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Chapter 1

Introduction

Groundwater is the water that occurs below the surface of the earth, where it occupies all or
part of the void spaces in a geological formation. Its availability in large quantities plays a
crucial role in the development of densely populated and industrialized regions.

Worldwide there is a growing concern about the quality of groundwater, which is affected
by natural factors and human activities. Examples of the latter are disposal of industrial waste
to natural waters, irrigation return flows containing salt and fertilizers, and silting of man-made
reservoirs.

Groundwater pollution control has been recognized as an important environmental issue.
The chemical composition of groundwater, in particular near drinking water reservoirs, is con-
tinuously and intensively being monitored and in the past decades many advanced and dedicated
techniques have been developed to avoid or reduce contamination of soil-groundwater systems.
Needless to say that mathematical modeling and computer simulations play an essential role in
the prediction of the extend of contamination events and in the design of clean-up strategies.

An increasing threat to groundwater systems is contamination by salt! This type of ‘natural’
pollution occurs, for instance, when salt seawater intrudes into coastal aquifers. These aquifers
play an important role as resources for fresh (drinking) water, in particular in heavily urbanized
areas, see Bear & Verruijt [13]. Under natural undisturbed conditions, a coastal aquifer is in a
state of equilibrium, with a transition zone between fresh groundwater and seawater. To meet the
drinking water demand, fresh water is being pumped from the aquifer. The hydraulic gradients
that result from this induce a flow of saline water landward and thus movement of the transition
zone until a new state of equilibrium is reached. This process is called seawater intrusion
or encroachment. The earliest analysis of the nature of the processes involved were carried out
independently by Ghyben [28] and Herzberg [39] around the turn of the century. They considered
a homogeneous, unconfined coastal aquifer with an abrupt transition or interface separating the
fresh and salt groundwater. Moreover, they assumed the following simple hydrostatic conditions
in both fluids: at each point of the interface, the weight of a column fresh water (density py)
extending from the interface to the water table is balanced by the weight of a column salt water

!Sodium and chlorine predominate in seawater; together they form more than 85 percent by weight of the total
amount of dissolved salts. The total amount of the dissolved salts may vary from place to place and from time to
time, due to evaporation or dilution (rain, snow, rivers, melting icebergs), but its relative chemical composition is
remarkably constant, see e.g. Sverdrup et.al. [34]. The total volume of the oceans and seas, covering 71 percent
of the Earth’s surface, is approximately 1.37 - 10° km® and the average total concentration of salt in seawater
amounts to 36 kg/m?®, which corresponds to an average seawater density of 1025 kg/m®. The total amount of
salt is therefore roughly 5.0 - 10'® kg. Dried and spread over the whole Earth, this would produce a layer of 45 m
thickness.
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(density ps) extending from the interface to sea level. Hence: psgzs = prg(zs + zy) or:

Ziy = —pf—z, (1.0.1)
Ps — Pf

which is referred to as the Ghyben-Herzberg relation. Here, z; denotes the distance between the
phreatic surface and sea level and z, the distance between sea level and the interface. Typical
density values are: py = 1000 kg/m?* and p, = 1025 kg/m?, hence zs = 40z;. The latter implies
that if we lower the water table by Az; = 1 m, the fresh-salt interface will rise by Azg = 40 m!
This example, taken from the book by Freeze & Cherry [27], clearly illustrates the sensitivity of
the position of the interface to changes in the height of the water table.

A more realistic case was studied by Hubbert [45], who considered a similar problem, but
now with steady-state outflow of fresh water into the sea. He was able to determine the position
of the interface for any given water table configuration by a graphical flow-net analysis. Henry
[38] was the first author to present a mathematical solution for a steady-state case that includes
dispersion. In fact, this solution is one of the very few explicit solutions known for dispersive
salt water intrusion problems. Due to the complex nature of the governing equations, many
authors resort to numerical methods to solve seawater intrusion problems, see e.g. Pinder &
Cooper [68], Segol & Pinder [74], Baumann & Moser [4], Kashef [48], Holzbecher & Baumann
[40], Bear & Dagan [10].

Summarizing we can state that the dynamics of the zone of contact between fresh water and
seawater, either considered as a sharp interface or as a dispersive mixing zone, plays a key role
in understanding and managing practical seawater intrusion problems.

Much higher salt concentrations are found in groundwater near of salt domes. Salt domes or
evaporites are mostly formed from minerals that precipitated under hot arid conditions in seas
and large saline lakes. The resulting beds of evaporite minerals can be very thick and extensive.
The Permian salts of the Deaware Basin (USA), for instance, extend over 300,000 km?, while in
Texas (USA) salt deposits up to 3500 m thick are present (Roxburgh [70]). Salt domes have long
been considered as prime candidates for high level (nuclear) waste (HLW) disposal (see IAEA
[44]). This is due to their low water content, high thermal conductivity and ability to act in a
plastic manner which makes them self-sealing should fractures ocur. Amongst other places in
Western Europe salt domes are being examined for the purpose of HLW disposal near Gorleben
in Germany and in the Mors area of Denmark.

Risk assessment studies for salt rock repositories usually pose two questions: does the repos-
itory scenario imply unacceptable environmental consequences, and if so, can they be eliminated
or reduced to acceptable limits by changing the design of the repository in some way (Barr et.
al. [5]). In his study, Roxburgh [70] concludes that transportation by groundwater potentially
represents the greatest single threat to the integrity of a HLW rock repository. Hence a thorough
and basic understanding of groundwater flow and salt transport processes in the vicinity of salt
domes is of vital importance in risk assessment studies.

Salt can also enter a groundwater system through the process of crystal dissolution. Salt (or
other contaminants) is sometimes present as a thin layer of mineral ( crystalline or amorphous)
phase on the soil particles of an aquifer. The formation of this layer is in general due to a
precipitation reaction. When fresh water intrudes such an aquifer, salt is going to participate
in a dissolution reaction. This reaction is often not in equilibrium, but is kinetically controlled,
see e.g. Rubin [71] and Willis & Rubin [83].
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To quantify the above discussed phenomena, we first need to describe them in terms of a
mathematical model. Bear & Verruijt [13] define a (mathematical) model as a simplified version
of the real (here groundwater) system that approximately simulates the excitation-response
relations of the latter. In general, it is not possible to include all aspects of a real system into a
mathematical model. A set of simplifying assumptions has to be imposed, such that the model
still expresses basic and relevant features of the real system. This step in the modeling process
is not always straightforward and often subject to debate.

The quality and practical relevance of modeling results are primarily determined by the de-
gree of simplification in the model.

This thesis focusses on mathematical aspects of salt transport in porous media. Analytical,
semi-analytical and numerical techniques are developed and utilized to gain better understanding
of the transport processes, the governing model equations and its relevant transport parameters.
Chapters 2,3 and 4 deal with the mathematical analysis of problems related to HLW disposal
in salt rock formations. In Chapters 2 and 3, we investigate the effect of volume changes due to
the presence of (extremely) high salt concentrations in groundwater.

The relation between high salt concentration gradients and the dispersive behavior of salt in
hydrodynamically stable displacement experiments is considered in Chapter 4. A large number
of laboratory experiments (Ben Salah [14], Bues et.al. [17], Bringham et. al. [15], Kempers
[52], [51] (gives an overview), Slobod & Howlett [75], Hassanizadeh & Leijnse [35], Hassanizadeh
et.al. [36], Moser [61]) indicate that the dispersion coefficient decreases as the difference between
the salt concentrations of the resident and the displacing fluids increases. This phenomenon is
not simulated by the classical dispersion theory, which utilizes Fick’s law as dispersive mass flux
equation. However, a nonlinear dispersion theory, as suggested by Hassanizadeh and Leijnse [35],
provides satisfactory agreement between measurements (breakthrough curves) and modeling
results, in both low and high concentration gradient regimes.

In Chapter 5, we present a numerical study of interface problems related to salt water
intrusion. In many practical situations, the width of the transition zone between fresh and salt
groundwater is small as compared to the horizontal and vertical extensions of the aquifer. This
allows us to approximate the diffusive/dispersive mixing zone by a sharp interface: the fluid
density is discontinuous at the interface separating the fluids. This assumption simplifies the
governing equations and leads in mathematical terms to so-called free boundary problems.

Finally, in Chapter 6, we study crystal dissolution in flows through porous media. We
consider a model for transport of solutes participating in a dissolution reaction, in general not
in equilibrium. The dissolving solid is initially present as a thin layer covering the grains of the
porous medium in part of the flow domain. In the absence of diffusion/dispersion and under
the assumption of a constant flow rate, two fronts will emerge as time proceeds: the water or
salinity front which travels with the (constant) fluid velocity and a dissolution front, separating
the domain where the solid concentration is identical zero and the domain where the solid
concentration is positive. The speed of this front is in general not constant. It is determined by
the nature of the non-equilibrium dissolution reaction and its rate constants.

1.1 Basic equations

Fluid flow in the void spaces of a porous medium is described by the Navier-Stokes equations,
subject to appropriate boundary and initial conditions. Solving these equations in the fluid
domain is unpractical because of the enormous complexity of the flow geometry. Even if one
could determine a solution for an idealized domain, still the question remains how to relate
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measured field quantities (usually volume averaged) to micro-scale modeling results. To over-
come these difficulties, a continuum theory for flow in porous media has been established. In
this continuum or macro-scale approach, averaged micro-scale details, reappear in the form of
macro-scale coefficients. The development of micro-scale averaging techniques have received a
lot of attention in the porous media literature. Amongst many others we mention Whitaker
[79], [80], [81], Bear & Bachmat [8], [9], Bear [6], Gray [29], Hassanizadeh & Gray [30], [31],
[32], Marle [59] and Zijl [87]. In the seventies mathematicians have developed an averaging tech-
nique called homogenization. This technique was developed for partial differential equations
with (highly) oscillatory coefficients and has proven to be very powerful. See for instance Tartar
[77) (Darcy’s law), Keller [50] (Darcy’s law), Hornung et. al. [41] (reactive transport of solutes),
Hornung & Jager [42] (dispersion and chemical reactions), Hornung [43] (miscible displacement
in unsaturated soils), Mikeli¢ & Aganovi¢ [60], Bhattacharaya [3] (solute dispersion) and Ene &
Polisevski [26] (thermal flow).

The macro-scale equations (in terms of volume averaged and measurable quantities) for salt
transport in porous media are based on two fundamental principles: mass conservation (of both
fluid and salt) and momentum conservation of the fluid.

1.1.1 Conservation of mass

The fluid mass balance equation in a nondeformable porous medium reads

ap . -
—a—t+d1v (pq) =0, (1.1.2)

n

where 7 [-] denotes the effective porosity of the porous medium, p [kg/ m?] the fluid density, and
q [m?/(m?s)] the specific discharge or Darcy velocity vector. Source and sink terms are omited
in (1.1.2). The interstitial or fluid velocity vector v [m/s] is given by

s 3 (1.1.3)
n
Equation (1.1.2) is also known as the continuity equation. In case of a homogeneous and incom-
pressible fluid, i.e. grad p = 0 and 9p/dt = 0, equation (1.1.2) reduces to

divq=0. (1.1.4)
The salt mass balance is given by

naa;?-kdiv (pwq +J) =0, (1.1.5)
where J denotes the dispersive mass flux vector and w the salt mass fraction. If salt partic-
ipates in a dissolution/precipitation reaction, additional terms in (1.1.5) are required, as well
as additional (rate) equations. This will be discussed separately in Section 1.5. The salt mass
fraction w [kg/kg] is defined as the salt mass concentration ¢ [kg/m?] divided by the fluid density
p [kg/m?]. In analogy to diffusive mass transport, the dispersive mass flux J is often assumed
to have the form of Fick’s law,

J = —pDgradw, (1.1.6)

which indicates a linear proportionality between dispersive mass flux and the salt mass fraction
gradient. In (1.1.6), D denotes a velocity dependent second rank symmetric tensor, generally
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referred to as dispersion matrix. In fact, the analogy between Fick’s law and the dispersive mass
flux equation is a working hypothesis, motivated by experimental and theoretical dispersion
research which started some decades ago. For an overview we refer to Bear [6]. We note that
expression (1.1.6) can only be justified for relatively low salt concentrations. An alternative
expression for brine transport will be presented in Section 1.3 (and in Chapter 4).

Several physical phenomena can affect the fluid volume, and thereby its density. These are:
thermal expansion, pressure compressibility and volume changes due to high salt content. This
implies that the fluid density is a function of (absolute) temperature 7', fluid pressure p and
salt mass fraction w (or salt concentration c¢). The empirical relation between these variables is
given by the equation of state

p=p(T,p,w) = poeﬂr(T—ToHﬂp(p—po)Hw’ (1.1.7)

where py = p(To,p0,0) (a reference density), and where By and f, respectively denote the
thermal expansion and the compressibility coefficient. For salt (NaCl) dissolved in fresh water,
the coefficient + is approximately v = In(2). Under isothermal conditions, and disregarding fluid
volume changes due to small pressure variations, the equation of state reduces to

p(w) = pre™, (1.1.8)

where py denotes the density of fresh water.

1.1.2 Conservation of momentum

The fluid momentum balance equation in a nondeformable medium and in the absence of inertial
effects, is given by

K
q= —;(graderpgez), (1.1.9)

where p [N/m?] denotes fluid pressure, x [m?] the intrinsic permeability tensor, u [kg/(sm)] the
dynamic viscosity, g [m/s?] the acceleration of gravity, and e, the unit vector in the vertical
positive z-direction. Equation (1.1.9) expresses a balance between the driving forces due to
gravity and fluid pressure gradients, i.e. —(grad p + pg), and the flow resistance force at the
fluid-solid interfaces (drag forces), expressed by (u/k)q. The latter is only correct for flows at
low Reynolds-numbers (laminar flow). The range of validity of equation (1.1.9) is approximately
Re< 10, which is satisfied in most practical groundwater problems. The momentum balance
equation (1.1.9) is generally referred to as Darcy’s law.

A flow field satisfying curl q = 0 is called irrotational. The driving force per unit volume
(grad p + pge,) is irrotational if the fluid density is a function of the vertical coordinate z only.
Then the pressure gradient is the only driving force causing fluid flow. If the fluid density
depends on the horizontal coordinates (z,y) as well, Darcy’s law (1.1.9) gives (taking the curl)

curl(ﬁq) = —ge, xgrad p # 0. (1.1.10)
K

Since the vector product e, x grad p evaluates to (—9p/dy, +9p/dz), equation (1.1.10) indicates
that horizontal density gradients induce rotational fluid flow.

Remark:
The Helmholz-Hodge decomposition theorem states that any sufficiently vector fie Id w on a
bounded domain §2 can be uniquely decomposed into the form

w = q + grad p, (1.1.11)
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where q has zero divergence (a so called solenoidal vector field) and is parallel to 0, i.e.
divq = 0 and g-n on 99. The gradient field gradp is irrotational since curl(grad p) = 0.
Solenoidal and irrotational fields are orthogonal because

/ q-grad pdV =0. (1.1.12)
Q

1.2 Brine transport: volume effects

The subject of brine transport in porous media is typically related to risk assessment studies
for HLW storage in subsurface salt domes and received a lot of attention in the hydrological
literature in the last (two) decades. Many (dedicated) numerical codes have been developed to
simulate fluid flow, transport of salt (brine) and (simultaneous) transport of dissolved chemicals
and/or radionuclides, see e.g. Krohn & Zielke [55], Voss & Souza [85], Oldenburg & Pruess [64]
and Kolditz et. al. [54].

The equations describing brine transport are the continuity equation for the fluid (1.1.2),
the mass balance equation for salt (1.1.5) combined with an equation for the dispersive mass
flux (e.g. Fick’s law (1.1.6)), Darcy’s law (1.1.9) and the particular form of the equation of state
(1.1.8). If we introduce the material derivative

D 0 q

==+

z 1.2.13
Dt~ o7 T n &R W22}

in the continuity equation (1.1.2) we obtain

%%+divq:0. (1.2.14)
This expression shows that density variations may affect the divergence or local volume of the
fluid, which in turn can cause additional (enhanced) movement of the fluid. Our main goal is
to investigate this effect and we shall use analytical techniques to make it explicit. Although
no pressure dependence in (1.1.8) is assumed, we shall use the term ‘compressibility effect’” in
relation to fluid volume changes caused by concentration gradients. This is inspired by the fact
that all phenomena affecting the local volume result in a flow field which is not divergence free.

The complex nature of the brine equations, i.e. nonlinear coupling between the density
distribution and velocity field due to both gravity (free convection or rotational flow due to
horizontal density gradients) and local fluid volume changes (caused by high density gradients),
implies that the availability of exact or semi-exact solutions for numerical code verification is
rather poor. A series of benchmark problems has been defined by the international HYDRO-
COIN [49] project. These benchmarks are utilized for cross-verification of numerical codes, see
e.g Kolditz et. al. [54]. Both phenomena causing enhanced fluid flow are considered in the
proposed benchmark problems. Therefore, it is hard to distinguish between these phenomena,
both qualitative and quantitative.

To study the effect of compressibility induced flow, we define three model problems that
typically relate to transport of brines in the vicinity of a salt dome: (i) The salt dome problem:
flow of fresh water along the surface of a salt dome, (ii) The mixing problem: mixing of parallel
fluid layers in a porous medium (fresh water and brine) and (iii) The column problem: brine
displacing fresh water in an infinitely long porous column. Both the salt dome problem and the
mixing problem are studied in Chapters 2 and 3 of this thesis. The column problem is studied
in Chapter 3.
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As will be shown in Chapters 2 and 3, each of the above problems can be described in terms
of a coupled set of (scaled) partial differential equations in one space dimension. The resulting
equations are

ap 0 10q
ot "5 25 = M)
and
ap 9p O*p

All variables in (1.2.15), (1.2.16) are dimensionless and the z-coordinate does not necessarely
coincide with the vertical axis. The scaling is different for each problem and imposed by the
flow geometry and hydrology of each individual problem. The parameter ¢ in (1.2.15) denotes
the relative density difference, which is defined as
Y i (1.2.17)
Pf

where p; is the density of fresh water and p; is the density of salt water.

To illustrate the contents of Chapters 2 and 3 we discuss here the salt dome problem. In
that case, equations (1.2.15) and (1.2.16) have to be solved for z > 0, subject to the scaled
boundary/initial conditions

p(z,0) =0 for z >0, (1.2.18)
p(0,t) =1 for t >0, (1.2.19)
and
dp
q= sz(s)a(O, t) for t >0 (1.2.20)

where K (¢) is a constant, see Van Duijn et. al. [23]. The particular form of the specific discharge
boundary at the salt rock boundary is due to Hassanizadeh & Leijnse [33].

Due to the nonlinear coupling between (1.2.15) and (1.2.16), it is not possible to find explicit,
closed form solutions of these problems. Nevertheless, their special structure enables us to
obtain much information concerning the qualitative behavior of the solutions and to obtain
accurate approximations. The key idea in Chapter 2 is to look for self-similar solutions, which
reduce (1.2.15), (1.2.16) to a set of coupled ordinary differential equations, subject to boundary
conditions originating from (1.2.18), (1.2.20). In fact, this coupled set of ordinary differential
equations can be combined into a single nonlinear third order equation. To tackle this directly
is not straightforward. Therefore, several other transformations are proposed to reduce the
problem to a well-known boundary value problem. This procedure provides detailed information
about qualitative properties of solutions.

The key idea in Chapter 3 is to reduce the coupled system (1.2.15)-(1.2.16) to a single
second order nonlinear diffusion equation by applying a so-called Von Mises transformation,
see e.g. Von Mises & Friedrichs [63]. The resulting diffusion problems that arise from this
transformation are well known and received a lot of attention in the mathematical oriented
literature. The special choice of the boundary and initial conditions in the example problems
(see above) implies that the corresponding nonlinear diffusion problems are solvable in terms
of, again, a similarity solution. With the Von Mises transformation as intermediate step, these
similarity solutions are natural to the problem and straight forward to find. Moreover, we know
that they represent the large time behavior of the corresponding flow problem with more general
(i.e. non-constant) boundary/initial data: see e.g. Van Duijn & Peletier [67]) or the book by
Barenblatt ([1]).
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1.2.1 Similarity solutions

The dimensionless system (1.2.15)-(1.2.16) allows a similarity solution of the form

=—, 1.2.21
T=1% ( )
and
1
p(z,t) = f(n) and q(z,t) = —=g(n), (1.2.22)
Vit
where f and g satisfy the coupled set of ordinary differential equations
1 1
(f9)' + ggl - iﬂf' =0, (1.2.23)
! 1 "
Fla—gni=f (1.2.24)

2

for 7 > 0. Here the primes denote differentiation with respect to 7. To have a uniform notation
in the introduction, we introduce here f and g for the similarity variables, which differs from
the notation used in Chapter 2. The boundary conditions for the salt dome problem are

f(0) =1, f(+o00) =0 and g(0) = —eK(g)f'(0). (1.2.25)
It can be shown that solutions of problem (1.2.23)-(1.2.25) satisfy
(i) f'(n) <0 forall 0 <n < +oo,
(ii) there exists ng > 0 such that f”(n) < 0 for n < n9 and f"(n) > 0 for n > no,
(ii1) g(mo) = gm0 and g'(n) > 0 for n <o and ¢'(n) < 0 for n > no,
(iv) f'(n) = 0 if n — oo,

see Van Duijn et. al. [23]. This implies that the brine concentration decreases strictly with z
and is concave below the plane z = 79/t and convex above it. The z—component of the specific
discharge has a maximum at z = 79v/% of magnitude g(nov/%,t) = 1/2n0/ V1.

In the limit e — 0 equations (1.2.23) and (1.2.24) reduce to

1
+ 5nf’ =0 for >0, (1.2.26)

while g(n) = 0. Equation (1.2.26) subject to the boundary conditions on f has an explicit
solution, given by

f =erfc <g) for n>0. (1.2.27)

This solution is referred to as the Boussinesq limit of the salt dome problem. Figures l.a. and
1.b. show solutions of (1.2.23)-(1.2.24) subject to (1.2.25) for ¢ = 0.2 and the corresponding
Boussinesq limit (e = 0.0).

Although € = 0.2 corresponds to almost saturated brine, the difference between the f-curve
for € = 0.2 and the Boussinesq solution is &~ 5%. A comparison in terms of the similarity variables
is convenient because the result is uniformly valid for all ¢ > 0. Moreover, the similarity solution
provides an upper bound for the magnitude of the volume effects. This is due to the choice
of the discontinuity of p at z = 0, t = 0, see (1.2.18). In most practical situations, the initial
condition on p will be smooth and therefore the volume effects less noticeable.
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Figure 1.a. The similarity solution f(n) for ¢ = 0.0 (Boussinesq limit) and € = 0.2.
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Figure 1.b. The similarity solution g(n) (= ¢(z,t)v/?) for € = 0.2. The Boussinesq limit is
g9(n) = 0.
The induced discharge is perpendicular to the salt rock boundary and causes additional move-
ment of salt.
In Chapter 2, we also consider the brine induced flow of radionuclides. Then we need to
consider the additional scaled equation
0w, 0w, 0 0
g —
ot 0z  (ep+1)0z

((ep + 1)3;:) =0

in which we eliminated the decay term by setting we(z,t) = @c(z,t)e . Here, w, denotes the
scaled tracer mass fraction, relative to the fluid (brine) density. The pafarneter 0 is defined
as the ratio between the dispersivity of the tracer divided by the dispersivity of brine. The
boundary and initial conditions are

(1.2.28)

@c(0,t) =1 for all
@c(2,0) =0 for all

t>0

aiaje (1.2.29)

This problem corresponds to the continuous release of radionuclides (tracers) at the salt rock
boundary with scaled mass fraction @.(0,t) = 1. The radionuclides are transported by dis-
persion/diffusion and the convection induced by the density gradients of the brine. Since
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q(z,t) = g(n)/Vt and p(z,t) = f(n), we note that (1.2.28)-(1.2.29 ) has a self similar solu-
tion @.(z,t) = w(n), where w is a solution of the linear boundary value problem

0 ;
w(g— 1)~ = ((ef + Du') =0
w(0) :21 (ef +1) (1.2.30)
w(o0) =0

To solve this problem we first eliminate g using (1.2.16) and integrate the resulting equation.
This leads to

nFOY (L+e) O
e f (7)) g@+n L bz “ -

© (fE\F (1+¢) o |f(&)]s
/ (f’(O)) SGERS [ et

where f is the solution of (1.2.23)-(1.2.25), for a given value of €. The corresponding scaled
radionuclide concentration is

e(n) = w(n)%z{—l. (1.2.32)

Only for special values of 6 the integral (1.2.31) evaluates to an exact closed form expression.

In the limit & — 0, i.e. no tracer dispersion, the solution of (1.2.30) reduces to

)1 for 0<n<mno
w(n)—{ 0 for 55 (1.2.33)

and thus

L1 for 0<n<mno (1.2.34)
0 for N> N

{ ef(n) +1

As a consequence a radionuclide front emerges which moves with speed g(no)/ Vt, where g(no)
= max((g(n)) = 70/2, see property (iii) above. The position of the front in the (z,t)-plane is
given by s(t) = 2¢(n0)v/* = n0V/t, which is equivalent to the path of a tracer particle released
at t = 0in z = 0, i.e. at the beginning of the brine transport process. Hence in the limit § — 0,
the movement of the tracer is caused by the compressibility or volue effect only. The scaled
tracer concentration ¢ is plotted for different values of the parameter 6 in Figure 2. This picture
clearly shows convergence towards the front solution as § — 0.
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Figure 2. The scaled radionuclide concentration ¢(n) for e = 0.2 and different val ues of 6: a.
0 =1.0,b. 6=0.1,c 6=0.01,d. 0=0.005,e 6=0.001,f 6=0.0003, g. §=0.0 (the front
solution).

1

1.2.2 The Von Mises transformation

To reduce system (1.2.15)-(1.2.16) to a single, nonlinear diffusion equation we apply a coordinate
transformation which is a variant of the Von Mises transformation, see e.g. Mises & Friedrichs
[63]. First we redefine the scaled density variable p by setting u := p+1/e. In this new variable,
equations (1.2.15)-(1.2.16) become, for z > 0, t > 0,

?9—1: + %(qu) =0 (1.2.35)
Z_lt‘ +qg§ _ 327’; —0, (1.2.36)

with
u(z,0) = uy for z >0, (1.2.37)

and
u(0,t) = us and ¢(0,t) = —eK(e)%(O,t) for ¢ > 0. (1.2.38)

Here uy and u, are the scaled densities of fresh water and brine.
Considering the fluid balance equation (1.2.35) as the divergence operator in the (¢, z)-plane,
acting on the vector (u,uq), we introduce a modified stream function ¥ = W(z,t), which satisfies

ov ov
U= and uq = 5 (1.2.39)

We use this ‘stream function’ to replace z as independent variable. Thus instead of ¢ and z we
take

t=t and ¥ :/ u(s,t) ds, (1.2.40)
0
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as new variables, where h(t) is a yet unknown function of time which will be determined later
on from the boundary condition on ¢. It will be normalized such that h(0) = 0. The Von Mises

transformation is
= a(V,t) = a(V(z,t),t) = u(z,t). (1.2.41)
Under this transformation, equations (1.2.35)-(1.2.36) become

ou 9] ou

— =l U= ith ¥ , >0, 1.2.42

ot ov (“a\y) with ¥ €Q (1-2.42)
where @ denotes the range of W. The presence of the second boundary condition in (1.2.38)
implies that the domain @ is time dependent and a priori unknown. It has to be determined as
part of the problem. Using the second equation in (1.2.39) we obtain

t t
W0, = —ue [ 4(0.€) d = —eK (e | 2 0,6) e (1.2.43)

Differentiating this expression and introduction of the Von Mises variables gives, with ¢(t) =
(0, ),

do(t) 2 ot B 50U
o = eK(e) @ (e(t), ) 55 ((t), 1) = eK(e) u; 5g (#(0), 1) for £>0. (1.2.44)
Integrating the first equation in (1.2.39) gives
z
U(z,t) = p(t) +/ u(s,t) ds. (1.2.45)
0

t
v 0,0) = ()

Figure 3. The (¥, t)-plane.
Hence
Q(t) = (p(t),00) for t >0, (1.2.46)

see Figure 3. Thus we have found that 4(¥,t), if it exists, satisfies equation (1.2.42) on the time
dependent domain Q(t), subject to the boundary condition

w(p(t),t) = us for t >0, (1.2.47)
and the initial condition

i(¥,0) = uy for ¥ > 0. (1.2.48)
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Condition (1.2.44) relates the speed of the boundary of the transformed domain to the spatial
derivative of @ at that boundary. The combination of equation (1.2.42), conditions (1.2.47),
(1.2.48) and equation (1.2.44) is called a free boundary problem, with (1.2.44) being the free
boundary equation. The special form of (1.2.44) is known in literature as the Stefan condition
for the free boundary problem, see for instance Meirmanov [62].

Because conditions (1.2.47) and (1.2.48) are constant, a solution of this free boundary prob-
lem can be determined in terms of the similarity variables

w(U,t) = f(n) with n = x (1.2.49)

i
Assuming in addition that the free boundary ¥ = ¢(t) has the form
o(t) = aVt, (1.2.50)

with a a priori unknown, the transformed problem for f becomes
1, N —0 f
nf + 1) =0 for 1>,

f(a) =us, f(+00) =uy, (1.2.51)

a
T 2eK(e)f(a)?’
This problem is solved numerically, details are given in Chapter 3.

Having obtained a solution f(n), and thereby @ = 4(¥,t), we use (1.2.39) to return to the
original variables in the (z,t)-plane. To this end, we integrate the first equation in (1.2.39),
yielding

f'(a)

Y(zt)
) = / ———ds+ h(t) for (z,t) for z>0, t>0, (1.2.52)
0 U(S, t)
where h(t) is the integration constant depending on ¢ only, satisfying h(0) = 0 (which implies

v(0,0) =0).
To find h(t) we differentiate (1.2.52) with respect to ¢ and use the second equation in (1.2.39).
This yields an expression for g, given by

=

q(z,t) = h'(t) — /Ow(z’t) ﬂ—;(s,t) ds. (1.2.53)

where 4, denotes the partial derivative of 4 with respect to t. We use the boundary condition
on ¢ in (1.2.53) to determine the function h(t), yielding

€ 7
h(t) :/Ot {Q(0,§)+/0¢ 5%(3,6) ds} de. (1.2.54)

After combining expressions (1.2.52), (1.2.54) and (1.2.53), (1.2.54), and rewriting the result in
terms of the similarity variables we obtain

m o1
z = z(n,t) :\/E/ mds for n >a, t >0, (1.2.55)
@ S
and
1 { a 1 sif! }
= )= —=<———+ —=dsy for n>a, t>0. 1.2.56
q=gq(n,1) il Fa L7 n ( )
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The solution u = u(z,t) is obtained by forst inverting (1.2.52), which gives n = 1n(z,t), and then
substituting this in f(n): i.e. u(z,t) = f(n(z,t)). Similarely we define ¢(z,t) = q(n(z,t),t). In
Chapter 3, we show that this solution is idential to the solution obtained by direct similarity
transformation. Therefore, we refer to Figures l.a. and 1.b. for a graphical representation of
the solution in terms of the variable z/+/%.

The Von Mises transformation provides a reduction of the governing balance equations which
directly leads to a second-order nonlinear diffusion equation. The latter has been extensively
studied in the mathematics literature. Much is known about the large time behavior of this
equation for fairly general initial functions. In particular, sharp estimates were obtained for the
rate at which the solutions converge towards the similarity profile, see e.g. Van Duijn & Peletier
[67] for a related problem on (—oo,00). The example given above and the other examples in
Chapter 3 are special because they allow similarity transformation. The result is a second-order
ordinary differential equation which makes the analysis more tractable. If we do not use the
Von Mises transformation as intermediate step, the result of the similarity transformation is a
third-order ordinary differential equation, see again Chapter 3.

1.3 Brine transport: high concentration gradient dispersion

A stable displacement process in a vertical porous column is described by the one-dimensional
version of equations (1.1.2), (1.1.5) and (1.1.8). At fufficiently low salt concentrations, the salt
mass flux in equation (1.1.5) can be considered Fickian, as we are dealing with transport of
tracers. In that case, for one-dimensional flows, the dispersion tensor in (see Bear [2]) (1.1.6)
reduces to the dispersion coefficient

D =D(q) = Dy, + arg. (1.3.57)

Here oy [m] denotes the longitudinal dispersion length or dispersivity and D, the molecular
diffusion coefficient [m?/s]. Hence, the parameter that solely characterizes the dispersive salt
transport at low salt concentrations is a,.

However, if the salt concentration of the displacing fluid is much higher than the concentra-
tion of the displaced fluid, equations (1.1.2), (1.1.5), (1.1.6) and (1.1.8) can still be used but
the dispersion coefficient (1.3.57) has to be lowered by a factor which depends on the density
difference between the fluids and on the average flow rate in the column. Hassanizadeh & Leijnse
[35] observed a decrease of the tracer dispersion length (o = 0.09 cm) by a factor three when
the density difference between the displacing and resident fluids was increased from 1 to 175
kg/m® (for a constant flow rate). These results indicate that at the column scale linear Fick’s
law (1.1.6) does not hold when there exist high salt concentration gradients, and thereby high
density gradients in the fluid phase.

This behavior can be explained as follows. The porous medium in the column is not perfectly
homogeneous, and permeability and porosity may vary locally in space, which in turn causes
local velocity variations in the fluid flow. Hydrodynamic dispersion is the macroscopic outcome
of these velocity variations, In case of tracer density differences, the dispersion is not influenced
by gravitational forces. When the density difference between the resident and displacing fluids
becomes significant, the gravitational forces give rise to a reduction of the dispersion.

Instead of the linear Fick’s law, Hassanizadeh & Leijnse [35] formulated a (macroscopic)
nonlinear theory for high concentration dipersion in porous media which turns out to be in
excellent agreement with with a variety of experimental results. They showed that Fick’s law
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has to be replaced by the nonlinear dispersive mass flux equation, given by
J(B|J| + 1) = —Dpgrad w, (1.3.58)

where 8 = S(q) [m® s / kg] denotes a velocity dependent dispersion parameter, D the tracer
dispersion coefficient (1.3.57), J [kg/(m? s)] the dispersive mass flux vector and |J| [kg/(m?s)]
its magnitude. In the limit J — 0, i.e. for very low (tracer) mass fluxes, (1.3.58) reduces to
Fick’s law. Note the resemblance between equation (1.3.58) and the Forchheimer equation for
high velocity flow in porous media

K
q(alg| +1) = —;(gradp—pg), (1.3.59)

where a [s/m] denotes the Forchheimer coefficient, see e.g. [2].

Hassanizadeh et. al. [36] carried out hydrodynamically stable displacement experiments in
a vertical column, homogeneously packed with glass beads. They varied the salt concentration
difference between the resident and displacing fluid, from tracer values to almost saturated
brine, while keeping the flow rate approximately constant. The longitudinal dispersion length
was determined from low concentration (LC or tracer) experiments. A value of the dispersion
parameter 3 could be obtained from the results of the high concentration (HC) experiments.
The reader is referred to [35] for details concerning the experimental setup and the analysis of
the results. Using the nonlinear theory, it is possible to simulate both LC and HC experiments
with a unique set of experimentally determined parameters o, and S3.

1.3.1 Experimental results

A series of well-controlled experiments have been performed by Moser [61] in order to address
a number of open questions related to brine transport. The purpose of the experiments was to
determe the effect of large salt concentration differences and large absolute salt concentrations
on dispersion and to investigate the combined effect of flow velocity and large concentration
differences. To this end, four series of displacement experiments were carried out (see Table 1
through 4 in Chapter 4 for an overview):

e Fourteen tracer experiments where a low salt concentration solution was displaced by fluid
with a sightly higher salt concentration. These are of LC-type.

e Seven HC-experiments were performed, where a low-concentration solution was displaced
by a fluid with a high salt concentration. The concentration differences ranged from 2.8
kg/m? to 44.6 kg/m3. The inflow rate for this series of experiments was kept to a constant
value of 5.4-107% m/s.

e Nine HC-experiments were performed for which the concentration difference between the
resident and displacing fluids had a constant value of 63.4 kg/m?, but the flow rate was
varied from 1.0 - 10~ m/s to 2.3 - 1072 m/s.

e Tour experiments where carried out wherin a high concentration solution ( 90 kg/m?) was
displaced with a yet higher concentration solution.

The experimental results are discussed in Chapter 4, and are summarized in Figure 4. Figure 4
shows the apparent dispersion coefficient relative to the molecular diffusion coefficient Dy, as a
function of the Peclet number. The latter is defined as

qdso
Pe = —, 1.3.60
D, ( )
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where dsp = 5.0 - 107% m denotes the middle particle diameter of the quartz sand used in the
experiments.
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Figure 4 The relative apparent dispersion coefficient as a function of the Peclet number.

All apparent dispersion coefficients were determined by matching the explicit error-function solu-
tion of the linear one-dimensional convection-diffusion equation (¢ = constant) to breakthrough
curves obtained from the experiments, see [61] for details.

The LC tracer experiments are in excellent agreement with experimental data collected by
Pfankuch [69]. The tracer dispersion coefficient is nearly proportional to the Peclet number,
see the dashed line in Figure 4. This is in agreement with the classical expression (1.3.57).
The results of the HC constant density difference experiments, i.e. all having the same density
difference but different flow rates, indeed show a smaller value of the dispersion coefficient, when
compared to the tracer experiments. The constant flow rate experiments, i.e. all having the
same flow rate but different density differences, show the same tendency: if the density difference
increases, the dispersion coefficient decreases.

An other important conclusion can be drawn from the data in Figure 4. The difference
between the HC and tracer dispersion coefficients decreases as the Pe-number increases. This
gives evidence that the HC dipersion coefficient 3 is velocity dependent.

The high absolute density experiments indicate that for the density difference in the tracer
range, the tracer dispersion coefficient is recovered. This result explicitly shows that the (ap-
parent) dispersion coefficient is independent of the absolute salt concentration of the fluids.
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Figure 5. The parameter 3 as a function of ¢ for the constant density difference experiments.

Once q, ar, € and n are known, the parameter 8 can be determined by matching numerical
solutions of (1.1.2), (1.1.5), (1.1.8) and (1.3.58) (in one space dimension and subject to appro-
priate boundary/initial conditions) to the experimental data. The constant density difference
HC experiments are used to determine the relation between the parameter 8 and the discharge
g. The results are shown on a log-log scale in Figure 5. A least squares curve fitting yields an
approximate expression for 8(q), given by

0.0125
Blq) = T sm?/kg for 9.0-107° < ¢ < 3.0-107% m/s. (1.3.61)

The dashed line in Figure 5 corresponds to expression (1.3.61). Note that the discharges in the
experiments are relatively high when compared to groundwater discharges in the field, typically
ranging from 0.0 m/s to ~ 3.0 - 107> m/s (i.e. 3.0 m/day).

1.3.2 Mathematical analysis and approximations

All experiments reported here have an essentially one-dimensional character. Only small vari-
ations of the measured quantities in the horizontal z- and y-directions have been observed.
After appropriate scaling (see Chapter 4), equations (1.1.2), (1.1.5), (1.1.8) and (1.3.58) can be
combined into

dp 0 10q
E‘f’ a(q,ﬂ) -+ 6_6; —0, (1362)
and
ap ap a I 1 0 dp
P gLy == 1-4 228 = 13,
ot 99: " 5z { %00 2Bo(a)e ho(@es 5, (=0 (La02]

for —ooz + oo and ¢t > 0. Here, 6 is the scaled (tracer) dispersion coefficient and (y(q) is the
scaled B-parameter. In writing (1.3.63) we assumed that dp/0z < 0, as in the experiments.
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Without additional simplifications, equations (1.3.62), (1.3.63), subject to appropriate ini-
tial/boundary conditions, can only be solved numerically. If we assume that the effect of the den-
sity variations on the fluid flow is small, we may disregard equation (1.3.62) and use g(z,t) =1
in the transport equation (1.3.63). Assuming moreover

BlJ| >>1 (1.3.64)
in the dispersive mass flux equation (1.3.58), an explicit solution can be constructed. A less
explicit, but more quantitative analysis can be carried out for the system (1.3.62)-(1.3.63) if we
assume again (1.3.64). In that case, we introduce Von Mises and similarity transformations,
yielding an ordinary differential equation which is mathematically known and can easily be

solved by relatively straightforward numerical techniques, see Chapter 4. A comparison of the
different solutions is given and the results are used to analyze the experimental data.

The explicit solution Taking ¢ = 1 and consequently 3(¢q) = fo(1) = constant) in (1.3.63),
and using assumption (1.3.64), which implies

—4ﬂosg% >> 1, (1.3.65)
v 0z

we find the reduced transport equation

o o0, [ovo [ [on)]_ ‘
8t+£+ ﬂoea 92 =0. (1.3.66)

For piecewise constant initial data

1 for 2<0 .

equation (1.3.66) can be solved explicitly. The solution is

1 arctan ( L(z— t)t’§> (2— t)tﬁg
plz,t) = =41 — - 5 (1.3.68)
2 CvBC C(B(z—t)%"35 4+ C)
for —oo < z < 400, t > 0, where
N 1
1 [ Boe 323 07)6
B=-i/——ad C=Cy=|— — . 1.3.69
3\ ey O ( 1 ) (& (L389)

We matched the approximate solution (1.3.68) with breakthrough curves of the constant flow
rate experiments to determine the value of the unscaled (¢). In addition, we matched numerical
solutions of the full problem with the same breakthrough data. The results are summarized in
Figure 6. As to be expected, matching the full numerical solution to the experimental HC
breakthrough data yields a nearly constant g-value.
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Figure 6. Comparison of -values obtained by fitting the numerical and the explicit solution to

breakthrough curves of the constant flow rate experiments.

Note that the explicit solution provides accurate 3-values for the range Ap > 25 kg/m?.

The semi-explicit solution If we drop the constant flow rate approximation but maintain
assumption (1.3.65), the resulting equations are (1.3.62) and (1.3.66). The initial condition on
p is given by (1.3.67) and the boundary condition on g by g(—o0,t) = 1, i.e. g(—o0,t) = qo
unscaled. In addition we assume that the local discharge variations due to the volume effect are
small enough to justify the approximations 8(q) = (qo) and D(q) = D(qo). To solve the problem
we use the Von Mises transformation (1.2.39), (1.2.40) and (1.2.41) to reduce system (1.3.62),
(1.3.66) to a single nonlinear diffusion equation. The latter allows similarity transformation and
the final result is a semi-explicit solution (p(z,t),q(z,t)). For details on the solution procedure
we refer to Chapter 4.

The difference between the explicit solution (1.3.68) and the semi-explicit solution is small,
even for high e-values. The discharge ¢ = ¢(z,t) exhibits a maximum which coincides with the
position of the inflection point of the density profile in the column . The (scaled) decay of this
maximum is given by

Gmez = 1+ t73G for t> 0, (1.3.70)

and its position by
3 2
Zmaz =t + 5t3G for t >0, (1-3:71)

where G = 5.7736-1072. See Chapter 4 for details. Note that occurrence of the terms containing
the constant G in (1.3.70) and (1.3.71) is only due to the volume effects. By setting G = 0 we
recover the ¢ = constant situation. In Chapter 3 we consider compressible flow in an infinitely
l()n}g column, using linear Fick’s law as dispersive mass flux equation. In that case, ¢q exhibits
t~2-decay.

