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CHAPTER 1

INTRODUCTION

1.1. IMBEDDING METHODS: A DESCRIPTION

Let E be a (real) Hilbert space, D < E and let F: D > E be a nonlinear
operator. In this monograph we shall be concerned with the numerical solu-

tion of the equation
L O e ) F(x) = 0.

Until further notice we assume that D = E.

Suppose that x* € E is a solution of (1.1.1). A well-known method for
approximating x* is Newton's method. It consists of the calculation of a
sequence of approximations {xk} where
(1.1.2) e = X F(xk)F(xk) . (k =0,1,2,...).

In (1.1.2) X, € E is a given approximation to x* and r(x) = [F'(X)]_l where
F'(x) denotes the Fréchet-derivative of F at x. Newton's method has the
drawback that when the starting point XO is remote from x*, the sequence
{xk} defined in (1.1.2) generally will not converge to x . In many such
cases imbedding methods - or continuation methods, as they are also.called
- appear to be able to generate a sequence {xk} that converges to x . In
these methods a mapping H: [TO,T1] x E » E is introduced, for which H(t,x)

depends continuously on t, such that

I
o

H(TO,X) is easily solvable
(1.1.3) and

H(rl,x) = F(x).



[ro,Tl] is a closed interval in IR. Thus the operator F is imbedded in the
family of operators {H(t,+) |t € [TO,le}.

We observe that if F does not depend naturally on a suitable parameter
t, it is still always possible to define an H, satisfying (1.1.3), in sever-

al ways. For example, let x. € E be given, then

0
H: [0,1] x E » E,

(1.1.4) _
H(t,x) = (1-t){F(x) -F(xo)} + tF(x) (forallte[0,1]and x€ E)

satisfies the conditions (1.1.3). More generally, let K: EXE - E, where K
may depend on F, satisfy K(x,x) = 0 (for all x € E). Then, for any Xg € E,

the operator

H: [0,1] x E > EI
(1.1.5)
H(t,x) = (1—t)K(x,x0) + tF(x) (forallte[0,1]and x € E)

meets the conditions (1.1.3).
We return to our original problem and suppose that a mapping
H: [TO,T1] x E - E has been introduced satisfying (1.1.3). Instead of the

single problem (1.1.1), the entire family of problems
(1.1.6) H(t,x) =0 (t e [ty D

is considered. Let u0 € E be the solution of H(To,x) = 0. Suppose that
(1.1.6) has, for each t € [TO,T1], a unique solution x = U(t), which depends
continuously on t. (See e.g. [MEYER, 1968] for the restrictions on H which
ensure that such a curve U exists. We shall not go into this type of prob-

lem.) We have
(1.1.7) H(t,U(t)) =0 (for all t € [TO,T1])
and

(1.1.8) Ulty) = u ulr,) = x .

Ol



Thus U defines a curve in E with starting point u, and with end point equal

0
*
to the solution x of (1.1.1). We shall describe some ways in which the im-

bedding can be used in the numerical solution of equation (1.1.1).

a. Discrete imbedding
*
As a first possibility for approximating x = U(Tl) one may approximate

successively the solutions of
(1:1:9) H(ti,x) =0 (i =0,1,...,N)

by some numerical process (e.g. Newton's method). Here N is an integer and

cen i iti i = < <...¥< =
{to'tl’ ,tN} is a partition of [TO,T1], that is, L tO t) tN T,
holds. As starting point for the iterative process for approximating U(ti)
the last iterate of the iterative process for approximating U(ti—l) is often
used (i 2 1). If this approximation is close to U(ti—l) and if ti - ti—l is
sufficiently small then hopefully a sequence may be generated that converges
to U(t,).

i

*
This way of approximating x 1is called discrete imbedding.

b. Transformation to an initial value problem

We next consider a somewhat different way of aprpoximating x* = U(Tl).
Assume that the mapping U, satisfying (1.1.7) is continuously differentiable
on [10,11] and that H has continuous partial Fréchet-derivatives. Different-

iating the identity (1.1.7) with respect to t, we obtain
(1.1.10) BIH(t,U(t)) + 32H(t,U(t))ﬁ(t) =0 (for all t € [TO,TIJ),

where BlH and 32H are the partial Fréchet-derivatives of H with respect to

t and x respectively and ﬁ(t) denotes é%—U(t). If we assume that 82H(t,U(t))

is invertible (for all t € [ty,7;1) then (cf. (1.1.10)) U satisfies the

following initial value problem:
(1.1.11a)  O(6) = ~[a,8(c,0(e) 7 {3 B(E, U} (e [rg,1,]),

(1:1:11b) u(0)

ug-

Thus x* = U(Ti) may be approximated by applying a numerical integration pro-
*

cedure to (1.1.11). The approximation of x thus obtained can then be used

*
as starting point for an iterative process for approximating x more closely



(e.g. Newton's method) .
Transforming (1.1.1) into the initial value problem (1.1.11) is often

called Davidenko's method.

c. Iterative imbedding

We finally notice that imbeddings of type (1.1.5) may also be used to
construct iterative methods for approximating x*. To that end, let
K: E x E > E, such that K(x,x) = 0 (for all x € E), be given. Let x5 € E
and let H: [0,1] x E > E bé of type (1.1.5). In this case the initial value

problem (1.1.11) reduces to

X(t)

—[(1-£)3,K(X(t) %) + tF' (x(£)) I {-K(X(E) ,x;) + F(X(£)))

(1.1.12) (t € [0,1D),

X(0)

Xq -
Computing the solution X(t) of (1.1.12) at t = 1 be means of a given numeri-
cal integration procedure, we obtain an approximation, say x, & X(1), which

is uniquely determined by X We thus have X = G(xo), wherelthe operator

G depends only on F, K and the given numerical integration procedure. Solv-
ing (1.1.12) once more by the same numerical integration procedure, with X,
replaced by X, we obtain an approximation x, ® X(1), which is related to
X, by X, = G(Xl)' In this way we arrive at the iterative process

(1.1.13) Xpee1 = G(xk) (k =0,1,2,...).

We call this way of constructing iterative methods, iterative imbedding.
Hereafter we shall use for iterative imbedding initial value problems that

are of a rather more general type than problem (1.1.12) (cf. section 2.6).
1.2. IMBEDDING METHODS: HISTORICAL SURVEY AND CURRENT STATUS

Originally, imbedding methods were only used as tools to demonstrate
the existence of solutions to operatér equations. In [FICKEN, 1951] a re-
view is given of such applications, which date back at least to the last
century.

The idea of using the discrete imbedding method for the numerical solu-
tion of nonlinear equations seems to date back to [LAHAYE, 1934, 1935] (see

also [ORTEGA & RHEINBOLDT, 1970; pp. 234-235] for a bibliography on early



numerical applications). More recent investigations have been performed by
e.g. [avira, 19741, [LAASONEN, 1970], [POMENTALE, 1974], [WACKER, 1971, 1974,
1977 (a,b) ] and [RIBARIé & SELI§KAR, 1974]. In [LEDER, 1974] and [RHEINBOLDT,
1975, 1976] adaptive methods are proposed for determining the partition
{to,tl,...,tN}.

The idea of transforming problem (1.1.1) into the initial value problem
(1.1.11) is usually attributed to Davidenko ([DAVIDENKO, 1953]) . Davidenko
applied this method to a variety of problems including integral equations
and matrix inversion (e.g. [DAVIDENKO, 1965(a,b), 1975]). In [RALL, 1968]
an exposition of Davidenko's work is given (it also contains some transla-
tions-and a bibliography). A review of still more applications (among which
two-point boundary value problems) is given in [WASSERSTROM, 1973]. In
[MEYER, 1968] and [BOSARGE, 1971] the method is considered, with the initial
value problem (1.1.11) solved by Runge-Kutta methods.

In [GAVURIN, 1958] a somewhat different way of transforming problem

(1.1.1) into an initial value problem is used. Any iterative process of

type
(1.2.1) X T X + P(xk) (k = 0,1,2,...),

where X € E is given, can be conceived as an application of Euler's method

(see e.g. [LAMBERT, 1973; p. 13]) with stepsize h = 1 to the initial value

problem

Y(t) = P(Y(t)) (t € [0,2),

(1.2.2)

I

X .

Y (0) 0

The curve Y is called the continuous analogue of the iterative process
(1.2.1) (see also [ROSENBLOOM, 1956], [BITTNER, 1967] and [UEBERHUBER,
19761]) . )

This approach is closely related to Davidenko's method (cf. [MEYER,

1968]) . For example, let

H: [0,») x E > E,
(1.2.3)
H(t,x) = F(x) - e_tF(xO) (for all t € [0,») and x € E).



Suppose that for all t € [0,») the problem H(t,x) = 0 has a unique solution

x = U(t), which depends continuously on t. We have
(1.2.4) F(U(t)) - e_tF(xo) = 0, (t e [0,®)).
If we assume that F'(U(t)) exists and is invertible (for all t € [0,«)) then

differentiating (1.2.4) with respect to t and using the identity (1.2.4)
yield

U(t) = -T(U(t))F(U(t)) (t e [0,0),
(1.2.5)

U(0)

Xy-
Thus the curve Y = U, satisfying (1.2.5), is the continuous analogue of
Newton's method. See also [BOGGS, 19711, [BOGGS & DENNIS, 1974], [BITTNER,
1967] and [DI LENA & TRIGIANTE, 1976].

