Numerical Methods for the
Three-Dimensional Shallow Water Equations
on Supercomputers

Numerical Methods for the
Three-Dimensional Shallow Water Equations
on Supercomputers

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus
prof.dr. P.W.M. de Meijer,
in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),
op woensdag 19 februari 1992 te 15.00 uur

door
Erik Dick de Goede

geboren te Ilpendam

Centrum voor Wiskunde en Informatica
Amsterdam
1992

Numerieke methoden voor de drie-dimensionale ondiep-water-
vergelijkingen

Promotor : prof.dr. P.J. van der Houwen
Mede-promotor : prof.dr.ir. A.W. Heemink
Co-promotor : dr.ir. Th.L. van Stijn

Faculteit : Wiskunde en Informatica

For those who like shallow water

Acknowledgements

The subject of this thesis is the development of an accurate and efficient numerical
method for the three-dimensional shallow water equations. In order to develop such a
method, we started in 1988 the VECPARCOMP-project at the CWI (Centre for
Mathematics and Computer Science). This research project was supported by
Rijkswaterstaat (Dutch Water Control and Public Works Department) and was
carried out in co-operation with the Tidal Waters Division of Rijkswaterstaat, Delft
Hydraulics and ICIM (Informatics Centre for Civil Engineering and Environment).
The project was supervised by a committee with the following members:

Prof. dr. ir. A\W. Heemink (Rijkswaterstaat, University of Delft)
Prof. dr. P.J. van der Houwen (CWI, University of Amsterdam)
Prof. dr. ir. G.S. Stelling (Delft Hydraulics, University of Delft)
Dr. ir. Th.L. van Stijn (ICIM)

Dr. ir. F.W. Wubs (University of Groningen).

I want to thank all those who contributed in some way to the realization of this
thesis. I like to mention some of them explicitly. In particular, I thank
Prof. dr. P.J. van der Houwen for his guidance of this project, for acting as a
promotor and for the stimulating discussions during this project. I am grateful to
the co-promotors Dr. ir. Th.L. van Stijn and Prof. dr. ir. A.W. Heemink for their
useful advices and for acquainting me with the Rijkswaterstaat. Further, the
constructive remarks and the careful reading of the papers by Drs. B.P. Sommeijer
have significantly contributed to the successful completion of this research project.
Prof. dr. ir. G.S. Stelling and Dr. ir. F.W. Wubs are also thanked. Their assistance
and insight in shallow water models has been very valuable.

I like to express my great appreciation to Joke Blom, Walter Lioen, Margreet
Louter-Nool, Herman te Riele and Dik Winter for their support during the many
numerical experiments. Owing to the rapid changes in hardware and software, their
help was indispensable.

I'am grateful to the publication department of the CWI for the reproduction of this
thesis. Tobias Baanders is thanked for the graphical design of the cover.

Finally, I want to thank my parents for creating the pleasant surroundings in
which I carried out this research.

Contents

INTRODUCTION

1.1. Shallow water models

1.2. Space discretization

1.3. Time discretization

1.4. Implementation on vector and parallel computers

References

THE THREE-DIMENSIONAL SHALLOW WATER EQUATIONS

2.1
2.2:

Mathematical model in Cartesian co-ordinates
Mathematical model in sigma co-ordinates
References

EXPLICIT AND SEMI-IMPLICIT METHODS FOR THE THREE-DIMENSIONAL

SHALLOW WATER EQUATIONS
3.1. Introduction
3.2. Mathematical model
3.3. Space discretization
3.4. Time integration
3.5. Solution of the tridiagonal systems
3.6. Numerical experiments
3.7. Stability analysis
3.8. Conclusions
References

STABILIZATION OF A TIME INTEGRATOR FOR THE 3D SHALLOW WATER
EQUATIONS BY SMOOTHING TECHNIQUES

4.1.
4.2.

4.3.

4.4.

Introduction

Right-hand side smoothing

4.2.1. Smoothing based on operator splitting

4.2.2. Smoothing operators for general vector functions
4.2.2.1. Explicit smoothing operators
4.2.2.2. Implicit smoothing operators

Mathematical model

4.3.1. Space discretization

4.3.2. Time integration

Smoothing

[e—ry

AW NN -

O 0 W

10

10
11
11
15
17
19
22
26
26

27

27
28
30
31
32
33
34
35
36
37

4.5. Implementation of the smoothing operators
4.6. Numerical experiments
4.7. Conclusions

References

A TIME SPLITTING METHOD FOR THE THREE-DIMENSIONAL SHALLOW
WATER EQUATIONS

5.1. Introduction
5.2. Mathematical model
5.3. Space discretization
5.4. Time integration
5.5. Stability
5.6. Solving the linear systems
5.6.1. The smoothed Jacobi method
5.6.2. The smoothed CG method
5.7. Numerical experiments
5.8. Conclusions
References

NUMERICAL METHODS FOR THE 3D SHALLOW WATER EQUATIONS ON
VECTOR AND PARALLEL COMPUTERS

6.1. Introduction
6.2. Mathematical model
6.3. Space discretization
6.4. Time integration
6.4.1. The conditionally stable method
6.4.2. The unconditionally stable method
6.5. Solving the linear systems
6.5.1. The smoothed Jacobi method
6.5.2. The smoothed CG method
6.6. Numerical experiments
6.7. Conclusions
References

ON THE NUMERICAL TREATMENT OF THE ADVECTIVE TERMS IN 3D SHALLOW
WATER MODELS

7.1. Introduction
7.2. Mathematical model
7.3. Numerical discretization
7.4. Solving the systems
7.5. Numerical experiments
References
Appendix: Finite differences

39
39
43

46

46
47
48
49
52
54
56
57
58
63

65

65

67
68
68
70
72
72
73
74
80
81

82

82
83
84
86
89
92
92

8.

10.

3D SHALLOW WATER MODEL ON THE CRAY Y-MP4/464

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.

A NUMERICAL MODEL OF THE NORTHWEST EUROPEAN CONTINENTAL SHELF

Introduction

Mathematical model
Implementation

Scalar and vector performance
Parallelism

Numerical experiments
Conclusions

References

ON THE CRAY Y-MP2E
9.1. Introduction
9.2. Mathematical model
9.3. Numerical discretization
9.4. Implementation on vector computers
9.5. Application
References
OVERVIEW AND CONCLUSIONS

10.1. Conditionally stable methods
10.2. Unconditionally stable methods
10.3. Overview of time splitting methods

References

SUMMARY

SAMENVATTING

CURRICULUM VITAE

95

95
96
97
97
98
99
101
101

103

103
104
106
107
107
111

118
118
119
121
123
124
125

126

T s oan

nx, ny

ud,vd

X,y
Ax, Ay

QO E »=<N

>

(o

a a

Xx? ‘ny,...

e o

y)
Ay, Ag

Notation

Chezy coefficient (m!2g1)
undisturbed depth of water (m)
Coriolis coefficient M
acceleration due to gravity (ms?)
total depth (=d + §) (m)

number of grid points in the x- and y-direction, respectively
number of grid points in the vertical direction

pressure (kgms?)
atmospheric pressure (kgm1s?)
radius of the Earth (m)
number of smoothing factors

time O]
velocity components in the x- and y-direction, respectively (ms?)
velocity components at some depth near the bottom (ms™)
vertical velocity component in the x-y-z co-ordinate system (ms™)
wind stress (kgm's?)
horizontal spatial co-ordinates (m)
mesh sizes in the x- and y-direction, respectively (m)
vertical spatial co-ordinate in the x-y-z co-ordinate system (m)
relaxation parameter for the SCG method

eddy viscosity coefficient in the horizontal direction (m%s)
eddy viscosity coefficient in the o-direction (m%1)
water density (kgm™3)

vertical spatial co-ordinate in the sigma-transformed system
mesh size in the vertical direction

time step (s)
components of the stress tensor (kgmls?)
angle between wind direction and the positive x-axis ©)
vertical velocity component in the x-y-o co-ordinate system sh
angular speed of the Earth's rotation sh
polar co-ordinates in east longitude and north latitude, respectively (°)
mesh sizes in the polar co-ordinate system @)
water elevation above undisturbed depth (m)

Chapter 1

Introduction

1.1. SHALLOW WATER MODELS

The shallow water equations describe a mathematical model for flows in which the
length of the free surface waves is significantly larger than the water depth.
Examples are flows in rivers, estuaries and shallow seas. From a mathematical
point of view, these hydrodynamic models are complex, because they involve effects
of e.g., the wind, the earth's rotation and the geometry of the water system.
Numerical models have become established for predicting water flows. By the
advances in numerical mathematics and in computer performance, simulations of
water flows can be performed accurately. Nowadays, numerical models are much
cheaper and flexible than scale models, which have frequently been used in the past.

It is more than 60 years ago that numerical models were introduced for the
simulation of water flows. For the purpose of predicting the effect of the closure of
the Zuiderzee in the Netherlands, numerical computations were performed in 1926
by the Dutch physicist Lorentz [13]. It appeared that the tidal elevations agreed well
with the numerical predictions. A more recent application was made for the storm
surge barrier in the mouth of the Oosterschelde (Eastern Scheldt), which is in the
south-western part of the Netherlands. A numerical tidal model was developed for
the accurate prediction of the water level to ensure that the barrier will be closed in
time in case of extremely high water.

In the past, many numerical methods were developed for the two-dimensional
shallow water equations. In the Netherlands well-known methods for these (depth-
averaged) equations are the ADI-method of Leendertse [11], the ADI-method of
Stelling [16], the finite element method of Praagman [15] and the stabilized Runge-
Kutta method of Wubs [19]. The main goal of two-dimensional models is the
accurate prediction of water levels. Presently, a two-dimensional model of the
Continental Shelf is operational at KNMI (Royal Dutch Meteorological Institute).
Using wind and atmospheric pressure data from a numerical model of the
atmosphere, the water elevations in the North Sea and especially along the Dutch
coast are computed four times a day [10].

In the last decennium computing power has increased significantly. As a
consequence, more physics could be included in numerical models. There has been a
major research effort in developing three-dimensional models, which yield
information about the vertical structure of the water. The ability to accurately
predict these vertical structures is particularly important in a wide range of pollution
problems. With two-dimensional models such information can not be obtained.

The application of three-dimensional models requires a great computational effort,
especially when a high resolution is needed. Therefore, it is necessary to construct
methods that are able to fully exploit the facilities of fast computers, such as vector
and parallel computers. So far, the numerical methods used in the Netherlands for
the three-dimensional shallow water equations (see e.g., [12] and [17]), were not

developed with vector and parallel computers in mind. In order to develop a
computationally efficient three-dimensional shallow water model on such
computers, the VECPARCOMP project was started four years ago. This project is a
co-operation between the Rijkswaterstaat (Dutch Water Control and Public Works
department) and the CWI (Centre for Mathematics and Computer Science). In this
thesis the results of the VECPARCOMP project are presented.

This thesis deals with the development of numerical methods for the three-
dimensional shallow water equations on vector and parallel computers. The three-
dimensional shallow water equations and their derivation will be discussed in
Chapter 2. The subsequent chapters are devoted to the numerical discretization of
these equations by means of the method of lines approach. This approach first
discretizes in space, followed by the discretization in time.

1.2. SPACE DISCRETIZATION

For the space discretization we use the staggered grid that is known as the
Arakawa C-grid [1]. This is the most commonly used and the most successfully
used grid for shallow water models. In the vertical direction the shallow water
equations were transformed into (depth-following) sigma co-ordinates to obtain the
same vertical resolution in the whole water system [14].

On this staggered grid the spatial derivatives were replaced by finite differences. It
is well-known that finite differences can be implemented efficiently on vector and
parallel computers. We examined various discretizations for the advective terms. It
appears that the finite differences developed by Stelling [16] perform best. Both the
special discretization near the boundaries and the introduction of some dissipation by
the upwind discretization of the mixed advective terms, which are described in [16],
turns out to be essential (see Chapter 7). The discretization of the other terms will
be discussed in Chapter 3.

1.3. TIME INTEGRATION

At CWI time integration methods for two-dimensional shallow water models were
developed by Wubs in 1983-1987 [19]. Our project may be considered as a follow-
up of this research. In three-dimensional models there is a multi-layer approach in
the vertical direction, instead of one (depth-averaged) layer in the two-dimensional
case. As a first introduction to three-dimensional models we investigated the
influence of the vertical diffusion term. For a model without advective terms, we
examined time integrators that were explicit, semi-implicit or implicit in the
vertical. Chapter 3 is devoted to this topic.

It appears that the vertically implicit methods of Chapter 3 perform best.
However, for these methods we are still faced with a CFL condition that depends on
the water depth and on the horizontal mesh sizes. This implies that for small values
of the horizontal mesh sizes or for very deep water, this time step restriction is
more severe than necessary for accuracy considerations. In order to increase the
stability we applied so-called right-hand side smoothing. Right-hand side smoothing
has originally been developed by Wubs [19]. By this technique, the computation
time for our three-dimensional shallow water models reduces considerably while the
accuracy remains acceptable (see Chapter 4).

Next, we constructed a two-stage time splitting method that is unconditionally
stable (see Chapter 5). For two-dimensional shallow water models, this method is

3

very similar to the one described in [18], where its feasibility for practical
computations has been shown. It appears that the efficiency of our method is even
higher for three-dimensional models than for two-dimensional ones.

For the model without advective terms, we compared the unconditionally stable
method with the vertically implicit method stabilized by right-hand side smoothing
of Chapter 4. The results will be presented in Chapter 6. The unconditionally stable
method is the most accurate one. This method is also more efficient, because large
time steps can be used.

So far, the advective terms were omitted. We incorporated the advective terms in
the aforementioned unconditionally stable method, which will be described in
Chapter 7. The discretizations developed by Stelling [16] are applied. The
introduction of the advective terms results in a hardly more complicated system of
equations.

1.4. IMPLEMENTATION ON VECTOR AND PARALLEL COMPUTERS

As mentioned earlier, the application of three-dimensional shallow water models
requires the use of fast computers, such as vector and parallel computers. At the end
of 1988 an Alliant FX/4 was installed at CWI. The Alliant FX/4 was used to
investigate parallel methods for our shallow water equations. The numerical
experiments described in Chapters 3-8 were carried out on this mini-supercomputer.
Both the vector and the parallel optimization of the Alliant FX/4 were utilized.

During our four-year project, we investigated test problems of an increasing degree
of complexity. The most realistic experiments were carried out on CRAY
supercomputers. A river problem in which a jetty was situated, was simulated on a
CRAY Y-MP4/464 (see Chapter 8). Since December 1990 this supercomputer is
operational at the Academic Computing Services Amsterdam (SARA). Chapter 9
deals with the implementation of a northwest European Continental Shelf model on
the CRAY Y-MPZ2E installed at ICIM (Informatics Centre for Civil Engineering
and Environment). The CRAY Y-MP2E was recently installed in the Netherlands
for the simulation of large scale models of rivers and seas.

In this thesis, Chapters 3-8 are based on papers that have been published or have
been accepted for publication. In order to obtain a uniform notation, the chapters
slightly differ from the papers. Chapter 3 contains parts of the papers [2] and [3].
Chapters 4-8 correspond with the papers in [4, 5, 6, 7 and 8], respectively. The
paper described in Chapter 9 has been submitted for publication [9].

REFERENCES

1. A. ARAKAWA AND V R. LAMB, Computational design of the basic dynamical
processes of the UCLA general circulation model, Meth. Comp. Phys., 16,
173-263 (1977).

2. E.D. DE GOEDE, Finite difference methods for the 3D hydrodynamical equations,
Proceedings of the Ist Int. Conf. on Applications of supercomputers in
engineering, Southampton, 133-144 (1989).

3. E.D. DE GOEDE, A computational model for the three-dimensional shallow
water flows on the Alliant FX/4, Supercomputer, 32, 43-49 (1988).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

E.D. DE GOEDE, Stabilization of a time integrator for the 3D shallow water
equations by smoothing techniques, Int. J. Numer. Meth. in Fluids, 12,
475-490 (1991).

E.D. DE GOEDE, A time splitting method for the three-dimensional shallow
water equations, Int. J. Numer. Meth. in Fluids, 13, 519-534 (1991).

E.D. DE GOEDE, Numerical methods for the 3D shallow water equations on
vector and parallel computers, Appl. Numer. Math., to appear.

E.D. DE GOEDE, On the numerical treatment of the advective terms in 3D
shallow water models, Proceedings of the 2nd Symposium on High
Performance Computing, Montpellier, 491-502 (1991).

E.D. DE GOEDE, 3D shallow water model on the CRAY Y-MP4/464,
Proceedings of the 6th Int. Workshop on the Use of Supercomputers in
Theoretical Science, Antwerp, 107-114 (1991).

E.D. DE GOEDE, A numerical model of the northwest European Continental
Shelf on the CRAY Y-MP2E, submitted for publication.

A.W. HEEMINK, A. LANGERAK, Th.L. VAN STIN, L.P.M. DE VREES AND
J.W. DE VRIES, The new Dutch storm surge forecasting system, Proceedings of
the Workshop STORM ‘91, Hamburg, 1991.

J.J. LEENDERTSE, Aspects of a computational model for long period water wave
propagation, Memorandum RM-5294-PR, Rand Corp., Santa Monica,
California, 1967.

J.J. LEENDERTSE, A new approach to three-dimensional free-surface flow
modelling, Memorandum R-3712-NETH/RC, Rand Corp., Santa Monica,
California, 1989.

H.A. LORENTZ, Verslag Staatscommissie Zuiderzee 1918-1926 (Report of the
Government Zuiderzee Commission), Alg. Landsdrukkerij, The Hague,
1926 (Dutch).

N.A. PHILIPS, A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184-194 (1957).

N. PRAAGMAN, Numerical solution of the shallow water equations by a finite
element method, Ph.D. Thesis, Delft University, 1979.

G.S. STELLING, On the construction of computational methods for shallow
water flow problems, Ph.D. Thesis, Delft University, 1983.

TRISULA, A multi-dimensional flow and water-quality simulation system,
Delft Hydraulics, The Netherlands, 1989.

P. WILDERS, Th.L.VAN STIN, G.S. STELLING AND G.A. FOKKEMA, A fully
implicit splitting method for accurate tidal computations, Int. J. Numer. Meth.
in Eng., 26, 2707-2721 (1988).

F.W. WUBS, Numerical solution of the shallow-water equations, Ph.D. Thesis,
University of Amsterdam, 1987.

Chapter 2

The Three-Dimensional Shallow Water
Equations

2.1. MATHEMATICAL MODEL IN CARTESIAN CO-ORDINATES
In this chapter we will derive a mathematical model for three-dimensional shallow
water flows. We will only consider homogeneous flows. The mathematical
description of homogeneous water flows consists of a system of differential
equations that are physically based on the conservation laws for mass and
momentum. These equations are a simplification of the well-known Navier Stokes
equations.

The time-dependent, incompressible Navier Stokes equations may be written in
Cartesian co-ordinates as (see [2,5])

g—§+ g—;+ %—ZW-=O, (14)

where the Coriolis term is defined by

f,=2(Qw-Qgu) (15)
£,=2(Qu-Qqv),

with Q = (@, Q,, Q23) denoting the earth rotation vector. For latitudes that are
not too close to the equator we may simplify equation (1.5) to [3]

f,=2Q5v
fy =-2Qau (1.59
f,=2(Qu-Qv).

The equations (1.1)-(1.3) are the equations of motion and (1.4) is the continuity
equation. In system (1.1)-(1.4) the curvature effects of the earth are neglected. The
earth's rotation is modelled by the Coriolis term.

In shallow water flows the fluid motions are predominantly horizontal. The
vertical acceleration of the large scale motion is very small, particularly if compared
with the acceleration due to gravity. Therefore, neglecting the vertical acceleration
and advection is justified [2]. For the same reason the Coriolis term and the
components of the stress tensor may be neglected in (1.3). Then, equation (1.3)
reduces to the hydrostatic equation

a _—
D _pg. (1.6)

The internal pressure distribution in the flow can be derived by vertical integration
of equation (1.6), which leads to

=p,+p g2 .

The variations of the atmospheric pressure p, are small compared to the variations
of pg({~z) and are neglected. This yields

ap_, .98 g
ox P85 — ay_pgay L

The components of the stress tensor in (1.1) and (1.2) may be expressed as
gradients of Reynolds stresses [2], through the relationships

—pA9u — o 9u du

=prAr, rxy—play, =pPu==,
T =pxa_! T =la_v av (18)
TP Ty TP =P :
_ . OW _ aw — oy OW

=ph ax’ zy T L4 oy’ PR3

By the requirement that at the moving water surface a particle must follow the
motion of that surface, we obtain for z={(x,y,t)

L%,
el L

Similarly, at the bottom z=—d(x,y) the boundary condition reads

W= uQLl+v-Jay—l . (1.10)

Integrating the continuity equation (1.4) from the bottom to the surface, yields

S g
W(X,y,c,t) - W(X,y,—d,t) == J. aa—:dz "J %;Ldz v (111)
|

Then, applying Leibniz' rule and combination of (1.11) with (1.9) and (1.10), leads
to

4 4
%:-a_ dz _..a_ d 1.12
- ax(J“) ay(J”)' (1.12)

The change of the water elevation is related to the vertically integrated flow. Note
that equation (1.12) also occurs in two-dimensional shallow water models.

By integrating from the bottom to a certain level z=h,, we obtain the following
relationship for the vertical velocity w:

h1 hl
Y [2 [a(hy) 3(h,)
W(X,y,hl,t = —a—x(UdZ) - E(VdZ) +u T-f- v W . (113)

This expression for w allows a non-zero vertical velocity at the bottom (see (1.10)).
Using the relations (1.1), (1.2), (1.5"), (1.7), (1.8) and (1.12) the three-
dimensional shallow water equations equations in Cartesian co-ordinates read

at——uax—vay—waz+fv—gax+7~ax2+kayz+az(l,taz (1.14)

FriaiL vay waz—fu—-gay+}»ax2+7\.8}’2+az(p.aZ (1.15)
hl hl

-_9 _9

W= ax(JuM) ay(Jvdz) (1.16)
S g

xX__3 9

= J udz) - By(Jde) (1.17)

with -d <h, <(.

In (1.14)-(1.15) we have used the oceanographic notation
f=21Ql sin(p) ,
where ¢ denotes the earth's latitude.

The boundary conditions have not been specified yet. At the sea surface z = € the
boundary conditions are given by

Ju 1 v 1 '
(H = o=t —;Wf cos(9) , H az)z:C = Wi sin(9) . (1.18)

Similarly, at the boundary conditions at the bottom z = —d(x,y) we prescribe

Jdu guy (ov gVq
ji == = —_— fl == = — (1.19)
(azz_jcz %) & 2

Equation (1.19) represents a linear law of bottom friction. An alternative to (1.19)
is the quadratic law of bottom friction, of the form

Jdu g4y av) g€Vq
u = =—afuy+v,, us = u; +vy . (1.20)
(2/, 4 c2 \’ d " 'd 0z/,__4 c2 \’ d"'d

2.2. MATHEMATICAL MODEL IN SIGMA CO-ORDINATES

In the vertical direction the domain is bounded by the bottom topography and the
time-dependent water elevation {. To ensure that the three-dimensional domain is
constant in time, the equations have to be transformed in the vertical direction into
depth-following (sigma) co-ordinates. Transforming equations (1.14)-(1.17) from the
interval —d < z < { into the constant interval 1 > ¢ > 0, by the so-called sigma
transformation [4]

-
d+
leads to
du__du du ou o A 0%, ,0%, 1 3 [du
= U5 vay u>a—o+fv—gax+lax2+kay2+h2ac(p,ao) 2.1

ov__ ov_ dv 9 o ,9%v ,9%v 1 3 av
a[-——llax—Vay-(D;—fU—gay'F}\.87+)\.5y—2+h—25;(ug) (22)

1 1 1 1
L o) (L 2 9 9
o=1{-(-0 i @ Judo)+ Z-n o)) + = (hcf o) + £ (hc vio)} (23)

1 1

a€__2 _9
= (h0 udo) - = (h0 vdo) . (2.4)

The relation between the new vertical velocity @ and the untransformed (physical)
velocity w is given by [1,6]

—-coh+at—cat+u(ax ctax)+v(ay oay).

Transformation of the surface and sea-bed boundary conditions into sigma co-
ordinates, yields at the sea surface

(u_ %) =- %Wf cos(¢) , (IJ. %) =i= %wf sin(¢) . 2.5)
=0 c=0

At the bottom z = —d(x,y) the quadratic law of bottom friction (cf. (1.20)) leads to

Ju guy ! T2 ov &Vq ’ z 2
u—) =_h_..2_ ud +vd 5 (p_ —) =—h—2-— lld +Vd . (26)
(a0-<5=1 C 60'6=1 C

Furthermore, for the transformed vertical velocity o we have
ox,y,0t)=0 and w(x,y,1,0)=0.

System (2.1)-(2.4) together with its boundary conditions (2.5)-(2.6) will be the
starting point for our mathematical shallow water model. In the following chapters
we will sometimes use a simplified model. For example, in several chapters the
advective terms will be omitted. In Chapter 9 a complete model in polar co-
ordinates will be used.

For a detailed description of three-dimensional shallow water equations we refer
to [2,5].

REFERENCES

1. A.M. DAVIES, Application of the DuFort-Frankel and Saul'ev methods with
time splitting to the formulation of a three-dimensional hydrodynamic sea
model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985).

2. G.J.H. LINDUER, Three-dimensional circulation models for shallow lakes and
seas, Delft Hydraulics Report R 900 I, 1976.

3. H. GERRITSEN, Accurate boundary treatment in shallow water flow
computations, Ph.D. Thesis, Twente University, 1982.

4. N.A. PHILLIPS, A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184-194 (1957).

5. L.C. VAN RDN, Principles of fluid flow and surface waves in rivers, estuaries
and seas, Aqua Publications, Amsterdam, 1990.

6. TRISULA, A multi-dimensional flow and water-quality simulation system,
Delft Hydraulics, The Netherlands, 1989.

10

Chapter 3

Explicit and Semi-Implicit Methods for the
Three-Dimensional Shallow Water Equations

E.D. de Goede
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009AB Amsterdam, The Netherlands

For a linear three-dimensional hydrodynamic sea model the stability
and efficiency on vector and parallel computers of various time
integrators is compared for a wind induced flow in a rectangular basin.
Owing to stability, it appears to be necessary to treat the vertical
terms in an implicit way. We show that the so-called vertically
implicit methods can be computed efficiently on vector and parallel
computers.

3.1. INTRODUCTION

In this paper one-step time integrators for the three-dimensional hydrodynamic
equations are developed and compared with each other with respect to stability and
efficiency on vector and parallel computers. Section 3.2 provides the simplified
hydrodynamic equations in depth-following (sigma) co-ordinates. These equations
describe the motion and the elevation of water.

For the numerical discretization of the shallow water equations we follow the
method of lines approach. This approach first converts the system of partial
differential equations (PDEs) into a system of ordinary differential equations (ODEs)
by discretization of the space derivatives. We use second-order finite differences (see
Section 3.3). Then, in Section 3.4 various time integrators are developed for this
system of ODEs. Application of time integrators for a three-dimensional model
requires a great computational effort. Especially for fully implicit methods, this is a
severe disadvantage. If an explicit method is used, then besides the CFL stability
condition there is also a condition imposed by the vertical diffusion term [1]. In
many problems the last condition is more restrictive. To investigate the influence of
this stability condition, we examine time integrators that are explicit, semi-implicit
or implicit in the vertical direction.

In the numerical experiments, which are described in Section 3.6, a wind induced
test model is examined. This model has been used by others [1,3] and is therefore an
ideal case for comparing the results. It appears that the time integrators in which the
vertical diffusion is treated implicitly perform best in our experiments. Section 3.7
deals with a stability analysis for one of these so-called vertically implicit methods.
For this time integrator the stability condition does not depend on the vertical mesh
size. Thus, the time step is only limited in terms of the horizontal mesh sizes.

11

The vertically implicit methods require the solution of a large number of
tridiagonal systems. In Section 3.5 we will investigate two algorithms for the
solution of these systems. The numerical results will be shown on a vector
computer (viz., a 2-pipe CDC CYBER 205) and on a vector-parallel computer (viz.,
an Alliant FX/4).

3.2. MATHEMATICAL MODEL

In this section a simplified three-dimensional hydrodynamic sea model will be
presented. For a detailed description of the hydrodynamic sea model we refer to [2].
The simplified three-dimensional hydrodynamic equations, of continuity and
motion, may be written in sigma co-ordinates as [1,2]

du_ g _,96. 1 0 ¢ Ju

QL= fv gax+h280(uao') (2.1)

N_ g%, 109 v

= —fu g8y+h2ao(” ac) (22)
1 1

a__39 _9

2= < (hojudc) 5 (hofvdc). (2.3)

To ensure that the domain in which the equations (2.1)-(2.3) are solved, is
constant in time, the equations have been transformed in the vertical direction into
depth-following (sigma) co-ordinates by the so-called sigma transformation [6]
L-z
d+¢°

The boundary conditions at the sea surface (¢ = 0) are given by

g =

ou\ _ h v\ _ hg o
(u ac)ﬁ)— Wr cos(0), (u ac) Wi sin(e). @24)

o=0

Similarly, the boundary conditions at the bottom (6 = 1) read

duy 84 avy _8Vq
(u 80') _1————C2 , (u 80) s @.5)

3.3. SPACE DISCRETIZATION

Following the method of lines approach, we first replace the spatial operators in
(2.1)-(2.3) by finite differences. For the finite differences there are essentially two
approaches in the vertical. In a model with Cartesian co-ordinates (see e.g., in [5]), a
fixed grid is used in the vertical, through which the fluid is free to move. This can
be visualized by considering the fluid in horizontal slices, in which only the upper

12

layer has a time-variable height. Since this model is fixed in the vertical, the
number of grid layers increases as the depth increases, but reduces in shallow
regions. This problem of reduced vertical resolution in the shallow regions can be
overcome by using the depth-following (sigma) co-ordinates of the previous section.
Then, a constant number of grid layers is used in the vertical at each horizontal grid
point. Moreover, there are no 'zig-zag boundaries' in the vertical in the case of an
irregular bottom. From a computational point of view, it is also advantageous to
have a constant number of grid layers, especially on vector and parallel computers.
Therefore, we have chosen the sigma co-ordinate model (2.1)-(2.3).

The computational domain is covered by an nx-ny-ns rectangular grid. The
notation used for the velocities is Ui,jk and Vj j x, where i,j refers to the horizontal
grid point and k to the vertical layer. The surface elevation points are denoted by
Z;,j and are computed at the sea surface only. The vertical diffusion coefficient is
assumed to vary only through the vertical. Hence, py denotes the coefficient at
layer k. In both the horizontal and vertical direction a staggered grid is used.
Figure 1 shows the horizontal grid spacing. In the vertical a varying mesh of
thickness Ack, where k refers to the k-th grid layer from the surface, is used. Hence,
it is possible to increase the resolution near the surface and the bottom. For the
structure of the vertical grid spacing we refer to [2].

O &
B X
o elo O U 7
Mxﬁx—m &

Figure 1. The staggered grid in the (x,y)-plane.