We used expressions (1.3.70),(1.3.71) to quantify the volume effects and found that they
can be disregarded in all experiments considered. The enhanced displacement of salt is not
noticeable within the accuracy of the experimental setup.
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The numerical solution The above assumptions that 8 and the dispersion coefficient D
are independent of the local discharge variations within each experiment is also maintained to
obtain a numerical solution of the full problem. This implies that (1.3.63) reduces to

ap ap vy 0 0 op
L NG . O TR W 1.3.72
ot + 95, * 2B 0z 1 4ﬂ06'y 0z 0, s3:72)

for Op/dz < 0. The full problem, i.e. (1.3.62), (1.3.72) subject to (1.3.67) and g(—L,t) = 1,
is solved numerically on a sufficiently large domain z € [—L, L], using standard finite differ-
ence methods. The initial condition on p, i.e. (1.3.67), is approximated by a piecewise linear
approximation of a steep error function.

The numerical solutions of the full problem were used to check the validity of the explicit and
semi-explicit solutions, and to determine -values from the experimental breakthrough curves.

1.3.3 Summary of the main results

The LC experiments satisfy the classical equations and are in agreement with tracer experiment
reported in literature. The experiments reported here confirm the validity of the nonlinear
dispersion theory. The dispersion parameter  depends on the flow rate, but it is independent of
the density difference. The absolute salt concentration does not affect the apparent dispersivity.
The analysis of the nonlinear equations shows that for relatively low density differences and
at the short time scale of the experiments, the nonlinear term in (1.3.58) predominates the
dispersive behaviour. The volume effects can be disregarded in all experiments considered.

1.4 The fresh-salt interface in heterogeneous media

In most practical sea water intrusion problems, the horizontal and vertical extensions of the
aquifer are large when compared to the width of the diffusive/dispersive mixing zone. This
motivates to assume the existence of an interface between the fluids: when crossing the interface
the specific weight changes abruptly from one value to the other value.

The implications of the existence of an interface between fresh and salt groundwater have
been studied by De Josselin De Jong [47]. In that case, the horizontal density gradients across
the interface are singular and the interface becomes a surface source (in three space dimensions)
or a line source (in a vertical cross section) of vorticity. The flow of the separate fluids is rotation
free, while the rotation of the total flow is produced by the (singular) vorticity distribution along
the interface. As a consequence, the velocity component normal to the interface is continuous,
while the component tangential to the interface exhibits a discontinuity across the interface: the
shear flow.

In a later paper, De Josselin De Jong [46], derived a nonlinear diffusion-type equation to
approximate density-driven flow in a vertical cross section of horizontally extended aquifers
confined by two impermeable layers. The derivation is based on the Dupuit assumption, i.e.
the horizontal component of the specific discharge is constant in each fluid and jumps at the
interface. The advantage of this approach is that the two-dimensional flow problem reduces
to a one-dimensional initial value problem in terms of the interface height. Solutions of this
approximate equation give insight in the time evolution and flow properties of the full problem,
in particular with respect to the large time behavior, i.e. for relatively flat interfaces.

Following the original work of De Josselin De Jong [47], Chan Hong et.al. [18] studied the
movement of the interface between fresh and salt groundwater numerically. They formulate
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the problem in terms of an elliptic (Poisson) equation for the stream function describing the
flow and a hyperbolic equation for the time evolution of the interface. The parameterization of
the interface is of the form z = u(z,t), where respectively z and z denote the horizontal and
vertical coordinate of a point located at the interface. The elliptic problem is solved using a
finite element method (moving mesh) while the interface motion equation is solved explicitly in
time, by means of a predictor-corrector method. Chan Hong et. al. [18] compare numerical
results with solutions of simplified problems, based on the Dupuit approximation with respect
to the horizontal flow. Only homogeneous flow domains are considered.

We focus on the transient behavior of an interface in heterogeneous aquifers, including those
cases where it is not possible to parameterize the interface according to z = u(z,t) or z = u(z,1).
We modified the existing finite element code [18] to allow for heterogeneous intrinsic permeability
distributions in the flow domain and developed a front tracking method, to compute the discrete
time evolution of the interface. The latter is inspired by ideas developed in Dupaix et. al.
[21] and Scheid [72]. Points along the discretized interface are displaced by computing an
approximate normal direction and an approximate normal velocity from the stream function
along the interface.

1.4.1 The stream function equation

We consider flow of an incompressible fluid of variable specific weight y and constant viscosity
i, in a rectangular domain with variable intrinsic permeability x. The flow domain is given by
the strip © = I x (0,h), where I denotes the interval (—R, R) with R > 0, such that R >> h
(h > 0). The strip represents a vertical cross section of a horizontally extended aquifer, bounded
from above and below by impermeable layers.

We assume incompressibility of the fluids, implying (1.1.4). At the boundary d€? we assume

a no-flow condition, i.e.
q-n=20 on 012, (1.4.1)

where n denotes the outward normal unit vector on 9. By taking the two-dimensional curl of
equation (1.1.9), we obtain

curl (Hq) + curl (ye,) =0 in Q. (1.4.2)
K
Here the curl of a vector function a = (ay,a,) must be understood in the sense that curl

a := Oa,/0z — da,/dz. Since the flow satisfies equation (1.1.4) we can introduce a stream
function 1) such that

o oY
=curlyy=(——, 7). 4.
q = curl ¢ ( 62'835) (1.4.3)
Substitution this expression in (1.4.2) yields
div (ﬁvw) . in Q. (1.4.4)
K Oz

This equation has to be interpreted in the weak sense, see Van Duijn & De Josselin De Jong
[22] for details. The no-flow condition (1.4.1) implies that ¢ is constant at 9. The value of ¢
on JS) can be chosen arbitrarily. For convenience we set:

=0 on 0. (1.4.5)
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Next, we introduce the interface approximation: the interface, denoted by I'(t), separates fresh
groundwater, with specific weight 7y, and salt groundwater, with specific weight v,, where
0 < v <. This implies that -y is discontinuous at the interface and thereby the right-hand
side of 1.4.4 a singularity. Consequences of the latter are summarized Chapter 5. Thus, given
an interface at a certain time ¢ > 0, the solution of (1.4.4) subject to (1.4.5), determines the
stream function distribution in flow domain €, and by (1.4.3) the corresponding discharge q.
The heterogeneities considered are discontinuities in intrinsic permeability. We confine our-
selves to the special case of piecewise constant permeability distributions: a vertical heterogene-

ity given by
k= (ky — k1)H(z) + k) for z €1, (1.4.6)
and a horizontal heterogeneity given by
k= (k1 — k2)H(2 — h/2) + Ky for z € [0,h], (1.4.7)

where H denotes the Heaviside function: H(§) =1 for & > 0 and H (&) = 0 for £ < 0.

1.4.2 Time evolution of the interface

In order to allow for more general interface shapes, we do not parameterize the interface ex-
plicitly, as in e.g. Chan Hong et. al. [18] or [46]. Given a solution ¢ = 9(z,z,t) of problem
(1.4.4)-(1.4.5), the normal component of the velocity at the interface I'(t) satisfies

1 1
Vi, = gq -n = gcurl P-n at (), (1.4.8)

where n denotes the normal unit vector at I'(¢), pointing into the fresh water region and ¢ the
porosity of the porous medium. The latter is assumed to be constant. Evaluation of (1.4.8)
yields

%= at T(t), (1.4.9)

where d/0s denotes the tangential direction along the interface.
When the interface shape allows parametrization of the form z = u(z,t) in 2, the interface
motion equation can be written as
ou 10

This particular form is due to Chan Hong et. al. [18]. Suppose that an interface touches the
domain boundaries at z = 0 and z = h. Let the corresponding z-coordinates be given by S(t)
(toe) and S(t) (top). It was also shown in [18] that S;(t) and Sy(t) satisfy the differential
equations

Si(t) = f% lim,_, 5, () ﬂ%(%)j) and Sy(t) = %liqugz(t) %ﬁ%ﬁ (1.4.11)

We use these expressions to compute the velocity of the top and toe under the assumption that
the interface can be parameterized in a small neighborhood of the lower and upper domain
boundaries.

After appropriate scaling, see Chapter 5, equations (1.4.4) and (1.4.8), subject to boundary
and initial conditions, lead to the problem of finding the stream function ¢ = ¢ (z, z,t) and I'(t)
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satisfying:

—div (lVUJ) = 6% (y(z,2,t)) in QxR*,

P =0 on 9 x R,

(P) (1.4.12)
Vo=9L onT(t), t € RY,
I'(t=0) =Ty

1.4.3 The numerical method

The numerical procedure consists of three steps. We first solve the elliptic problem for the
stream function, for a given interface T'(t¥) at time level t = t¥, see also [18]. To this end,
domain € is decomposed in the subdomains Q’} and QF, being respectively the domains of fresh
and salt water. The triangularization of the subdomains is constructed such that the piecewise
linear approximation of T'* always coincides with sides of triangles in Q’} and QF. The FEM
meshes are generated using the mesh generator of the SEPRAN finite element package, which is
developed at Delft University of Technology. Next, we compute an approximation of the normal
component of the velocity at the interface. Finally we apply a discrete front tracking method
to obtain an approximation of the position of the interface at the new time level ¢t = t**!. For
details we refer to Chapter 5.

In order to gain confidence in the front tracking method, we compared front tracking solutions
with solutions based on the procedure proposed in [18]. They use the explicit S®P-scheme of
Leyrat & Peyret [57] to discretize the interface motion equation (1.4.10). In case of a linear
initial interface (initial slope 7/4) in a homogeneous domain, the maximum relative difference
between computed interface positions, using both methods, is =~ 0.06%. Moreover, we observe
convergence of the speed of propagation of the top and toe of the interface, towards a similarity
solution of the corresponding approximate Dupuit problem, see e.g. [86]. The latter describes
the large-time behavior of the full problem.

1.4.4 The interface crossing a discontinuity in permeability

When a fresh-salt interface intersects a discontinuity in permeability, it is possible to derive
a simple expression for the shape of the interface in an infinitesimal small neighborhood of
the intersection point, provided the interface is non-singular. By the latter, we mean that the
velocities at the interface are finite and compatible. The derivation is based on the two-fluid
interface conditions in a homogeneous porous medium combined with the flow conditions of a
homogeneous fluid at a discontinuity in permeability, see Chapter 5.

Consider a straight line through the origin of the (z,z)-plane, under inclination angle 3
with the horizontal z-axis, being a vertical cross section of the plane separating two regions
with permeability x; (upper region) and ko (lower region). An interface, separating two fluids
with specific weight v, (upper fluid) and ~, (lower fluid), intersects this line at the origin. The
inclination angle of the interface with the horizontal in the region z > 0 is denoted by «;, while
the angle between the interface and the negative z-axis in the region z < 0, is given by ay. We
assume for the moment that a; # ap # [, implying that the interface and the discontinuity in
permeability divide the (z, z)-plane in four distinct regions. Then, a1, as, 3 and the permeability
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ratio x1/k2 have to satisfy

tan(ag) (1 b ok tanz(ﬁ)) - (1 - %) tan(f)

= (% + tan2(ﬂ)) — tan(az) tan(f) (1 - %) . (L4.15)

A similar relation has been found by Bear & Shapiro [12], expressing the angles of intersection
o and as in terms of B and the fresh and salt water fluxes in the intersection point. Note that
the fluid density difference does not appear in (1.4.13). Equation (1.4.13) gives an exact relation
between the angles of intersection and the permeability ratio, and therefor it is an indispensable
tool for computer code verification.

1.4.5 A vertical discontinuity in permeability

The full interface problem (1.4.12) can be reduced to a simplified problem using the Dupuit
approximation. Under this assumption, interface motion equation (1.4.10) reduces to (after
appropriate scaling)

Ou_ 0 [ w240 "
ot~ oz {“ ull u)1+(3u/az)2} for (z,t) € R xRT, (1.4.14)

subject to the initial condition u(z,0) = ug(z), see De Josselin De Jong [46]. For homogeneous
aquifers, x is constant. For the special case of a vertical discontinuity in permeability, the scaled

coefficient k is given by

. ) Kk for <0
n—n(:v)—{ g B 2% (1.4.15)

Under the assumption that du/dz << 1, i.e. in case of a (very) flat interface, equation (1.4.14)
reduces to

ou a

ou 4
— = — —u)— ; 4.
= {n(:ﬂ)u(l u)aw} for (z,t) R xR (1.4.16)
If the initial interface is given by

1 for z>0
u(z,0) = up(z) = { 0 for i< 0 (1.4.17)

then (1.4.16), (1.4.15) allows a similarity solution of the form u(z,t) = f(n) with n = z/ V1,
where the function f is a solution of the boundary value problem

%nf’+(/€(n) fa—=£)f) =0 for neR, (1.4.18)

where the primes denote differentiation with respect to 7, subject to
f(=00) =0 and f(4+o00) =1. (1.4.19)
After additional transformations, we solve this problem using a shooting procedure in the sub-

domains 7 > 0 and 7 < 0. The resulting Dupuit similarity solution approximates the large time
behavior of the full problem in case of a vertical discontinuity in permeability.
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Figure 7. The numerical solution in terms of the similarity variable n and the corresponding Dupuit
similarity solution for /K2 = 0.1261.

In Figure 7 we plotted numerical solutions of the full problem for x;/k2 = 0.1261 in terms
of the similarity variable p = 2/y/t. The corresponding Dupuit similarity solution is represented
by the dashed line in Figure 7. At the short time scale of the numerical simulations, the Dupuit
assumption is not satisfied. Moreover, large deviations between expression (1.4.13) and the
computed angles of intersection at the discontinuity in permeability are found. The latter is due
to the singular initial interface, implying very high initial fluid velocities. As time proceeds, the
numerical solution converges towards a similarity profile which is very close to the approximate
Dupuit solution, see Figure 7. The numerical similarity profile satisfies expression (1.4.13) up
to a small error.

1.4.6 A horizontal discontinuity in permeability

Next we consider a horizontal heterogeneity, consisting of two parallel layers of equal thickness
with different permeability x; (upper layer) and xy (lower layer), under the assumption that
k1 < k. Again, the initial interface is vertical at z = 0, such that the region z < 0 is occupied
by fresh water and the region z > 0 by salt water. In this more complicated case it is not possible
to obtain a similarity solution of a simplified problem based on the Dupuit approximation.

For ¢t > 0, a hydrodynamically unstable zone develops in the vicinity of the discontinuity
in permeability, where fresh water is overlain by salt water. The horizontal width of this zone
grows in time. Under natural (field) conditions, small local variations in permeability perturb
the interface in this zone, and fresh-salt fingers can occur. These fingers grow in time. A normal-
mode linear stability analysis shows that fingers of any width or 'wave length’ > 0 can develop,
see e.g. List [58]. The distribution of observed wave lengths in the fingering pattern depends on
the nature of the perturbation mechanism of the interface, for instance the local (small scale)
heterogeneous permeability field.

When we consider fresh and salt groundwater as miscible fluids and allow for diffusion/dispersion,
stability analysis showes that there exists a (minimum) critical wave length )¢ in the fingering
pattern. The value of Xg is related to the value of the diffusion/dispersion coefficient D. This
implies that fingers with width smaller that the critical wave length are dissipated by diffusion
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and/or dispersion and decay in time. In case of the interface approximation, i.e. in the limit
D — 0, we have, at least in theory, Ao = 0.

The computed time evolution of an initially vertical interface exhibits the development of
fresh-salt fingers in the vicinity of the horizontal discontinuity in permeability, see Figure 8.
To ensure numerical stability, the (variable) time step is chosen such that the CFL condition
CFL= 0.2 is satisfied at any time level. The onset of the instabilities in the physically unstable
zone is caused by the discrete approximation of the interface: small numerical and discretization
errors perturb the unstable interface at any time level which triggers the growth of the fresh-salt

fingers.
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Figure 8. Time evolution of an initially vertical interface.

The width of the fingers that grow in time is directly related to the coarseness of the dis-
cretization of the interface. The minimum finger width at the onset of an instability is approxi-
mately 6 interface piecewise linears. If we refine the mesh by a factor 2, the width of the fingers
that grow is also reduced by a factor 2, while the fingers start to develop earlier. The compu-
tations break down whenever adjacent parts of the interface coincide. This is a consequence of
the fact that the moving mesh procedure is based on the decomposition of the flow domain in
two distinct subdomains, separated by the interface.
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Figure 9. Time evolution of an initially horizontal interface that coincides with the discontinuity in
permeability, and which is perturbed at (0.0,0.5) by —0.006.

In Figure 9 we show the computed time evolution of an initially horizontal interface that
coincides with the discontinuity in permeability at z = 0.5, and which is perturbed at (0.0,0.5)
by -0.006. If do not perturb the interface, nothing happens, as to be expected. The perturbation
triggers the instabilities and fingers start to grow. Note that the piecewise linears of the interface
approximation are clearly visible. Mesh refinement at the interface does not yield a more smooth
interface, but leads to smaller fingers. The asymmetry of the fingering pattern with respect to
the vertical axis is caused by the asymmetry in the mesh generation.

The examples given above show that the finger widths that occur in the computations are
selected by the numerical method, and not by any physical mechanism. The absence of dif-
fusion/dispersion implies this immediately. Therefor, the practical use of interface models for
simulation of instabilities is limited. Moreover, the instabilities or fingers create a mixing zone
of fresh and salt groundwater which is in some sense in contradiction with the basic interface
approximation: strictly miscible fluids are treated as immiscible.

1.5 Crystal dissolution

When transported solutes, e.g. salts, participate in a dissolution-precipitation reaction, under
certain conditions, two distinct zones may develop: one containing a mineral phase (crystalline
or amorphous) which is present as a thin layer on the grains of the porous medium, and one in
which the mineral phase is completely dissolved. The boundary separating these zones is referred
to as the dissolution (or precipitation) front, and is a typical example of a free boundary. In
general, the dissolution front moves with a (constant or nonconstant) velocity which is less than
the velocity of the fluid (or salinity) front.

Rubin [71] studied this problem in terms of a classically formulated initial-boundary value
problem, i.e. with the explicit appearance of the dissolution front as a free boundary. The
mathematical implications of this model are studied by Pawell & Krannick [65]
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1.5.1 The mathematical model

We consider as solutes two species M; and My, for example ions, say M, being a cation and M
an anion. In addition, we assume a crystalline solid M, to be present as a (very) thin layer at
the surface of the grains of the porous medium. The latter allows to assume a constant water
content © (= porosity), i.e. independent of the presence of the solid phase My, My and M —2
may precipitate at the grain surfaces to form Mji,, while M, may dissolve to form M;, M.
The stoichiometry of such a reaction is given by

M12 = nM; + mMs, (1520)

where n, m denote positive numbers. If the participating species are ions, then n is the valence of
M, and is m the valence M, implying electroneutrality of the fluid. Let the molar concentration
of M; (i = 1,2) relative to the water volume be given by ¢ (mM/cm?), and let the molar
concentration of M, relative to the mass of the porous skeleton be given by ci2 (mM/g). We
only consider the physically realistic situation ¢y, cz,c12 > 0.

Under the assumption that the solid phase is spatially immobile, conservation of the corre-
sponding total masses leads to a coupled set of partial differential equations:

% (©c; + npciz) — div (©Dgrad ¢; — qcp) =0 (1.5.21)
% (©cy + mpcr2) — div (©Dgrad ¢z — qep) =0 (1.5.22)

where p denotes the bulk density (g/cm?), D is the diffusion/dispersion tensor (em?/s) and q
(cm/s) is the specific discharge vector. If we define

c:=mec; — ney, (1.5.23)

then the mass balance equations (1.5.21), (1.5.22) imply conservation of the quantity c

% (©c) — div(©Dgrad ¢ — qc) = 0. (1.5.24)
For the special case of an ionic binary reaction, ¢ may be interpreted as follows: the valence of M,
is mv and the valence of M, is nv, where v denotes a positive integer. If M is a cation and M3 an
anion, then vc denotes the total positive electric charge of the fluid. With appropriate boundary
and initial conditions, equation (1.5.24) can be solved (at least numerically) and thereby we
consider ¢ = ¢(x, t) as a known quantity. This allows to reduce the number of unknowns by one,

by setting
1
cy = ;(mcl —c). (1.5.25)

The positivity requirement of a solution of equations (1.5.21), (1.5.22), ie. ¢1 = 0,c2 2 0,
implies

g2 (£>+, (1.5.26)

m

where u; = u for u > 0 and u; = 0 for u <O0.
The dissolution/precipitation reaction is assumed to satisfy the rate equation
6612

g = Ok*(rp —ra), (1.5.27)
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where ry and 7, (mM/ cm?®) respectively denote the dissolution and precipitation rates relative
to the water volume and k* (s™!) is a rate parameter. At equilibrium, i.e. in the limit ¥* — oo,
equation (1.5.27) reduces, at least formally, to

T4 =Tp. (1.5.28)
With respect to r4 and 7, we make the following general remarks, see e.g. Snoeyink & Jenkins
[76] or Walton [78]:

e the activity of the solid is a positive constant kg

rq = kq provided cjp >0 (1.5.29)

e the precipitation rate is given by the mass action law, i.e.
rp = kp 7(c1,¢2), (1.5.30)

where the function r is a smooth nonnegative nonlinearity (for ¢;,c2 > 0). An example is
the thermodynamically ideal mass action law:

r(c1,c2) = ey’ (1.5.31)

Thus, if ¢12 > 0, then in the non-equilibrium case we have

9 .
P = OF (kyr(er,c2) — ka), (1.5.32)

and consequently in case of equilibrium we have

r(c1,e0) = K (:: —) . (1.5.33)

Notice that (1.5.33) can be obtained either by setting dciz/0t = 0 in (1.5.32) or by letting
k = oo in (1.5.32). The condition r(ci,c2) = K is referred to as saturation, r(ci,c2) < K is
undersaturation and 7(cy,co) > K is oversaturation. Using (1.5.25), these inequalities can be
written in ¢; alone, provided c is given. The concentration c; is called the solubility concentration
if 7(c1,1/n(me; — ¢)) = K. Notice that, if ¢jo = 0, the concentrations c;, c; are no longer
determined. In order to include the case ¢; 2 = 0, we need to extend the definition of the
dissolution rate, such that the equilibrium description (1.5.28) is able to satisfy all possible
equilibrium states. Hence, for arbitrary cj2 > 0 we require

0<r(c,e2) <K (either saturation or undersaturation)
ci2>0=r(c,02) =K (saturation) (1.5.34)
r(e1,e) < K = ¢12=0 (undersaturation, no solid present)

which is equivalent to (in a more compact notation)

0<r(cr,e2) <K, ¢12>0
(K —7r(c1,¢2))c12 =0

We can bring this in the form of (1.5.28) by writing

0e kpr(cl,CQ) - de(Clg) (<=> T(C1,CQ) € KH(Clg)), (1.5.36)
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where H denotes the set-valued Heaviside graph, i.e. defined by

1 for ¢ >0
H(Clz) = [0, 1] for Ci12 = 0 (1.5.37)
0 for ¢120 <0

In particular, this description includes the well-known equilibrium solubility product
if c1o >0, then r(c1,c2) = K. (1.5.38)

Moreover, for any possible choice of H(0) = «, where « € [0, 1], (1.5.37) fixes r(c1, c2) = aK for
Ci2 = 0.

When considering non-equilibrium we also have to allow for oversaturation and if ¢, = 0,
i.e. no solid phase present, precipitation can only occur in case of oversaturation. Guided by
this and relation (1.5.36), Knabner et. al. [53]) propose the following non-equilibrium rate
description

dc N ’
P € Ok (kyr(c1, 2) — haH (c12)) (1.5.39)
or equivalently
9]
p% = Ok* (kpr(c1, c2) — kqw), (1.5.40)
where w € H(cj2) which means
0<w<1and w=1 for ¢2 >0. (1.5.41)

Notice that this description includes the precipitation rate of (1.5.30) and the dissolution rate
(1.5.29) for c19 > 0, but for ¢2, an artificial dissolution rate kqw < kq is allowed for in order to
be compatible with the equilibrium conditions (1.5.34)/(1.5.36).

For convenience, we introduce the scaled variables:

n,

k
u:i=cy, v:i= 6'0012, q:= %, k:=nk"k, and K := =

1.5.42
- (1542

and define the function g

gler;e)i=r (er, 2(mer =) = (mu—0)) " (1.5.43)

where we substituted (1.5.31) and used (1.5.25) to eliminate c;. Substitution of (1.5.42) and
(1.5.43) in equations (1.5.21), (1.5.24) and (1.5.40) (in a spatially one-dimensional domain) yields

0 ou o%u 5
iUt tag- —Damp =0 (1.5.44)
g% = k{g(u;c) —wK} (1.5.45)
0 <w(z,t) <1, and w(z,t) =1 if v(z,t) >0 (1.5.46)

for —0o < & < +00, t > 0. The function c, i.e. the (scaled) excess (positive) charge distribution,
satisfies the linear convection-diffusion equation

oc oc 0%c

g~ D5 =0 (1.5.47)
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for —0o < & < 400, t > 0. Equations (1.5.44), (1.5.45) and (1.5.47) have to be supplemented
by appropriate boundary /initial conditions. This will give the function ¢ explicitly for all cases
considered here.

This observation helps us to distinguish between two principal observations with respect to
the initial conditions. Consider the (scaled) piecewise constant initial states:

u*,v*,c* for <0

= 1.5.4
u(2,0),v(z,0),¢(z,0) { e Br oD (1.5.48)
These initial states implicitly define the boundary conditions at 2 = —oo and z = +o00. Two
distinct situations can be considered: a homogeneous charge distribution, i.e.

c* = c¢,, and therefore c¢(z,t) =c = constant, (1.5.49)

or a non-constant charge distribution
¢ # ce (1.5.50)

In case of (1.5.49), the boundary(/initial) conditions are compatible in the sense that the dis-
placing fluid has the same ionic composition as the resident fluid. Knabner et.al. [53] and Van
Duijn & Knabner [25] proved that a homogeneous charge distribution is a necessary condition for
the existence of traveling wave solutions of (1.5.44)-(1.5.47), and moreover, that the solutes have
to participate in a dissolution reaction. In case of (1.5.50), the ionic composition of the invading
fluid differs from the composition of the resident fluid, implying incompatible boundary (/initial)
conditions.

We are particularly interested in solutions of (1.5.44)-(1.5.47) subject to (1.5.48), (1.5.50) in
the presence of a dissolution front, i.e. a curve in the (z,t)-plane separating the region where
v = 0 from the region where v > 0. To ensure that a dissolution front exists for all ¢ > 0, we
need that .

v* =0 and v, > 0. (1.5.51)

By requiring (1.5.51), we assume the initial states to be in chemical equilibrium, i.e.

<£> <u' <ug(e”) and u, = us(e), (1.5.52)
T/ 5

where ug is the scaled solubility concentration for a given value of c.
When advective transport dominates dispersive transport, it is reasonable to let D — 0 in
(1.5.44) and (1.5.47). This assumption neglects only certain smoothing effects, and therefore

it emphasizes the influence of the chemical reactions in the solutions. Then, the initial value
problem (1.5.44)-(1.5.47) reduces to

7] Ju
0
—aj = k{g(u;c) — wK} (1.5.54)

0<w<1 and w(z,t) =1 if v(z,t) >0 (1.5.55)
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dc e
a + q% =0 (1.5.56)

for —o0o < z < +o00, t > 0, subject to (1.5.48). This hyperbolic initial value problem is known as
a Riemann problem. We consider the analytical and numerical construction of solutions of this
problem by means of the method of characteristics. The latter allows a nearly explicit solution,
which provides both detailed quantitative and qualitative information about the structure of
solutions.

The solution of equation (1.5.56) can be found directly, without a priori knowledge of the
solutions u, v and w. It is given by the piston flow profile

*

c* for z<qt

c, for z>qt 1.8:57)

c(z,t) = co(z —qt) = {

where we assume that ¢* > c,, and consequently by virtue of (1.5.43), ug(c*) > us(c,) holds
true.
1.5.2 Equilibrium

In the case of chemical equilibrium we replace the first order equation (1.5.54) by the equilibrium
reaction

9(u;c) = wkK, (1.5.58)

which is equivalent to setting k& = oo in equation (1.5.54). In that case, the Riemann problem
reduces to

0 ou .
Fi(u ) +ag- =0 (1.5.59)
g(uic) =wK, 0<w<1 and w(z,t) =1 if v(z,t) >0, (1.5.60)

for —0o < z < 400, t > 0, subject to (1.5.48). This simple case is well known in the chemical
engineering literature and is a special case of Bryant et. al. [16]. We consider it for reference
purposes.

With respect to the construction of solutions, two important observations can be made.
The first one relates to (1.5.58) and states that if v(z,t) > 0 then w = 1, and thereby
g(u(z,t),c(z,t)) = K. In addition, if z > ¢t then u(z,t) = us(c,) = u. and if z < gt then
u(z,t) = us(c*). The second one is the Rankine-Hugoniot shock condition for solutions of
(1.5.59). This condition says that discontinuities (or shocks) in solutions of (1.5.59) propagate
with speed

speed = [u[i]v], (1.5.61)

where the quantities between brackets denote the size of the jump discontinuity in « and v across
the location of the shock.
If we now assume the existence of a dissolution front z = s(t) such that

0 f
weo={ .0 b Z5o0 (1562
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then we expect on physical grounds that s(t) < gt for t > 0. A straight forward mathematical
reasoning, see Chapter 6, yields the same result, and moreover, the Rankine-Hugoniot condition
leads to the important inequality

0<3s(t)<gq for t>0. (1.5.63)
The ordering of the fronts and (1.5.60) imply

<ug(c*) for —oo <z < s(t)

u(z,t) = ug(c*) for s(t) <z < gt (1.5.64)
ug(cy) for gt <z < 400

The dissolution follows from (1.5.61): s(t) = at, where

ug(c*) —u*

= us(ct) —ur + vt (<q)- (1.5.65)

Across the salinity front, i.e. © = gt, v is constant, which is consistent with (1.5.61). A sketch
of the level sets of concentrations in the (z,t)-plane is given in Figure 10.

t z=at
:‘u,_,(C*) Jl;qt

u=u" = Vs
v = w=1 W= U
w = glutie')/ K c=c v =0,
c=c* w=1
= g,

O T

Figure 10. Level sets of concentrations at equilibrium.

1.5.3 Non-equilibrium

When the dissolution reaction is not at equilibrium, the first order reaction equation (1.5.54)
has to be incorporated. This leads to a much more involved analysis. The object is again to
find the location of the dissolution front z = s(t) and the corresponding concentration profiles
of u(z,t) and v(z,t). Therefore, we are going to consider the problem
O 4 g3 = MK — glu;e))
gt for s(t) <z <gqt, t>0 (1.5.66)
- k{g(u c') - K}

such that

u(s(t),t) =u*, v(s(t),t) =0 and v(gt,t) = vs. (1.5.67)
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Note that, due to (1.5.61) the solid concentration v is continuous at z = gt, while the fluid
concentration u is possibly discontinuous at the salinity front.

We solve the u-equation of (1.5.66) by the method of characteristics (MOC). The character-
istics in the domain {(z,t) : s(t) < z < gt, t > 0} are straight lines with slope ¢ with respect to
the t-axis. The characteristic through an arbitrary point (y,7), i.e. the curve z =y +q(t — 7),
intersects the dissolution front in a point (s(g),to), which satisfies

s(to) =y +qlto — 7). (1.5.68)

This intersection point is unique due to $(t) < ¢. Integration of (1.5.66) along the characteristic

v=20 T =qt

uUu=u |
g(u®;c”
w =

U= u, = U,(c,)

~+~|----

0 s(to) s(t) *

Figure 11. Dissolution front in the (z,t)-plane.

and using the boundary condition on u, i.e. (1.5.67), yields

u(y7) 1 a _y—s(t(y,7))

If we set y = s(t) for t > 0, then (1.5.69) takes the form

u(s(t),) s(t) —
/m ' k{K—;(z' =77 PRI qs(to) where to = to(s(t), 7), (1.5.70)
which implies
k{K — glu(s(t),7);c")} = F(s(t) — s(to)) for %t—) <7<t (1.5.71)

Here, the function F' is a known function, determined by the rate function g, given by (1.5.43).
Next we integrate the v-equation of (1.5.66) and use the boundary condition on v (1.5.67),
yielding
t
; F(s(t) — s(to)) dr = v, for t > t,, (1.5.72)

s(t
q
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where t, = inf {t > 0 : s(t) > 0} and denotes a waiting time. The waiting time is a natural
consequence of (1.5.72): letting ¢ | 0 in (1.5.72) would make the left hand side of the integral
zero while at the right hand side v, > 0. The introduction of ¢,, such that

_ 0 for 0<t<t, B
= L0 o 1579

resolves this problem. By letting ¢ | ¢, in (1.5.720 we conclude
t.F(0) = vy, (1.5.74)

and combination of (1.5.69) and (1.5.71) yields for the waiting time

Vs v,

F(0) ~ k{K —g(u";c")} (1.5.75)

te =

Note that if u* equals the solubility concentration then ¢, = oo, which implies that the dissolution

front remains stagnant.
Next we rewrite the integral (1.5.72) in terms of ¢y and do this by using (1.5.68). The result

s(t)
/ Fls(8) — s(tg)) o = v + — o) F@ (1.5.76)
0

where the left hand side can be rewritten by introducing the waiting time:

t
/ F(s(2) — s(to)) dto == t.F(s(8)) + [ F(s(2) — s(to))dto. (1.5.77)
ta
To summarize, we have obtained an integral equation from which the location of the dissolution
front can be determined. The precise formulation is:
Let the waiting time be given by (1.5.75). Then find the function s(t), satisfying (1.5.73)
and the dissolution front equation (DFE)

fz. (5( - s(to)) dto— B(s(t)) for t > t, where
B(s(t)) == t.{F(0) - F(s(t)} + : ' F

Only in very special cases (DFE) can be solved in terms of an exact solution. In general we
have to rely on numerical techniques to solve (DFE). An example of such a method is given
in Chapter 6. There we show that (DFE) can be transformed into a standard linear Volterra
integral equation of the first kind, from which many characteristic properties of the function
s(t) can be derived. Once s(t) is known we go back to equation (1.5.69) and definition (1.5.71)
to determine u(z,t). The solid concentration v(z,t) then follows from integration of (1.5.72).

Figure 12 shows the dissolution front in the (z,t)-plane for the nonlinear case n = m = 1.
The corresponding breakthrough curves for v and the time evolution of the solid concentration
v are respectively depicted in Figures 13 and 14. The numbers used in the computations are:
¢, =0, ¢ = u* = 20-107% In this case the solubility concentration is given by ug(c) =
¢/2 + 1/2V/? + 4K i.eus(c® > us(ce) and because ¢, = 0 we have K = u?. The waiting
time turns out to be t, = 7108.0 s. Notice in Figure 12 that indeed $(t) < q. A qualitative
comparison between the results of Willis & Rubin [83] and our results will be given in Chapter
6. However, a quantitative comparison is not possible because they allow for diffusion in their
model and consider only equilibrium reactions.

(DFE) { (1.5.78)



40

0.0008

0.0007

0.0006

120000

100000

CHAPTER 1.

INTRODUCTION

80000

t(s]

60000

40000

20000

8

1

10

12

x [cm]
Figure 12. Dissolution front in the (z,t)-plane for the nonlinear

18 20

case n =m =

> 0.0005

0.0004

0.0003

0.0002 -
0

10000

i i
20000 30000

1

40000 5(0?(]?0 60000 70000 80000
S|
Figure 13. Breakthrough curves of the fluid concentration at different positions. The

90(;00 100000
observation points are: x = 3.0,6.0,..,18.0 cm. See Figure 12.

1.



1.5. CRYSTAL DISSOLUTION

0.0003 T T T T T T T T T
0.00025 4
\ X \
% % \
\\ \\ \'\
0.0002 \ % \ \ &
% i Y
¥ \
\ M 1 '
| ! !
\ \ :
> 0.00015 \ | ! 4
\ \ i
H 1 1
i \ !
0.0001 | 4 -
", “ T
! 1 i
‘=. = '.
5e-05 | i i
\ |
H P 4
: i }
| i i i
i : | ;
0 L PR Y i . L L s
0 10000 20000 30000 40000 50000 60000 70000 80000
t[s]

90000 100000
Figure 14. Time evolution of the solid concentration at different positions. The observation
points are: z = 3.0,6.0,..,18.0 cm. See Figure 12.



42

CHAPTER 1.

INTRODUCTION



Bibliography

(15]

Barenblatt, G.I., Scaling, self-similarity and intermediate asymptotics, Cambridge Univ.
Press (1996).

Bear, J., Dynamics of fluids in porous media, Elsevier, New York, 1972

Bhattacharya, R.N. & Gupta, V.K., A theoretical explanation of solute dispersion in satu-
rated porous media at the Darcy scale, Water Res. Res. 10 (1983), p.p. 938-944.

Baumann, R. & Moser. H., Modellierung der Meerwasserinvasion im Delta arider un semi-
arider Gebiete am Beispiel des Nildeltas, Z. dt. geol. Ges. 143 (1992), p.p 316-324.

Bar, G.E., Bingham, F.W. & Tierney, M.S., The use and misuse of scenarios in waste-
disposal studies, Radionuclide release scenarios for geologic repositories, OECD, Paris
(1981).

Bear,J, Dynamics of fluids in porous media, Elsevier, New York (1972).
Bear, J., Hydraulics of Groundwater, McGraw-Hill Book Company (1979)

Bear, J. & Bachmat, Y., Transport phenomena in porous media - Basic equations, in J:
Bear & M.Y. Corapcioglu (eds.), Fundamentals of transport phenomena in porous media,
Martinus Nijhoff, Dordrecht (1984), p.p. 3-61.

Bear, J. & Bachmat, Y., On the equivalence of areal and volumetric averages in transport
phenomena, Adv. Water Resour. 6(1), p.p. 59-62.

Bear, J. & Dagan, G., The transition zone between fresh and salt water in a coastal aquifer,
Prog. Rep. 2: A steady flow to an array of wells above the interface approximate (1963).

Bear, J. & Dagan, G., Moving interface in coastal aquifers, Proc. ASCE 99(HY4) (1964),
p-p. 193-215.

Bear, J. & Shapiro, A.M., On the shape of the non-steady interface intersecting disconti-
nuities in permeability, Adv. Water Resources, Volume 7 (1984), pp. 106-112.

Bear, J. & Verruijt, A., Modeling Groundwater Flow and Pollution, D. Reidel Publ. Comp.,
The Netherlands (1987).

Ben-Salah, M.D. Influence des contrastes de viscosité et de densité sur le déplacement en
milieu poreux de deux fluides miscibles, Revue de I'Institut Francais de Petrole (1965),
1237-1255.

Bringham, W.E., Reed, P.W. & Dew, J.N., Experiments on mixing during miscible dis-
placements in porous media, Soc. Petrol. Engng. J., March (1961), p.p. 1-8.

43



44

[16]

[17]

(23]

(24]

[25]

[32]

[33]

BIBLIOGRAPHY

Bryant, S.L., Schechter, R.S. & Lake, L.W., Mineral sequences in precipitation/dissolution
waves, AIChE Journal 33 (1987), p.p. 1271-1287.

Bues, M.A., Aachib, M. & Zilliox, L., Indence of heterogeneities on pollutant transport -
density and viscosity contrasts of the liquid phase - structure of solid matrix, Contaminant
transport in groundwater, ed. H.E. Kobus & W. Kinzelbach (1990), p.p. 251-257.

Chan Hong, J.R., Van Duijn, C.J., Hilhorst, D. & Van Kester, J., The interface between
fresh and salt groundwater : a numerical study, IMA J. of Appl. Math. (1989), 42, 299-316.

Chorin, A.J. & Mardsden, J.E., A mathematical introduction to fluid mechanics, third e.d.,
Springer-Verlag (1992).
Davis, S.N. & De Wiest, R.J.M., Hydrogeology, John Wiley ans Sons (1966).

Dupaix, C., Hilhorst, D. & Scheid, J.F., On a dissolution-growth problem with surface
tension : a numerical study, to appear.

Vann Duijn, C.J. $ De Josselin De Jong, G., Free boundary problems in fresh-salt ground-
water flow, In Summer School on Flow and Transport in Porous Media, Beijing, China,
8-26 August 1988, Editor: Xiao Shutie, World Scientific.

Van Duijn, C.J, Peletier, L.A. & Schotting, R.J., On the analysis of brine transport in
porous media, Europ. Journ. of Appl. Math. Vol 4 (19 93), 271-302.

Van Duijn, C.J. & Floris, F.J.T., Mathematical analysis of the influence of power-law fluid
rheology on a capillary diffusive zone, J. Pet. Sc. Eng. 7 (1992), p.p. 215-237.

Knabner, P. & Van Duijn, C.J., Travelling wave behaviour of crystal dissolution in porous
media flow, Euro. Jnl. Appl. Math., 8 (1997), p.p. 49-72.

Ene, H.I. & Sanchez-Palencia, E., Equations et phénomenes de surface pour I'’écoulement
dans un modele de milieu poreux, J. Mécan. 14 (1975), p.p. 73-108.

Freeze, R. A. & Cherry, J.A., Groundwater, Prentice-Hall, Inc., USA (1979).

Ghyben, W.B., Nota in verband met de voorgenomen putboring nabij Amsterdam, Tijd-
schrift van het Koninklijk Inst. van Ing. (1888).

Gray, W.G.A., A derivation of the equations for multi-phase transport, Chem. Angr. Sci.
30 (1975), p.p. 229-233.

Hassanizadeh, S.M. & Gray, W.G.A., General conservation equations for multi-phase sys-
tems: 1. averaging procedure, Adv. Water Resour. 2 (1979), p.p. 131-144.

Hassanizadeh, S.M. & Gray, W.G.A., General conservation equations for multi-phase sys-
tems: 2. mass, momenta, energy and entropy equations, Adv. Water Resour. 2 (1979),
p-p-191-203.

Hassanizadeh, S.M. & Gray, W.G.A., General conservation equations for multi-phase sys-
tems: 3. constitutive theory for porous media flow, Adv. Water Resour. 3 (1980), p.p.
25-40.

Hassanizadeh S.M. & Leijnse, A., On the modeling of brine transport in porous media,
Water Resour. Res., 24 (1988), pp. 321-330.



BIBLIOGRAPHY 45

[34]

[35]

[36]

[37]

(38]

(39]

[40]

(41]

42]

[43]

[44]

Sverdrup, H.U., Johnson, M.W. & Fleming, R.H., The Oceans (1942)

Hassanizadeh, S.M. & Leijnse, Anton, A non-linear theory of high-concentration-gradient
dispersion in porous media, Adv. Water Resour. ,Vol. 18 (1995), pp. 203-215

Hassanizadeh, S.M., Leijnse, A., De Vries, W.J. & Stapper, R.A.M., Experimental study of
brine transport in porous media, Report 728514005, RIVM, Bilthoven, The Netherlands,
1990.

Hassanizadeh, S.M., Derivation of basic equations of mass transpo rt in porous media. Part
1. Macroscopic balance laws, Adv. Water Resour. 9 (1986), p.p. 196-206

Henry, H.R., Salt water intrusion into coastal aquifers, Intern. Assoc. Sci. Hydrol, Publ 52
(1960), p.p. 478-487.