We also mention the possibility of combining the discrete imbedding
1,...,tN}
of [TO,T1] be given. Then the first step of the k-th stage (k = 1,2,...,N)

method with Davidenko's method. For example, let a partition {to,t

of this process consists of computing an approximation u of U(tk) by apply-

ing a numerical integration procedure on (1.1.1la) at [t ,tk]. The second

k-1
step of the k-th stage consists of solving the equation (1.1.9), for i =k

by means of an iterative process with starting point u . See e.g. [DEIST &

SEFOR, 1967] and [BROYDEN, 1969]. More recently in [FE?LMEIER, 197217,
[KUBIEEK, 19761, [MENZEL & SCHWETLICK, 19761, [SCHWETLICK, 1975, 19761,
[DEUFLHARD, PESCH & RENTROP, 1976] and [DEUFLHARD, 1976] these types of
methods have been investigated.

The method of iterative imbedding has been investigated in [KIZNER,
1964] for the case E = IR. In this paper the relation is given between the
order of accuracy of a numerical integration method for solving the initial
value problem (1.1.12) and the order of convergence of the corresponding
iterative process (1.1.13). In [DAVIDENKO, 1966], [BITTNER, 1967], [KLEIN-
MICHEL, 1968] and [PETRY, 1971] the iterative imbedding method is considered
for the case that E is IRn or an arbitrary Banach space. In these papers the
emphasis lies on constructing high order iterative methods of type (1.1.13).
In the papers of Kleinmichel and Petry theorems on these iterative methods
are given which are similar to the famous Newton-Kantorovich theorem (cf.

[KANTOROWITSCH & AKILOW, 1964; Theorem 6 (1.XVIII)]).



1.3. SCOPE OF THE STUDY

In this monograph we shall be concerned mainly with iterative imbedding.
As described in section 1.1, in this way iterative methods (1.1.13) for solv-
ing (1.1.1) can be constructed. These iterative methods are based on the
operator K (determining the initial value problem (1.1.12)) and on a numeri-
cal integration procedure. We shall restrict our attention to integration
procedures of (generalized) Runge-Kutta type.

In the last chapter we shall consider some algorithms based on discrete
imbedding, for the solution of problem (1.1.1). In some of them Davidenko's
method is used also.

In chapter 2 we introduce the basic concepts to be used throughout this
study. In Section 2.4 we introduce the concept of a radius of convergence
r(M;F) of an iterative method M with respect to some (given) class F of
operators F. Let x* denote the solution of F(x) = 0 where F belongs to F.

*
Then r(M;F) indicates how close to x an initial guess x. should be, for the

0
iterative process to yield a sequence of approximations X that converges

to x*. Section 2.5 is concerned with the local convergence behaviour of an
iterative process (i.e. its convergence behaviour near the solution x* of

F(x) = 0). We introduce two types of local convergence behaviour that lie
between the well-known concepts of local and quadratic convergence. We derive
both necessary and sufficient conditions for these intermediate types of local
convergence - generalizing the results of [OSTROWSKI, 1960; Theorems 22.1

and 22.2] and [KITCHEN, 1966]. In section 2.6 we present the imbedding on
which the iterative methods with which we shall be concerned will be based.

In chapter 3 (section 3.2) we introduce the Runge-Kutta methods that
will be used for constructing the iterative processes (1.1.13). In section
3.3 we shall indicate that the problem of the nonconvergence of Newton's
method is closely related to a certain type of instability of Euler's method.

In chapter 4 we derive general formulae for iterative methods which are
constructed by means of iterative imbedding.

In chapter 5 we investigate the 'local convergence behaviour of the
iterative methods that were consrtucted in chapter 4. We derive both neces-
sary and sufficient conditions for quadratic convergence and for the two
intermediate types of convergence introduced in section 2.5. Our main re-
sults in this chapter are formulated in nine theorems, that are given in
sections 5.1 and 5.2. The most obvious conditions on the operator K, for

which the iterative process (1.1.13) is locally convergent, are given in the



Theorems 5.2.3 -8 (cf. subsections 5.2.2 - 3). Some of these theorems may be
viewed as generalizations of the results of [KIZNER, 1964].

In chapter 6 we determine the radii of convergence of iterative methods
of the type described in section 4.1. Our main results in this chapter are
formulated in four theorems (Theorems 6.2.1, 6.3.1, 6.5.1 and 6.6.1). Part
I of this chapter is concerned with F<0,8,Y>, a class of operators F which
is defined in section 6.1. In section 6.2 we determine the radius of conver-
gence of Newton's method with respect to F<a,B,y>. A related result is given
in [RHEINBOLDT, 1975] although in that paper it was only shown that the value
obtained is a lower bound of the radius of convergence. In section 6.3 we
prove that a class of iterative methods that are closely related to the so-
called damped Newton methods, all have a greater radius of convergence than
Newton's method. Part II of chapter 6 is concerned with F<o,a>, a class of
operators F which is defined in section 6.4. In section 6.5 we determine the
radius of convergence of Newton's method with respect to this class. Finally,
in section 6.6 we are able to give an explicit expression of the radii of
convergence (with respect to F<o,a>) of the iterative methods which were
considered in section 6.3.

In chapter 7 we present numerical experiments with iterative methods
which were dealt with in the preceding chapters. Iterative methods based
on a generalized Runge-Kutta method related to the Backward Euler method,
appear to be more successful in solving the testproblems than the other
methods tested (including Newton's method) .

In chapter 8 we present some algorithms for solving problem (1.1.1).

In section 8.1 we describe an algorithm which is proposed in [RHEINBOLDT,
1975]. This algorithm is based on discrete imbedding and has an adaptive
step strategy for determining the partition {to'ti""’tN} (cf. section 1.1).
In the sections 8.2, 8.3 and 8.4 we present some variants of this algorithm,
in some of which Davidenko's method is used also (cf. section 1.1). These
variants also use the results of section 6.5. From the numerical results
given in section 8.5, it appears that all these algorithms are very reliable,
but the algorithms in which Davidenko's method is used require the least

amount of work for the solution of a problem.



CHAPTER 2

PRELIMINARIES

In this chapter we introduce some well-known concepts such as the spec-
tral radius of a linear operator (section 2.2). In section 2.3 we give a
definition of an iterative method. In section 2.4 the concept of the radius
of convergence of an iterative method is introduced. Let x* be the solution
of (1.1.1). Then this concept indicates how close to x* an initial guess X
must be in order that the application of the iterative method to problem
(1.1.1) may yield a sequence of approximations X that converges to x . Sec-
tion 2.5 is concerned with the local convergence behaviour of iterative pro-
cesses. We introduce two types of local convergence behaviour that lie be-
tween the well-known concepts of local and quadratic convergence. In sec-
tion 2.6 we present the imbedding on which the iterative methods to be in-

vestigated in the following chapters will be based.
2.1. CONVENTIONS AND NOTATIONS

From now on the following conventions hold.

If F is an operator, then D(F) denotes its domain.

Let Z1 and 22 be Banach spaces. Then

L[Zl,Zz] = {c|c: z, ~ Z,i C is linear and bounded}.

Furthermore we define the sets L(n)[Zl,ZZJ by

(1) _ (n) B (n-1)
L [21’Z2] = L[zl,zzj and L [zl,z2] = L[zl,L [zl,z2]]
(n=2,3,...).

Let £ and n be the positive integers with £ < n. Let Q € L(n)le,zzj and

yj € Z1 (j =1,2,...,4). We use the notation
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leyz"'yl = (...((le)yz)...)yl.

Let F: D(F) ~» Z2 with D(F) < Z1 and let x € interior(D(F)). Then F'(x) (or

F(l)(x)) denotes the (Fréchet-)derivative of F at x (F'(x) € L[Zl,ZZJ).

F"(x) (or (F(z)(x)) denotes the second (Fréchet-)derivative of F at x (it

is the Fréchet-derivative of the operator F' at x, F"(x) € L(2)[Zl,22]).
(n)
(x

The n-th (Fréchet-)derivative of F at x (n = 3,4,...) is denoted by F ).

If Z, =2,=172we set-L[Zl,ZZJ = L[z] and L(n)[zl,zzj = L(n)[z] (n =

1,2,...).
For i = 1,2,...,n+l let Z; be a given Banach space with norm "-"i. Let
Z,. =2, XZ_x%... XZn be the product space. We shall always assume that the

0 1 2
norm in Z . is I+l  where lxl = max{llx I, |1 < i < n} (for all x = (x,,X.,
0 0 ii 1772

0
...,xn) € Zo). Let P: D(P) ~> Zn+1 with D(P) ¢ ZO' Let x = (xl,xz,...,xn) €
ZO' For i = 1,2,...,n we define the operator P(xl,...,xi_1,-,xi+1,...,xn) by
P(xl,...,xi_l,-,xi+1,...,xn) =0Q
with

D(Q) = {v]|ve Zii (KpreeasX, 0VeX; yeea X)) € DR,

Q(v) = P(xl,...,xi_l,v,x_+1,...,xn) (for all v € D(Q)).