© ©
X X
@ ®

The use of a staggered grid has the following advantages:

a) For the system of equations (2.1)-(2.3) the storage requirements decrease with a
factor 4 (the mesh sizes of the staggered grid in Figure 1 are twice the mesh
sizes of the unstaggered grid). However, components that are not available in a
particular grid point, have to be obtained by averaging.

b) It simplifies the boundary conditions (e.g., in U-boundary points no conditions
for the V-velocity have to be prescribed).

©) Itreduces the possibility of spurious "2Ax-waves" [7].

For the approximation of the spatial derivatives, second-order central differences
are used in both the horizontal and vertical direction. The horizontal mesh sizes are
denoted by Ax and Ay. For the equations of motion (2.1) and (2.2), we now obtain

13

an'.'k—fV Z;i-Zi;
o~ Vijk 8 (=

L1 {uk+l(Ui,j,k+l “ Ui MU - Ui_j,k_l)} o
ﬁizj Aoy | 0.5 (Ao, +Ac)) 0.5 (Acy + Aoy ;)

aVi'i’k=_fﬁ. g Zi,.+1 _Zl,
ot i,jk Ay o
L1 {uk+l(vi,j,k+1 ~ Vi) MYy Vi,j,k_l)} o
fif; A0 | 05 Aoy, +40) 05 (Ady +Ady)
where

Uik =025 (U 5+ Ui i + Uijer i + Uist,j+1,k) »

Vi,j’k = 0'25.(V1,_],k + Vi,j-l,k + Vi-l,j,k + Vi-l,j-l,k) N

= 1
H;=%;+5(D;;+D

~ 1

-1

Considering equation (2.3), we have to approximate an integral which ranges from
the bottom to the surface. The vertical direction has been divided into a number of
grid layers. Let s, denote the interfaces between the layers, defined by

k
S = Z Acq, k=1,...ns .
g=1

Then, for the integral in equation (2.3) we may write

S
: ns k ns ns
Oj u(iAx jAy,c)do = Y, u(iAx,jAy,0)do “Z(sk_sk-l)Ui,j,k =z AckUi, ik *
k=ls * =~ =l
which leads to

a_Zi:i 1 1= ns _ ns
e E{Hm,jz Ac Uik~ HiY, AckUi,j,k}
k=1 k=1
1 - ns - ns
- E{Hi'jgl Aoy Vi - By llgi AoV, j-l,k} : (33)

Now, the semi-discretized system (3.1)-(3.3) can be written in the form

14

A F 678D,
dly |-|-F A —OE, ||V |, 34)
z) \-8HE, -6HD 0 zZ

where U, V and Z are grid functions approximating the velocities u, v and {,
respectively. The components Uj ; gk Vi ik and Z; ; are numbered lexicographically.
A is a tridiagonal matrix approxxmaung the vertical diffusion term, including the
discretization of the term 1/h2. 0, is a (nx-ny-ns)-(nx-ny) matrix (a row of ns
diagonal matrices with Ao, on the diagonal of the k-th matrix). ©, is a
(nx-ny)-(nx-ny-ns) matrix (a column of ns identity matrices). F is a four diagonal
matrix (due to the grid staggering) of order nx-ny-ns approximating the Coriolis
term. D, and D,, are lower bidiagonal matrices of order nx-ny approximating the
dlfferenual operators a/ax and d/dy, respectwely E, and E, are upper bidiagonal

matrices with E, = —D and E, = —D Both D and E, are matrices that
approximate the dlfferentxal operator a/ax However the matrices differ slightly
because of the grid staggering.

For example, in the case of ns = 4, the structure of system (3.4), in which the
four diagonal matrix F is replaced by a diagonal matrix, is given in Figure 2.

U N\
AN

| o

Q
<

N
<

) | Y AN | 2

Figure 2. The structure of the semi-discretized system (3.4).

15

3.4. TIME INTEGRATION

In this section one-step time integrators for the semi-discretized system (3.4) are
described. We will introduce time integrators that are explicit, semi-implicit or
implicit in the vertical direction.

Considering explicit methods, we do not use the Forward Euler method, because
the stability region of this method does not contain any part of the imaginary axis.
Therefore, we apply the one-step, explicit, 3-stage, second-order Runge-Kutta
method which has an imaginary stability boundary B = 2. Let the system of ODEs

%ts-= F(1,S(1)

represent the semi-discretized system (3.4), with S = (U,V,Z)T and F(t,S(t))
denoting the right-hand side of (3.4). Then, the Runge-Kutta method can be written
in the form

S, =8s"
S, =8"+05TF(ty, S)
S3=8" + 0.5T F(1,+0.51, S,) 4.1)

s™1 = §™ + T F(1,40.51, S5) ,

where n denotes the time level nt, with T the time step. It is known that the
imaginary stability boundary of method (4.1) is optimal for explicit, 3-stage,
second-order Runge-Kutta methods [4].

On the other hand, the (first-order) Backward Euler method for system (3.4) reads

=

ItA;y —F 10,8D, u* U
1F I—‘CAGO. 192gEy V* = Vn , (4.2)
©®,HE, 10,HD, I z" z"

where the approximations at the time level (n+1)t are denoted by an asterisk. This
method requires extensive computation, since at each time step a linear system of
order nx-ny-(2ns+1) has to be solved. In order to reduce the computational
complexity, we may uncouple the computation of the Z-component from the
computation of the U- and V-components. This leads to

ItAgs tF 18,gD, \(y* I 0 0 \/yn
T A, TO,E, v' |=|0 I 0 || yn |, @3)
0 0 I z* -10HE, 1@ HD 1 | zn

or to

16

[-tA;s —TF 0 u* I 0 -10,gD Ut
TF A, O v |=]0 1 ~10,gE, vt |. (44
©®,HE, tOHD I Al 0 0 1 z"

Owing to the coupling of the velocity components, we do not use methods (4.3)
and (4.4) in our experiments. A further simplification can be made by uncoupling
the computation of the U-component from the V-component. By transferring the
Coriolis term of the U-component to the right-hand side, we obtain for
method (4.3)

[TA ;5 0 19,8D, \[/u" I TF 0 \/y™

TF 1A 5 10,8E v |=|0 I 0 |l v™ |, @45)
0 0 I Z* —T@lHEX —TGIHDY I Zﬂ

and for method (4.4)
A, O 0 u* I 1F —10,8D Ut
1F [MA;s O vil=l0 I —rengy vt |. (4.6)
%*
10, HE, IQIHDy 1 Z 0 0 I zZn

The methods can be made more symmetric in various ways. In the experiments
we have observed that symmetrization of the Z-component deteriorates the stability
considerably. Therefore, we will only symmetrize the velocity components. The
symmetrical variant of method (4.6) reads

T * n
o U T
A 0 0 . I+5A 55 TF -10,8D
T = T n. @7
F A O ||V 0 T+7A g ~10,8E, v -0
1®,HE, 1®,HD I z" 0 0 I Zn

An explicit treatment of the Coriolis term can be achieved by transferring the
Coriolis term of the V-component to the right-hand side. For method (4.5) we then
obtain

A O 10,8D, u* I tF 0 \/yn
0 1A 55 T0,8E, v* |=| —tF I 0 ||y |. @8
0 0 I VA -10,HE, —t@lﬂDy I Zn

Splitting of the vertical diffusion term Agq into Aj+A,, with Ay a lower
bidiagonal matrix and A, an upper bidiagonal matrix, leads to

17

1A, 0 18,gD, \(u" I+1A, 1F 0 Ut
0 I-TA, ‘t@ngy v* |=| =F I+tA, O v! |49
0 0 I z" ~1®,HE, -0 HD I zn

At the next time step the matrices A and A, are interchanged. Thus, the direction of
the sweep is alternated every time step to avoid any bias in the method. This
method has been developed in [1]. It requires the solution of bidiagonal systems.

Considering methods (4.5)-(4.8), nx-ny tridiagonal linear systems (of order ns)
have to be solved at each time step. In the next section we will discuss efficient
methods for the solution of the tridiagonal systems.

3.5. SOLUTION OF THE TRIDIAGONAL SYSTEMS

Here, we consider two methods for the solution of the tridiagonal systems. First we
use the Gaussian Elimination (double sweep) method. Since this is a recursive
method, it seems to be unattractive on vector and parallel computers. However, in
our case we have a large number of independent tridiagonal systems. Therefore, the
systems can be solved in a vector-parallel mode on e.g., the Alliant FX/4. This
means that each processor is executing vector instructions to compute a certain
operation of the Gaussian Elimination method for all tridiagonal systems. This
method, which we denote by method GE, can be described schematically by

Method GE (Gaussian Elimination method)
for k=1,...,ns do (in scalar mode)
for j=1,...,ny
for i=1,...,nx
perform some step of the GE method at layer k and point (i,j).

do (in vector-parallel mode)

The loops with indices i and j can be collapsed into a single DO-loop to obtain a
more efficient code. These iterations are executed in vector-parallel mode. For
example, on a 4-pipe CYBER 205 and on a four-processor Alliant FX/4 this results
in a comparable form of parallelism. The iterations of DO-loops are distributed
across the pipes/processors until the entire DO-loop has been executed.

On vector computers method GE vectorizes well and also requires a minimal
number of operations. However, on parallel computers parallelism at a higher level
than at the innermost DO-loop level may be preferred. Especially, for short DO-
loops the overhead due to vectorization and parallelization may be considerable. In
our case, the loop with index k is recursive and is therefore not suited for parallel
execution. In the literature several methods have been developed to reduce this
recursion problem to smaller recursion problems. Here, we use a variant of Wang's
method that has been developed in [8]. We now briefly describe this method.

Let us assume that ns can be factorized as ns = pq. The tridiagonal system is
written as a p by p block matrix, in which each block is a q by q matrix. Then, the
off-diagonal elements on the p diagonal blocks are eliminated in parallel. This
method, which we denote by method WANG, can be considered as a method in
which the Gaussian Elimination method is applied in parallel for all p diagonal
blocks. This method reads

18

Method WANG (variant of Wang's method)
for k1=1,....p do (in parallel mode)
for k2=1,...,q do (in scalar mode)
for j=1,...,ny
for i=1,...,nx
perform some step of the WANG method at layer
k2+(k1-1)q and point (i,j).

do (in vector mode)

Here, the loop with index k2 is recursive. The parallelism is at a higher level than
for method GE. On the other hand, method WANG requires more operations than
method GE (about 2.5 times as many).

We now give the results for the wind driven test problem that is described in more
detail in the next section. The computations have been performed on a grid with
nx=10, ny=18 and ns=24. In this case, 180 tridiagonal systems of dimension 24
have to be solved. In Table 5.1 we list the computation times for the solution of
the tridiagonal systems on the Alliant FX/4 for various optimizations
(—=no optimization, G=Global, V=Vector and P=Parallel). This mini-supercomputer
has four vector processors. For method WANG we have divided the 24 vertical
layers into four blocks (i.e., p = 4 and q = 6). Thus, the computations for each
block have been performed on a different processor.

PROC.) ((¢)] GV) (GVP)
METHOD GE 1 37.2 9.6 247 2.59
2 1.36
3 1.00
4 9.6 247 0.87
METHOD WANG 1 87.7 17.3 4.91 4.95
2 2.64
3 247
4 17.3 491 1.60

Table 5.1. Computation times on the Alliant FX/4 (in s).

Without any optimization, method GE is about a factor 2.4 faster, which is in
accordance with the number of operations. Also in vector mode, method GE is more
efficient. The vectorization properties of both methods are comparable. Although
method WANG requires about 2.5 times as many operations, the number of divi-
sions is equal for both methods. Since divisions are more expensive than additions
and multiplications we obtain a gain factor of 1.8 for method GE. It is remarkable
that we obtain different computation times on one and four processors for
method WANG.

19

In parallel mode, we expected the smallest computation time for method WANG.
Although method WANG requires more operations, we expected the parallelization
overhead for method GE to be relatively larger. However, it turns out that even for
our relatively small test problem method GE is faster. On four processors we
obtain a speed-up of about three for method GE. It should be noted that method
WANG is superior when e.g., one large tridiagonal system has to be solved [8].

We conclude that it is not worthwhile to develop a method that contains
parallelism at a higher level (as in method WANG), because a large number of
independent tridiagonal systems has to be solved. Thus, on both vector and parallel
computers method GE is the most efficient method for the solution of a large
number of tridiagonal systems. Moreover, method GE requires a minimal number of
operations. In the numerical experiments method GE will be used. It should be
noted that on vector computers method GE is the only possibility.

3.6. NUMERICAL EXPERIMENTS

To compare the various time integrators we choose a test problem that has been
used by others [1,3]. In this experiment the water is initially at rest and the motion
in the basin is generated by a constant wind stress. The closed rectangular basin has
dimensions representative of the North Sea. Thus, a wind driven circulation is
gradually developed and finally reaches a steady state. In this experiment the total
depth h in system (2.1)-(2.3) is replaced by d, which leads to a linear system of
equations (cf. [1]). The following parameters are used in this experiment:

L =400km
Ax = 400/9 km

B =800 km

Ay = 800/17 km
f =122-451
g =9.81m/s2
d =65m

p = 0.065 m2/s
C =70m!2/s
Wfr=1.5 kg/ms2
p = 1025kg/m3
o =90°.

We integrate over a period of 24 hours, with time steps of 3, 10, 20 and 30
minutes. The experiments have been carried out on a (2-pipe) CDC CYBER 205.
Tables 6.1 and 6.2 show the water elevation computed at the south-western corner
of the basin for two different vertical resolutions, namely Ac=1/ns, with ns=5 and
ns=25. Overflow is denoted by ***,

The methods used in this experiment are:

the 3-stage Runge-Kutta method (4.1)

the vertically implicit method (4.5)

the vertically implicit method (4.6)

the symmetrized, vertically implicit method (4.7)
the vertically implicit method (4.8)

the vertically semi-implicit method (4.9).

20

method At Cmax tme L . time comp. time
(min) (cm) (hrs) (cm) (hrs) ®
“4.1) 3 172.6 8.7 458 183 4.36
10 172.3 87 459 183 1.31
20 171.6 8.7 466 183 0.65
30 3 ok
4.5) 3 173.0 8.8 455 183 1.26
10 173.7 8.7 448 185 0.38
20 175.0 9.0 440 187 0.19
30 skekk
(4.6) 3 173.0 8.7 455 183 1.26
10 174.1 8.7 448 183 0.38
20 176.1 8.7 432 183 0.19
30 % 3k %k
4.7 3 172.9 8.7 45.6 183 1.53
10 173.8 8.7 45.1 183 0.46
20 175.7 87 440 183 0.23
30 skkk
4.8) 3 172.7 8.7 455 183 1.26
10 172.9 8.8 448 183 0.38
20 174.0 9.0 426 183 0.19
30 ek ok
4.9) 3 172.5 87 458 183 1.34
10 172.5 88 456 183 0.40
20 173.4 8.7 444 18.3 0.20
30 %k k

Table 6.1. Surface elevations with ns=5.

Table 6.1 shows that the results are comparable for all methods when ns=5.
However, in the case of 25 layers the methods behave differently (see Table 6.2).
The RK3 method becomes unstable for already the smallest time step used in this
experiment. Method (4.9), in which bidiagonal systems have to be solved, yields
accurate solutions for time steps of maximally five minutes. However, the
vertically implicit methods (4.5)-(4.8) behave as in the case of five layers. In both
experiments the maximally stable time step is about 20 minutes. It seems that for
these methods the maximally stable time step is independent of the vertical mesh
size. In the next section we will carry out a stability analysis for one of the
vertically implicit methods, viz., method (4.6).

21

method At Cmax time Cnin time comp. time
(min) (cm) (hrs) (cm) (hrs) O]
“.1) 3 ek
4.5) 3 173.8 8.8 41.0 18.3 4.31
10 1748 8.8 40.3 185 1.29
20 1769 9.0 38.7 18.7 0.65
30 %k
4.6) 3 173.8 8.7 410 183 4.30
10 1748 8.7 40.3 183 1.29
20 176.9 8.7 38.7 183 0.65
30 Sk %k ok
4.7 3 173.7 8.7 41.1 183 5.79
10 174.7 8.7 40.6 18.3 1.74
20 176.5 8.7 394 183 0.87
30 ek k
4.8) 3 1734 8.8 410 183 4.36
10 173.7 8.7 40.2 18.3 1.29
20 1747 9.0 379 183 0.65
30 EE 2
“4.9) 3 173.5 8.6 41.1 182 5.05
10 1794 8.3 341 17.8 1.51
20 212.1 8.0 -3.1 183 0.76
30 S e 3k

Table 6.2. Surface elevations with ns=25.

The numerical results show that the vertically implicit methods are more robust
than the other two methods. Thus, an implicit treatment for the vertical diffusion
term is beneficial because of stability considerations. For the vertically implicit
methods, the U-, V- and Z-component are computed after each other. This is
advantageous for the both the stability and the storage requirements.

Concerning computation time, it is evident that the vertically implicit
methods (4.5)-(4.8) can be computed efficiently on vector and parallel computers. It
is surprising that the vertically implicit methods are slightly more efficient than
method (4.9), in which bidiagonal systems have to be solved. This is due to the
way of programming. The tridiagonal systems are build up and solved at the same
time. This leads to a smaller number of divisions. In general, the efficiency of both
methods will be comparable.

We conclude this section with an overview of computation times on various
computers, ranging from supercomputers to personal computers. This could easily

22

be done, because the code was written in the ANSI FORTRAN 77 programming
language. We have applied method (4.6) to the test problem with ns=25 and
1=1200 s (see Table 6.2). In Table 6.3 we list the results (* = 32 bits precision,
otherwise 64 bits precision).

OPTIMIZATION
COMPUTER O] G GV) (GVP)

MACINTOSH PLUS * 6110
VAX-11/780 * 508 178
ALLIANT FX/4 * 125.9 30.9 8.4 2.82
ALLIANT FX/4 3.67
CDC CYBER 990 53.3 10.6
CDC CYBER 205 11.9 5.8 0.65
CRAY X-MP/28 0.236
NEC SX/2 * 0.088

Table 6.3. Computation times (in s).

For this test problem the CDC CYBER 205 is about 6 times faster than the
Alliant FX/4, and the NEC SX/2 supercomputer is about 70.000 times faster than
the Macintosh Plus ! This clearly illustrates the need of supercomputers.

3.7. STABILITY ANALYSIS

In this section the stability of method (4.6) is examined. For that purpose we
introduce the eigenvalues i3y, idy and Yoo of the difference operators Dy, Dy and
Ao, corresponding to the eigenvectors el{®1AX+0,4y+0340) The following
assumptions are made:

a) the total depth h is constant

ns

b) ' AGt(h, +hD U, ;4 = T(h,+hD) U,
k=1

c) Vk:lskSns:Ack= 1/ns .

Although assumption b) reduces the analysis to a two-dimensional stability
analysis, the results are in agreement with our three-dimensional experiments. We
now construct for method (4.6) the so-called amplification matrix. This
amplification matrix may be written in the form

G=AlB,

23

where

- Woc 0 0 I 1F —ithX
A=|1F L=~y O , B=10 1 —itg8y ,

i‘ch8x 1‘ch8y I 00 I

where

in(o; 0.5Ax sin(o, 0.5A —2+cos(a,Ac

5X=Sl(1)’8y= 1(2 Y)’ oc=_(f££ .1)

0.5Ax 0.5Ay (AG)2 h2

and o, 0y and a3 are constants. Stability in the sense of O'Brien-Hyman-
Kaplan [10] is ensured if IGll < 1. To study the stability we write

G=q qlAlq ¢!Bq q &
G=q@'Aag9! @!Bg ¢! o
G=q A1 B q!

where

and
1~y 0 0 I F -itsx
A=|1F I 5 0 and B = 01 ik ,
5 % I g
it it
. y 0 0 I
with

sin(a; 0.5Ax)

5 =Vgh—1—" 3 =
x= '8 0.5Ax Sy \/El

sin(a, 0.5Ay)
0.5Ay

In the remainder of the section we will omit the tildes. Suppose that A denotes the
eigenvalues of G. Then, the eigenvalues satisfy

24

det|A-1B -1l =0 PN
detlall - det |B-2al=0.

Assuming that A is invertible, we find

M TYgq-1) *F —itd,
det [B - AA] =det | -AF M TYge-D) -it8, | =0. (7.2)
—iAtd, —iMSy I-A

The eigenvalue equation for G is

X3+allz+a2l+a3=0,

where
(g —3 + 1:283 + 1283)(1700 -1)- 2F2 &+ 138x8yF
e (l_woc)z
2TY55 -3 + 1285 + 12F2 + ':28,2(- 138x8yF
2T (7o)
a3 = 1

(1—“0.6)2
Note that the coefficients are real, whereas the matrix in (7.2) is complex.

Therefore, we can apply the Hurwitz-criterion [9] to ensure that the eigenvalues of
the amplification matrix G are within the unit circle. Thus, we must require

1+a1+a2+a3>0
1—a1+a2—a3>0
3+a1—-a2—3a3>0
1~a2+a1a3—a3>0.

We then obtain the following inequalities:

3 2 2
@ 1 o (Sx + 8y) <0

2
(b) 1:276 o~ dTgg 4+ 12(8,2(+ 8:3') (0.5tY55— 1) + 138x8yF -2 250

25
2 2
© g+ P +85) 2 - TYgg) - 208, 8,F + 20F2 > 0
3.7 2 252 252 3 262y _ 9252
@) T~ 215+ T (178, #1758, —1°8,8.F + T°F%) - 21°F
+ 2038 8 F - 128f - 1283 <0.

From (7.1) it can be easily seen that Yoo < 0. Thus, inequality (a) can not be
satisfied if 8, = 8, = 0. However, in that case the amplification matrix is of the
simple form

+MtY55-1) TF 0
G=| -MF HA(Tyg5-1) O ;
0 0 I-A

with the eigenvalues

2F2 - 2(1y55 - 1) % ‘cF'\/ 12F2 + 4ty 5 - 1)

A=1, 5
2(1700 -1

Thus, inequality (a) can be rewritten to

@ —2F2 _ 25— 1) & ’CZF'\/ 2F2 + Wine—1) -
2ty — 1)

The inequalities (a'), (b), (c) and (d) are too complicated to derive stability
conditions. Therefore, we neglect the influence of the Coriolis term. Then, it can
easily be verified that inequalities (a"), (c) and (d) are always satisfied. For the second
inequality we obtain

1< 1 . (7.3)

Veh [T

@2 @y

This condition shows that the maximally stable time step is independent of Ac. For
the parameters used in our experiment, stability condition (7.3) yields a maximally
stable time step of about 1300 seconds, which is in agreement with the numerical
results. Experimentally, we have observed that the maximal stable time step is of
the same order when the Coriolis term is not neglected.

26

3.8. CONCLUSIONS

In this paper we have investigated the stability and efficiency of one-step time
integrators for the three-dimensional hydrodynamic equations. From our linear test
problem, it appears to be necessary to treat the vertical diffusion term in an implicit
or semi-implicit way. The vertically implicit methods (4.5)-(4.8) perform better
than the semi-implicit method (4.9). For both the stability and the storage
requirements it is advantageous to compute the U-, V- and Z-component
sequentially. The vertically implicit methods satisfy this condition.

For these methods a large number of tridiagonal systems have to be solved. We
have considered two methods for the solution of these systems. The method in
which the tridiagonal systems are solved by the Gaussian Elimination method
appears to be the most efficient one. Because of the large number of tridiagonal
systems, these systems are solved in a vector-parallel mode, resulting in a high
performance on vector and parallel computers. Moreover, this method requires a
minimal number of operations.

In future we will examine the vertically implicit methods for nonlinear test
problems.

REFERENCES

1. AM. DAVIES, Application of the DuFort-Frankel and Saul'ev methods with
time splitting to the formulation of a three dimensional hydrodynamic sea
model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985).

2. E.D. DE GOEDE, Finite difference methods for the three-dimensional
hydrodynamic equations, Report NM-R8813, CWI, Amsterdam, 1988.

3. N.S. HEAPS, On the numerical solution of the three-dimensional hydrodynamic
equations for tides and storm surges, Mem. Soc. Roy. Sci. Liége Ser. 6, 2,
143-180 (1972).

4. P.J. VAN DER HOUWEN, Construction of integration formulas for initial-value
problems, North-Holland, Amsterdam, 1977.

5. J.J. LEENDERTSE, R.C. ALEXANDER, AND S.-K. LIU, A three dimensional model
for estuaries and coastal seas : volume I, Principles of computation, The Rand
Corporation, RM-1417-OWRR, 1973.

6. N.A. PHILLIPS, A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184-194 (1957).

7. G.S. STELLING, On the construction of computational methods for shallow
water flow problems, Ph.D. Thesis, TU Delft, 1983.

8. H.A. VAN DER VORST AND K. DEKKER, The vectorization of linear recurrence
relations, SIAM J. on Sci. and Stat. Comput., 2, 27-35 (1989).

9. J.D.LAMBERT, Computational methods in ordinary differential equations, John
Wiley & Sons, London, 1973.

10. G.G. O'BRIEN, M.A. HYMAN AND S. KAPLAN, A study of the numerical
solution of partial differential equations, J. Mathematics Phys., 29,
223-251 (1950).

27

Chapter 4

Stabilization of a Time Integrator
for the 3D Shallow Water Equations
by Smoothing Techniques

E.D. de Goede
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009AB Amsterdam, The Netherlands

A smoothing technique is applied to improve the stability of a semi-
implicit time integrator for the three-dimensional shallow water
equations. In this method the terms involving the vertical direction are
treated implicitly. The stability condition for the time step only
depends on the horizontal mesh sizes. Therefore, in the horizontal
direction a smoothing operator is added. Owing to the smoothing, the
maximally stable time step increases considerably, while the accuracy
is hardly affected. Moreover, it turns out that the smoothing operator
is efficient on vector and parallel computers.

4.1. INTRODUCTION

In numerical analysis, we distinguish explicit and implicit time integrators for
partial differential equations. It is well-known that implicit methods are in general
stable for any time step, but cannot exploit the facilities of vector and parallel
computers as well as explicit methods do. On the other hand, explicit methods
impose a severe restriction on the time step and therefore the time step is not
dictated by accuracy considerations. To improve the stability of explicit methods,
we will use smoothing techniques.

Smoothing techniques are frequently applied in numerical methods. Usually, the
smoothing technique consists in applying a matrix S to some vector F. The aim is
to reduce the magnitude of the high frequencies occurring in the Fourier expansion
of the vector to be smoothed, without affecting the lower frequencies too much. A
simple example of an m x m smoothing matrix S is given by G = SF, where

G =F

1 :
G, =4—(F 1 +2F+F,), i=2,..m-1, (1.1)
G,=F,

with F; and G; denoting the components of the vectors F and G, respectively.
In this paper our starting point is the semi-implicit time integrator that has been
developed for the linearized three-dimensional shallow water equations (SWEs)

28

in [3]. In this method only the vertical terms are treated implicitly. For this method
we are faced with a CFL stability condition that depends on the horizontal mesh
sizes Ax and Ay. For small values of Ax and Ay this time step restriction may be
more severe than necessary for accuracy considerations. Therefore, we will add a
smoothing operator in the horizontal direction to make the stability condition due to
the horizontal mesh sizes less restrictive.

The time integrator described in [3] can be considered as a method in which an
implicit smoothing operator already appears in the vertical direction. The smoothing
in both the horizontal and the vertical direction may be interpreted as a
preconditioning of the right-hand side of the semi-discrete shallow water equations.
It will be shown that the maximally stable time step increases considerably when
the smoothing operator in the horizontal direction is applied. The time step for the
stabilized time integrator is now dictated by accuracy considerations, as it applies to
implicit methods. Moreover, the stabilized time integrator can be implemented
efficiently, as will be shown in the experiments. The efficiency of this method will
be tested on various domains. In the experiments we will use a rectangular domain
representing the North Sea and an irregular domain representing the IJsselmeer. The
DUsselmeer is the largest lake in the Netherlands.

The technique of stabilizing explicit time integrators by right-hand side
smoothing has been applied by Wubs for the numerical solution of the two-
dimensional shallow water equations [10]. For an overview of various smoothing
techniques we refer to [4].

Section 4.2 provides the theory for the smoothing. In Section 4.3 we describe the
semi-implicit time integrator for the shallow water equations. In Section 4.4 the
smoothing is applied to stabilize this time integrator. Section 4.5 is devoted to the
implementation of the smoothing matrices. Finally, in Section 4.6 we show by a
number of experiments that application of the smoothing operators leads to a
considerable reduction of the computation time, while the accuracy remains
acceptable. The numerical solution is compared with a solution computed with a
very small time step on the domain used in the experiments. This reference solution
may therefore be considered as an almost exact solution on this domain. The
reduction of the computation time is more or less independent of the domain. When
the solution tends to a steady state, we even obtain a reduction factor of about 10.

4.2. RIGHT-HAND SIDE SMOOTHING
Consider the partial differential equation

9a_VtV= Lw(t.x) + c(t.x), @.1)

where L is a linear differential operator with respect to the space variable x and c¢ is
a given function. This equation, together with its boundary conditions, can be semi-
discretized into a system of ordinary differential equations (ODESs) of the form

d}"!: TW() + C), 22

29

with J the Jacobian matrix, C an approximation to ¢ and W an approximation to w
at the grid points used for the semi-discretization. We shall always assume that this
system is stable in the sense that the eigenvalues of J are in the nonpositive half
plane. In Section 4.3 we shall see that the linearized 3D shallow water equations can
be semi-discretized into this form.

If the system (2.2) is integrated by an explicit time integrator, then its maximally
stable time step is limited owing to the usually extremely large magnitude of the
spectral radius of J. Therefore, the time step has to be unrealistically small in order
to achieve stability. This restriction is a drawback if the variation of the solution in
time is so small that accuracy considerations would allow a larger time step. To
obtain a better conditioned right-hand side function, we premultiply the right-hand
side of the original semi-discretization (2.2), or some part of it, by a smoothing
operator S. Thus, we replace (2.2) either by

%".: S{IW@®+Cw), (2.3a)
or by
%‘L ST W) + C(1). (2.3b)

In (2.3b) a part of the right-hand side is smoothed. The semi-discretization (2.3a)
is particularly attractive in problems where it is known that the time derivative of
the exact solution, i.e., dw/ot is a smooth function of the space variable x (e.g., in
problems where a steady state is to be approximated). In such cases the right-hand
side function of the semi-discretization (2.2) is also a 'smooth’ grid function, so that
it may be premultiplied by the smoothing operator S without much loss of
accuracy.

The maximally stable time step may increase considerably when the explicit time
integrator is applied to (2.3) instead of to (2.2). To achieve that the condition of SJ
is better than that of J, the operator S should strongly damp the high frequencies
(stiff components) in the Fourier expansion of the vector JW, so that the spectral
radius of SJ is substantially less than that of J. One may consider the
equations (2.3) as 'smoothed’ or 'preconditioned' semi-discretizations of the original
equation (2.1).