Herzberg, A., Die Wasserversorgung einiger Nordseebader, J. Gasbeleucht. Wasserversorg
44 (1901), p.p. 815-819.

Holzbecher, E. & Baumann, R., Numerical simulations of seawater intrusion into the Nile
Delta aquifer, Computational Methods in Water Resources X, A. Peters et.al. (eds.), Kluwer
Acad. Publ. the Netherlands (1994), p.p. 1001-1018.

Hornung, U., Jager, W. & Mikeli¢, A., Reactive transport through an array of cells with
semi-permeable membranes,

Hornung, U. & Jéiger, W., Diffusion, convection, adsorption and reaction of chemicals in
porous media, J. Diff. Equat. 92 (1991), p.p. 199-225.

Hornung, U., Homogenization of miscible displacement in unsaturated soils, G. Dal Maso,
G.F. Dell’Antonio (eds.), Composite media and homogenization theory, Progress in nonlin-
ear differential equations and their applications, Birkhauser, Boston (1991), 143-153.

IAEA, Site selection factors for repositories of solid high-level and alpha-bearing wastes in
geological formations, Techn. Rep. No 177 (1977), IAEA, Vienna.

Hubbert, M.K., The theory of groundwater motion, J. Geol. 48 (1940), p.p. 785-944.

De Josselin De Jong, G., The simultaneous flow of fresh water in aquifers of large horizontal
extension determined by shear flow and vortex theory, Proceedings Euromech. 143 (1981)
(eds A. Verruijt & F.B. J. Barends), Balkema Rotterdam, pp. 132-149.

De Josselin De Jong, G., Singularity distributions for the analysis of multiple flow through
porous media, J. Geophys. Res. 65 (1960), p.p. 3739-3758.

Kashef, A., Saltwater intrusion in the Nile Delta, Groundwater 21(2) (1983), p.p. 160-167.

HYDROCOIN, Swedish Nuclear Inspectorate, An international proje ct for studying
groundwater hydrology modeling strategies, Level 1 Final Report: Verification of ground-
water flow ,odels, Case 5. Swedish Nucl. Insp., Stockholm (1986)

Keller, J.B., Darcy’s law for flow in porous media and the two-space method, R.L. Sternberg
(ed.) Nonlinear partial differential equations in engineering and applied sciences, Dekker
(1980), p.p. 429-443.



46 BIBLIOGRAPHY

[51] Kempers, L.J.T.M., Effects of fluid properties on hydrodynami ¢ dispersion: comparison of
analytical models to numerical simulations, Proc. 1s t SPE/IMA Europ. Conf. Mathematics
of Oil Recovery, Cambridge, UK, 25-27 July 19 89.

[52] Kempers, L.J.T.M., Dispersive mixing in stable and unstable m iscible displacements, PhD
thesis Delft University of Technology, The Netherland s, 1991.

[53] Knabner, P, Van Duijn, C.J. & Hengst, S., An analysis of crystal dissolution fronts in flows
through porous media. Part 1: Compatible boundary conditions, Adv. in Water Resour.,
18(3) (1995), p.p.171-185.

[54] Kolditz, O., Ratke, R., Diersch, H.G. and Zielke, W., Coupled groundwater flow and trans-
port: 1. Verification of variable density flow and transport models, Adv. Water Resour.
21(1) (1998), p.p. 27-46

[55] Krohn, K.P., & Zielke, W, FE-Simulation von Transportvorgingen im kliftigen Gestein.,
Deutsche Gewasserkundliche Mitteilungen 35(3-4) (1991), p.p. 82-88

[56] Landau, H.G., Heat conduction in a melting solid, Q. Appl. Math . 7 (1950), 81-94

[57] Lerat, A. & Peyret, R., Sur le chois de schémas aux différences finies du second ordere
fournissant des profiles de choc sans oscillations. C.R. Acad. Sci. Paris 277 (1973), pp.
363-366.

[58] List, E.J., The stability and mixing of a density-stratified horizontal flow in a porous
medium, Rep. KH-R-11, Calif. Inst. of Technology, Pasadena (1965).

[59] Marle, C.M., On macroscopic equations governing multi-phase flow with diffusion and chem-
ical reactions in porous media, Int. J. Eng. Sci. 20 (1982), p.p. 643-662.

[60] Mikeli¢, A. & Aganovi¢, I. , Homogenization of stationary flow of miscible fluids in a domain
with a grained boundary, SIAM J. Math. Anal. 19 (1988), p.p. 287-294.

[61] Moser, H, Einfluss der Salzkonzentration auf die hydrodynamische Dispersion im pordsen
Medium, Mitteilung Nr. 128, Technische Universitit Berlin (Ph.D. thesis), 1995.

[62] Meirmanov, A.M., The stefan problem, De Gruyter expositions in mathematics, Berlin-New
York (1992).

[63] Mises, R. Von & K.O. Friedrichs, Fluid dynamics, Applied mathem atics series 5, Springer,
New York (1977), 171

[64] Oldenburg, C.M. & Pruess, K., Dispersive transport dynamics in a strongly coupled
groundwater-brine flow system, Wat. Resour. Res. 31 (2) (1995), p.p. 289-302

Pawell,A. & Krannich, K.D., Dissolution effects arising in transport in porous media which
affect a chemical equilibrium. (Unpublished)

[65

Pedersen, A. & Lindstrom, J., Selection of release scenarios for a Danish waste repository
in a salt dome, Radionuclide release scenarios for geologic repositories, Proceedings of the
NEA Workshop, Paris, 8-12 September 1980.

[66

[67] Peletier, L.A. $ Van Duijn, C.J., Asymptotic behaviour of solutions of nonlinear diffusion

equations, Arch. Ration al Mech. Anal. 65 (1977), p.p. 363-377.



BIBLIOGRAPHY 47

(68]

(69]

[70]

(71]

(73]

(74]

(75]

(76]
(77

[78

79

80

[81]

Pinder, G.F. & Cooper, H.H., A numerical technique for calculating the transient position
of the salt water front, Water Resour. Res. 6 (1970), p.p. 875-882.

Pfannkuch, H. O., Contribution 4 I’étude des déplacements de fluides miscibles dans un
milieu poreux, Revue de I'Institut Francais du Pétrole, Vol. 18 (1963), pp. 215-270.

Roxburgh, LS., Geology of high-level nuclear waste disposal: An introduction, Chapman
and Hall London New York (1987).

Rubin, J, Transport of reacting solutes in porous media: Relation between mathematical
nature of problem formulation and chemical nature of reactions, Water Resour. Res. 19
(1983), p.p. 1231-1252.

Scheid, J.F., Etude théorique et numérique de 'évolution morphologiq ue d’interfaces, Ph.D.
thesis, Orsay 1994.

Scheidegger, A.E., The physics of flow through porous media, 2nd ed., Univ. of Toronto
Press (1960).

Segol, G. & Pinder, G.F., Transient simulation od salt water intrusion in southeastern
Florida, Water Resour. Res. 12 (1976), p.p. 65-70.

Slobold, R.L. & Howlett, W.E., Effects of gravity segregation in laboratory studies of mis-
cible displacement in vertical unconsolidated porous media, Soc. Petrol. Engng. J., March
(1964), p.p. 1-8.

Snoeyink, V.L. $ Jenkins, D., Water Chemistry, John Wiley, New York USA (1980).

Tartar, L., Incompressible fluid flow in a porous medium - convergence of the homogeniza-
tion process, E. Sanchez-Palencia (eds.), Non-homogeneous media and vibration theory,
Lecture notes in physics 127 Springer, Berlin (1980), p.p. 368-377.

Walton, A.G., The formation and properties of precipitates, Wiley Interscience, New York
USA (1967).

Whitaker, S., Flow in porous media I: A theoretical derivation of Darcy’s law, Transp.
Porous Media, 1 (1986), p.p. 3-25.

Whitaker, S., Flow in porous media II: The governing equations for immiscible, two-phase
flow, Transp. Porous Media, 1 (1986), p.p. 105-125.

Whitaker, S., Flow in porous media III: Deformable media, Transp. Porous Media, 1 (1986),
p.p- 127-154.

De Wiest, R.J.M., Geohydrology, John Wiley and Sons (1965).

Willis C. & Rubin, J., Transport of reacting solutes subject to a moving dissolution bound-
ary: Numerical methods and solutions, Water Resour. Res. 23(8) (1987), p.p. 1561-1574.

Vita-Finzi, C., Rates of holocenic folding in the coastal Zagros near Bandar Abbas, Iran,
Nature 278 (1979), p.p. 632-633.

Voss, C.I. & Souza, W.R., Variable density flow and solute trans port simulation of regional
aquifers containing a narrow freshwater-saltwater transition zone. W ater Resour. Res.
23(10) (1987), p.p. 1851-1866.



48 BIBLIOGRAPHY

[86] Zhang, H.F., Nonlinear degenerate diffusion problems, PhD thesis, Delft University of Tech-
nology, The Netherlands.

[87] Zijl, W. & Nawalaney, M., Natural groundwater flow, Lewis Publishers USA (1993).



Chapter 2

Brine transport: similarity solutions

2.1 Introduction

Recently Hassanizadeh and Leijnse, [1988] [1990] [1995] revisited the theory of brine transport
in porous media, designed numerical codes and did experiments in the laboratory. They raised
the question whether (semi-) analytical solutions of the governing equations could be obtained
under certain boundary and initial conditions. This question initiated our mathematical study
and the results are published in the mathematics literature [Van Duijn et.al.,1992]. Because the
subject of brine transport is still of current interest in the hydrological literature and the avail-
ability of analytical work in this field is poor, we decided to make the mathematical results more
accessible for non-mathematicians and wrote this paper. The material has been extended with
new results and the emphasis is now on the construction of semi-explicit self similar solutions.

Brine is water containing a high concentration of salt. In an almost saturated brine the mass
fraction (w), which is defined as the mass concentration of the salt over the density of the brine,
can reach 0.26. This corresponds to a brine density of approximately 1200 kg/m3. For sea water
w = 0.04 corresponding to a fluid density of 1025 kg/m®. Mass fraction and density are related
by an equation of state, which has been empirically determined. Brines are found in surface
waters, such as the Dead Sea, and in groundwater near salt domes [Glasbergen, 1981]. These
are geological structures in the subsurface consisting of vertical cylinders of salt, a kilometer or
more in diameter, embedded in horizontal or inclined strata. Salt domes are potential places for
storage of nuclear waste [Roxburgh, 1987], and it is of practical importance to know the flow of
the groundwater around them.
Any model for fluid flow and salt transport in a porous medium must contain the mass balance
equations for the fluid and the salt, and Darcy’s law. The specific model we propose to study
uses the complete fluid balance equation [Hassanizadeh & Leijnse, 1988]

d)% +div (pq) =0, (2.1.1)
where ¢ denotes the porosity of the medium, p the fluid density and q the specific discharge
vector. Introducing the material derivative

D Ja q
e P 2.1.2
D=t s grad, (2.1.2)
in the balance equation yields
¢$Dp ..
> Dt +divqg = 0. (2.1.3)
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This expression shows that density variations may affect the compressibility of the fluid, which
in turn can cause an additional movement of the fluid. To make this effect explicit is one of the
goals of this study.

In this paper we intend to employ mainly analytical techniques. Therefor we are forced to
restrict ourselves in the choice of flow problems. Inspired by earlier work of de Josseling de Jong
& van Duijn [1986] we shall analyze two simplified cases denoted by Problem I and Problem
II. Problem I describes the mixing of fresh water and brine, originally separated and parallel
flowing, due to transversal dispersion. Problem II relates to the flow of groundwater along the
surface of a salt dome. A sketch of the corresponding initial and boundary conditions is given in
Figure 1. In Problem I the flow domain is unbounded above and below. Initially, say at ¢t = 0,

B
fresh -L— - —salt rock

fresh

(a) Problem I (b) Problem II

Fig 1. Initial and boundary conditions

the region above the plane {z = 0} is filled with fresh water and the brine fills the region below
it. In this case one has to specify the specific discharge either as z — +oo or as z — —oo. Here
we shall adopt the former, and fix q— (¢s,0) as z = +00, where ¢y is a given constant.

In Problem II the flow domain consists of the upper half space {z > 0} and is bounded below
by an impermeable salt rock. Again at ¢ = 0, fresh water occupies the region {z > 0} while the
salt from the rock ensures that p = ps (mass density of saturated brine) along the boundary
{z = 0}. Here we can only specify the y-component of the specific discharge at z = +oo, because
the z-component is determined by a second boundary condition, as explained in Section 3, at
the surface of the rock. In both problems the y-coordinate ranges from —oo to +oc.

These problems are chosen because they admit similarity. This means that the underlying
partial differential equations can be reduced to ordinary differential equations by introducing an
appropriate similarity variable ( z/v/f in Figure 1). This makes the analysis tractable, yielding
semi-explicit results. The mathematical justification of the results is given elsewhere [Van Duijn
et.al., 1992]. As a consequence of the analysis we can quantify the effect of the additional brine
transport due to the fluid compressibility for Problem I and II, where in particular the latter is
relevant to understand the flow near salt domes.

Among recent papers focusing on brine transport we mention [Oldenburg and Pruess,1995;
Carey et al.,1995; Herbert et al.,1988; Hassanizadeh and Leijnse, 1995 |. Numerical codes [Has-
sanizadeh and Leijnse, 1990 and 1988] are developed to simulate flow of groundwater containing
high salt concentrations. In general it is hard to compare numerical results with experimental
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data because the availability of brine experiments is poor. However our analytical results can
be used to verify the accuracy of numerical codes [HYDROCOIN, 1986, Hassanizadeh, 1990).
Herbert et.al. [1988] stresses the importance of analytical work on this subject.

Hassanizadeh and Leijnse [1995] reported on column tests of brine displacing fresh water
in a porous medium. They showed that the dispersivity of brine decreases when the relative
density difference between brine and fresh water increases and resolved this problem by intro-
ducing a nonlinear form of Fick’s law. Carey et al.[1995] suggest a density dependent diffusiv-
ity /dispersivity. Although these results are interesting we shall confine ourselves to the classical
formulation of Fick’s and Darcy’s law in this paper.

In Section 2 we formulate the mathematical model in general terms and in Section 3 we
define the two specific problems (I and II). Dimensionless variables are introduced in Section
4. In Section 5 we discuss properties and construction of self similar solutions. Numerical
procedures and results are given in Section 6 while asymptotic results for small relative density
difference, yielding approximately div(q) = 0, can be found in Section 7. The simultaneous
transport of brine and dissolved radionuclides is the subject of Section 8. In Section 9 we
discuss the results and Section 10 contains the conclusions.

2.2 The mathematical model

Since this paper focuses on analytical aspects of subsurface brine transport, we shall impose
simplifying restrictions on the properties of the porous medium and flow. With respect to the
porous medium we assume that it is homogeneous and isotropic, characterized by a constant
porosity ¢ and intrinsic permeability . With respect to the flow we shall consider the two
specific cases which are introduced in Section 1 and about the fluid, with density p and salt
mass fraction w, we assume that the dynamic viscosity 4 does not depend on w and is constant.
Assuming a Fickian type of dispersion/diffusion term in the salt mass flux and restricting our-
selves to the conventional form of the momentum balance equation, we obtain the following
equations for transport of brine [Hassanizadeh & Leijnse, 1986]:

Mass balance of the fluid

0
$=F + div(pq) = 0; (22.1)
ot
Mass balance of the salt
Opw .
¢W + div(pwq — Dpgradw) = 0; (2.2.2)
Darcy’s law
H -0
L + gradp — pg = 0; (2.2.3)
Equation of state
p=pse”. (2.2.4)

Here q= (qy,q.) denotes the specific discharge, p the fluid pressure and g= (gy,9.) the acceler-
ation of gravity. In the equation of state, where we disregard the effect of pressure variations
on the fluid density, py is the density of the fresh water and ~y is a constant (y = 0.6923 =~ In 2)
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obtained by curve fitting using a table from Weast [1982]. Following Bear [1972], we use for the
hydrodynamic dispersion tensor D = (D;;) the expression

Di;j = {ar|q| + ¢Dma}dij + (ar — ar)qiqi/|al, (2.2.5)

where ay, and ap are positive constants with ay > ap. They are called the longitudinal and
transversal dispersion length, and describe the spreading of solutes due to mechanical dispersion
caused by randomness of the structure of the porous material and heterogeneities. Further D,
denotes the effective molecular diffusivity, which incorporates the effect of tortuosity. Finally,
d;; denotes the Kronecker § and | - | the Eucidian norm in R?. For mathematical reasons we use
in most of this paper (except in Section 9) the approximation

Dij = (ﬁD(si]‘ (2.2.6)

where D is a positive constant. If oy and ap are small (fine granular, homogeneous material),
then this approximation is justified for D = D,,,,;. However, if the influence of the heterogeneities
is significant, then D in (2.2.6) accounts for dispersion in an averaged sense.

2.3 The flow problems

The object of any study of brine transport is to determine the specific discharge and density (or
mass fraction of salt) of the fluid as a function of position and time. We will investigate here
two specific problems. In Problem I, see Figure 1(a), we consider an unbounded flow domain
above and below the z = 0 plane. Initially, at time ¢ = 0 say, the region above this plane is filled
with fresh water (density ps) and the region below it with brine (density p;). Since ps > py, this
leads to a stable salt distribution for all ¢ > 0. As a boundary condition we impose that at large
distance above the z = 0 plane, the flow is known (and given) and points into the y-direction:

q — qsrey as z — +oo, forall ¢>0. (2.3.1)

where ¢y is a given constant and e, the unit vector in the positive y-direction.

Studies of brine distributions in aquifers have shown that the zone between brine and fresh water
is relatively narrow, in particular when the fluids are stagnant. If this situation is perturbed
by draining fresh water we end up with a situation that can be represented schematically by
Problem I.

In Problem II the flow domain occupies the half space {z > 0}, see Figure 1(b). In formulating
this problem we have assumed the initial situation where, due to regional effects, fresh ground-
water flows along the top boundary of a salt dome. As a result salt will dissolve from it. The
physico-chemical processes that take place at a salt rock boundary are complex and difficult to
model. For instance, the dissolution of salt creates a cap (residue) rock layer along the top of
the salt dome. Geological studies, e.g. Bornemann et al. [1986], estimate the growth of this
layer to be 0.04 mm/year. Following Hassanizadeh & Leijnse [1988] we disregard this movement
and assume that the mass fraction remains at all times at the maximal salt mass fraction of the
saturated brine along the fixed boundary, i.e.

w=ws at z=0, forall t>0. (2.3.2)

Further, the flux of salt entering the flow domain induces a movement of water. This leads to
the additional boundary condition, see again Hassanizadeh & Leijnse [1988],

(q+ gradw) -n=0 at z=0, for all ¢t >0, (2.3.3)

.
(1 —ws)
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where n denotes the outward normal at the boundary {z = 0}. As initial concentration we have
p = ps or w = 0 everywhere in the flow region. At large distance above the {z = 0} plane we
now impose only the y-component of the flow, since the z-component will be determined by the
problem. Thus we set

qy — qf as z — +oo, for allt > 0. (2.3.4)

In both problems the y-coordinate ranges from —oco to +o00. Therefore we may look for a density
and specific discharge depending only on the z-coordinate and time, i.e.

p=p(z,t) and q=q(z,t). (2.3.5)

Following de Josseling de Jong & van Duijn [1986] we use (2.3.5) and Darcy’s law (2.2.3) to
obtain a linear algebraic relation between the fluid density and the y-component of the specific
discharge. This relation can be found by first taking the curl of (2.2.3):

0 K 0 K
—{ay—— — —{gz = — =0 2.3.6
55 (W Mpgy} ay{‘h upgz} , (2.3.6)
and by substituting (2.3.5) into this expression. The result is
K ko .
qQy — ;pgy =gy + ;pg sin § = constant in space, (2.3.7)

where 3 is the inclination of the z = 0 plane. To determine the constant in (2.3.7) we use the
behavior of ¢, and p at 2 = +o0:

gy(o0,t) = g5 and p(oo,t) = py for all ¢ > 0. (2.3.8)

This yields the relation
K 1
ay =4qf — ;(p —pyrlgsinf. (2:3.9)

Thus in order to determine the pair (p, q) from the differential equations with initial and bound-
ary conditions, there remains, by virtue of (2.3.9), only to determine p and ¢;. Using (2.3.9),
the equations for these quantities reduce to

ap 0 .
¢E + &(Plh) =0 (2.3.10)
and 3
909 o 8 e = Dip L =
¢+ az(pqu Dpaz) =0. (2.3.11)
Combining these equations yields
Ow ow 0 ow
¢PE + Pz 5 = g(PDa—z) (2.3.12)

and with the equation of state (2.2.4) we obtain

a 9] 0?
¢—p+QZ_p_ d

ot T99, = Pz (2.3.13)
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We use the coupled system (2.3.10) and (2.3.13) in our analysis. To determine p and ¢, from
this system we need to impose the initial and boundary conditions. In Problem I we look for a
solution in the domain {(z,t) : —0o < z < +00,t > 0} subject to the initial condition

) py for 2>0
p(z,O)—{ pe for z<0. (2.3.14)

and boundary condition (2.3.1) for the flow
q,(+00,t) =0 forall t>0 (2.3.15)

We note that a condition on the flow such as (2.3.15) is natural for the problem. Combining
equations (2.3.10) and (2.3.13) gives the ordinary differential equation
0q. a2p
D— =0. 2.3.16

Poz T b22 (2:3:16)
Thus knowing p, an additional condition on g, is needed to determine the solution. The specific
choice is arbitrary. In fact one could construct a solution corresponding to any given g, (+o0, ).
We also observe at this point that equation (2.3.16), when writing it in the form

0q.
0z

1
divq = = ——div(Dgradp), (2.3.17)
p
clearly demonstrates the coupling between brine transport by diffusion/dispersion, creating a
non-zero divergence in the flow field and hence fluid transport by specific discharge. Density
gradients imply fluid movement and vice versa.
Problem II is solved in the domain {(z,t) : z > 0,t > 0} where we impose initially

p(z,0) = py for 2>0 (2.3.18)
and along the boundary, see expressions (2.3.2) and (2.3.3)
p(O, t) = Psm ‘= pfe’ng’ (2319)

and
D op

ool —w5) 82 %) (2.3.20)

qz(ov t) = -
for all t > 0. Here ps,, denotes the density of saturated brine. Boundary condition (2.3.3) relates
the specific discharge to the spatial derivative of the fluid density at the salt rock boundary.
Although no water is being produced along the salt rock boundary, a non-zero discharge exists
along that boundary due to volume effects caused by high salt concentration gradients in the
fluid.

2.4 Dimensionless variables

Before discussing equation (2.3.10) and (2.3.13) we introduce the dimensionless variables

K K 2

= mag ~pr9)
FoBSB opo B A sl g = P19l (2.4.1)
Ps = Pf uPra D ¢D




2.5. SELF-SIMILAR SOLUTIONS 55

and

€= u7 (2.4.2)
Ps
where p; = ps in Problem I and g5 = psp in Problem II. In terms of these new variables the
equations become (dropping again the asteriks notation)

dp 0 1%

— + o-(pgz) + z 0z

5 tE; =0 (2.4.3)

and p 3 9
b, 00 _ 0
5 %5, = 52 e

The rescaled initial and boundary conditions in Problem I are

0 for z>0
p(2,0) = { 1 for 2<0 (245)

and
q.(+00,t) =0 forall ¢t>0. (2.4.6)

In Problem II the scaling ( 2.4.1),(2.4.2) leads to

p(2,0) =0 for z>0, (2.4.7)
p(0,t) =1 for t>0 (2.4.8)
and
dp
q.(0,t) = —eK(e)==(0,1), (2.4.9)
0z
where K(¢) is given by:
1 1
K(e) = 2L = . (2.4.10)

B Psm '7(1 _‘Us) (1 +5)(7_10g(1 +5))

Note that the relative density difference lies in the interval
0<e<e™ —1=2% -1=x0.2 (2.4.11)

for wy = 0.26.

2.5 Self-similar solutions

Due to the nonlinear coupling between equations (4.3) and (4.4) it is not possible to find ex-
plicit, closed-form solutions of Problems I and II. Nevertheless, their special structure enables us
to obtain much information concerning the qualitative behavior of the solutions and to obtain
accurate approximations.

The key idea is to look for self-similar solutions, which reduce (4.3),(4.4) to a set of coupled
ordinary differential equations with boundary conditions originating from (4.5)-(4.9). The trans-
formed problems were studied in detail by van Duijn et al. [1992]. They considered fundamental
questions related to existence and uniqueness of solutions, as well as their qualitative behavior.
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With respect to the latter, they showed certain monotonicity properties of solutions and their
asymptotic behavior for |z| — oo and for € | 0. Some of these results will be discussed here and
in Section 7.

The similarity transformations for Problems I and II are given by

and 1
p(z,t) =u(n) and g.(z,t) = Wv(n) (2.5.2)
This results in the set of differential equations
! 1 ! 1 ! «
(uwv)" + Jv g = 0 (2.5.3)
! 1 ! n
u— S =4 (2.5.4)

where the primes denote differentiation with respect to 7. The independent variable n ranges
from -0o to 400 in Problem I and from 0 to +oco in Problem II.

The following boundary conditions for (1) and v(n) in Problem I result from (4.5),(4.6) and
are found to be

u(—o00) =1 and u(4o00) =0 (2.5.5)
and
v(+00) = 0. (2.5.6)
For Problem II we find from (4.7)-(4.9)
u(0) =1 and u(+00) =0 (2.5.7)
and
v(0) = —K (¢)eu'(0). (2.5.8)
Equations ( 2.5.3) and( 2.5.4) can be combined into:
u” + (%n —v)u' =0, (2.5.9)
o = ﬁﬁ. (2.5.10)

Let us first discuss Problem I. We start with the important observation that solutions (u,v) of
equations (5.9),(5.10) on R are invariant under linear shifts. By this we mean the following. For
any given a € R, let

7=n—a, 77 =ul) and 37) = (1) - g0 (2511)

Then if (u(n),v(n)) solves ( 2.5.9) and ( 2.5.10) for —oo < 7 < +00, than so does (u(7), (7))
if we replace by 7 in ( 2.5.9). This means that if (u(n),v(n)) is a solution for which v(=00)
exists, then by shifting 7 over a suitable distance a, we can reach any limiting value of v(n),
either at 7 = —oo or at 7 = +00. If we choose a = 2v(+o0) in ( 2.5.11) we can ensure that
condition (2.5.6) is satisfied. This invariance property will be used in both the mathematical
and numerical procedures for solving Problem I.

Before discussing the construction of solutions, we recall some a priori properties which give an
idea about the qualitative behavior of the solution. We proved that
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(i) u'(n) <0 forall —oo<n < +o00

(ii) there exists 70 > 0 such that u”(n) < 0 for 1 < 79 and u”(n) > 0 for n > 1o
(iii) v(no) = 4mo and v'(n) > 0 for n < no and v'(n) < 0 for n > mno
(iv) u'(n) = 0 if [n| = oo

The first assertion implies that the brine concentration increases strictly with depth and is
concave below the plane z = 9Vt and convex above it. Also the z-component of the specific
discharge has a maximum at z = noV/t of magnitude g, (novt,t) = %no/\/f. The number 79 plays
a prominent role in simultaneous transport of brine and radionuclides, which will be explained
in Section 8.

Next we turn to the solution procedure. As a first observation we note that equations (5.9)-(5.11)
can be combined into a single equation with 1 missing. This equation, having the form

u/l n

—I—(—u—,)':~ui:_l with — oo <71 < +oo, (2.5.12)
€

N | =

needs three conditions to be solved uniquely. Two conditions are given by (5.5). As a third
condition we take, for instance,

u(0) = =. (2.5.13)

We outline below how to obtain a unique solution satisfying (5.12), (5.5) and (5.13) and how
to obtain from that solution a corresponding v = v(n) so that the pair (u,v) satisfies equations
(5.3) and (5.4). This function v will not satisfy condition (5.6). To achieve that condition one
applies the linear shift (5.11) with a = 2v(0c0).

Equation (2.5.12) is of third order, nonlinear and defined on an unbounded domain. To tackle
it directly is therefor not straightforward. As so often in mathematics, we solve problems by
combining and applying what we already know. Also in this case. We will transform equation
(2.5.12) into a second order equation on a finite domain, yielding a boundary value problem
which is well-known in the mathematical literature. This transformation is achieved by taking
u as the independent variable, which is allowed by the monotonicity of u, and by taking u' as
the new independent variable. Thus setting

n=1(u) and y(u) = —u'(n(u)). (2.5.14)
we obtain i
y{(1+6u)y'}':—§(1+6u), 0<u<l (2.5.15)
In view of property (iv) we obtain for y the boundary conditions
y(0) =0 and y(1)=0. (2.5.16)
By setting further
= li’oig((l% and z(s) = my(u) (2.5.17)

we obtain the problem

—22' = %62510'5(1*'5), z>0 for 0<s<1
(I (2.5.18)
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which is well-known and arises in the study of self-similar solutions of nonlinear diffusion equa-
tions, see for instance Esteban et.al. [1988],van Duijn & Peletier [1977] and van Duijn & Floris
[1991). In the context of nonlinear diffusion one calls equation (5.18) the flux equation, because
it specifies the flux in terms of the concentration. One sees immediately (since z > 0) that

Z"(s) <0 for 0<s<1. (2.5.19)
Less straightforward are the proofs of the properties

lim 2'(s) = +oo and lim 2'(s) = —oo, (2.5.20)
sl0 sT1

which can be found in van Duijn & Floris [1991]. Knowing that a solution z = z(s) of Problem
I’ exists and is unique, and knowing much about its qualitative behavior, one finds y = y(u)
from (5.17). Finally, the solution u = u(n) satisfying (5.12),(5.5) and (5.13) is implicitly defined
by

1
2 1
n(u) = /2 ——ds (2.5.21)
u Y(s)
which results from integrating ( 2.5.14). The corresponding v = v(n) is given by
1
v(n) = 51— ' (u(n)) for —oo <1< 400 (2.5.22)

which follows from ( 2.5.9) and ( 2.5.14).

Since Problem II is defined on the semi-infinite interval 0 < 1 < 400, we loose invariance
property (2.5.11). But the other properties (i)..(iv) remain the same, when taking 0 <n < 400,
yielding a similar qualitative picture of the solution. The solution procedure proceeds along the
same lines. It leads to the transformed problem

—22" = %e2310g(1+5), z2>0 for 0<s<1
(Ir') (2.5.23)

where L is a constant given by

log(1 +¢)
L=K(e)(1 log(1 =", 2.5.24
(€)1 +)log(1 +) = —p - (25.24)
The boundary condition at s = 1 is a direct consequence of condition (5.8). To return to
u = u(n), we first use again (5.17) to obtain y = y(u) and then
L |
n= / ——ds for 0 <n < +4o0. (2.5.25)
u(n) Y(5)

The corresponding v = v(n) is obtained from (2.5.22).

2.6 Numerical procedures and results

The mathematical analysis has provided us with qualitative information about the structure of
the solutions of Problem I and II. This information can be used to develop procedures to obtain
accurate numerical solutions.
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Starting point for both problems is the third order equation (2.5.12). We write this equation as
a system of first order equations by setting

p=u, ¢g=v and r=no. (2.6.1)
Substitution in (5.12) yields
P o= q
= qr—3a)
(S) 2, (2.6.2)
o - _dr—33)
Btz
To solve this system we impose three conditions at n = 0:

p(0) = u(0) = po, q(0) =u'(0) = qo, 7(0) =v(0) =, (2.6.3)

where pg = 1/2 (Problem I) or py = 1 (Problem II), and where go and rq are a priori unknown.
They have to be determined from the boundary conditions (2.5.5) (Problem I) or from (2.5.7),
(2.5.8) (Problem II).

Concerning Problem I, one approach is to apply a shooting procedure in the regions {n < 0}
and {n > 0}. Taking for (S) the initial values py = 1/2 and qo, 7o arbitrary, one solves the
equations for {n < 0} and {n > 0}. The idea is to choose py and go such that

p(—00) = u(—o0) =1 and p(400) = u(+o0) = 0. (2.6.4)

However, this procedure is not at all trivial because there are two degrees of freedom in the
problem. Moreover it would be time consuming to compute accurate values for gy and 7o by
trail and error such that the correct limiting behavior for u at n = +/ — oo is achieved.

An alternative approach is to determine g and ro directly from Problem (I') by noting that

1. log(l+e) [log(l+5)
= —yl=—) = 2.6.
H y(Z) € ‘ log(1 +¢) (2.6.5)
and, using (2.5.8),
1 1, (log(1+5)
P S , 2.6.
"o y(Z) 1+-§-z log(1 +¢) (2.6.6)

We find approximate values of the shooting parameters gy and ry by solving (I') numerically.
We omit the details of the computations. Next equations (S) are solved using a fourth order
Runge-Kutta method in the regions {n < 0} and {n > 0}, subject to po, go and ro. This gives
the solution (u(n),v(n)) of (5.9) and (5.10) which satisfies u(0) = 1. It also provides us with
the value of v(400) = r(+00) which we need to obtain the correct shift a = 2v(+00) to satisfy
boundary condition (2.5.6).

In all cases considered, i.e. for all relevant values of ¢, we verified the boundary conditions
u(+0c) = 0 and u(—oc) = 1. Up to a small error term these values are taken on by the numerical
approximations. This serves as an independent check for the accuracy of the numerical procedure
for Problem (I).

Figures 2 and 3 give the results of the numerical approximations of the similarity solutions u(n)
and v(n) for different values of the relative density difference ¢.
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Figure 2. Numerical approximations of u(n) for Problem I.
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Figure 3. Numerical approximations of v(7) for Problem I.

The value ¢ = 0.025 corresponds to sea water. This curve is hardly distinguishable from
the curve for ¢ = 0 on the scale of Figure 2. The limit ¢ — 0 is the so-called Boussinesq
approximation or Boussinesq limit, see Section 7. The value € = 0.2 corresponds with an almost
saturated brine, while e = 0.5 is chosen here to emphasize the effect. Observe that the numerical
solutions satisfy the qualitative behavior discussed in Section 5.

Concerning Problem II we solve equations (S) for n > 0 subject to the initial conditions

p(0) = wu(0) = 1,
q(0) = u'(0) = ¢ <0, (2.6.7)
r(0) = v(0) = —eK(e)q,

where the last condition is a consequence of (2.5.8). This is a one-parameter shooting problem
which is more straightforward and is solved without using Problem (II’). The object is to find
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a approximate value of gy such that the boundary condition u(+00) is satisfied. This can be
achieved by starting the shooting procedure with an initial estimate for go and check if the
corresponding limiting behavior is satisfied at sufficiently large distance L from the origin. The
problem is to determine an approximate value of go such that the boundary condition u(+o00) = 0
is satisfied. This can be achieved by starting the shooting procedure with an estimated value of
qo and check if the corresponding limiting behavior is satisfied at a sufficiently large distance L
from the origin. If u(L) > ¢ > 0, where § an a priori specified small error term, the estimated
value of qg is decreased by a fixed amount Agp and the shooting procedure is repeated. The
step size Agp remains fixed until, say after the n-the step, u"(L) < 0. Now g7 is increased

by the bisection of Ag, hence gi't! = ¢§ — Ago(n — 3). If u"*1(L) > 6 or if u"t(L) <0
we bistect the last alteration of gy again and obtain respectively : ¢i** = ¢§ — Ago(n — %) or

w2 =q) - Ago(n — %). This procedure is repeated until 0 < u(L) < 4. The number of steps
depends on the quality of the initial guess of gy and the initial step size Agp.

Figure 4 shows the results of the iterative shooting procedure for the scaled density u(n) for
different e-values. The corresponding scaled specific discharge distributions v(7) are given in
Figure 5. Notice that v(0) # 0. This is a consequence of boundary condition (5.8) at the salt
rock/brine interface. Because u is a decreasing function we have v'(0) < 0, hence v(0) > 0, for
all e > 0.

1 T T T T T
Problem TI ° (;'0023 T
0.8 e=05"----"7
0.6 - -
u Y

0.4 N
0.2 3

0 1 I [E—C L I
0 1 2 3 4 5 6
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Figure 4. Numerical approximations of u(n) for Problem II.
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Figure 5. Numerical approximations of v(n) for Problem II.

Figures 6 and 7 give the relative density p(z,t) = u(z/v/f) and the unscaled specific discharge
q:(2,t) = v(z/V/t)//t at different time levels in the original variables. The other parameter
values used in these examples are adopted from Herbert et al. [1988] and listed in Table 1.

Property | Value | Dimension

K 1072 | m?

I 1073 | Pas

g 9.81 | m/s?

1) 0.3 -

ps 1000 | kg/m?

D 107° | m?%/s

Table 1.
1 | T T T
0.9 e=02 — 4
0.8 _
0.7 4
0.6 ]
u(z,t) 0.5 t = 1000 yr B
0.4 -
0.3 100 yr |
0.2 -
0.1 10 yr ™ -
0 : ’ L
0 5 30

Figure 6. Brine density profiles at different times for ¢ = 0.2 in Problem II
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Figure 7. Specific discharge at different times for ¢ = 0.2 in Problem II.

Remark (Boundary Condition) If we impose, instead of (2.5.8), the condition ¢,(0,t) = 0
for all £ > 0 to express the assumption that the salt rock boundary is impervious, then the
analysis yields v(n) < v(0) = 0 for all » > 0. An explanation for this behavior is that ¢, = 0
at the boundary can only be maintained by a back flow coming from +o0o. We conclude that
this is a physically unrealistic situation and that the no flow boundary is incompatible with the
model discussed in this paper.

2.7 Approximate self similar solutions

In this section we give some results of a formal asymptotic analysis which can be found in detail
in van Duijn et al. [1992]. The asymptotic analysis yields series expansions in terms of the
relative density difference ¢ for the similarity solutions (u(n),v(n)) in both problems. When
these expansions are truncated we obtain approximation formulas which can be of practical use
to approximate (u(n),v(n)) up to a certain, known accuracy. To emphasize the dependence on
e, we denote the solutions by (u.(n),ve(n)). In the limit € — 0 the solutions (uc,v.) converge
to the corresponding Boussinesq limit (ug,vg) for both problems. For Problem I vy = 0, while
the limit for ug is the solution of

ug + snug =0 for — oo <7 < 400
By (2.7.1)
up(—o0) =1 and wp(+o0) =0

and is given by

ug(n) = %erfc(g). (2.7.2)

If we integrate (6.2.21) over (7, +00) and apply the boundary condition v(+00) = 0 we obtain

_ w'(n) 2 [T (u'(s))?
v(n) = —5(— + Ez/n m ds. (2.7.3)
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By (2.7.3) we have

tim " — ). (2.7.4)

This expression can be used as a first order approximation of ve(n). We can improve the quality
of the approximation by adding more terms in the expansion

ve(n) = —uo(n)e + {E1(n) + o(1)}e* (2.7.5)
where
Bx () = Zun(n)uon) = 5b(n) + [ {u(5))"ds. (276)

The symbol o(1)! denotes the order symbol. A similar series expansion for u(n) can be derived

ue(n) = uo(n) + %uo(n){l —ug(n)}e + {Ea(n) +o(1)}e?, (2.7.7)

where Fs(n) is given by

oo t oo
Ea(n) :/ e—t’/4/ esz/“fg(s)dsdt—AE/ e/ . (2.7.8)
n 0 n

In the latter expression f.(n) and A, are

ﬂw=a—wwm%mw—%w4ﬂ%mfw (2.7.9)
1 0 9 tsz
A= m/_ooe t/4/o e /4f5(s)dsdt. (2.7.10)

Both series expansions are truncated after the €% terms. A nice property of the approximate
solutions u, and v, is that they are expressed in terms of the solution of the Boussinesq problem
B; and the small parameter € only. Because ug(n) is known explicitly, u. and v, can be evaluated
without great difficulty, for instance with the computer algebra package Maple [1994].

In the Boussinesq limit for Problem II we have again vo = 0 while now ug is the solution of

uf + snuy =0 for 7 >0
B”{ 2B =1 wnd ulhoo} =1, I

hence

uo(n) = erfc(g). (2.7.12)

The asymptotic expressions for Problem IT are
-7
vy

IThe expression f(z) = o(3(z)) for ¢ — +00 means that f(z)/y¢(x) tends to zero when x — +oco. It can be
read as: ’Something that tends to zero, multiplied by’.

ve(n) = { — up(n)}e + {Ea(n) +o(1)}e (2.7.13)
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and
o) = valm) ~ (2= ua(n) + VRUG()} + gL ~ o} e +
{Es(n) + o(1)}¢” (2.7.14)
with
2 _ - _ =
Byt = T2 it (2untn) - D=0 - 2D+
/7’+Oo{u()(s)}2ds (2.7.15)
and
_ "ot gy " /4 t652/4 & "
Ea(n) _AE/O dt /0 /0 f.(s) ds dt. (2.7.16)

The function f.(n) and the constant A, are defined as
setn) = (o1 = o) + 2= (uao) + vy (a) ) (o) = 22 ) =
ug(n)Es(n) (2.7.17)

and

A= i/we—ﬁ/‘* /te52/4f (s) ds dt (2.7.18)
€ = £ . ol
Vv Jo 0

2.8 Transport of radionuclides

In this section we consider the simultaneous transport of radionuclides, occurring in tracer
concentrations, in the vicinity of a salt dome. We assume that the flow geometry is given by
Problem II, resulting in one-dimensional (z-direction) transport. The equation to be solved is

dpw, 7] Ow
#7222 1+ 2 (pocts = Dep e ) = #Apwe = 0, (2.8.1)
where w, denotes the mass fraction of a radionuclide, X the decay constant and D, its effective
diffusivity /dispersivity. Note that g, = g.(z,t) and p = p(z,t) are solutions of Problem IL
Further note that in general D, # D, the diffusivity of the salt. We introduce the parameter 6,
defined as

9=D,./D, (2.8.2)

and apply the scaling rules (2.4.1) in (2.8.1). This ensures identical time scales for brine and
radionuclide transport. The radionuclide mass fraction is scaled according to

o = e
[+ UJO’

(2.8.3)

where wy denotes a reference mass fraction, e.g. the (radionuclide) mass fraction at the salt rock
boundary. As a consequence of (2.4.1) we find

D
A = (Eifg)QA (2.8.4)
m
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as the dimensionless decay constant. Combining (2.8.1) and (2.3.10), and applying (2.4.1),
(2.8.2), (2.8.3) and (2.8.4), we obtain (omitting the asteriks again)

dw, O, 0 0 dw,
R e A o) =0 e

in which we eliminated the decay term in the usual way, i.e. by setting w.(z,t) = w.(z,t)e .

