) = (e +1), 8= 8(D) = 8D,)) = Tole +1)

Example 3
(6™ Pu) +(e?u,), — (x +y)u = flx,p)
u(x,y)= (xy)3, fly)= 3xy3(2—xy)e"‘y +3x3y(2+xy)e"Y —(x +y)(xy)3.

1 2 1 1 1 2 1
P ZP(DH)=;';7(€+1)+7, 8 =3(Dxx):;7(e+1)+7, PZZP(Dyy):Zz_(e+1)+—,

8, =D, = %(e +1)+7.

Example 4

(e“uy), +(e"u,), —w(x,y,u) =0

u(x,y)= (xy)z, w(x,p,u) = 2(x?2 +y2)(l +2x2y2)e",

Note that the matrices D,, and D,, commute for the first two examples but not for the third one.
Note that Example 4 is a nonlinear problem. Like the ADI scheme, the SADI scheme can be applied

to nonlinear problems in a straightforward manner. We have included this example, in order to show
the power of the residual smoothing technique. L

Consider the first three examples. First we present results for A =50°20° 80
values derived in Section 4. The results are collected in Table 2, which contains the following values:
the total number of iterations ng, the average reduction factor 7 defined by 7: :r(no)”"° (Cf. (5.1)
and the computing time (CT) in seconds needed for the iteration process. For the tolerance we take
TOL=10"%; similar results are obtained for larger values of TOL. From Table 2 we see that, espe-
cially on the finer grids, the SADI scheme needs much less iterations than the ADI scheme, which
results in a considerable reduction of CT.

Next we present results obtained on a 40*40 grid for several v-values, with the purpose of testing
the y-parameter values derived in Section 4. Case 1 (p = p(Dy) = p(D))), 8 = 8(Dyy) = 8(D,y))
applies to the first two examples. Instead of », conside{ for these two examples the scaled parameter
w=v/p. One can readily see that o' :% = (%)T =0.039269908 for the ADI scheme and
W 2%20.001542126 for the SADI scheme. Case 2 (p; = p(Dyx)72 = p(Dyy),

81 = 8(Dy,)#08, = 8(D),)) applies to Example 3. Let in this case w:=v/p;, then one can easily see
1

that for the ADI scheme w™ = (p—')T =0.040696. Since p,~ep; and §,~ed,, it is obvious to choose
1

obtained with the »-

. . 0
v; =ev and », =v» for the SADI scheme. The w -value is then given by w :—PL =0.001656164. The
1

number of iterations, for TOL=10"8, are presented in Table 3. We may conclude that the parameter
values derived in Section 4 are fairly good since the corresponding number of iterations is nearly
minimal. Furthermore, we see that in the range 1073 <w<10"2, the SADI scheme is less

107

ADI

example 1 example 2 example 3

h! ng r CT ng T CT ngy T CT
20 58 | 0.73 0.702 67 | 0.76 1.263 76 | 0.78 1.397

40 | 116 | 0.85 5.301 | 138 | 0.87 | 11.069 | 155 | 0.89 | 11.042
80 | 231 | 0.92 | 41.196 | 279 | 0.94 | 76.486 | 312 | 0.94 | 86.092

SADI
example 1 example 2 example 3

h~ ! no T CT no T CT no r CT
20 18 | 0.33 | 0.369 | 21 | 042 0512 | 26 | 0.49 0.747
40 | 21 | 040 | 1.781 | 27 | 0.49 3.306 | 34 | 0.58 4.080
80 | 25| 045 | 9219 | 31 | 0.55 | 15490 | 43 | 0.64 | 17.712

Table 2. The ny—,7— and CT-values for the first three examples.

example 1 example 2 example 3
W ADI | SADI | ADI | SADI | ADI | SADI
5%1072 147 | 200 143 | 188 166 | 159

102 100 41 267 39 220 34
5*10°3 199 21 >500 26 440 31
1073 | >500 22 >500 27 >500 37

© 116 21 138 27 155 34
Table 3. The ny-values for & :% and various values of w, for the first three examples.
ADI SADI
' | ng T CT ngy T CT

20 | 27 | 0.71 13.013 | 12 | 045 5.961
40 | 95 | 091 | 194378 | 14 | 0.51 | 30.030

Table 4. The ny—,r— and CT-values for Example 4.

sensitive to the choice of the parameter values than the ADI scheme. Thus, a w-value which differs a
little from the w"-value can lead to considerably extra computing time for the ADI scheme, but not so
for the SADI scheme.

Consider Example 4. Application of the ADI scheme or the SADI scheme to this nonlinear prob-
lem requires at each iteration the solution of a set of nonlinear tridiagonal systems, for which we use

2—10, % and for TOL=10"* are presented in Table 4. The best -
values are experimentally found to be w =10"" for the ADI scheme and " =102 for the SADI
scheme. From this table we see that residual smoothing leads to a considerable saving of the number
of iterations and hence also of the computing time. Note that in this case the gain in computing time
is even more than for the first three examples, since one ADI iteration is now very expensive com-

pared to the computation of the smoothing matrices.