We emphasize that, in this paper, the right-hand side function is smoothed,
instead of the grid function W(t) itself. The latter type of smoothing is often used.
However, it may only be applied, without considerable loss of accuracy, if W(t)
itself is a 'smooth’ grid function for a fixed value of t. This is in general not the
case. An example of this latter type of smoothing is the well-known Lax-Wendroff
method [8].

To characterize the effect of right-hand side smoothing on the accuracy of the
initial semi-discretization (2.2), we introduce the order of consistency of smoothing
operators. Let A be the mesh size, then the smoothing operator S is said to be
consistent of order p if S=I+O(AP) as A tends to zero. Hence, S converges to the
identity operator I if the grid is refined.

30

We remark that the application of right-hand side smoothing is not restricted to
linear ODEs. Right-hand side smoothing can also be applied to more general
systems of the form

%: F(L,W(1)), (2.2)

by replacing it by the smoothed system

QEV!: S F(tL,W(1)). (2.3)

Summarizing, the smoothing operator S should satisfy the following
requirements:

(A) Sis consistent of order p > 1

(B) the smoothed system is again stable

(C) the spectral radius of SJ is considerably smaller than that of J

(D) the application of the operator S does not require much
computational effort.

In the following subsections it will be shown that, instead of looking for highly
stable integration methods, one may equally well apply methods in which the right-
hand side function of the system of ODEs (2.2) is premultiplied by a smoothing
operator S such that the magnitude of the spectral radius associated with the right-
hand side function reduces considerably. We distinguish smoothing that is dependent
on and smoothing that is largely independent of the right-hand side function. The
former type of smoothing is based on operator splitting and will be discussed in
Section 4.2.1. Smoothing operators that are to a large degree independent of the
right-hand side function will be discussed in Section 4.2.2.

4.2.1. SMOOTHING OPERATORS BASED ON OPERATOR SPLITTING

Smoothing operators based on operator splitting are suggested by considering
splitting methods developed for the time integration of partial differential equations.
Our starting point is the forward Euler method applied to the semi-
discretization (2.2), which can be described by

Wl wh g (W4 1, 24)

where 7 is the time step and W" and C" denote approximations to W(nt) and C(n7),
respectively. Let us split the matrix J into

T=3+1y,

and let us replace the forward Euler method (2.4) by the splitting method

31
W, WMo wh e (5 Wh M),
or, equivalently,
W o a-rit {(@+tIpWheTCn). 2.5)

This method can be rewritten as

Wit owh et s{IWh+C"), (2.6)
with
S=a-tJy)7t. @7

The splitting method (2.6)-(2.7) may be interpreted as the forward Euler method
applied to the system of ODEs (2.3a), which is a 'smoothed' version of the initial
semi-discretization (2.2), with a smoothing operator S defined by (2.7). By an
appropriate choice of the matrix J;, this splitting method has much better stability
characteristics than the forward Euler method (2.4). For example, the choices J 2=]
and J,=]/2 lead to the A-stable methods of Laasonen (backward Euler) and Crank-
Nicolson (trapezoidal rule), respectively. Another possibility is to choose J5 equal
to a lower (or upper) triangular matrix. For the two-dimensional shallow water
equations such an approach has been followed by Fischer [2] and Sielecki [9]. In
fact, the method developed in [3] for the linearized shallow water equations may be
interpreted as a combination of the Crank-Nicolson method and the approach of
Sielecki and Fischer. In that paper it was shown that the stability of the resulting
numerical method improves considerably, whereas the computations can be
performed efficiently.

4.2.2. SMOOTHING OPERATORS FOR GENERAL VECTOR FUNCTIONS

The smoothing operators considered in the previous subsection strongly depend on
the specific form of the right-hand side function. In this subsection we summarize
the main properties of the family of smoothing operators developed in [4,6]. These
operators are largely independent of the particular form of the vector function to
which they are applied and therefore we shall present the results for the general
equation (2.3"). We will again assume that the eigenvalues of the Jacobian matrix
J:=0F/0W are in the nonpositive half plane.

The smoothing operator S will be chosen of the form S=P(D), where D is a
difference matrix and the smoothing function P(z) is a polynomial or a rational
function, yielding explicit or implicit smoothing operators, respectively. First we
discuss the choice of the matrix D. In our theoretical considerations we assume that
D is equal to the Jacobian J, normalized by its spectral radius, ie.,

Di= p_iﬁ . 2.8)

32

We emphasize that in practice it is generally not attractive to choose D according
to (2.8) and we shall employ some cheap approximation to the normalized Jacobian
matrix. If D is defined according to (2.8), then the eigenvalues of SJ=P(D)J are
given by p(J)zP(z), where z runs through the spectrum of D.

4.2.2.1. EXPLICIT SMOOTHING OPERATORS

In the case of explicit smoothing we are looking for a polynomial P(z) such that the
magnitude of zP(z) is sufficiently small with P(0)=1 and z either in [-1,0] or in
[i,i]. Moreover, the polynomial P(z) will be chosen such that zP(z) remains in the
nonpositive half plane. It was shown in [4,6] that polynomials of the form

P(z):PZk(— i+22) | (x) := Sin(k+1) arccos(x)) 29)
2k + 1 » ik sin(arccos(x))

minimize the magnitude of zP(z) on the purely imaginary interval [-i,i]. However,
if z has negative real parts, then it may happen that Re {zP(z)} > 0 causing unstable
behaviour. Since we shall apply smoothing to vector functions whose Jacobian
matrices possess eigenvalues with negative real parts (caused by the vertical
diffusion and the bottom friction in the SWESs), we require that Re {zP(z)} < 0 for
all values with Re {z} < 0 (see condition (B)). For this case the following theorem
defines a family of nearly optimum polynomials [4,6].

THEOREM 2.1. Let D be defined by (2.8), let S=P(D) with P(z) defined by

Ty (1+22%) - 1

P(z) =
2k2 z 2

, Tg() = cos(k arccos(x)) . (2.10)

Then the following assertions hold.

@ IfRe {z} <0 then Re {zP(z)} <0.

(b) If zis purely imaginary, then zP(z) is again purely imaginary and for
sufficiently large k its maximum is approximately
2

prl (2.11)

PROOF. For a proof of (a) we refer to [4,6].
(b) We have to find the maximum of |zP(z)| on [-i,i], or, equivalently,

L]

max | [Tk(1+222) -1}
2%?%2

2.12)

The range of {1+2z2} in (2.12) is [-1,1]. On this interval the Chebyshev
polynomial Ty(1+2z2) satisfies the 'so-called' equal ripple property [5], which
means that it alternatingly assumes equal maximum and minimum values. Because
of the factor 1/(2k2z), let us now assume that the value in (2.12) can be

33

approximated at the smallest value of Iz| for which Ty(1+222) reaches its minimum.
Thus, we require that

Tk(1+2z2) = cos(k arccos(1+222) =-1,
for Izl as small as possible, which yields

N 1—cos(m/k)

z=%1

42
For these values of z we obtain that (2.12) is bounded by

V2 2 2.13)

k2 1—cos(m/k) - omk’

for k sufficiently large. For many values of k we verified numerically that the
reduction factor is close to 2/rk. Therefore, we conclude that the approximation
applied in this theorem is justified. []

An extremely efficient implementation of the smoothing operator of Theorem 2.1
can be obtained by using the following factorization theorem (see also Section 4.5),
which justifies the application of these smoothing operators.

THEOREM 2.2. Let the matrix D be defined by (2.8), let S=P(D) with P(z) defined by
(2.10), let the factor matrices Fj be generated by

2 2 .
Fy=1+D% Fj,;=@U-2F)", j>0,

and letk =29, Then, S can be factorized by

S=FF_ ;.F. 2.14)

For a proof of Theorem 2.2 we refer to [4,6]. []

4.2.2.2. IMPLICIT SMOOTHING OPERATORS

In this subsection we will discuss implicit smoothing, i.e., if F is the vector to be
smoothed, then the smoothed vector G is obtained by solving G = SIF, where S
is a smoothing operator (see (1.1)). Implicit smoothing has been applied in [7,10].

THEOREM 2.3. Let S'1=P(D) with D a difference matrix and P(z) defined by

P@)=— L with a>0. (2.15)

34

Then the following assertion holds:
If z is purely imaginary, then

IzP(z)lsl_.
o

PROOF. This follows immediately from elementary analysis. []

As mentioned before, in practice we shall choose D equal to some cheap
approximation of the normalized Jacobian which satisfies condition (B). In choosing
a difference matrix D the boundary conditions have to be incorporated in D. This is
important to preserve conservation of mass. In this paper we shall choose
smoothing operators of the form

0 0
121
p?=1 L (2.16)
4 121
0 0

The implicit smoothing operator described in Theorem 2.3 with D2 as in (2.16)
results in the solution of a tridiagonal system. Therefore, this implicit smoothing
operator does not require much computational effort. In practice, the value of o
in (2.15) depends on the time step and on the mesh sizes.

Let us now discuss the order of cons1stency of the smoothing operator S with D?
defined in (2.16). We assume that D2 and P(z) satisfy the conditions

D2= O(A%asA—0, Pz)=1+ O(zzr) asz — 0, 2.17)

where A denotes the mesh size, r and s are positive integers. Hence, S is consistent
of order p—rs For example, the smoothing matrix defined in (1.1) can be generated
by P(z)=1+z2 with D2 defined by (2.16) and is second-order consistent (s=2, r=1).
When P(z) is defined by (2.10) and D2 by (2.16), then it can be easily verified that
S is also second-order consistent.

Summarizing, if we choose the matrix D2 defined by (2.16), then the smoothing
matrix S=P(D), with P(z) the polynomial (2.10) or the rational function (2.15),
reduces the magnitude of the spectrum associated with the right-hand side function
con31derably, whereas the spectrum remains in the nonpositive half plane. For this
choice of D the smoothing matrix S is independent of the right-hand side
function.

In Section 4.4 we shall use both smoothing based on operator splitting and
smoothing of general vector functions based on the theorems in Section 4.2.2.

4.3. MATHEMATICAL MODEL

In this section we will describe the mathematical model and the time integrator to
which the smoothing will be applied. We will use a three-dimensional model in
sigma co-ordinates in which the advective terms have been omitted. This model is
described by

35

du_ g 9,1 9 ¢ du 3.1

el gax+h280(uao) 3.1

av a 1 9 av

BV = il pato stesdne: [y ZX 3.2

. g8y+h2ao(”ao) w2
1 1

a__0 _9 33

e (hojudo) 3 (hojvdo), (3.3)

with boundaries

0<x<L

0<y<B

12620

Thus, the domain is a rectangular basin. Owing to the sigma transformation in the
vertical, the domain is constant in time. We have the closed boundary conditions

u(0,y,0,t) =0, u(L,y,o,t) =0,
v(x,0,0,t)=0, v(x,B,0,t)=0.

The boundary conditions at the sea surface (o = 0) are given by

(u Eﬂl.) =— E\Nf cos(d) , (u Q—‘L) =r wa sin(¢) .
oo 6=0 i do =0 P

At the bottom (6 = 1) we have a linear law of bottom friction of the form

S TP PN 1
(a") - o+ (a") =1 c?

with uy and v4 representing the components of the current at some depth near the
bottom.

4.3.1. SPACE DISCRETIZATION

For the space discretization of the equations (3.1)-(3.3) the computational domain is
covered by an nx-ny-ns rectangular staggered grid (see [3]). For the approximation
of the spatial derivatives, second-order central finite differences are used in both the
horizontal and vertical direction.

We use the following notation: U, V and Z are grid functions approximating u, v
and , respectively. The Z-points are only specified at the sea surface. Furthermore,
Aoo is a tridiagonal matrix approximating the vertical diffusion term, including the
discretization of the term 1/h2. ©1 is an (nx-ny-ns)-(nx-ny) matrix (a row of ns

36

diagonal matrices of order nx-ny with Aok on the diagonal of the k-th submatrix).
©, is an (nx-ny)-(nx-ny-ns) matrix (a column of ns identity matrices of order
nx-ny). F is a four-diagonal matrix (due to the grid staggering) of order nx-ny-ns,
approximating the Coriolis term. D and Dy are bidiagonal matrices (one diagonal
and one lower diagonal) of order nx-ny, approximating the differential operators
d/ox and 0/dy, respectively. Ex and Ey are bidia%onal matrices (one diagonal and
one upper diagonal) with Ex = — D, and Ey = - Dy. The matrices Dy and Ex differ
because of the grid staggering.
Now, the semi-discretized system can be written in the form

U
%W:F(W):(A+B)W+C, with w=|v |, (3.4)
zZ
and
Ao 0 0 0 F -6,D F,
A=|-F B 0 |,B=| 00 -6,gE, |.C=|F, |.(35)

The reason for this splitting will become clear in the next sections. The vector C
contains the components of the wind stress. Note that the integrals in (3.3) are
approximated by ®,U and ©, V, respectively.

4.3.2. TIME INTEGRATION
We start with the time integrator for (3.4)-(3.5) developed in [3]:

ItAgs O 0\ /ynt! I 1F -10,gD, "\ /yn F,
TF 1—1:A0o 0 V“"’l =10 I _tGZgEy vt |+ Fn s
v
‘CGIHEX TGIHDy 1 Zn+l 00 I VAN 0
or, equivalently,
I-1A) W™ = 1+ 1B)W" +1C".
This method can be written in the form
W oWt (1 —tA) L FOWD) . (3.6)

In terms of method (2.6)-(2.7), we have that S = (I - TA)"L. Thus, this time
integrator can be considered as a method in which the right-hand side function is
preconditioned by the implicit smoothing operator (I — TA)'l. It can easily be seen

37

that the components are calculated sequentially (first U, then V and finally Z). This
is advantageous for both the stability and storage requirements. For the two-
dimensional shallow water equations a similar approach has been followed by e.g.,
Fischer [2] and Sielecki [9]. The time step restriction for method (3.6) is given by

1<l 1 , (3.7)
Vgh 4/ S
@x? (ay)

where Ax and Ay denote the horizontal mesh sizes. This condition is slightly more
restrictive than the condition derived in [3]. We remark that the time step in (3.7)
does not depend on the vertical mesh size Ac. However, the condition imposed by
the horizontal mesh sizes is still rather restrictive. Therefore, we will add a
smoothing operator in the horizontal direction. This smoothing operator will be
described in the next section.

4.4. SMOOTHING
In this section the stability of method (3.6) will be improved by a smoothing of
general vector functions (see Section 4.2.2).

Method (3.6) can be written in the form

W o WPt (- t{A+A,)) T FOWDY), @.1)

where A; + A, = A (see (3.5)) with

Ay 0 O 0 0 0
A= 0 Ay O and A, = -F 0 0

Method (4.1) may therefore be interpreted as the forward Euler method in which the
right-hand side function is smoothed by the matrix (I — t{A1+A2])'1. The vertical
terms are treated implicitly, because the matrix A contains the discretization of the
vertical diffusion term. The stability condition for this time integrator does not
depend on the vertical mesh size Ac. However, the condition imposed by the
horizontal mesh sizes is still rather restrictive (see (3.7)). The horizontal terms are
treated partly implicitly (AoW™*1 in (4.1)) and partly explicitly (BW™ in (3.6)).
Hence, we add another preconditioning of the right-hand side function, i.e., a
smoothing of general vector functions described in Section 4.2.2.

The right-hand side function of the U-component only contains derivatives in
the x-direction and will therefore be smoothed in the x-direction only. Similarly, the
V-component is only smoothed in the y-direction. The Z-component is smoothed
in both directions. However, the smoothing of the right-hand side function in two
directions is complicated. The precomputation of the cheap factor matrices (see
Theorem 2.2) is only feasible in one-dimensional cases. Therefore, we apply one-
dimensional smoothing in the x- and y-direction, successively.

38

In the x-direction the smoothing matrix has the simple structure

where S and S, denote the smoothing matrices for the right-hand side function of
the U- and Z-component, respectively. Here, S =P(Dy) and S,=P(D,) with P(z)
defined by (2.10) and

0 0 o] 1 0
121 1-21
2 1 e 2 1 S
Du=4- S and DZ—4— S) 4.2)
I -21 1-21
0 0 0 -1 1

In the y-direction the smoothing matrix has a similar simple structure. Note that
Dy, and D, only differ in the first and last row, which is due to the grid staggering
and to the boundary conditions. The number of different boundary conditions is very
limited (open or closed boundaries, u- or {-boundaries). The smoothing matrices,
including the values in the first and last row, are therefore computed in advance.

The time integration method in which the smoothing based on general vector
function has been added, can be written in the form

W - W1 (1 1{A+SA,)) T S FWD) (4.3)

with the matrices A and Aj defined in (4.1) and the smoothing operator S defined
in Theorem 2.1. The smoothing operator S appears twice in (4.3). The first
operator S is a result of the fact that the components of W are computed
sequentially. The second operator S in (4.3) is clearly a smoothing of the right-hand
side function. In cases where the solution becomes stationary (thus F(W) = 0), it is
evident that methods (4.1) and (4.3) obtain the same stationary solution.

The stability condition for method (4.3) reads (see (2.13) and (3.7))

mk
T2 s : (4.4)

P e [T
@ax? (ay)?

Hence, the gain factor obtained by the smoothing of general vector functions is

nik/2.

39

4.5. IMPLEMENTATION OF THE SMOOTHING OPERATORS
In this section we discuss the implementation of the smoothing matrices (I - 'cA)'1
and S (see (4.3)). For the U- and V-component the smoothing matrix (I — tA)“1
requires the solution of nx-ny tridiagonal systems of order ns, which can be
computed efficiently [3]. The smoothing operator S can be computed in various
ways. The most efficient implementation is based on the factorization property
presented in Theorem 2.2. If the factor matrices of (2.14) are computed in advance,
then the evaluation of P(D) only requires q (= 2log(k) matrix—vector operations.
For example, applying Theorem 2.2 for matrix D} (see (4.2)), we find the factor
matrices

4 0 4 0
121 1 2101
1 C
Fi=7 - , Fp=7[10201 , etc.
121 10201
0 4

Evidently, the matrix—vector multiplications with these essentially tridiagonal factor
matrices are extremely cheap, especially on vector computers. For example, on the
CDC CYBER 205 the operations can be performed in two linked triad instructions
(except near the boundaries).

Since the smoothing operator S is applied in the x- and y-direction, successively,
it consists of a sequence of one-dimensional operators. Therefore, the smoothing
operator can be implemented on irregular domains too. However, the bandwidth of
the factor matrices Fgq is 2941, In practice, the value of q is at most five. In
experiments with irregular domains it might happen that there are not enough grid
points in the x- or y-direction. In this case we apply the implicit smoothing
operator defined in Theorem 2.3 with D? as in (4.2), instead of the explicit
smoothing operator. Thus, the application of the smoothing operator is hardly
complicated when the domain is irregular.

The implicit smoothing operator requires the solution of a small tridiagonal
system with a dimension of at most 2. For the solution of the tridiagonal systems
we use the Gaussian Elimination method. Since these systems are small and the
implicit smoothing is only applied in narrow regions (where the number of grid
points is less than or equal to 29), the computation time for the sequential Gaussian
Elimination method is very limited, also on vector and parallel computers.

4.6. NUMERICAL EXPERIMENTS

In this section we show for a number of test problems (see [1,3]) the effects of
smoothing on the stability and on the accuracy. In the test problems the water is
initially at rest and the motion in the basin is generated by a wind stress. Thus, a
wind driven circulation is gradually developed. We carry out two experiments with a
constant wind stress and one with a time-dependent wind stress. In the experiments
with a constant wind stress we use a rectangular basin with dimensions
representative of the North Sea and an irregular basin representing the IJsselmeer.
The IJsselmeer is the largest lake in the Netherlands.

40

The following parameter values are used in all experiments:

f=122e-4s1
g =9.81 m/s?
1 = 0.065 m?%/s
C =70 ml/2/s
p = 1025 kg/m3
H=45°.

For the time integration we use method (4.3). In the experiments we vary the
number of smoothing factors in the factorized smoothing operator (see (2.14)) to
investigate the effects of smoothing on the stability and on the accuracy. The
experiments have been carried out on an Alliant FX/4. This mini-supercomputer is
equipped with four vector processors. On such a computer we can investigate the
effect of the smoothing on both vector-parallel computers and scalar computers.

To represent the results, we use the following notation:

q : number of smoothing factors

ERROR-{ : maximal global error for the water elevation at the end point t=T
TOTyps : total computation time

SMOyp;s : computation time for the smoothing operator

The indices VP and S indicate Vector—Parallel optimization and Scalar optimization,
respectively. Thus, the experiment is carried out on one processor if only the scalar
optimization is used. At the end of the integration process the numerical solution
for the {-component is compared with a reference solution computed on the same
grid with t=30 s. The reference solution may be considered as an almost exact
solution of our semi-discretized system (3.4). Thus, the accuracy results listed in
this section represent the error due to the time integration. We experimentally
determined the maximally stable time step for each value of q. These time steps are
in agreement with (4.4) (see Table 6.2).

In the first two experiments we use a rectangular basin of 400 by 800 km with
Ax=10 km, Ay=10 km, Ac=0.25 and h=65 m. Thus, the computations are
performed on a grid with nx=41, ny=81 and ns=4.

In the first experiment we integrate over a period of five days with the constant
wind stress

W =15 kg/ms>. (6.1)

At that time, the steady state has already been reached.

In this experiment the maximal value for the water elevation is about 1.07 m.
The results show that the time integration can be performed with much larger time
steps when the smoothing technique is applied. In this experiment, in which the
solution becomes stationary, the accuracy is hardly reduced by the smoothing
procedure. Only for large q some errors occur. This is due to the fact that for these
values of q the steady state has not been reached yet. If the time integration is
performed over a longer period, we obtain the same results for large values of q as

41

for the case q=0. This is in agreement with the theory that a stationary solution
should be independent of the number of smoothing factors (see Section 4.4).

q 1 ERROR-{ | TOT,, SMO,, TOT, SMO
(s (m) () (s) (s) (s)
0 270 0.001 3450 0.0 2600.1 0.0
1 800 0.002 173.1 205 14638 243.1
2 1800 0.008 856 17.6 7673 219.7
3 3600 0.022 469 128 4463 169.6
4 7200 0.055 259 87 2558 1168
5 14400 0.152 137 51 1428 750

Table 6.1. Test problem with a constant wind stress.

In Table 6.2 we list the gain factors of the maximally stable time steps compared
with the case q=0 (T,,,x=277 s), and we compare them with the theoretical gain
factors. Moreover, we list the gain factors in computation times.

q=1 q=2 q=3 q=4 q=5

theoretically (= 29w forq>0) | 3.1 63 126 251 503
experimentally (see Table 6.1) 29 6.5 13.0 259 519

in computation time (VP) 2.0 4.0 74 133 252
in computation time (S) 1.8 34 5.8 102 182

Table 6.2. Gain factors.

The theoretical gain factor 2q'17: (see (4.4) with k=29) is in agreement with the
experimental results. The results show a significant reduction in computation time,
especially when the vector and parallel optimization is used. The overhead due to the
smoothing operator is less than a factor of two, even for large values of q. In the
case of the vector and parallel optimization, the computation time is reduced by
about a factor of three due to the vectorization, and by an additional factor of three
due to the parallel optimization.

It is interesting to investigate the effect of smoothing when the solution of a test
problem does not become stationary. Therefore, in the second experiment we
introduce a time-dependent wind stress (cf. (6.1))

42

. 2mt 2
We=15 "‘(1+0.5*s1n24 * 3600) kg/ms” . 6.2)

Now, we have a periodically varying wind with a period of 24 hours. We integrate
over a period of five days. At that time the solution is almost periodic. In the case
without smoothing in the horizontal we obtain the following maximal water
elevations at the south-west corner of the basin:

{=2106m att=73+iP hours

with period P = 24 hours and i a positive integer. When smoothing is applied we
have observed that about the same maximal and minimal water elevations are
reached as in the case without smoothing in the horizontal. It seems that the
smoothing operator hardly introduces a dissipation error. However, some errors in
the phase of the periodic solution appear. In Table 6.3 we list the maximal global
error in the numerical solution for the water elevation measured at the end point
T=120 hours compared with a reference solution computed with T=30 s.

q T ERROR-{ T ERROR-{
) (m) (s) (m)

0 270 0.008

1 270 0.008 720 0.014

2 270 0.023 1800 0.052

3 270 0.067 3600 0.139

4 270 0.193 7200 0.463

Table 6.3. Test problem with a time-dependent wind stress.

The results show that the error due to the smoothing operator is even smaller than
the error due to the larger time steps. For example, in the case q=2 the error due to
the larger time steps (i.e., 0.029 m.) is larger than the error due to the smoothing
(i.e., <0.023 m). Thus, when a fully implicit method had been used, the accuracy
would also decrease for large time steps.

In the third experiment we investigate the efficiency of the smoothing operators
on an irregular basin, i.e., a geometry of the IJsselmeer. Figure 1 shows the
geometry of the IJsselmeer used in this experiment. We choose Ax=Ay=1.0 km and
h=6.5 m. The IJsselmeer is represented by about 1100 grid points in the horizontal
direction. The vertical representation is made by five layers of the same depth. We
integrate over a period of one day with the same constant wind stress as in the first
experiment (see (6.1)). At the end point T=24 hours we compare the numerical
solution for the {-component with a reference solution computed with 7=10 s.

43

Without smoothing the maximally stable time step is about 87 s. In Table 6.4 we
list the results.

®) (m) ©®) ®)
0 80 0.000 200.3 0.0
1 80 0.001 280.4 22.1
2 80 0.009 305.4 48.9
3 80 0.021 3394 71.5
1 270 0.001 86.0 6.6
2 600 0.009 44 .4 9.4
3 1200 0.030 24.8 6.9

Table 6.4. IJsselmeer problem with a constant wind stress.

In this experiment the maximal value for the water elevation is about 0.79 m.
The results in this experiment are comparable with the results on a rectangular
domain (see Table 6.1). The accuracy is hardly reduced by the smoothing procedure.
Moreover, the overhead due to the smoothing operator is even less than in the
experiment with a rectangular domain. This is due to the fact that the smoothing
matrix has been computed on the irregular domain representing the IJsselmeer,
whereas the computations that do not involve the smoothing, have been performed
on a surrounding rectangular domain. On vector and parallel computers this is in
general an efficient approach, because direct addressing can be used in most cases.
The efficiency depends on the number of dummy grid points in the surrounding
rectangle compared with the number of grid points in the irregular (physical)
domain. However, regardless of the implementation used, it may be concluded that
the smoothing operator can be implemented efficiently on both regular and irregular
domains.

4.7. CONCLUSIONS

In this paper we have applied right-hand side smoothing to improve the stability of
a time integrator for the linearized 3D shallow water equations. We started with the
semi-implicit time integrator developed in [3]. It turns out that this method may be
considered as a method in which the right-hand side function is premultiplied by an
implicit smoothing operator. The vertical terms are treated implicitly. Since the
number of points in vertical direction may be very small, explicit smoothing can
not be applied. Moreover, the stability condition imposed by the vertical terms is
often the most restrictive one. Therefore, we prefer an implicit treatment of the
vertical terms.

44

In the horizontal direction we may choose between explicit and implicit
smoothing of vector functions. In this paper we have applied explicit smoothing
whenever possible. Only in cases where explicit smoothing can not be applied (i.e.,
in narrow regions), we have used implicit smoothing. It turns out that this approach
is efficient, especially on vector and parallel computers.

Owing to the smoothing in the horizontal direction, the maximally stable time
step increases considerably, while the accuracy decreases only slightly. In our wind
driven test problems the maximally stable time step increases by a factor of more
than 10 (in the case g=3), while the accuracy is still acceptable. In this case the
overhead in computation time due to the smoothing is only about 30%. Moreover,
the error due to the large time steps is more or less comparable with the error
introduced by the smoothing. Thus, also for fully implicit methods the accuracy
will decrease for such large time steps.

REFERENCES

1. A.M. DAVIES, Application of the DuFort-Frankel and Saul'ev methods with
time splitting to the formulation of a three dimensional hydrodynamic sea
model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985).

2. G. FISCHER, Ein numerisch verfahren zur errechnung von windstau und gezeiten
in randmeeren, Tellus, 11, 60-76 (1959).

3. E.D. DE GOEDE, Finite difference methods for the three-dimensional
hydrodynamic equations, Report NM-R8813, CWI, Amsterdam, 1988.

4. P.J. VAN DER HOUWEN, Stabilization of explicit difference schemes by
smoothing techniques , in K. Strehmel (ed.): Numerical Treatment of
Differential Equations, (Proc. Fourth Seminar Halle: NUMDIFF-4), Teubner-
Texte zur Mathematik 104, BSB B.G. Teubner Verlaggesellschaft, Leipzig,
205-215 (1987).

5. P.J. VAN DER HOUWEN, Construction of integration formulas for initial value
problems, North-Holland, Amsterdam, 1977.

6. P.J. VAN DER HOUWEN, C. BOON AND F.W. WUBS, Analysis of smoothing
matrices for the preconditioning of elliptic difference equations, Z. Angew.
Math. Mech., 68, 3-10 (1988).

7. A.JAMESON, The evolution of computational methods in aerodynamics, J.
Appl Mech., 50, 1052-1076 (1983).

8. R.D. RICHTMYER AND K.W. MORTON, Difference methods for initial value
problems, Interscience Publishers, Wiley, New York, London, 1967.

9. A. SIELECKI, An energy conserving difference scheme for storm surge
equations, Monthly Weather Review, 96, 150-156 (1968).

10. F.W. WuBS, Stabilization of explicit methods for hyperbolic partial differential
equations, Int. J. Numer. Meth. in Fluids, 6, 641-657 (1986).

DEN OEVER O

45

(AFSLUITDIJK)

ENKHUIZEN Q :

LEMMER

7 O

(O LELYSTAD

Fig. 1. The geometry of the IJsselmeer.

46

Chapter 5

A Time Splitting Method for the Three-
Dimensional Shallow Water Equations

E.D. de Goede
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009AB Amsterdam, The Netherlands

In this paper we describe a time splitting method for the three-
dimensional shallow water equations. The stability of this method
neither depends on the vertical diffusion term nor on the terms
describing the propagation of the surface waves. The method consists
of two stages and requires the solution of a sequence of linear systems.
For the solution of these systems we apply a Jacobi-type iteration
method and a conjugate gradient iteration method. The performance of
both methods is accelerated by a technique based on smoothing. The
resulting method is mass conservative and efficient on vector and
parallel computers. The accuracy, stability and computational efficiency
of this method are demonstrated for wind induced problems in a
rectangular basin.

5.1. INTRODUCTION

In this paper a time splitting method for the three-dimensional shallow water
equations (SWEs) will be described. The aim of splitting methods is always to split
the solution of a large and complicated system, which arises when applying fully
implicit methods to multi-dimensional problems, into a few less complicated
systems. Well-known splitting methods are alternating direction implicit (ADI)
methods, locally one-dimensional (LOD) methods and Hopscotch methods [6].

For the two-dimensional shallow water equations several of the existing numerical
methods have been based on the ADI method (see e.g., [10,12]). These ADI
methods are unconditionally stable and therefore allow the use of large time steps.
However, for large time steps these methods suffer from inaccuracies when dealing
with complex geometries [13]. In [15] a two-stage time splitting method has been
developed in which these inaccuracies are absent, even for large time steps.