The boundary and initial conditions are

w:(0,t) =1 forall t>0

@c(2,0) =0 forall z>0 (2.8.6)

Since ¢,(z,t) = v(n)/Vt and p(z,t) = u(n), we note that (2.8.5)-(2.8.6) has a self similar solution
we(z,t) = f(n), where f is a solution of the linear boundary value problem

(2.8.7)

To solve this problem we first eliminate v using (2.5.9) and next integrate the resulting equation.
This leads to

nd(©)\F (1+¢) Gk
/0 (u’(O)) eu(é) + 1) dt 1 /o eu(€é) +1 df’ (2.8.8)

[ @) amint L awmar

where u is the solution of Problem II, for a given value of . The corresponding, scaled radionu-
clide concentration is

n=1-

o eu(n) +1
en) = Fm =2 (289)
For 6 = 1 we can evaluate (2.8.8) and obtain
eu(n)+))
log (—-
1
) = L el (2.8.10)

e+1 1 )
1 -
Og(e—i-l
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Figure 8. The scaled radionuclide concentration &(n) for € = 0.2 and different values of 0: a.
#=1.0,b. 6=0.1,c. #=0.01,d. § =0.005, e. § =0.001, f. 6 = 0.0003, g. & =0.0.

Figure 8 shows the scaled concentration ¢ for different values of § and € = 0.2. The results in
this figure indicate that, as # — 0, the concentration ¢ has a discontinuity at n = 7o ~ 0.316
with ¢ = 0 for 7 > n9. This is a direct consequence of the limiting behavior of (BV P) as § — 0:
1e.

n
/ q— - =
{ fllo=5)=0 for all >0 (28.11)
f(0)=1,f(c0) =0
which implies a piecewise constant solution
1 for 0<n<mno
fn) = { 0 for o St (2.8.12)
and thus )
eu(n) +1
_ ———— for 0<n<
in=4q e+1 = (2.8.13)
0 for n > 1Mo

As a consequence a radionuclide front emerges which moves with speed v(ng)/v/t, where v (1)
= max((v(n)) = no/2, see property (iii) in Section 5. The position of the front in the (z, t)-plane
is given by s(t) = 2v(19)v/t = 1m9V/t, which is equivalent to the path of a tracer particle released
at t =0 in z = 0, i.e. at the beginning of the brine transport process. Hence in the limit § — 0,
the movement of the tracer is caused by the compressibility effect only.

2.9 Discussion

Self-similar solutions make the analysis tractable and (semi-)explicit results can be obtained.
A crucial requirement for the applicability of similarity arguments is that both the governing
equations and initial and/or boundary conditions be reducible to similarity form. Hence, only
in special cases one may expect to find similarity solutions. Due to the piecewise initial density
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data in Problem I and II we may consider the obtained similarity solutions as upper limits for
the compressibility effect. Smooth initial data decrease the magnitude of the enhanced flow.

In analyzing Problems I and IT we show explicitly the effect of enhanced groundwater flow
due to compressibility of fluid caused by high salt concentration gradients. Characteristic for
both problems is the occurrence of additional specific discharge in a direction perpendicular to
the main groundwater direction. In both problems g, is not influenced by gravity. The only
quantity that depends on gravity is the specific discharge in the y-direction, parallel to the main
flow qy.

In this paper we only consider constant (molecular) diffusion. In a more realistic description
a velocity dependent dispersion matrix has to be introduced into equation (2.2). Molecular
diffusion underestimates the compressibility effects.

When transversal dispersion, due to the (regional) back ground flow ¢,, dominates the dis-
persion/diffusion in the z-direction we arrive at a different situation. Under the assumption
lg:| << |gy| (2.2.5) reduces to

D = ¢Dpyo) + arlgy| = (2.9.1)
K .
$Dmol + orlgs — ;(p — py)gsing], (2.9.2)

yielding D as a function of p. The analysis of this case is quite different from what we discussed
here and will be published elsewhere [Van Duijn & Schotting ,1996].
If gp >> ﬁ(ps — py)gsinf we may replace (2.9.2) by

D = ¢Dyo1 + arlayl, (2.9.3)

yielding a constant dispersivity which is in general much larger then the effective molecular
diffusivity ¢Dp,1- The number

_ arly] (2.9.4)

#Drpol
indicates the relative importance of (transversal) dispersion with respect to molecular diffusion.
If P < 1 diffusion dominates dispersion. When gy = 100 m/yr typical values of the dispersivity
are: D(ar = 0.1 m) ~ 3.1077 m?/s and D(ar = 1.0 m) =~ 3.107% m?/s. The corresponding
P-numbers are: ~ 10° and ~ 10%. It is obvious that such values of the dispersivity will enhance

the compressibility effects in brine transport.
If we consider longitudinal dispersion of radionuclides in the z-direction (2.2.5) reduces to

D(q;) = Dc + arlq.|, (2.9.5)

remembering that D, = ¢D._me = 0D. By virtue of the 1/y/t-decay of q.(z,t) one expects
the longitudinal dispersion to dominate diffusion only on the short time scale in Problem II. A
rough estimate of the order of magnitude of the time { after which diffusion becomes dominant
can be given by using the approximation ¢.(z,t) = v:(0)/Vt in

arlg:(z )]
P = — .J.
D, <1, (2.9.6)
hence
2
. are ¢
ta | — ) —=- 2.9.
( ¥ ) 70D (287
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Typical values of f are (for = 1): {(qy = 1 m) ~ 0.9 yr and {(ay = 10 m) = 88 yr, where
as the typical time scale of brine transport processes is usually in the order of thousands of
years. Hence at a very early stage of the brine transport process molecular diffusion starts to
dominate longitudinal dispersion. Notice that t decreases when we replace the effective molecular
diffusivity by a constant transversal diffusivity arqy, as discussed above.

2.10 Conclusions

1. Compressibilty effects in brine transport in porous media are small and have in most
practical cases only little effect on the density distributions. We studied two specific
brine problems and compared the solutions for ¢ > 0 with the corresponding Boussinesq
solutions for ¢ — 0, where € denotes the relative density difference.

2. We found that high salt concentration gradients induce a convective flux, which is per-
pendicular to the main groundwater flow direction in the problems studied in this paper.
The magnitude of this flux depends upon the relative density difference and the effective
diffusivity /dispersivity of salt.

3. Taking only molecular diffusion into account underestimates the convective brine transport
perpendicular to the main flow direction. For the problems studied in this paper it is more
realistic to replace the molecular diffusivity by the transversal dispersivity due to the
(regional) background flow. This increases the magnitude of ¢, significantly and ¢, can no
longer be neglected as convective transport mechanism.

4. The similarity solutions presented are both of practical and theoretical use. First they
provide us with detailed qualitative and quantitative information about the nature of com-
pressibility effects. Secondly the solutions can be used to verify the accuracy of numerical
codes designed to simulate brine transport.

. The similarity solutions have the following properties: i) u'(n) < 0 for all —oo <1 < +00
(Problem I) and 0 < n < +oo (Problem II), ii) there exists a number 79 such that
u"(n) < 0 for n < ny and u”(n) > 0 for n > o, iii) v(ne) = no/2 and v'(n) > 0 for n < no
and v(n) < 0 for n > no. The number 79 plays a prominent role in the simultaneous
transport of radionuclides.

[Sa4

6. The results of the asymptotic analysis can be used to approximate the similarity solutions
up to a given accurracy.

7. When considering simultaneous transport of brine and dissolved radionuclides we can
construct an explicit solution for the radionuclide mass fraction expressed in terms of the
solution of the underlying brine problem.

8. In the limit of vanishing radionuclide diffusion/dispersion a radionuclide front emerges in
Problem II which travels with speed v(19)/v/t. Hence, the movement of the radionuclide
is caused by the compressibility effect only.
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Chapter 3

Brine transport: Von Mises
transformations

3.1 Introduction

Brine transport in porous media is a process which is described by the fluid and salt mass
balance equations, the fluid movement equation and an equation of state, relating the salt mass
fraction to the fluid density, see e.g. Hassanizadeh & Leijnse [12]. This yields a mathematical
model consisting of a system of coupled partial differential equations which has to be solved in
the flow domain, subject to appropriate boundary and initial conditions.

In a heterogeneous, multi dimensional flow domain the model equations have to be solved
numerically in order to determine the spreading of salt in the subsurface. However, under
simplified and highly idealized conditions it is possible to reduce the partial differential equations
by means of Von Mises and similarity transformations to a single ordinary differential equation,
which can be solved by semi-analytical means. The purpose of this paper is to draw attention to
such transformations. We shall work out three specific cases for which we give an interpretation
of the results in the physical sense.

The idea behind the Von Mises transformation is to take the stream function of the flow
as one of the unknowns and to reduce the partial differential equations to a single nonlinear
diffusion equation. To illustrate this procedure we recall the example of a laminar, stationary
and two-dimensional flow over a flat plate. Let U,V denote the velocity components in the
z,y-direction and let the plate be situated along the positive z—-axis. Following for instance,
Chorin & Marsden [5] or Curle [9], one has to consider the Prandtl boundary layer equations

%

=4 —=0

agU o oU 89U L0
U+ Vo =

oz dy ”a_g;?
for (z,y) € RT x R, subject to the boundary conditions
U(z,0) =0 for z € R" (3.1.2)
and
U(0,y) = Up(y) for y e RT (3.1.3)
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where Uy is the velocity distribution at the leading edge of the plate. In (3.1.1), v denotes the
viscosity of the fluid. Assuming the existence of a stream function ¢ = v (z,y) satisfying

=% .
U= 3y and V = e (3.1.4)

one introduces the change of variables

z =2z and ¥ =¢(z,y) = /Oy Ul(z,s)ds (3.1.5)

and the Von Mises transformation

U(z,¥) =U(z,9(z,y) = U(z,y). (3.1.6)

Under this transformation we obtain for U the nonlinear diffusion equation

% - ga;g; with (z,1) € RT x R, (3.1.7)
and the conditions
U(0,9) = Uo(4) := Up(y) for v € RY, (3.1.8)
and
U(z,0) =0 for z € R*. (3.1.9)

Note that if Up is a positive constant, say Uy(y) = Ug > 0 for all y > 0, this initial-boundary
value problem can be reduced to a boundary value problem for an ordinary differential equation
in terms of the similarity variable ¢ //z. The solution of this boundary value problem describes
the behavior of the solution of problem (3.1.7)-(3.1.9) for large values of z, provided Uy(y) — Uj
as y — o0o. Such convergence results are well known for nonlinear diffusion problems, see for
example Van Duijn & Peletier [10], who studied the large time behavior of a uniformly parabolic
version of problem (3.1.7)-(3.1.9) in terms of such a similarity solution.

Thus the combination of Von Mises and similarity transformations provides a straight forward
way to establish the large time behaviour of the original system. With this in mind, we return
to the transport of brine and consider as examples three time dependent problems that allow
Von Mises and similarity transformations. These problems are: (i) Brine displacing fresh water
in an infinitely long porous column, (ii) Flow of fresh water along a salt dome and (iii) Mixing
of parallel layers of brine and fresh water. The flow geometry of (i) is one-dimensional while
the flow domains of (ii) and (iii) are two dimensional. However, in all three problems the
boundary conditions are chosen such that the resulting fluid and salt balance equations are
one-dimensional. The unknowns are the density and the specific discharge.

Analogous to the Prandtl system one can reduce the two balance equations to a single nonlin-
ear diffusion equation for the density. Here the fluid balance equation suggests the existence of a
modified stream function which serves as the new independent Von Mises variable. Considering
in addition a piecewise constant initial condition for the density a further reduction is possible
in terms of a similarity variable. A boundary condition for the specific discharge is used in the
(back) transformation to the original variables, yielding semi-analytical expressions in terms of
the similarity solution. This is illustrated in Section 3.
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Characteristic for the brine model is the nonlinear coupling between fluid density and specific
discharge which is caused by gravity and salinity induced fluid volume changes. Gravity causes
enhanced rotational flow in regions where horizontal density variations occur and local high
density gradients induce volume changes in the fluid which in turn may cause enhanced fluid
flow as well. Because the three example problems to be discussed are essentially one-dimensional,
gravity will not play a role and only the second mechanism causes enhanced fluid flow.

Raats [25], [29] introduced a similar modified stream function, which he called ‘parcel func-
tion’, when studying one-dimensional transport of fluid and solutes in unsaturated soils. The
fluid balance equation in unsaturated soils in one space dimension reads

a0 0

— + —(v) =0 f t)e RxR*Y 3.1.10

o7 + 5, (0v) =0 for (zt) € ; ( )
where 0 denotes the volumetric water content and v the velocity of water. Analogous to (3.1.1)
and (3.1.4) a function E is introduced which satisfies
0= 0=

=% and Ov = “ (3.1.11)

Integration of the total differential d= gives

0

Z(z,t) = £(0,0) — /Ot Bovp dT + /Oz 0 d¢, (3.1.12)

which effectively labels all members of a collection of parcels of water. The function £ can be
interpreted as a measure of soil water storage in a region or as the cumulative flux across a
surface. Raats [26] does not consider coupling between fluid velocity and solute concentration
in the solute mass balance equation. This assumption only is valid when the fluid density is not
affected by of the solute concentration. In brine transport however the coupling between salt
concentration and fluid density is an essential property.

This paper is organized as follows. In Section 2 we give the mathematical formulation
of the brine model. In Section 3 we explain the details of the Von Mises transformation for
one-dimensional problems and in Section 4 we study the application to the three examples with
similarity, thus specifying the large time limit of three corresponding classes of problems. Finally,
in Section 5, we present the conclusions.

3.2 The brine equations

A general study of the transport of brine through porous media was presented by Hassanizadeh
& Leijnse [12]. Simplifying their formulation by taking Fick’s law for the diffusive salt flux and
the conventional form of Darcy’s law for the fluid momentum equation we arrive at the following
set, of equations:

Mass balance equation for the fluid

n-aa—i +div (pq) =0, (3.2.1)

where p denotes the density of the fluid, q the specific discharge vector and n the porosity of
the porous medium.
Mass balance equation for the salt

9(pw)

nar + div (wpq — pID grad w) = 0, (3.2.2)
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where w denotes the mass fraction of the salt and ID the hydrodynamic dispersion tensor. The
mass fraction is defined as the concentration of the salt component divided by the density of the
fluid.

Darcy’s law

gq +gradp — pg =0, (3.2.3)

where k denotes the intrinsic permeability of the porous medium, p the dynamic viscosity of
the fluid and g the acceleration of gravity.
Equation of state

p=pre’, (3.2.4)
f

where py denotes the density of fresh water and + a constant:y ~ 0.6923 ~ In(2). In writing
(2.2.4) we implicitly assumed that the density is a function of w only (no pressure or thermal
effects). In the subsequent analysis we also assume that the fluid viscosity is constant.

It is common practice to use for the hydrodynamic dispersion tensor ID = (D;;) in (3.2.2)
the expression, see for instance Bear [3],

Dij = {ar|q| + nDna}di; + (@ — ar)gig;/|al- (3.2.5)

Here oy, and ar are the longitudinal and transversal dispersion lengths, and D,,,, is the effective
molecular diffusivity incorporating the effect of tortuosity. Further, d;; denotes the Kronecker ¢
and | - | the Euclidian norm in R?. However, for mathematical convenience we use in almost all
of this paper the approximation

D;: = nDd;, (3.2.6)
J J

where D is a positive constant. If a; and ap are small (fine granular, homogeneous material),
this approximation is justified for D = D,,,;. However, if the influence of the heterogeneities is
significant, then D in (3.2.6) accounts for dispersion in an averaged sense. Only when discussing
the examples in Sections 4.2 and 4.3 we allow for some velocity dependence of D;;, however
different from (3.2.5).

As in Van Duijn et.al. [11] we first rewrite equations (3.2.1)- (2.2.4). Expansion of equation
(3.2.2) gives

0 0
npb% + mugt'(Z + wdiv (pq) + pq - grad w — div (pIDgrad w) =0 (3.2.7)

Multiplication of equation (3.2.1) by w and subtracting the result from equation (3.2.7) results
in

np%—(: + pq - grad w — div (pIDgrad w) = 0. (3.2.8)

Next we substitute the equation of state (3.2.4) in (3.2.8) and obtain

0
na—ft) + q - grad p — div (Dgrad p) = 0, (3.2.9)

as a second equation for the unknowns p and q. Note that equation(3.2.9) is no longer in
divergence form and that the constant v has vanished from the equations. The latter is due to
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the exponential form of the equation of state. Hence, the resulting system of equations is

n% +div (pq) =0
(3.2.10)

n% +q - grad p — div (DDgrad p) =0

In view of the applications in Section 4 we confine ourselves to the analysis of (3.2.10) in
one space dimension. After appropriate scaling, imposed by the geometry and hydrology of
each individual application in Section 4 and assuming (3.2.6) for the moment, we obtain the
dimensionless system

au a o +
—a—t-i-a(qu)—o (z,t) e xR

5 (3.2.11)
du ou ou\ n
E"‘Qa—&(é}—)—o (Z,t)EQXR

where ) denotes the one-dimensional domain R or R*. Details of the scaling rules for each
problem will be given in Section 4. Equations (3.2.11) can be combined to give

" dq 0 (Bu
0z 0z

— | = +. 2.12
62) 0 (5t)€EQxR (3.2.12)

This expression shows that in order to solve (3.2.11) uniquely, one has to prescribe initial-
boundary conditions for u and a single boundary condition for g. Specifically, if @ = R we
consider (3.2.11) subject to the conditions

u(z,0) = ug(z) for z € R (3.2.13)
and
q(—00,t) = qo(t) for t € RT, (3.2.14)

where uy and g are the given, scaled initial density distribution and limiting discharge value.
If @ = R, we consider (3.2.11) subject to initial condition

u(z,0) = uy for z € RY, (3.2.15)
and the boundary conditions
u(0,t) = us and ¢(0,t) = qo(t). (3.2.16)

Here uy and ug are the scaled densities of fresh water and brine. Concerning the behavior of
solutions of these problems we assume that for all ¢ > 0:

up <u(z,t) <us for z €Q, (3.2.17)
and
zggloou(z,t) =us (if Q= R),ZBIJPOOu(z,t) = uy. (3.2.18)
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Remark: Introduction of the material derivative

D 0 q
= e JE 58 2.1
D= ot + . grad (3.2.19)

in the fluid balance equation (3.2.1) results in

n Dp .

il A | =0. 3.2.20

2 Df T ( )
This expression shows that density variations may effect the divergence or local volume of the
fluid, which in turn can cause additional movement of fluid. This effect will be investigated in
the examples presented in Section 4.

3.3 Von Mises transformation

To reduce system (3.2.11) to a single, nonlinear diffusion equation we apply a coordinate
transformation which is a variant of the Von Mises transformation, see e.g. Mises & Friedrichs
[21]. Considering the fluid balance equation in (3.2.11) as the divergence operator in the (t, z)-
plane, acting on the vector (u,uq), we introduce a modified stream function ¥ = ¥(z,t), which
satisfies

\ 9]
u = ?9_2 and ug = _G—\f' (3.3.1)
The new independent variables are
t=t¢t and ¥ = u(s,t) ds, (3.3.2)

A(t)

where h(t) is a yet unknown function of time which will be determined later on from the boundary
condition on ¢. It will be normalized such that h(0) = 0. The Von Mises transformation is

@ = a(P,t) = a(¥(z,t),t) = u(z,t). (3.3.3)
We use it to rewrite system (3.2.11) into the equation

o 7] (Aaa

=igs (5

el . + «
T 50 ) with Ve @, teR™. (3.3.4)

Here @) denotes the range of .

First we consider the case Q2 = R. Properties (3.2.17),(3.2.18) and definition (3.3.1) imply that
U is monotonically increasing in z with ¥(—o0,t) = —oo and ¥(+o0,t) = +oo for all t > 0.
Hence Q@ = R in (3.3.4). To find the initial condition corresponding to (3.3.4) we need to
transform the function ug. To this end we consider (3.3.2) at t = 0:

U= /OZ up(s) ds. (3.3.5)

This expression defines the function z = 2(¥) for —oco < ¥ < +00, which we use to obtain the
transformed initial condition

w(0,0) = ug(2(¥)) for ¥ € R. (3.3.6)
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The initial value problem (3.3.4),(3.3.6) admits a similarity solution for piecewise constant initial
data. If ug is given by

us for 2 <0
Tl &= { uy for z>0 (B4.7)

then the same is true for 4(¥,0): ie.

. _} us for ¥ <0 .
B 0) = { uy for ¥ >0 (3:38)

The corresponding solution is a similarity solution of the form (¥, t) = f(n) with n = T/t
Having obtained a solution @ = 4(¥,t) we use (3.3.1) to return to the original variables.
Integrating the first equation of (3.3.1) gives

U(z,t) 1

- / 1 ds+h(t) for (z,¢) e R xR, (3.3.9)
0 (s, t)

where h(t) is an integration constant depending on t only, satisfying ~(0) = 0 (which implies

U (0,0) = 0). If the function h(t) were known, then (3.3.9) would define the modified stream

function ¥ = W(z,t) and the solution in terms of the original variables would be given by

u(z,t) = a(¥,t) for (2,t) € R xR, (3.3.10)

To find h(t) we differentiate (3.3.9) with respect to ¢ and use the second equation in (3.3.1).
This yields an expression for ¢ which is given by

, W(z,t) Ut
4z, 8 = B') ﬂ/ & (s,1) ds. (3.3.11)
0 U
where 1; denotes the partial derivative of @ with respect to t. Next we use the discharge boundary
condition (3.2.14) to determine h(t). Letting z — —oc in (3.3.11) we find upon integration

h(t) :/Ot{CIo(ﬁ)—/_Ooo%(s,{) ds} dg, (3.3.12)

provided that this integral exists. Substituting (3.3.12) in (3.3.11) gives for the discharge the

expression

) =a® - [ 0 ds (33.13)
o5 W
which completely determines the solution of the problem on R.

Next we consider Q = R*1. This case is more involved because the presence of the boundary
at z = 0 which implies that the domain @ becomes time dependent. Using boundary condition
(3.2.16) and integrating the second equation in (3.3.1) yields for Q@ = Q(t)

Q(t) = (¥(0,t),00) for t >0, (3.3.14)
where
U(0,1) = —us /Ot q0(€) d€. (3.3.15)
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Let 4 = 4(¥,t) denote the solution of (3.3.4) subject to (3.3.6), now with ¥ > 0, and the
boundary condition @(¥(0,t),t) = us. Similarly to (3.3.12) we introduce

t v(0,6) g,
h(t) = / 90(¢) +/ —(5,€) ds p dE, (3.3.16)
0 0 U
and define ¥ = ¥(z,t) for (2,¢) € RT x R by
B Y(zt) ] d t V(0.8) g, s\ u .
Z—A E(S,—t) S+/O q0(5)+/0 E(S,f) S 6 ( . )
Then u is given by
u(z,t) = 4(¥(z,1),1t) (3.3.18)
and
U(z,t) Uy
q(z,t) = qo(t) —/ —(5,€) ds. (3.3.19)
(o) U

If qo is not explicitly given but, as in the salt dome problem in Section 4.2, a function of du/0z
at the boundary z = 0, then ¥(0,t) denotes a free boundary in the (¥,¢)-plane. The position
of the free boundary is a priori unknown and is part of the solution of the problem. When, as
in Section 4.2, the discharge qg is given by
ou
t)=-C —
q(t) %
where C denotes a positive constant, then the following Stefan condition holds at the free
boundary:

(0,t) for all ¢t >0, (3.3.20)

d—ﬁﬁ = ﬁQ(‘P(t),t)g—g(go(t),t) =C ugg_g

where ¢(t) := ¥(0,¢). This condition relates the speed of the free boundary in the (¥, )-plane
to the spatial derivative of 4 at the free boundary.

The nonlinear diffusion problems that arise from these transformations are well known and
received much attention in the existing literature, for instance see the book of Crank [6] on the
mathematics of diffusion or the book of Meirmanov [20] on the Stefan problem. Considering the
role of similarity solutions as large time solutions of nonlinear diffusion problems we refer to the
paper of Van Duijn & Peletier [10] and the book by Barenblatt on intermediate asymptotics [2].

The initial and boundary conditions of the flow problem discussed in the next section are
chosen such that the corresponding nonlinear diffusion problems are solvable in terms of similar-
ity solutions. With the Von Mises transformation as intermediate step such similarity solutions
are natural to the problem and straight forward to find. Moreover, we know that they represent
the large time behavior of the corresponding flow problem with more general (i.e. non-constant)
boundary/initial data.

((t), 1), (3.3.21)

3.4 Applications

3.4.1 Flow in a porous column

In the first application we study brine transport in an infinitely long, one-dimensional porous
column. From a practical point of view it would be more realistic to study a column with finite
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length. But when the phenomenon to be studied occurs at a sufficiently large distance from
the inlet and outlet of the column one expects only minor differences between the results for a
finite and an infinite column. The column is in vertical position, directed along the z-axis, and
gravity points downwards in the negative z-direction. The porous medium is saturated with
fluid. The flow is in the positive z-direction, such that brine displaces fresh water in a stable
manner. Initially the region z > 0 is filled with fresh water (p = pf), and the region z < 0 with
brine (p = ps), such that the fluids are separated by a sharp transition at z = 0. At z = —o0
the column is infiltrated with brine, with constant density ps and constant specific discharge ¢;.
The mathematically relevant initial-boundary conditions for this problem are

q(—o0,t) = g5, with t € R* (3.4.1)
and
_ ps for z2<0
p(2,0) = { p; for >0 (3.4.2)

Note that the initial condition implies p(—o0o,t) = ps for t > 0, implying that indeed brine is
injected into the column. Assuming the column to be filled with homogeneous, fine granular
material we consider a constant dispersivity according to (2.2.6). This choice is also motivated
by the fact that in this application the Von Mises transformation is not applicable for a velocity
dependent dispersivity.

Next we introduce the dimensionless variables

1 — 1 2
u=-++ p pf = p :_—P_ L] q*:g'a t*:tq—sv Z*:Zq_s' (343)
e ps—pr \ Ps—pf  EPs as nD L
where ¢ is the relative density difference
g PEZFF (3.4.4)
Pf

Typical values of the relative density difference are: ¢ = 0.025 for sea water and ¢ =~ 0.2 for
saturated brine; hence (0 <)e < 0.2. Applying this scaling to (3.2.10) (in one space dimension),
(3.4.1) and (3.4.2), and dropping the asterisks again in the notation, we obtain the mixed initial-
boundary value problem

0 0
S+ 55(aw) =0
du ) ou ag_u (3.4.5)
ot 192~ 022
for (z,t) € R x RT, with
q(—oo,t) =1 for te RT, (3.4.6)
(3.4.7)
and i
_J 142 for 2<0,
u(z,0) = { 1 * for 2>0 (3.4.8)
The Von Mises transformation (3.3.1)-(3.3.3) now gives the initial value problem
ou 0 ou
— =g— (4= for (¥,t) e R xR"
ot oV ( aw) ' '
(3.4.9)
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The special form of the initial condition implies similarity. Let

/)
= — and u(V,t) = , 3.4.10
=7 (¥,t) = f(n) ( )
then f(n) should satisfy the boundary value problem
1
E"f’ + f{ff'Y=0for neR (3.4.11)
with
1 1
f(=o0) =1+ - and f(+o00) = e (3.4.12)
Here the primes denote differentiation with respect to 7. No explicit solution to this boundary
value problem is known. However, qualitatively the picture is quite complete: we know that
there exists a unique C'* solution, strictly decreasing on R, and much is known about the
asymptotic behavior of f(n) as n — %00, see Van Duijn & Peletier [10], Atkinson & Peletier [1].
We will solve problem (3.4.11), (3.4.12) numerically. For this purpose it is convenient to
transform the problem to one on a bounded domain, by considering a equation for the flux
with f as independent variable. This transformation and the resulting flux equation have been

studied in detail by Atkinson & Peletier [1], Van Duijn et.al [11] and Bouillet & Gomez [4].
Since f is strictly decreasing on R we can define the inverse

n=o(f), with o= f71 (3.4.13)
and the flux function
w(f) == —ff'(o(f)) for % <f<1+ % (3.4.14)

For w we find the boundary value problem

—w{fuw'}
w(f) >0
w(%) :w(1+§):0

_f
2 (3.4.15)

for 1/e < f < 1+1/e, where now primes denote differentiation with respect to f. The sign of w
implies that fw’ is decreasing. We use this observation to determine f = f(7) from the identity

n=2fw'(f), (3.4.16)

which also shows that w' changes sign at f(0) = fo € (1/¢,141/¢) and that lim ;. w'(f) = +o0
and limygy 4/, w'(f) = —oc.

We solve (3.4.15) numerically by discretizing the derivatives central in f on a equidistant
grid. The discretization of (3.4.15) leads to a set of nonlinear algebraic equations which we
solve iteratively using a standard multi-dimensional Newton method. Once accurate numerical
approximations of w(f) and thereby of w'(f) are obtained we compute o(f) directly using
(3.4.16) and f = f(n) by inverting the result. Figure 1 shows w(f) and f(n for £ = 0.2. The
singular nature of w’ at the boundary points is not visible in Figure 1. This is due to the
asymptotic behavior of w', which is proportional to v/In(1/w(f)) for f | 1/e and f 1 1 + 1/,
i.e. for w(f) ] 0.
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Figure 1. The functions w(f) and f(n) for e = 0.2
Introduction of the similarity variables (3.4.10) in (3.3.13),(3.3.9) and (3.3.12) yields

1
q—q(\llt)—1+2\/_ fsf ds for all —oo < ¥ < +o00,t >0, (3.4.17)
and
2(0,¢) \/_/f——d +t+\/_/ —ds for all —oo < ¥ < +oo,t>0. (3.4.18)

This completes the construction of the solution of the column problem with piecewise constant
initial data. The solution is given as parametric pairs (z(¥,t),u(¥,t)) and (2(,t),q(F,1)).
Figure 2 shows the results of u = u(z,t) and ¢ = g(z,) as function of z at fixed time levels, for
g =0.2.

When using v := (p — ps)/(ps — py) in the scaling (3.4.3), we arrive at the dimensionless

system

3 10
5™ )45, =0

gt 5 5% (3.4.19)
a " qaz a2 (82)

for (z,t) € RxR™. Note that the same result can be achieved by setting u = v+ 1/e in (3.2.11).
When passing to the limit € — 0 (3.4.19) reduces to

% _
& s o row . (3.4.20)
% "% B (8z>

for (z,t) € R x R*, implying upon integration ¢(z,t) = ¢s and

o(z,t) = ; (1 —erf (22:;)) (3.4.21)

A formal justification of this limit is given in Van Duijn et.al. [11]. We refer to (3.4.21) as the
Boussinesq solution of the column problem.

The dashed line in the u-plot in Figure 2 corresponds to the Boussinesq solution (3.4.21)
at t = 1. The difference between (u(z,1) and v(z,1) is small but noticeable, e.g. up to ~ 5%
in this example. The results in Figure 2 clearly demonstrate the effect of a high concentration
(or density) gradient on the fluid flow. At the short time scale of the problem, the deviation
from the background flow (g = 1) is significant. As time proceeds, diffusion flattens the density
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profile, which in turn causes decay of the specific discharge distribution towards its limiting
value ¢(z,00) = ¢s = 1.

At the short time scale of the problem ¢(oo, ) is negative which means that fluid enters the
column at z = +oo. After t = £, defined by

q(00o,t) changes sign and outflow will occur at z = +oo0.

1 T T T T 2.6 T T
0.8 N Boussinesq - - - - _| 29 |

>

T

0.6 1.8 0.001 =
U q
0.4 14 + 0.01 o
0.1 £=1
0.2 1 1 =
0 0.6 L . L

Figure 2. Scaled density and velocity profiles for column problem at ¢ = 0.001,0.01,0.1 and 1.

Remark:

In his study of the laminar boundary layer equations, Crocco [7] introduced a transformation, in
literature referred to as the Crocco transformation, which is related to the Von Mises transfor-
mation. Crocco takes the velocity in the z-direction and the z-coordinate as new independent
variables and the viscous stress and enthalpy as dependent variables. For the case of zero pres-
sure gradient, Crocco [8] proposed a solution procedure which resembles the solution procedure
given in this paper. He also derives an equation which is similar to the differential equation in
(3.4.15). For details we refer to Crocco’s original paper [8] or to the book by Curle [9]

3.4.2 The salt dome problem

The salt dome problem models the flow of fresh groundwater along the surface of a salt rock;
see Van Duijn et.al. [11] for a detailed description. A sketch of the flow geometry is given in
Figure 3.

Figure 3. Flow geometry of the salt dome problem.

The flow domain consists of the upper half space {z > 0} and is bounded below by an imper-
meable salt rock ( = the salt dome) which has the inclination 8 with the horizontal plane.
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Initially fresh water, p = py, is present in the flow domain which is maintained at a constant
flow, g, = qy, far above and parallel to the salt rock boundary. Further, the presence of the salt
rock ensures that p = p, along the boundary {z = 0}. Because py, ps and ¢y are constant and
because the y—coordinate ranges from —oo to 400, we look for solutions with the dependence

p=p(zt) and q=q(z1), (3.4.23)
satisfying
p(2,0) = py for z € R, (3.4.24)
p(0,t) = ps for teRT, (3.4.25)
and
qy(oo,t) = gy for te R*. (3.4.26)

Under assumption (3.4.23) we obtain a linear relation between the y-component of the specific
discharge and the fluid density, see e.g. De Josseling De Jong & Van Duijn [16]. It is found by
eliminating the pressure from Darcy’s law. Taking the curl yields

0 K 0 K
el = — g, - Zpg,} =0, 4.27
6Z{Qy upgy} 6y{qz P9 } (3.4.27)

which implies after integration

qy + fpg sinf = C, (3.4.28)
W

where C is a constant. Initial condition (3.4.24) implies
p(+00,t) = py for te RT, (3.4.29)

which we use, together with (3.4.26), to determine the constant C in (3.4.28). This yields in the
linear relation

K .
ay=qf — ;(p — py)g sinp. (3.4.30)

In this example we consider ID to be velocity dependent. However, we cannot treat the full dis-
persion matrix, but we have to make the assumption that the flow in the y—direction dominates
the induced flow (¢,): i.e. |¢.| << |gy|- Then the dispersion tensor only has non-trivial diagonal
elements, given by

D, = ar|gy| + nDpy
3.4.31
{ Dyy = aplgy| + nDpye ( )

Because p satisfies (3.4.23), only D,, appears in the model description. Note that D, combined
with (3.4.30) gives
K .
D, = arlq; - ;(p — pp)gsin | + nDye) := D(p). (3.4.32)

The object is now to solve the balance equations (3.2.10) (in one space dimension, the z—direction),
with the dispersivity given by (3.4.32) and subject to conditions (3.4.24),(3.4.25). As in the ex-
ample treated in Section 4.1, we need an additional boundary condition forg,, here along the
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salt rock boundary. Following Hassanizadeh & Leijnse [12] we require for the specific discharge
along the salt rock boundary

D(ps) 9p N
m e . 4.33
q:(0,1) ol — i} 0 (0,t) for te R (3.4.33)

Here w, denotes the salt mass fraction of saturated brine, i.e. p; = pre?“s. To put the equations
in dimensionless form we introduce the variables

q D - 1 -
q* _ g’ 2 = 17 t = ti, D¥ = —, = ps_ﬁ and u= -+ u’ (3434)
q ar nar arq Py € ps—pf
where ¢ = ﬁ(ps — py)g sinB. Dropping the asterisk notation, the dimensionless dispersivity is
expressed as

D(u) =X+ |U —ul, (3.4.35)
with
a=Pmol g =¥yl (3.4.36)
arg €
and the scaled specific discharge component in the y-direction is given by
gy =U—u. (3.4.37)

The scaling proposed here differs from the one used in Section 4.1. It allows us to consider
the limit of small molecular diffusion with respect to transversal dispersion, i.e. A = 0, a
mathematically interesting limit because it leads to degenerate diffusion at points where u = U.
As a result we obtain the initial-boundary value problem

ou 0
Fri a(qzu) =0
u ou 0 4T ou (3.4.38)
S rag=of{o+-u) 5}
for (z,t) € Rt x R*, subject to
u(0,t) =1+ é for t € RT,
q:(0,t) = —eK(e){\ + |U — (0, t)l}g—:(o, t) for t € R, (3.4.39)
1
u(z,0) = - for z € R,
where, through p, and wg, K is a function of € given by
K(e) = : for 0 <e<e’—1. (3.4.40)

(1+¢)(y—log(l+¢))

The complete solution of the salt dome problem involves gy, ¢, and u. The pair (g.,u) solves
(3.4.38),(3.4.39), while g, follows directly from (3.4.37), once u is known. To solve (3.4.38),(3.4.39)
we apply the Von Mises transformation and obtain in the (¥, ¢)-plane the problem

ou . 0 .. 0u )
o “a_xpl{“ U - u!)u—éﬁ} for {(T,t) : p(t) < ¥ < +00,t > 0}
a(P,0) = — for U > ¢(0) (3.4.41)

™

1
u(p(t),t) =1+ - for t >0
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Here the function ¢(t) denotes a free boundary in the (¥, ¢)-plane for which we need an additional
condition. This condition is obtained by applying the Von Mises transformation to (3.4.39). It
takes the from of a Stefan condition:

do (1+¢)? 1, 0u

— =—-K A+ |U—=1-=}=—=(p(t),t) for te R". 3.4.42

5 (00 . @A+ IU 1=~} 55 ((1),1) for te€ ( )
This expression relates the salt mass flux at the salt rock boundary to the speed of the free
boundary in the (¥, t)-plane. It is interesting to observe that the Von Mises transformation in
the salt dome problem reduces to a nonlinear Stefan problem.

The free boundary problem (3.4.41), (3.4.42) too allows similarity of the form (3.4.10), with

the free boundary given by

a= »@ for t e R, (3.4.43)

Vit

The similarity solution f = f(n), n > a, and the free boundary n = a are found from the
transformed ordinary differential equation problem:

anf' + FUA+|U = fI}f ) =0 for 1> a,

fla) =14 —, f(4+00) = - (3.4.44)
€ €

and

a

T 22K(e){A +|U — f(a)[}f%(a)

f'(a) (3.4.45)

One can show that a solution of (3.4.44), (3.4.45) is strictly decreasing with respect to 1. Con-
sequently, from (3.4.45), we find a < 0.

As in Section 4.1 we solve the similarity problem by considering the corresponding flux
equation. Setting, again,

w=o(f) and w=w(f)=-=2{X+ U~ fI}ff'(o(f)), é <f<1l+ é, (3.4.46)

we obtain for w the boundary value problem

w{fw'} = =2 +|U - f|}f in fe(1/e,1+1/e), (3.4.47)

with
14—« 141y = e 3.4.48
5 E) (14+e)K(e)’ w( E) 1+e¢ (34.48)

and
1 =0 3.4.49

To solve this transformed w-problem we apply a shooting procedure: First, for a given a < 0,
we solve the initial value problem (3.4.47), (3.4.48) for f € (1/e,1+1/¢) and then adjust a such
that (3.4.49) is satisfied.

For two reasons it is more convenient to solve the w-problem in stead of the f-problem
directly: (i) the domain is fixed and finite and (ii) the formulation allows to pass to the limit
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A — 0 without (numerical) difficulty. To solve the initial value problem (3.4.47), (3.4.48) we
apply a Runge-Kutta method with w and w' as primary unknowns.

Once the solution f(n) is obtained we return to the original variables in the (z,t)-plane,
using expressions (3.3.18), (3.3.17), (3.3.19) combined with the boundary condition (3.4.39) on
.. Application of the Von Mises transformation in (3.4.39) yields

:(0,t) = qo(t) = —eK (e){A + U — a(e(?), t)l}ﬂ(w(t)yt)g—g(w(t), t). (3.4.50)

Introduction of the similarity variables in (3.4.50) and using (3.4.45) in the result gives

a

qo = T2 (a) (3.4.51)

After rewriting (3.3.17) in terms of the similarity variables and substitution of (3.4.51), we obtain

n o1 to1 a anf!
z:x/i/—ds+/ —{———— —d}dt, 3.4.52
0 760 Pl 2/iUTF@ o 2 (3.452)
implying
P 2 /"—1 ds for n>a, t € R* (3.4.53)
= — = s 1or n a, . aicks
\/Z a f(s)
051) T T T 6 T T
0.8 - 5 B 5.8 Ts .
0.7 5 e o N\ B
0.6 |- . 5.6 - -
w(f) 05 F f(n)
04 F c - 54 F .
0.3 | -
0.2 F - 52 b A .
0.1 .
0 Il 1 | 1 5 1
5 52 54 56 58 6 0 5 4,10 15 20
f =i

Figure 4. The solutions w(f) and f(n) for different A\ and U values and ¢ = 0.2, see Table 1.
In a similar fashion, i.e. after combining (3.3.19), (3.4.10) and (3.4.51), we obtain

—L{—LJF "S—f/d}f n>a, teRY (3.4.54)
ETAUT@ e T |

Note that equation (3.4.53) implies that 7 (= W/v/t) only depends on ¢, which we write as
n = ¢(£). Consequently

u(z,t) = u(¥(z,1),t) = f(n) = f($(£)) :=r(£), (3.4.55)
and from (3.4.54)
a ®(&) gf!
q.(z,t) = ZL\/E {-f_(a_) +/a sfiQ ds} = %s(f) (3.4.56)

The identities (3.4.55) and (3.4.56) show the relation between solutions obtained with the Von
Mises transformation and solutions that result from direct similarity transformation of the one-
dimensional balance equations. Properties of the functions r(¢) and s(§) have been extensively
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studied in Van Duijn et.al. [L1]. Parameter values for A, U and computed values of a are given
in Table 1. The labels A-D refer to the corresponding curves in Figures 4 and 5. Case A is
computed with D = X\ = 1.0, i.e. omiting the density dependent dispersivity term. The other
three degenerate cases B-D are computed with A = 0.

A U a Curve label
1.0| - |-1.866 A
0.0 | 5.0 | -1.494 B
0.0 | 5.5 | -0.952 C
0.0 | 6.0 | -1.064 D

Table 1. Parameters and computed a-values.

Parameter Value Unit
K 1.0 1012 m?
W 1.0 1073 | kg/ms
Ps 1200 | kg/m?
Py 1000 | kg/m?
€ 0.2 - (3.4.57)
6} /4 450
g 10.0 m/s?
n 0.4 -
Dol 151072 | m?/s
ar 0.5 m

Table 2. Parameter values.

In most practical situations, A is small compared to the magnitude of the other dimensionless
parameters. Table 2 lists a set of feasible geohydrological parameters in the vicinity of a salt
dome, mainly adopted from Herbert et.al. [14]. Using the numbers from Table 1 we obtain
G =1.41410"%m/s ~ 45 m/y and thereby A = 8.485 10~* ~ 1073(<< 1!).

Figure 4 shows numerical approximations of the solutions w(f) and f(n) for the parameter
values listed in Table 1. Figure 5 shows the corresponding similarity solution r(z/+/t) and the
scaled specific discharge, plotted as s(z/v/t) = q,v/t. We omit the plots of u(z,t) and g(z,t) for
these cases.