1

For x. € 1nterlor(D(P(x1,...,xi_l,',xi+1,...,xn))) we denote by BiP(x) the
partial (Fréchet-)derivative of P with respect to x, at. x (1= 142, a0an) 4
For xj € interior(D(BiP(xl,...,xj_l,~,xj+1,...,xn))) we denote be BijP(x)
the derivative {ijaiP]}(x) (L9 = 1;2¢...,8).
E denotes a real Hilbert space, with inner product (+,+) and norm
1
I« = (+,+)2. We shall always assume that E # {0}. Let x € E and 0 € (0,>].

We set
B(x,0) = {y |y € E; ly-xl < o}.

Furthermore if V € E is a subset of E, then V denotes the closure of V.
For a detailed definition of the above concepts we refer to
[ KANTOROWITSCH & AKILOW, 1964].
If C € L[E], then C is said to be invertible if a T € L[E] exists such
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that CT = TC = I, the identity (we write T = re1h.

Let F: D(F) > E with D(F) < E and let x € interior(D(F)). Suppose F is
Fréchet-differentiable at x, and suppose F'(x) is invertible. Then I (x) de-
notes [F'(x)]—l.

Let X: [0,1] » E, then X(t) denotes é%-x(t) (t e [0,1]).

Let ¢: D(¢) - IR with D(¢) < IR. ¢ is isotone (antitone) on D(¢) if
¢(€1) < ¢(52) (¢(51)) > ¢ (&)) whenever 51,52 € D(¢) and 51 < 52. ¢ is strict-
ly isotone (anitone) on D(¢) if ¢(£1) < ¢(£2) (¢(£1) > ¢(£2)) whenever
51,52 € D(¢) and £y < &y

Let m and n be integers. We shall always use the conventions
I n
) ...=0 ana T ...=1 (if m > n).
IR denotes the set of real numbers, € denotes the set of complex num-
bers. R” and Cn denote the real and the complex n-dimensional vector space,
respectively. Finally, IN = {1,2,3,...}.

2.2. THE SPECTRUM OF A LINEAR OPERATOR

Let Ec denote the complex extension of E (see [KANTOROWITSCH & AKILOW,

1964; section 2(XIII)]). Em is a complex Hilbert space. We denote its inner-

product by (-,')¢. The norm in EC is ".“C = (~,-)£. We note that E is a sub-
space of E¢' Any element z of EC can be written in the form z = x+ iy where
X,y € E are uniquely determined. Let zl,z2 € E¢. Then

(2402, = (xl,xz) + (yyoy,y) + i{(yl.xz) - (xl,yz)}

where x,,y. € E and z, = x, +1iy, (j = 1,2).
R JIYJ 3 j yj d '
Let T € L(EC) .

DEFINITION 2.2.1. The spectrum of T is the set

'

(2.2.1) sp(T) = {a | a € €¢; [T-aI] is not invertible}.

sp(T) is non-empty (cf. [RUDIN, 1973; Theorem 10.13(a)l]).

DEFINITION 2.2.2. The number
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(2.2.2) sx(T) = sup{la] |a € sp(T)}

is called the spectral radius of T.
We have

THEOREM 2.2.1.

1 1
sr(T) = lim IT®I™ = ing IT™IP.
n--ew n=1
PROOF. cf. [RUDIN, 1973; Theorem 10.13(b)]. O
Let C ¢ L(E), and let
s ->

Cet B¢ 7 B
(2.2.3)

C¢Z—= Cx + iCy (z € EG, z = x+1iy, x,y € E).

Then Cg € L(Em) and it follows that

(2.2.4) "C¢"¢ = lcl.

C¢ is called the extension of C in E¢. The spectrum of C is defined by

sp(C) = sp(Cc). Analogously, the spectral radius of C is defined by sr(C)

sr(Cc). From (2.2.4) and Theorem 2.2.1 it follows that
1 1

(2.2.5) sr(c) = lim Ic™™ = inf IC™I™,
n-o>o n>1

m

Let p be a rational function with real coefficients, i.e. p(z)
[q(z)]-lp(z) where p and g are polynomials with real coefficients. We

fine

(2.2.6) Dc(p) {z |z e €; g(z) ¥ 0}

and

(2.2.7) DE(D) {c|c € L(E); q(C) is invertiblel}.

de-
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Let C € DE(p). Then p(C) denotes the linear operator [q(c)]—lp(c).

THEOREM 2.2.2. Let p: D(p) - C be a rational function with real coefficients.

Let C € L(E). If sp(C) < Dc(p) then

C e DE(D) and sp(p(C)) = p(sp(C)).

-1
PROOF. Let p(z) = [g(z)] "p(z).
1. It follows from [RUDIN, 1973; Theorem 10.28(a)] that q(CC) is invertible.
Since q(Cc) = [q(C)]c we have C € DE(p).
2. Since q(Cm) = [q(C)]c, p(C¢) = [p(C)]¢ we have p(Cc) = [p(C)]c. From
[RUDIN, 1973; Theorem 10.28(b)] follows that

1]

sp(p(Cc)) D(SP(CC))-

Consequently sp(p (C)) p(sp(Cc)) = p(sp(C)), which completes the proof of

the theorem. ]
2.3. ITERATIVE METHODS

In this section we introduce some concepts that will play an important

role in our investigations. Throughout,

(2.3.1) G ={c|G: D(G) » E; D(G) < E}

and

(2.3.2) F=4{F|F: D(F) » E; D(F) € E; F(x) = 0 has a unique solution}.

Let F € F be given. Then x* will always denote the solution of F(x) = O.
Let F < F.

DEFINITION 2.3.1. Any operator with domain F and range in G is called an

iterative method for F.

We note that this concept of an iterative method is much wider than
what is intuitively understood by the term. However, for ease of presenta-
tion, we shall work with the above concept of an iterative method.

Let M be an iterative method for F and let F € F. Set
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(2.3.3) D(M,F) = {xo I there exists a sequence {xk} such that x_e D(G) , where
G=M(F),andx_ , =G(x) (k=0,1,2,...)}.

DEFINITION 2.3.2. The iterative process, corresponding to the iterative

method M and the function F € F will be denoted by [M,F], and consists in

computing vectors X from
(2.3.4a) X = G(xk) ) (k =0,1,2,...)
where

(2.3.4b) G = M(F).

In this connection, the operator G in (2.3.4b) is called an iteration

function. The starting point x, of (2.3.4a) should be an element of D(M,F)

0
in order to prevent the iterative process from breaking off prematurely.

DEFINITION 2.3.3. The set D(M,F) defined in (2.3.3) is called the domain of

the iterative process [M,F].

Let xO € D(M,F). Then the sequence {xk} generated by X and the itera-

tive process [M,F] is, of course, defined by (2.3.4).

DEFINITION 2.3.4. The set

(2.:345) S(M,F) = {xo l X, € D(M,F) and the sequence {xk} generated by % and

*
[M,F] converges tox }
is called’the region of convergence of the iterative process [M,F].
2.4. THE RADIUS OF CONVERGENCE

Let F € F. As pointed out in thg introduction, we are interested in
iterative methods M such that the related iterative processes [M,F] generate
sequences {xk} that converge to x*, even if the starting point X is remote
from x*.

In this section we introduce the concept of the radius of convergence
of an iterative method M. This concept indicates how close to x* a starting

point x, should be for the iterative process [M,F] to generate a sequence
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*
{xk} that converges to x .
Let F be a non-empty subset of F.

DEFINITION 2.4.1. Let M be an iterative method (for F) and F € F. We define

0 (i¥ x* ¢ interior(S(M,F))),
r (M,F) = {

sup{o |o > 0 and B(x ,0) < S(M,F)} (otherwise) .

r(M,F) is called radius of convergence of the iterative process [M,F].

DEFINITION 2.4.2. Let M be an iterative method (for F) and let FO be a non-
empty subset of F. Then

r(M;FO) = inf{r(M,F) |F € Fo}

is called the radius of convergence of the iterative method M with respect

to FO'

It is clear that the larger r(M;FO) is for an iterative method M, the
less sensitive with regard to starting points will be the iterative pro-

cesses [M,F] (F € Fo) generated by it.
2.5. LOCAL CONVERGENCE BEHAVIOUR OF ITERATIVE PROCESSES

Let F ¢ F and let M be an iterative method for F. Let F ¢ F.

DEFINITION 2.5.1. The iterative process [M,F] is called locally convergent

*
(LC) is a neighbourhood V of x exists such that V ¢ S(M,F).

Obviously the iterative process will have a positive radius of conver-
gence if and only if it is locally convergent. We give three other defini-

. . . *
tions concerning the convergence behaviour of [M,F] near x .
p

DEFINITION 2.5.2. The iterative process [M,F] is called stably convergent

*
(SC) if a constant 6 > 0, an N0 € IN and a neighbourhood V of x exist such
that v < S(M,F), and for all X, € V, the sequence {xk} generated by X and
[M,F] satisfies

I I < el ) £ 11 k = N_)
xk-x < xo—x (for a 2 Ny .
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DEFINITION 2.5.3. The iterative process [M,F] is called regularly convergent

*
(RC) if a neighbourhood V of x exists such that V ¢ S(M,F) and for all

X, €V, the sequence {xk} generated by X, and [M,F] satisfies
I =1 < I =x"1 k =1,2,...).