In this paper we will present a two-stage time splitting method for the three-
dimensional shallow water equations which has a strong resemblance to the method
in [15]. We will use a model for the shallow water equations in which the advective
terms have been omitted. The stability of a numerical method for this model
depends on the conditions imposed by the vertical diffusion term and by the terms
describing the propagation of the surface waves (the CFL condition). In two-
dimensional models many methods are known in which the terms describing the
propagation of the surface waves are treated implicitly (see e.g., [1,2,15]). In

47

addition to that, in three-dimensional models, where a vertical diffusion term is
involved, we have to treat this vertical diffusion term implicitly to avoid the
maximally stable time step becoming too small [3]. In this paper we will develop a
two-stage method in which the vertical diffusion is treated implicitly at the first
stage, whereas the terms concerning the propagation of surface waves are treated
implicitly at the second stage. It will be shown that the stability of this time
splitting method neither depends on the vertical diffusion nor on the propagation of
the surface waves. For computational efficiency the Coriolis term will be treated in
a semi-implicit way. The Coriolis term hardly affects the stability, which justifies
this simplification.

At the first stage our time integration method requires the solution of a large
number of tridiagonal systems, all of the same dimension. Since the tridiagonal
systems are independent of each other, the solution of these systems can be
computed in parallel [4].

At the second stage a linearization process is used to iteratively solve the
nonlinear system. The linearization is done in such a way that conservation of mass
remains guaranteed. Then at each iteration step a linear, symmetric, positive definite
system has to be solved. In the literature a large number of iteration methods have
been proposed for such systems. In this paper we apply a Jacobi-type iteration
method and a conjugate gradient iteration method for the solution of this system.
Both iteration methods will be accelerated by a technique based on smoothing.
Application of the smoothing matrices reduces the number of iterations
considerably. Moreover, the smoothing matrices are very simple to implement and
are highly suited for vector and parallel computers.

In [15] a two-stage time splitting method has been developed for the two-
dimensional shallow water equations. It was reported that this time splitting method
is feasible for practical computations. For this method a major part of the
computation is involved in the nonlinear system at the second stage. Since in our
time splitting method the water elevation is the only unknown in the system at the
second stage, this system is of the same (two-dimensional) structure and thus of the
same computational complexity for both two-dimensional and three-dimensional
models. The computation time required by the other parts of our method, i.e., the
computation of the three-dimensional velocity components, is proportional to the
number of grid layers in the vertical direction. Therefore, the efficiency of the time
splitting method developed in this paper is even higher for three-dimensional models
than for two-dimensional models.

The accuracy, stability and computational efficiency of our time splitting method
will be illustrated in the numerical experiments.

5.2. MATHEMATICAL MODEL

In this section we will describe a mathematical model for the three-dimensional
shallow water equations. We will use a three-dimensional model in sigma
co-ordinates in which the advective terms have been omitted. In this paper we focus
on stability conditions imposed by the vertical diffusion term and by the terms
describing the propagation of the surface waves. In future we will develop a
numerical method for a mathematical model in which the advective terms are
present.

48

The mathematical model used in this paper is described by

du_ g _98 . 1 0 ¢ du %1

R v g8x+h2ac(“ac) @2.1)

ov a 1 9 v

OV — g — gt —— — 2.2

. gay+h2ac(”ao) as
1 1

of__0 _9 23

-aT ax (ho udc) ay (ho Vdc), (')

with boundaries

0<x<L

0<y<B

1>2020.

Thus, the domain is a rectangular basin. Owing to the sigma transformation in the
vertical, the domain is constant in time [3,5]. We have the closed boundary
conditions

u0,y,0,0 =0, ulL.yo)=0,
v(x,0,6,0) =0, v(x,B,0,t) =0.

The boundary conditions at the sea surface (¢ = 0) are given by

Ju h av h 1
p = —=Wrscos(d), (u —) =—=Wgsin(9) ,
(%)OEO P aO' o=0 P

and at the bottom (o = 1) we have a linear law of bottom friction of the form

Bu =-h g ud aV =-h g vd
() P G-
=1 o=1
with u4 and v4 the components of the velocity at some depth near the bottom.

5.3. SPACE DISCRETIZATION

For the space discretization of the equations (2.1)-(2.3) the computational domain is
covered by an nx-ny-ns rectangular staggered grid. Figure 1 shows the horizontal
grid spacing. Owing to the sigma transformation, we have a constant number of
grid layers in the vertical direction. In what follows, U(t) is a grid function whose
components Uj j k(t) approximate the velocity u(t). The components Uj j k(t) are
numbered lexicographically. Likewise V, Z, D and H are grid functions for v, {, d
and h, respectively. Note that D, H and Z are only computed at the upper layer.

49

Furthermore, Agg is a tridiagonal matrix approximating the vertical diffusion term,
including the discretization of the term 1/h2. ©1 is an (nx-ny-ns)-(nx-ny) matrix
(a row of ns diagonal matrices of order nx-ny with Aoy on the diagonal of the k-th
submatrix), ©7 is an (nx-ny)-(nx-ny-ns) matrix (a column of ns identity matrices
of order nx-ny). F is a four-diagonal matrix (due to the grid staggering) of order
nx-ny-ns, approximating the Coriolis term. Dy and Dy are bidiagonal matrices
(one diagonal and one lower diagonal) of order nx-ny, approximating the differential
operators d/0x and 9/dy, respectively. Ex and Ey are bidiag(T)nal matrices (one
diagonal and one upper diagonal) with Ex = — D, and Ey = — Dy. The matrices Dy
and Ey differ because of the grid staggering.

Figure 1. The staggered grid in the (x,y)-plane.

For the approximation of the spatial derivatives, second-order central finite
differences are used in both the horizontal and vertical direction. Now, the semi-
discretized system can be written in the form

; Ags F -0,gD, F,
gW=FW)=|-F Ags ~O8E, W+ |F, |, (3.1)
-6,HE, -©;HD, 0 0

where W=(U,V,Z)T and (Fu,Fv,O)T contains the components of the wind stress.
Note that the integrals in (2.3) are approximated by ©,U and ©,V, respectively.

5.4. TIME INTEGRATION
In this section we develop a time integration method for the semi-discretized
system (3.1). We apply a two-stage time splitting method of the form

Wn+1/2 =wh " }2_,‘ { Fl(wn+1/2) + Gl(Wn) " Cn+1/2 } @.1)
Wn+1 _ Wn+1/2 & 12_,: { F2(Wn+1/2) 3 G2(Wn+1) & Cn+1/2 }

50

where C=(Fu,Fv,0)T, 1 denotes the time step and W" is a numerical approximation
to W(t) of (3.1) at t=nt. Several well-known splitting methods, e.g., ADI methods,
can be written in this form. In this paper we choose

0 0
Flw™12) | _F A o |wnti2
0 0 0
0 F -0,8D
Glow™ = 0 0 -8,gE, |W", 42)

n T
-6H"E, - H'D, 0

Ay F O
F2(Wn+1/2) - -F Aw 0 Wn+l/2 ,
0 0 0
0 0 -©gD
GZ(WII+1) = 0 0 _engy wn+1 .

n+l n+l
——GIH Ex —61H Dy 0

Apart from the Coriolis term F, all terms are treated in a symmetrical way. When
we neglect the Coriolis term, the time splitting method (4.1)-(4.2) is second-order
accurate in time.

The structure of the resulting systems at both stages determines the efficiency of
this time splitting method. At the first stage we have to solve the system

- 5TAgg 0 0 \/yn+12
$F I-5tA,, 0 || v**2 [=B", 43)
0 0 I Zn+1/2

where B™ contains the discretizations at time level t=nt. It is evident that the
Z-component can be computed straightforwardly. For the U- and V-component the
implicit treatment of the vertical diffusion term requires the solution of nx-ny
tridiagonal systems of order ns [4]. For computational efficiency the Coriolis term
is treated in a semi-implicit way. Although an implicit treatment of the Coriolis
term for the V-component (see (4.3)) prohibits the U- and V-component from being
computed in parallel, we prefer this choice because of accuracy considerations. The
results are more accurate than in the case of a fully explicit treatment of the Coriolis
term, especially when large time steps are used.

At the second stage the terms describing the propagation of the surface waves are
treated implicitly. This system reads

51

I 0 ;-rengx ynt!
0 I ;—Tengy yorl [=BnH2 g
710 H"'E, 7t6,H""'D, I zntl

where BHH/ 2 contains the discretizations at time level t=(n+1/2)t. The equations
for the U- and V-component are linear and are not coupled with each other. They are
only coupled with the equation for the Z-component. Therefore, the components
U™ and V™*1 can easily be eliminated from (4.4) and a system merely in the
unknown Z™*1 results. Thus, at the second stage the continuity equation (2.3) and
the water elevation gradient in the momentum equations (2.1)-(2.2) are treated
implicitly. This approach was originally proposed in [8] and has been applied by
many others (e.g., [1,2,15]).

We now describe this system for each cell (i,j) of component Z. The grid sizes in
the x- and y-direction are denoted by Ax and Ay, respectively. Then, the system for
Z; j reads

2
n+1 g ~n+1 n+1 n+l1 —n+l n+1 n+1
R ey Hiy (Ziy-2Z05) -H; (205 -7075) }

2
g I:'I{1+1 (Zn+1 Z{1+_1) B ﬁf‘,ﬂ (Zn+1 _Zn+1) } 4.5)

_4(Ay)2 1,j 1,j+1 = 7, 1,j-1 i,j 1,j-1
_ pnt+1/2 i=1,...,nx
- Bl.j » for j=1,...ny°

where

= n 1 ~n n 1
Hj=2;+5(D;+D,;;) and 0 =7 +5(D,;+D,;.).
Note that H and H differ because of the grid staggering. System (4.5) is a nonlinear
equation, because Hj ; contains the component Z; ;. When system (4.5) has been
solved, the values for the components U™ and V*1 can be computed by back
substitution.

System (4.5) can be written in the form

A(ZnH) Zn+1 _ Bn+1/2

A ’

4.6)
n+1/2 ; : 5 e
where B, contains the discretizations at t=(n+1/2)t for the Z-component. For
its linearization we introduce the process

A@Z™) 7™+ _ B2 @.7)

with Z(0=zn+172 1, (4.7) the upper index (m) denotes the iteration index. The
matrix A(Z(m)) is a symmetric and strictly diagonal dominant matrix with positive

52

values on the main diagonal and negative ones elsewhere because we require that
D+z™ (—H(m) >0. Thus, system (4.7) is positive definite. In Section 5.6 we
will discuss iteration methods for the solution of system (4.7).

It should be noted that the water elevation is the only unknown in system (4.7).
Thus, this system is of the same (two-dimensional) structure and computational
complexity for both two-dimensional and three-dimensional models. This is an
important feature of the time integration method (4.1)-(4.2), because for two-
dimensional problems a major part of the computation is required for the solution of
this system.

The linearization process (4.7) was first used by Leendertse [10]. Conservation of
mass remains guaranteed by this process. A slightly different linearization process
was introduced in [15]. In our numerical experiments (see Section 7) we obtained
comparable results for both linearization processes.

5.5. STABILITY
We will now analyze the stability of method (4.1)-(4.2) with the matrix method. In
this section we will omit the Coriolis force and the inhomogeneous term. It is well-
known that the Coriolis force hardly affects the stability. We will make plausible
that the simplified method is unconditionally stable. The stability analysis used here
is similar to the one described in [14]. That paper was devoted to a study of the
stability and convergence properties of the Peaceman-Rachford ADI method when
applied to initial-boundary value problems, including nonlinear ones.

Since we have omitted the Coriolis force and the inhomogeneous term, we
have that (cf. (4.2))

Fl(Wn) _ F2(Wn) =A"W" and Gl(Wn) _ G2(wn) - B W"

with
Ays 0 0 0 0 -©,D,
n
A"=| 0 Ay O | and B"= 0 0 —6,gE,
0 0 0 -,H'E, -,H'D, 0

Then, method (4.1)-(4.2) can be written in the form

whtl = a- lg'cBnH)-1 a+ ANH12) (- n+l/2) 1+ -'tB) W™, (5.1)
Let us now define the amplification matrix

Cc'= a- lz'tBnH)-1 I+ 1_TAn+1/2) (I- I__TAn+1/2)-l I+ I—‘tBn))

In order to guarantee that method (5.1) is stable we have to require IIH cll o
remain uniformly bounded for all values of n and 7, such that

53

n-l
Il]"[C1 <K, forO<nt<T and K constant [9]. (5.2)
=0

Let us now verify this condition for the numerical method (5.1). Then,
n-l
| 1 CHll<lla-5B") @+ 5ea™2) 1 5a™ 12y 1|

n-2 . " . s
Il @+ 5B - 5B 1+ 21al12) 1 - Srat 12|
0 2 2 2 2

[l I+1;'CBO Il.

It can be verified that both the matrix A™ and the matrix B™ have their eigenvalues
in the left half plane. The eigenvalues of the matrix A™ are even real nonpositive.
Therefore, we have that

Il @+ 5B+ -5y l<1 and

Il @+5ca*12) q- 57421 I <1, fori=0,...n-1

Using these relations, we obtain
LT 1 on-l .1 o0
Ilgc <l @-5tBY" @+5tB)Il.
bt

It is evident that only the explicit part (I + -‘tBO) may cause problems. In general,
it is not possible to find an upper bound for || I+ 1—1:B0) [l. In such a situation we
may stabilize our integration method by computing the first approximation W1 by
the backward Euler-LOD method, and apply method (5.1) for n=1. This technique
has been proposed in [14]. We thus consider the method with for the first time step

wl=qa-3ml)Ta-5cal2)ylwo (5.3a)

and for n>1

n+1/2

W = - L™y (14 A2) (1= 5eA™2) (14 BT) WP (5.3b)

On a fixed space grid the LOD method (5.3a) is only first-order accurate in time,
but since we only perform one LOD step, method (5.3) is still second-order accurate
on fixed space grids. Using method (5.3), we obtain

n-1 .
Il Ic H<lla-5m™)ytl la+5eal2ytl.

Now, condition (5.2) is satisfied. We have no practical experience with
method (5.3). In the numerical experiments no large errors were found for the

54

original method (5.1), even for very large time steps. Thus, there was no need for
stabilization. In [14] the authors advise the use of one or more LOD steps in
situations where the initial values contain large errors. This might occur when
experimental data with significant errors are used as initial values.

5.6. SOLVING THE LINEAR SYSTEMS

In this section we describe how the linear systems at both stages, i.e., system (4.3)
and system (4.7), are solved. At the first stage we apply the Gaussian Elimination
(double sweep) method for the solution of the tridiagonal systems. Since this is a
recursive method, it is an unattractive method on vector and parallel computers.
However, we make use of the fact that a large number of tridiagonal systems of the
same dimension have to be solved. In [4] the computational efficiency of this
approach has been demonstrated on vector and parallel computers. Moreover, this
method requires a minimal number of operations.

At the second stage we have to solve the linear, symmetric system (4.7). In the
literature a large number of iteration methods have been proposed for such systems.
Here, we will apply a Jacobi-type method and a conjugate gradient (CG) method.
Both methods will be accelerated by a preconditioning technique. Before discussing
the iteration methods, we first consider the preconditioning.

The essence of preconditioning is the determination of a matrix S such that the
system

SA (M) _gp

has a much smaller condition number than the original system AZ(m+1)=B. For the
preconditioning of system (4.7) we will use a smoothing matrix S of the form
S=P(D) where P(z) is a polynomial and D is some matrix. The matrix D will be a
difference matrix of which the eigenvalues are assumed to be in the interval [-1,0]
(see [7]). The polynomial P(z) will be chosen such that P(0)=1 and the eigenvalues
of S are in the interval [0,1]. First we discuss the choice of the matrix D. In our
theoretical considerations we assume that D is equal to the normalized matrix A,
i.e.,

D=-A_, (6.1)

where p(-) denotes the spectral radius. We emphasize that in practice it is generally
not attractive to choose D according to (6.1) and we shall employ some cheap
approximation to the normalized matrix. If D is defined according to (6.1), then the
eigenvalues of SA=P(D)A are given by p(A)zP(z), where z runs through the
spectrum of D. Now, we are looking for a polynomial such that the magnitude of
zP(z) on [-1,0] is sufficiently small. In this paper we choose the polynomial [16]

T2k_1(1+2l) -1
2

q
Pya @=TI(1+7v), Tp(x) = cos(p arccos(x)) . 6.2)
k=1

55

In [7] it has been proved that the spectral radius of the matrix SA is minimized by
the polynomial (6.2) when the matrix A has real nonpositive eigenvalues and y=1.
For =1 we have that (6.2) is equal to

T2q(1+42z) - 1 1

% 6.3)

P (z) = —_
29.1
44
The factorization in (6.2) makes it possible to implement the smoothing operator S
in a very efficient way. This is stated in the following theorem.

THEOREM 6.1. Let S=P(D) with P(z) defined by (6.2) and let the factor matrices FJ
be defined by

.= s . = s 5] = 1>
FJ I+'yDJ, where DJ+1 4DJ (I+DJ) with D;=D and j21. (64)

Then, S =P2q_ 1(D) can be factorized according to
S = Fqu_1 - F .1 6.5)

Thus, the smoothing matrix S consists of q factor matrices. For a proof of
Theorem 6.1 we refer to [16].

The most efficient implementation of S is based on the factorization property in
Theorem 6.1. However, in two or more dimensions the precomputation of the factor
matrices Fj defined by (6.4) is not attractive. Therefore, we consider an alternative
smoothing matrix S which only consists of one-dimensional operators. For our
two-dimensional problem (4.7) we apply one-dimensional smoothing in the
x- and y-direction, successively. An extra advantage of the splitting in one-
dimensional operators is that the application of the smoothing operator S is now
hardly complicated when the domain is irregular [5].

As mentioned before, in practice we shall choose D equal to some cheap
approximation of (6.1). Since the smoothing matrix S consists of one-dimensional
operators, we choose

=1 1 0
1 -8 1
1
D==
4 o (6.6)
i =3 1
0 1 1

If the factor matrices of (6.5) are computed in advance, then the evaluation of P(D)
only requires q matrix-vector operations. Moreover, the factor matrices exhibit a
regular pattern which can be exploited for an efficient implementation. For example,
applying Theorem 6.1 for matrix D in (6.6) yields the factor matrices

56

31 0 211 0
121 1201
Fi=g| " |, F=f|10201 , etc. 6.7)
121 10201
0 13

Evidently, the matrix—vector multiplications with these essentially tridiagonal factor
matrices are extremely cheap, especially on vector computers.

We shall now discuss the application of the Jacobi-type iteration method and the
CG iteration method to system (4.7).

5.6.1. THE SMOOTHED JACOBI METHOD
For the solution of system (4.7) we apply the smoothed Jacobi method [7]

Zxi1=Z+0S{ B-AZy}, k=1.2.3....; (6.8)

where Zy is the k-th iterate, is a relaxation parameter and S is the smoothing
matrix described in Theorem 6.1 with D as in (6.6). For the smoothed Jacobi
method we choose y=1 (see (6.4)). As mentioned in the previous section, the
smoothing matrix S consists of q smoothing factors. In [7] it has been demonstrated
that one should not iterate with a fixed value of q. Therefore, we choose the number
of smoothing factors at the k-th iteration step equal to k modulo(q+1), which yields
the cyclic sequence of 1,2,...,q,0,1,2,...,q,0,1,2,...,q,.. smoothing factors.

Let us now examine how the relaxation parameter ® should be chosen. For the
spectral radius of A we have

p(A) = 1+ gHmax f —om + 2} | with H max {Hj.)
= max |\ =——=+t-—=J > max = IR
@)% (ay? 1sisnx
1<j<ny
Similarly, for the spectral radius of SA we have that
1 72 12
p(SA) = 1 +—gH — }.
40 { (Ax)2 " (ay)?
Following the analysis in [7], we obtain
= e, 6.9)
P(SA)

However, in our case, we do not choose fixed for each component Z; ;. We make
o dependent on the local depth, i.e.,

o, .= 2 . (6.10)

L) 2 2
1 T 1
1 + _gI-Il,‘]{_2 + _2}
44 (Ax) (Ay)

57

In the case of a fixed relaxation parameter, we have observed in our experiments that
(6.9) is the optimum relaxation parameter. However, we obtain much better results
with the relaxation parameter in (6.10) when an irregular bottom topography is
used.

5.6.2. THE SMOOTHED CG METHOD

The second iteration method that we applied for the solution of system (4.7) is a
preconditioned CG method. The preconditioned CG method can be formulated as
follows:

Let Z, be an initial guess for Z(™+D ang
For k=0,1,2,...., until convergence

R, (SR
e Tapy
B =By # 0L Py
R,,, =R, -0y AP, 6.11)
~ Ryp (SRyp)
K R TGRY

Pri1 =SSRy B Py

In (6.11) the matrix S denotes the preconditioning matrix. It is well-known that
the unpreconditioned CG method can be implemented efficiently on vector and
parallel computers, but in general the preconditioned version is much more
troublesome. In the literature various techniques for the construction of a suitable
preconditioning matrix have been proposed (see [11] for a survey). Here, we choose
a positive definite matrix S of the form S=P(D), where D is the difference matrix
in (6.6) and P(z) the polynomial (6.2). By choosing y € [0,1) we obtain that S is
positive definite. This preconditioning matrix can be implemented efficiently on
vector and parallel computers, because only matrix—vector operations are involved.
The convergence is improved by this preconditioning matrix since the condition
number of SA is much smaller than that of A. It should be noted that this
preconditioning matrix S is independent of A, whereas in general the
preconditioning matrix S is some approximation to the inverse of A.

58

5.7. NUMERICAL EXPERIMENTS

In this section we illustrate for a number of test problems the accuracy and the

computational aspects of the time integration method (4.1)-(4.2). In the test

problems the water is initially at rest and the motion in the closed basin is generated

by a periodic wind stress. Thus, a wind driven circulation is gradually developed.
The following parameter values are used in all experiments:

f=122-4s1
g = 9.81 m/s?
1 = 0.065 m%/s
C =70 m1/2/s
p = 1025 kg/m3
=45

The experiments have been carried out on the Alliant FX/4. This mini-
supercomputer has four vector processors. In all experiments we have used both the
vector optimization and the parallel optimization.

At the end of the integration process the numerical solution has been compared
with a reference solution computed on the same grid with t=60 s. The reference
solution may be considered as an almost exact solution of our semi-discretized
system (3.1). Thus, the accuracy results listed in this section represent the error due
to the time integration.

In the experiments we have used a rectangular basin of 400 by 800 km with
different bottom topographies. For the grid sizes we have chosen Ax=10 km,
Ay=10 km and Ac=0.2. Thus, the computations have been performed on a grid with
nx=41, ny=81 and ns=5. We have integrated over a period of five days with the
time-dependent wind stress

. 2mt 2
- * * ———
We =15 *(1+0.5*sin 34 * 3600) kg/ms”. (7.1)

Thus, we have a periodically varying wind with a period of 24 hours. To measure
the obtained accuracy, we define

ERR--: maximal global error of either u, v or { at T = 120 hours. (7.2)

In the first experiment we have a plane bottom with a depth of 45 m, except for a
deeper channel in a diagonal direction (depth 65 m). This is shown in Figure 2. In
the second experiment we use a basin with an inclined bottom of a depth of 20 m at
one end and 340 m at the other end (see Figure 3).

In Table 7.1 we list the maximal global errors for the test problem with a channel
in a diagonal direction. In this experiment the maximal values for u, v and € are
about 0.4 m/s, 1.1 m/s and 2.6 m, respectively. We have observed that after a few
days the solution becomes periodic with a period of 24 hours for any time step T.
For the largest time steps the accuracy results seem to be unacceptable. However, a
careful examination of the integration process shows that, even in the case of large
time steps, the maximal and minimal values of the periodic numerical solution are
very close to the extreme values of the reference solution. The differences are in the

59

size of a few centimetres. Thus, our integration method hardly introduces a
dissipation error. However, for the large time steps, errors in the phase of the
periodic solution appear. For example, in the case of t=4800 s the phase error is
about one hour. When we compare the numerical solution computed with t=4800 s
at T=121.33 hours with the reference solution at T=120 hours, the maximal global
errors for the three components are 0.050 m/s, 0.054 m/s and 0.124 m,
respectively. This is significantly less than in Table 7.1.

T ERR-u ERR-v ERR-{
® (m/s) (m/s) (m)
600 0.006 0.018 0.038
1200 0.014 0.041 0.087
2400 0.035 0.103 0.212
4800 0.088 0.269 0.549

Table 7.1. Test problem with a channel in a diagonal direction.

We now discuss the computational efficiency of the time integration
method (4.1)-(4.2). To represent the results, we use the following notation:

q : number of smoothing factors (see (6.5))

Y : smoothing coefficient (see (6.2))

TOTAL : total computation time

ITER : computation time for the iteration process

PREC : computation time for the preconditioning

#ITER : number of iterations averaged over the integration steps
CONV : convergence factor averaged over the integration steps.

At each integration step the convergence factor is defined by (r(k))l/k, where k is the
smallest value for which the residue (cf. (4.6))

) =B _az, Il

drops below a certain tolerance. In the experiments we require that 1(k)<1073.

In Table 7.2 we list the computation times and the convergence results for the
time integration method (4.1)-(4.2) in which either the smoothed Jacobi (SJAC)
method or the smoothed CG (SCG) method has been applied. For both iteration
methods we vary the number of smoothing factors. The case =0 corresponds to the
unpreconditioned case. For the parameter 7 in the preconditioning matrix of the
SCG method we have experimentally derived an optimum value. As mentioned in
Section 6.1, for the STAC method we have y=1.

T method q n TOTAL ITER PREC | #ITER CONV

(s (s) (s) (s)
600 SCG 0 3956 70.3 0. 3.0 0.23
SJIAC 1 473.0 1488 215 84 0.56
1200 SCG 0 2335 69.8 0. 9.2 0.60
SJIAC 2 3182 1547 47.7 170 0.72
2400 SCG 0 169.5 875 0. 26.0 0.81
1 09 1568 75.1 254 14.1 0.68
2 075 1613 795 379 114 0.61
SJAC 3 220.1 1377 50.9 263 0.81
4800 SCG 0 1553 114.7 0. 754 0.91
1 0925 1189 779 282 312 0.80
2 0.85 1099 695 358 219 0.74
SIAC 0 827.1 786.7 0. 869.6 0.99
1 517.3 4773 100.2 2972 0.98
2 2790 2382 75.0 1158 0.94
3 193.1 151.8 64.1 55.0 0.88
4 1842 1438 62.1 486 0.86

Table 7.2. Computation times for the channel problem.

In the case of a time step of 4800 s, we have listed the results for various values
of q. When no preconditioning is applied, the Jacobi method converges extremely
slow in this case. However, by applying four smoothing factors, the number of
iterations is reduced by a factor of 18, whereas the computation time for the
iteration process is reduced by a factor of 5.5.

When no preconditioning is applied, the CG method has a much better
convergence behaviour than the Jacobi method. For the CG method it is even better
to apply no preconditioning in the case of small time steps, since the number of
iterations is already very limited. However, for large time steps both the number of
iterations and the computation time are reduced when the preconditioning is applied.

In Table 7.2 we list the optimum values for . For values in the neighbourhood
of the optimum value the number of iterations hardly increases. Thus, the choice of
the parameter v in the preconditioning matrix S of the SCG method is not critical.
In this experiment the SCG method requires less computation time than the STAC
method.

In Table 7.3 we list the maximal global errors for the test problem with the
inclined bottom (see Figure 3). In this experiment the maximal values for u, v and
€ are about 0.7 m/s, 1.4 m/s and 1.2 m, respectively. The results are comparable
with the results in the first experiment. After a few days the numerical solution also
becomes periodic with a period of 24 hours for any time step T. However, in this
experiment the phase errors are much smaller.

61

T ERR-u ERR-v ERR-({
(%) (m/s) (m/s) (m)
600 0.005 0.003 0.016

1200 0.008 0.005 0.018
1800 0.012 0.009 0.035
3600 0.032 0.034 0.122

Table 7.3. Test problem with an inclined bottom.

The computational results in this experiment, which are listed in Table 7.4, are
also comparable with the results of the first experiment. Both the number of
iterations and the computation time for the iteration process are reduced when the
preconditioning is applied. As in the first experiment, the SCG method requires less
computation time than the SJAC method.

T method ¢ 1 TOTAL ITER PREC | #ITER CONV

(s) ® (s) (s)
600 SCG 0 4322 108.1 0. 74 049
SJIAC 1 5704 2412 414 158 0.68
1200 SCG 0 326.6 163.9 0. 244 0.75
SIAC 2 413.5 2483 719 282 0.77
1800 SCG 0 2715 160.0 0. 39.7 0.84
1 0.85| 2537 1439 48.1 227 0.73
SJIAC 3 357.5 2479 1003 384 0.81
3600 SCG 0 276.1 2213 0. 1099 0.92
1 09 1938 1412 516 473 0.82
2 08 2402 1864 919 450 0.82
SIAC 4 257.5 2030 914 486 0.82

Table 7.4. Computation times for the problem with an inclined bottom.

62

In the experiments we have used both the vector and the parallel optimization of
the Alliant FX/4. For both iteration methods the computation time is reduced by
about a factor of three by vectorization, and by an additional factor of three by the
parallel optimization. However, not only the computation time for both iteration
methods, but also the computation time for our integration method (4.1)-(4.2) is
reduced by the above-mentioned factors. This shows that our integration method
(4.1)-(4.2), in which either the SCG method or the STAC method has been applied,
can be implemented efficiently on vector and parallel computers.

ns TOTAL ITER PREC #ITER CONV
(s)) (s)

1 84.7 76.5 26.0 28.5 0.79

2 94.2 77.1 272 30.2 0.80

5 118.9 77.9 28.2 312 0.80

10 160.1 80.5 28.5 31.6 0.80

25 278.5 81.3 29.0 319 0.80

Table 7.5. Computation times for different numbers of vertical layers.

We now carry out an experiment in which we vary the number of layers in the
vertical direction. Our aim is to illustrate the efficiency of the time integration
method (4.1)-(4.2) for three-dimensional shallow water problems. We have chosen
the bottom topography of the first experiment (i.e., a plane bottom with a deeper
diagonal channel) and a time step of 4800 s. The SCG method is used with g=1 and
v=0.925 (see Table 7.2). Table 7.5 presents the computation times and the
convergence results for different numbers of grid layers in the vertical direction. The
number of vertical grid layers is denoted by ns.

Since the system that we have to soive at the second stage, is of the same
computational complexity for both two-dimensional and three-dimensional
problems, the results in the last four columns are more or less constant. Thus, the
computation time required for the solution of this system is independent of the
number of vertical grid layers. In the two-dimensional case (i.e., ns=1) a major part
of the computation time is required for the solution of the system at the second
stage (about 90%). However, for three-dimensional experiments the computation
time for the solution of the system at the second stage becomes relatively less. For
example, in the case of ns=10, about half the computation time is required for the
solution of this system. This percentage depends on the time step used. In this
experiment we have used a rather large time step. For smaller time steps the
percentage of computation time required for the solution of the system is
significantly less. In conclusion, the time integration method (4.1)-(4.2) is very
suited for three-dimensional problems, especially when large time steps are used.