6 T T T T T T
5.8 b \e . - 1
56 -
r(§) gy 02
54 —
5.2 F A - 0.06
5 Il 1
0 1 2 23 4 b 0 1 2 Z3 4 5
=1z t=%

Figure 5. The similarity solutions r(z/v/?) and s(z/v/t) for different A and U values and
e = 0.2, see Table 1.
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In case of the non-degenerate example (A), both r and s are smooth, continuously differentiable
functions. The degeneracy, i.e. A = 0 and v — U in (3.4.35), causes singular behavior of
the derivative ' (and thereby of u'). In case of the examples D and C, r’ becomes infinite if
r(€) — U, where respectively U = 6.0 and U = 5.5. The corresponding scaled discharges s
converge towards their limiting value as §¢ — co. The degenerate behavior of case B is different:
at some point, say & = £, the function r attains the value of the (fresh water) boundary/initial
condition 1/e = 5.0(= U) and remains constant for all £ > . Moreover, at £ = o r’ exhibits a
discontinuity, while ' = 0 for & > &. This point corresponds to an interface in the (2, t)—plane
which moves with a finite speed of propagation. At the left hand side of the interface we have
u > 1/e, u' < 0, and on the right hand side u = 1/¢, v/ = 0. The scaled discharge s (curve B)
has a constant value for ¢ > &). The discharges depicted in Figure 5 only result from the volume
changes of the fluid due to the presense of (high) density gradients. Moreover, the induced flow
is perpendicular to the main (or back ground) flow ¢;.

3.4.3 Mixing of parallel fluid layers

Minor changes to the boundary and initial conditions in the salt dome problem lead to the
problem of mixing of parallel flowing layers of fresh and salt water. De Josselin De Jong & Van
Duijn [16] studied this problem for the incompressible case, i.e. div(q) = 0 and Van Duijn et.al.
[11] extended the analyses to the compressible case, when volume changes in the fluid occur. We
consider the same flow geometry as is the salt dome problem, but replace the salt rock below the
plane {z = 0} by porous medium initially saturated with brine with density p = p;. Equations
(3.4.23)-(3.4.37) hold and the boundary conditions are

1 1
u(—oo,t) =1+ = u(+o00,t) = - and g,(—o0,t) =0 (3.4.58)
for t € R", while the initial conditions are given by
_J1+l for 2<0
u(z,0) = { % bis 50 (3.4.59)

The choice of of the boundary condition g,(—o0,t) = 0 is arbitrary. When solving (3.2.11)
subject to (3.4.58),(3.4.59) using Von Mises and similarity transformations we obtain (skipping
all details)

z ("1 0 £
VRl (3.4.60)
and
1o mf ,
=57 o 2 dg, (3.4.61)

where f is the solution of the boundary value problem
1
onf + FA+IU = ) =0 for neR
1
f(-o00) =1+- (3.4.62)
€
1
f+o0) = =
€

Notice again the dependence of 17 on z/v/t in this example, which is due to the choice of the
boundary condition ¢,(—o0,t) = 0. This implies that the problem also allows a transformation
of type (3.5.1).
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3.5 Discussion and conclusions

The Von Mises transformation provides a reduction of the governing balance equations to a single
second-order nonlinear diffusion equation, which has been studied extensively in the mathematics
literature. Much is known about the large time behavior of this equation for fairly general
initial functions. In particular, sharp estimates were obtained for the rate at which the solutions
converge to the self-similar profile, see e.g. Van Duijn & Peletier [10]. The examples given in
Section 4 are special because they allow similarity transformation. The result is a second-order
ordinary differential equation which makes the mathematical analysis more tractable.

When discussing the salt dome problem in Section 4, we observed that the similarity variable
7 (= ¥//t) only depends on ¢ (= z/v/t) (see (3.4.2)), which implies

U(z,t) = Vt $(€). (3.5.1)

This is a well known transformation in the theory of boundary layers, usually derived through
scaling arguments, see e.g. Chorin & Marsden [5]. Considering (3.3.1) and introducing (3.5.1)
directly, we obtain

d -
u= d_? =¢' and ¢, = 2%/2 (£¢¢, ¢) (3.5.2)

After substitution of (3.5.2) in (3.2.11) and using the boundary conditions, we obtain a third-
order initial value problem:

%"3;,“5 AU = #}") =0 for €50
$(0) = S5
#O) =1+ .

] _ 1
¢ = 20+ OKE A+ U -g0)]} *

which reads: find a such that the boundary condition ¢'(+00) = 1/e is satisfied.
A similar transformation is possible in the column problem. From expression (3.4.18) we
deduce that the similarity variable only depends on (z — t)/+/%, implying

U(z,t) = VEO(C) with ¢ = (7;) (3.5.4)

The function 6 satisfies the third order equation
200" + 60" = 0. (3.5.5)

However, the combination of Von Mises and similarity transformations as proposed in Sections 3
and 4 leads to a second-order ordinary differential equation, which is preferable to the third-order
equation that results from the direct transformation (3.5.1).

Van Duijn et. al. [11] studied the one-dimensional balance equations by looking for self-
similar solutions of the form

p(z,t) = u(n) and g.(z,t) = —=v(n), (3.5.6)

&»—A
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where 7 = z/y/t. This transformation also yields a third-order ordinary differential equation.
The latter can be reduced to a second-order equation of the form

1
—pp" =3¢, p>0, (3.5.7)

where ¢ = log(1 + ). Note that, if we divide equation (3.4.11) by f, introduce = = log(f) and
define a flux function according to p(z) := —e?*dz/dn(o(z)), where o(z) = 27!, we obtain an
equation which is identical to (3.5.7), but now with ¢ = 1.

Due to the piecewise constant initial density functions, the examples discussed in Section
4 may be regarded as upper limits of the compressibility effect for a given value of e. The
induced specific discharge ¢, is infinite at ¢ = 0 and decays as 1/ V't for t > 0 (see expressions
(3.4.17), (3.4.54) and (3.4.61)). However, in most practical situations, the initial density data
will be smooth, which implies that the enhanced discharge remains finite for all £ > 0. Hence, in
practice, the difference between Boussinesq solutions (div(q) = 0) and solutions of the balance
equations for fluid and salt will be even smaller than predicted by the corresponding similarity
solutions. The compressibility effect is noticeable only at the short time scale of the problems
studied in Section 4 and has little impact on the density distributions. The fact that flow is
induced in a direction perpendicular to the main groundwater flow direction might be of some
practical importance, in particular in connection with transport of radionuclides, leaking from
a salt dome repository.

The problem of brine transport is of utmost interest in the safety and risk assessment stud-
ies of high-level radioactive waste disposal in subsurface salt formations. With this practical
application in mind, many (dedicated) numerical codes have been developed, see e.g. Pinder &
Cooper [24], Voss & Souza [30], Kréhn & Zielke [18], Oldenburg & Pruess [22] and Kolditz et.al.
[17]. The intricate character of the problem, i.e. nonlinear coupling between the velocity field
and the fluid density distribution due to both gravity (free convection) and compressibility ef-
fects, implies that the availability of exact or semi-exact solutions of test problems is rather poor.
In fact, only Henry’s [13] semi-explicit solution of dispersive salt water intrusion in a confined
aquifer, initially filled with fresh water, is frequently used as two-dimensional test problem for
code verification. In order to test numerical simulators, a particular series of benchmark prob-
lems has been proposed by the international HYDROCOIN [15] project. These benchmarks are
used for cross-verification of numerical models. Whereas the compressibility effect concerned,
our semi-explicit results provide both accurate quantitative and qualitative information about
solutions and therefor may contribute to numerical code verification.
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Chapter 4

Brine transport: high concentration
dispersion

4.1 Introduction

In recent years there has been a growing interest in the modelling of density-dependent flow
and transport problems. Of particular interest have been the cases where high concentration
differences in the system occur, e.g., in relation with the disposal of hazardous waste in salt
formations. Some of the studies have been directed at developing numerical models capable
of handling strong nonlinearities in the equations (see e.g. Leijnse [15], Kolditz et al. [14];
Oldenburg and Pruess [19]; for a list of such simulators see Kolditz et al. [14]).

Another group of studies have concentrated on the understanding of the physical processes
and the validity of the basic equations used for the modelling of flow and transport. Examples
are the works of Schincariol et. al. [24], Welty and Gelhar [27] and Wheatcraft [28] , Kempers
[12], [13] and Hassanizadeh and Leijnse [6], [5].

Commonly, salt is considered to be nonadsorbing so that the basic equations governing high
concentration (HC) transport in a rigid porous medium read:

n@—kdiv (pa) =0 (4.1.1)
ot
and
Opw .
TLW-FdIV (pwq+J) =0, (4.1.2)

where n is porosity, p is fluid density, q is the specific discharge vector (or Darcy velocity), J
is the dispersive mass flux vector and w is the salt mass fraction, which is defined as the salt
concentration divided by the fluid density. These are equations of mass balance and need to
be supplemented with equations of momentum balance. Commonly, the classical Darcy’s law
and a linear Fickian dispersion equation are employed for this purpose. Hassanizadeh (8], [9]
suggested that these equations may not be valid when high concentration gradients exist. This
was later supported by one-dimensional displacement experiments (Hassanizadeh et al. [7]) . It
was found that the dispersivity does not seem to be a property of the medium but may vary
from experiment to experiment; it had to be decreased as the difference in concentration of
the resident and displacing fluids increased. Hassanizadeh [7] showed that this effect could not
be modelled by a dependence of dispersivity on salt concentration. Instead, he proposed the
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following nonlinear extension of the Fickian dispersion equation
J(BJ +1) = —Dp grad w, (4.1.3)
where 3 is the HC-coefficient and D is the well-know dispersion tensor given by:
D = (nDp + arq)l + (ar — or)qa/q, (4.1.4)

Here, D,, denotes the effective molecular diffusion coefficient (including tortuosity effects), o,
and ar are the longitudinal and transversal dispersion lengths, , ¢ is the magnitude of the
specific discharge vector and I is the unit tensor. Hassanizadeh and Leijnse [5] have shown
that the new relationship gives very good fits to their measured breakthrough curves. Their
experiments, however, were limited in number and scope. A more extensive experimental study
was later carried out by Moser [17] which included the effects of varying the flow velocity.
This paper reports on two different but related studies. First, the one-dimensional equations
of flow and transport are analyzed mathematically. An exact and explicit solution is obtained
assuming a constant flow rate in the column and the dominance of the nonlinear dispersion
term in (4.1.3). A semi-explicit solution, allowing local discharge variations due to high density
differences, is given. Moreover, a numerical solution of the full set of equations is provided. The
three solutions are compared and conclusions are drawn with regard to the relative significance of
various terms, under different concentration gradients. Second, the experimental data of Moser
[17] are analyzed and the validity of the nonlinear dispersion equation (4.1.3) is established. It
is found that the HC-coefficient varies inversely with the flow velocity q.

4.2 Governing equations in one space dimension

Both experimetal and analytical studies reported here deal with HC solute transport in a one-
dimensional domain. Therefore the governing equations presented in the previous section reduce
to

dp 0
n2 4 2 (=0 (4.2.1)

where n denotes the porosity of the porous medium, p the fluid mass density, and ¢ = ¢(z,1)
the specific discharge in the z-direction, and

Opw
n—t -
at
where w is the salt mass fraction and J = J(z,t) the dispersive mass flux. Following Has-
sanizadeh & Leijnse [5], J is assumed to satisfy the nonlinear dispersion equation
0
J(B|J| +1) = —DpZ2 (4.2.3)

)
z

7]
+ a{pwq +J}=0 (4.2.2)

where (3 is a material coefficient which may depend on the flow velocity and D is the well-known
one-dimensional dispersion coefficient, given by

D =nDy, + arg. (4.2.4)

Neglecting pressure effects and assuming isothermal conditions, the relation between density p
and salt mass fraction w is given by an equation of state

p=pre”. (4.2.5)
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The constant v in (4.2.5) is a curve fitting constant given by v = 0.6923 ~ In(2) and py is the
(reference) density of fresh water. After combining (4.2.1) and (4.2.2) (see e.g. Van Duijn et.al,
1993) and substitution of (4.2.5) in the result, we obtain a set of three equations in terms of p,

q and J:

op 0
il i = 4.2
nl = (pg) =0, (4.26)
dp ap 7]
=L =L —J = 4.2.
nat+qaz+7azJ 0, (4.2.7)
and
10
JBII| +1) = —-D=22, (4.2.8)
v 0z

Next we introduce the following set of dimensionless variables:

* q0 * q0 * q * 1 P — pf
==, tri=t——, ¢":=—, J':=J— and p:= . 4.2.9
Dy nDg 9 pfdo P o ps ( )

The relative density difference is defined as

.. (4.2.10)
Ps

Moreover, we define a dimensionless parameter [; such that

65 = Bgopy- (4.2.11)
For convenience we introduce a parameter 6, defined as the ratio
D
6=—. 4.2.12
o (42.12)

Here, Dy and ¢y denote reference parameters, defined by the conditions of the experiments.
Substitution of (4.2.9) and (4.2.10) in equations (4.2.6)-(4.2.8) yields (dropping the asterisks
notation for convenience)

dp 0 10q
=+ o-(a0) + 5 =0, (4.2.13)
ap dp aJ
a+q—a—£+7$ =0, (4.2.14)
and
00
J{Bse| T+ 1) = —==L, (4.2.15)
v 0z

We assume that z is in the direction of decreasing density, such that dp/0z < 0. This implies
J >0 for all (z,t) € R x R*. Under this assumption, (4.2.15) can be solved in terms of dp/0z,
yielding

1 1 0 0p

J=———4+—|1—=4Fpe—5 >0 4.2.1
260 20pe ﬂ087 0z ( 6)
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An implication of taking the full fluid mass balance (4.1.1) into account is that local density
gradients cause enhanced flow in the column. During all our experiments, see Section 8, the
inflow rate was kept constant. The scaled dispersion parameters [y and 6 are velocity dependent.
However, we disregard variations of these parameters due to the enhanced flow by assuming that
By and 6 (and thereby the unscaled § and D) only depend on the mean or background flow in
the column. Under this assumption, substitution of (4.2.16) in (4.2.14) gives

ap ap vy 0 00p
5t 95, T 2me s\ L~ g, =0 (4.2.17)

Equations (4.2.13) and (4.2.17) are in ‘standard’ form. The analysis will be confined to this set
of equations, subject to initial/boundary conditions imposed by the experiments.

As in Hassanizadeh & Leijnse [5], we introduce the notion of a (scaled) apparent dispersion
coefficient 6,,, defined by

dp
J = Oz (4.2.18)
Substitution of (4.2.18) in (4.2.16) and solving for 6,,, yields
0 2
. S  S— (4.2.19)

6 00p
1+ /1 —4Bpel 32

Regardless of the choise of the reference dispersion coefficient Dy, the ratio 6,,,/6 is equal to the
ratio @r.pp./ar, as defined in [5]. Notice that the apparent dispersion coefficient decreases when
the gradient —dp/dz increases for any y,e > 0. In the limit dp/Jdz — 0, which is in general
the case for large times or when ¢ — 0, we obtain the well known convection-diffusion equation

ap dp 0%p -
at 15, 022 & aa26)

4.3 Boundary and initial conditions

In order to keep the mathematical analysis as simple as possible we assume that the experimental
column of finite length may be replaced by an infinitely long column. Effects due to the inlet
boundary of a finite column usually vanish rapidly as time proceeds. This was explicitly shown
by Ogata & Banks [18] for tracer transport in finite and semi-finite columns. The experimental
column is initially filled with fresh water (ps). At ¢t = 0, brine (p,) starts entering the column
with uniform specific discharge ¢g;. The origin z = 0 coincides with the position of the inlet filter
of the column. This implies the following scaled initial condition for the infinite column:

1 for 2<0
/1(270)=po(2)={ 0 for z>0 (4.3.1)

for z € R, while the boundary condition for the scaled specific discharge is given by
q(—o0,t) =1 for t > 0. (4.3.2)
Subtraction of (4.2.14) and (4.2.13), and using (4.2.16), yields

o 0 2
%, W O, & Op (4.3.3)

= . = a2
0z ep+10z ep+1 /1,4506%%(%
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which indicates that (4.3.1) and (4.3.2) are sufficient conditions to obtain a unique solution.
Moreover, this expression implies that density variations (e > 0) affect the compressibility of
the fluid, which in turn causes enhanced fluid flow. In the limit € — 0 the right hand side of
(4.3.3) vanishes, implying ¢ = 1 in the whole flow domain. The limit 8y — 0, i.e. constant
diffusivity /dispersivity in Fick’s law, has been studied in detail by Van Duijn et. al. [2], Van
Duijn et. al. [3] and Van Duijn & Schotting [4], for various flow geometries. They showed that
the compressibility effect due to local density variations is in general small, and even negligible

in some cases.

4.4 The explicit solution

As a first step in our analysis, we make two approximations:

e The fluid mass balance equation (4.2.13) is disregarded by assuming a constant flow rate
q(z,t) =1 for all (z,#) € R x R" in the column. The implications of taking the full fluid
mass balance equation, i.e. (4.2.13), into account are analyzed in the next section.

e In the nonlinear mass flux equation (4.2.16), the nonlinear term is assumed to dominate
such that

0 op
—4 - 4.
ﬁos’ﬂr)z S 1, (4.4.1)

This assumption is justified when there exists a sharp front with a large € (which has been
the case in experiments reported here).

As a result of these approximations, (4.2.17) reduces to

9 , /e_vg{ﬁ@}%,
3t+3z+ Boe 0z 0z =& FE)

After differentiating (4.4.2) with respect to z and introduction of the variable
op

- 4.4.
2, (443)
we obtain
ow  Ow Oy 9% 1
b e QR ol Il 4.
ot Tz \Beo" EL
subject to the initial condition
w(z,0) = wy(z) = d(z) for z € R, (4.4.5)

where 6(z) denotes the Dirac delta function. The solution satisfies the ‘mass’ conservation

property
+o0 +oo
/ w(z,t) dz = / wo(z) dz =1 for £ > 0. (4.4.6)
= D —00

The latter follows immediately from (4.3.1). Because ¢ = 1 = constant, it is convenient to
introduce a moving coordinate defined by

s=2z—t, (4.4.7)
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and the transformation
w(z,t) = v(s(z,1),1), (4.4.8)
where v(s,t) is the solution of the initial value problem

2
% = %%v% for (s,t) e R x R, (4.4.9)
0 &

subject to

v(s,0) = wvp(s) = d(s) for ¢t > 0. (4.4.10)
Next we introduce a similarity variable of the form

v(s,t) = t“f(n) with = st~ (4.4.11)

Substitution of (4.4.11) in the conservation integral (4.4.6) yields
~+o00
tﬂ+¢/ Fn)dn =1 for £> D, (4.4.12)
implying
+00
a+¢ =0 and / f(n)dn=1. (4.4.13)
—00

After substitution of (4.4.11) in (4.4.9), and using (4.4.13) in the result, we obtain

2 2
o=~ and ¢ = +§. (4.4.14)

Thus, the function f has to satisfy the boundary value problem

2 / 0 pivm _
z(f) + @(fz) =0 for n €R, (4.4.15)

where the primes denote differentiation with respect to 7, subject to

F(£o00) = 0. (4.4.16)
Integration of (4.4.15) yields
2 Oy .1,
- ——(f 3 C; =0. 4.4.17
a0l +[ g+ o (14.17)

Then we use conditions (4.4.16) to obtain C; = 0. Integrating (4.4.17) once more gives

1
2\ 3 L
- e () (2w

(1w + o) z
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where the value of the integration constant C is determined using the conservation integral in
(4.4.13). Back transformation to the original scaled density variable yields (skipping all details)
yields

o) == [ 1) de + G, (4.4.19)

where C3 denotes an integration constant. Initial condition (4.3.1) implies: p(—oo,t) = 1 and
p(+00,t) = 0, which is used to obtain C3. The final result, in the original scaled variables, is

given by
arctan (\/g(z - t)t_g) (5— e
g l) =g 1 - , (4.4.20
Pt = CvBC C(B(z— )21 + C) )

for (z,t) € R x R", where

RN AN AL
B=3\ 10y adC—Cz—<4> (ﬂ()E) . (4.4.21)

A comparison of (4.4.20) with experimental data will be given in Section 9.

4.5 A semi-explicit solution

In this analysis we drop the the constant flow rate assumption. Thus we solve (4.2.13) and
(4.2.17), subject to the initial/boundary conditions (4.3.1) and (4.3.2), for ¢ > 0 and 5y > 0.
Assumption (4.4.1) is maintained. The idea is to apply a variant of the Von Mises transformation
(see e.g. Von Mises & Friedrichs [16] and Van Duijn & Schotting [4]) in order to reduce the
system (4.2.13), (4.2.17) to a single nonlinear diffusion equation. First, we introduce a new
scaled density variable

1
u:p+g for € > 0. (4.5.1)

Substitution of (4.5.1) in equations (4.2.13),(4.2.17) yields

ou 0
E + 5;((]’11,) =0 (4'5'2)
and
ou ou By 0 du)? .
Hence, the initial/boundary conditions in the new variable are given by
1+ for 2<0
u(z,0) = ug(z) = (4.5.4)

é for z>0

and

g(—o0,t) = 1. (4.5.5)
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Considering the fluid balance equation (4.5.2) as the divergence operator in the (¢, z)-plane,
acting on a vector (u,qu) we introduce a modified stream function ¥ = ¥(z,t), which satisfies

ov ov
— =——. 4.5.
u= and qu ot (4.5.6)
The Von Mises variables are
t=t and ¥ = / u(¢, t) d¢, (4.5.7)
<(t)

where () is a yet unknown function of time, which will be determined from the boundary
condition on g, i.e. 4.5.5, such that ¢(0) = 0. The Von Mises transformation is

u(z,t) = 4(¥(z,t),t) = a(¥,t). (4.5.8)

Under this transformation, the system of equations (4.2.13) and (4.2.17) reduces to single non-

linear diffusion equation
1
ou 0y . 0 0u )2
— — == —tu==—, =0. 459
6t+\/ﬁoeu8\1/{ “a\p} 0 (4:5.9)

Multiplication of (4.5.9) by @ and introduction of the new variable ¥ = 42 yields
1
v 20y , 0 09\ 2
— —d—=q—==7r =0 4.5.10
at *\ e axp{ aq:} ’ (4510

(1+1)2 for ¥<0
I(T,0) = 9o(T) = (4.5.11)
(12 for ¥>0

subject to

Next, we look for a similarity solution of the form
(¥, t) = g(n) where n = Wts. (4.5.12)
The function g(n) is the solution of the boundary value problem

2 20
—519'+ ) go({—g'}3) =0 for neR
Boe (4.5.13)

g(—o0) = (1+1)? and g(+00) = (1)?

Because it is not possible to obtain an exact solution of (4.5.13) we have to resort to a numerical
method. Since g is strictly decreasing we may define the inverse of g and a flux variable according
to

n=mn(g) and h(g) = {-g'}?, (4.5.14)

3 (20 dh
=S Lg— 45.15
o 2 ﬁoegdg7 ( )

implying
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and the boundary value problem

d ( dh 2 [ Poe 1 1
w2 (%) = 31/5 for 9€[GP 0+
dg " dg 3\ 26~ € € (4.5.16)

h((1+1)%) =0 and h((})?) =0.

We solve this boundary value problem by discretizing the equation on a equidistant grid and
solve the resulting set of nonlinear algebraic equations iteratively by means of a standard multi-
dimensional Newton method. This yields numerical approximations of h and thereby dh/dg. The
latter is used in (4.5.15) to compute g(n). Once an accurate approximation of the function g(n)
has been obtained we return to the original variables in the (z,t)-plane as follows. Integration
of the first equation in (4.5.6) yields

v(zt) 1
z= / ——— ds +¢(t) for (z,t) e R xR, (4.5.17)
0 i(s,1)

Differentiating (4.5.17) with respect to ¢ and using (4.5.6) and (4.5.8) in the result yields

, W(z,t) Qg
g=d(t) - / —(&t) d. (4.5.18)
0 U
Next we use the boundary condition (4.5.5) to determine the function ¢(¢), yielding
t 0 '&t
o) = / {1 = / 2 (e) d{} dr for t > 0. (4.5.19)
0 —oo U

Finally, after substitution of (4.5.19) in (4.5.17) and expressing 4(¥, t) in terms of the similarity
solution g(n) we obtain

n 1 0 4
4= t§/ _do+t+ ied / %9 da, (4.5.20)
0 g(0)? 2 o g3
(4.5.21)
1 [ og
g=14 —1/ %9 4o, (4.5.22)
3t3 J-oo g2
and
. 1
u(z,t) = a(V,t) = 1/g(n) = p(z,t) + o (4.5.23)

Van Duijn & Schotting [4] showed that in the linear Fickian case, i.e. D = constant (fy = 0),
the specific discharge distribution in an infinitely long porous column decays with ¢~ 2, while
here the specific discharge exhibits ¢t~ 3-decay.

4.6 A numerical solution of the full set of equations

Finally, for reference purposes, assumption (4.4.1) is also relaxed and the full set of equations
(4.2.13)-(4.2.14), subject to (4.3.1) and (4.3.2), is solved numerically. This is achieved by solving
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the reduced equations (4.2.17) and (4.3.3) with standard schemes. The Heaviside initial condi-
tion for u is approximated by a very steep error function on a fine equidistant grid. Equation
(4.3.3) is discretized explicitly in space, providing a numerical approximation of the specific
discharge distribution at that time level. A standard Crank-Nicholson scheme is used to dis-
cretize (4.2.17), yielding a numerical approximation of the density distribution at the new time
level. The corresponding set of nonlinear algebraic equations is iteratively solved using a multi-
dimensional Newton method. Once the density distribution at the new time level is known, we
return to the discrete version of (4.3.3) to compute the specific discharge distribution at that
time level, and so on.

4.7 Comparison of solutions

The explicit solution (4.4.20) is obtained under two simplifying assumptions , i.e. the explicit
approximation (implying constant ¢ in the column) and the assumption that —4ﬁge$g§ b
The latter is the only simplifying assumption needed to obtain the semi-explicit (Von Mises) so-
lution , which incorporates the compressibility effect due to local density variations in the fluid.
The numerical solution is based on the full set of equations, i.e. (4.2.13)-(4.2.15), subject to
(4.3.1) and (4.3.2). The compressibility effect causes local deviations from this constant (back-
ground) velocity at points where |9p/dz| > 0, see e.g. (4.3.3) or expression (4.5.22), implying
additional net displacement of the density front. The parameter controlling the magnitude of
this effect is the relative density difference. Note that in view of (4.3.3), given a scaled density
distribution u(z,t), we may conclude 8q/9dz|g,=0 > 0q/0z|g,>0. Hence, the linear Fickian case,
which corresponds to 3y = 0, gives an upper bound for the magnitude of the enhanced flow.

At the short time scale we expect only little difference between the approximate solutions
and the numerical solution. Figure 1 shows scaled density distributions at dimensionless times
t = 0,0.25,0.5,0.75 and 1.0. The parameters used to produce the graphs are: ¢ = 0.2, qo =
3.209 - 107° m/s, ps = 1000 kg/m3, 0 = 1, By = 1.0 - 10* m?/kg/s, hence By = Bqops =~ 320.
The corresponding scaled specific discharge distributions are given in Figure 2. In case of the
semi-explicit solution, the decay of the maximum of the specific discharge distribution is given
by

Goax = 1+ 173G, (4.7.24)
and

3
Zmax = b+ Et%G’ (4.7.25)

where G = %ffm ag’/g% do =~ 5.7736 - 102 for this parameter set. The additional displacement
of the density front caused by the compressibility effect, is small but noticeable on the scale
of Figure 1. The semi-explicit solution moves slightly faster than the corresponding numerical
solution, which is due to the fact that assumption (4.4.1) leads to a higher apparent dispersivity
in that case.

Figure 3 shows scaled density profiles for large times, i.e. ¢ = 0,250,500, 750 and 1000. At
this time scale the semi-explicit and explicit solutions are indistinguishable. As to be expected
the approximate solutions become progressively inaccurate in regions where du/0z becomes
small, i.e. the top and toe regions of the density profiles. The compressibility effect is no longer
noticeable. The corresponding specific discharge distributions are given in Figure 4. At these
times the enhanced flow is negligible, i.e less than 1 % of the scaled background flow.
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Figure 1. Comparison of solutions: density profiles at dimensionless times t=0, 0.25, 0.75 and 1.0 for
e =0.2,0=1.0 and [ = 320.
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Figure 2. Comparison of solutions: specific discharge profiles at dimensionless times t=0, 0.25, 0.75 and
1.0 for e = 0.2, # = 1.0 and By = 320.
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Figure 3. Comparison of solutions: density profiles at dimensionless times t=0, 250, 750 and 1000 for
€ =0.2,6=1.0 and By = 320.
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Figure 4. Comparison of solutions: specific discharge profiles at dimensionless times t=0, 250, 750 and
1000 for € = 0.2, 8 = 1.0 and [y = 320.

4.8 Laboratory experiments

A series of well-controlled experiments have been performed in order to address a number of open
questions related to brine transport. The experiments were aimed at determining the effects
of large salt concentration differences as well as the absolute salt concentration on dispersion
and to investigate the combined effect of flow velocity and large concentration differences. To
this end, four series of displacement experiments were carried out (sse Table 1 through 4 for an
overview):

e Fourteen tracer experiments where a low salt concentration solution was displaced by fluid
with a sightly higher salt concentration (see Table 1). These are of tracer or LC-type.
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e Seven HC experiments were performed, where a low-concentration solution was displaced
by a fluid with a high salt concentration (see Table 3). The concentration differences
ranged from 2.8 kg/m? to 44.6 kg/m3. The inflow rate for this series of experiments was
kept to a constant value of 5.4 - 1074 m/s.

e Nine HC experiments were performed for which the concentration difference between the
resident and displacing fluids had a constant value of 63.4 kg/m?, but the flow rate was
varied from 1.0-107* m/s to 2.3 - 1073 m/s (see Table 2).

e Four experiments where carried out wherein a high concentration solution ( 90 kg/ m?)
was displaced with a yet higher concentration solution (see Table 4).

Here, a brief description of the experimental setup and methods is given. For more details, the
interested reader should consult Moser [17].

4.8.1 The experimental setup

The column consisted of a 1500 mm long plexi-glass cylinder, with an internal diameter of 206
mm. The cylinder was filled with quartz sand with an middle particle diameter of dso = 0.5
mm and a uniformity coefficient of Cy, = dgo/d10 ~ 1.9. A soil having a uniformity coefficient
C, < 2, is considered uniform. The effective particle diameter, computed according to Beyer
(see e.g. Langguth & Voigt [11]) is d. = 0.47 mm. A sketch of the experimental setup is
given in Figure 5. In order to obtain a homogeneously packed porous medium, the column

Z, Z,
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Them om eter
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Figure 5. The experimental setup
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was partially filled with water and subsequent layers (thickness =~ 5 cm) were poured into
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Figure 6. Details of the experimental setup

the column and each layer was packed by vibrating the column. The fluids were prepared by
dissolving certain amounts of pure NaCl in distilled water. Both fresh and salt water circuits
consisted of a storage reservoir, a pump and an overflow reservoir to ensure constant fluid
pressure. The overflow reservoirs were connected to the inlet of the column by a three-way
valve, which enabled instantaneous switching between the fresh and salt water circuit. The
outlet of the column was also connected to an overflow reservoir whose level could be varied to
create a desired pressure gradient over the porous medium. The outflowing fluid was collected
in a vessel, which was mounted on an electronic precision balance. During the experiments, the
amount of water in the collection vessel was recorded every 10 seconds. In case of the tracer
experiments, a constant inflow rate could be obtained by fixing the distance between the water
levels in the overflow reservoirs. However, when the density difference between the resident and
displacing fluids was significant, the pressure gradient over the column would decease in time,
causing a decrease of the flow rate. To overcome this problem, an adjustable valve was built into
the salt water circuit. During high concentration experiments, this valve was gradually opened,
such that the flow rate remained constant. The salt concentration was indirectly determined
by measuring the electrical conductivity of the fluid in the porous medium. The electrodes
consisted of three platinum/iridium wires, with a diameter of 1 mm and a length of 20 mm. The
electrodes protruded into the porous medium, as shown in Figure 6. Each and every electrode
was calibrated in-situ. A major disadvantage of relating the electrical conductivity to the salt
concentration in a fluid is the fact that the sensitivity of conductivity measurements decreases
as the salt concentration increases. Experiments showed that salt concentrations of 10 g/kg
and 100 g/kg, could be reproduced within a relative error of respectively +1% and +2%. All
displacement experiments were carried out at constant room temperature, i.e. 20° C +1°. The
temperature of the inflow and outflow fluid was constantly monitored.
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4.8.2 The LC experiments

In the case of LG experiments, the salt mass fraction of the resident and invading fluids were,
respectively, 1.0 g/kg and 4.0 g/kg. The only quantity that was varied between the twelve tracer
experiments, was the flow rate. The molecular Peclet number, defined as

Pe = ng,()/Dm7 (4.8.1)

ranged from = 10 to =~ 3000, see Table 1. The dispersion coefficient was determined by analyzing
the breakthrough curves, measured with electrodes 10, 11 and 12, i.e. at a distance of 130 cm
from from the column inlet. electrode level in the top part of the column.

We used a least squares method to obtain an optimal fit between the analytical solution of
the linear convention-diffusion equation (4.2.20) (constant flow rate), given by

p= % (1 —erf (L2—_\/QDL$)) 3 (4.8.2)

and the measured breakthrough curves. Here, L denotes the position of the electrode, g the
specific discharge, n the porosity and D the fitting parameter. The porosity was determined
from the measured flow rate and the breakthrough time of ¢/cy = 0.5. The obtained values of
D and n are listed in Table 1. A comparison between the results of the tracer experiments and
data from literature, collected by Pfannkuch [20], is given in Figure 7. The corresponding data
can be found in Table 1.
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Figure 7. Comparison between data from literature and the results of the tracer experiments



110 CHAPTER 4. BRINE TRANSPORT: HIGH CONCENTRATION DISPERSION

[ Experiment | Porosity | Specific Molecular Dispersion
number discharge [mm/s] | Peclet numb. | coefficient [mm?/s]
L10C04 0.382 0.010 13 0.01
L06C04 0.378 0.011 15 0.008
L07C04 0.408 0.029 37 0.038
L11C04 0.394 0.057 72 0.069
L09C04 0.403 0.143 177 0.229
L13C04 0.395 0.141 178 0.244
L04C04 0.403 0.149 185 0.230
L03C04 0.400 0.292 364 0.585
L14C04 0.397 0.294 370 0.626
L02C04 0.390 0.568 728 1.508
L15C04 0.391 0.592 757 1.543
L01C04 0.394 0.604 764 1.600
L16C04 0.385 1.189 1547 3.797
L12C04 0.387 2312 2989 6.887

Table 1. Data of the tracer experiments.

4.8.3 HC experiments

In the second set of high concentration experiments the mass fractions of the resident and
displacing fluids were respectively 6 g/kg and 100 g/kg, which amounts to Ap = 63.7 kg/m?
or ¢ = 0.06. The flow rate was varied such that the specific discharge ranged from ~ 0.094
mm/s to ~ 2.302 mm/s. The results are given in Table 2. All HC experiments showed a tailing
phenomenon in the high concentration region of the breakthrough curves. This is probably
caused by diffusion of salt into pores where the fluid is (almost) stagnant. The apparent values
of the dispersion coeflicient listed in Table 2 are only indicative and obtained by fitting the error
function solution (4.8.2) to the measured breakthrough curves. Because of the asymmetry in the
breakthrough curves, due to the tailing, we only used the first part of the breakthrough curve
data, i.e. up to ¢/cyp = 0.5, to determine an apparent value of the dispersion coefficient.

Experiment | Specific Dispersion
number discharge [mm/s] | coefficient [mm?/s]
H09C100 2.302 4.153
H05C100 1.256 1.569
HO01C100 0.653 0.452
H07C100 0.644 0.422
H02C100 0.588 0.389
H10C100 0.325 0.189
H03C100 0.176 0.068
H04C100 0.141 0.069
H06C100 0.101 0.036

Table 2. High concentration experiments: constant density difference (Ap = 63.7 kg/m? M =
0.91) and different flow rates.

In the first set of high concentration experiments, the density difference was varied from Ap =~ 3
kg/m® to Ap =~ 45 kg/m?, while the flow rate was fixed at a constant value, corresponding to a
specific discharge of about 0.54 mm/s.
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Experiment | Density Dispersion

number difference [kg/m? | coefficient [mm?/s]
HO1C10 2.8 1.535

HO1C15 6.4 1.331

H01C20 10.0 1.246

HO01C25 13.5 1.023

H01C37 21.4 0.987

HO01C50 30.8 0.816

HO01C70 44.6 0.641

Table 3. High concentration experiments: constant flow rate (¢ = 5.4 - 10~* m/s) and and
various density differences.

Notice that experiments HO1C10 and H01C15 are actually LC experiments. Table 3 clearly
shows that the apparent dispersion coefficient decreases when the density difference between the
fluids increases.

4.8.4 High absolute concentration experiments

The nonlinear dispersion theory indicates that the nonlinear effects depend on the fluid velocity
and the magnitude of salt concentration gradients, but not on the absolute concentration levels of
the resident and /or displacing fluids. To support this idea, a series of high absolute concentration
experiments were carried out. The salt concentration of the resident fluid was 90 g /kg, while the
concentration of the displacing fluid ranged from 100 g/kg to 150 g/kg, see Table 4. The specific
discharge ranged from 0.45 mm/s to 0.52 mm/s. Experiment HHO1C100 (Ap = 7.4 kg/m?)
can be compared with experiment HO1C15 (Ap = 6.4 kg/m?)in Table 3. Both are actually LC
experiments and we notice that the dispersion coefficients have approximately the same value.
The same holds for a comparison between HH01C100 and L02C04 in Table 1. These results
indicate that the absolute salt concentration does not contribute to the nonlinear behavior of
the dispersion coefficient.

Experiment | Density Dispersion

number difference [kg/m®] | coefficient [mm?/s]
HHO01C100 | 7.4 1.210

HHO01C110 | 13.2 1.070

HH01C120 | 20.2 0.980

HHO1C150 | 39.4 0.600

Table 4. High absolute concentration experiments.

Moreover, we observe in Table 4 the same tendency as in Table 3: the apparent dispersion
coefficient decreases as the density difference increases. Experiment HO1C70 in Table 3 gives
almost the same results as experiment HHO1C150 in Table 4, despite the fact that the salt
concentration of the resident fluid in HH01C150 is a factor 15 higher, when compared to the
initial salt concentration in HO1C70.

4.9 Analysis of the experimental results

The results of the LC (tracer) experiments (Table 1) are plotted in Figure 8 in terms of the
molecular Peclet number, defined in (4.8.1), and the ratio of the apparent longitudinal dispersion
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coefficient and the molecular diffusion coefficient. A least squares curve fitting of the LC data
points, as plotted in Figure 8, yields the relation

D
D—L =0.35- P10 for 10 < P, < 3000. (4.9.3)

m

Bear [1] gives a similar empirical expression which reads: Dr/D,, = a - P*, where a ~ 0.5 and
1 < m < 1.2 in the range 6 < P, < 200. The latter is believed to be valid when the main
spreading mechanism is caused by mechanical dispersion and transversal molecular diffusion,
see [1]. In the range 200 < P, < 10%, the mechanical dispersion is dominant, and the relation
between D /D,, and P, is supposed to be linear. However, when we fit the experimental
data in the range 363 < P, < 2989 we still find some nonlinearity and the expression reads:
Dy /Dy, = 0.57 - P}.18. This relation indicates that the dispersivity a;, = nD/q is not really a
constant but increases monotonically with the specific discharge gq. This can be indeed confirmed
by the data of the LC experiments given in Table 1. The average value of «y, is approximately
1 mm. This is twice the average particle diameter, as to be expected for a homogeneous porous
medium, see e.g. Scheidegger [23].
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Figure 8. The ratio of the apparent dispersion coefficient and the molecular diffusion coefficient as a
function of the molecular Peclet number.

Figure 8 shows the ratio of the longitudinal dispersion coefficient and the molecular diffusion
coefficient as a function of the molecular Peclet number, for all experiments carried out in
this study. Given a density difference of 63.7 kg/m?, we observe a maximum reduction of the
dispersion coefficient by a factor &~ 3.4. This factor decreases gradually when the molecular
Peclet number (actually flow rate) increases. This behavior can be explained as follows. The
porous medium is not completely homogeneous and permeability and porosity may vary locally in
space, which in turn causes local velocity variations in the fluid flow. Hydrodynamic dispersion is
the macroscopic outcome of these varaiations. In case of tracer density differences, the dispersion
is not influenced by gravitational forces. When the density difference between the resident and
displacing fluids becomes significant, the gravitational forces give rise to a reduction of the
dispersion. Local horizontal density gradients cause vortices (rotation) in the fluid motion, which
in turn diminishes the longitudinal spreading due to hydrodynamical dispersion in the main flow
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direction. The magnitude of the reduction of the dispersion depends upon the magnitudes of
the average flow rate and the density difference.

A typical time scale associated with gravity stabilization of local velocity variations can be
given by

ap
: 4.9.4
~oBp (4.9.4)

tg =
The time scale associated with the average flow in the column is

(4.9.5)

If t, is large compared to t,, then gravity will have enough time to reduce local velocity variations.
Therefore, the ratio t./t, is a measure for the significance of gravity effects. In fact, this ratio
is identical to the Rayleigh number

_te  KkgApL

= , (4.9.6)
2 Hnarq

R,

When using the Kozeny-Carman equation (see Bear (1]) to compute the intrinsic permeability
of the porous medium, we obtain x ~ 2.0 - 10~10 ;2. In case of the constant density difference
experiments, the Rayleigh number ranges from R, = 1640 (P, = 100) to R, = 72 (P. = 3000).
Here we used p = 1.0 - 1072 kg/ms, Ap = 63.7 kg/m3, L = 1.3 m, ap = 1.0~ 1073m and
x = 2.0- 10710, Figure 8 shows indeed a decrease of the difference between the tracer dispersion
coefficient and the HC dispersion coefficient for high Peclet numbers.

In any case, Figure 8 shows that dispersion coefficient as found in the classical Fickian
equation is a nonlinear function of flow velocity and salt concentration differences. The nonlinear
dispersion theory proposed in [5] is believed to account correctly for the density effects. Indeed,
the experiments reported in [6], although limited in number and scope, give evidence that,
for a certain flow rate, it is possible to determine a single value the parameter (3, such that
breakthrough curves of experiments with concentration differences ranging from 1.51 g/kg (tracer
concentrations) to 232.43 g/kg can be simulated with a reasonable accuracy.