DEFINITION 2.5.4. The iterative process [M,F] is called quadratically con-

*
vergent (QC) if a neighbourhood V of x and a number § > O exist such that

V ¢ S(M,F) and for all X, € V, the sequence {xk} generated by x. and [M,F]

0
satisfies

* *, 2
"xk+1—x I < ank—x = (k.= 0;1,;26s) s

It is clear that the following relations hold.
QC = RC = SC = LC.

*
If [M,F] is locally convergent and G = M(F) is continuous in x then
* * *
obviously G(x ) = x . This means that x is a fixed point of G.

Conversely, the following theorem holds.

THEOREM 2.5.1. Suppose x is a fixed point of G = M(F). Let

X € interior(D(G)) and let G be differentiable at X*. The following four
statements (i) - (iv) hold.

(i) If sr(G'(x*)) < 1 then [M,F] is stably convergent.

(ii) If sr(G'(x*)) > 1 then [M,F] 1is not stably convergent.

(iii) zf "G'(x*)" < d then [M,F] 1is regularly convergent.

*
(iv) 1f ler(x )l > 1 then [M,F] is not regularly convergent.
In order to prove Theorem 2.5.1 we need two lemmata.

LEMMA 2.5.2. Let P: D(P) > E with D(P) < E. Suppose
*
(a) The operator P has a fixed point'y with y* € interior(D(P)) and P is
differentiable at y .

* % o 1/n
0
(b) Ip*(y )l <o and I[P (y )] | < 8 < 1 for some ny > 1 and real num-
bers o and §.
n
Then for any € > 0 with § O-+E < 1 there exists a number ¢ > O such that

for all x € B(y*,c) and all n 2 1 we have
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x € D(P™) and "Pn(x)-y*" < ckﬂﬂx—y*“.

Here ¢ = max{ad +¢ [1 <j<n.}, A= Gno-re and £ = entier(%flo.

0
PROOF. Let € > 0. Set A = 6n0+e, suppose A < 1. Let j ¢ N and j < n,- The
operator Pj is defined in a neighbourhood of y*, Pj(y*) = y* and Pj is con-
tinuous in y*. From the chainrule (cf. [KANTOROWITSCH & AKILOW, 1964; sec-

J

*
tion 1.2(XVII)] it follows that P~ is differentiable at y and

(2.5.1) (P91 v = [er (13,

) *
Consequently, a number o, > O exists such that for all x € B(y ,0q) and all

1

j < n, we have x € D(PJ) and

I3 (x) - pA(y™) = (P91 (v7) (xy)I < elx—y7I.
Hence for all x € B(y*,ci) we have

Ip3 (x) - y™I < (o3 + ) Ix—y"l (for all j < n_)
and

n0 * *
Ip 2 (x) -y I < Ax-y"ll.

N

o
1
}. set 0 = min{cl, :?}. Let n 2 1. Then n =

IN
=}

Let ¢ = max{a’ +e |1 < 3

Kno-fk where £ 2 0 and 1 < k < n,

X € D(Pn) and

IA

. Then for all x € B(y*,c) we have

n
8% ~y™1 = 108 OT %) =3™1 2 68 =y*1 = ciflay’.

This proves the lemma. 0

LEMMA 2.5.3. Let P: D(P) » E with D(ﬁ) c E. Let the assumption (a) of lemma
2.5.2 be fulfilled. Suppose "[P'(y*)]noul/no 28 > 1 for some n, 2 1. Then
for all positive numbers € and 0 there exists an X € B(y*,c) with X # y
such that x € D(Pno) and

n n
Ip 28 —-y™ = @& P -a)lB"l.



18

PROOF. Let € and § be positive numbers. From the chainrule it follows that
n 2 ~
[p 0]'(y ) exists. Consequently a number ¢ ¢ (0,0] exists such that for all

X € B(y*,g) we have x € D(Pno) and

o Mo« B0, ox * g, %
(2.5.2) IP "(x) - P “(y) - [P 1 (y) (x=y)I < Sx-y'l.
Moreover an element y € E with llyl = 1 exists such that
n - n
(2.5.3) Ier (v 1 % 2 6 0=yl

~

mt§=y*+%y.malwﬁdh (2.5.2) and (2.5.3) yield

n n .
1P OG0 -y"1 = (6 % -S15y"1 - HETI

This proves the lemma. U

We now turn to the proof of Theorem 2.5.1.

(i) 1f sr(G'(x*)) < 1 then from (2.2.5) it follows that an n, > 1 exists

such that
1
n

n
e (x1 % % <5< 1.

n
Let € > 0 with ¢ 0-+e < 1. According to Lemma 2.5.2 a positive number o

exists such that for all x € B(x*,o) and n 2 1 we have x € D(Gn) and

1% (x) = ™1 < exflx=xl .

li

: n
Here ¢ = max{o? +¢€ |1 <3< no}, a "G'(x*)", A=60+¢ and £ =

. n-1
entier(%;—ﬂ. Hence [M,F] is stably convergent.
*
(ii) Suppose sr(G'(x )) > 1 and [M,F] is stably convergent. Thus positive

~ * o~
numbers ¢ and 6 and an integer N. > 1 exist such that for all x € B(x ,0)

0

and all n 2 N0 we have x € D(Gn) and

1™ (x) -x'I < ollx—x'Il.

Furthermore from (2.2.5) it follows that an E 2 N0 and a § > 1 exist such

that
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1

"[G'(x*)]n"n > 6 (for all n = N).

Hence Lemma 2.5.3 applies where o € (0,5], e > 0 and n 2 N are such that
Gno-e > 0. This yields a contradiction.

(iii) If "G'(x*)u < 1, Lemma 2.5.2 applies with n, = 1 and a = § < 1. This
proves the result.

(iv) Suppose lG'(x")l = 6 > 1. If [M,F] is regularly convergent then a posi-

*
tive number o exists such that B(x ,0) < D(G) and

*x
"G(x)-—x*ﬂ < Ix—x"I (for all x € B(x ,0)).
However Lemma 2.5.3 applies with ng = 1 and € > 0 such that § —e > 1. This
yields a contradiction. Hence [M,F] is not regularly convergent. ad

REMARK 2.5.1. We note that Theorem 2.5.1 remains valid if E is a Banach
space.

The sufficiency of the condition sr(G'(x")) < 1 for [M,F] to be locally
convergent where E = IR, was proved by Schrdder (cf. [SCHRODER, 1870]).
Ostrowski proved it if E = r" (cf. [OSTROWSKI, 1960; Theorem 22.1]). In
[KITCHEN, 1966] it is proved if E is an arbitrary Banach space. u

We end this section with a simple result with regard to quadratically

convergent iterative processes.

THEOREM 2.5.4. Suppose [M,F] is quadratically convergent. Then with G = M(F)

* *
it follows that X € interior(D(G)), G'(x*) exists and G'(x ) = O.

PROOF. If [M,F] is quadratically convergent then positive constants ¢ and §

exist such that B(x*,o) c D(G) and
* *, 2 *
lg(x) -x I < 8llx-x 1l (for all x € B(x ,0)).

X *
Hence G'(x ) exists and G'(x ) = 0. O

2.6. THE IMBEDDING AND THE DIFFERENTIAL EQUATION

In this section we present the imbedding and the differential equation
which we use to construct iterative methods by means of iterative imbedding

(cf. section 1.1).
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We first define some classes of operators that we shall need subse-

quently. Let

(2.6.1) Fl = {F [ F € F; D(F) is open; F is twice continuously differentiable
onD(F); there exists a constant u such that IF"(x)l < u

*
(forallx € D(F)); F'(x ) is invertible}

(see also (2.3.2)). We shall restrict our attention to problems F(x) = 0
where F € Fl' In order to describe the type of imbedding to be used, we de-

fine the following two classes of operators. Let

(2.6.2) K = {k | K: D(K) > E, D(K) = W(K) x W(K) where W(K) is an open sub-
setof E; K(x,x) =0 (forallx € W(K)); 311K(y,x),
BIZK(Y'X) and 821K(y,x) exist (for allx,y € W(K)); allK
is continuous on D (K) ; thereexistconstantsul,uzandu3
I < I <
such that 311K(y,x)" My "alZK(y,x) < My and
"821K(y,x)" < Uy (for allx,y € W(K))}.

Let

(2.6.3) A= {a]a: F, > K; with K = A(F) itholds W(K) = D(F) (for all
F ¢ Fl)}'

Examples of elements of A. Let F ¢ Fl'

[a(F))(y,x) = F(y) - F(x).
[a(F) J(y,x) = F'(y) (y-x).
[A(F) 1(y,x)

y-X.

We give three lemmata. The first lemma is a general result that will

often be used subsequently.

'

5 with D(P) < 21 where 21 and Z2 are Banach

spaces. Assume that a positive number § and V < D(P) with V open and convex

LEMMA 2.6.1. Let P: D(P) - Z

exist such that for all x € V the derivative P'(x) exists and IP'(x)I < §.