63

800 km. \ 20 m.
45 m
800 km.

65
m

45 m

340 m.
400 km.
Figure 2. Figure 3.
The plane bottom with a diagonal channel. The inclined bottom.

5.8. CONCLUSIONS

In this paper we have presented a two-stage time splitting method for the three-
dimensional shallow water equations. The method has been developed in such a way
that its stability neither depends on the vertical diffusion term nor on the terms
describing the propagation of the surface waves. At the first stage a large number of
tridiagonal systems of the same dimension have to be solved. At the second stage
the system to be solved is symmetric, five-diagonal and positive definite. For the
solution of the latter system we have developed a smoothed Jacobi (STAC) method
and a smoothed CG (SCG) method. Both methods have been accelerated by a
technique based on smoothing. The smoothing matrices have been chosen in such a
way that the number of iterations is moderate in all cases. Moreover, the smoothing
matrices can be implemented efficiently on vector and parallel computers, because
only matrix—vector operations are involved. It should be noted that the smoothing
matrices for the CG method are independent of the system to be solved. In the
experiments the SCG method requires less computation time than the SJAC
method.

It has been shown that the time integration method presented in this paper is
suited for three-dimensional problems. When we apply our method to two-
dimensional problems, the system to be solved at the second stage is the most time
consuming part. In three-dimensional models the same amount of computation time
is required, because this system is independent of the number of grid layers in the
vertical direction. The computation time for the other parts of the method is
proportional to the number of vertical grid layers. Therefore, the time splitting
method is more efficient for three-dimensional problems than for two-dimensional
problems. In [15] it was reported that a time splitting method of this form is already
feasible for practical computations of two-dimensional problems.

Finally, the method is mass conservative and can be implemented efficiently on
vector and parallel computers.

REFERENCES

10.

11.

12.

13.

14.

15.

16.

J.O. BACKHAUS, A semi-implicit scheme for the shallow water equations for
application to shelf sea modelling, Continental Shelf Research, 2,
243-254 (1983).

V. CASULLI, Semi-implicit finite difference methods for the two dimensional
shallow water equations, J. Comp. Phys., 86, 56-74 (1990).

A.M. DAVIES, Application of the DuFort-Frankel and Saul'ev methods with
time splitting to the formulation of a three dimensional hydrodynamic sea
model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985).

E.D. DE GOEDE, A computational model for the three-dimensional shallow
water flows on the ALLIANT FX/4, Supercomputer, 32, 43-49 (1988).

E.D. DE GOEDE, Stabilization of a time integrator for the 3D shallow water
equations by smoothing techniques, Int. J. Numer. Meth. in Fluids, 12,
475-490 (1991).

AR. GOURLAY, Splitting methods for time dependent partial differential
equations, The State of the Art in Numerical Analysis, D. Jacobs (ed.),
Academic press, London - New York - San Francisco, 757-791 (1977).

P.J. VAN DER HOUWEN, C. BOON and F.W. WUBS, Analysis of smoothing
matrices for the preconditioning of elliptic difference equations, Z. Angew.
Math. Mech., 68, 3-10 (1988).

Y. KURIHARA, On the use of implicit and iterative methods for the time
integration of the wave equation, Month. Weather Rev., 93, 33-46 (1965).
P.D. LAX and R.D. RICHTMYER, Survey of the stability of linear finite
difference equations, Comm. Pure Appl. Math., 17, 267-293 (1956).

J.J. LEENDERTSE, Aspects of a computational model for long period water wave
propagation, Memorandum RM-5294-PR, Rand Corp., Santa Monica,
California, 1967.

J. ORTEGA and R. VOIGT, Solution of partial differential equations on vector and
parallel computers, SIAM Review, 27, 149-240 (1985).

G.S. STELLING, On the construction of computational methods for shallow
water flow problems, Ph.D. Thesis, Delft University, 1983.

G.S. STELLING, A.K. WIERSMA and J.B.T.M. WILLEMSE, Practical aspects of
accurate tidal computations, J. Hydr. Eng., ASCE, 112, 802-817 (1986).

J. VERWER and W.H. HUNDSDORFER, Stability and convergence of the
Peaceman-Rachford ADI method for initial-boundary problems, Math. Comp.,
53, 81-101 (1989).

P. WILDERS, Th.L.VAN STUN, G.S. STELLING and G.A. FOKKEMA, A fully
implicit splitting method for accurate tidal computations, Int. J. Numer. Meth.
in Eng., 26, 2707-2721 (1988).

F.W. WUBS, Numerical solution of the shallow water equations, Ph.D. Thesis,
University of Amsterdam, Amsterdam, 1987.

65

Chapter 6

Numerical Methods for the 3D Shallow Water
Equations on Vector and Parallel Computers

E.D. de Goede
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009AB Amsterdam, The Netherlands

In this paper numerical methods for the three-dimensional shallow
water equations are examined. Since three-dimensional models require a
great computational effort, it is important to construct methods that are
not only accurate, but also efficient on vector and parallel computers.
We compare the accuracy and efficiency of a conditionally stable and
an unconditionally stable method on the Alliant FX/4.

The unconditionally stable method consists of two stages and requires
the solution of a sequence of linear systems. For the solution of these
systems, we apply a Jacobi-type iteration method and a conjugate
gradient iteration method. The performance of both iteration methods
is accelerated by a technique based on smoothing. Both explicit and
implicit smoothing is examined. It turns out that the unconditionally
stable method is more efficient than the conditionally stable method.

6.1. INTRODUCTION

In numerical analysis, we distinguish explicit and implicit time integrators for
partial differential equations. It is well-known that implicit methods are in general
unconditionally stable, but cannot exploit the facilities of vector and parallel
computers as well as explicit methods do. On the other hand, explicit methods
impose a severe restriction on the time step and therefore the time step is not
dictated by accuracy considerations.

In this paper we will compare the efficiency and accuracy of a conditionally stable
and an unconditionally stable method for the three-dimensional shallow water
equations. These methods have been described in [4] and [5], respectively. Since
three-dimensional models require a great computational effort, we will pay attention
to the efficiency of these numerical methods on vector and parallel computers. The
experiments will be carried out on the Alliant FX/4 (a mini-supercomputer with
four vector processors).

A mathematical model for the three-dimensional shallow water equations will be
used in which the advective terms have been omitted. We will focus on the stability
conditions imposed by the vertical diffusion term and by the terms describing the
propagation of the surface waves. In three-dimensional models the vertical diffusion
term has to be treated implicitly to avoid the maximally stable time step becoming
too small. (see e.g., [1,5]). Therefore, the numerical methods described in this paper

66

treat this term in an implicit way. This requires the solution of a large number of
tridiagonal systems, all of the same dimension. Since the tridiagonal systems are
independent of each other, the solution of these systems can be computed efficiently
in a vector-parallel mode [3].

The terms concerning the propagation of surface waves are integrated differently.
For the conditionally stable method these terms are treated partly explicitly, which
results in a CFL stability condition that depends on the water depth and on the
horizontal mesh sizes Ax and Ay.

The unconditionally stable method consists of two stages. At the first stage the
vertical diffusion term is treated implicitly, whereas at the second stage the terms
concerning the propagation of the surface waves are treated implicitly. At the second
stage a linearization process is used to iteratively solve the nonlinear system. The
linearization is chosen in such a way that conservation of mass is guaranteed. Then,
at each iteration step, a linear, symmetric, positive definite system has to be solved.
In the literature a large number of iteration methods have been proposed for such a
system (see e.g., [17]). In this paper we will apply a Jacobi-type iteration method
and a conjugate gradient iteration method for the solution of this system. The
iteration methods will be accelerated by a technique based on smoothing. Both
explicit and implicit smoothing will be examined. It appears that especially explicit
smoothing is suitable on vector and parallel computers.

6.2. MATHEMATICAL MODEL

In this section we will describe a mathematical model for the three-dimensional
shallow water equations. We will use a three-dimensional model in sigma
co-ordinates in which the advective terms have been omitted. The mathematical
model used in this paper is described by

du_p 98 , 19 [ou

B T (“ ac) oD
o o a 19 v

Vo g2y 9 [,V 2.2
T gay+h2ac(”ao) o

1 1
o__9 _9
e (h0 udo) 3 (hO vdo) . (2.3)

Owing to the sigma transformation [13]

c= C_Z, where d<z<{ and 12620,

d+¢

the domain is constant in time. We have the closed boundary conditions

u(0,y,o,t) =0, u(L,y,o0) =0,
v(x,0,0,t) =0, v(x,B,0,t)=0.

67
The boundary conditions at the sea surface (o = 0) are given by

Qu) My cos) VY = _Bwrsin), 24)
(” 60') o P (u a") o P

Similarly, at the bottom (o = 1) we have a linear law of bottom friction of the form

(Ll QE) - —h& (l»l a_") =_h &Y%
2’ 27
oo =1 C Jo =1 C

where uy and v, represent components of the velocity at some depth near the
bottom.

6.3. SPACE DISCRETIZATION
For the space discretization of the equations (2.1)-(2.3), the computational domain
is covered by an nx-ny-ns rectangular staggered grid (see [3,4,5]). Owing to the
sigma transformation, we have a constant number of grid layers in the vertical
direction. In what follows, U(t) is a grid function whose components Uj j k(t)
approximate the velocity u(t). The components Ui,j,k(t) are numbered
lexicographically. Likewise, V, Z, D and H are grid functions approximating v, {,
d and h, respectively. Note that D, H and Z are only computed at the upper layer.
Furthermore, A is a tridiagonal matrix approximating the vertical diffusion term,
including the discretization of the term 1/h2. We remark that Agg does not contain
the discretization of the wind stress, because this term is independent of the velocity
components (see (2.4)). O is an (nx-ny-ns)-(nx-ny) matrix (a row of ns diagonal
matrices of order nx-ny with Acy on the diagonal of the k-th submatrix). ©; is an
(nx-ny)-(nx-ny-ns) matrix (a column of ns identity matrices of order nx-ny. Fisa
four-diagonal matrix (due to the grid staggering) of order nx-ny-ns, approximating
the Coriolis term. Dy and Dy, are bidiagonal matrices (one diagonal and one lower
diagonal) of order nx-ny, approximating the differential operators 3/dx and 0/dy,
respectively. Ey and Ey are bidiagonal matrices (one diagonal and one upper
diagonal) with Ex =-D, and Ey = -D,. The matrices Dy and Ey differ because of
the grid staggering.

For the approximation of the spatial derivatives, second-order central finite
differences are used in both the horizontal and the vertical direction. Now, the semi-
discretized system can be written in the form

Axs F —8,8Dy 4
%W=F(W)= -F Az O8E, W+|F, |, 3.1)
-6 HE, -®HD, 0 .

where W=(U,V,Z)T and (Fu,Fv,O)T contains the components of the wind stress.
Note that the integrals in (2.3) are approximated by ©,U and OV, respectively.

68

6.4. TIME INTEGRATION

In this section we will describe time integration methods for the semi-discretized
system (3.1). Both a conditionally stable and an unconditionally stable method will
be discussed.

6.4.1. THE CONDITIONALLY STABLE METHOD
First we consider the conditionally stable method that has been described in [3].
This method reads

n

A, 0 0\ /yn+! I 1F —1@,gD, \(u" F,
TF Ay, O vitl [=] 0 1 —"ngEy vt [+ Ff ,

10,HE, 1®HD 1)| zn+! 00 I Z0 0

where T denotes the time step and W"=(U™,V",Z™ is a numerical approximation
to the solution W(t) of (3.1) at t=nt. This Vertically Implicit Method (VIM) can be
written in the form

Wn+1 - wﬂ +7T (I —T{A1+A2})_l F(Wn) s (41)
with
Agg 0 Q 0 0 0
5 0 @ -6,HE, -6 HD, 0

The stability condition for method (4.1) is given by

T <l 1 . 4.2)
2 2
V (Ax) (Ay)

where Ax and Ay denote the horizontal mesh sizes.

Method (4.1) is first-order accurate in time. For the U- and V-component, the
implicit treatment of the vertical diffusion term requires the solution of nx-ny
tridiagonal systems of dimension ns [3,4]. For large values of h (i.e., very deep
water) or for small values of the horizontal mesh sizes, the time step restriction for
method (4.1) may be more severe than necessary for accuracy considerations. In
order to increase the stability of method (4.1), right-hand side smoothing has been
applied in [4]. The application of right-hand side smoothing in more than one
direction is complicated. Therefore, we have constructed one-dimensional smoothing
matrices in x- and y-direction, successively. In the x-direction the smoothing matrix
has the structure

69

where Sy and S; denote the smoothing matrices for the right-hand side function of
the U- and Z-component, respectively. These smoothing matrices are of the form
Su=P(Dy) and S;=P(D,) with P(z) defined by [7,8]

T,q(1+22) -1 |
P(z)= =, T(x) = cos(k arccos(x)) 4.3)
2z 49
and
0 0 -1 1 0
121 121
p, =1 Dy & “4)
u 4 R ? z 4 g8 3
1-21 1-21
0 0 0 -11

In the y-direction the smoothing matrix has a similar structure (see [4]). Note that
Dy and D; only differ in the first and last row, which is due to the grid staggering
and to the boundary conditions. The number of different boundary conditions is very
limited (open or closed boundaries, u- or {-boundaries). The smoothing matrices,
including the values in the first and last row, are therefore computed in advance.

The application of right-hand side smoothing to method (4.1) leads to the
Stabilized Vertically Implicit Method (S VIM)

W= W41 (1 1A +SA, 1) SFWD) (4.5)

with the matrices A, and A, as in (4.1). The stability condition for method (4.5) is
given by

1 1

Ven [T
Aax? (Ay)?

where the gain factor obtained by right-hand side smoothing is 1t2q'1 (cf. 4.2)).

Right-hand side smoothing is particularly attractive in problems where it is
known that the time derivative of the exact solution (in our case, ow/dt with
w=(u,v,{)T) is a smooth function of the space variable. For example, this occurs in
problems where the solution is close to a steady state. In such cases, the right-hand
side function of the semi-discretized system (see e.g., in (3.1)) is also a smooth grid
function. Thus, it can be multiplied by the smoothing operator S without much
loss of accuracy.

In order to prevent large errors, it is therefore important to smooth the complete
right-hand side function. In [1] a fractional step method has been developed which

r<11:2q'l

, (4.6)

70

has a comparable accuracy and computational efficiency as method (4.1). However,
for the method in [1] right-hand side smoothing is less attractive, because it can
only be applied to a part of the right-hand side function.

We emphasize again that in method (4.5) the right-hand side function is
smoothed, instead of the grid function W(t) itself. Both types of smoothing may be
considered as a technique in which horizontal diffusion is added. The latter type of
smoothing is often used (e.g., in the well-known Lax-Wendroff method [14]).
However, it may only be applied, without considerable loss of accuracy, if W(t)
itself is a2 smooth grid function for a fixed value of t. This is, in general, not the
case. In [15] very high-order smoothing operators have been developed to restrict the
decrease in accuracy.

Method (4.5) can be made more accurate by applying a technique in which the
water elevation and the velocity components are computed at different time levels.
This technique has been introduced in [6]. For method (4.5) this yields

W= W™ 41 (- 1{A+5A,) S FOWRT) 4.7

with W™ = (U2, v™12 zMT and S the smoothing operator in (4.5). The
Coriolis term and the vertical diffusion term are still treated first-order accurate in
time. However, the terms describing the propagation of the surfaces waves are now
treated second-order accurate in time. The stability condition (4.6) is also valid for
method (4.7).

6.4.2. THE UNCONDITIONALLY STABLE METHOD
In [5] the two-stage Time Splitting Method (TSM)

Wn+1/2 =wh + 1515 { Fl(Wn+1/2) " GI(Wn) & Cn+1/2 } (4.8)
wn+1 =an+1/2 & 12_1: { F2(Wn+1/2) % G2(Wn+l) & Cn+1/2],

with
Ay, 0 0
Fl(wn+1/2) “F Ay 0 Wn+1/2’
0 0 o0
0 F -0,8D,
Glw" = 0 0 -6,gE, |W",
-6,H"E, -6,H'D, 0

4.9)

71

0 0 -8,gD,
GZ(Wn+1) - 0 1 0 1 _engy W]’l+1 ,
n+ n+
-6, H""'E, - H""'D_ 0

and C=(Fu,Fv,0)T has been developed. When we neglect the Coriolis term, this
method is second-order accurate in time. For two-dimensional problems, this time
splitting method is very similar to the method described in [16]. In [4] it has been
shown that this method is unconditionally stable.

At both stages a system of equations has to be solved. The structure of these
systems determines the efficiency of method (4.8)-(4.9). At the first stage we have
to solve

1- 5TA, 0 0 \/ynti2
FTF I-5ta , 0 | votl2 |=B", (4.10)
0 0 I Zn+1/2

where B" contains the discretizations at time level t=nr. This system is very similar
to the system that has to be solved for the SVIM method (cf. (4.1)).

At the second stage the terms describing the propagation of the surface waves are
treated implicitly. This system reads

I 0 ;-1:82ng yntl
0 1 T10,¢E, || vo*l [=B™12 411
7160 H"E, 110, H"'D I Zn+1

where B"*1/2 ¢ontains the discretizations at time level t=(n+1/2)t. The equations
for the U- and V-component are linear and are not coupled with each other. They are
only coupled with the equation for the Z-component. Therefore, the components
U™ and V™*! can easily be eliminated from (4.11) and a nonlinear system in the
unknown Z"*1 results. A linearization process is used to iteratively solve this
nonlinear system. Then, at each iteration step, we obtain a linear, symmetric,
positive definite system of the form

Az g2 @.12)
where Z(0)=Zn+1/2, BIZHI/2 contains the discretizations at t=(n+1/2)t for the

Z-component and (m) denotes the iteration index. For a detailed description of (4.12)
we refer to [5].

We emphasize that the water elevation is the only unknown in system (4.12).
Thus, this system is of the same (two-dimensional) structure and thus of the same
computational complexity for both two-dimensional and three-dimensional test
problems. The computation time for the other parts of method (4.8)-(4.9) is
proportional to the number of vertical grid layers. Therefore, this time splitting

72

method is more efficient for three-dimensional than for two-dimensional problems.
In [16] it was reported that a time splitting method of this form is already feasible
for two-dimensional problems.

6.5. SOLVING THE LINEAR SYSTEMS
In this section we will describe how the linear systems (4.10) and (4.12) are solved.
For system (4.10), which requires for both velocity components the solution of
nx-ny tridiagonal systems of dimension ns, we apply the Gaussian Elimination
(double sweep) method. Since this method is recursive, it is an unattractive method
on vector and parallel computers. However, we make use of the fact that a large
number of tridiagonal systems of the same dimension has to be solved. Therefore,
the systems can be solved efficiently in a vector-parallel mode [3]. Moreover, this
method requires a minimal number of operations.

In the literature a large number of iteration methods have been proposed for linear,
symmetric systems such as system (4.12). Here, we will apply a Jacobi-type
method and a conjugate gradient (CG) method.

6.5.1. THE SMOOTHED JACOBI METHOD
For the solution of system (4.12), written as AZ=B, we apply the smoothed Jacobi
method [8]

Zk+1 = Zk + (DS {B = AZk} ¥ k=1,2,3,..., (5.1)

where Zy denotes the k-th iterate, o is a relaxation parameter and S is a smoothing
operator. We only consider smoothing operators S that consist of one-dimensional
operators in x- and y-direction, successively. This will be explained later. The one-
dimensional smoothing operators are chosen of the form P(D), where D is a
difference matrix and the smoothing function P(z) is a polynomial or rational
function, yielding explicit or implicit smoothing, respectively. Here, we choose

{ P(D) (5.22)
S =

(I-aD) !’ (5.2b)

with P(z) as defined in (4.3), D as in (4.4) and o some parameter. The implicit
smoothing operator (5.2b) requires the solution of a tridiagonal system. On the
other hand, the explicit smoothing operator (5.2a) requires q (tridiagonal)
matrix—vector operations, because

. T,q(1422) -1 q (1+T2i_1(1+2z)— 1) .
L) D m— — e ——. . *
2z 4q i=1 2 ()

For this choice of P(z) with D as in (4.4), the q factor matrices of the explicit
operator exhibit a regular pattern, which has been exploited for an efficient
implementation [4,5]. The precomputation of these factor matrices is only feasible
in one-dimensional cases. Therefore, we apply one-dimensional smoothing in the x-

73

and y-direction, successively. This enables an efficient implementation of the
smoothing operator on both regular and irregular domains [4].

For the explicit smoothing operator (5.2a), a good choice of the relaxation
parameter ® in (5.1) has been derived in [5]. In the case of implicit smoothing, the
smoothed Jacobi method reads

(x),-), -
Z ., =Z +00-0oD) @-aD Y {B-AZ]), k=123, (5.4)

where D(Zx) and D(ZY) denote the matrix D, in (4.4) applied in the x- and y-direction,
respectively. If we choose

2a§+a2 2
0=- , with the constant B =— gH ,H = max {H. .}
BZ A2 max max 1€iEnx i,j
1<j<ny
and A = Ax = Ay, then method (5.4) may be written in the form
Z, .. =Z -2, +1) BD -) BDY -0y B-AZ,) (54"
k+1 ~ kK~ a2+)(B z _az) (B z —0.2 - k/ B

where o, = B / a.. Using the relation A=I+BD§X)+BD(Y), it can be verified that (5.4")
is equivalent to

@Dy -o,DZ =Dy -0, Z, + {B - AZ) (5.5)
) (y) ~ -
@D, -o,DZ,,,=@D, -o,DZ +(B-AZ).

Method (5.5) may be considered as an ADI iteration method written in residual
form. For such methods the derivation of parameter values has been described
extensively in [17]. In our case this results in an optimum value of a,=mT \/E
which yields o = \/E / ®. We emphasize, however, that this only applies if we
compute the solution sufficiently accurate. For moderately accurate computations,
this a-value may not be the best possible. In our numerical experiments the value
of o is determined experimentally.

6.5.2. THE SMOOTHED CG METHOD

The second iteration method that we apply for the solution of system (4.12), is a
preconditioned CG method. The preconditioned CG method can be formulated as
follows (see e.g., [10]):

74

Let Z, be an initial guess for 2™ ang
R0=B—AZO, P0=SRO
For k=0,1,2,...., until convergence

" - Rk:(SRk)
P (AP
Ly =Zy+ oy Py
R,,, =R, - 0y AP, (5.6)
~ Ry,; SRy,
k- R, [(SR))

P =SSRy +B Py,

where Ry denotes the k-th residual vector and Py the k-th search direction. In (5.6)
the matrix S denotes the preconditioning matrix. It is well-known that the
unpreconditioned CG method can be implemented efficiently on vector and parallel
computers, but in general the preconditioned version is much more troublesome. In
the literature various techniques for the construction of a suitable preconditioning
matrix have been proposed (see [12] for a survey). Here, we again use an explicit
and an implicit smoothing operator. In the explicit case we choose a positive
definite matrix S of the form S=P(D), where D is the difference matrix in (4.4) and

T2i_1(1+22) -1

3), 5.7

q
P(z)=[[1(1+y

where we have to choose y € [0,1) in order to obtain a positive definite matrix S. If
¥=1, then the polynomial P(z) in (5.7) is identical to the polynomial in (4.3). This
smoothing operator can be implemented efficiently on vector and parallel
computers, because only matrix—vector operations are involved [5]. In the case of
implicit preconditioning we apply the incomplete Cholesky factorization [11]. This
leads to the well-known ICCG method.

6.6. NUMERICAL EXPERIMENTS
In this section we compare the accuracy and computational efficiency of the
conditionally stable methods (4.5) and (4.7) and the unconditionally stable method
(4.8)-(4.9). The experiments have been carried out on the Alliant FX/4, which is a
mini-supercomputer with four vector processors. In all experiments we have used
both the vector and the parallel optimization of the Alliant FX/4.

The water is initially at rest and the motion in the closed basin is generated by a
periodic wind stress. Thus, a wind driven circulation is gradually developed. The
following parameter values have been used in all experiments:

75

C =70 ml/2s
f =122e4 s!
g =9.81 m/s?
p o =0.065 m2/s
o =90°

p =1025 kg/m3.

We have used a rectangular basin of 400 by 800 km with different bottom
topographies. For the horizontal grid sizes we have chosen Ax=10 km and
Ay=10 km. The computations have been performed on a grid with nx=41, ny=81
and ns=5. We have integrated over a period of five days with a periodically varying
wind stress of

2n t
—— e, 2
1.5 + 0.75 * sin 24 * 3600 kg/ms .

The following numerical methods have been used:

SVIM : the Stabilized Vertically Implicit Method (4.5)
SVIM2 : the Hansen-type Stabilized Vertically Implicit Method (4.7) 6.1)
TSM : the unconditionally stable Time Splitting Method (4.8)-(4.9).

At the end of the integration process the numerical solution has been compared
with a reference solution computed on the same grid with 1=30 s. The reference
solution may be considered as an almost exact solution of our semi-discretized
system (3.1). Thus, the accuracy results listed in this section represent the error due
to the time integration.

To represent the results we define:

q : number of smoothing factors (see (4.3))

ERR-- : maximal global error of either u, v or { at the end point T = 5 days
COMP : computation time on the Alliant FX/4.

For the TSM method we require that the residue || BnH/2 - AZy ” drops
below the tolerance 107 (see (4.12)). This value is a good compromise between the
accuracy and the computational costs.

In the first experiment we choose a plane bottom of 45 m with a deeper channel
in a diagonal direction (depth 65 m). This is shown in Figure 1. For this test
problem the results are presented in Table 6.1.

In this experiment the maximal values for u, v and { are about 0.4 m/s, 1.1 m/s
and 2.6 m, respectively. We have observed that after a few days the solution
becomes periodic with a period of 24 hours for any time step. As expected, the
SVIM2 method is more accurate than the SVIM method. The results for the SVIM-
type methods clearly show that one should not apply more smoothing factors than
needed. In the case 7=1800 s and q=3, the results are much less accurate than for q=2,
which is sufficient for stability. For a fixed time step T, the TSM method roughly
requires twice as much computation time as the SVIM methods. However, when we
consider the accuracy, the TSM method is more accurate.

76

method T q ERR-u ERR-v ERR-{ COMP
O] (m/s) (m/s) (m))

SVIM 270 0 0.005 0.012 0.015 442.3

800 1 0.031 0.044 0.063 222.5

1800 2 0.090 0.132 0.194 111.5

1800 3 0.134 0.250 0.344 121.1

3600 3 0.154 0.308 0457 60.0

SVIM2 270 0 0.004 0.005 0.015 444 4

800 1 0.027 0.023 0.063 2254

1800 2 0.071 0.087 0.194 112.2

1800 3 0.119 0.184 0.349 123.6

3600 3 0.142 0.233 0457 61.0

TSM 270 0.002 0.005 0.015 817.3

800 0.008 0.024 0.054 319.3

1800 0.024 0.070 0.146 183.6

3600 0.061 0.180 0.367 160.4

Table 6.1. Test problem with a channel in a diagonal direction.

In the second experiment we use a basin with an inclined bottom of a depth of
20 m at the one end and 340 m at the other end (see Figure 2). The results are listed
in Table 6.2a. Here, the maximal values for the three components are about
0.7 m/s, 1.4 m/s and 1.2 m, respectively. For the SVIM2 method, large errors for
the velocity components occur if smoothing is applied. On the other hand, the
accuracy of the TSM method is very satisfactory, even for large time steps. The
experiment with the diagonal channel is the only one in which some inaccuracies
occur for the TSM method. This is possibly due to the discontinuous bottom
topography. In all other experiments (see also [5]), the errors for the TSM method
are very small. The results show that the TSM method is a more suitable method
for the three-dimensional shallow water equations than the SVIM-type methods.

In the experiments the SVIM-type methods perform less satisfactory for three-
dimensional test problems than for the corresponding two-dimensional ones. As an
illustration, for the second test problem we list in Table 6.2b the results for the
SVIM2 method when only one grid layer in the vertical direction is used
(i.e., ns=1). In this experiment the errors for the velocity components are about ten
times smaller, whereas the maximal values for the velocities are only about four
times smaller (see Table 6.2a). The TSM method does in general not encounter any
accuracy problems for both two- and three-dimensional test problems.

In the three-dimensional experiments the large errors occur near the boundaries.
Since we apply smoothing of the right-hand side function, its smoothness plays an
important role. We have observed that in the two-dimensional experiments the
right-hand side function is smoother near the boundaries than in the three-

71

method * q ERR-u ERR-v ERR-{ | COMP
(s) (m/s) (m/s) (m) ®
SVIM2 100 O 0.001 0.001 0.001 1182.1
300 1 0.055 0.061 0.003 541.4
600 2 0.288 0.319 0.019 330.3
1200 3 0.485 0.563 0.067 180.3
TSM 100 0.001 0.001 0.001 2181.6
300 0.002 0.002 0.004 773.4
600 0.005 0.003 0.016 437.1
1200 0.008 0.005 0.018 315.7
2400 0.018 0.014 0.046 2373

Table 6.2a. Test problem with an inclined bottom.

dimensional experiments. This results in a smaller decrease of the accuracy when
smoothing is applied. Thus, we conclude that the smoothing technique is more
suitable for two-dimensional experiments than for three-dimensional ones. In three-
dimensional experiments, one should be more careful with the application of right-
hand side smoothing.

method 1t q ERR-u ERR-v ERR-{ | COMP
O] (m/s) (m/s) (m) (s)
SVIM2 100 0 0.001 0.001 0.001 196.4
300 1 0.005 0.008 0.003 109.4
600 2 0.031 0.045 0.015 68.2
1200 3 0.053 0.082 0.060 375

Table 6.2b. Test problem with an inclined bottom and ns=1.

In the literature various numerical methods have been constructed that are implicit
in the vertical direction and explicit in the horizontal direction (see e.g., [1,9]).
These methods yield an accuracy and efficiency which is more or less similar to the
SVIM method without smoothing (i.e., SVIM with q=0). When right-hand side
smoothing is used, we can in general apply two or three smoothing factors while
the accuracy remains acceptable. In these cases, the SVIM method is about a factor
of five more efficient that the aforementioned methods (see also [4]). However, the

78

TSM method yields more accurate results and in many cases also more efficient
results. Therefore, we conclude that the TSM method is a very suitable method for
the three-dimensional shallow water equations.

In the experiments we have used both the vector and the parallel optimization of
the Alliant FX/4. For all numerical methods described in this paper (see (6.1)), the
computation time reduces by about a factor of three due to the vectorization and by
an additional factor of three due to the parallel optimization. This shows that these
methods can be implemented efficiently on vector and parallel computers.

Below, we will discuss the performance of the iteration methods used for the
solution of system (4.12). To represent the results we use the following notation:

q : number of smoothing factors (see (4.3))

Y : smoothing coefficient (see (5.7))

ITER :computation time for the iteration process

PREC : computation time for the preconditioning (PREC is a part of ITER)
#ITER : number of iterations averaged over the integration steps.