We computed an optimal value of 3 from the constant flow rate experiments, listed in Table
3, by fitting both the explicit solution and the full numerical solution to breakthrough curves.
The results for ¢ = 5.4 - 107% m/s are listed in Table 5. As to be expected, we obtain an
almost constant value of 8 by fitting the numerical solution to the experimental data. The
[-values, obtained with the explicit solution become progressively inaccurate for decreasing
density differences. Both results are shown in Figure 9. When the displacing fluid is fresh water
(py = 1000 kg/m?®), the explicit solution appears to be accurate for the range ps ~ 1025 kg/m?
(sea water) up to ps =~ 1300 kg/m® (the saturation limit of NaCl in water). This emphasizes
the applicabillity of the explicit solution, at least for this constant flow rate data set. A more
general conclusion with respect to the validity of the explicit solution cannot be gained from the
experimental results presented in this study.
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Experiment | density Dispersion Bnum ﬂexpl
number difference [kg/m?3] | coefficient [mm?/s] | [s m?/kg] | [s m?/kg]
HO01C70 44.6 0.641 6228 6240
H01C50 30.8 0.818 6013 6101
HO01C37 21.4 0.987 6490 6749
H01C25 13.5 1.023 6447 7133
H01C20 10.0 1.246 6296 8333
HO01C15 6.4 1.331 6366 11574
HO01C10 2.8 1.535 6283 19841
ﬁaverage 6303 -

Table 5. Obtained (-values from the constant flow rate experiments (¢ = 5.4 - 107* m/s)
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Figure 9 Comparison of 3-values obtained by fitting the numerical and explicit solution to the

breakthrough curves of the constant flow rate experiments

The breakthrough curves corresponding to the constant density difference experiments listed in
Table 2, were analyzed in a similar fashion. The obtained 3-values are plotted as a function
of the specific discharge on a log-log scale in Figure 10. A least squares curve fitting yields an
approximate expression for 3(q), given by

0.0125
B(q) = oo for 9.0-107° < ¢ < 3.0-1073 m/s. (4.9.7)
This indicates that the nonlinear effect decreases with increasing flow rate. This is in corre-
spondence with our discussion of the Rayleigh number and the balance between gravitational
and convective transport. Substitution of (4.9.7), (4.2.4) (disregarding molecular diffusion) in
equation (4.2.8), and solving for J yields

) ~11-29P _
J_ZA{\/l 4oy Ay 1q "az 1}7 (4.9.8)

where A = 0.0125 and n = 1.76. This is the one-dimensional dispersive mass flux equation in
terms of the original variables.
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Figure 10. The parameter § as a function of g for the constant density difference experiments

4.10 Discussion

The experimental results presented in this study, confirm the validity of the nonlinear dispersive
mass flux equation (4.2.3) and provide an empirical relationship for the HC dispersion coefficients
in terms of the specific discharge. In the HC experiments, the specific discharge ranged from
¢=9.0-10"%m/s to 3.0 - 1073 m/s. These are relatively high when compared to groundwater
discharges in the field, typically ranging from 3.0 - 10~7 m/s (0.03 m/day) to 3.0-1075 m/s (3.0
m/day).

When we extrapolate expression (4.9.7) for ¢ > 3.0 1073 m/s, neglecting any high velocity
effects, and pass to the (theoretical) limit ¢ — +oo we obtain §(+o00) — 0. This implies that
the dispersive mass flux equation (4.2.3) reduces to Fick’s law and HC experiments can be sim-
ulated using the tracer equations and the tracer dispersion coefficient. Extrapolation of (4.9.7)
for ¢ < 9.0-107° m/s, and passing to the limit ¢ — 0 yields $(0) — oo. This indicates that
for low discharges (high Rayleigh numbers) the gravity effect, i.e. the nonlinear term in (4.1.3),
completely dominates the dispersive behavior. From the physical point of view, both discharge
limits are realistic in a qualitative sense. Additional experiments should be carried out to gain
information about the behavior of B(q) for discharges ¢ < 9.0-107° m/s and ¢ > 3.0 - 1073
m/s. A particular interesting limit to study is the transition from pure diffusive transport to
dispersion dominated transport under HC conditions.

Substitution of (4.9.8) in (4.2.1) and (4.2.2) yields a set of equations that no longer allows a
Von Mises transformation. In fact, application of the Von Mises transformation is restricted to
those cases where the longitudinal tracer dispersion coefficient D is constant, i.e. not a function
of the local specific discharge, see [4]. A constant tracer dispersion coefficient may account for
heterogeneities of the porous medium in an averaged sense, for instance by setting D = a.qo,
where go denotes a background or mean specific discharge.

When using the latter, we can quantify the magnitude of the volume or compressibility
effect in the experiments. To this end, we use the data of HC experiment H09C100 (see Table
3) and expressions (4.7.24) and (4.7.25). The breakthrough time of the 50%-level of the density
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in experiment HO9C100 is 59 = 220 s. The dimensionless breakthrough time is given by
tioo, = 423, see the scaling rules (4.2.9). Tracer experiment L12C04 was used to obtain values
for D and n. At ts50y, the relative magnitude of the maximum of the specific discharge with
respect to the back ground flow gy can be determined from expression (4.7.24). This yields
(Gmaz — q0)/qo ~ 0.8%. The additional relative displacement of the density front at t5yg, given
by (4.7.25), amounts to =~ 1.2%. Both results indicate that volume effects can be disregarded.
Such variations are not noticeable within the accuracy of the experiments.

The constant flow rate experiments show a significant reduction of the dispersion coefficient
in case of an increasing density difference between the resident and displacing fluids. The tracer
dispersion coefficient has to be lowered by a factor ~ 2.4 (HO1C70, Ap = 44.6 kg/m?) in order
to obtain a reasonable fit between the solution of the classical equations and the experimental
data. Experiment H02C100, with approximately the same flow rate (5.88 -10~* m/s instead of
5.4 -107*m/s) and density difference 63.7 kg/m?3, exhibits a reduction by a factor ~ 4. Figure
11 shows the scaled dispersion coefficient for the constant flow rate experiments (including
HO02C100) as a function of the density difference. The corresponding least squares approximation
is given by Dy /Dg = 1.0158e 9021247 where Dy = 1.535 - 10—6 m?/s.
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Figure 11. Scaled longitudinal dispersion coefficient as a function of the density difference for the
constant flow rate experiments.

Extrapolation of the least squares approximation yields a reduction of the tracer dispersion
coefficient by a factor > 100 for almost saturated brines. Whether this is extrapolation is realistic
in the physical sense has to be determined experimentally in a future study.

An other question that needs to be addressed concerns the physical phenomenon that is
assumed to cause the reduction of the apparent dispersion coefficient in HC transport of brines.
Is the explanation that local horizontal density gradients at pore scale induce fluid rotation
(vortices) such that the dispersion of salt is reduced when compared to the tracer dispersion
correct? The latter is very likely, but cannot be proved at this time. Also, simple conceptual
models for HC transport, gaining insight in the process and its governing equations, are still
lacking. For tracer dispersion, such models, have proven to be very useful, see e.g. Taylor [25],
[26], De Josselin De Jong [10], Saffman [21], [22].

If gravity is indeed responsible for the observed dispersion reduction in HC transport, then it
is of fundamental importance to find the relation between the proposed nonlinear flux equation
(4.2.3) and the induced flow due to local horizontal density gradients. The derivation of (4.2.3)
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in [5] is formally correct, but is not directly linked to the physical phenomenon that causes the
HC dispersion effect. Such a relation might be established by averaging the governing pore scale
equations and/or by homogenization techniques. We leave these questions for a future study.

4.11 Conclusions

e This study concerns the mathematical and experimental analysis of brine dispersion in a
saturated porous medium. Both low and high concentration experiments have been carried
out. The LC (tracer) experiments presented in this paper are in excellent agreement with
LC experiments reported in literature.

e The experiments show that for low concentration differences (even if the absolute salt con-
centration is high), the linear Fickian theory models the observed dispersion satisfactorily.
In case of high concentration differences, the Fickian theory fails.

e All experiments reported here, both LC and HC, confirm the validity of the nonlinear HC
dispersion theory given in [5].

e High absolute concentration experiments show that the HC dispersion coefficient is inde-
pendent of the absolute salt concentration of fluids.

e The HC dispersion coefficient 3 is found to be independent of the salt concentration
differences or gradients. It depends only on the flow rate. A relation between 8 and the
specific discharge is established.

e An explicit solution for HC transport (assuming dominance of the nonlinearity in the salt
flux equation and constant flow rate in the column) is given. This approximate solution
can be used to simulate HC experiments in a wide range of density differences.

e A semi-explicit solution of the full set of governing equations (again assuming dominance
of the nonlinearity in the salt flux equation) is obtained. Fluid volume changes due to
high concentration gradients are taken into account. The results are used to quantify the
volume effects in the HC experiments. It turns out that these effects can be disregarded
for all experiments considered.

e The constant density HC experiments show a decrease of the difference between the tracer
and the HC dispersion coefficients for increasing flow rates. This indicates that local (pore
scale) horizontal density gradients might be responsible for the nonlinear HC dispersion
effect. At high flow rates (large Peclet numbers) local gravity driven (stabilizing) flows
become relatively un important (low Rayleigh numbers).
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Chapter 5

The interface between fresh and salt
groundwater

5.1 Introduction

Gravity induces a flow in a porous medium if horizontal density gradients are present. These
horizontal gradients produce vorticity, which in turn causes (density-driven) fluid flow. This
insight is mainly due to the work of Wooding [21], [22] and Elder [8].

Fresh and salt groundwater are essentially miscible fluids. When brought in contact in a
porous medium, a mixing zone will develop, which is caused by molecular diffusion and hy-
drodynamical dispersion. The latter is additional mixing due to local velocity variations which
are caused by local variations in permeability. In most practical situations the width of the
transition zone is small compared to the extensions of the aquifer. This motivates to assume the
existence of an interface between the fluids: the specific weight changes abruptly from one value
to an other value. Thus in this approximation we treat the strictly miscible fluids as immiscible.
In their mathematical formulation, interface models lead to so called free boundary problems.

The implications of the existence of an interface between fresh and salt groundwater have
been studied by De Josselin De Jong [12]. In that case, the horizontal density gradients across the
interface are singular and the interface becomes a surface source (in three space dimensions) or a
line source (in a vertical cross section) of vorticity. The flow of the separate fluids is rotation free,
while the rotation of the total flow is produced by the (singular) vorticity distribution along the
interface. As a consequence, the velocity component normal to the interface is continuous and
the velocity component tangential to the interface exhibits a discontinuity across the interface:
the shear flow.

In a later paper, De Josselin De Jong [11], derived a nonlinear diffusion-type equation to
approximate density-driven flow in a vertical cross section of horizontally extended aquifers
confined by two impermeable layers. The derivation is based on the Dupuit assumption, i.e.
the horizontal component of the specific discharge is constant in each fluid and jumps at the
interface. The advantage of this approach is that the two-dimensional flow problem reduces
to a one-dimensional initial value problem in terms of the interface height. Solutions of this
approximate equation give insight in the time evolution and flow properties of the full problem,
in particular with respect to the large time behavior, i.e. for relatively flat interfaces.

Following the original work of De Josselin De Jong [12], Chan Hong et.al. [6] studied the
movement of the interface between fresh and salt groundwater by numerical means. They for-
mulate the problem in terms of an elliptic (Poisson) equation for the stream function describing
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the flow and a hyperbolic equation for the time evolution of the interface. The parameterization
of the interface is of the form z = u(=,t), where respectively z and z denote the horizontal and
vertical coordinate of a point located at the interface. The elliptic problem is solved using a
finite element method (moving mesh) while the interface motion equation is solved explicitly
in time, by means of a predictor-corrector method. Chan Hong et. al. [6] compare numerical
results with solutions of simplified problems, based on the Dupuit approximation with respect
to the horizontal flow. Only homogeneous flow domains are considered.

We focus on the transient behavior of an interface in heterogeneous aquifers, including those
cases where it is not possible to parameterize the interface according to z = u(z,t) or & = u(z,1).
We modified the existing finite element code [6] to allow for heterogeneous intrinsic permeability
distributions in the flow domain and developed a front tracking method, to compute the discrete
time evolution of the interface. The latter is inspired by ideas developed in Dupaix et. al.
[21] and Scheid [18]. Points along the discretized interface are displaced by computing an
approximate normal direction and an approximate normal velocity from the stream function
along the interface.

The heterogeneities considered are discontinuities in intrinsic permeability. In case of a
vertical discontinuity in permeability, i.e. two adjacent regions with different piecewise constant
permeability, we solve a related Dupuit problem in terms of a similarity solution. It turns out
that the numerical solution converges towards a similarity solution as ¢ — oo.

In case of two horizontal layers with different piecewise constant permeability, i.e a horizontal
discontinuity, it is not possible to obtain a semi-explicit solution of a related Dupuit problem.
Therefore it is difficult to validate the numerical solutions, even when the mass balance is
conserved up to a small error. Moreover, if the initial interface is vertical, a hydrodynamically
unstable zone will develop in the vicinity of the discontinuity in permeability, where the heavy
fluid (salt ground water) is on top of the lighter one (fresh groundwater). Rayleigh-Taylor
instabilities (fresh-salt fingers) are observed in the computational results, as soon as salt water
is on top of fresh water.

A normal-mode linear stability analysis shows that instabilities (fresh-salt fingers) of any
wave length A (or wave number w) can occur in the fingering pattern. List [58], studied the
stability of the uniform horizontal motion of two miscible fluids of different density in a sat-
urated, homogeneous porous medium, both theoretically (by means of a normal-mode linear
stability analysis) and experimentally. List showed the existence of a critical wave length Ao.
Perturbations with wave length A < Ao decay in time, while perturbations with A > A¢ grow.
The number ) is related to the dispersion coefficient D. In the limit D — 0, i.e. in case of a
fresh-salt interface, we obtain A\g = 0, implying that perturbations of any wave length will grow
in time.

However, in the results of the interface computations we observe that only instabilities of
a certain minimum wave length or finger width grow in time. The latter is determined by the
coarseness of the (piecewise linear) discretization of the interface.

In addition, we consider a problem in a homogeneous flow domain. Van Duijn & Philip
[17] studied bounds on the behavior of slumping brine mounds. Two modifications of the
approximate Dupuit interface motion equation, see De Josselin De Jong [11], are applied to the
slumping of finite two-dimensional brine mounds. Both modifications lead to simple similarity
solutions. One gives upper bounds on the time-scales of the process and the other lower bounds.
We check the validity of these approximate bounds against a numerical solution of the full
problem. The results are in excellent agreement with the predictions in [17].

The organization is as follows. In Section 2 we give the governing flow equations and give the
boundary and initial conditions. A description of the numerical procedure is given in Section 3.
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In Section 4 we compare computed results with two approximate problems in a homogeneous
flow domain, that are based on the Dupuit assumption. The first problem concerns the time
evolution of a rotation linear interface. We compare the results obtained with the front tracking
scheme, with the predictor-corrector scheme (as proposed in [6]) and with the corresponding
Dupuit approximation. This problem is included mainly to gain confidence in the front tracking
method. The second homogeneous problem concerns the slumping of brine mounds. We verify
numerically the bounds on the time scale of the slumping process of decaying brine mounds [17].
In Section 5 a general expression is derived for the shape of the interface in an infinitesimal small
neighborhood of a discontinuity in intrinsic permeability. This expression is used for verification
of the numerical results. The special case of a vertical discontinuity in permeability is considered
in Section 6. We derive an approximate Dupuit similarity solution and compare it with the
large time behavior of numerical solutions of the full problem. A horizontal discontinuity in
permeability is considered in Section 7. Special attention is given to the growth of Rayleigh-
Taylor instabilities that occur in the vicinity of the discontinuity in permeability. Section 8
contains the conclusions and some discussion.

5.2 The model

The governing equations are the continuity equation for incompressible fluids and Darcy’s law,
i.e. the momentum balance equation. These equations can be combined into a single Poison
equation for the stream function, which describes the flow induced by the difference in specific
weight of the fluids. From the solution of the stream function equation, i.e. for a given specific
weight distribution at a certain time level, we determine the normal component of the velocity
at the interface. The result is used to displace the interface in time.

5.2.1 The stream function equation

We consider flow of an incompressible fluid of variable specific weight v and constant viscosity
i, in a rectangular domain with variable intrinsic permeability x. The flow domain is given by
the strip @ = I x (0,h), where I denotes the interval (—R, R) with R > 0, such that R >> h
(h > 0). The strip represents a vertical cross section of a horizontally extended aquifer, bounded
from above and below by impermeable layers.

Let q denote the specific discharge vector, p the fluid pressure and e, the unit vector pointing
in the positive (upward) z-direction. The fluid movement is governed by Darcy’s law, i.e.

%q+vp+7ez =0 in Q (5.2.1)
and the continuity equation given by
divg=0 in Q. (5.2.2)

The latter expresses expresses the incompressibility of the fluid. At the boundary 02 we assume
a no-flow condition, i.e.

q-n=0 on 02, (5.2.3)

where n denotes the outward normal unit vector on 0f2. By taking the two-dimensional curl of
equation (5.2.1), we obtain

curl (%q) + curl (ye;) =0 in €. (5.2.4)
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Here the curl of a vector function a = (agz,a,) must be understood in the sense that curl
a := day/dz — da,/dz. Since the flow satisfies equation (5.2.2) we can introduce a stream
function 1 such that

(0 0% i
q=curl ¢ = ( 52 am) . (5.2.5)
Substitution this expression in (5.2.4) yields
T 0y .
div (—V'L/}) =—— in Q. (5.2.6)
K ox

This equation has to be interpreted in the weak sense, see Van Duijn & De Josselin De Jong
[22] for details. The no-flow condition (5.2.3) implies that ¢ is constant at 9§2. The value of ¢
on JS) can be chosen arbitrarily. For convenience we set:

=0 on 0f). (5.2.7)

Next, we introduce the interface approximation: the interface I'(t) separates fresh groundwater,
with specific weight 7, and salt groundwater, with specific weight 7, where 0 < vy < 7s.
This implies that v is discontinuous at the interface and thereby the right-hand side of 5.2.6 a
singularity. Consequences of the latter are summarized in Section 2.2. Thus, given an interface
at a certain time ¢ > 0, the solution of (5.2.6) subject to (5.2.7), determines the stream function
distribution in flow domain 2, and by (5.2.5) the corresponding discharge q.

The heterogeneities considered in this paper are discontinuities in intrinsic permeability. We
confine ourselves to the special case of piecewise constant permeability distributions: a vertical
heterogeneity given by

k= (kg —k1)H(z) + Kk for z €1, (5.2.8)
and a horizontal heterogeneity given by
k= (k1 — ko) H (2 — h/2) + Ko for z € [0,h], (5.2.9)

where H denotes the Heaviside function: H(¢) =1 for € > 0 and H(&) = 0 for £ < 0.

5.2.2 Properties of the stream function

Properties of the of the stream function, and thereby the induced discharge field, can be derived
from problem (5.2.6)-(5.2.7), see e.g. [22], [6], [11]. In particular, we are interested in conditions
on the stream function and the corresponding discharges at the interface and at discontinuities
in permeability. Combining these conditions enables us to derive a fundamental expression for
the behavior of an interface crossing a discontinuity in permeability, see Section 5.

Without loss of generality, we assume that the interface can be parameterized according
to 2 = u(z,t) in a small neighborhood of the discontinuity in permeability. Then the fluid
domain €2 can be decomposed in 4 regions ; ; for i = 1,2 and j = f,s. Here Q; s (respectively
Q; ) denotes the domain occupied by fresh water (respectively salt water) in the region where
k(z,z) = Ky, fori = 1,2. Let I'; denote the part of the interface I in the region where k(z, 2) = K;
for i = 1,2 and let ¥; denote the boundary between the region where k = s and that of kK = Ky
in the part of the domain where v = «; for j = f,s, see Figure 1 for the case of a horizontal
heterogeneity. Then let n (respectively s) denote the outward normal unit vector (respectively
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Figure 1. The interface in a confined aquifer: definition of the domains.

the tangential unit vector) to the boundary 9€; ; of € ;. In case of sufficiently smooth interface
(), problem (5.2.6)-(5.2.7) in terms of 1, can be written as a set problems on the subdomains
Q;; fori=1,2and j = f,s, with conditions at the interface. It can be shown that a solution
W(z, 2,t) of (5.2.6)-(5.2.7) satisfies the following basic properties: for i = 1,2 and j = f,s we
have

(@) —A;j=0 i e
(0) iy =1his
() Qgﬁ%—%ﬁ#=—%(%—~wnm } onT;
(5.2.10)
(d)  1; =2,
(e) @81#71{‘ _m@aﬂ%i‘:o } on %;
L on 9

Here n, denotes the z-component of the unit vector normal to the interface. Conditions (b) and
(d) express the continuity of the stream function at I'; and ¥;, implying 9v; ;/0s = ;s /0s for
i = 1,2, i.e. continuity of the discharge component normal to I';, and Oy j/0s = Ot j/0s for
j = f.s, ie. continuity of the discharge component normal to X;. Expression (c) is the shear
flow along the interface: the discharge tangential to the interface in discontinuous when crossing
the interface. The discharge tangential to the discontinuity in permeability also exhibits a jump
and satisfies (g). De Josselin De Jong [11]) arrived at the same result for the homogeneous case
using physical arguments.
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5.2.3 Time evolution of the interface

In order to allow for more general interface shapes, we do not parameterize the interface ex-
plicitly, as in e.g. Chan Hong et. al. [6] or [11]. Given a solution ¥ = i (z,z,t) of problem
(5.2.6)-(5.2.7), the normal component of the velocity at the interface I'(¢) satisfies

1
Vi = lq-n: Ecurlz/)-n at I(t), (5.2.11)
€

where n denotes the normal unit vector at I'(¢), pointing into the fresh water region and ¢ the
porosity of the porous medium. The latter is assumed to be constant. Evaluation of (5.2.11)
yields

1
Vo = 5w at (), (5.2.12)
€ ds
where 0/0s denotes the tangential direction along the interface.

Remark:
When the interface shape allows parametrization of the form z = wu(z,t) in 2, the interface
motion equation can be written as

1o} 10

8—;‘ = 5 ¥ (5, ulz, ), 1)) in I x R (5.2.13)
This particular form is due to Chan Hong et. al. [6]. Suppose that an interface touches the
domain boundaries at z = 0 and z = h. Let the corresponding z-coordinates be given by
S1(t) (toe) and Sa(t) (top). It was also shown in [6] that S1(t) and Sy(¢) satisfy the differential
equations

a 1 & w( ) ( 7t)’t) . 1 . ¢(17u(17t)7t)
- 1 T, ulz,t),t) n =- lim —W——=~, 5.2.
S1(t) z mll(t) @.9) and S(t) li %0 @) (5.2.14)

We use these expressions to compute the velocity of the top and toe under the assumption that
the interface can be parameterized in a small neighborhood of the lower and upper domain

boundaries.
The variables are redefined according to

T z K (vs = v5)ko
= — = - = — ={— a
Ti= oy 2= K i t h (5.2.15)
and
o r
:: N 5.2.16
v w('Ys = ¢)koh h ( )

where k¢ denotes a reference permeability. Then equations (5.2.6) and (5.2.11), subject to
boundary and initial conditions, lead to the problem of finding the stream function 1) = v(x, 2, t)
and I'(¢) satisfying:

—div (1v) = & (v(z,2,1)) inQxR*,
% =0 on 02 x R,

(P) (5.2.17)
Vo= onT(1), t € RY,
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In dimensionless form, the equations for the velocities of the top and toe of the interface, are

given by

o p@uEt) s o b (@u@ )Y
Si(t) = xahgl(t)———u(x,t) and Sz(t)—milg(t) T —u@.t) (5.2.18)

where we redefined u according to u := u/h.

5.3 The numerical method

In this section we give a numerical algorithm for solving Problem (P). The procedure consists
of three steps. We first solve the elliptic problem for the stream function, for a given interface
I at time level t, see also [6]. Next, we compute an approximation of the normal component
of the velocity at the interface. Finally we apply a discrete front tracking method to obtain an
approximation of the position of the interface at the new time level.

5.3.1 Discretization of the stream function equation

Let v*(x, z) and I'* be respectively the specific weight and the interface at time tk. The stream
function 1 is determined by the solution of problem

—div (%VU)) = 3% (7k(z,z)) , for (z,z) € Q,

BN =0, on 99 (3k1)

We solve (szf) using a finite element method. The weak formulation of (PILC) is obtained by
multiplying equation (5.3.1) by a test function v € H} (Q) and integration by parts:

1
SV = / (@, 2) 2, for all v € HY (). (5.3.2)
QK Q oz

We decompose domain €2 at time t* into two subdomains Q’} and QF, being respectively the
subdomain of fresh water and salt water. Moreover, we assume that the interface I'* between
Q'j and QF is smooth enough. After integration by parts of the right-hand side of (5.3.2) we

obtain the following weak formulation of Problem (PIL“)
Find ¢ € H} () such that
/Q %Vd).Vv = (7f — ) /rk v ng do, for allv e H (Q), (5.3.3)
where n, denotes the z-component of the unit vector normal to the interface I'*, pointing into Q’}

Let 75, be a triangularization of €. If we apply the finite element method with piecewise linear
basis functions, then the discretized problem is given by:

Find vy, € V}, such that

1
/ —Vby - Vop, = (Yf — 7s) /’c vp np g do, for all v € Vj, (5.3.4)
QK r

h
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where V), = {vh €C(Q) | YT € Ty, vy is linear on T and v; = 0 on T}. Here, I'f is a piece-
wise linear approximation of I'*, while n, denotes an approximation of the unit vector normal
to Tk,

Let (¢i)i=1,.,~ be the piecewise linear basis function of V},. We decompose 1)}, on this basis, i.e.

N
Yn(@,2) = ) _idi(z,2) for (z,2) € Q. (5.3.5)

i=1

Then Problem (5.3.4) is equivalent to

N

1 .
Zzp,-/ngwi.wj = (W-%)/Fk $jnnzdo, forallj=1,..,N. (5.3.6)
=1 h

Following [6], we apply a moving mesh method which enables to generate a new triangulariza-
tion of 2 at each time step. Let Qz,f denote the fresh water domain and Qﬁ,s the salt water
domain. These domains are separated by the piecewise linear approximation of interface Fﬁ.
The triangularization of Qﬁ, f and Qﬁ,s is respectively T,’f» f and T,lf’s. These are constructed such
that Ffl always coincides with sides of triangles of T,’fy s and T;.f’s. We refine the mesh in the
neighborhood of Ffl. The meshes are generated, using the mesh generator of the SEPRAN finite
element package, which is developed at Delft University of Technology.

5.3.2 Discretization of the interface motion: front tracking
Let ¢* be the stream function at time level t* = kAt, where At denotes the time step and
k=0,1,..K. Then the normal component of the velocity of a point at the interface is given by

_ ot

vk = vyt . s

" sk
where s¥ denotes the unit vector tangential to T'*. Since V¥ = %%(kAt) -n(kAt), we compute
the interface position at time level t**! = (k 4 1) At explicitly in time using

1. n(kAt) = T* - n(kAt) + At V.
Let T'¥ be defined by a set of nodal points (P¥);—1 . s, hence
rf = {[PFPE.] i=1,...,1 -1, P and P} € 00}
The displacement of each nodal point is given by

—_—
PEPMY = At VE, = At DF -sf

1)

fori=2,..,I—1

where Vnk!i denotes the approximation of V,,(PF) and DF the approximation of Vi*(P¥). The

1
unit vector at point PZ-’c given by by the approximation

k k
Pk Pl
gf = =L 84l (5.3.7)

 uBk mE
| Py Pyl
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Since
— — .
WR(PE ) ~ ok (PF) + PEPE | Vyk(PF) and y*(PEy) ~ wH(PF) + PEPE, - Vyk(PF(5-3.8)

we have

k  pk k( pk k( pk
Pi—l‘Pi+1 V'l,/)k(Pk) o d) (Pi+1> — 1/} (131'71) .
| Pk P | PELPEA
This motivates to choose
e _ WEPEL) — ¥R (P

vk =DF. st
I PE P

n,i

Then the displacement is given by
YH(Ph) — ¥R (PEY)
Il PPyl

fori=1,..,1—1. (5.3.9)

_—
PikP)ik+1 — At

Formula (5.3.9) is only used if point Pik belongs to 2. In addition, we solve equations (5.2.18)
to determine the two points P{“H and P‘Ik+1 of I‘Z“, which belong to the boundary 0. Again
we use an explicit scheme to compute the displacement of the top and toe, yielding respectively

— k( pk —_— k( pk
PEPEL = At "p—(f,g—) and PFPFl = At ‘/’—(PL—,CL, (5.3.10)
z(Py) 1—2z(Pr_;)

where z(P) denotes the z-coordinate of point P.
To ensure stability of the numerical time integration we chose the time step such that the
Courant-Friedrichs-Lewy (CFL) condition

At
CFL = C‘“—lk— <1, (5.3.11)

is satisfied at every time level k. Here, the constant C' is given by

ct= max {la@h )= max {las(al, 2 la:(eF, 251} (5.3.12)

(ak,z)ery (ak,2f)ery

and I denotes the minimum distance between two adjacent nodal points at the piecewise linear
interface. For all practical purposes we chose CFL = 0.2.

5.4 The homogeneous case

The homogeneous case, i.e. when k; = ky = & in §2, has been studied extensively by Chan Hong
et.al. [6]. They parameterize the height of the interface and use the explicit S*B_scheme of Lerat
& Peyret [13] to discretize the hyperbolic interface motion equation (5.2.13). The parameters
@, 3 are chosen such that they attain ”optimal” values, with respect to the discretization of
(5.2.13), see e.g. Wilders [20]. In addition they use a Runge-Kutta method to compute the
displacement of the top and toe of the interface. For completeness and to gain confidence in
the front tracking procedure proposed in this paper, we compare our numerical results with two
distinct (semi) analytical similarity solutions of simplified problems: the rotating linear interface
and slumping of brine mounds.
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The full problem (5.2.17) can be reduced to a simplified problem, under the so called Dupuit
approximation, yielding a nonlinear diffusion equation for the parameterized height of the inter-
face. In this approximation, one assumes that the horizontal component of the specific discharge
vector is constant in each fluid, and jumps at the interface. In view of ¢, = —9W¥/0z, this is
equivalent to saying that the stream function is linear in z in each fluid. Numerical experiments,
have shown that this is a reasonable approximation, as long as the inclination angle of the in-
terface with the horizontal is less than 7/4, provided the porous medium is homogeneous, see
e.g. Chan-Hong et. al. [6]. Under the Dupuit approximation, interface motion equation (5.2.13)
reduces to (after scaling according to (5.2.15), (5.2.16))

Ju 0 _ Ou/0x 4 »
ot ox {” W=y (3u/3m)2} i G o

subject to the initial condition u(z,0) = ug(z), while the stream function is given by

ou/ox

‘I/(U,.'l:7 t) =K U(l - U)W

For homogeneous aquifers, « is constant. Therefore, its appearance in equation 5.4.1 is not
essential, but only there to keep the scaling uniform throughout the paper. These particular
forms are due to De Josselin de Jong [11]. Note that (5.4.1) is only valid under the assumption
that the interface extends through the full depth of the aquifer, hence v € [0,1]. Equation
is degenerate parabolic: at points where u = 0, 1 or du/dz = —1,+1, the coefficient of the
second-order derivative vanishes.

5.4.1 Comparison with the rotating line solution

The Dupuit equation (5.4.1) allows a similarity solution of the form
us(z,t) = §(n) with n = zg(t), (5.4.3)

where the function £ is given by

and where the function g(t) is the solution of the initial value problem

3
do__, o

&= T g for t >0, (

w
b=
(5]
~

subject to g(0) = go, see Zhang [23]. For gy € [—1,1] the similarity solution of (5.4.1) has the
character of a rotating linear interface. It defines two interface curves in the (z,t)-plane: for
n = —1/2 the movement of the toe is given by (—1/(2¢(t)),t) and for n = +1/2 the movement
of the top is given by (+1/(2¢(t)),t). The similarity solution represents the large time behavior
of equation (5.4.1). Van Duijn & Hilhorst [10] and Bertsch et al. [5] proved that an arbitrary
initial interface converges towards u; at ¢ — oo. Chan Hong et. al. [6] demonstrated numerically
similar behavior of the full problem. A highly irregular initial interface tends towards to a
rotating linear interface as ¢ — oo. Let the initial condition for u in problem (5.2.17)-(5.2.17)
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Figure 2. Comparison of the time evolution of the top and toe: (a) and (f) front tracking
method, (b) and (e) S*P-scheme, (c) and (f) the Dupuit similarity solution.

be given by

0 -1<z< —%
w(z)={ z+3 —%<z<+§ (5.4.6)
1 +3 <z < +1
which corresponds to g(0) = 1 for the rotating line solution. In Figure 2 we compare the

movement of the top and toe of the interface in the (z,t)-plane, for three different solutions:
the (semi) explicit rotating line solution, a numerical solution based on the S*F-scheme and a
numerical solution based on the front tracking method. Note that both numerical solutions are
indistinguishable on the scale of Figure 2: the maximum relative difference is = 0.06%. With
respect to the speed of propagation S(t) of the top and toe of the interface we observe in Figure
2 convergence of the numerical solutions (a,b,d and e) towards the similarity solution (c and f).
The numerically computed positions of the top and toe converge ‘up to a constant’ towards the
Dupuit similarity solution.

5.4.2 Bounds on the time scale of slumping brine mounds

Equation (5.4.1) only applies to special configurations with fresh-salt interfaces extending through
the full depth of an aquifer confined top and bottom by impermeable horizontal boundaries.
When the initial interface shape takes the form of a two-dimensional brine mound of finite
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volume, Van Duijn & Philip [17] in their analytical study show that (5.4.1) may be replaced by

ou 8(8_:1:

- uaz

T + =<
% = 9z > for (z,t) e R xR™, (5.4.7)

under the assumption that (9u/0z)? << 1 and u << 1. This equation has a parabolic similarity
solution, given by

322 \? 2 9a(t +T)\3
u(z,t) = (32(t +T)> B G(tﬁ— T) for |ol < ( - 2 )1 (5.4.8)
0 for |z| > (9—(1(1;—710 ’

where the constant 7" is defined by

3a?

T= 32(u(0,0))%"

(5.4.9)
This solution describes nonlinear diffusion of an instantaneous source of strength a, released
at t = 0, and has been obtained independently by Barenblatt [1] and Pattle [15]. Van Duijn
& Philip [17] show that this solution gives a lower bound on the time scale of slumping brine
mounds.

Figure 3.a. Computed time evolution of a decaying brine mound.
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S(t)

0.7

Figure 3.b. Time evolution of the toe: Lower bound on the time scale (p), i.e. parabolic
solution, the numerical solution (q) and upper bound (r), i.e. triangular solution.

Moreover, they derive an approximate interface motion equation that gives a upper bound
on the time scale of the slumping slumping process. Equation (5.4.1) is modified to restrict the
fluid motion to the region 0 < z < g(¢t)~!, yielding

du _ 0 (o1 Oulde
at oz {“(9 1 U)1+(3u/8x)2}’ (5.4.10)

where g(t) is a priori unknown and emerges as a part of the similarity solution of the problem.
In writing (5.4.10), one implicitly assumes that fluid above the plane {z = g(t)} is at rest. A
triangular brine mound preserves mass and produces similarity when the horizontal dimensions
increase by the factor g(t) and vertical dimensions decrease by the factor 1/g(t). The function
g(t) is implicitly given by

2
g a” 4 4
t=1In (—) + 2 (g* — gy, 5.4.11
= 1 (9" — 90) ( )

where go = ¢(0). For the details we refer to [17]. The gravitational potential energy is pro-
portional to the elevation of the mound centre of gravity above its base. This quantity is used
to match the triangular (A) and parabolic (M) similarity solutions appropriately. One easily
verifies that

1
2\ 3
—  and zn(t) = (%) (_t+lT)é (5.4.12)
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Matching these expressions at t = 0 yields

1
125)3 L gl wes LR

1 o
PV 70 750° g(0)3. (5.4.13)

un(0,0) = (

The time course of the semi-width of the mound at its base, i.e. the position of the mound toe
S(t) at the right-hand side, for respectively the triangular and parabolic solution are given by

Sa(t) = ag = —— (5.4.14)

3za(1)

The upper bound on the time scale (i.e. a lower bound on the displacement scale) is given by
t(Sa) and the lower bound by #(Sn). The computed time evolution of a brine mound, initially
given by

and Sn(t) = <9a(t2+ T)>§ - 102:(’5)'

%—x for 0<z<1
u(z) =4 3+z for —3<z<0 (5.4.15)
0 for lz| > 1

is shown in Figure 3.a. In Figure 3.b. we compare the bounds on the time scale obtained by Van
Duijn & Philip [17] with a numerical solution of the full problem. Observe that the behavior of
the numerical solution is closer to the upper bound (A) at the (very) short time scale, while it
approaches the lower bound (N) at large t. This is exactly the behavior that was predicted in
[17].

5.5 An interface crossing a discontinuity in permeability

When a fresh-salt interface intersects a discontinuity in permeability, it is possible to derive a
simple expression for the shape of the interface in an infinitesimal small neighborhood of the
intersection point, provided the interface is non-singular. The derivation is based on the two-
fluid interface conditions in a homogeneous porous medium combined with the flow conditions
of a homogeneous fluid at a discontinuity in permeability. First we consider a linear interface

or
iy .
Os N Vs
//\__ iy  Ois Ly in(c)
on on u%_W) SILE
6¢i,s
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Figure 4. The shear flow at the interface.

I', under an inclination angle a with the horizontal, separating two fluids with specific weights
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s (upper fluid) and s (lower fluid). At the interface, the normal components of the specific
discharge are continuous, i.e.
Ohiy  Ois

—_— = — -: r. -1
s s for 1=1,2 (5.5.1)

while the tangential components of the specific discharge satisfy the shear flow relation, given

by

Hig s __Fi(\ o ysin(e) for i=1,2, (5.5.2)
an on 1

see Figure 4. Then the corresponding relations between the z- and z-components of the specific
discharge are given by

—% + % = %('yS — vy) sin(a) cos(a) for i = 1,2, (5.5.3)
and
Ry _ His _ 2 g = 7v¢)sin?(a) for i=1,2. (5.5.4)
oz ox i

Next we consider flow of a homogeneous fluid in the vicinity of a discontinuity in permeability
¥, separating two regions with different intrinsic permeability: k1 (upper region) and ry (lower
region). The inclination angle between the discontinuity and the horizontal is given by 3. Again
we require continuity of the specific discharge components normal to the discontinuity in &,
hence

01 O

85 = W for j = f7 S, (555)
while the tangential discharge components at the discontinuity satisfy
01 5 s ;
ng—g;’f —m—gzﬁ =0 for j = f,s, (5.5.6)

see Figure 5. Consequently the relations between the z- and y-components of the specific
discharge are given by

tan(3) (_5§;J " 3¢2,j) _ (31/)1,1‘ _ 311’2,]’) for = L8, (5.5.7)

Jz ox oz

and

mad&,j — Oy _ (Klawz,j . 0Py
0z 0z T

ox > or
Expressions (5.5.3), (5.5.4) and (5.5.7), (5.5.8) can be combined in the following way. Consider a
straight line through the origin of the (z, z)-plane, under inclination angle 3 with the horizontal
z-axis, being a vertical cross section of the plane separating two regions with permeability x;
(upper region) and ko (lower region). A sharp interface, separating two fluids with specific
weight v; (upper fluid) and v, (lower fluid), intersects this line in the origin. The inclination
angle of the interface with the horizontal in the region z > 0 is denoted by «a;, while the angle
between the interface and the negative z-axis, i.e. in the region z < 0, is given by ap. We assume
for the moment that oy # ay # (3, implying that interface and discontinuity in permeability

)tan(ﬁ) for ge= g, (5.5.8)
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Figure 5. The discharge components at a discontinuity in permeability.

divide the (z, z)-plane in four distinct regions. Provided the interface is non-singular (finite and
compatible velocities), the discharge components in an infinitesimal small neighborhood of the
origin, between adjacent regions, have to satisfy (5.5.3), (5.5.4) or (5.5.7), (5.5.8). Hence, given
the z- and z-discharge components in one of the regions, we can compute all corresponding
discharges in the other regions. After some elementary algebra we obtain

tan(a) (1+ 2 tan?(8)) — (1 - %) tan(B)
(% + tanZ(ﬁ)) — tan(az) tan(pB) (1 - %) .

tan(ay) = (5.5.9)

A similar relation has been found by Bear & Shapiro [3], expressing the angles of intersection
a1 and s in terms of # and the fresh and salt water fluxes in the intersection point. Note that
the fluid density difference does not appear in (5.5.9).

In the limit k1/k2 — 1, i.e. a homogeneous porous medium, (5.5.9) yields a; = ag, as to
be expected. In case of a horizontal discontinuity in permeability, i.e. in the limit 8 — 0, we
obtain

tan(a;) = % tan a (5.5.10)
1

while for a vertical discontinuity in permeability, i.e. in the limit 8 — m/2, expression (5.5.9)
reduces to

tan(a;) = :—; tan(az). (5.5.11)

The case 3 = 0, i.e. expression (5.5.10), implies that if oy — 7/2 then ap — 7/2. Equation
(5.5.9) gives an exact relation between the angles of intersection and therefor it is an indispens-
able tool for computer code verification. Moreover it gains insight in the (transient) behavior of
an interface intersecting a discontinuity in permeability.
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5.6 Vertical discontinuity in permeability: the Dupuit approxi-
mation

For the special case of a vertical discontinuity in permeability, the scaled coefficient « is given
by
Ky for z <0
k= k(z) = (5.6.1)
ko for >0

Under the assumption that du/dz << 1, i.e. in case of a (very) flat interface, equation (5.4.1)
reduces to

ou 0 Oou o
o= {n(z)u(l - u)%} for (z,t) € R x R¥ai, (5.6.2)
while the stream function is given by

U(u,z,t) = k(z)u(l — u)du/ox (5.6.3)

Continuity of the stream function at the discontinuity in x at 2 = 0 requires

lim U (u(z, t),z,t) = lim ¥(u(z,t),,t) fort > 0. (5.6.4)
z]0 10

In this limit (5.6.3) yields

%(Om): (”:—;) Z—Z(o—,t) N (%) tan(as). (5.6.5)

This is identical to the exact expression (5.5.11). Note that the latter does not hold when
(Oudz)? is not disregarded in (5.4.1).
Let the initial interface be given by

1 for >0
u(z,0) = uo(z) = { 6 de @b (5.6.6)

Then, problem (5.6.2)-(5.6.6) allows a similarity transformation of the form
u(z,t) = f(n) with n= % (5.6.7)
where the function f is a solution of the boundary value problem
1
g+ (s(n) F1 = £)fY) =0 for nER, (5.6.8)
where the primes denote differentiation with respect to 7, subject to
f(=00) =0 and f(4+o00) = 1. (5.6.9)

The solution of this problem exhibits a jump in the derivative at n = 0. To eliminate this
discontinuity we introduce a new variable according to

s(n) = /077 % d¢ for n € R. (5.6.10)
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Because x(z) is piecewise constant, we may write

) n/k1 for n<O ~J Kk for s<0 ;
s(n)—{ n/ke for n >0 o K(S)_{ ko for s>0 o611

Substitution of (5.6.11) in (5.6.8) yields

%smf’ +(fA=£)f)Y =0 for s>0, (5.6.12)
%smf’-}—(f(l—f)f’)':O for s <0, (5.6.13)

where the primes denote differentiation with respect to s. Now, the derivative f’ is continuous
at s = 0. Finally we introduce an additional transformation, in order to obtain the ratio x;/k2
as a single parameter in (5.6.12)-(5.6.13). Let

§=syky for s€R, (5.6.14)
then (5.6.12), (5.6.13) reduce to
SET (T NI =0 for €30, (5.6.15)
1 /(K 1 ne _ -
3 (2)er+(a-nry=o for ¢ <o, (5.6.16)

where now the primes denote differentiation with respect to &.