Newton iteration. Results for 4 =

108

6. AN ALTERNATIVE SMOOTHED ADI SCHEME
In this section we briefly consider an alternative to the SADI scheme (3.3). For this purpose, we
rewrite the ADI scheme (3.2) in the one-stage form

(Dxx =01 I)Dy, = HU" = (D, = I)(Dy, — v, [)U" +(» +1,X(AU" —B). 6.1)
The idea is now to multiply the residual in (6.1) by the smoothing matrices S‘, and S'y (see Section 3):
(Dex = IXDy — 1 U1 = (Do = IXD,, — 1)U +(+1)S,S,(AU"~B). (6.2)

For brevity, we restrict ourselves to case 1 and assume that » =»,=». The damping factor of
scheme (6.2), as a function of p, and p, can then be written as

2w(p, +
£= Eueotyio) = 1+#§-hwﬂw, 63)

where w=w»/p. The corresponding average damping factor « is then given by (3.7) with
£ =& (1t 500,) defined in (6.3). In order to damp the high frequency error components, we choose
w=1 and w,=w for g=1(1)N —1 (see Section 3). The average damping factor a = a(p,p,;w) is
plotted in Fig. 2. for p,=p,, N =6 and ©=1,10"",1072,10">. Comparing Fig. 1. and Fig. 2. it is
apparent that the SADI scheme gives a much better “overall” damping of the iteration error than the
alternative scheme.

As an illustration, we apply the alternative scheme (6.2) to Example 1 for & :% and for various

values of the parameter w. For the tolorance TOL we take TOL=10"3. The results are presented in
Table 5. From Table 3 and Table S one can readily see that scheme (6.2) is slightly faster than the
ADI scheme, however, much slower than the SADI scheme. Thus, the SADI scheme is clearly to be
preferred to the alternative scheme (6.2).

w [5%1072 [1072 [5*107% | 1073
no | 219 79 105 229

Table 5: no-values for h = % and various w-values for Example 1.

109

»=1 w=10"
1.09 1.0 4
0.8 4 0.8
0.6 0.6
0.4 0.4
0.2+ 0.2
0.0 T . — T 1 0.0 T T T T 1
100 =08 '=0.6 <=0.4 =0.2 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
w=10"2 w=10"3
1.04 1.0+
0.8 0.8+
0.6 0.6
0.4 0.44
0.24 0.24
0.0 T T T o 1 0.0 T T T T 1
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

Fig. 2. The average damping factor for scheme (6.2) for w=1,10"",10"2,10"3.

110

7. CONCLUDING REMARKS

In this paper we considered residual smoothing as a means to accelerate the convergence of the ADI

scheme for elliptic difference equations. Concerning this technique we note the following.

(i) Residual smoothing can be easily applied to general elliptic problems, even to nonlinear prob-
lems, to speed up iterative methods such as the ADI method.

(i) For a proper choice of the degree of smoothing k(k =27—1 for some integer ¢=0), residual
smoothing can be implemented very efficiently.

(iii) Residual smoothing can be combined with the ADI scheme in several ways. When it is applied
in the right way, as is done for the SADI scheme (3.3), residual smoothing can lead to a consid-
erable reduction of the number of iterations and the computing time for the ADI scheme.

(iv) The parameters for the SADI scheme are chosen such that the high- and low frequency com-
ponents in the iteration error are rapidly damped. Due to the residual smoothing, the other com-
ponents in the error are also properly damped.

(v) For a certain range of the parameter values, the SADI scheme is much less sensitive to the choice
of these values that the ADI scheme.

REFERENCES

[1] G. BIRkHOFF & R.E. LYNCH, Numerical solution of elliptic problems, SIAM, Philadelphia (1984).

[2] P.J. vaN DER HOUWEN, C. BooN & F.W. WuBS, Analysis of smoothing matrices for the precon-
ditioning of elliptic difference equations, Z. Angew. Math. Mech 68, 3-10 (1988).

[3] D.W. PEACEMAN & H.H. RACHFORD, The numerical solution of parabolic and elliptic differential
equations, J. Soc. Ind. Appl. Math. 3, 28-41 (1955).

[4] J.R. Ricé & R.F. Boisvert, Solving elliptic problems using ELLPACK, Springer-Verlag, New
York (1984).

[5] D.M. YOUNG, Iterative solution of large linear systems, Academic Press, New York (1971).

111

SAMENVATTING

In dit proefschrift beschouwen we numerieke methoden voor de berekening
van tijdsafhankelijke, onsamendrukbare vloeistof- stromingen. Het proefschrift
bestaat uit twee delen. Het eerste deel geeft een korte wiskundige beschrijving
van onsamendrukbare vloeistofstromingen, en dient als achtergrond voor de
artikelen welke in het tweede deel worden gepresenteerd. Deze artikelen bevat-
ten een gedetailleerde beschrijving van enkele numerieke technieken, welke een
rol spelen in de berekening van tiids- afhankelijke, onsamendrukbare vloeis-
tofstromingen.