Then

Ilp(x) -p(y)ll < sllx-y | (for all x,y € V).
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PROOF. See [KANTOROWITSCH & AKILOW, 1964; section 1.3(XVII)]. g

LEMMA 2.6.2. Let Q: D(Q) - Z with D(Q) = VXV where V is an open subset of
E and Z is a Banach space. Suppose 81Q(y,x) and 82Q(y,x) exist (for all
x,y € V) and suppose that alQ is continuous on D(Q). Then Q is continuous

on D(Q).

PROOF. Let x 1Yq € V. Let € > 0. Then a number § > 0O exists such that

0
X,y €V, "31Q(y,x) - 31Q(yo,xo)" < ¢ and

“Q(yo,x)-Q(yo,xo)-82Q(y0,x0)(x—x0)" < e"x—xoﬂ
whenever x € B(xo,d) and y € B(yo,d). Let x € B(xO,G) and y € B(yo,é). Let
P(z) = Q(z,x) - 31Q(y0,x0)(z—yo) (z € D(P))

with D(P) = B(yO,G). From Lemma 2.6.1 it follows that
lo(y,x) = Qlyysx) = 3,0(yq.%y) (y-y) ! < ely-y i .
Therefore
lo(y,x) - Q(Yo,xo)" < {"aIQ(YO'XO)“ + E}"y—you
+ {ﬂazg(yo,xo)ﬂ - e}Hx-xOH.

This proves the lemma. 0
The next lemma is a consequence of Lemma 2.6.2.

LEMMA 2.6.3. If K € K then both the operators BlK and K are continuous on
D(K) .

PROOF. From (2.6.2) it follows that Lemma 2.6.2 applies for Q = 81K. Hence
81K is continuous on D(K). Consequently, Lemma 2.6.2 also applies for Q = K.

This completes the proof. ]

€ D(F). Consider the imbed-

Let F € Fl and A € A. Set K = A(F). Let %,

ding
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H: [0,1] x D(F) ~> E,
(2.6.4)

H(t,x) = (1—t)K(x,x0) + tF(x) (t € [0,1], x € D(F)).

Thus H(O,xo) =0 and H(1,x) = F(x).

Suppose H(t,x) = 0 has a unique solution x = X(t) for all t € [0,1].
Then
(2.6.5) H(t,X(t)) =0 ‘ (for all t € [0,1]).
We have
(2.6.6) X(0) = x; and X(1) = x*.

We also note that for all t € [0,1] and x € D(F) the derivatives 81H(t,x)

and 82H(t,x) exist and are continuous (in t and x) and satisfy

BIH(t,x) -K(x,xo) + F(x)

and

[

- L}
BZH(t,x) (1 t)81K(x,x0) + tF'(x).
The derivatives BIH(O,X) and 81H(1,x) should be considered respectively
as the right and left partial derivatives of H with respect to t.
Let

(2.6.7) p(a,F) = {(t,y,z) |t € [0,1]; y,z € D(F); with K = A(F), the
operator [(1—t)81K(y,z)-ftF'(y)]is

invertible}.

Suppose (t,x(t),xo) € D(A,F) for all t € [0,1]. Then ﬁ(t) exists (see Lemma
2.6.3 and [KANTOROWITSCH & AKILOW, 1964; Theorem 3(XVII)]). Differentiation
of (2.6.5) with respect to t yields .

(2.6.8) BlH(t,X(t)) + 32H(t,X(t))i(t) =0 (for all t ¢ [0,1]).
Before we give the differential equation from which we shall derive

the iterative methods, we introduce another class of functions, with which

we can significantly enlarge the number of iterative methods to be



constructed in chapter 4 (see also section 6.3). We set
(2.6.9) S =1{n |h: [0,1] > IR; h is continuous on [0,1)}.
Let g € S. It is obvious (see (2.6.5) and (2.6.8)) that X satisfies
(2.6.10) alH(t,x(t)) + 32H(t,x(t))k(t) + g(t)H(t,X(t)) =0

(for all t € [0,1]).
Since -by assumption (t,X(t),xo) € D(A,F), it follows that

X(6) = ~[0,8(6,x()) 173 H(E,X(8) + g(OH(E,X(0)}

(for all t € [0,1]),
(2.6.11)

X(0)

]
]

The relation (2.6.11) is equivalent to

X(t) = @ (t,X(t) %) (t e [0,1]),
(2.6.12a)

X(0) = X
where

$: D(¢) ~» E, D(®¢) = D(A,F) (cf. (2.6.7)),
(2.6.12b)

o(t,y,2) = -L(1-)3 K(y,2) + () 17T x

{-K(y,2z) + F(y) + g(t)[(1-t)K(y,z) + tF(y)]1}

'

((t,y,z) € D(2)).
Conversely, if Y is a solution of

Y (t)

]

o (t,¥(t),xy) (t e [0,1]),
(2.6.13)

Y (0) X

0’
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then
;—t H(t,Y(t)) + g(£)H(t,Y(t)) = O (for all t € [0,1]),

H(0,Y(0)) = O.

So that (cf. [BERGER, 1977; Theorem 3.1.231])

H(t,Y(t)) 0 (for all t € [0,1)).

Since K € K and F € Fl' and since Y is left-continuous in t = 1, it follows

that

H(1,Y(1))

lim H(t,¥Y(t)) = O.
t+l

We summarize the above results in a theorem.

THEOREM 2.6.4. Assume F € Fi’ AeAand g e S. Set K= A(F). Let x, € D(F).

Let H be defined in (2.6.4). ’

(i) If H(t,x) = 0 has a unique solution x = X(t) and
[(l-t)alK(X(t),xO) + tF'(X(t))] is invertible for all t € [0,1],
then (2.6.12) holds.

(ii) If X is a solution of the initial value problem (2.6.12a), then

(2.6.5) holds.

The initial value problem (2.6.12a) will be used in chapter 4 to con-

struct iterative methods by means of iterative imbedding.
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CHAPTER 3

RUNGE-KUTTA METHODS

In this chapter we present the Runge-Kutta methods that will be used
for the construction of iterative methods by means of iterative imbedding.
We shall deal with two types of Runge-Kutta methods, which will be presented
in the subsections 3.2.1 and 3.2.2, respectively.

In section 3.3 we shall indicate that the problem of nonconvergence of
Newton's method is closely related to a certain type of unstable behaviour

of Euler's method.
3.1. ONE-STEP METHODS
Consider the initial value problem

Y(t)

£(t,Y(t)) (t € [0,1]),
(3+14+1)
Y (0)

yO'

where f: [0,1]xV~>Ewith V ¢ E and Yy € V are given. We assume that (3.1.1)
has a unique solution Y. Most of the computational methods for solving
(3.1.1) approximate the true solution Y of (3.1.1) on a discrete point set

{to,t } where 0 = t_<t

:we R
g e ws iy 0<% < tNet
Runge-Kutta methods, which we shall use in the construction of itera-

=1.

tive methods, are one-step methods. This means that, starting from Yq and

to, approximations Y, of Y(tn) (n=1,2,...,N+1) are obtained by

(3.1.2a) Yiq =¥ hiW(ti:Yi;hi,f),

where

I
t
|
o+

(3.1.2b) hi (i =20,1,...,N).

i+l i
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The function Yy is characteristic for the method. We shall therefore
define a Runge-Kutta method in terms of ¥. By H we shall denote the sequence

of stepsizes
(3.1.3) H = {hO'hl""’hN}'

Together with the one-step method, H determines the numerical integration
procedure. Let a sequence of stepsizes H = {hO'hl""'hN} be given. Then
the numbers tl' N+ 2Fe supposed to satisfy (3.1.2b) where tO = 0.

In the next section we describe two types of Runge-Kutta methods for

t2,...,t
solving numerically problem (3.1.1). We shall confine our considerations

to so-called explicit Runge-Kutta methods and generalized Runge-Kutta methods
(see e.g. [VAN DER HOUWEN, 1977; sections 2.2 -3]).

3.2. DESCRIPTION OF THE RUNGE-KUTTA METHODS

3.2.1. Runge-Kutta methods with scalar coefficients

DEFINITION 3.2.1. Let L = (Ai j) be a real strictly lower triangular (m+1) x
’

(m+1) matrix (m € IN). Then the general m-stage Runge-Kutta method with

scalar coefficients is defined by

m
(3.2.1a) y= 7 Amet, 050

£=1
where
kl(tly7h,f) = f(t,Y),
(3.2:1b)
£-1
kp(t,yih,£) = £(t + Voh,y +h j£1 )\zljkj(t,y;h,f)) £=2,3,...,m)
and )
£-1
(3.2.1c) vp = j£1 Al’j £ =1,2,...,m+1).

The matrix L is called the generating matrix of the Runge-Kutta method,
which, obviously, completely determines the method.