We solve boundary value problem (5.6.15), (5.6.16) subject to (5.6.9) numerically, using
a shooting procedure in the sub-domains ¢ > 0 and ¢ < 0. The numerical integration is
established with a standard adaptive step size Runge-Kutta method. First we solve (5.6.15)
subject to f(0) = fo and f'(0) = «, in the domain £ > 0, where @ denotes a shooting parameter.
The value of « is determined experimentally, such that the numerical approximation of f(§)
satisfies the boundary condition f(+o00) = 1. Next we solve (5.6.16) subject to fo and fj = o («
known), in the domain ¢ < 0. In order to satisfy the boundary condition f(—o0) = 0, we adjust
the value of the ratio x1/k2 accordingly in (5.6.16). Equations (5.6.15), (5.6.16) imply that fo,
which corresponds to the (stationary) height of the interface at z = 0 for any ¢ > 0, depends on
the ratio k1 /k2 only. Figure 6 shows the numerical results for fo = fo(k1/K2).

1 T T T T T T T T T
0.9 -

0.8 - -
0.7 - -
0.6 |- -
0.5 .
04 - —
0.3 |- -
0.2 - —

0.1 - —
0 | | 1 1 1 | 1

05 055 06 065 0.7 0f75 0.8 085 0.9 0.95 1
0

Figure 6. The relation between fo and k; /K2, for 0.5 < fo < 1.0
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When k,/ky = 1, equations (5.6.12)-(5.6.13) reduce to (5.6.15), but now for £ € R. The
latter has an exact solution of the form of a rotating line, given by

1 for E>0
f€) =4 3(1+¢& for —1<E<+1 (5.6.17)
0 for E< -1

see Philip [16]. Figure 7 shows numerical approximations of the similarity solution f (&) for
different values of the ratio k1/kz. Figure 8 gives an example of the time evolution of the
interface u(z,t) for £1/k2 = 0.1261 and fo = u(0,t) = 0.7.

! T T T T T T T
fg = 08, Iil/lig = 0.0325 — :
fo = 07, K?]/KZg =0.1261 ---
0.8 |- fo =06, k1 /Ky = 0.3739 ----
fo = 05, I‘&l/liz = 1.0000 -
0.6 -
“~—
04
0.2
0
-7 -6 -5 -4 -é?) -2 -1 0 1
Figure 7. The similarity solution f(¢) for different values of fo and corresponding k1 /k2-values
1 T T T T
0.8 - K1 —
0.6 -
04 K2 —
t=10 t=0
0.2 - —
0 1 | 1 1 1 1
-1 -0.5 0 0.5 1 1.5 2 2.5
x

Figure 8. An example of the time evolution of an interface crossing a vertical discontinuity in
permeability: the similarity solution for k; = 1.0, k; = 0.1261 and fo = 0.7. The time levels are
t=0,1,2...10.0.

In Figure 9 we show the numerical solution for £1/k2 = 0.1261 (fo = 0.7) in terms of the
similarity variable n = x/+/t. The result clearly demonstrates the convergence of the numerical
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solution towards a similarity solution. The corresponding Dupuit similarity solution is also shown
in Figure 9 (the dashed line). Notice the small difference between the numerically obtained
similarity solution and the approximate Dupuit solution.

1 — ' : ;
ol Numerical sol. —— —
Similarity sol. ---
0.6 ]
o
04 |
0.2 |
0 14 | | | .

-0.4 -0.2 0 0.6 0.8 1

0.2 0.4
n=z/Vt
Figure 9. Convergence of the numerical solution towards a similarity solution. The dashed line

represents the Dupuit similarity solution

The approximate Dupuit solution satisfies (5.5.11) for all ¢ > 0, see also (5.6.4), (5.6.5).
To check whether (5.5.11) is satisfied by the numerical solution we define the relative error
F = (1 — ratan(af)/(k tan(ak))) - 100%, where of and of denote the computed angles of
intersection at time ¢t = t*. The time evolution of F is depicted in Figure 10. Each plot marker
corresponds to a certain time level; intermediate time levels have been omitted. For short times
we find large deviations between the computed results and expression (5.5.11). This is due to
the singular behavior of the interface at the very short time scale of the computations, see Figure
9. As time proceeds, the relative error F' tends towards a limiting value: F' ~ —0.6%.

The time evolution of the speed of propagation of the top and toe of the interface is shown
in Figure 11. Again, we observe convergence of the numerically computed speeds towards the
speeds computed with the Dupuit solution.
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Figure 10. The relative error F' as a function of time.
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Figure 11. Time evolution of the speed of propagation of the top and toe of an interface:
comparison of the numerical and similarity solutions.

5.7 A horizontal discontinuity in permeability

Next we consider a horizontal heterogeneity, consisting of two parallel layers of equal thickness
with different permeability x; (upper layer) and k2 (lower layer), under the assumption that
k1 < ko. The initial interface is vertical at & = 0, such that the region z < 0 is occupied by
fresh water and the region z > 0 by salt water. In this more complicated case it is not possible
to obtain a similarity solution of a simplified problem based on the Dupuit approximation. If
we assume that the two regions are separated at the plane {z = 1/2} by an impermeable sheet,
and apply the Dupuit approximation in both regions, we obtain two independent rotating line
solutions. However, this is far from realistic because the exchange of fluid between the layers is
disregarded.
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For ¢t > 0, a hydrodynamically instable zone, i.e. salt water on top of fresh water, develops in
the vicinity of the discontinuity in permeability. The horizontal width of this zone grows in time.
Under natural (field) conditions, small local variations in permeability perturb the interface in
this zone, and fresh-salt fingers may occur. These fingers grow in time. The linear stability
analysis shows that fingers of any width or 'wave length’ > 0 can develop. The distribution of
wave lengths in the fingering pattern depends upon the nature of the perturbation mechanism
of the interface, e.g. the local (small scale) heterogeneous permeability field.

When we consider fresh and salt groundwater as miscible fluids and allow for diffusion/dispersion,
stability analysis showed that there exists a (minimum) critical wave length ¢ in the finger-
ing pattern. The value of ) is related to the value of the diffusivity/dispersivity D, see for
instance List [14]. This implies that fingers with width smaller than (half) the critical wave
length are dissipated by diffusion and/or dispersion and decay in time. In case of the interface
approximation, i.e. in the limit D — 0, we have, at least in theory, A\g = 0.

The computed time evolution of an initially vertical interface exhibits the development of
fresh-salt fingers in the vicinity of the horizontal discontinuity in permeability, see Figure 12. To
ensure numerical stability, the (variable) time step is chosen such that the condition CFL= 0.2 is
satisfied at any time level. The onset of the instabilities in the physically unstable zone is caused
by the discrete approximation of the interface: small numerical and discretization errors perturb
the unstable interface at any time level which triggers the growth of the fresh-salt fingers.

1 T T T T T L T
t = 0.0000 — '
t =0.0000 ---
08 I t=0.0174 ---- =
£ = 0.0382 oo
t =0.0644 —-—
t =0.0957 ---
06 ¢t=01235 — k1 =10 .
04 -
0.2 -
0 e Tl TRl Tl 1 !
-0.5 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Figure 12. Time evolution of an initially vertical interface.

The width of the fingers that grow in time is directly related to the coarseness of the dis-
cretization of the interface. The minimum finger width at the onset of an instability is approxi-
mately 6 interface piecewise linears. If we refine the mesh by a factor 2, the width of the fingers
that grow is also reduced by a factor 2, while the fingers start to develop earlier. In Figure 13, we
compare two interfaces at ¢ = 0.1235. The dashed line corresponds to the last interface shown
in Figure 12, and is computed with a fine mesh. The solid line is the result of a computation
with a coarse mesh, i.e. the number of nodal points at the interface is reduced by a factor 2when
compared to the fine mesh. The computations break down when adjacent parts of the interface
coincide. The discretization of the flow domain, i.e. two distinct regions separated by a single
interface, does not allow the formation of salt or fresh water drops. The latter implies that only
the short time development of instabilities can be simulated with this numerical approach.
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Figure 13. Interfaces at t = 0.1235, computed with a fine and a coarse discretization.

In Figure 14 we show the time evolution of an initially horizontal interface which coincides
with the discontinuity in permeability. This interface is perturbed at (0,0.5) by —0.006. The
upper part of the flow domain, i.e. the region where x1 = 0.5, is filled with salt water, and
the lower part, i.e. the region where ko = 1.0 is filled with fresh water. The computed finger
shapes are not very smooth: the individual piecewise linears are clearly visible. The latter will
always be that case. If we refine the mesh, the finger widths reduce accordingly. The asymmetry
of the fingering pattern is caused by the asymmetry of the generated meshes with respect to
the z-axis. If we do not perturb the initially horizontal interface, no growth of instabilities is
observed, as to be expected. The initial interface is perfectly horizontal and the velocity field
remains identically zero for all times.
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Fig 15. Time evolution of an initially horizontal interface that coincides with the discontinuity in
permeability, and which is perturbed at (0.0,0.5) by —0.006.

A similar computation was carried out for the homogeneous case. The time evolution is
shown in Figure 15. An example of the triangularization of the salt water domain is given in
Figure 16. Notice the refinement of the discretization in the vicinity of the interface.
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Figure 15. Time evolution of an initially horizontal interface which is perturbed at (0.0,0.5) by —0.006.
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Figure 16. Triangularization of the salt water region

5.8 Discussion and conclusions

The proposed front tracking procedure gives results within the same range of accuracy as the
predictor-corrector scheme used by Chan Hong et. al. [6]. At least for parametrizable interfaces
(z = u(z,t)) we are able to show this convincingly by comparison of results, generated with
both methods. See for instance the rotating linear interface in a homogeneous flow domain in
Section 4.1. For multivalued interfaces, no reliable test problems or related approximate Dupuit
problems are available.
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The bounds on the time scale of slumping brine mounds, as predicted by Van Duijn & Philip
[17], could be verified and confirmed. The triangular Dupuit solution predicts the short-time
behavior of the numerical solution of the full problem, while the parabolic Dupuit solution
describes the large-time behavior. These results emphasize the utility of the Dupuit assumption
in solving practical interface problems.

When an interface crosses a discontinuity in permeability, an exact expression can be derived,
which relates the contrast in permeability to the angles of intersection at the discontinuity,
see (5.5.9). If, given a permeability ratio k1/ke, the angles of intersection do not satisfy this
expression, the velocities at the point of intersection will be, at least theoretically, singular.
Indeed, very high velocities are encountered at the short-time scale of computations. As time
proceeds, the computed interface shapes at the discontinuity in permeability converge towards
the shape predicted by expression (5.5.9). In fact, the initially vertical interface, i.e. the initial
condition for all heterogeneous computations, is singular itself due to the kinks at the domain
boundaries. This also leads to very high initial velocities, and accordingly, due to the CFL
constraint on the time step, to very small (initial) time steps.

For the case of a vertical discontinuity in permeability, a related approximate Dupuit could
be solved in terms of a (semi) explicit similarity solution. The numerical solution of the full
problem also converges towards a similarity profile as ¢ — oo. The Dupuit solution gives a
reasonable approximation of the large-time behavior of the numerical solution. Whereas the
similarity profiles are not completely identical, the velocities of the top and toe of both solutions
converge towards the same limiting values (up to small error).

The width of the fresh-salt fingers that occur in the unstable regions is selected by the
numerical method, and not by any physical mechanism. This is a direct consequence of the
absense of diffusion/dispersion in the interface approximation. Refinement of the mesh at the
interface leads to smaller finger widths. This implies that the practical applicability of interface
models for simulation of instabilities is limited. Moreover, the instabilities or fingers create a
mixing zone of fresh and salt groundwater which is in some sense in contradiction with the
interface approximation: strictly miscible fluids are considered to be immiscible.
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Chapter 6

Non-equilibrium crystal dissolution

6.1 Introduction

In this paper we study chemistry affected transport processes in porous media. The transported
solutes are participants in a precipitation-dissolution reaction, which in general is not in equi-
librium, but is kinetically controlled. In the Chapter 1 (i.e. the Introduction of this thesis) we
have set up a model for spatially one-dimensional flow regimes. Throughout the rest of this
paper we refer to the solid phase as ‘crystal’ or ’crystalline solid’, which is due to the fact that
we have a specific example in mind: the dissolution of a crystalline mineral phase, which occurs
as a very thin layer on the grains of the porous medium, see e.g. Willis & Rubin [15]. In fact,
the dissolving substance may be either crystalline or amorphous. It was assumed that water
content, bulk density, pore velocity ¢ [cm/s] and diffusion/dispersion coefficient D [cm?/s] are
constant. The unknown functions are u and v [mM/cm?], where u is the molar concentration
of one of the reacting participants in solution, v is the scaled concentration of the crystalline
solid (both relative to the water volume), and a third unknown w [-], which appears to take into
account the nature of the dissolution reaction. For a detailed discussion on the role of w we
refer to Knabner et. al. [7]. The governing equations are

0 ou %u
ov
= k{g(u;c) —wK} (6.1.2)
0<w<1 and w(z,t)=1 if wv(z,t) >0 (6.1.3)

for —0o < 2 < oo, t > 0. The positive constants K and k are the saturation constant and a
rate parameter, respectively. There is a further function ¢ in the nonlinear function g related
to the precipitation reaction. It is a conserved quantity in the sense that it satisfies the linear
diffusion-advection equation

dc oc d%c

— 4 qg— — D,—_

ot " Tor T ox?
for —o0o < x < 00,t > 0. The function ¢ is solely determined by the stoichiometry of the
precipitation-dissolution reaction. If this is given by

=0 (6.1.4)

My = nM; + mM, (6.1.5)
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with positive integers n, m where M, M, denote the species in solution and M, the solid, then
¢ =mcy —ney (6.1.6)

where c1,c; [mM/cm?] are the molar concentrations of Mj, M. In (6.1.1)-(6.1.4), ¢; := u is
kept as an unknown and c; is substituted by means of (6.1.6). For a spatially independent batch
situation the function ¢ would be constant due to (6.1.4), i.e. all possible values of concentrations
c1(t), c2(t) lie in an affine subspace of the one-dimensional stoichiometric subspace of the reaction,
defined by the condition ¢ = 0. In the case of ionic species, it is also possible to consider ¢ as the
scaled total (positive) electric charge of the solution. This observation helps us in distinguishing
two principal situations with respect to a specification by means of initial conditions. We will
consider piecewise constant states at ¢ = 0, i.e.

(6.1.7)

u*, v*, c* for z <0
u(z’ 0)7 v(z’ 0)7 C($7 O) =

Uiy Vg Cu for z >0

We can relate these solutions to solutions of a corresponding boundary value problem for z >
0,t > 0 by considering uy, vy, ¢« as initial conditions and u*,v*, ¢* as boundary conditions. Thus
there are two situations

¢" = ¢, and therefore ¢(z,t) = ¢ = constant (6.1.8)

or
c # e (6.1.9)

In case (6.1.8) the boundary(/initial) conditions are compatible in the sense that they belong
to the same affine stoichiometric subspace of the reaction or for ionic species that the injected
fluid has the same ionic composition as the resident fluid. This situation is the only one which
leads to travelling wave solutions being the subject of the paper by Knabner et. al. [7]. Here we
concentrate on case (6.1.9), i.e. on incompatible boundary(/initial) conditions. In this paper we
show how to obtain solutions of this problem in the presence of a dissolution front, i.e. a curve
in the (z,t)-plane separating the region where v = 0 from the region where v > 0. To ensure
that a dissolution front exists for all ¢ > 0, one needs

v* =0 and v, >0. (6.1.10)

If initially crystalline solid is everywhere present in the flow domain, i.e. v* > 0 as well, then
a dissolution front may occur after a certain finite time interval. Conditions for which this
happens are discussed in Section 3.2.

A typical example for the function g is, assuming the thermodynamically ideal mass action law:

g(u;c) = u™ (%(mu—c))m (6.1.11)

where (6.1.6) is used. To ensure that ¢; > 0, ca > 0, only the variable u > (¢/m), is allowed,
where ay = a for a > u, ay = 0 for a < 0. In general the function g has the following properties
to be used later on:

g(+; ¢) is strictly monotone increasing for u > (¢/m),

g(-; ¢) is smooth for u > (¢/m), (at least Lipschitz-continuous).
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We need the existence of a (unique) ug = ug(c) > (¢/m)4 such that
g(u;¢) = K (6.1.12)

ie. ug is the solubility for given c¢. Due to the properties of the function g given above, the
following condition fulfilled by (6.1.11) is sufficient for (6.1.12):

g ((%)Jr ;c) =0. (6.1.13)

When we require (6.1.10), we additionally assume the initial states to be in chemical equilibrium,
1e.

(i) <u* <us(c*) and u, =us(cs). (6.1.14)
M4

If solid is present everywhere, this would not lead to the appearance of a dissolution front, see
6.3.63),(6.3.64). Thus we allow in this case for an initial state for z < 0 not in equilibrium,
which might be thought of as the consequence of an instantaneous removal of saturated fluid.
If dispersive transport is negligible compared to the advective transport, it is reasonable to let
D — 0. i.e. to cancel the corresponding terms in (6.1.1)-(6.1.4) and to obtain

%(u+v)+q%:0 (6.1.15)
for —oo < x < 00, t > 0. The initial value problem (6.1.15),(6.1.2)-(6.1.4) and (6.1.7) is known
as a Riemann problem. In this paper we consider the analytical and numerical construction
of a solution of this Riemann problem. For dominating advective transport, i.e. the limit
D — 0 in (6.1.1), we expect a good approximation of the solutions of (6.1.1)-(6.1.4) and (6.1.7)
ignoring only certain smoothing effects (see the comparison in Section 5). On the other hand,
the treatment of the hyperbolic system by means of the method of characteristics allows a nearly
explicit construction of the solution and thus gives detailed information about the qualitative
structure of the solution. The function ¢ is found directly, without a priori knowledge about u, v
and w. It follows from (6.1.4) and (6.1.7) that for all £ > 0

o for z < qt,
dL”_{a for  z>qt (6.1.16)

To be specific, we assume in the following
¢ > (6.1.17)

The other case can be treated in exactly the same way or transformed to the above situation,
which basically corresponds to a renumbering of the dissolved reaction participants. A further
property, which holds true for the example (6.1.11), is the monotone dependence of the solubility
ug(c) on ¢, L.e. in particular

us(c*) > ug(c). (6.1.18)

In the analysis we will not make use of this property, but in the figures it is assumed to hold
true or implied by the choice of example (6.1.11). The outline of the paper is as follows. We
first construct a solution of the Riemann problem in the case of equilibrium reactions. That is,
we take ‘k = 0o’ in equation (6.1.2) and replace it by

g(usc) =wK. (6.1.19)
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In Section 3.1, we use the method of characteristics, to obtain an explicit representation of the
solution, which still is dependent on the dissolution front z = s(¢). For this free boundary,
which necessarily exhibits a waiting time, we derive an integral equation, which in Section 4
is transformed to a linear Volterra equation of the second kind. This settles the existence of a
solution of the integral equation, which then can be used to define a solution of the Riemann
problem. In Section 3.2, this procedure is extended to the treatment of v,,v* > 0,u* < ug(c*).
In Section 5, an algorithm for the precise approximation of solutions is presented based on the
above procedure.

The analysis of multi-component reactive systems with pure advective transport by means of the
corresponding hyperbolic systems has a certain tradition in the chemical engineering literature.
Although the situation considered usually allows for more species and reactions then considered
here, most of these papers are restricted to the case of equilibrium reactions and a constant
number of phases (see e.g. Walsh et. al. [14], Dria et. al. [3], Novak et. al. [9], Bryant et.
al. [2], Novak et. al. [10], Helffrich & Klein [6], Schweich et. al. [11] and the literature cited
there). If the non-equilibrium case is considered most authors (see e.g. Sevougian et. al. [12]
and [13]) resort to numerical methods, allowing more complex and realistic situations. The main
features of the simple situation studied semi-analytically in this paper are the assumption of
non-equilibrium and the appearance of a dissolution front.

6.2 Equilibrium

When studying the transport process at equilibrium we replace the first order equation (6.1.2)
by the equilibrium relation (6.1.19). Thus the equations to be analyzed are equation (6.1.15),

9(u;c) = wkK, (6.2.20)

subject to (6.1.3), where c is given by (6.1.16). In this section we construct a solution of this
system in the domain —oo < z < +oo for ¢ > 0, which satisfies at ¢t = 0 the piecewise constant
initial distribution (6.1.7). We recall that the constant states in (6.1.7) fulfill conditions (6.1.14).
To emphasize the role of the dissolution front we impose condition (6.1.10) as well. This simple
case is treated for further comparison and introduction of the techniques to be used. In fact the
result of this section is well-known in the chemical engineering literature (at least formally) and
a special case of e.g. Bryant et.al. [1].

For the construction, the following two observations are essential. The first one relates to
equation (6.2.20) and says that if v(z,t) > 0 then w(z,t) = 1 and by (6.2.20)

9(u(z,t);c(z,t)) = K (6.2.21)

In addition, if z > ¢t then u(z,t) = us(cs) = us and if x < gt then u(z,t) = ug(c*).

The second one is the Rankine-Hugoniot shock condition for solutions of (6.1.15). This condition
which is based on a mass-conservation argument (see for instance Whitham [16] or LeVeque [8]),
says that discontinuities or shocks in solutions of equation (6.1.15) propagate with

speed = [u] q. (6.2.22)

Here the quantities between the brackets denote the size of the jump discontinuity in v and v
across the location of the shock.
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s s(t)
Fig 1. Dissolution front ahead of the fluid front.

Now suppose a dissolution front z = s(t) exists such that

B 0 for z < s(t)
o(,t) = { >0 for z > s(t). (6.2:23)
On physical grounds one expects s(t) < gt for all ¢ > 0, because ¢ denotes the averaged pore
velocity of the fluid: i.e. ahead of the front z = gt one expects to find the initial states u = u,
and v = v,.
The mathematical argument is the following. Suppose the dissolution front moves ahead
of the fluid front, as in Figure 1. Since w(z,t) = 1 for z > s(t) we find from (6.2.21) that
u = ug(c,) in the shaded region in Figure 1. Next select t > 0 such that

s(f) > ¢f and $(f) > q, (6.2.24)

where the dot denotes differentiation. In other words, we have selected a time t at which the
speed of the dissolution front exceeds g. Then by the Rankine-Hugoniot condition (6.2.22),

u(s(t) 7, 1) > ue = ug(cy), (6.2.25)

as v jumps downwards from right to left or does not jump. Here u(y=,t) = limgpyu(z,t)
denotes the limit in y from the left and u(y*,t) = limgy, u(z,t) the limit from the right. But
¢(s(f),f) = c., and thus by (6.2.20) and (6.1.3)

u(s(t)”,1) < us(e), (6.2.26)

a contradiction. In other words, assumption (6.2.24) implies over-saturation for u. But this
is not allowed under equilibrium conditions. We further note that if v is discontinuous at the
dissolution front, i.e. v(s(t)*,t) > 0 then §(t) = g cannot occur. This is a direct consequence of
(6.2.22). This observation implies that s(£) = qf and () = g for some £ > 0 can also not occur

as v(s(t)*, ) = v, > 0. Hence

s(t) < gt for all t > 0. (6.2.27)
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The ordering of the fronts and (6.2.20),(6.2.21) imply

<ug(c*) —oo <z <s(t)
u(z,t) = us(c*) s(t) <z <qt (6.2.28)
us(c,) gt <z <400

Consequently by (6.2.22)
0<i(t)<q forall t>0 (6.2.29)

and $(f) < ¢ occurs at points ¢ where v is discontinuous. In particular this shows that all
dissolution fronts are monotone in time. Since v vanishes in the region z < s(t), we have there

ou ou

a o
The initial condition on u for z < 0, the upperbound in (6.2.29) and equation (6.2.30) imply
that u = u* for z < s(t). To determine v in the region z > s(t) we use (6.2.28) and equation
(6.1.15). Combined they imply that dv(z,t)/dt =0 for z > s(t), x # qt. Then using the initial
condition on v for z > 0 and the lower bound on $, we find after integration v = v, for z > s(t).
Thus we have constructed a piecewise constant solution of (6.1.15), (6.2.20) and (6.1.3) which
satisfies the initial distribution (6.1.7). The dissolution front follows from the Rankine-Hugoniot
condition (6.2.22): s(t) = at, with

=0. (6.2.30)

* *
PP i e VY W (6.2.31)
ug(c*) — u* + v,

Across the other shock, z = ¢t, v is constant. This is consistent with (6.2.22). In the chemical
engineering literature this front is called the salinity front, see e.g. Bryant et. al. [1]). In Figure
2 we show the level set of the solution {u,v,w,c} at equilibrium. The separating curves are
shock curves at = at and z = qt. Figure 3 shows a sketch of the profiles of the variables for
some t > 0. A qualitative comparison with the computations of Willis and Rubin [15] will be
given in Section 5.

One may raise the question if the solution as constructed in this section is the unique solution
of the initial value problem. For the following reasons we believe that it is. In the construction,
inequalities (6.2.29) are crucial. They imply directly that the concentrations u and v are constant,
to the left and the right of a dissolution front, leading to the constant speed (6.2.31). In (6.2.29)
the inequalities are a consequence of the Rankine-Hugoniot condition and the fact that over-
saturation is ruled out by requiring w < 1 in (6.1.3). In other words, (6.2.29) are local properties
of any dissolution front. As outlined above they lead to a piecewise constant solution as presented
in this section.

6.3 Non-equilibrium

When precipitation-dissolution reactions cannot assumed to be at equilibrium, one needs to
incorporate the first-order reaction equation (6.1.2) in the description. This leads to a much
more involved analysis. In this section we construct solutions of the Riemann problem (6.1.15),
(6.1.2)-(6.1.4) and (6.1.7) for two distinct cases. In Section 3.1 we assume (6.1.10) to be satisfied,
implying that crystalline solid is present only in part of the flow domain, and in Section 3.2 we
assume v*, v, > 0. In this first case a dissolution front exists for all ¢ > 0. In the second case it
may appear in finite time.
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w=g(u'c’)/K
¢} ® at qt z

Fig 2. Level sets of concentrations at equilibrium. Fig 3. Sketch of profiles at some ¢t > 0.

6.3.1 Crystalline solid partly present

Inspired by the equilibrium results, i.e. 'k = oo’ we start with the assumption that a dissolution
front exists, as in (6.2.23), which satisfies inequalities (6.2.29). These inequalities are crucial
for the construction of a solution. Unfortunately there are no obvious physical or mathematical
arguments to support these assumptions. In contrast, the weaker statement s(t) < gt for all
t > 0, which is obviously physical, can be justified similarly as in Section 2. We return to
the possibility of existence of solutions not fulfilling these assumptions when discussing the
uniqueness at the end of Section 4. The main goal is to derive an equation for the location
x = s(t) of the dissolution front.

As in Section 2 we conclude, because of %% =0 for z < s(t), that u = const = u* for z < s(t)
and that w = g(u*,¢*)/K there. Similarly for z > qt we have u = const = u, = ug(c«) and thus
v = const = v,. With reference to Figure 4, we are going to consider the following problem:

Find a u,v and s such that

ou du

ot +(Ib; = k{K—g(UQC*)}v (6.3.32)
B )~ & :
% kgl ) - K}, (6:3.33)

for s(t) < z < gt and for t > 0, subject to
u(s(t),t) = u*, v(s(t),t) =0 (6.3.34)
and

v(gt,t) = v (6.3.35)
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Note that in the composite solution the crystalline concentration v is continuous across = = qt,
due to (6.2.22) and then (6.3.35) holds, while the fluid concentration u possibly has a discon-
tinuity there. Equation (6.3.33) implies continuity of v across the dissolution front z = s(t),
which in turn, due to (6.2.22), implies continuity of u across z = s(t).

¢ z = a(f)
v>0,w=1
§ Yo soes i o
v=0 i z=gqt
|
(y,T)
o u=u" | .
e |
L ! . u=u, =u,(c,)
| !
| I
| v=u,
1
) I
' |
] |
O s(to) s(t) 2

Fig 4. Dissolution front in the (z,t)-plane.

We solve equations (6.3.32), (6.3.33) by the method of characteristics. Choose any point
(y,7) in the domain {(z,t) : s(t) < = < gt,t > 0}, see also Figure 4. The characteristics of
(6.3.32) are straight lines in the (z,t)-plane, having slope ¢ with respect to the t-axis. The
characteristic passing through the point (y,7), i.e. the curve z = y + ¢(t — 7), intersects the
dissolution front in the point (s(to), o), which satisfies

s(to) = y +q(to — 7). (6.3.36)

Due to §(t) < ¢ this point is unique and thus is the same for all starting points (y, 7) satisfying
(6.3.36). For a given dissolution front s(t), this would determine ¢y as a function of y and 7, i.e.
to = to(y, 7). Integrating (6.3.32) along the characteristic and using (6.3.36) yields

;) 1 B _ y—s(toly,7) "
/u' m dz =7 — to(y,’r) = T (6337)

The idea is now to use equation (6.3.33) and the boundary conditions on v to determine the
location of the dissolution front, i.e. to find the function s(t). Before we proceed we first
introduce for the case u* < ug(c*) the function f : [0, +00) — [u*, ug(c*)) defined implicitly by
the integral

/M) L dz= 2 foral 530 (6.3.38)
———dz= - fora : 3
u k{K —g(z;¢*)} q -

and the function F : [0, +00) — (0, +00), defined by

F(0) = k{K — g(f(d);¢*)} forall 6 >0. (6.3.39)
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Here § denotes a distance y — s(to(y, 7)), measured along the characteristic from the dissolution
front = = s(to) to a point (y,7), while f() = u(y, ) denotes the fluid concentration at that
point. The fluid concentration f and reaction rate F at any point of a characteristic depend
only on this distance d, which is due to the fact that convection is the only transport mechanism
in this single reaction problem. Note that due to the differentiability of g(-;¢*) at u = ug(c*)

u 1 N
/u’“ m dz = oo for u — ’LLS(C ) (6340)

and thus f and F are well defined.
Examples. Let the rate function g be given by the law of mass action (6.1.11). We can explicitly

compute the cases:
n=1,m=0 (The linear case, see also Part I, equation (40)).
Then g(u;c) = u and ugs(c) = K, independent of c. We find

£(6) = K — (K —u*)e™ e (6.3.41)
and
F(5) = k(K —u*)e™s° (6.3.42)

n=1,m=1. (See Figure 5).
Then ¢(u; ¢) = u(u — ¢) and us(c) = 5 + 1V +4K. We find that f satisfies

f(O) —uo _ Ul T U0 as (6.3.43)

us — f(0)  us—u*

where ug = ug(c),up = uo(c) = § — %\/62 + 4K and a = s(us — ug). Consequently

u* — g efaé

ug —u* {e~of 4 B=la}2

F(8) = k(us — up)* (6.3.44)

When u* = ug(c*), which we consider as a degenerate case, we extend the definitions (6.3.38)

|
1
|
!
|
Uo [e) c Us u
Fig 5. Rate function g for n = m = 1. Note that u* > c.

and (6.3.39) by setting
f(8) = us(c*) and F(§) =0 forall 6 > 0. (6.3.45)

Unless stated otherwise we avoid this degeneracy by taking u* < ug(c*). This implies F(§) >0
and F'(0) < 0 for all 6 > 0.
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Next we continue the analysis of (6.3.32), (6.3.33), by rewriting equation (6.3.37). Take any
t > 0 and let y = s(¢). Using definitions (6.3.38),(6.3.39) we now write

E{K — g(u(s(t),7);c*)} = F(s(t) — s(to)), (6.3.46)
for any s(t)/q < 7 < t. Here we have used $(t) > 0. In this expression, to = to(s(t), ) satisfies

to = t when 7 = t. Substituting (6.3.46) into equation (6.3.33), integrating the result in time
and applying the v-boundary condition in (6.3.34) and (6.3.35), yields

A;F@uy-dm»dT:m. (6.3.47)

Note that in deriving this equation we in particular assumed s to be monotone, but not to be
strictly monotone. In the derivation of (6.3.47) we can allow for constant parts of s, i.e. for
times 0 < t; < t, such that s(t) = s(¢;) for all ¢; < t < t5. In such a case the definition of
to = to(s(t), ) gives for ¢ such that t; <t < to:

to(s(t),7) =71 for 7 € [t1,1] (6.3.48)
and the whole derivation of equation (6.3.47) holds true with the following exception: If s(t) = 0
for 0 <t < 25, then the integration leading to (6.3.47) cannot be performed for ¢ € [0,,] as
v(0,0) is not defined. But on the other hand a dissolution front as sketched in Figure 4, i.e.

5(0) = 0 and s(t) > 0 for ¢ > 0, would lead to a contradiction in (6.3.47). Letting ¢ | 0 would
make the left hand side zero while v, > 0 as given. Therefore we have a waiting time ¢, > 0,

see Figure 6, such that
0 for 0<t<t,,
s(t) = { B fop £> ¢ (6.3.49)

From equation (6.3.47) for t | t, we conclude

Fig 6. Waiting time in dissolution front.

t.F(0) = v,. (6.3.50)

Using (6.3.38) and (6.3.39) we find for the waiting time the expression

Vs

rerT (6.3.51)

by
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Note that in the degenerate case u* = ug(c*) expression (6.3.51) implies &, = oco. In other
words, when u* equals the solubility concentration then the dissolution front remains stagnant.
Furthermore, apart from the initial waiting time, no further constant parts of s can occur: if
this would be the case, say on the interval [¢1,¢2], then we can conclude from (6.3.47)

Ve = /t2 F(s(t2) — s(to)) dr
Sggz)/q &
- / Fs(t1) — s(to)) dr +/ Fs(t1) — s(to)) dr (6.3.52)
ty s(t)/q

Il

t2

F(0) d1 + vy,
t1
which is a contradiction. We want to rewrite the integral in (6.3.47) in terms of to and we do
this by using (6.3.36). From that equality, with y = s(t), we obtain due to 5(t) < ¢ a unique
correspondence of the points 7 with the points ¢9, where

7% L implies t9: 0 — ¢ (6.3.53)
q
and
or 1
I =1~ =alts). 6.3.54
o —1-ilt) (6:3.54)

Applying these observations to (6.3.47) yields

/Ot F(s(t) — s(to)) dto = vs + é/ot F(s(t) — s(to))3(to) dto

1 s
=0, + — F(z) dz, (6.3.55)
qJo

where the left-hand side can be slightly rewritten by introducing the waiting time:

/Ot F(s(t) — s(to)) dto = t.F(s(t)) + /tt F(s(t) — s(to)) dto. (6.3.56)

To summarize, we have obtained an integral equation from which the location of the dissolution
front can be determined. The precise formulation is: Let ¢, be given by (6.3.51). Then find the
function s(t), satisfying (6.3.49) and the dissolution front equation (DFE)

tF(s(t) — s(tg)) dto = B(s(t)) for t >t, where
(DFE){ 7t i) (6.3.57)
B(s(t)) = t.{F(0) — F(s(t))} + 3/0 F(2) da.

The expression for B follows from (6.3.50),(6.3.55) and (6.3.56). In general we have to rely on
numerical methods to solve (DFE). One such method will be discussed in Section 5. Only very
special cases can be solved analytically, for instance the case n =1 and m = 0 (the linear case)
in the examples, where F is given by (6.3.42). For that form of F' it is straight forward to solve
(DFE) explicitly. The result is

s(t) = l+qkf (t—t.) for t>t., (6.3.58)
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where
t — Vs 6.3.59
" RE - (6.3.59)
In Section 4 we show how to transform (DFE) into a standard integral equation, from which
some characteristic properties of the front can be derived. Having found an expression or ap-
proximation for s(t), one has to go back to equation (6.3.37) and definition (6.3.38) to determine
u. The concentration of the crystalline solid is obtained from integrating (6.3.33).

6.3.2 Solid present everywhere

As in the previous case, the concentrations ahead of the fluid front are not affected by the
displacing fluid and therefore equal to the initial concentrations. Since v is continuous across
z = qt, the essential parameters which determine the behavior of the concentrations are u*,v*, c*
(rather ug(c*)) and v,, see Figure 7. For definiteness we assume here that v* < v,. As long

u=u"v="1v" 0

Fig 7. Initial conditions for the domain z < ¢t,t > 0.

as v > 0, implying w = 1, no dissoltion front will emerge and we need to solve equations
(6.3.32),(6.3.33) subject to the conditions shown in Figure 7. From the physical point of view
the initial conditions for z < 0 are somewhat unrealistic because u* and v* are not in equilibrium.
This implies that in a laboratory experiment the resident fluid in the region z < 0 at t = 0 has
to be instantaneously replaced by fluid with concentration u*. The latter is, by approximation,
only feasible for (very) small reaction rates.

Integrating the u-equation along the characteristic z — gt = constant and the v-equation in
t, we find that

u(z,t) = f(qt) for <0 or 0 <z < gt and t >0, (6.3.60)
with f defined by (6.3.38) and
) v+ ut = f(qt) for <0, t>0 .
v, t) = { ve + f(z) — fgt) for 0<z<gqt, t>0 (6.3.61)

The latter follows immediately from integration of
v(z,t) Ou(z — qt,t)

ot ot
in time, see equation (6.1.15). Note that f is monotonically increasing from f(0) = u* towards
f(00) = ug(c*). The solid concentration for fixed ¢t > 0 is sketched in Figure 8.
Obviously, expressions (6.3.60),(6.3.61) are only meaningful if v > 0. This leads us to
consider the following cases.

(6.3.62)
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v(z,t)
/—‘ o
Ve — .v"
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Fig 8. Crystalline solid distribution for fixed ¢t > 0.

i) u* =ug(c).
This choice implies f = constant = u*, yielding the solution

_Jur z<qgt
u(z,t) = { W &g (6.3.63)
and
v* <0
v(z,t) = { v, 750 (6.3.64)

i) u* < ug(c*) and v* > ug(c*) —u”.
The second inequality being strict means that the concentration of crystalline solid is too
high to be fully dissolved in the fluid. As a consequence (6.3.60) and (6.3.61) hold for all
t > 0, where

vt +u* —ug(ct) > z<0

0, ‘
Vs + f(z) = 'U'S(C*) = 0’ D<z< qt (6365)

v(z,t) > v(z,00) = {

iii) u* < ug(c*) and v* < ug(c’) —u.
Now the second inequality and (6.3.61) imply that there exists a finite time T' > 0, defined
by

f(qgT) =v* +u”, (6.3.66)
such that v(z,t) > 0 for 0 <t < T and

0, z <0

v )= { v+ f(z) - f(gT), 0<az<qT. (6.3.67)

The distribution of the concentrations in the (z,t)-plane is sketched in Figure 9. At the point
(0,T) a dissolution front emerges as explained in Section 3.1, except that the constant v, has to
be replaced by the known function v(q(t — T),t). Translating the point (0,7') to the origin by
setting z = z,7 = t — T, and writing s = s(7) (with $(0) =0, s(r) > 0, for 7 > 0) we find the
waiting time 7y

7. F(0) = v, — 0", (6.3.68)
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Fig 9. Concentrations in the (z,t)-plane.

and the modified dissolution front equation (MDFE)

/TF(S(T) )} e = Bale)] for 7 >0, when
(MDFE) j' . ~ s(r) _ (6369)
Bls(r)) = V(s(r)) + 7l F(0) = Fs(r)} +3 [ o) d

In the expressions, the function F differs from the function F used in (DFE): obviously u* has
to be substituted by f(¢7T") = u* +v* in the definition of a function f in (6.3.38) and F is given

by (6.3.39) by substituting f by f. Furthermore, the function V in B is related to v along
x =q(t—T). It is found to be

V(s(t))=v (s(v-),T + —) — (vs — v%) (6.3.70)

or, using (6.3.61),
V(s(1)) =v" 4+ f(s(1)) = f(¢T + s(7)). (6.3.71)

Note that here the original function f according to definition (6.3.38) appears in (6.3.71). Clearly
V(0) = 0. Having determined s(7) from (6.3.68), (MDFE) and (6.3.71), one proceeds as before
to find u and v in the region s(7) < z < q7,7 > 0.

In principle a discontinuity of u is possible at z = ¢(t — T'). In fact u is continuous there,
which can be seen as follows: Due to (6.3.60) we have u(q(t — T)*,t) = f(qt) = f(z + ¢qT).
On the other hand the definition of f(z) leads to u(q(t — T)~,t) = f. We have setting h(z) =

L/(K{K —g(z;¢")}):

£(5) P u™fp* 1
/ h(z) dz = +/ M=) dz = (34 7 (w4 0)) (6.3.72)
u u*

”

as u* +v* < ug(c*) and thus is in the range of f. Therefore

fO)=f@0+ f " +v") = f(0+¢T) due to (6.3.66), (6.3.73)
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in particular we have
u(g(t —T)*,t) = u(g(t = T)", 1) (6.3.74)

The qualitative analysis concerning dissolution fronts, as given in Section 4, is restricted to
(DFE) only. This choice implies no loss of generality. All results/properties carry over to the
solution of (MDFE). However, when discussing the numerical results, we do present an example
in which a concentration distribution as shown in Figure 9 will arise.

6.4 Dissolution Front Equation

Before discussing the qualitative behavior of the dissolution front, i.e. the solution of integral
equation (DFE), we recall here that this equation was derived by assuming the structural con-
ditions (6.2.29). These conditions are consistent with the following results.

Property. Let s : [t,,00) = [0,00) be differentiable and satisfy (DFE). Then

(if) 4(t) = ¢/ (1 — Sttea) € (0,9);
(iii) 0 < $(t) < ¢ for all t > &3
(iv) s(o0) = oo.

Proof (i) By assumption s(t) > 0 for all ¢ > ¢,. Since F'(5) < 0 for all § > 0, with F(0) =
k{K —g(u*;¢*)} > 0 and F(co) = 0, we observe that the expression B in (DFE) has the property
B(0) =0, B(z) > 0 for z > 0. Evaluating (DFE) at t = t, yields B(s(t«)) = 0, implying at once
s(te) =0.
(ii) Differentiating (DFE) with respect to ¢ and rearranging terms yields
F(0
$(t) = ( )t (6.4.75)
LR(s() — tuF'(s(1) = | F'(s(t) = s(to)) dto

ta

for all t > t,. Taking t = ¢, in this expression and using (i) gives the desired result.

(iii) Because the right hand side in (6.4.75) is strictly positive, the lower bound is immediate.
The upperbound is more involved. To show it we argue by contradiction. Thus suppose there
exists £ > t, such that

§(t) < q forall t, <t<t and $(t) =gq. (6.4.76)
Taking ¢t = { in (6.4.75) and estimating

P s(h) -
_ /t F'(s(}) — s(to)) dto = 7/0 @ dz > é (F(0) — F(s(f)} (6.4.77)

results in

' ~, -1
$() < q {1 _at.E (s(2)) } <q. (6.4.78)
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This contradicts (6.4.76) and therefore $(t) < q for all ¢t > t,.
(iv) To prove this we construct a lower bound which becomes unbounded as ¢ — oo. Let

Ci= rglgac(~F’(z)). (6.4.79)

Using this upper bound in (6.4.75) gives for ¢t > ¢,
F(0) k()

i(t) > 6.4.80
() TF(s(®) + t.C 1 (t— £)C ~ F(0) + ¢Ct LE
and after integration
QO
sy > 20y, = (6.4.81)
C 1+ #Gyts

This shows that s(t) becomes unbounded as t — oo, see also Figure 10.

z

Fig 10. Estimate of location of dissolution front.