DEEL 1

Voor de stroming van een onsamendrukbare vloeistof kan men de volgende
drie beschrijvingswijzen onderscheiden: de primitieve- variabelen-formulering,
de vorticiteit-stroomfunctie-formulering en de biharmonische-stroomfunctie-
formulering. Het verschil tussen deze drie formuleringen is gelegen in de keuze
van de variabelen. De primitieve-variabelen-formulering maakt gebruik van de
snelheid en de druk in de stroming als beschrijvende variabelen. Deze for-
mulering is, zeker voor drie-dimensionale berekeningen, de meest gebruikte
beschrijvingswijze voor onsamendrukbare stromingen. In het proefschrift
beperken we ons tot deze formulering.

Voor de primitieve-variabelen-formulering kan men ruwweg twee klassen
van oplossingsmethoden onderscheiden, nl. de impliciete methoden en de
zogenaamde druk-correctie-methoden. Het kenmerk van impliciete methoden is
dat het snelheidsveld en de druk simultaan worden uitgerekend m.b.v. een
iteratieve procedure. Druk-correctie-methoden daarentegen, zijn methoden
waarbij de berekening van de snelheid en de druk zijn ontkoppeld. De druk
wordt nu rechtstreeks berekend uit een Poisson-vergelijking. In dit proefschrift
beperken we ons tot de druk- correctie-methoden.

DeeL 11

In de druk-correctie-methoden kan men globaal de volgende drie stappen
onderscheiden:

— plaatsdiscretisatie

— tijdsintegratie

— oplossen van een Poisson-vergelijking voor de druk.

Er bestaan verschillende plaatsdiscretisatie-technieken, zoals bijvoorbeeld de
eindige differentiemethode en de eindige elementenmethode. In dit proefschrift
beschouwen we uitsluitend de eindige differentiemethode.

Er bestaan vele tijdsintegratie-technieken welke men kan gebruiken in een
druk-correctie-methode. Men kan de voldende gevallen onderscheiden: expli-
ciete methoden, impliciete methoden en splitmethoden. In dit proefschrift
beperken we ons tot de belangrijke klasse van splitmethoden. Voorbeelden
hiervan zijn het ‘odd-even hopscotch’ (OEH)- schema en het ‘alternating

112

direction implicit’ (ADI)-schema.

In het eerste artikel wordt het OEH-schema besproken voor meer-
dimensionale convectie-diffusievergelijkingen. Met name de von Neumann-
stabiliteit van het schema voor een klasse van lineaire convectie-diffusie- ver-
gelijkingen wordt onderzocht. Het schema wordt getest aan de hand van de
Burgers-vergelijkingen, welke een eenvoudig model vormen voor de ver-
gelijkingen van een onsamendrukbare vloeistofstroming (in primitieve-
variabelen-formulering).

Het vierde artikel bespreekt vectorizatie-aspekten van zowel het OEH-
schema als het ADI-schema, voor het oplossen van de Burgers-vergelijkingen.
Beide schemas zijn geimplementeerd op de vectorcomputers Cyber 205 en Cray
X-MP/24. Datastructuren en oplossingstechnieken welke worden gebruikt
voor het vectorizeren van beide schemas, worden kort besproken. Een evaluatie
van beide schemas wordt gegeven.

In het tweede artikel wordt het OEH-schema gecombineerd met een snelle
oplossingsmethode voor de Poisson-vergelijking, voor het berekenen van
onsamendrukbare vloeistofstromingen. Het totale schema wordt het ‘odd-even
hopscotch pressure-correction’ (OEH-PC)-schema genoemd. Nauwkeurigheid
en efficiéntie van het schema worden onderzocht aan de hand van een een-
voudig testprobleem. Een meer praktisch testprobleem heeft betrekking op de
stroming door een reservoir. Het derde artikel is een uitbreiding van het
tweede artikel. In dit artikel wordt het OEH-PC schema toegepast voor de
berekening van vrije convectie, d.w.z. de stroming veroorzaakt door een tem-
peratuurgradient in de vloeistof. In dit geval moet het stelsel vergelijkingen
voor een onsamendrukbare vloeistofstroming worden uitgebreid met een
convectie-diffusievergelijking voor de temperatuur.

Er bestaan tegenwoordig vele snelle oplossingsmethoden voor de Poisson-
vergelijking, zoals bijvoorbeeld de ‘Fast Fourier Transform’-methode en vele
multigrid methoden. In het vijfde artikel wordt een nieuwe methode besproken
voor het efficiént oplossen van elliptische vergelijkingen (waaronder de
Poisson-vergelijking). In dit artikel wordt de klassieke ADI- iteratiemethode
gecombineerd met het zogenaamde ‘residual smoothing’. Dit is een eenvoudige
techniek voor het versnellen van de convergentie van iteratieve methoden voor
elliptische differentievergelijkingen. Wanneer ‘residual smoothing’ op de juiste
manier wordt gecombineerd met de ADI- iteratiemethode, leidt dit tot een
aanzienlijke reductie van het aantal iteraties en de rekentijd van de ADI-
methode.