For the sake of shortness we shall use the phrase "Runge-Kutta method
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with scalar coefficients L "to mean" Runge-Kutta method with scalar coeffi-

cients with generating matrix L". Moreover, given a Runge-Kutta method with

scalar coefficients L = (Ai’j), we shall always assume that vz = 1,2, e
’

m+1) satisfies (3.2.1c). In addition, we shall always assume that

(3.2.2a) Vm+1 =1
and
(3.2.2b) vz e [0,1] € = 2;3;6::,m):

The Runge-Kutta methods with scalar coefficients defined here are of
the so-called explicit type. For a more detailed description of Runge-Kutta

methods see [VAN DER HOUWEN, 1977], [LAMBERT, 1973] and [STETTER, 1973].

3.2.2. Runge-Kutta methods with operator coefficients

We assume that azf(t,y) exists (for all t € [0,1] and y € interior(v)).
Let J(t,y) = azf(t,y).

DEFINITION 3.2.2. Let

R: ¢ » L™y,

(3.2.3a)
R(z) = (pi,j(Z)) (z € C).

Here R(z) is a strictly lower triangular (m+1) X (m+l1)-matrix and Py 5 is a
’

rational function with real coefficients for which

(3.2.3b) 0 €D (p, .) (i=2,3,...,m+*1 and j = 1,2,...,i-1).
C i, ]

Then the general m-stage Runge-Kutta, method with operator coefficients is

defined by

m
(3.2.4a) Y = 321 Mot e¥e

where
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k, (t,yih, £) = £(t,y),

(3.2.4b)
£-1

kp(t,y;h,£) = £(t+Vv,h,y+h jzl Az’jkj (t,y;h,£)) £ =2,3,...,m,
(3.2.4c) A, . =p, .(hJ(t,y)) (i=2,3,...,m+1l and j = 1,2,...,i-1)

i,] i,]
and

£2-1

(3.2.44) vp = jZ1 p[—,j(O) @ =1,2,...,m+1).

The operator R completely determines the method. For the sake of short-
ness we shall use the phrase "Runge-Kutta method with operator coefficients
R" to mean "Runge-Kutta method with operator coefficients defined in (3.2.4)
where R is of the type (3.2.3)". Analogous to the case of scalar coeffi-
cients, for a given Runge-Kutta method with operator coefficients R, vz
£ =1,2,...,m1) is always supposed to satisfy (3.2.4d). Furthermore, we

shall always assume that

(3:2.54) vm+1 =1
and
(3.2.5b) Vp € [0,1] “£=2,3,...,m.

The Runge-Kutta methods with operator coefficients that are defined
here, require one evaluation of the operator J per step. A more detailed
description of Runge-Kutta methods with operator coefficients, including
methods that require several evaluations of the operator J per step, can be
found in [VAN DER HOUWEN, 1977; section 2.3].

3.3. NONCONVERGENCE OF NEWTON'S METHOD

3.3.1. Strong stability of discretization methods

Let F € Fl and x, € D(F) (cf. (2.6.1)). Let K ¢ K where K(y,x) =

0
F(y) - F(x) and g € S where g = 0 (cf. (2.6.2), (2.6.9)).
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Suppose the initial value problem (2.6.12a) has a unique solution X.

Hence

X(t) - (X(£))F (x) (t € [0,1D),
(3:3.1)

X(0)

XO.
In (3.3.1) T(X(t)) denotes_[F'(X(t))]—l. It follows that X (1) = X (cf.
Theorem 2.6.4(ii)).

Suppose we solve (3.3.1) numerically, using a Runge-Kutta method of

the type described in section 3.2. Let x, denote the approximation to X(1) =

1
*
x thus obtained.
* * %
If Xg = X it is easily verified that X =X . If Xy = X + § where
§ € E with § # 0, then

Ix(1) -x1 < ||x0-x*||,

*
We wish x, to be closer to x than x, is, i.e.

1 0

(3.3.:2) ||x1—x*|| <1 xo-x*n .

In other words, we want the Runge-Kutta method to damp out the pertubations
§, just like the true solution does. This requirement is closely related to
the concept of strong stability of discretization methods for initial value
problems (cf. [STETTER, 1973; section 1.5.3]).

Suppose we solve (3.3.1) numerically, using Euler's method with stepsize

*
h = 1. We then obtain an approximation x, to X(1) = x that satisfies

1

(31:3::3) X, = X - F(xO)F(xo).

Hence, in this case, x1 is the first Newton iterate. Therefore, the itera-
tive process [M,F] where M is Newton's method is of type (1.1.13) where
Euler's method with stepsize h = 1 is used.

Consequently, nonconvergence of Newton's method might be conceived as a
case in which Euler's method with stepsize h = 1 is not strongly stable with
respect to perturbations in the vector X occurring in the initial value

problem (3.3.1).
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3.3.2. Class of strongly stable Runge-Kutta methods

Consider the initial value problem

(3.3.4a) Y(t) = CY(t) (t 20,

(3.3.4b) Y (0) ¥y
where Yg € nfﬂ C e L(IRn) and all eigenvalues u of C satisfy Re(u) < 0.
This type of differential equation has the property that perturbations that
are introduced at t = 0 are damped out as t grows (cf. [STETTER, 1973;
Theorem 2.3.4]).

Obviously, problem (3.3.4) is a rather poor model for problems of the
type (3.3.1). This last type of problem, however, turns out to be too compli-
cated in the analysis of strong stability of Runge-Kutta methods.

Let 6 € [0,4] and let R, be the Runge-Kutta method with operator co-

0
efficients for which

0 0
(3.3.5) Ry (2) = ( o ) .
[1-(1-8)2] 0

Suppose we solve the initial value problem (3.3.4a) where Y(0) = yo-kd
with § € nfﬂ It can be shown that if the numerical integration procedure
uses Re with stepsize h > 0, the effect of § is damped out in the approxima-
tions v of Y(tn) if tn grows (cf. [LAMBERT, 1973; pp. 240-241], where meth-
ods are described that, when applied to (3.3.4), are equivalent to the meth-
ods Re (6 € [0,4])). On the other hand, if we use Euler's method with step-
size h > 0, this need not be the case (cf. [LAMBERT, 1973; p. 227]).

Such phenomena may also occur in problems of the type (3.3.4) where
t € [0,T] with T < » (cf. [STETTER, 1973; section 2.3.7]).

Let M denote an iterative method for which the iterative process [M,F]
is of the type (1.1.13) and which is based on the numerical integration of
(3.3.1), using Re with 6 € [0,}]. In view of the above considerations one
might expect M to be more successful than Newton's method in some cases
where the latter fails (at least if E = IR").

In chapter 7 we shall therefore apply iterative methods of the type M
to problems for which Newton's method fails. In that chapter we shall also
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consider iterative processes of the type (1.1.13) that are based on the
numerical integration of (3.3.1), using the Runge-Kutta methods with scalar

coefficients L1 or L2. L1 and L2 are defined by

0o 0 0 0 o
o 0 o0 L 0o 0 0 o
1 6 4
(3.3.) 1= |5 0 Of md 1,=|0 35 0 0 o :
o 1 0 0 0 = 0 o
o 0 0 1 0

With respect to problem (3.3.4) these methods have a strong stability be-
haviour that is better than that of Euler's method when all eigenvalues u
of the linear operator C in (3.3.4) satisfy p € IR and pu < 0 (cf.
[VAN DER HOUWEN, 1977; pp. 89-90]).

For the sake of comparison, we shall also consider iterative pro-
cesses of the type (1.1.13) that are based on the numerical integration of

(3.3.1), using Euler's method with stepsizes h < 1.
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CHAPTER 4

CONSTRUCTION OF ITERATIVE METHODS

In this chapter we derive general formulae for iterative methods which

are canstructed by means of iterative imbedding (cf. p. 4).
4.1. ITERATIVE METHODS BASED ON RUNGE-KUTTA METHODS WITH SCALAR COEFFICIENTS

Let A € A and g € S be given (cf. (2.6.3) and (2.6.9)). Let L = (Ai,j)
be an m-stage Runge-Kutta method with scalar coefficients and let H = {ho,
hl""’hN} be a sequence of stepsizes.

Let F € Fl (cf. (2.6.1)) and set K = A(F).

The iterative method to be described here will be constructed by means
of iterative imbedding. More specifically, it will be based on the numerical

integration of the initial value problem
X(8) = -[(1-8)3 K(X(6) ;%) + tF' (x(e) 17}

{-K(X(t),XO) + F(X(t)) + g(t)[(l-t)K(X(t),XO) + tF(X(t))1}

(t e [0,1]),
(4.1.1)

x(0)

]
»

(cf. (2.6.12)). In short,

'

X(t) = £(t,X(t)) (t e [0,11),
(4.1.2)

X(0)

]
e

0 ’

where f(t,y) = ¢(t,y,xo) (cf. (2.6.12b)). In (4.1.1) (or, equivalently,
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(4.1.2)) X € D(F) is given. The numerical integration procedure is based
on the Runge-Kutta method L and the sequence of stepsizes H.
Suppose the initial value problem (4.1.1) has a unique solution X. Then
*
according to Theorem 2.6.4(ii) it follows that X(1) = x . The Runge-Kutta

*
approximation x, of X(1) = x is given by

1

*1 T Y1
where
Yo = %o
and
n
Yoig = zZ i (n = 0415 65 5N) s

Herewith we define for n = 0,1,...,N the quantities zn £ =1,2,...,m+1) by
£

n n
kg g = Bl * Wy _g¥ s2p 4]

(if £ > 1) and

If we repeat this process in the way described on page 4 we arrive
at an iterative process [M,F] of type (1.1.13). M is an iterative method
for Fl’ depending on A, g, L and H. For the sake of clarity we shall some-
times denote this iterative method by M(A,g,L,H) in order to emphasize its

dependence on A, g, L and f{. Hence

(4.1.3) M= M(a,qg,L,H).