In Table 6.3 we list the results for the smoothed Jacobi method. Here the bottom
topography with the diagonal channel has been used. In this experiment only
twenty-five time steps have been performed. We have varied the number of
smoothing factors q. The case g=0 corresponds to the unpreconditioned case, whereas
implicit smoothing is denoted by IMP.

T=800s T=3600s
q ITER PREC #ITER |ITER PREC #ITER
® ® ®)

0 413 0.0 110 368.2 0.0 982

1 26.2 3.6 42 279.3 439 438

2 10.0 2.8 14 104.0 292 146

3 7.4 2.6 9 41.0 147 49

4 8.2 34 10 12,1 4.8 15

IMP 20.5 14.1 12 75,6 518 45
(0=0.8) (0=20.6)

Table 6.3. Smoothed Jacobi method for the problem with a diagonal channel.

When no preconditioning is applied, the Jacobi method converges extremely slow.
When we apply explicit smoothing, both the number of iterations and the
computation time are reduced considerably. For example, in the case T=3600 s and
q=4, the computation time for the iteration process is even reduced by a factor of 30.

79

For the best choice of g, the explicit smoothing operator requires less iterations than
the implicit smoothing operator. Moreover, since the implicit smoothing can not
be implemented as efficiently as the explicit smoothing, the reduction in
computation time is less for implicit smoothing.

In Table 6.4 we list the results for the smoothed CG method. The value of o is in
the neighbourhood of the optimum theoretical value given in Section 6.5.1.
Moreover, this value is not critical. Here, we use the basin with an inclined bottom.
For the implicit preconditioner, viz., the incomplete Cholesky factorization, we
only list the number of iterations, because it has not been implemented in an
efficient way. An efficient implementation of the Cholesky factorization has been
described in [2].

For the parameter y in the explicit smoothing operator, we have derived
experimentally an optimum value. In Table 6.4 these optimum values are presented.
For y-values in the neighbourhood of the optimum value, the number of iterations
hardly increases. Thus, the choice of the parameter vy in the preconditioning matrix S
of the SCG method is not critical.

In the case of the smallest time step of 800 s, it is better to apply no
preconditioning, because the number of iterations is already very limited. For larger
time steps both the number of iterations and the computation time reduces when the
explicit smoothing operator is applied. The results show that the number of
iterations for the ICCG method is slightly less compared with the explicit
preconditioning. We expect that the explicit smoothing operators can be
implemented more efficiently than the implicit ones, especially on irregular
domains. Therefore, the explicit smoothing operators seem to be a good choice for
our shallow water problems.

T q Y ITER PREC #ITER
(s) (s) O]

800 0 123.4 0.0 11
1800 0 160.0 0.0 40
1 0.85 143.9 48.1 23
ICCG 17
3600 0 221.3 0.0 110
1 0.9 141.2 51.6 47
2 0.8 186.4 91.9 45
ICCG 34

Table 6.4. Results for the CG method.

80

6.7. CONCLUSIONS

In this paper we have compared the accuracy and computational efficiency of
numerical methods for the three-dimensional shallow water equations. Both a
conditionally stable and an unconditionally stable method have been examined. The
experiments show that both methods can be implemented efficiently on vector and
parallel computers. In [4] the stability of the conditionally stable method has been
increased by right-hand side smoothing. In general, the application of right-hand side
smoothing results in a reduction of the computation time of about a factor of five,
while the accuracy is still acceptable [4].

This smoothing technique performs relatively better for two-dimensional
problems. In three-dimensional cases, we encounter in some cases large errors for
the velocity components. On the other hand, the unconditionally stable method
yields very accurate results, even for large time steps. Since three-dimensional
models are applied to test problems where the vertical structure of the velocities is
needed, especially the accuracy for the velocity components should be emphasized.
For the largest time step with an acceptable accuracy, the unconditionally stable
method requires in many cases less computation time than the smoothed
conditionally stable method. Therefore, we conclude that the unconditionally stable
method is a suitable method for the three-dimensional shallow water models.

For the unconditionally stable method a symmetric, pentadiagonal and positive
definite system has to be solved. We have examined a Jacobi-type iteration method
and a CG iteration method for the solution of this system.These iteration methods
have been accelerated by both an explicit and an implicit preconditioning operator.
For our shallow water problems the explicit preconditioner seems to be more
efficient. In [5] it has been shown that the smoothed CG method requires less
computation time than the smoothed Jacobi-type method.

800 km. \ 20 m.
45 m
800 km.
65

m
45 m
340 m.
400 km.
Figure 1. Figure 2.

The plane bottom with a diagonal channel. The inclined bottom.

81

REFERENCES

10.

11.

12.

13:

14.

15.

16.

17.

AM. DAVIES, Application of the DuFort-Frankel and Saul'ev methods with

time splitting to the formulation of a three dimensional hydrodynamic sea

model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985).

S.C. EISENSTAT, Efficient implementation of a class of preconditioned

conjugate gradient methods, STAM J. Sci. Comput., 2, 1-4 (1981).

E.D. DE GOEDE, A computational model for the three-dimensional shallow

water flows on the Alliant FX/4, Supercomputer, 32, 43-49 (1988).

E.D. DE GOEDE, Stabilization of a time integrator for the 3D shallow water

equations by smoothing techniques, Int. J. Numer. Meth. in Fluids, 12,

475-490 (1991).

E.D. DE GOEDE, A time splitting method for the three-dimensional shallow

water equations, Int. J. Numer. Meth. in Fluids, 13, 519-534 (1991).

W. HANSEN, Hydrodynamical methods applied to oceanographic problems,

Proceedings of the symposium on mathematical hydrodynamical methods of
physical oceanography, Institut fiir Meereskunde der Universitit

Hamburg, 25-34 (1961).

P.J. VAN DER HOUWEN, Stabilization of explicit difference schemes by
smoothing techniques , in K. Strehmel (ed.): Numerical Treatment of
Differential Equations, (Proc. Fourth Seminar Halle 1987: NUMDIFF-4),

Teubner-Texte zur Mathematik 104, BSB B.G. Teubner Verlaggesellschaft,

Leipzig, 205-215 (1987).

P.J. VAN DER HOUWEN, C. BOON AND F.W. WUBS Analysis of smoothing
matrices for the preconditioning of elliptic difference equations, Z. Angew.

Math. Mech., 68, 3-10 (1988).

J.J. LEENDERTSE, Aspects of a computational model for long period water wave

propagation, Memorandum RM-5294-PR, Rand Corp., Santa Monica,

California, 1967.

A.R. MITCHELL AND D.F. GRIFFITHS, The finite difference method in partial
differential equations, Wiley, Chichester (1980).

J.M. MEUERINK AND H.A. VAN DER VORST, An iterative solution method for
linear systems of which the coefficient is an M-matrix, Math. Comp., 31,

148-162 (1977).

J. ORTEGA AND R. VOIGT, Solution of partial differential equations on vector
and parallel computers, SIAM Review, 27, 149-240 (1985).

N.A. PHILLIPS, A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184-194 (1957).

R.D. RICHTMYER AND K.W. MORTON, Difference methods for initial value
problems, Interscience Publishers, Wiley, New York, London (1967).

R. SHAPIRO, Smoothing, filtering and boundary effects, Rev. Geophys. and

Space Phys., 8, 359-387 (1970).

P. WILDERS, Th.L.VAN STDN, G.S. STELLING AND G.A. FOKKEMA, A fully
implicit splitting method for accurate tidal computations, Int. J. Numer. Meth.

in Eng., 26, 2707-2721 (1988).

D.M. YOUNG, Iterative solution of large linear systems, Academic Press, New

York (1971).

82

Chapter 7

On the Numerical Treatment of the Advective
Terms in 3D Shallow Water Models

E.D. de Goede
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009AB Amsterdam, The Netherlands

In this paper we present a numerical method for the three-dimensional
shallow water equations. These equations describe flows in e.g.,
shallow seas, rivers and estuaries. Since three-dimensional models
require a great computational effort, the method is constructed in such a
way that it fully exploits the facilities of vector and parallel
computers. This two-stage method, which is unconditionally stable, is
applied to a problem involving the development of a circulation in a
rectangular basin and to a river problem in which a jetty has been
situated.

7.1. INTRODUCTION

In the past, many numerical methods for the simulation of water flows were based
on the so-called two-dimensional shallow water equations. These equations can be
obtained from the three-dimensional equations by averaging over the vertical co-
ordinate. They only yield the water elevation and the depth-averaged velocities.
However, there are many cases in which the vertical structure of the flow is required.
For example, when the dispersion of a pollutant is desired. In this paper we will
develop a numerical method for the three-dimensional shallow water equations. The
three-dimensional models are an order of magnitude more expensive than the two-
dimensional models and it is therefore important to construct methods that are not
only robust and accurate, but also able to fully exploit the facilities of vector and
parallel computers.

In [3] we developed an unconditionally stable two-stage method for the three-
dimensional shallow water equations in which the advective terms were omitted. We
focussed on the stability conditions imposed by the vertical diffusion and by the
terms describing the propagation of the surface waves. In this paper we will
incorporate the advective terms into this method.

For the model without advective terms, the unconditionally stable method has
been compared with conditionally stable methods [4]. The unconditionally stable
method yields the most accurate results. The method is also more efficient, because
large time steps can be used. For two-dimensional models, this approach is very
similar to the one described in [11], where its feasibility for practical computations
has been shown. For three-dimensional models the efficiency of our method is even
higher than for two-dimensional models [3].

83

For the numerical treatment of the advective terms, we will follow the approach
developed in [9]. The introduction of the advective terms results in a hardly more
complicated system. At the first stage the implicit treatment of the advective terms
yields a large, non-symmetric, linear system. For its solution we will develop a
Jacobi-type iteration method. When only one iteration is performed, this
corresponds with an explicit treatment of the advective terms. Thus, the method
offers the facility of both an explicit and an implicit treatment of the advective
terms.

At the second stage the method is comparable with the method developed for the
model without the advective terms [3]. Again, a sequence of linear systems has to
be solved at this stage. This system is solved by a conjugate gradient method in
which a preconditioner based on smoothing is used [3]. It appears that this iteration
method is highly suitable for vector and parallel computers.

In order to facilitate the comparison with existing numerical methods, we will
apply our method to test problems from the literature. In the first experiment we
will examine the development of a circulation in a rectangular basin with
dimensions representative of the North Sea [1,6]. In the second test problem we will
study a river flow past a jetty [9].

7.2. MATHEMATICAL MODEL

In this section we will describe a mathematical model for the three-dimensional
shallow water equations. The three-dimensional model in sigma co-ordinates is
given by [1,10]

u__du_du_ du . AL 9% 9%, 1 9 [du
- U3 vay u)?£+fv gax+kax2+lay2+h2ao(u) 2.1)

Do v v v o B o 13 (v
il L gay+kax2+lay2+h2ac(” 80) 2.2)
1

1 1 1
_L 9 2 9 S
o=1 {-a1-0) & (hOJ.udo') +5 (thdc)) o (hOJ.udc) e (hc vio)} (2.3)

1 1

a&__2 _9
2= (h0 udo) - 2= (h0 vdo) . (2.4)

The equations (2.1)-(2.3) are the momentum equations and (2.4) denotes the
continuity equation. In our model the accelerations in the vertical direction have
been neglected, because they are very small, particularly when compared with the
acceleration due to gravity. This is known as the so-called shallow water
approximation.

In the vertical, the domain is bounded by the bottom topography and the time-
dependent water elevation. To ensure that the three-dimensional domain is constant
in the vertical direction, system (2.1)-(2.4) has been transformed into the constant
interval [0,1] by the sigma transformation [8]

84

6=2"% where d<z< and 12620, 2.5)

d+¢
The relation between the untransformed (physical) vertical velocity w and the
transformed velocity w is given by [1,10]

—oh+%_gdh, (9 _oh 9 _,ohn
_-coh+at—<rat+u(ax cax)+v(ay oay
The domain is defined by

0<x<L, 0<y<B and 12020,

i.e., a rectangular basin. Owing to the sigma transformation in the vertical, the
domain is constant in time. The boundary conditions at the sea surface (o = 0) are
given by [1]

(“ B_u) =-Bwrcos(9), (” a_v) =-Bwysin@) and w(xy.0.0=0.
oo p oo p
0=0 c=0

Similarly, at the bottom (o = 1) we have

ua—u =—h& u; +v ua—v- =—hﬂ u; +v
(ac)zl g e (30)=1 2\ et

and o(x,y,1,t)=0,

where the first two conditions represent a quadratic law of bottom friction.

7.3. NUMERICAL DISCRETIZATION

To discretize system (2.1)-(2.4), we first apply a finite difference space discretization
on a spatial grid that is staggered in both the horizontal and the vertical direction
(see [2,3]). Figure 1 shows the horizontal grid spacing. The computational domain
is covered by an nx-ny-ns rectangular grid. On this grid the spatial derivatives are
replaced by second-order finite differences, which results into a semi-discretized
system of dimension nx-ny-(3ns+1). Owing to the sigma transformation (2.5), we
have a constant number of grid layers in the vertical direction. In what follows, U(t)
is a grid function whose components Uj,j,k(t) approximate the velocity u(t). The
components Uj j k(t) are numbered lexicographically. Likewise, V, Q, Z, D and H
are grid functions approximating v, ®, {, d and h, respectively. Note that Z, D and
H are two-dimensional unknowns. The grid sizes in x- and y-direction are denoted
by Ax and Ay, respectively. In the vertical direction, we choose a varying grid of
thickness Aoy, where k refers to the k-th grid layer from the surface. Hence, it is
possible to increase the resolution near the surface and the bottom.

85

ﬂ
@ X &
©C B |O
@ X |®
O MO
®@ X &
O MO
® X &
8O
O
@

Figure 1. The staggered grid in the horizontal direction.

We now describe the time integrator for the semi-discretized system. Our method
consists of two stages. At the first stage we compute intermediate approximations,
indicated by an asterisk. The upper indices denote the time level, whereas the lower
indices refer to the discretization in space. The first stage reads

* n
U -U . n* _n * n_* n n * * poo*
_—1/21: =-U U, -V Uly -Q Uo, +fvV — 8Zy, +)‘Uxx"' }.Uyy + FUG’
V* Vn * * * * * *
Yy -V __ V'V o'V ot _ o7 * LR
T UV, -V Vy Q Vc fu gZ0y+)‘Vxx+ lVyy + Hz Voo

1 1
*__1_- _ * * * *
Q =5 (1-0) ((H OJU dc)0x+ H ojv dc)oy)

1 1
* * * *
+(H JU dc)ox +(H Jv do)oy } (3.1a)
1 1
* n
zZ -7 n|. n n|_n
= - _(H JUds) -(H"|V'd ,
121 (oJ g, ~ oJ oy

where 1 denotes the time step. Next, we perform the second stage to arrive at the
new time level.

n+l _ *

U U n+l * % % & * * n+l * * o *
- =-U U,-V Uy -Q U°+ ftV —gZy, +AU, + JLUyy+H2 Uoo
n+l _ *

vV -V L n+l_ * *_ ¥ * n+l * * TR

—-—1/21:—— -Uv -V Vy -Q VO_ fu - gzoy +AV , + kvyy*’? VOU

1 1
n+l 1 n+l | n+l n+l |_n+l
o™ - {_ (o) ((n OIU o), +(H ojv d0),,)

n

1 1
+ (H“”IU““do) + (Hn+len+ldo) } (.1b)
o 0x c Oy
1 1
+1 *
2" -z __ ™ JUn+1dc) _ @ JV”ldo) .
121 0 0x 4

In the Appendix a detailed description of the space discretization is given. When
applied to two-dimensional problems, this method is very similar to the method
developed in [11].

In [3] it has been proved that method (3.1) is unconditionally stable for a model in
which the advective terms and the Coriolis term have been omitted. For a model
including the Coriolis term and the advective terms, method (3.1) has the same good
stability properties.

Method (3.1) is first-order accurate in time. To obtain second-order accuracy, the
Coriolis term, the mixed advective terms and the bottom friction term should be
adjusted. However, a second-order treatment of these terms would decrease the
computational efficiency of our time splitting method dramatically. This will be
explained in the next section. It should be noted that the diffusion terms and the
terms describing the propagation of the surface waves are second-order accurate in
time.

Almost all spatial derivatives are discretized in a symmetric and therefore non-
dissipative way. However, at the first stage, the mixed advective terms vowady and
udv/ox are approximated by an upwind discretization. This approach has been
developed in [9]. In the numerical experiments the resulting dissipation is just
enough to suppress spurious oscillations. The dissipation, which is of fourth-order
magnitude, does not lead to an undesirable damping of the solution.

At the first stage our time splitting method requires the successive solution of
two large, non-symmetric, linear systems (first a system for the U-component, next
a system for the V-component). At the second stage a nonlinear system has to be
solved. These systems and the iteration methods for its solution will be discussed in
the next section.

7.4. SOLVING THE SYSTEMS
The structure of the systems at both stages determines the efficiency of our
unconditionally stable method. At the first stage the Q- and Z-component can be

87

computed straightforwardly. For the U- and V-component, the method requires the
successive solution of two non-symmetric, linear systems of dimension nx-ny-ns.
The system for the U-component may be written in the form

LA | n__* n__* n__* * * m * _on
U +rt (UL +V U +Q Uo-wﬂ-wyy--ﬂ—zuoo} =B", @1
where B" contains the terms at t=nt. For the V-component, we have a similar
system. The matrix at the left-hand side of system (4.1) contains nine non-zero
diagonals. Seven diagonals are due to the discretizations in the horizontal direction
and three are due to the vertical derivatives, with one overlapping (main) diagonal.

Some of these diagonals contain zero elements. System (4.1) may be written as
1 1 * n
(I+3tDp+3tD,)U =B , 4.1

where the matrix D, represents the discretizations in the vertical direction and the
contribution on the main diagonal of the discretizations in the horizontal direction.
The remaining (six) diagonals resulting from the horizontal derivatives are
represented by the matrix Dy,. '

For the solution of system (4.1"), we apply the preconditioned Jacobi-type method

Us1 = U+ o (T+ 50,) {B? - (1+ kD, + 54D,) U}, k=12,.. (42)

where o is alrelaxation parameter and Uy denotes the k-th iterate with U0=Un. The
term o (I + 51D,)1 represents the preconditioning. Method (4.2) can be written
in the more efficient form

-1
Uk+1=Uk+°‘{(I+lETDv) (Bz-lﬂDhUk)—Uk}- 4.2)

At each iteration step the implicit operator (I + 1;‘l:Dv)'1 requires the solution of
nx-ny tridiagonal systems of dimension ns. For its solution we apply the Gaussian
Elimination (double sweep) method, which requires a minimal number of
operations. Since this is a recursive method, it is an unattractive method on vector
and parallel computers. However, we make use of the fact that a large number of
tridiagonal systems of the same dimension has to be solved. Therefore, the systems
can be solved efficiently in a vector-parallel mode [2].

For the relaxation parameter o we choose either

1
p(I+ l;ch) '

a=1 or a=

where p(-) denotes the spectral radius. The Jacobi-type method (4.2") starts with
a=1. As soon as the residue increases, we switch to the second choice. For this
choice the iteration process always converges as opposed to the choice a=1. If the
method converges for a=1, then this convergence is faster than for

a=1/(p(1+ 51Dy)).

88

At the second stage the equations for the U- and V-component are linear and are
not coupled with each other They are only coupled with the equation for the Q- and
Z-component. If U1, v*1 and Z"*1 have been computed, then the values for
the Q-component are computed Owing to our choice of the time splitting, the
components U™ and v™*! can be eliminated and a system merely in the
unknown Z™*! results. In order to accomplish such an elimination, the Coriolis
term, the mixed advective terms and the bottom friction term have been treated first-
order accurate in time. A second-order treatment of these terms would have resulted
in a much more complicated system. In that case, the U- and V-component can not
be eliminated easily.

We will now describe the system for each cell (i,j) of component Z. This system
reads

2
n+l T°g =n+l n+l n+1 —n+1 n+l n+1

12g { ~n+1 n+l n+1 _R (g n+1_ n+1)}

- Z. Z
4(Ay)2 Lj+l ~ 1,j-1 11 1
n+1/2 i=1,...,nx
= Bl,j Y fOI' j=10- ,ny 'Y

where

n+1 { (Zn+1 iHilJ)"' (D +D)}

*k Ack/(1+ 5T (Un+1/2 l,j,k) »

n+1 n+1 +1
{ (Z ?J+1)+2(D +D1+1_])}

ns
* Bao [(1ebe(up™y).

System (4.3) is a nonlinear equation, because R; ; ,j contains the component Z; ;.
This system may be written in the form

n+1 n+ln

A(Z) y/)
where Bn+1/ contains the terms at t=(n+1/2)t. For its linearization we introduce
the iteration process

A (z(m)) Zm+1) _ pn+l/2 , @.4)

89

where Z(O)-Z““LI/2 and the upper index (m) denotes the iteration index. The matrix
A(Z m)) is symmetric. For the solution of system (4.4) we developed a conjugate
gradient method in which a preconditioner based on smoothing is used [3]. When
this system has been solved, the values for the U- and V-component can be
computed straightforwardly.

It should be noted that the water elevation is the only unknown in system (4.4).
This system is for both two-dimensional and three-dimensional models of the same
(two-dimensional) structure and thus of the same computational complexity.
Therefore, the time integration method (3.1) is even more efficient for three-
dimensional problems than for two-dimensional ones.

7.5. NUMERICAL EXPERIMENTS

In order to examine its accuracy and computational efficiency, method (3.1) has been
applied to a problem with a closed basin and on a river problem in which a jetty has
been situated. In the first experiment we have used a closed rectangular basin of
400 km by 800 km w1th a constant depth of 65 m. The other parameters are
f=1.22¢-4 s-l, 2=9.81 m/s2, p=1025 kg/m3, $=90° , C=70 m1/2/s, A=0.0 m2/s and
u=0.065 m2/s. This experiment has also been carried out in [1,6]. The water
is initially at rest and the motion in the closed basin is generated by a constant
wind stress of 1.5 kg/ms2. The computations have been performed on a grid with
nx=10, ny=18 and ns=11, which implies horizontal mesh sizes of 400/9 km
and 800/17 km, respectively. In the vertical direction we have chosen for
every k: Ac=1/ns. We have integrated over a period of 100 hours.

At the end of the integration process the numerical solution has been compared
with a reference solution computed on the same grid with T=30 s. The reference
solution may be considered as an almost exact solution of our semi-discretized
system. Thus, the accuracy results listed in this section represent the error due to the
time integration.

The experiments have been carried out on an Alliant FX/4, which is a mini-
supercomputer having four vector processors. In all experiments we have used both
the vector optimization and the parallel optimization.

To represent the results we use the following notation:

ERR-- : maximal global error of either u, v or { at the end point T = 100 hours
COMP : computation time on the Alliant FX/4.

We require that the residue for the two iteration methods (v1z the Jacobi-type
method (4.2") and the CG method) drops below the tolerance 1073. By choosing this
value, we obtain a good compromise between the accuracy and the computational
costs. For this test problem the results are listed in Table 5.1.

In this experiment the maximal values for u, v and { are about 0.2 m/s, 0.4 m/s
and 1.0 m, respectively. In Table 5.1 no accuracy results have been listed for the
vertical velocity w, because these velocities are are small. In this experiment the
influence of the advective terms is very limited. Therefore, an explicit treatment of
these terms (i.e., only one iteration of the Jacobi-type method (4.2")) is sufficient. It
should be noted that one iteration of this method is sufficient to obtain an implicit
treatment of the vertical diffusion term. Figures 2a-b show the vertical profiles of

90

the U- and V-component at the centre of the rectangular basin at T=100 h. At that
time the steady state has been reached for moderate values of the time step.
Table 5.1 clearly shows that this is not the case for T=7200 s at T=100 h. If we
integrate over a longer period with a time step of 7200 s, then the solution becomes
stationary too. The numerical results are in agreement with the results in [1,6].

T ERR-u ERR-v ERR-({ COMP
() (m/s) (m/s) (m) (s)
360 0.004 0.002 0.005 147.3
1800 0.006 0.005 0.009 30.6
3600 0.009 0.006 0.013 15.5
6000 0.011 0.022 0.035 10.0
7200 0.029 0.031 0.135 8.7

Table 5.1. Test problem with a rectangular basin.

For several numerical methods developed for the 3D shallow water equations, the
time step is restricted by the CFL condition T < A / V 2gh, where A=min(Ax,Ay).
Examples of such conditionally stable methods are described in [1, 2, 6 and 7]. In
our experiment this results in a maximally stable time step of about 1245 s.
However, in [1,6] the time step was significantly below the CFL condition. In [6] a
time step of 360 s was used. The method in [1] was carried out with 1=720 s for the
advective terms and with t=180 s for the terms describing the propagation of the
surface waves. For method (3.1) much larger time steps are possible. Moreover,
even for a large time step of 3600 s, the relative errors are still very small.

-.30 -.48

1

0.

0.15

J

Figure 2a. The vertical U-profile.

-.30

L

-.18

0. 0.15

Figure 2b. The vertical V-profile.

91

As mentioned earlier, the advective terms do not play an important role in this
experiment. However, in the second experiment these terms play a crucial role. We
examine a flow past a jetty [9]. A rectangular domain with a horizontal dimension
of 1500 m by 300 m and a constant depth of 25 m has been used. At the left open
boundary, we have prescribed an inflow condition of u=0.5 m/s and at the right
boundary a uniform water level {=0 m has been given. For a detailed description of
the initial conditions and boundary conditions we refer to [9]. The horizontal mesh
sizes are 25 m.

Near the boundaries, the discretization of the advective terms have been chosen in
a special way. Especially at inflow, the discretization of the advective terms may
cause instabilities. To obtain a stable boundary treatment, we have applied the
discretization developed in [9]. At the open boundaries, a stabilizing effect is often
experienced when Riemann invariants are prescribed. In our experiment this would
have resulted into the inflow condition

u+2Vgh=05+2/gh, ,

where the boundary value for h is denoted by h,,. Since the Riemann invariants (i.e.,
u + 2V gh) are in general not known, we have used the following variant [9]:

u+e%(u+2@)=o.5, .1)

with € some parameter. The time derivative of the Riemann invariant in (5.1) has
been discretized in a straightforward manner. For sufficiently small values of €, the
boundary condition (5.1) is only a small perturbation of the original inflow
condition u=0.5 m/s. The time-derivative of the Riemann invariant in (5.1) has been
introduced to obtain a weakly reflective boundary condition for the short wave
components. These components mainly originate from the initial values and the
eigenfrequencies of the model. Without Riemann invariants, these components may
disturb the solution for a long time, because there is, in general, little dissipation in
the model.

In this experiment we have varied the number of grid layers in the vertical
direction. At first, we have only used one vertical grid layer. In this case, a
comparison with the results in [9] is possible. Various flow patterns are shown in
Figure 3. One clearly sees the development of eddies past the jetty. After three
hours, the solution is almost stationary. The numerical results are in agreement
with the results in [9].

The discretization of the advective terms, which was developed in [9], is very
important in this experiment. Both the special discretization near the boundaries and
the introduction of some dissipation by the upwind discretization of some advective
terms are necessary in order to obtain stable results when a large number of time
steps is performed. For example, a central discretization of the advective terms
yields instabilities.

We have also computed three-dimensional velocity profiles (e.g., with ns=5). The
results are again in agreement with the reference solution. For realistic time steps
the Jacobi-type method (4.2") requires less than ten iterations. We have observed that

92

the number of iterations hardly depends on the number of grid layers in the vertical
direction and also hardly depends on the value of the vertical diffusion coefficient.

In the experiments we have used both the vector and the parallel optimization of
the Alliant FX/4. For our integration method (3.1) the computation time reduces by
about a factor of three due to the vectorization, and by an additional factor of three
due to the parallel optimization. This shows that this method can be implemented
efficiently on vector and parallel computers. In [5] the computational efficiency of
this method was demonstrated on the CRAY Y-MP4/464. On four processors we
obtained a performance of more than 500 Mflops.

REFERENCES

1.

10.

11.

A.M. DAVIES, Application of the Galerkin methods to the formulation of a
three dimensional hydrodynamic nonlinear hydrodynamic sea model, Appl.
Math. Modelling, 4, 245-256 (1980).

E.D. DE GOEDE, ‘A computational model for the three-dimensional shallow
water flows on the ALLIANT FX/4, Supercomputer, 32, 43-49 (1988).

E.D. DE GOEDE, A time splitting method for the three-dimensional shallow
water equations, Int. J. Numer. Meth. in Fluids, 13, 519-534 (1991).

E.D. DE GOEDE, Numerical methods for the 3D shallow water equations on
vector and parallel computers, Appl. Numer. Math., to appear.

E.D. DE GOEDE, 3D shallow water model on the CRAY Y-MP4/464,
Proceedings of the 6th Int. Workshop on the Use of Supercomputers in
Theoretical Science, Antwerp, 107-114 (1991).

R.W. LARDNER and H.M. CEKIRGE, A new algorithm for three-dimensional
tidal and storm surge computations, Appl. Math. Modelling, 12,
471-481 (1988).

J.J. LEENDERTSE, Aspects of a computational model for long period water wave
propagation, Memorandum RM-5294-PR, Rand Corp., Santa Monica,
California, 1967.

N.A. PHILLIPS, A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184-194 (1957).

G.S. STELLING, On the construction of computational methods for shallow
water flow problems, Ph.D. Thesis, Delft University, 1983.

TRISULA, A multi-dimensional flow and water-quality simulation system,
Delft Hydraulics, The Netherlands, 1989.

P. WILDERS, Th.L.VAN STDN, G.S. STELLING and G.A. FOKKEMA, A fully
implicit splitting method for accurate tidal computations, Int. J. Numer. Meth.
in Eng., 26, 2707-2721 (1988).

APPENDIX: FINITE DIFFERENCES
The operators used in this paper are of the following form:

Uepr oo =T 4 -
_ i+1,j,k i-1,1,k
{uu, Jijk = Uik] 3l

2Ax

Lo v =T 5 2
S -1,
(Zoy)= . - :

ns ns

1
((H [udo)_};;=(iy 2 80U i - ;Y 80Uy 500 / Ax
0 k=1

k=1
(UV dijk =

Uik (3Vijx = 4Vinjk * Viajx)/ (24x)

Tijk (-3Vijx*+ 4Vien ik~ Viezjx) / 24%)

Vietik— Yitjx

2Ax

(U¥ bk =Tk

(Uy,)y = Uiit,jk = 2Uiix * Uik ,
)y (Ax)2

where

Uik = 025 (Uj50 + Uieg e + Uijer i + Ui jar k)

Hl,_] = 0.5 (Hl,_] + Hl,]-l) .

if ﬁi,j,k >0

if ﬁi‘j‘k <0

93

The operators in the y-direction are defined similarly. For the discretizations in the

vertical direction we define

AU i xe1 ¥ A0 Uik

1 ~
[QUo}i' =_{ Q: -
Jik i,j,k+1
AO'k Ack+1 o Ack

~ Ao Ui+ A0 U; 60

— Q s
Lk Ao, + Ao,

}

oo lijx =

(U 8 { Pir1 Uiiweer = Uiin)

(Acrk_1 + 2Ack + Ack+1)

Ack+1 + Aok

M Ui = Yi 1) ,
Aoy + Aoy 4

where

ﬁlv] =0.5 (Ql,_] + Q-_l’j) .