Having determined these a priori properties of the dissolution front, we now turn to the
question of existence. To make use of well-known results, we transform the equation to a
standard linear integral equation of the second kind for a new unknown function. Due to
monotonicity Property (iii), by a change of variable (see the line below (6.4.88)) , we can rewrite
(DFE) as a linear integral equation of the first kind for the derivative of the inverse of s, denoted
by ¢. By differentiation with respect to ¢, this equation transforms to

B'(z) = F(0)¢(z) + /01c F'(z —y)¢(y) dy for = >0, (6.4.82)

where the primes denote differentiation and where B and F are as in (DFE). In particular
B(z) = éF(z) — P (). (6.4.83)
Equation (6.4.82) has been studied in the mathematics literature and it is known that if F €

Hlloc([O, o0)) (i.e. F and F’ are locally square integrable on [0,00)) then (6.4.82) has a unique
global solution ¢ on [0, 00), see Zabreyko and Mayorova [17]. Furthermore, if F is continuously
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differentiable (in fact F belongs to C* in many relevant examples) then ¢ is continuous (or also
C*) in [0,00). As in the proof of (iii), one easily finds

1
¢(z) > — for all z > 0. (6.4.84)
q
Having established the existence of a smooth function ¢ satisfying (6.4.82) and (6.4.84), we are

and (
now in the position to define the function s : [0,00) — [0,00) such that s(t) =0 for 0 < < ¢,
and

s(t)
t—t. = / ¢(z) dz for all t > t.. (6.4.85)
0

The smoothness of ¢ carries over to s in [t,,00): for instance, if ¢ is continuous in [0,00) and
satisfies (6.4.84), then s is continuously differentiable satisfying (iii). Thus s is strictly increasing
for t > t, and also s(c0) = oo holds true due to the absence of singularities in ¢. In this way,
there is a one-to-one correspondence of the points z > 0 and s(t) for ¢ > t,. To verify that the
function s satisfies (DFE), we integrate (6.4.82) with respect to z from z =0 to z = s(t). This
yields for tVZ ts

s(t) T

B(s(t)) :F(O)(tAt*)+/0 t {/0 F'la— yjdly) dy} i, (6.4.86)
Writing

[ P vow) dy = 5 [Pl - 0o) dv - FO)3a), (6.4:87)

0 x Jo
gives

s(t) t
B(s(t)) = /o F(s(t) —y)oly) dy = /t F(s(t) — s(to)) dto. (6.4.88)

In the last equality we used the variable transformation s~ (y) — to, as due to (6.4.85) we have
d/dy(s ' (y)) = ¢(y). This proves the existence of a continuously differentiable dissolution front
for t > t, which satisfies (DFE).

We conclude this section with a remark about uniqueness. Any solution of the Riemann
problem (6.1.15), (6.1.2)-(6.1.4) and (6.1.7), for which a dissolution front z = s(t) according to
(6.2.23) exists must be of the form discussed in Section 3 with s satisfying (DFE), provided that
conditions (6.2.29) are satisfied. Now suppose two solutions are possible. They would satisfy
Property (iii) and thus, using (6.4.85), one could define two solutions to the integral equation
(6.4.82). But (6.4.82) has only one solution which yields a contradiction. The question arises
if solutions are possible with dissolution fronts violating (6.2.29). If a solution is such that the
violation occurs only after some time, i.e. there is a t; > 0 such that

0<3(t)<q for 0<t<t; and §(t1) =0 or s(t1) =g, (6.4.89)

then s satisfies the integral equation (6.3.47) in the interval [0,¢;] and the waiting time f.
according to (6.3.51) exists. Assume that ¢; > t,. Then the integral equation (DFE) is valid
in [t.,t] and Property (iii) implies 0 < 3(t1) < g, i.e. a contradiction. Thus the only possible
further solutions we cannot exclude at the moment have the very unlikely property that there
are points ¢ arbitrary close to t = 0 such that 5(f) < 0or i(t) > q.
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One should bear in mind that not every uniqueness condition is an entropy condition, i.e. a
condition which selects from all possible solutions a physical solution. One should also under-
stand that the differential equation describing the dissolution process, has a smoothing effect
on the solution. Discontinuities do not occur at the dissolution front, but only at the known
front z = gt. Therefore interpreting (6.2.22) in terms of ‘entropy’ is misleading. Van Duijn &
Knabner [4] analyzed in full detail the traveling waves when diffusion is present in the model:
the so called viscosity solutions. As solutions are continuous across the dissolution front, no
information concerning (6.2.22) is to be gained from that analysis.
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6.5 Numerical method and results

In this section we construct numerical solutions of the Riemann problem (6.1.15), (6.1.2)-(6.1.4)
and (6.1.7). The numerical solution procedure is based on the method of characteristics and
follows the lines of Section 3 in detail. We shall give quantitative results for two distinct non-

equilibrium cases:

i) The crystalline solid is only present in the flow domain where z > 0, i.e. v* =0,v, >0
ii) The crystalline solid is initially present everywhere in the flow domain, i.e. v*,v, >0

The parameters used in the computations are adopted from Willis and Rubin [15] and listed in
Table 1. The differences are the following: K is slightly larger, in Willis and Rubin [15] only
the equilibrium case k = oo is considered. K is determined by ci, and co. and thus has to
be different from Willis and Rubin [15], as we do not consider Debye-Hiickel corrections in our
computations. But note that also these could be handled without problems as the rate function
is of general form. The value of fluid concentration cj used in our computations differs from
the value given in the caption of Figure 3 in Willis and Rubin [15]. The value in the caption is
¢ =(Sr*t) ;= 2.0x1075 mMol/cm?® (which we used in Part I) while Figure 3 suggests that the
correct value used by Willis and Rubin [15] equals cj= 2.0 x10~* mMol/cm®. We decided to
use the latter value in this paper.

a = 0.32

g = 1.8 [g/cm?]
¢ = 03x1073 [cm/s)
M1 = SI'2Jr

My, = SOZ‘

n = 1

m = 1

¢ = 20x107*  [mMol/cm’]
¢ = 00x107* [mMol/cm®] (6.5.90)
by = 1

kg = K =3.8688x10~7
k = 0.1 [1/s]
clos = 4.9x107° [mMol/g]
¢y, = 0.0x107° [mMol/g]
¢ = 20x107* [mMol/cm®]
e = 6.22x1074 [mMol/cm?]

Table 1. Parameters used in the computations.

6.5.1 Numerical method

The numerical procedure consists of the following steps: evaluation of integral (6.3.38) to obtain
a numerical approximation of the function f(§), substitution of f(4) in (6.3.39) to obtain F(9),
numerically solving a Volterra integral equation which follows from (DFE) to find the location
of the dissolution front s(t) and finally we go back to (6.3.37) and (6.3.38) to determine u. The
concentration of the crystalline solid is obtained by integration of (6.3.33).

The integrand of (6.3.38) becomes singular when u* tends to the solubility concentration
ug(c*). This singularity has to be handled with care because we need numerical approximations
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of f(d) in a wide range of ¢ values. We used Clenshaw-Curtis quadrature in combination with
symbolic transformation techniques to remove the singularity, as implemented in the computer
algebra system Maple, see Geddes [5]. The result of the numerical integration is given as a
table [d;, f(4;))], where §; = ¢ - Ad. Only in special cases, i.e. n = 1,m = 0 (the linear case)
and n = m = 1, exact evaluation of integral (6.3.38) is possible. We used the exact expressions
(6.3.41),(6.3.44) to verify the accuracy of the numerical integration of (6.3.38). The discrete
result of (6.3.38) is used to evaluate (6.3.39), i.e. F(4;) on the d-grid.

Equations (6.4.82),(6.4.83) can be written as a standard linear Volterra integral equation of
the first kind, i.e.

)
(0) = ko) = [ K@) 7(0) dy (6.5.91)
where
_1F(@)  F(9
(6) = JFO) ™ 0) (6.5.92)
and kernel
_F'(6-y)
K(6-y)= “F0) (6.5.93)

We solve this equation explicitly, using the trapezoidal rule to discretize the integral in (6.5.91).
The approximation of the derivatives are chosen central in d, except in the first integration step
where the derivatives are discretized forward in 6. The position of the dissolution front follows
from the definition of 7, hence

s(t)
t—te= / 7(2) dz. (6.5.94)
0

Because 7 is computed at the location of the grid points we have s(¢) = ¢Ad and the correspond-
ing value of ¢ is found by approximating the right hand side of (6.5.94) using Simpson’s rule.
To compute a profile of the fluid concentration u at a certain time level ¢; we choose a point
P(y,t1) in the (z,t)-plane (see Figure 11). We walk backwards along the characteristic through
point P and compute the coordinates of the intersection point (s(tp),to) of the characteristic
and the free boundary curve s(t). The precise procedure is as follows: start in point P, follow
the characteristic in the direction of the dissolution front s(t), check in every grid point if the
t-coordinate of the characteristic is above the corresponding t-coordinate of s(¢) in that point.
If this is the case we use the last and before last step to compute the intersection point of the
characteristic and s(t), assuming that the approximation of s(t) is piecewise linear between suc-
cessive coordinates. This gives the desired value §;, =y — s(tg), corresponding to point P. Next
we use the table of discrete [d;, f(d;)]-values to compute the fluid concentration u(y,t;) = f(d,)
in P. Because &;, (usually) does not coincide with one of the §;-values in the table, we have to
interpolate once more. A fluid concentration profile is constructed by repeating this procedure
in the region s(¢;) <y < ¢ (¢; — t«) at a sufficiently large number of points P.

To obtain a numerical approximation of the concentration v of the crystalline solid in point
P(y,t;) we first have to obtain values of the fluid concentration in discrete points along the
vertical line through (y,t2) and (y, 1) using the procedure given above, see line B in Figure 11.
By explicit integration in time of (6.3.33) from the position of the free boundary, i.e. £ to the
position of P, i.e. t;, we obtain v(y,¢;). Full integration from the position of the free boundary
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Fig 11. Construction of solutions in the (z,t)-plane.

(s(t2), t2) to the position of the fluid front (y, t3) has to reproduce the boundary condition v, (up
to a small error, due to the discrete numerical approximations), which follows from (6.3.47). This
serves as a check for the accuracy of the numerical procedure. For the linear case (n = 1,m = 0)
we compared results obtained by the numerical procedure and the corresponding exact solutions
and found excellent agreement.

6.5.2 Results

In this section we give computed results for the following cases:

1. The linear case n = 1,m = 0 for v* =0

9. A non-linear case n = 1,m = 1 for v* = 0 and for v*,v, >0

3. A non-linear case n = 2, m = 2 for v* = 0.
Remark: In order to obtain comparable time, space and concentration scales for all cases consid-
ered in this section we introduce an artificial factor a that multiplies the function g and assume
K — 3.8688x107 to be independent of the values of n and m. This implies that only the results
of the computations for the case n =m = 1 have physical meaning. The values of a used in the
computations are:

n m a

1 0 6.22x107*
11 1.0

2 2 1.83x10*°

The linear case: n=1,m=0.

Figure 12 shows the position of the crystal dissolution front in the (z, t)- plane for the linear
case (n = 1,m = 0). In this example we have t. = 10499s. The dissolution front is a straight
line which satisfies exactly expression (6.3.58). Due to the introduction of a we have to replace
kt, by akt, in the denominator of (6.3.58). Figure 13 shows breakthrough curves of the fluid
concentration at different observation points. An observation independent of this special case
is: There are horizontal parts in these curves, which correspond to the fluid concentration in
the region in the (z,t)-plane where z1/q <1 < z1/q + t. at a given position z = z;. In this
region § = x; is constant and therefore u is constant, u = f(z1) increasing monotonically from
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Fig 12. Dissolution front in the (z,¢)-plane for the linear case.

u* to ug(c*) for z; ranging from 0 to co. The width of the flat region in all curves is constant
and equal to the waiting time t,. Figure 14 shows the time evolution of the crystalline solid
concentration at different positions. The regions with constant slope in the v-curves correspond
to the regions in the breakthrough curves for u where u is constant.

Figure 15 gives profiles of the fluid concentration at different time levels. We observe several
points in the u-profiles where the derivative u, = du/0z is discontinuous. The discontinuity in
ug at the toe of the profiles in Figure 15 travels with speed $(¢). A simple computation shows
that for the general case

g;uguﬁyw::kwr—gm%cw} (6.5.95)

q—s'(t7)

The second discontinuity (from the left) in u, reflects the discontinuity of $(¢) at ¢ = t,. Its

0.00065 T T T T T T
0.0006
0.00055 |
0.0005 1
0.00045 |
>
0.0004
0.00035 4
0.0003
0.00025
0.0002
0 20000 40000 60000 80000 100000 120000 140000 160000 180000
ts)

Fig 13. Breakthrough curves of the fluid concentration u at different positions for the linear
case. From left to right the observation points are: = = 2,6,10,14,18,22,26 and 30 cm. (See
Figure 12)

position is a point at the line = ¢(t —t,) in the (z,t)-plane for a given time t. In fact, we have
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Fig 14. Time evolution of the crystalline solid concentration v at different positions for the
linear case. From left to right the observation points are: x = 2,6,10,14,18,22,26 and 30 cm.
(See Figure 12)

in general due to Property (ii) for such (z, t)

a 4 [ R S
au(z ) 8mu($ t) =—f'(z) Kt 2 g(u*; c*)

At the fluid front, i.e. the top of the u-profile, we have a jump in u which is consistent with

0.00065 T T

oooos(

0.00055

0.0005 - 4
0.00045 |-
s

0.0004 -

0.00035

0.0003 -

nnoozs[

0.0002 -

o B 10 15 20 25 30

x[em]
Fig 15. Fluid concentration profiles at different time levels for the linear case. From left to
right the curves correspond to t = 20000,40000,60000,80000,100000 s. (See Figure 12)

(6.5.96)

the Rankine-Hugoniot shock condition (6.2.22), and given by
u(gtt,t) — u(gt™,t) = us — f(gt) = us —us(c’) <0 (6.5.97)

An exception is the linear case, as here ug(c*) = ug(cy) = u. and thus the discontinuity at
x = gt vanishes for z; — oo. Figure 16 shows the corresponding profiles of v. The derivative
vy = Ov/Oz at the dissolution front is discontinuous, due to the discontinuity in u at the front.
The constant speed is given according to (6.3.58) by

u* — Uy

. q
1) = = L0,
5(t) 1+ kt, u*—u*—}—v*—v*q (6598)
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Fig 16. Crystalline solid concentration profiles at different time levels for the linear case. From
left to right the curves correspond to ¢ = 20000,40000,60000,80000,100000 s. (See Figure 12)

which corresponds to the speed of travelling waves, which exist for constant ¢ (compare Part 1,
in particular (54)). By inspection of the explicit solution given by (6.5.98), (6.3.59), (6.3.36),
(6.3.41) for the Riemann problem and the explicit solution for the travelling wave problem (note
that g is independent of c here, see e.g. the first example in Section 3.1) derived from Part 1,
(94),(54) we see that for taking the shift L = at,, where a is given by (6.5.98), the solutions
coincide for < (¢t — t,)q. In particular there is pointwise convergence in z for t — oo of the
solution profile here to the travelling wave solution.

A non-linear case: n=1,m=1

For this case we shall distinguish between the two sets of initial and boundary conditions as
discussed in Section 3.1 and Section 3.2.

Solid only partly present (See Section 3.1)

In this case the solubility concentration is given by ug(c) = £ + 3vc? + 4K, ie. ug(c*) >
us(cy) = u,. We have chosen ¢* = u* = 2.0x10"%. Because ¢, = 0 we now have K —
uy(ux — ¢) = u2, see Table 1. For the waiting time ¢, we find 7108.0 s. The dissolution front
5(t) is now a curve with slope § < ¢ for all ¢ > 0. Figure 17 shows the position of the dissolution

120000

0

o 4 6 10 12 14 16 18 20
x[em]

Fig 17. Dissolution front in the (z,t)-plane for the non-linear case n = m = 1.
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Fig 18. Breakthrough curves of the fluid concentration at different positions for the non-linear
case n = m = 1. The observation points are z = 3.0,6.0,..,18.0 cm. (See Figure 17)

front in the (£,z)-plane. The curve suggests that $(t.) = ¢ which is not true. In fact the $(t.)
satisfies Property (i) in Section 4 where in this example it turns out that F'(0)/F(0)t.q << 1.
Figure 18 shows breakthrough curves of u for different observation points. The qualitative
differences as compared to the linear case are the following: i) The toe of the u-profile does
not travel with constant speed but with speed $(t). ii) After a certain time the maximum
concentration in the profiles exceeds u, and increases in time to the solubility concentration
ug(c*). iii) The fluid concentration at the fluid front remains discontinuous and jumps either
from below or from above to u,. Figure 19 gives the corresponding curves for v. The properties
of the time evolution of the crystalline solid concentration compare to the those in the linear
case, see Figures 14 and 19. Figure 20 shows the fluid concentration profiles at different time
levels for the non-linear case. The corresponding crystalline solid concentrations are given in
Figure 21.

A quantitative comparison between the solutions of the Riemann problem for the non-linear case
and the solutions found by Willis and Rubin [15] is not possible because they allow for diffusion
in their problem and consider only equilibrium reaction. Comparing Figure 3, Figure 20 and the
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Fig 19. Time evolution of the crystalline solid concentration at different positions for the
non-linear case . = m = 1. The observation points are z = 3.0,6.0,..,18.0 cm. (See Figure 17)
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Fig 20. Fluid concentration profiles at different time levels for the non-linear case n = m = 1.
From left to right the curves correspond to ¢ = 10000.0,20000.0,.., 60000.0 s. (See Figure 17)

corresponding general statements mentioned and Figure 3 of Willis and Rubin [15] indicates:
The common qualitative property caused by the interplay of transport and dissolution is a
"plateau-structure”, which for a fixed time ¢ is defined by the spatial intervals I, = {z|z < s(t)},
I, = {z|s(t) <z < qt},]3 = {z|z > q)}. In I3 the solution is given by the ”initial condition”
ux = ug(cy), in I; by the "boundary condition” u* = ug(c*) and in I, at least asymptotically,
Le. for large t, by ugs(c*). The piece-wise constant structure of Figure 3 without dispersion
and kinetics is smeared out by the addition mechanisms in different ways. Kinetics leads to
a smoothing effect in I such that the transition at z = s(t) becomes continuous and the
maximum is attained at z = ¢t. Diffusion smooths more, effecting also I; and I3 and leading
to overall smooth and nonconstant profiles, where the maximum in I is attained at z = s(t).
The solutions for other values of n and m have properties that compare to the solutions of the
non-linear example discussed in this section.

Crystalline solid present everywhere. (See Section 3.2)

Two characteristic times arise in this case: T = 2680 s, which is the time needed to dissolve all
initially present crystalline solid (v* = 1.0 10™*) in the region z < 0 and 7, = 4903 s, which is
the waiting time for the dissolution front. For ¢ > T we have u = u* 4+ v* = 3.0x10~* in the
region z < 0. Figure 22 shows the position of the dissolution front in the (z,t)-plane. Figure
23 gives breakthrough curves of u and the time evolution of v at different positions in one graph.
The upper set of curves is u and the lower is v. The horizontal parts in the wu-curves have
width 7, and give rise to linear parts in the v-curves, while the increasing parts, which vanish
as time proceeds, have width T'. The crystalline solid concentration along the line z = ¢(t — T)
in the (z,t)-plane is known and given by (6.3.61). We used this to check the accuracy of the
computations.

A non-linear case: n=2, m=2

For any combination of n,m > 1 the function g(u;c*) is monotonically increasing and convex in
the interval ¢/m < u < ug(c*) and therefore we may expect similar qualitative behavior of the
solutions. The position of the dissolution front in the (z,t)-plane is shown in Figure 24. Now

the solubility concentration is given by ug(c) = ¢/4 + /¢ + 16\/K/a/4. The factor a is chosen
such that ug(c) = 7.299x107%, as in the case n = m = 1. The breakthrough curves of u are
given in Figure 25 and the corresponding time evolution of v in Figure 26.
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Fig 21. Crystalline solid concentration profiles at different time levels for the non-linear case
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Figure 17)
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Fig 22. Dissolution front in the (z,t)-plane for the case n =m = 1, v*,v, > 0. (Compare with
Figure 9).

6.6 Conclusions

We considered a model for transport and dissolution/precipitation, where the kinetics of the
reaction is taken into account, but diffusion/dispersion is ignored. The appearance and evo-
lution of a dissolution front from corresponding initial states, i.e. the Riemann problem of
the hyperbolic system, is investigated. The initial states for the "charge distribution” ¢ are
“incompatible” in general, i.e. the “ionic composition” of the fluid changes. The method of
characteristics leads to a nearly explicit representation of the solution, where only an implicitly
defined function f (6.3.38) has to be evaluated numerically and based on f an integral equation
(6.3.57) has to be solved numerically (or rather the transformed equation (6.4.82),(6.4.83)). The
basic ”plateau-structure” of the solution is revealed being characterized by the dissolution front
& = s(t) with speed less than g, where (for non-equilibrium) 0u/dz and 0v/dz are discontinuous
and the fluid or salinity front z = gt, where u and dv/Jz are discontinuous. A comparison of
solutions elucidates the role of kinetics and of diffusion/dispersion, which turns out to be similar,
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Fig 23. Breakthrough curves of u (upper curves) and time evolution of v (lower curves) at

positions z = 2,4,6,8,10 cm for the non-linear case n = m = 1, v*,v, > 0.

but in detail different mechanisms. In addition, due to non-equilibrium, the dissolution front s
only starts to move after a positive time t., with positive slope, which implies a discontinuity
in Ou/dx at & = q(t — t,). Because of these properties the solutions are principally different
from the travelling wave solutions of Part 1 for ”compatible” boundary conditions and only local
convergence can be expected for £ — oo.
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Fig 25. Breakthrough curves of u at = 3,6,9 and 12 cm for the case n =m =2, v" =0.
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Summary

In this thesis transport of salt in groundwater is considered. Using mathematical techniques,
we study several simplified model problems in order to gain insight in both qualitative and
quantitative behavior of solutions.

The thesis consists of 6 chapters: an introduction (Chapter 1) and five self-contained articles
(Chapters 2 to 6). The Introduction gives an overview of the background of salt transport
problems, enumerates the governing transport equations and summarizes some of the results
presented in Chapters 2 to 6.

In the Chapters 2,3 and 4, we consider problems that are related to high-level radioactive
waste disposal in sub-surface salt rocks or salt domes. Groundwater in the vicinity of these domes
contains high salt concentrations. These high concentrations give rise to nonlinear transport
phenomena such as enhanced flow due to volume (compressibility) effects and the reduction of
dispersion due to gravity forces.

The enhanced flow caused by volume effects is studied in Chapters 2 and 3. The presence of
high salt concentrations in groundwater leads to flow that is no longer divergence free (compress-
ible flow). We focus on consequences of these volume effects, utilizing semi-analytical techniques:
similarity transformations (Chapter 2) and a variant of the Von Mises transformation (Chapter
3). In case of the similarity transformations, the coupled set of nonlinear partial differential
equations, which results from the considered model problems, reduces to a third-order ordi-
nary differential equation. In case of the Von Mises transformation, the system reduces to a
nonlinear second-order diffusion equation. Both methods yield detailed qualitative information
about solutions and enable us to quantify the volume effects in an accurate and straightforward
manner.

In Chapter 4 we study dispersion of salt under high concentration conditions. The stable
displacement of fluids with low salt content (tracer concentrations) can be described by the
fluid mass balance, the salt mass balance, Darcy’s law, an equation of state and Fick’s law as
equation for the dispersive salt mass flux. However, if the displacing fluid has a much higher
salt concentration than the resident fluid, a reduction of the salt dispersion is (experimentally)
observed which cannot be modeled using linear Fick’s law. An alternative nonlinear expression
for the dispersive mass flux has been proposed in the hydrological literature, giving satisfactory
results in both high and low concentration regimes. The combination of this nonlinear expres-
sion and the above transport equations is studied in Chapter 4 using analytical and numerical
methods. Moreover, we present the results of an experimental study in order to validate the
nonlinear dispersion model. The results of the mathematical analysis are used to analyze and
interpret the experimental data.

Whereas in Chapters 2,3, and 4 diffusion/dispersion is considered to be one of the important
salt transport mechanisms, it is disregarded in the problems studied in Chapters 5 and 6.

In Chapter 5 we consider a problem that is related to seawater intrusion in coastal aquifers.
In general, the dimensions of these aquifers are large compared to the width of the diffu-
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sive/dispersive mixing zone between the fresh and salt groundwater. This justifies the assump-
tion of an interface between the fluids. Each fluid has a constant, but different density, which is
discontinuous at the interface. In Chapter 5, we study some of the implications of an interface
model numerically, using a finite element method. In particular, we are interested in the the
movement of the fresh-salt interface in heterogeneous aquifers under the action of gravity. The
considered heterogeneities are discontinuities in intrinsic permeability. A front tracking method
has been implemented in order to allow for non-parametrizable interfaces. Some attention is
given to the implications of physically unstable situations, i.e. when fresh water is overlain by
salt water.

Salt (or other chemical substances) can be present as a thin layer of crystalline (or amor-
phous) material on the soil particles, in general due to a precipitation reaction. When such a
soil system is flushed with fresh water, the crystalline phase is going to participate in a dis-
solution reaction. Two fronts will emerge: the salinity or fluid front and a dissolution front,
separating the region where all solid phase has been dissolved from the region where the solid
is still present. In Chapter 6 we consider a binary non-equilibrium dissolution reaction in flow
in a porous medium, disregarding diffusion and dispersion. In case of piecewise constant initial
concentrations (in the fluid and on the soil particles), the problem leads to a Riemann prob-
lem. Using the method of characteristics, an almost explicit solution can be constructed: only
a resulting Volterra integral equation for the position of the dissolution front has to be solved
numerically. The advantage of this approach is that the role of the non-equilibrium reaction
kinetics can be made explicit.

Chapter 2 is transcription of the article 'Brine Transport in Porous Media: Self-Similar Solu-
tions’, with L.A. Peletier (Leiden University) en C.J. van Duijn (Center for Mathematics and
Computer Science (CWI)/Delft University of Technology). This paper has been accepted for
publication in Advances in Water Resources.

Chapter 3 is a transcription of the article 'Brine Transport in Porous Media: On the use of
Von Mises and Similarity Transformations’, with C.J. van Duijn (Center for Mathematics and
Computer Science (CWI)/Delft University of Technology). This paper has been submitted for
publication in Computational Geosciences.

Chapter 4 is a transcription of the article "High-Concentration-Gradient dispersion: Experi-
ments, Analysis and Approximations, with S.M. Hassanizadeh (Delft University of Technol-
ogy/National Institute of Public Health and the Environment (RIVM)) and H. Moser (Tech-
nische Universitit Berlin). This paper has been submitted for publication in Water Resources
Research.

Chapter 5 is a (concept) transcription of the article "The interface between fresh-salt ground-
water in heterogeneous aquifers: a numerical approach’, with J.F. Scheid (CNRS Université
Paris-Sud, Orsay). This article has not been submitted to a journal yet.

Chapter 6 is a transcription of the article ’An Analysis of Crystal Dissolution Fronts in Flows
through Porous Media: Incompatible Boundary Conditions’, with P. Knabner (Universitat Er-
langen) and C.J. van Duijn (Center for Mathematics and Computer Science (CWT)/Delft Uni-
versity of Technology). This paper has been accepted for publication in Advances in Water
Resources.



Samenvatting

Dit proefschrift heeft als centraal thema het transport van zout in grondwater. Met behulp
van wiskundige technieken bestuderen we een aantal vereenvoudigde modelproblemen, met als
doel zowel het kwalitatieve als het kwantitatieve gedrag van oplossingen in kaart te brengen.
Het proefschrift bestaat uit zes hoofdstukken: een inleiding (hoofdstuk 1) en vijf artikelen (de
hoofdstukken 2 tot en met 6). De inleiding geeft een kort overzicht van de achtergrond van
zouttransportproblemen in grondwater. De transportvergelijkingen worden geintroduceerd en
we bespreken de methoden en resultaten zoals die naar voren komen in de overige hoofdstukken.

De hoofdstukken 2, 3 en 4 behandelen problemen die gerelateerd zijn aan risico-analyses
betreffende de opslag van hoog radio-aktief afval in ondergrondse zoutkoepels. In het grondwater
dat langs deze zoutformaties stroomt worden zeer hoge zoutconcentraties aangetroffen. Deze
hoge concentraties geven aanleiding tot (niet-lineaire) effecten, welke bij lage concentraties niet
of nauwelijks worden waargenomen. Voorbeelden hiervan zijn stroming door volume-effecten en
de reductie van zoutdispersie onder invloed van de zwaartekracht.

In de hoofdstukken 2 en 3 bestuderen we stroming ten gevolge van zogenaamde volume- of
compressibiliteitseffecten. Door de aanwezigheid van grote concentratieverschillen leidt zout-
transport door diffusie en dispersie tot vloeistofstroming die niet langer divergentievrij is (com-
pressibele stroming). We bestuderen de consequenties hiervan met behulp van semi-analytische
technieken: gelijkvormigheidstransformaties (hoofdstuk 2) en een variant van de Von Mises-
transformatie (hoofdstuk 3). In het eerste geval wordt het stelsel gekoppelde, niet-lineaire
partiéle differentiaalvergelijkingen, dat voort komt uit de bestudeerde modelproblemen, ge-
reduceerd tot een derde-orde gewone differentiaalvergelijking. In geval van de Von Mises-
transformatie reduceert het stelsel tot een tweede-orde niet-lineaire diffusievergelijking. Beide
methoden geven een gedetailleerd beeld van het gedrag van oplossingen en stellen ons in staat
de volume-effecten nauwkeurig te kwantificeren.

In hoofdstuk 4 bestuderen we een niet-lineair model voor dispersie in geval van (zeer) hoge
zoutconcentraties in grondwater. De stabiele verdringing van vloeistoffen met lage zoutconcen-
traties kan beschreven worden met behulp van de massabalans voor de vloeistof, de massabalans
voor het zout, de wet van Darcy, een toestandsvergelijking en de wet van Fick als vergelijking
voor de dispersieve massaflux. Laboratoriumexperimenten geven aan dat, indien er grote dicht-
heidsverschillen tussen de vloeistoffen bestaan, er een significante reductie van het dispersieve
zouttransport optreedt. Dit effect is niet op een bevredigende manier te beschrijven met behulp
van de bovengenoemde lineaire wet van Fick. In de literatuur is een niet-lineaire vorm voor de
dispersieve massafluxvergelijking voorgesteld die wel in overeenstemming met de experimentele
resultaten blijkt te zijn. De combinatie van deze niet-lineaire wet van Fick en de bovengenoemde
transportvergelijkingen wordt bestudeerd in hoofdstuk 4 middels numerieke en analytische me-
thoden. Tevens presenteren we de resultaten van uitgebreid experimenteel onderzoek die ons in
staat stellen de validiteit van het niet-lineaire dispersiemodel te onderzoeken en te bevestigen.
De resultaten van de wiskundige analyse zijn gebruikt bij de verwerking en interpretatie van de
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experimentele gegevens.

De problemen die bestudeerd worden in de hoofdstukken 2,3 en 4 hebben als gemeenschappe-
lijk kenmerk het belang van diffusie/dispersie als (zout)transportmechanisme. In de resterende
hoofdstukken beschouwen we problemen waarin juist de bijdrage van dit mechanisme als ver-
waarloosbaar klein wordt verondersteld.

In hoofdstuk 5 bestuderen we een probleem dat gerelateerd is aan de intrusie van zout
(zee)water in de watervoerende pakketten van kustgebieden. Veelal zijn de afmetingen van der-
gelijke pakketten groot in verhouding tot de diffusieve/dispersieve mengzone tussen het zoete
water en het zeewater. Dit rechtvaardigt de aanname van een abrupte overgang in dichtheid of
scheidingsvlak tussen beide vloeistoffen. De in principe mengbare vloeistoffen worden gemodel-
leerd als niet mengbaar. In hoofdstuk 5 geven we resultaten van een numerieke (eindige elemen-
ten) studie van een dergelijk model. In het bijzonder zijn we geinteresseerd in de beweging van
het scheidingsvlak onder invloed van de zwaartekracht in een niet-homogeen watervoerend pak-
ket. De beschouwde heterogeniteiten zijn discontinuiteiten van de intrinsieke permeabiliteit. Een
front tracking methode is geimplementeerd om ook niet-parametriseerbare scheidingsvlakken in
de tijd te kunnen volgen. Tevens wordt aandacht besteed aan het gedrag van het (numerieke)
model in fysisch instabiele situaties.

Zout (of andere chemische componenten) kan ook als dun laagje kristallijn materiaal op
bodemdeeltjes aanwezig zijn, bijvoorbeeld als gevolg van een precipitatie reaktie. Wanneer een
dergelijk bodemsysteem doorspoeld wordt met zoet water zal de kristallijne fase oplossen. Er
onstaan dan twee fronten: het vloeistof (salinity) front en een (dissolution) front dat het gebied
waar al het kristallijne materiaal reeds is opgelost scheidt van het gebied waar dit materiaal nog
aanwezig is. In hoofdstuk 6 bestuderen we een dergelijk probleem waarbij we veronderstellen
dat het zout participeert in een binaire niet-evenwichtsreaktie, onder verwaarlozing van diffusie
en dispersie. In geval van stuksgewijs constante beginvoorwaarden voor de concentraties (in
de vloeistof en op de bodemdeeltjes) leidt dit tot een Riemann-probleem. Met behulp van de
karakteristiekenmethode kan een vrijwel expliciete oplossing geconstrueerd worden: alleen een
resulterende Volterra-integraalvergelijking voor de positie van het dissolution-front moet nume-
riek worden opgelost. Het voordeel van deze aanpak is dat de rol van de niet-evenwichtskinetiek
van de reaktie op een nauwkeurige en expliciete manier tot uiting kan worden gebracht.

Hoofdstuk 2 is een transcriptie van het artikel 'Brine Transport in Porous Media: Self-Similar
Solutions’, met L.A. Peletier (Rijks Universiteit Leiden) en C.J. van Duijn (Centrum voor Wis-
kunde en Informatica/Technische Universiteit Delft). Dit artikel is geaccepteerd voor publicatie
in Advances in Water Resources.

Hoofdstuk 3 is een transcriptie van het artikel 'Brine Transport in Porous Media: On the use
of the Von Mises Transformation’, met C.J. van Duijn (Centrum voor Wiskunde en Informa-
tica/Technische Universiteit Delft). Dit artikel is aangeboden voor publicatie in Computational
Geosciences.

Hoofdstuk 4 is een transcriptie van het artikel 'High-Concentration-Gradient dispersion: Experi-
ments, Analysis and Approximations, met S.M. Hassanizadeh (Technische Universiteit Delft /Rijks
Instituut voor Volksgezondheid en Milieuhygiéne) en H. Moser (Technische Universiteit Berlijn).
Dit artikel is aangeboden voor publicatie in Water Resources Research.

Hoofdstuk 5 is de tekst van het artikel "The interface between fresh-salt groundwater in hetero-
geneous aquifers: a numerical approach’, met J.F. Scheid (Universiteit Paris-Sud, Orsay). Dit
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artikel zal worden aangeboden ter publicatie in een nog nader te bepalen tijdschrift.

Hoofdstuk 6 is een transcriptie van het artikel ’An Analysis of Crystal Dissolution Fronts in
Flows through Porous Media: Incompatible Boundary Conditions’, met P. Knabner (Technische
Universiteit Erlangen) en C.J. van Duijn (Centrum voor Wiskunde en Informatica/Technische
Universiteit Delft). Dit artikel is geaccepteerd voor publicatie in Advances in Water Resources.
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af te ronden.
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gemaakt van de mogelijkheden die het CWI als professionele en goed geoliede onderzoeksorga-
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1. Geheel ten onrechte brengen Carey et.al. de concentratieafhankelijkheid van de dif-
fusiecoéficient van CuSOy in verband met de reductie van NaCl-dispersie in geval
van grote concentratieverschillen in een poreus medium. De metingen van Chap-
man tonen aan dat de diffusiecoéfficient van NaCl in water nagenoeg concentratie-
onafhankelijk is, en zich dus niet laat vergelijken met het gedrag van CuSO4. De
resultaten van de verdringingsexperimenten, zoals beschreven in Hoofdstuk 4 van
dit proefschrift, waarin beide vloeistoffen een hoge zoutconcentratie bezitten maar
het concentratieverschil klein is, tonen aan dat de effectieve NaCl-dispersiecoéfficient
onafhankelijk is van de absolute zoutconcentratie.

Carey, A.E., Wheatcraft,S.W., Glass, R.J. & O’Rourke, J.P., Non-Fickian ionic diffusion
across high-concentration gradients, Water Resourses Research, Vol. 31, NO.9 (1995) p.p.
2213-2218.

Chapman, T.W, Transport properties of concentrated electrolyte solutions, PhD thesis
University of California (1967).

2. Aan de ontstaansgeschiedenis van de stromingsvergelijking voor zoet [zout-problemen
in poreuze media zou meer recht worden gedaan indien deze wordt aangeduid als de
Darcy-Lorentz!-vergelijking.

Opmerkingen bij het artikel van Dr. A.H. Borgesius in ”De Ingenieur” van 7 December
1912, No. 49, door Prof. Dr. H.A. Lorentz (Met afbeeldingen), De Ingenieur, No. 2
(1913), blz 24-26.

3. Voor een zoet/zout-interface { = ((z,t) op een tijdstip ¢ > 0 in het domein § =
{(z,2): —00 < & < +00,0 < z < h}, kan worden aangetoond dat het bijbehorende
zwaartekrachtgeinduceerde specificke debiet q = (¢z,9:) gegeven wordt door (in
complexe notatie)

N efotit i a¢
¢ =i =5 | ( ) %(zs)dzs, (1)

eitiz _ eZstiC eF+iz _ eFs—iC

waarin @ = wa/h, Z = 7z/h , etc., en waarin I' een constante is die lineair afhangt
van het dichtheidsverschil tussen het zoete en zoute grondwater. Een bewegingsver-
gelijking voor het interface volgt uit de massabalans voor het zoute water

ac  o0Q

(1)

1Hendrik Antoon Lorentz (1853-1928), Nederlands theoretisch-fysicus en Nobel-prijswinnaar, die onder-
meer een belangrijke rol heeft gespeeld bij de formulering van de speciale relativiteitstheorie.
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waarin ) het zout-waterdebiet is, n de porositeit en g, gegeven wordt door het reéle
deel van (1). Met behulp van partiéle integratie van (1) en na substitutie van het
resultaat in (2) kan worden aangetoond dat de bewegingsvergelijking te schrijven is
in de vorm van de integro-differentiaalvergelijking

a T d ac /o 9 [ [t
nE—ﬁ%{qh_o‘l+(6§/6z)2}+£{/0 B(z,t,()dz}, (3)

waarin B(z,t,() een combinatie van integralen langs de z—as (—o0 < 2 < 400)
voorstelt. Voor voldoende vlakke interfaces kan de niet-lokale integraalterm wor-
den verwaarloosd en reduceert (3) tot de Dupuit-bewegingsvergelijking voor een
zoet /zout-interface, welke ook op basis van simpele fysische principes kan worden
afgeleid. Dit verklaart het feit dat de Dupuit-vergelijking in veel praktische gevallen
een goede benadering geeft van het exacte interfaceprobleem.

. Indien we uitgaan van de door De Josselin de Jong afgeleide (fysisch correcte) uit-
drukking

9 _ an _ i 0C (4)

n g - — q Y4z
Ot cosa : " 9zl
waarin ¢ = zoet, zout, @ = arctan(d(/dz) en ¢\ de normaalcomponent van de
discharge aan het interface, dan leidt de combinatie van (1) (na partiéle integratie)
en (4) tot de alternatieve integro-differentiaalvergelijking

¢ T (0¢/0z)?
Bgr = E(h - C)W + A(z, 1, (). (5)

Hierin is A(z,t,() weer een combinatie van integralen langs de z-as (—oco < z <
+00). Gegeven een initieel interface ((z,0) = Co(z) in Q) dan zijn oplossingen van
(3) en (5) voor elke t > 0 identiek. Verwaarlozen we echter de niet-locale term dan
reduceert (5) tot het eerste-orde deel van de Dupuit-bewegingsvergelijking. Deze
eerste-orde vergelijking heeft als benadering slechts in zeer uitzonderlijke gevallen
fysische betekenis. Daarom is, als uitgangspunt voor de afleiding van de bewegings-
vergelijking, (2) te prefereren boven (4).

De Josselin de Jong, G., The simultaneous flow of fresh and salt water in aquifers of large
horizontal extension determined by shear flow and vor tex theory, Proceedings Euromech.
143 (1981) (eds. A. Verruijt & F.B.J. Barends ), Balkema Rotterdam, p.p. 132-149.

- Benaderen we een interface ( = ((z,t) in Q, (t > 0) door middel van een stuksge-
wijs lineaire functie, dan leidt (5), in tegenstelling tot (3), tot een eenvoudig, doch
effectief numeriek algoritme.

- In geval van een lineair zoet/zout interface ¢ = ((z,t), met helling p > 0 in domein
4, wordt de z—component van het specifieke debiet aan de zoet waterzijde van het
interface gegeven door

I 1 —2e 7S cos(w + e 25¢
Goree = T2 n ( (x¢) . (6)

1+ 2e»€1) cos(r¢) 4 €27V
2



10.

11.
12;

De limieten ¢ | 0 en ¢ T 1 van (6) leveren singuliere waarden van ¢, op, het-
geen een oneindige voortplantingssnelheid van het interface aan de domeinranden
impliceert. Dit gedrag wordt niet waargenomen (zelfs niet in benadering) in de re-
sultaten van eindige elementenberekeningen zoals omschreven in Hoofdstuk 5 van
dit proefschrift. Dit is te verklaren uit het logaritmisch-singuliere karakter van
de bovengenoemde limieten en het feit dat in de eindige elementenbenadering de
discharge een stuksgewijs constante grootheid is.

. De objectiviteit van het beoordelingsproces van wetenschappelijke artikelen kan wor-

den verhoogd, indien editors van tijdschriften ingediende artikelen geanonimiseerd
doorzenden aan de beoordelaars.

. Als het van de Inquisitie of van Calvijn had afgehangen, zou er nu niet zo brandend

om grensverleggend wetenschappelijk onderzoek worden geroepen, want het denken
- of wat daarvoor doorging - zou voor eens en altijd binnen bijbelse grenzen zijn
gebleven.

Citaat van W.F. Hermans in "Houten leeuwen en leeuwen van goud’, Uitgeverij De Bezige
Bij (1979)).

. Zonder daadwerkelijke compassie voor de patiéntjes en belangstelling voor hun stoor-

nissen zal de kinderpsychiatrie als relatief jonge wetenschap het stadium van de
kinderschoenen nooit kunnen ontgroeien.

Het wetenschappelijke bewijsmateriaal van de werkzaamheid van homeopathische
geneesmiddelen is even sterk als de bij de bereiding van deze middelen gebruikelijke
verdunningen.

De bijdrage van vrijwilligerswerk aan de samenleving is niet in geld uit te drukken.

Verzekeringsmaatschappijen zijn te vergelijken met zwangere vrouwen: ze ontvangen
in liefde, maar baren in pijn.
Naar een uitspraak van mijn vader Ph. Schotting.