We shall now give, for F € F1, an expression of G = M(F) in terms of K, g,

L and H, where K = A(F).

G: D(G) >~ E,
(4.1.4a)

where
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nO: D(T]O) > E,
(4.1.4b) D(no) = D(F),
ng(x) = x (x € D(no))
and
n
(4.1.4c¢) nn+1 = Cm+1 (n=20,1,...,N)

Herewith we define for n = 0,1,...,N the functions ¢, (£ = 1,2,...,m+1) by
Kg-1? D(<p_p) > B

(4.1.49)  Dkp ) = {x|x e D(gp_): (t +Vp_,h ,Lp  (x),%) € D(®)},

Kpg (X) = @(t_+v, 'h ,Cp  (x),%) (x € Dxp_))

(if £ > 1) and

n n
Czi D(CZ) -+ E,

(4.1.4e) D(;z) ={x|x e D(n )i x € D(K?) (G =1,2,...,8-1), if £ > 1},
n K—l n n
L) =n (x) +h j£1 A, 55 ) (x € D(g™).

4.2. ITERATIVE METHODS BASED ON RUNGE-KUTTA METHODS WITH OPERATOR
COEFFICIENTS

Again, iterative methods that will be described in this section are
based on the numerical integration of (4.1.1) (or (4.1.2)), where K, g and
Xy are given. However, the numerical 'integration procedure will now be based

on a Runge-Kutta method with operator coefficients.
4.2.1. Preliminaries

When using a Runge-Kutta method with operator coefficients to solve

the initial value problem (4.1.2), an expression for Bzf(t,y) is required.
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In this subsection we give a lemma which will be used in the next subsection
to derive a formula for Bzf(t,y).

We first give a lemma that will often be used subsequently.
LEMMA 4.2.1. Let C, A € L(E). Suppose C is invertible and

fal <« —L |

Itea™
Then C + A is invertible and

L

Itc+aT M < "[le .
1-Ier i enal
PROOF. see [KANTOROWITSCH & AKILOW, 1964; Theorem 4(2.V) 1 O

Let P: U > E and Q: U - L(E) where U is an open subset of E. If the

derivative of Q at x € U exists, we have Q'(x) € L(Z)(E), (see section 2.1).
LEMMA 4.2.2. Assume that Q(x) is invertible for all x € U. Define
W: U > E,
-1
W(x) = [Q(x)] "P(x) (x € U).

Let y € U. Assume that Q'(y) and P'(y) exist. Then W'(y) exists and

W yz=[ow 1 p' vz - [0 1 0" Wzlow) 1 p ()

(for all z € E).

PROOF. 1. Let I(E) denote the subset of L(E) that consists of all invertible
linear operators on E. From Lemma 4.2.1 it follows that this subset is open
in L(E). Let

R, : I(E) » L(E),

1

R, (C) = [cl (c e T(E)).

From [RALL, 1969; p. 96] it follows that for all C € I(E) the derivative
Ri (C) exists and [Ri(C)](E) = el %8rer? (for all C € L(E)). Let
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R,: U~ L(E),

R2(x) = Rl(Q(x)) (x € U).

From the chainrule it follows that R, is differentiable at y and

2

(4.2.1) RY(y)z = R} Q(y))Q' (N2 = ~[o(y) 17 0" (2l 17

(for all z € E).

25 Obviously W(x) = R2(x)P(x). Using the relation (4.2.1) it follows that

to prove the lemma, it is sufficient to prove that W'(y) exists and
W'(ylz = Ré(y)ZP(y) + R2(y)P'(y)z (for all z € E).

Choose ¢ > 0 such that B(y,0) © U. For h € E with Ihl < o let

1]

el(h) R2(y+h) - R2(y) - Ré(y)h

and

52(h) P(y+h) - P(y) - P'(y)h.
Then

W(y+h) - W(y) = Rz(y)[P'(y)h + ez(h)]

+ [Ré(y)h + el(h)][P(y) + P'(y)h + ez(h)].

Since, for i = 1,2,

le, (n)ll
——h,—-»o when h >0 (h # 0),

this completes the proof. O
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4.2.2. Formula for iterative methods based on Runge-Kutta methods

with operator coefficients

Let A ¢ A and geS. Let R = (pi j) be an m-stage Runge-Kutta method
’
with operator coefficients and let H = {ho,hl,...,hN} be a sequence of step-
sizes.

Let F € Fl and set K = A(F). Let ¢ be defined by (2.6.12b).
LEMMA 4.2.3. Let (t,y,x) € D(®). Then y € interior(D(®(t,+*,x))), x €
interior(D(®(t,y,*))) and the partial derivatives 32¢(t,y,x) and 33¢(t,y,x)
existt We have
32¢(t,y,x) =
(4.2.2) -g(t)I - [(1—t)31K(y,x) + tF'(y)]_1 x
{-31K(y,x) + F'(y) + [(i—t)allK(y,x) + tF" (y) Jo(t,y,x)}
and
83®(t,y,x) =
(4.2.3)  [O-02 Ky, + 8 ()17l 1-g(8) (1-6) 18 K(y, %)
(1—t)321K(y,x)¢(t,y,x)}.
PROOF. Since (t,y,x) € D(®), the operator [(1—t)31K(y,x) + tF'(y)] is in-

vertible. Set a = "[(1-t)31K(y,x) + tF‘(y)]_lﬂ. We recall that D(F) is an

open subset of E. From Lemma 2.6.3 it follows that alK is continuous at

(y,x). Further F" (y) exists. Consequently, a number ¢ > 0 exists such that

B(x,0) < D(F), B(y,0) < D(F) and

IT(1-8)3, K(7,%) + tF' ()] - [(1-8)3,K(y,x) + tF' () W < é

(for all x € B(x,0) and § € B(y,0)).

From Lemma 4.2.1 it follows that for all § € B(y,0) and x ¢ B(x,0) we have

(t,y,x) € D(®) so that B(y,0) < D(d(t,,x)) and B(x,0) < D(®(t,y,*)).
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From [RALL, 1969; Theorem 18.1] it follows that Az122 = Azzz1 (for all

zy and z, in E) with A = [(1—t)311K(y,x) + tF"(y)]. Consequently, from Lemma
4.2.2 it follows that 32¢(t,y,x) exists and that (4.2.2) holds.
Since 312K(y,x) and 821K(y,x) exist, and 312K(y,x)2122 = 821K(y,x)z2z1

(for all z, and z., in E) (cf. [RALL, 1969; p. 116]), from Lemma 4.2.2 it

1 2
follows that 33¢(t,y,x) exists and that (4.2.3) holds. O
Let xo € D(F) be given. Set f(t,y) = @(t,y,xo). From Lemma 4.2.3 it

follows that whenever (t,y,xo) e D(®), the partial derivative 32¢(t,y,xo)
exists. Thus 82f(t,y) exists and 32f(t,y) = 82¢(t,y,x0) (foxr all
(t,y) .€ D(£f)).

Consider the initial value problem (4.1.1) and suppose it has a unique
solution X. Then according to Theofem 2.6.4(ii) it follows that X(1) = x*.

*
The Runge-Kutta approximation Xy of X(1) = x is given by

*1 T YNt
where
Yo = %o
and
n
yn+1 = zm+1 (n = 0,1,:0s:N) .

Herewith we define for n = 0,1,...,N the quantities zz £ =1,2,...,mtl) by

_ n
e g = BT 9 1 PyeTp !
(if £ > 1),
A s haE(e ,y ) (3 =1 2-1)
L35 2,5 n°2 " n'*n J gue seey
(if £ > 1) and i
n £-1 (n), n
zp =y +h, jzl My, 35 -

If we repeat this process in the way described on page 4 we arrive
at an iterative process [M,F] of type (1.1.13). M is an iterative method

for Fl' depending on A, g, R and H. Analogous to (4.1.3) we shall sometimes
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denote this iterative method by MM (A,g,R,H). Hence
(4.2.4) M = MM(A,qg,R,H).
We recall that for a rational function with real coefficients p, the
set DE(D) is defined by (2.2.7). We shall now give, for F € Fl’ an expres-

sion of G = M(F) in terms of K, g, R and H, where K = A(F).

G: D(G) > E,

(4.2.5a)

where

(4.2.5b) D(no) = D(F),

no(x) =x (x € D(no))
and
p— n -
(4.2.5c) nn+1 = Cm+1 (n=20,1,...,N).