1

Similarly, we define the operators for the V-component.

Figure 3. The flow patterns for the river problem with ns=1.

30 min.

95

Chapter 8

A Three-Dimensional Shallow Water Model
on the CRAY Y-MP4/464

E.D. de Goede
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009AB Amsterdam, The Netherlands

Simulation of three-dimensional shallow water flows requires the use of
fast computers, along with numerical methods that fully exploit the
potential of vector and parallel facilities of these computers. In this
paper we discuss the implementation of such a numerical method on the
CRAY Y-MP4/464, which has recently been installed at the Academic
Computing Services Amsterdam (SARA).

8.1. INTRODUCTION

In recent years, numerical modeling has become an important tool for computing
shallow water models. For example, flows in rivers, estuaries and seas can be
described by these numerical models. Whereas in the past it was necessary to use
scale models, it is now possible to solve the three-dimensional shallow water
equations using computers. The application of three-dimensional models requires a
great computational effort, especially when a high resolution is needed. Therefore, it
is necessary to construct numerical methods that are not only robust and accurate,
but also efficient on vector and parallel computers. To obtain a computationally
efficient method, the VECPARCOMP project has been started. This is a joint
project of Rijkswaterstaat (Dutch Water Control and Public Works department) and
CWI (Centre for Mathematics and Computer Science).

In [3] we described an unconditionally stable method for the three-dimensional
shallow water equations. In that paper it was reported that this method can be
implemented efficiently on an Alliant FX/4 (a shared memory mini-supercomputer
with four vector processors). In this paper we will describe the implementation of
this method on a CRAY Y-MP. In December 1990 a CRAY Y-MP4/464 has been
installed at the Academic Computing Services Amsterdam (SARA). Like the
Alliant FX/4, this computer is a shared memory system with four vector
processors. However, the CRAY Y-MP has a much smaller clock cycle time (6 ns
versus 170 ns for the Alliant FX/4). The CRAY Y-MP4/464 replaces a (Control
Data Corporation) CYBER 205 installed in 1983.

Both vectorization and parallelism will be examined on the CRAY Y-MP4/464.
We will implement several types of parallelism, viz., macrotasking, microtasking
and autotasking. A comparison will be made with results on the Alliant FX/4.
Since the code was written in the ANSI FORTRAN 77 programming language, the
same code was used for both computers.

96

8.2. MATHEMATICAL MODEL
A mathematical model for the three-dimensional shallow water equations is
described by

du__du_ du du 9 g (%, 9%u) 139 ¢ du 1
U oy et Bt (ax2+ay2)+h230(” ao) D

ov__9v_ ov 9Iv ag 02v 92v\. 1 9 (, 9V 29
B e sy A (35)+h280(uac) @2

1 1 1
—% { —(1-0) (— (h J‘udc) - —-(h vdc)) + —(h Iudc) + —(h vdo) } 2.3)

1 1

o6__ 9 9
T a—x-(h0 udo) — 5 (h0 vdo) . 2.4)

The equations (2.1)-(2.3) are the momentum equations and (2.4) denotes the
continuity equation. In the vertical, the domain is bounded by the bottom
topography and the time-dependent water elevation. To ensure that the three-
dimensional domain is also constant in the vertical direction, system (2.1)-(2.4) has
been transformed in the vertical into depth-following (sigma) co-ordinates.

In the experiments we will examine a three-dimensional flow past a jetty. The
geometry and a velocity pattern are shown in Figure 1. The rectangular basin has a
horizontal dimension of 1500 m by 300 m and a constant depth of 25 m. At the left
boundary, we prescribe an inflow condition of u=0.5 m/s and at the right boundary a
uniform water level {=0 m is given. For a detailed description of the initial
conditions and boundary conditions we refer to [3,6].

To obtain a discrete system representing (2.1)-(2.4), the equations are discretized
in space and time. First we apply a finite difference space discretization on a spatial
grid that is staggered in both the horizontal and the vertical direction. The
computational domain is covered by an nx-ny-ns rectangular grid. On this grid the
spatial derivatives are replaced by second-order finite differences, which leads to a
semi-discretized system of dimension nx-ny-(3ns+1).

The time discretization of this semi-discrete system is performed by the numerical
method developed in [3]. Our time splitting method is unconditionally stable and
consists of two stages. At both stages a system of equations has to be solved. The
structure of these systems determines the efficiency of the numerical method. To
solve these systems, a Jacobi-type iteration method is used at the first stage,
whereas at the second stage a conjugate gradient method is used. The time splitting
has been chosen in such a way that in the horizontal direction the computations are
independent of each other. For example, the Jacobi-type iteration method requires
the solution of nx-ny independent tridiagonal systems, all of dimension ns. In [3]
it is reported that this method can be implemented efficiently on an Alliant FX/4.

97

8.3. IMPLEMENTATION
We now discuss the implementation of this time splitting method on the
CRAY Y-MP4/464. A DO-loop in our code may be of the form

DO 100 K=2,NS
DO 100 J=1,NY
DO 100 I=1,NX
100 AQJK)=A®JK)+AlJK-1)* B(K)

In this example, the I- and J-loop do not show any dependencies, but the K-loop
does. The loops with indices I and J are collapsed into a single DO-loop to obtain a
longer vector length. This yields

DO 100 K=2,NS
J=1
DO 100 I=1,NX:NY 3.1

100 A(JK)=AIJK)+AIJK-1)* B(K)

On the CRAY Y-MP4/464, loop collapsing of simple operations is performed
automatically by the compiler. However, for more complicated DO-loops this is not
the case. Therefore, the code was collapsed by hand, instead of relying on the
compiler.

ALLIANT FX/4 CRAY Y-MP4/64

Mflops speed-up | Mflops speed-up

no opt. 0.2 3.2
> 3 > 5

scalar opt. 0.7 15.0
3 > 10

vector opt. 2.0 148.9

Table 4.1. Mflops rates and speed-ups.

8.4. SCALAR AND VECTOR PERFORMANCE

In Table 4.1 we list the scalar and vector performance of our code on the
CRAY Y-MP4/464 and on the Alliant FX/4. The speed-up due to scalar
optimization and vectorization is satisfactory on both computers. Both compilers
have no problems with vectorizing the DO-loops. It should be noted that Table 4.1
contains results for the complete code. The code not only consists of vectorizable
instructions, but there are also non-vectorizable instructions like subroutine calls,

98

which decrease the performance. For the vectorized code, the computation time on
the CRAY Y-MP4/464 is seventy-five times smaller than for the Alliant FX/4.
Notice that the ratio of the clock cycle times is only twenty-eight. On the
Alliant FX/4 we obtain 15% of the peak performance, whereas on
CRAY Y-MP4/464 we obtain 40%. Taking into account the performance of
elementary operations on both computers (see [4,5]), we are satisfied with the
performance of our code. In [4] it is also reported that the Alliant FX/4 performs
considerably below its maximum level (<40% of the theoretical maximum only).
This is due to the insufficient bandwidth from memory to the functional units
and/or from cache to the functional units.

8.5. PARALLELISM

On the CRAY Y-MP4/464, parallel processing can be accomplished by three
techniques: macrotasking, microtasking and autotasking. Macrotasking allows a
program to be partitioned into several tasks at the subroutine level. The programmer
inserts library routine calls into the code to initiate and synchronize tasks that can
be executed in parallel. Macrotasking works best when the amount of work to be
partitioned over the processors is large. Microtasking, however, allows parallelism
at the DO-loop level. The programmer identifies parallel regions in the code and
inserts compiler directives accordingly. Then, at execution, the DO-loop iterations
are spread over the processors, which is called strip-mining. Autotasking is a
technique that shares the advantages of microtasking, while adding several new
advantages. It identifies and exploits parallel regions in a program through the use
of a preprocessor. This process may be completely automatic. However, the help of
the programmer may be useful since not all types of parallelism can be detected by
the compiler.

When applying macrotasking to an existing code, a significant amount of code
restructuring may be necessary, which can introduce new errors. It requires a careful
partitioning in equal-sized parallel tasks to obtain a good load balancing. On the
other hand, it is relatively easy to implement microtasking, which yields an
automatic load balancing. The success of the microtasking strategy depends on the
synchronization overhead.

As mentioned earlier, the DO-loops in our code have been collapsed explicitly
(see (3.1)). This maximizes the vector efficiency while it allows parallelism by the
strip-mining technique. In our first experiment with parallelism on the
CRAY Y-MP4/464 we implemented autotasking. We hoped that strip-mining of
the innermost DO-loops was exploited automatically. However, for our code this is
not the case. Thus, we did not obtain any speed-up by autotasking. It should be
mentioned that on the Alliant FX/4 the collapsed DO-loops are automatically
performed in a vector-parallel mode.

In the second experiment we applied the microtasking technique. By inserting the
CMIC$ DO GLOBAL LONG VECTOR directive the innermost DO-loops were
strip-mined at execution. However, we obtained incorrect numerical results. Using
the microtasking directives, it appears that parallel processing always starts at the
first executable statement of the subroutine and always ends at the last executable
statement of the subroutine. Consequently, not only the microtasked DO-loop, but
the complete subroutine was performed in parallel. To circumvent this unpleasant

99

microtasking property, we implemented autotasking directives instead of
microtasking directives. Thus, we used autotasking but not in an automatic way.
With the CMIC$ DO ALL VECTOR AUTOSCOPE autotasking directive we
obtained a strip-mining of the innermost DO-loops, while the numerical results
remained correct.

8.6. NUMERICAL RESULTS

In this section we present the results for two different test problems. In the first
experiment the computations have been performed on a grid with nx=61, ny=13 and
ns=10. In this case, we have a vector length of about 800. In the second experiment
we have used a grid with 121, 49 and 10 grid points in the three spatial directions,
respectively, yielding a vector length of about 6000. The main reason for the second
experiment is to investigate the performance on the CRAY Y-MP4/464 for other
vector lengths. In order to prevent many more iterations required by the iteration
methods, we have increased in the latter experiment the dimensions of the geometry
with a factor four. Consequently, in both experiments we obtain the same mesh
sizes. In Table 6.1 we list the results for the experiments in which we introduced
parallelism by strip-mining of the innermost DO-loops.

problem size 61-13-10 121-49-10
vector code 176 s 1374 s
parallel code 116s 53.0s
speed-up 1.5 2.6

Table 6.1. Computation times for the CRAY Y-MP4 by strip-mining.

For the smallest test problem, we obtain a speed-up of 1.5 on four processors,
which is disappointing. For the second and largest test problem, the speed-up of 2.6
is still small despite of its large vector length. Thus, especially for small vector
lengths the synchronization overhead on the CRAY Y-MP4/464 appears to be
considerable.

To obtain a higher efficiency on the CRAY Y-MP4/464, we have implemented a
domain decomposition technique. In the x-direction our domain has been split into
four subdomains. With the CMIC$ DO PARALLEL autotasking directive the
computations for the four subdomains have been performed in parallel. We have
applied autotasking instead of macrotasking, because it requires less programming
effort while the computation times are comparable.

A decomposition in the x-direction has been chosen to minimize the restructuring
of the code. A slightly more complicated decomposition would have been a
decomposition of both the x- and y-direction into two parts, as used in [1].

100

Furthermore, we mention that for a spectral method a domain decomposition in the
vertical direction has been applied in [2].

In our opinion, a domain decomposition in the horizontal direction is a good
choice for the numerical method used in this paper, because of the many independent
computations in the horizontal direction. In time-consuming 3D shallow water
models, the value of nx-ny is very large, whereas the value of ns may still be rather
small. Moreover, the water elevation and the vertical velocity @ are computed from
vertical integrals (see (2.3)-(2.4)) and implicit relations, arising from an implicit
treatment of the vertical diffusion term, have to be solved [3]. Therefore, it seems
not a good idea to apply a domain decomposition in the vertical direction. This
would lead to a lot of communication between the processors.

In Table 6.2 we list for our two test problems the results for the domain
decomposition approach. We now have vector lengths of 200 and 1500,
respectively, which is one fourth of the vector lengths used in the former
experiment. The overall speed-up is defined in the following way:

time for the original vectorized code

time for the parallel code with domain decomposition

The computation time for the original vectorized code is listed in Table 6.1, whereas
computation time for the domain decomposition technique is presented in Table 6.2.

problem size 61:13-10 121-49-10
vector code 20.7 s 1412 s
parallel code 56s 38.1s
decomposition speed-up 3.7 3.7
overall speed-up 3.1 3.6

Table 6.2. Computation times for the CRAY Y-MP4 by domain decomposition.

For both test problems, we now obtain a speed-up of 3.7 on four processors.
Because of the synchronization overhead we do not obtain an optimum speed-up of
four. The difference in overall and domain decomposition speed-up is due to the fact
that vector lengths are now a factor of four smaller. In the case of very large vector
lengths, this hardly yields a decrease in performance. For the smallest test problem,
the reduction is about 20%. The results in Table 6.2 clearly show that the domain
decomposition approach gives rise to larger speed-ups than the strip-mining
technique.

101

8.7. CONCLUSIONS

In this paper we have investigated the performance of a numerical method for the
three-dimensional shallow water equations on the CRAY Y-MP4/464. On one
processor the highly vectorizable code yields a performance of about 150 Mflops,
which is no fewer than seventy-five times faster than on the Alliant FX/4. To
exploit parallelism, we have applied a domain decomposition approach, since in
general the strip-mining of the innermost DO loops does not give satisfactory
speed-ups, even in the case of large vector lengths.

The experiments show that the CRAY Y-MP4/464 is very suitable for the time-
consuming simulation of three-dimensional shallow water flows. With such
supercomputers it is possible to simulate realistic models, e.g., including equations
for salinity, temperature and turbulence, with a fine resolution. The vector
performance is very impressive. When the CRAY Y-MP4/464 is not heavily
loaded, an acceptable speed-up due to parallelism can be obtained.

Figure 1. Flow past a jetty.

REFERENCES

1. P. ANDRICH, G. MADEC AND D. L'HOSTIS, Performance evaluation for an ocean
general circulation model: vectorization and multitasking, Proceedings of the
International Conference on Supercomputing, St. Malo, 295-303 (1988).

2. AM. DAVIES, R.B. GRZONKA AND M. O'NEILL, Development and application
of 3D shallow sea models on the CRAY computer, Proceedings of the Sth
International Symposium of Science and Engineering on Supercomputers,
London, 323-334 (1990).

3. E.D. DE GOEDE, A time splitting method for the three-dimensional shallow
water equations, Int. J. Numer. Meth. in Fluids, 13, 519-534 (1991).

4. J.M. VAN KATS AND AJ. VAN DER STEEN, Benchmarktests on an Alliant FX/4,
a Convex C-1, an FPS 64/60 and an SCS-40, report TR-24, ACCU, Utrecht,
1987.

102

5. AJ. VAN DER STEEN AND R.J. VAN DER PAS, A family portrait: Benchmarktests
on a CRAY Y-MP and a CRAY-2S, report TR-30, ACCU, Utrecht, 1989.

6. G.S. STELLING, On the construction of computational methods for shallow
water flow problems, Ph.D. Thesis, Delft University, 1983.

103

Chapter 9

A Numerical Model of the
Northwest European Continental Shelf
on the CRAY Y-MP2E

E.D. de Goede
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009AB Amsterdam, The Netherlands

A numerical model for the shallow water equations in polar co-ordinates
is applied to the northwest European Continental Shelf. Both a two-
dimensional and a three-dimensional model of the Continental Shelf are
investigated. A simulation is carried out for the period of 9 to 12
February 1989.

The numerical method used in this paper has been described extensively
in [9]. This time splitting method consists of two stages and is
unconditionally stable. Moreover, it can fully exploit vector and
parallel facilities of supercomputers [10]. Three-dimensional shallow
water models require a great computational effort and it is therefore
necessary to use such fast computers.

In [15] the same Continental Shelf problem has been examined. The
numerical results are in good agreement with each other. It appears that
the amplitude and phase errors are small.

The numerical experiments are carried out on the one-processor
CRAY Y-MP2E of ICIM (Informatics Centre for Civil Engineering and
Environment). This supercomputer has recently been installed in the
Netherlands for the simulation of large scale models of rivers and seas.

9.1. INTRODUCTION

In the past, various two-dimensional numerical models have been developed for the
northwest European Continental Shelf (e.g., in [3, 6, 12, 19]). Their main goal is
the accurate prediction of the water levels. Presently, a two-dimensional model of
the European Continental Shelf is being used for storm surge predictions along the
Dutch coast. This model is operational at KNMI (Royal Dutch Meteorological
Institute). Using wind and atmospheric pressure data from a numerical model of the
atmosphere, the water elevations in the North Sea and especially along the Dutch
coast are computed four times a day. Since these models are two-dimensional, they
cannot be used to examine the vertical structure of the tidal currents.

In recent years, there has been a shift towards three-dimensional models to obtain
more detailed information about the tidal currents. Three-dimensional models for the
Continental Shelf can be found in e.g., [1,4,16]. With such three-dimensional
models the interaction between wind and tides can be computed more accurately.

104

In this paper the fully nonlinear three-dimensional shallow water equations in
polar co-ordinates are used. These hydrodynamical equations are solved by the
numerical method described in [9]. This two-stage time splitting method is
unconditionally stable. For the discretization in space, finite differences are used in
both the horizontal and the vertical direction.

In [10] it was reported that this time splitting method can be implemented
efficiently on a CRAY Y-MP4/464. In that paper a rectangular basin was
investigated. Here, we examine the accuracy and computational efficiency of our
method on an irregular domain. We use the geometry of the northwest European
Continental Shelf with mesh sizes of about 16 km (the so-called CSM16 model). A
simulation is carried out for the period of 9 to 12 February 1989. The input data
(geometry, boundary conditions, depth values and Chezy coefficients) were supplied
by the Tidal Waters Division of Rijkswaterstaat (Dutch Water Control and Public
Works Department). The meteorological input (i.e., wind and atmospheric pressure)
is neglected. Both a two-dimensional and a three-dimensional model are examined.
For the two-dimensional case the same experiment has been carried out in [15].

The numerical experiments are carried out on the CRAY Y-MP2E installed at
ICIM (Informatics Centre for Civil Engineering and Environment). Since May 1991
this supercomputer is used in the Netherlands for the simulation of estuarine, river
and sea models. This CRAY Y-MP2E has one (vector-)processor and a clock cycle
time of 6 ns. On this supercomputer the performance of our highly vectorizable
numerical method is about 140 Mflops (millions of floating point operations per
second), which is very satisfying. The four day simulation of the three-dimensional
model requires about 157 seconds. In [15] a similar experiment on a PC with a
80386 chip and a mathematical co-processor requires a computation time of about
12 hours.

9.2. MATHEMATICAL MODEL
For the northwest European Continental Shelf model the three-dimensional shallow
water equations are written in the form [4]

Ql=_La_u_L§i_ma—“+2(oesin(pv
ot Rcospdy R ¢
uvtang o 9L 1 9 / ou
+ — — e — — 2.1
R Rcos@ dy h2 oo (ﬂg) @
v ___u v v v ,9v -200,8inQ u
ot Rcospdy R 09
2
t 0
R T s 22)
R R 99 h*do | do
1 1
@ = %{ % (1o + —1— 2 (1 [udoy + —L— 2 vdo cosp) } 2.3)
ot Rcos@p dy, - Rcos® 0@ o

105

1 1
aC 1 0 1 0
— = - ————(h |udo) - —(h |vdo coseg) . 24
ot Rcosg dy (Oj i) Rcosg ¢ (Ojv ?) sl

Since the Continental Shelf covers a wide area (see Figure 1), the equations have
been transformed from Cartesian into polar co-ordinates. The equations (2.1)-(2.3)
are the momentum equations and (2.4) denotes the continuity equation. In our model
the accelerations in the vertical direction have been neglected, because they are very
small, particularly when compared with the acceleration due to gravity. This is
known as the so-called shallow water approximation.

In the vertical, the domain is bounded by the bottom topography and the time-
dependent water elevation. To ensure that the three-dimensional domain is constant
in the vertical direction, system (2.1)-(2.4) has been transformed into the constant
interval [0,1] by the sigma transformation [17]

0=C_Z, where -d<z<{ and 1>62>0. 2.5)
d+(

The relation between the untransformed (physical) vertical velocity w and the
transformed velocity is given by [4,20]

X oo, _u K dh v K o

w=-0h+—=2>-0—+ —— o

ot ot Rcosp oy a9y R 0¢ I

which leads to [4]
1 1 1
w= ——1 9 ([udo) - L2 (1 [vdo) +D120C jvdc
Rcos dy, R 9¢ P E &
+_ll__ %_o’a_h).'.v_(.a.g_o'_ai)

Rcosp dy dx R 09 9¢
The boundary conditions at the sea surface (¢ = 0) are given by

o(x,9,0,)=0, o =-h W cos(¢) and "l =- EWf sin(¢) .
oo o=0 P ag P

o=0
Similarly, at the bottom (¢ = 1) we have

du 8y [ZZ (&Y gvyq [z 7
o(x.e,1,)=0, (pa—c) =-h _CT ug+vy (ug) =-h ;37 ugtvy ,
=1 o=1

where uy and vy represent components of the velocity at some depth near the
bottom.

106

9.3. NUMERICAL DISCRETIZATION

To discretize system (2.1)-(2.4), we first apply a finite difference space discretization
on a spatial grid that is staggered in both the horizontal and the vertical direction.
Figure 2 shows the structure of the horizontal grid. The computational domain is
covered by an nx-ny-ns rectangular grid. On this grid the spatial derivatives are
replaced by second-order finite differences, which results into a semi-discretized
system of dimension nx-ny-(3ns+1). Owing to the sigma transformation (2.5), we
have a constant number of grid layers in the vertical direction.

i,j.k

15

Figure 2. The staggered grid in the horizontal direction.

We now briefly describe the time integration method for the semi-discrete system.
For a detailed description we refer to [9]. The first stage of the two-stage time
splitting method requires the successive solution of two non-symmetric, linear
systems of dimension nx-ny-ns (for the u- and v-component, respectively). This
system is solved by a Jacobi-type method, which offers the facility of both an
explicit and an implicit treatment of the advective terms. At the second stage a
nonlinear system has to be solved. A linearization process is introduced and the
resulting linear systems are solved by a preconditioned conjugate gradient method.

In [8] it has been proved that this method is unconditionally stable for a model in
which the advective terms and the Coriolis term have been omitted. For a model
including these terms, our method appears to have the same good stability
properties [9].

The time integration method is first-order accurate in time. It is possible to obtain
second-order accuracy by adjusting the discretization of the Coriolis term, the mixed
advective terms and the bottom friction term. However, such a second-order
treatment would decrease the computational efficiency dramatically. For the sake of
efficiency we therefore decided to only use a first-order discretization. It should be
noted that the diffusion terms and the terms describing the propagation of the surface
waves are second-order accurate in time.

Almost all spatial derivatives are discretized in a symmetric and therefore non-
dissipative way. However, following the approach of Stelling [18], at the first stage
the mixed advective terms vow/(Rog) and udv/(Rcos@ dx) are approximated by an

107

upwind discretization. The resulting dissipation is of fourth-order magnitude and
does on the one hand not lead to an undesirable damping of the solution and is on
the other hand just enough to suppress spurious oscillations.

9.4. IMPLEMENTATION ON VECTOR COMPUTERS

It is well-known that long vectors are crucial for an efficient use of vector
computers. The time splitting method discussed in the previous section has been
constructed in such a way that in the horizontal direction the computations are
independent of each other [9]. For example, at the first stage the Jacobi-type method
requires the solution of nx-ny independent tridiagonal systems, all of dimension ns.
Thus, a long vector length of nx-ny is obtained by solving the tridiagonal systems
at the same time. In [10] the computational efficiency of this method has been
demonstrated on a CRAY Y-MP4/464 for a rectangular domain.

We now discuss the implementation on vector computers for irregular domains.
On such domains, we may perform the computations on a surrounding rectangular
domain, which contains both sea and land regions. At the end of each time step, the
values in the land regions should be neglected. Then, direct addressing can be used
which again leads to vector operations over the whole domain. On the other hand,
one may strip out the sea regions and only solve the shallow water equations in
these regions (i.e., indirect addressing). Although this leads to shorter vectors, no
additional operations are required in the land regions.

We have chosen the direct addressing approach, because on many computers the
performance for direct addressing is significantly higher. Obviously, as the land to
sea ratio increases, then the indirect addressing technique will become more
attractive. On such domains we propose a domain decomposition approach in the
horizontal to obtain a better ratio of sea to land regions.

9.5. APPLICATION

In this section we examine both a two-dimensional and a three-dimensional model
of the northwest European Continental Shelf. This model covers the same
computational grid as the CSM16 model (average mesh size of about 16 km) of
Rijkswaterstaat. The input data (geometry, boundary conditions, depth values and
Chezy coefficients) were supplied by the Tidal Waters Division of Rijkswaterstaat.
The boundaries of the model are parallel to the geographical co-ordinates 48° N,
62°20' N, 12° W and 13° E. Along the north, west and south (open) boundaries,
water elevations are prescribed (see Figure 1). A simulation is carried out for the
period of 9 to 12 February 1989.

For our model in polar co-ordinates (see (2.1)-(2.4)), we choose Ax=1/4° and
A@=1/6°, where Ay, and Ag denote the grid sizes in X- and @-direction, respectively.
This leads to a mesh size of 18553 m in the north-south direction and to mesh sizes
ranging from 12922 m to 18621 m in the east-west direction. The other parameters
are g=9.81 m/s2, Wg=0 kg/ms2 (thus, no wind), p=1025 kg/m3, we=7.27¢-5 51 and
R=6378000 m. The water is initially at rest and the motion on the Continental
Shelf is generated by the water elevations prescribed along the open boundaries.
These (weakly reflective) boundary conditions allow disturbances from the interior
of the model to propagate outwards.

108

The computations are performed on a grid with nx=100 and ny=87. In the vertical
direction we use various values for ns, ranging from 1 (thus, a two-dimensional
experiment) to 25. In the two-dimensional case, the number of active grid cells,
which represent sea regions, is about 5500.

In the three-dimensional case, it is necessary to specify how the vertical diffusion
coefficient | varies with i, ¢, ¢ and t. The horizontal variation of p over the North
Sea has been investigated in [13]. Using these results, an appropriate
parametrization of the vertical eddy viscosity is

1

1
L=c { (hjudo)2+(hJVd0)2 } ’
0

0

where c is some parameter. In our experiments we choose ¢=0.4 s, which is twice
the value used in [4].

The numerical experiments are carried out on the one-processor CRAY Y-MP2E
installed at ICIM. Since May 1991 this supercomputer is operational for the
simulation of large scale water models.

We also compare the numerical solution with a reference solution computed on
the same grid with a very small time step of 30 s. Thus, the difference between the
reference solution and numerical solution computed with a larger time step
represents the error due to the time integration.

The numerical results are examined in the following stations: Wick, Aberdeen,
Cromer, Innerdowsing, Dover, Le Havre, Dieppe, Boulogne, Calais, Oostende,
Zeebrugge, Hoek van Holland, IJmuiden, Den Helder and Borkum. These stations
have been used in [15] too.

To represent the results we define

ERROR : absolute amplitude error for the water elevation { averaged over the
time and over the stations
COMP : computation time on the CRAY Y-MP2E.

In Table 5.1 we list the amplitude errors for various values of the time step T.

Even for a large time step of T=1200 s the amplitude errors are small. In the three-
dimensional experiment the errors are about twice as large. The numerical results
show that the phase errors for our time integration method are also small.

In the case of T=1200 s, the three-dimensional experiment is only three times
more expensive than the two-dimensional one, whereas this factor is about six for
1=300 s. This is due to the fact that in the two-dimensional experiment a major part
of the computation time is involved in the computation of the water elevation,
which is particularly the case when large time steps are used. The computational
complexity of the water elevation is the same for both two-dimensional and three-
dimensional models [8]. In three-dimensional experiments the computation time for
the advective terms is proportional to the number of vertical grid layers. Therefore,
our numerical method is more efficient for three-dimensional models than for two-
dimensional ones.

109

T ns=1 ©2p) ns=10 @3p)
ERROR COMP ERROR COMP
() (m) (s) (m) (s
300 0.005 57.3 0.01 282.3
600 0.01 44.6 0.02 157.2
900 0.015 419 0.03 116.7
1200 0.02 428 0.04 102.2

Table 5.1. Amplitude errors and computation times.

In Figures 3.1 to 3.15 we show the water elevations for the aforementioned
stations during the fourth day of the simulation. Both two-dimensional (i.e., ns=1)
and three-dimensional results (with ns=10) are given. For the two-dimensional case,
the same experiment has been carried out in [15]. The numerical results are in good
agreement. In [15] the three-dimensional mathematical model contains an additional
equation for the turbulent energy. Owing to this different parametrization of the
vertical eddy viscosity, the numerical results can not be compared for the three-
dimensional case.

Some oscillations have been observed at the station Wick (see Figure 3.1). These
oscillations are due to the choice of the vertical diffusion coefficient. In the case of a
constant value for the vertical diffusion we have not observed such oscillations. If
we integrate over a longer period than four days, then these oscillations disappear.

Figures 3.1 to 3.15 show small differences between the two-dimensional and the
three-dimensional results. In the vertical direction we have observed only a small
variation of the tidal currents. At the bottom the velocities are approximately ten
percent smaller than at the water surface. For such test problems one may equally
well apply two-dimensional models instead of three-dimensional ones in order to
estimate the water elevations. However, in order to take into account more detailed
physics (e.g., near the sea bottom) three-dimensional models are essential [5,16].

In the experiments we have used both the scalar and the vector optimization of the
CRAY Y-MP2E. For our integration method the computation time reduces by
about a factor of five due to the scalar optimization, and by an additional factor of
nine due to the vectorization. This again shows this method can be implemented
efficiently on vector computers. The gain factor is more or less independent of the
number of layers in the vertical direction. The performance of our time splitting
method is approximately 140 Mflops. Owing to the direct addressing approach (see
Section 9.4), which introduces operations in land regions, the Mflops rate is
somewhat misleading. Therefore, we will consider computation times in the next
paragraphs.

The WAQUA system, which is a widely applied package in the Netherlands for
the simulation of (two-dimensional) river and sea flows, has been implemented on
vector—parallel computers too (see €.g., [19]). On the CRAY Y-MP2E a similar
(two-dimensional) Continental Shelf experiment as in this paper (with a time step

110

of 600 s) requires about 46 s and yields a performance of about 40 Mflops. This
computation time is comparable with our two-dimensional experiment. Since our
method requires about 3 to 5 times more operations [21] and has a higher
performance on the CRAY Y-MP2E of about 3.5 (viz,. 140 Mflops vs.
40 Mflops), this is in agreement with each other. It should be noted that our
numerical method has been developed for three-dimensional models and is more
efficient for three-dimensional than for two-dimensional models [8]. The four day
simulation of our three-dimensional model with a time step of 600 s requires about
157 secends. In [15] the three-dimensional Continental Shelf experiment on a PC
with a 80386 chip and a mathematical co-processor requires a computation time of
about 12 hours.

For our three-dimensional Continental Shelf experiment we could not find any
computation times on vector-parallel computers in the literature. To illustrate the
computational efficiency of our numerical method we therefore make a comparison
with the conditionally stable method described in [7]. This method is representative
for various numerical methods described in the literature (see e.g., [2,14]). We
remark that the first stage of the (unconditionally stable) method used in this paper
is very similar to the method in [7].

We now compare the computation times for the conditionally and the
unconditionally stable method. Since our unconditionally stable time splitting
method offers the facility of both an explicit and implicit treatment of the advective
terms, we list computation times for both cases. The numerical results for both
cases agree very well. Thus, the advective terms do not play an important role in
this experiment. In Table 5.2 the computation times are presented for various values
of ns.

time splitting time splitting conditionally
method method stable
method
(advection (advection
implicit) explicit) (=50)
ns=5 (t=600) 124.0 99.8 425.5
ns=10 (t=600) 218.2 157.2 836.2
ns=10 (t=1200) 131.2 101.7
ns=25 (t=600) 505.2 342.8 2056.0

Table 5.2. Computation times (in s).

111

The computation times clearly show that the unconditionally stable method is
much more efficient. In the case of ns=10, the ratio in computation time is about a
factor of eight. For the conditionally stable method the advective terms require a
great computational effort, which is due to the time step restriction.

In [2] a fractional step approach has been developed to allow larger time steps for
the advective terms. However, for time steps larger than 50 s we already encounter
stability problems for the conditionally stable method. Instabilities occur in the
relatively deep inlet near Glasgow. Thus, in practice, the limited stability of the
conditionally stable method prevents large time steps.

In conclusion, the unconditionally stable time splitting method used in this paper
turns out to be a robust and efficient method for the three-dimensional shallow water
equations (see also [10,11]).

REFERENCES

1. J.O. BACKHAUS AND D. HAINBUCHER, A finite difference general circulation
model for shelf seas and its application to low frequency variability on the
north European Shelf, Proceedings of three-dimensional models of marine and
estuarine dynamics (ed. J.C.J. Nihoul and B.M. Jamart), 221-244 (1987).

2. A.M. DAVIES, Application of the DuFort-Frankel and Saul'ev methods with
time splitting to the formulation of a three dimensional hydrodynamic sea
model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985).

3. AM. DAVIES, A numerical model of the North Sea and its use in choosing
locations for the deployment of off-shore tide gauges in the JONSDAP '76
Oceanographic experiment, Dtsch. Hydrogr. Z., 29, 11-24 (1976).

4. AM. DAVIES, A three-dimensional model of the northwest European
Continental Shelf, with application to the M, tide, J. Phys. Oceanogr., 16,
797-813 (1986).

5. AM. DAVIES, On the numerical solution of the turbulence energy equations for
wave and tidal flows, Int. J. Numer. Meth. in Fluids, 12, 17-41 (1991).

6. R.A. FLATCHER, A tidal model of the northwest European Continental Shelf,
Mem. Soc. R. Sci. Liége, 10, 141-164 (1976).

7. E.D. DE GOEDE, A computational model for the three-dimensional shallow
water flows on the Alliant FX/4, Supercomputer, 32, 43-49 (1988).

8. E.D. DE GOEDE, A time splitting method for the three-dimensional shallow
water equations, Int. J. Numer. Meth. in Fluids, 13, 519-534 (1991).

9. E.D. DE GOEDE, On the numerical treatment of the advective terms in 3D
shallow water models, Proceedings of the 2nd symposium on High
Performance Computing, Montpellier, 491-502 (1991).

10. E.D. DE GOEDE, 3D shallow water model on the CRAY Y-MP4/464,
Proceedings of the Sixth International workshop on the Use of Supercomputers
in Theoretical Science, Antwerp, 107-114 (1991).

11. E.D. DE GOEDE, Numerical methods for the three-dimensional shallow water
equations, Appl. Numer. Maths., to appear.

12. B.M. JAMART and J. OZER, Some results and comments on the tidal flow
forum exercise, Adv. Water Resources, 12, 211-220 (1989).

13. V.K. KrRAAV, Computation of the semidiurnal tide and turbulence parameters in
the North Sea, Oceanology, 9, 332-341 (1969).

112

14.

15.

16.

17.

18.

19.

20.

21.

ol T I T ST S, ‘
LU L R R R L R RN N
trestene eotovnsbrcnctonned

J.J. LEENDERTSE, Aspects of a computational model for long period water wave
propagation, Memorandum RM-5294-PR, Rand Corp., Santa Monica,
California, 1967.

J.J. LEENDERTSE, Development of a three-dimensional CSM model, progress
report DGW-OPWAZ2, 1990.

J.J. LEENDERTSE, A three-dimensional model of the European Continental
Shelf, TRI-FLOW COMP report, California, 1990.

N.A. PHILLIPS, A coordinate system having some special advantages for
numerical forecasting, J. Meteorol., 14, 184-194 (1957).

G.S. STELLING, On the construction of computational methods for shallow
water problems, Ph.D. Thesis, Delft University, 1983.

Th.L. VAN STIN, Vectorization of the Continental Shelf Model, DIV/ISWA
report 89 005 (1989).

TRISULA, A multi-dimensional flow and water-quality simulation system,
Delft Hydraulics, The Netherlands, 1989.

P. WILDERS, Th.L.VAN STIN, G.S. STELLING AND G.A. FOKKEMA, A fully
implicit splitting method for accurate tidal computations, Int. J. Numer. Meth.
in Eng., 26, 2707-2721 (1988).

R N R R R R R R K AR R R AR R

ebhaees .
10) Y 4 [) 70 " %0 ‘e

Figure 1. The finite difference grid of the Continental Shelf model.

113

Wick

Aberdeen

7

Innerdowsing

96.0
96.0

96.0

Figure 3.1-3.3.

114

Cromer

96.0

96.0

Dieppe

96.0

3.0 _

-3.0 J72.0

Figure 3.4-3.6.

115

Boulogne

96.0

Calais

96.0

Oostende

_x
>

-3.0 472.0

Figure 3.7-3.9.

116

Zeebrugge

Hoek van Holland IJmuiden
; o - o Q
]) g _ lV g 8
] I _
/
0 7 q \
) \ ™ B
(
] I J
] | \\ 2
1 \
)
<+ \ \
1 /
72
1 Y
N
(=] (=]
o \ @
A\
I \ _ Y
o | / e | o
T T T T T T T T n_ _ T T T T T _ T X T n_ _ r ;8 T T _\ T jm/l—
e =} e =] e
w_v M 9_. o 9_~

Figure 3.10-3.12.

117

Den Helder

Borkum

96.0

Dover

96.0

2.0 |

Figure 3.13-3.15.

118

Chapter 10

Overview and Conclusions

10.1. CONDITIONALLY STABLE METHODS

This thesis deals with the development of numerical methods for the three-
dimensional shallow water equations on vector and parallel computers. At first, we
investigated the numerical discretization of the vertical diffusion term. If an explicit
method is used for a three-dimensional model, then besides the CFL stability
condition there is also a condition imposed by the vertical diffusion term [1]. In
many problems the latter condition is more restrictive. To investigate the influence
of this stability condition, we examined in Chapter 3 time integrators that were
explicit, semi-implicit or implicit in the vertical. It appears to be necessary to treat
the vertical diffusion term in an implicit way. The vertically implicit (VIM) method
(i.e., method (4.6) on page 16)

A, 0O 0 yt! I 7F -18,gD, Ut
1F AL, O vitl =0 I -tengy vt [. (10.1)
1®;hE, 1D, 1 J\z™1) \0 0 1 z"

satisfies this condition. The U-, V- and Z-components are computed sequentially
in (10.1). This is advantageous for both the stability and the storage requirements.
The stability condition for the VIM method reads

1 1
0 s : (10.2)
Ven [T 1

@2 " ay?

which shows that the maximally stable time step is independent of the vertical
mesh size Ac.
Method (10.1) may be written in the form

(I—oaAm 0 0 !
7F latA, 0 || yntl | =

(&)
\ Bt®hE, BtOhD, I J\z"+!

[TH(1-0)tA 5 F -18,gD, \(y"
0 I+(1—a)‘tAm —tengy v? |, (10.1)
\ (B-18;hD, (B-1y8;hD, I z"

119

where a=1 and B=1. In order to obtain an as large as possible stability region, we
varied the values of o and B. A similar stability analysis as in Chapter 3 (cf.
pages 22-25) yielded the following conditions:

a>i

B=1 (10.2)

P e | 1 :

VZB\—l \/51 1 + 1
N @2 " @y
Thus, B=1 is the optimum value. For =1, the choices a=1 and a=1/2 lead to the
vertically implicit methods (4.6) and (4.7), respectively, which are described on
page 16. Both methods may be considered as a combination of the trapezoidal rule
and the approach of Fischer [2] and Sielecki [8]. This has been explained in more
detail in Chapter 4.

The vertically implicit methods require the solution of tridiagonal systems. The
tridiagonal system are solved by the well-known Gaussian Elimination method. We
make use of the fact that a large number of independent tridiagonal systems of the
same dimension have to be solved. Therefore, these systems can be solved in a
vector-parallel mode. Moreover, this method requires a minimal number of
operations. Its efficiency has been shown on a CDC CYBER 205 and on an
Alliant FX/4.

For large values of h (i.e., deep water) or for small values of the horizontal mesh
sizes Ax and Ay, the time step restriction (10.2) or (10.2") may be more severe than
necessary for accuracy considerations. To increase the stability we applied in
Chapter 4 right-hand side smoothing. This technique was developed by Wubs [13].
The smoothing operators were constructed in such a way that they could be
implemented efficiently on vector—parallel computers.

Right-hand side smoothing is particularly attractive in problems where the time
derivative of the exact solution is a smooth function of the space variable. This is
the case for the shallow water equations. In our experiments the application of right-
hand side smoothing results in a reduction of the computation time of about a factor
of five, while the accuracy remains acceptable.

The resulting stabilized vertically implicit (SVIM) method (i.e., method (4.3) on
page 38) was made more accurate by applying the technique in which the water
elevation and the velocity components are computed at different time levels. This
technique, which was developed by Hansen [4], leads to method (4.7) on page 70.

10.2. UNCONDITIONALLY STABLE METHODS

We not only considered conditionally stable methods, but also numerical methods
from the other end of the spectrum, viz., unconditionally stable methods. In
Chapter 5 we constructed a two-stage time splitting (TSM) method. It was proved
that this method is unconditionally stable. We remark that the first stage of this
method is very similar to the vertically implicit method (10.1). It also requires the
solution of a large number of tridiagonal systems. At the second stage the equations
for the U- and V-component can easily be eliminated and yield a relatively small

120

system in which the water elevation Z is the only unknown. A conjugate gradient
method was constructed in which a preconditioner based on the smoothing operator
of Chapter 4 was used. It appears that the preconditioned CG method is highly
suitable for vector and parallel computers.

The TSM method is first-order accurate in time. It is possible to obtain second-
order accuracy by adjusting the discretization of the Coriolis term, the mixed
advective terms and the bottom friction term. However, such a second-order
treatment would decrease the computational efficiency dramatically. For the sake of
efficiency we therefore decided to only construct a first-order accurate method. It
should be noted that the propagation of the surface waves and the vertical diffusion
are second-order accurate in time.

In Chapter 6 we compared the conditionally stable SVIM method with the
unconditionally stable TSM method. Both methods can be implemented efficiently
on vector-parallel computers. When compared with various methods from the
literature, the SVIM method is an efficient method. However, the TSM method
requires even less computation time than the SVIM method. Concerning accuracy,
we encountered in some cases large errors for the velocity components when the
SVIM method was used. The TSM method yields accurate results in all
experiments. Since three-dimensional models are applied to test problems where the
vertical structure of the velocity is needed, the accuracy for the velocity is very
important. Considering the accuracy, stability and computational efficiency, we
concluded that our unconditionally stable method is a very suitable method for three-
dimensional shallow water models.

So far, the advective terms were omitted. In Chapter 7 we incorporated the
advective terms into the TSM method. The discretization of the advective terms
appears to be crucial and therefore we have followed the approach of Stelling [9].
Both the special discretization near the boundaries and the upwind discretization of
the mixed advective terms as developed in [9] are necessary for stability. For
example, central discretizations yielded instabilities in realistic test problems.

The introduction of the advective terms results in a hardly more complicated
system. At the first stage two non-symmetric linear systems (for the u- and v-
component, respectively) have to be solved. For its solution we developed a Jacobi-
type iteration method. This method offers the facility of both an explicit and an
implicit treatment of the advective terms. The choice between an explicit or implicit
treatment depends on the test problem. At the second stage the system to be solved
is very similar to the system without the advective terms (see Chapter 5). Therefore,
the same preconditioned CG method is used.

In Chapter 8 the computational efficiency of the TSM method was demonstrated
on a CRAY Y-MP4/464 for a rectangular domain. To exploit parallelism on this
four-processor supercomputer, we had to apply a domain decomposition approach in
the horizontal direction. For the implementation on an irregular domain, we used
the geometry of the northwest European Continental Shelf. This model covers the
same computational grid as the CSM16 model of Rijkswaterstaat. In Chapter 9 its
efficiency was shown on the CRAY Y-MP2E of ICIM (Informatics Centre for Civil
Engineering and Environment). This supercomputer was recently installed in the
Netherlands for the simulation of large scale water models of rivers and seas.

So far, we only examined the stability and accuracy behaviour of various methods.
However, other properties such as the dissipation and dispersion of numerical

121

methods are also important. To investigate these properties we carried out a similar
analysis as described by Leendertse [6]. For the linear (one-dimensional) system

u__ g9

ot ox 103)
o _ qou

ot ax

where 7y denotes the bottom friction, we obtained for our TSM method that the
modulus of the wave propagation reads

0|

o’ acey - 51 }B fo-t a2 F
{(1+) (1+A) exp(——rv)}B

and that the phase angle of the wave propagation is given by

) 7.2
Y L A WU
| \/A (1+)_ 16 < VA (1 2) 16

tan + tan
1+ 0.517 1+ A
C
where
2
A=L : gdsinz(znAx), B= L and C=2zc-,
4 (axy? L

—_— s B
N
2r

with L denoting the wave length. For the time splitting methods examined in [6],
the moduli of the amplitudes are larger than one, which is due to the presence of the
bottom friction term. For unconditional stability the eigenvalues should be less
than one. It was concluded that the approximation of the bottom friction term
should be made with care to avoid instabilities. For our TSM method the modulus
of the amplitudes is always smaller than unity. Moreover, the amplitude errors are
about 7.5 times smaller than for the methods in [6]. However, the phase errors for
the TSM method are slightly larger.

10.3. OVERVIEW OF TIME SPLITTING METHODS

In the literature various time splitting methods have been developed for the shallow
water equations. We now give an overview for some of these methods. For the two-
dimensional shallow water equations, well-known methods are the ADI methods of
Leendertse [6] and Stelling [9]. The latter one is an improved version of Leendertse's

122

method. The methods in [7] and [11] may be considered as three-dimensional
extensions of the methods in [6] and [9], respectively. The vertical diffusion is
treated in an implicit way.

For large time steps all these methods suffer from inaccuracies when dealing with
complex geometries. This is the so-called ADI-effect [10]. In [12] a two-stage time
splitting method has been developed in which these inaccuracies are absent, even for
large time steps. Our TSM method, which has been developed for three-dimensional
models, does also not suffer from the ADI-effect. When applied to two-dimensional
problems, this method is very similar to the method in [12]. In Table 1 an overview
of the various methods is given.

ADI-effect no ADI-effect
2D models ADI-Stelling [9] Fully implicit
ADI-Leendertse [6] splitting method [12]
3D models ADI-TRISULA [11] TSM method [3]
ADI-Leendertse [7]

Table 1. Time splitting methods for the shallow water equations.

It was reported that the method in [12] is more than acceptable for practical
computations. Owing to the special treatment of the terms concerning the
propagation of the surface waves, the method in [12] is about three to five times
more expensive than the method in [9]. This ratio depends on the time step. For the
methods in [3] and [12] a pentadiagonal system, which has a two-dimensional
structure, has to be solved at the second stage. In [9] much smaller (tridiagonal)
systems have to be soived.

For two-dimensional models the solution of the pentadiagonal system involves a
major part of the computation time. This system is of the same (two-dimensional)
structure and thus of the same computational complexity for both two-dimensional
and three-dimensional models. The computation time required by the other parts of
our TSM method, i.e., the computation of the three-dimensional velocity
components, is proportional to the number of grid layers in the vertical direction.
The efficiency of our time splitting method is therefore higher for three-dimensional
models than for two-dimensional ones.

In conclusion, the unconditionally stable time splitting (TSM) method is an
accurate and efficient method for three-dimensional shallow water models. This was
illustrated both theoretically and experimentally. By comparing the numerical
results with accurate reference solutions, it was possible to obtain detailed
information about the accuracy of the TSM method. For realistic test problems such
as for the IJsselmeer and the Continental Shelf, its computational efficiency was
demonstrated on an Alliant FX/4 and on CRAY supercomputers.

123

REFERENCES

10.

11.

12.

13.

A.M. DAVIES, Application of the DuFort-Frankel and Saul'ev methods with
time splitting to the formulation of a three dimensional hydrodynamic sea
model, Int. J. Numer. Meth. in Fluids, 5, 405-425 (1985).

G. FISCHER, Ein numerisch verfahren zur errechnung von windstau und gezeiten
in randmeeren, Tellus, 11, 60-76 (1959).

E.D. DE GOEDE, On the numerical treatment of the advective terms in 3D
shallow water models, Proceedings of the 2nd symposium on High
Performance Computing, Montpellier, 491-502 (1991).

W. HANSEN, Hydrodynamical methods applied to oceanographic problems,
Proceedings of the symposium on mathematical hydrodynamical methods of
physical oceanography, Institut fiir Meereskunde der Universitit
Hamburg, 25-34 (1961).

P.J. VAN DER HOUWEN, Construction of integration formulas for initial-value
problems, North-Holland, Amsterdam, 1977.

J.J. LEENDERTSE, Aspects of a computational model for long period water wave
propagation, Memorandum RM-5294-PR, Rand Corporation, Santa Monica,
California, 1967.

J.J. LEENDERTSE, A new approach to three-dimensional free-surface flow
modelling, Memorandum RM-5294-PR, Rand Corporation, Santa Monica,
California, 1989.

A. SIELECKI, An energy conserving difference scheme for storm surge
equations, Monthly Weather Review, 96, 150-156 (1968).

G.S. STELLING, On the construction of computational methods for shallow
water flow problems, Ph.D. Thesis, TU Delft, 1983.

G.S. STELLING, A.K. WIERSMA and J.B.T.M. WILLEMSE, Practical aspects of
accurate tidal computations, J. Hydr. Eng., ASCE, 112, 802-817 (1986).
TRISULA, A multi-dimensional flow and water-quality simulation system,
Delft Hydraulics, The Netherlands, 1989.

P. WILDERS, Th.L.VAN STDN, G.S. STELLING and G.A. FOKKEMA, A fully
implicit splitting method for accurate tidal computations, Int. J. Numer. Meth.
in Eng., 26, 2707-2721 (1988).

F.W. WUBS, Numerical solution of the shallow-water equations, Ph.D. Thesis,
University of Amsterdam, Amsterdam, 1987.

124

Summary

The shallow water equations describe a mathematical model for flows in rivers and
shallow seas. The growing interest in these water flows for e.g., the coastal
protection and the environment, have led to the development of a large number of
numerical models based on the shallow water equations. Owing to the advances in
numerical mathematics and particularly in computing power, the numerical models
are nowadays much cheaper than (physical) scale models.

In the Netherlands, Rijkswaterstaat (Dutch Water Control and Public Works
Department), Delft Hydraulics and ICIM (Informatics Centre for Civil Engineering
and Environment) co-operate in the development of numerical models for three-
dimensional water flows. These models aim at the computation of time-dependent,
three-dimensional hydrostatic flows, which lead to a so-called multi-layer model in
the vertical direction. This implies that in practice the computational effort will be
much larger than for the simulation of a two-dimensional model, in which only one
(depth-averaged) layer is present. It is therefore of great importance to construct
numerical methods that are able to fully exploit the potential of vector and parallel
facilities of fast computers. By order of Rijkswaterstaat we have developed an
efficient method on vector and parallel computers. Apart from the computational
efficiency, properties such as accuracy and stability have also been taken into
account.

This thesis is devoted to the development of numerical methods for the three-
dimensional shallow water equations on vector and parallel computers. We have
constructed a large number of methods, ranging from conditionally stable vertically
implicit methods to an unconditionally stable time splitting method. This thesis
builds on work of e.g., Davies, Fischer, Hansen, Leendertse, Sielecki, Stelling and
Waubs. The unconditionally stable two-stage time splitting (TSM) method turns out
to be an accurate and a very efficient one. For realistic test problems such as for the
Isselmeer and the Continental Shelf, its computational efficiency has been shown
on an Alliant FX/4 and on CRAY supercomputers. The good properties of this
method have also been verified theoretically.

The two-stage time splitting method requires the solution of a sequence of linear
systems. At the first stage the non-symmetric system is solved by a Jacobi-type
iteration method. The second stage requires the solution of symmetric systems,
which is carried out by a preconditioned conjugate gradient method. Both iteration
methods are highly suited for vector and parallel computers.

In this thesis we have restricted ourselves to homogeneous water flows. In order
to accurately predict the dispersion of pollutants, physical processes such as salinity
and turbulence should be added to the mathematical model. Owing to its accuracy,
stability and efficiency on vector and parallel computers, it is our opinion that the
unconditionally stable time splitting method is a promising method for the
simulation of such complex processes.

125

Samenvatting

De ondiep-watervergelijkingen beschrijven een wiskundig model voor stromingen in
rivieren en ondiepe zeeén. De groeiende belangstelling voor deze waterstromingen
voor bijvoorbeeld de kustbeveiliging en het milieu, heeft geleid tot de ontwikkeling
van een groot aantal numericke methoden die gebaseerd zijn op de ondiep-
watervergelijkingen. Vanwege de voortgang in de numerieke wiskunde en met name
in de rekenkracht van computers, zijn numerieke modellen tegenwoordig veel
goedkoper dan (fysische) schaalmodellen.

In Nederland werken Rijkswaterstaat, het Waterloopkundig Laboratorium en ICIM
(Informatica Centrum voor Infrastructuur en Milieu) gezamenlijk aan de ontwikke-
ling van numerieke modellen voor drie-dimensionale stromingen. Deze modellen
richten zich op tijdsafhankelijke, drie-dimensionale hydrostatische stromingen, wat
leidt tot een zogenaamd meerlagenmodel in de vertikale richting. Dit impliceert in de
praktijk dat de rekeninspanning vele malen groter zal zijn dan bij de simulatie met
een twee-dimensionaal model, waarin slechts één (diepte-gemiddelde) laag aanwezig
is. Het is daarom van groot belang numericke methoden te construeren die volledig
gebruik kunnen maken van de vector- en parallelle mogelijkheden van snelle
computers. In opdracht van Rijkswaterstaat is een efficiénte rekenmethode
ontwikkeld voor vector- en parallelle computers. Naast de rekenefficiéntie zijn ook
eigenschappen als nauwkeurigheid en stabiliteit in beschouwing genomen.

Dit proefschrift is gewijd aan het ontwerp van een numericke methode voor de
drie-dimensionale ondiep-watervergelijkingen op vector- en parallelle computers. We
hebben een groot aantal methoden geconstrueerd, variérend van voorwaardelijk
stabiele vertikaal impliciete methoden tot een onvoorwaardelijk stabiecle
tijdsplitmethode. Dit proefschrift bouwt voort op werk van bijvoorbeeld Davies,
Fischer, Hansen, Leendertse, Sielecki, Stelling en Wubs. De onvoorwaardelijk
stabiele twee-'stage’ tijdsplitmethode blijkt een nauwkeurige en erg efficiénte metho-
de te zijn. Voor realistische testproblemen, zoals voor het IJsselmeer en het
Continentale Plat, werd de rekenefficiéntie aangetoond op een Alliant FX/4 en op
CRAY supercomputers. De goede eigenschappen van deze methode zijn ook
theoretisch getoetst.

De twee-'stage’ tijdsplitmethode vereist de oplossing van een reeks lineaire
stelsels. In de eerste 'stage’ wordt het niet-symmetrische stelsel opgelost door een
Jacobi-achtige iteratiemethode. In de tweede 'stage' dienen symmetrische stelsels
opgelost te worden. Dit wordt uitgevoerd door een gepreconditioneerde geconjugeerde
gradiéntenmethode. Beide iteratiemethoden zijn zeer geschikt voor vector- en
parallelle computers.

In dit proefschrift hebben wij ons beperkt tot homogene waterstromingen. Voor de
nauwkeurige voorspelling van de verspreiding van verontreinigingen dienen fysische
processen zoals het zoutgehalte en turbulentie meegenomen te worden in het
wiskundige model. Vanwege de nauwkeurigheid, stabiliteit en rekenefficiéntie op
vector- en parallelle computers, zijn wij van mening dat de onvoorwaardelijk
stabiele methode een veelbelovende methode is voor de simulatie van dergelijke
complexe processen.

126

Curriculum Vitae

De schrijver van dit proefschrift werd op 26 juni 1962 geboren te Ilpendam. Na het
behalen van het Gymnasium-B diploma aan de Rijksscholengemeenschap te
Purmerend, begon hij in 198U met zijn studie Wiskunde aan de Universiteit van
Amsterdam. In juni 1986 studeerde hij af op een onderwerp uit de numerieke
wiskunde onder leiding van Prof. dr. P.J. van der Houwen. Gedurende zijn
afstudeerperiode was hij tevens wetenschappelijk assistent bij de afdeling Numerieke
Wiskunde van het CWI (Centrum voor Wiskunde en Informatica) te Amsterdam.
Vanaf 1 november 1986 tot 1 maart 1988 was hij als wetenschappelijk mede-
werker verbonden aan dezelfde afdeling. Vervolgens voerde hij van 1 maart 1988 tot
31 december 1991 in opdracht van de Rijkswaterstaat het VECPARCOMP-project
uit. Bij het CWI was de begeleiding in handen van Prof. dr. P.J. van der Houwen en
Drs. B.P. Sommeijer. Dr. ir. Th.L. van Stijn en Prof. dr. ir. A.W. Heemink
zorgden voor de begeleiding namens de Rijkswaterstaat. In dit project werd een
efficiénte numeriecke methode voor de drie-dimensionale ondiep-watervergelijkingen
ontwikkeld. De resultaten van dit onderzoek zijn in dit proefschrift beschreven.

Stellingen behorende bij het proefschrift

Numerical Methods for the
Three-Dimensional Shallow Water Equations

on Supercomputers

van E.D. de Goede

Voor lineaire beginwaardeproblemen waarbij de Jacobiaan zuiver imaginaire
eigenwaarden heeft, blijken de expliciete smoothing operatoren die
geconstrueerd zijn met het (2k-de graads) polynoom

P(z)=U2k(\jk] N Uy (x) = $in((2ket1) arccos(x))

9 1 sin(arccos(x))

optimaal voor het vergroten van het stabiliteitsgebied [1]. Voor lineaire
beginwaardeproblemen waarbij de Jacobiaan niet zuiver imaginaire
eigenwaarden heeft, veroorzaken deze smoothing operatoren instabiliteiten [2].

[1] P.J. VAN DER HOUWEN, B.P. SOMMEUER, F.W. WUBS, Analysis of smoothing
operators in the solution of partial differential equations by explicit difference

schemes, Z. Angew. Math. Mech., 86, 3-10 (1987).
[2] Hoofdstuk 4 van dit proefschrift.

Hoewel het door Leendertse betwijfeld wordt [3], verdient het de voorkeur de
waterstanden volledig impliciet te integreren. In drie-dimensionale ondiep-
watermodellen zal de berekening van de waterstanden immers veel minder
rckenwerk vereisen dan de berekening van de stroomsnelheden [4].

[3] J.J. LEENDERTSE, A new approach to three-dimensional free-surface flow
modelling, Memorandum RM-5294-PR, Rand Corporation, Santa Monica,
California (1989).

[4] Hoofdstuk 5 van dit proefschrift.

In de tweede tussenstap van het in dit proefschrift ontwikkelde onvoorwaardelijk
stabicle schema wordt de vertikale diffusieterm expliciet geintegreerd. Ten koste

van cen geringe toecname in rekentijd kan deze term ook impliciet geintegreerd
worden.

10.

11.

12.

De numerieke schema's in [5] en [6] waarin zowel de vertikale diffusie als de
golfvoortplantingstermen impliciet geintegreerd worden, leveren voor 3D
kustmodellen een nauwkeurigheid op die vergelijkbaar is met die van expliciete
schema's. De expliciete schema's vergen echter ongeveer vijf keer zoveel
rekentijd.

[5] J.O. BACKHAUS, On the application of a three-dimensional numerical model,
in Three-Dimensional Coastal Ocean Models, edited by C.N.K. Mooers, AGU,

Washington, 149-175 (1987).
[6] Hoofdstuk 9 van dit proefschrift.

Bij de ondiep-watervergelijkingen vormen spectrale methoden een alternatief
voor modellen met meerdere (vertikale) lagen [7]. Het in dit proefschrift
ontwikkelde onvoorwaardelijk stabiele schema voor een meerlagenmodel, is
ook geschikt voor de tijdsintegratie van spectrale methoden.

[7] A.M. DaviEs, Formulation of a linear three-dimensional hydrodynamic sea

model using a Galerkin-Eigenfunction method, Int. J. Numer. Meth. in Fluids, 3,
33-60 (1983).

In de zeventiger jaren heeft de introductie van vectorcomputers een opleving van
de expliciete methoden te weeg gebracht. Tegenwoordig geven realistische
experimenten op deze snelle computers steeds vaker de noodzaak van impliciete
methoden aan.

Nu supercomputers niet alleen snel, maar ook gebruikersvriendelijker geworden
zijn, verdienen ze pas het predikaat "super”.

Het is jammer dat zo'n mooie sport als tennis zo'n lelijke puntentelling heeft.

Vlak na Gorbatsjov's aftreden staken tal van politici de loftrompet over hem.
"Wat vandaag ook gebeurt, zijn plaats in de geschiedenis is verzekerd”,
verklaarde de Britse premier Major [8]. Het getuigt van Nederlands respect dat
nog dezelfde dag het wassenbeeld van Gorbatsjov uit Madame Tussaud werd
gestolen.

[8] ANP, Den Haag, 26-12-91.

Gezien de recente ontwikkelingen dienen goed gefundeerde verzoeken tot
vrijstelling van de militaire dienst vaker geaccepteerd te worden.

Na de invoering van één Europese munteenheid valt het te hopen dat iedere
burger ook met gelijke munt betaald wordt.

De populariteit van de bridgesport staat in geen verhouding tot de aandacht die
sportprogramma's op de televisie hieraan schenken.