Herewith we define for n = 0,1,...,N the functions CZ (L = 1,;2;:0.,m%1) by
n n
Kz_lz D(Kz_l) 9 B,
(4.2.5a) DG ) = {x|x eD(ch) )i (t_+v, ,h 00 . (x),x) € D(®)}
e £-1 £-1"" n 4-1"n""£-1 ’ 4
n _ n n
Kpog(¥) = @(t +v, h ,zp ,(x),x) (x € D(kp_,))

(if £ > 1) and
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n n
Lp: D(Lp) > E,

D(Cz) ={x]|xe D(n); x € D(K?) and

(4.2.5€e)
hn82d>(tn,nn(x),x) € DE(pKIj)(j =1,2,...,4-1), if £>1},
n £:1 (n) n n
Lp(x) =n_(x) +h j£1 Py, 3550 (x € D(T)),

where, for £ > 1,

(n) _ = o
(4.2.5£) Az'j = pzlj(hnazé(tn,nn(x),x)) (3 = 12ss:5851)
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CHAPTER 5

LOCAL CONVERGENCE

As already noted in section 2.5, an iterative process will have a posi-
tive radius of convergence if and only if it is locally convergent.

Throughout this chapter we denote with A and g given (fixed) elements
belonging to A and S respectively (see (2.6.3) and (2.6.9)). Further, F de-
notes a given (fixed) operator, F € F1 (see (2.6.1)) and K = A(F).

Let R be a Runge-Kutta method with operator coefficients and let H be
a sequence of stepsizes. In this chapter we investigate the conditions which
should be imposed on A, g, R and H for the iterative process [M,F] where
M = M(a,g,R,H) (cf. (4.2.4)) to be locally convergent. In particular we
shall investigate under what conditions on A, g, R and H the iterative pro-
cess [M,F] exhibits one of the three types of convergence behaviour that
were introduced in the Definitions 2.5.2 - 4. The most obvious conditions are
presented in subsection 5.2.2, in which R is supposed to be a Runge-Kutta

method with scalar coefficients, and in subsection 5.2.3.
5.1. NECESSARY CONDITIONS AND SUFFICIENT CONDITIONS

Throughout section 5.1 we denote with R = (pi,j) and H = {ho'hl""’hN}
respgctively a given (fixed) m-stage Runge-Kutta method with operator co-
efficients and a given (fixed) sequence of stepsizes. In particular, R may
be a Runge-Kutta method with scalar coefficients.

Let M = MM (A,g,R,H) (cf. (4.2.4)). In this section we present a theorem
that gives necessary conditions and ,sufficient conditions for the iterative
process [M,F] to have a local convergence behaviour of one of the types that
were introduced in the Definitions 2.5.2-4.

To that end we introduce the following functions.

For any t € [0,1], let
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(5.1.1) D, = {z |z ec; 1-t+tz # 0}.
For i = 1,2, let

(5.1.2a) u, D(ui) # ¢

where

(5.1.2b) D(u;) = {(t,2) | 2z € D, te [0,1]}

and for all (t,z) € D(ui),

[t=tttz] [1-z] - glt) (1f 1 = 1),
(5:1:2¢) ui(t,z) = { -1
-[1-g(t) (1-t) J[1-t+tz] (if i = 2).

Let

(5.1.3a)
Y= TN+1
where
To: [
(5.1 «3b)
TO(Z) g 1
and - =
- n —-—
(5.1.3¢) Tn+1 = am+1 (n=20,1,...,N).

Herewith we define for n = 0,1,...,N’the functions an £ =1,2,...,m+1) by
L

n n
HZ—I: D(ﬂz—l) > T,

n _ n
(5:1:3d) D(ﬂz_l) = D(a£—1) n D i

t +v h
n £-1n

n n
(2} = uy(t +v, ;b ,2)a, (2} +uy(t +v, ;b ,z) (2 € D(m, ,))
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(if £ > 1) and

(5.1..3e)

n n
ap: D(aﬂ) > C,

D(az) ={z|zeD(t); ze¢ D(r") and
n 3
hnul(tn,z) € Dc(pz’j)(j =1,2,...,4-1), if £ > 1},
n /e—l n n
ap(z) =1 (2) +h j£1 Pp, 3Pty (£,02)) 75 (2) (z € D(ap)).

Consider the following conditions (we note that sr(T) with T € L(E) is de-

fined by (2.2.2); the set D, (y) is defined by (2.2.7)).

*  k
CONDITION O. alK(x ,X ) is invertible and C € DE(Y) where

C = [Blﬁ(x*,x*)]_lF'(x*).

CONDITION 1. Condition O holds and sr(y(C))
CONDITION 2. Condition O holds and sr(y(C))

CONDITION 3. Condition O holds and ly(c)ll <

A
—_-
.

IA
-

-
.

CONDITION 4. Condition O holds and ly(c)ll < 1.

CONDITION 5. Condition O holds and y(C) = O.

Then the following theorem holds.

THEOREM 5.1.1. The following propositions (i) - (v) are true.

(1)

(ii)

Condition 1 is a sufficient condition for the iterative process [M,F]
to be stably convergent.
Condition 2 is a necessary condition for the iterative process [M,F]

to be stably convergent.

(iii) Condition 3 is a sufficient condition for the iterative process [M,F]

(iv)

(v)

to be regularly convergent.
Condition 4 is a necessary condition for the iterative process [M,F]
to be regularly convergent.

Condition 5 is a necessary and sufficient condition for the iterative

process [M,F] to be guadratically convergent.

The proof of this theorem will be given in section 5.3.

In many cases it might be very complicated to verify whether or not

one of the Conditions 1 -5 is satisfied. In the next section we shall give,
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amongst other things, less complicated stipulations under which one of the

Conditions 1 -5 is satisfied.

5.2. FURTHER CONDITIONS ON THE ITERATIVE METHODS

This section is divided into three subsections. The first contains two
theorems that give sufficient conditions under which the iterative process
[M,F] where M = ]M(A,g,R,H) is stably convergent and quadratically conver-
gent, respectively. Here R is a given Runge-Kutta method with operator co-
efficients and H is a given sequence of stepsizes. These conditions are
simpler than those given in Theorem 5.1.1. The last two subsections give
still simpler conditions under which [M,F] exhibits one of the types of con-

vergence behaviour that were considered in section 5.1.

5.2.1. Simpler sufficient conditions

Throughout subsection 5.2.1 we denote with R = (pi j) and H = {hO'hl’
’

...,hN} respectively a given (fixed) m-stage Runge-Kutta method with opera-

tor coefficients and a given (fixed) sequence of stepsizes. Let M = IM (A,q,

R,H) . Consider the following condition:

forn = 0;1:56:8
(54:.2:1)
—hng(tn) € DG(pZ,j) and pl,j(_hng(tn)) = pﬁ,j(O)

£ =2,3,...,m1; j =1,2,...,8-1).

The following two theorems hold.

THEOREM 5.2.1. Assume that (5.2.1) holds and that sP([F'(x*]_lalK(x*,x*)) =

{1}. Then the iterative process [M,F] is stably convergent.

THEOREM 5.2.2. Assume that (5.2.1) holds and that 31K(x*,x*) = F'(x"). Then

the iterative process [M,F] is gquadratically convergent.
We shall prove these theorems in section 5.3.

REMARK 5.2.1. If E = IR then, obviously, the assumptions of Theorem 5.2.1

and Theorem 5.2.2 are equivalent.
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Suppose E # IR, then this need not be the case, as the following example
shows.

Choose u,,u, € E such that (ul,uz) = 0 and "ulu = "u2" = 1. Define

2
T € L(E) by

Tx = (x,ul)u2 (x € E).
Thus, 02 - 0 so that sp(T).= {0}. Suppose that, for the operator A € A,
[A(F) 1(y,x) = F(y) - F(x) + T(y-x) (FeF).
* * *
Suppose that F(x) = x. Hence F'(x ) = I and 31K(x ,X ) = I+T. Consequently,

* % *

alK(x ,X ) # F'(x ). On the other hand, from Theorem 2.2.2 we have
x = * %

sp(LF* () 1710 k™, ™))

sp(I+T) = {1}. g

REMARK 5.2.2. 31K(x*,x*) F'(x*) if, for example

[a(F)](y,x) = F(y) - F(x), or
[a(F) J(y,x) = F'(x) (y-x).

The imbedding (1.1.5) with K = A(F) where
[(A(F) I(y,x) = y-x

is sometimes used in the discrete imbedding method (see e.g. [MENZEL &

* * *
SCHWETLICK, 1976]). Since in general 81K(x ,X ) # F'(x ), this choice of A
does not seem to be suitable for iterative imbedding (see also the Theorems

5.2.3.-8). 0

REMARK 5.2.3. The condition (5.2.1) holds if R = L where L is a Runge-Kutta
method with scalar coefficients. This case will be considered in the next
subsection. '

If R is a Runge-Kutta method with operator coefficients, the condition
(5.2.1) holds if g(tn) =0 (n=20,1,...,N). This case will be considered in

subsection 5.2.3. O
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5.2.2. Iterative methods based on Runge-Kutta methods with scalar

coefficients

We recall that throughout this subsection A, g and F are given (fixed)
elements belonging to A, S and Fl respectively.

The iterative methods to be considered in this subsection are of the
type described in section 4.1. We shall give three theorems that give neces-
sary and sufficient conditions on A in order that for any Runge-Kutta method
with scalar coefficients L and any sequence of stepsizes H, the iterative
process [M,F] where M = M (A,g,L,H) may have one of the three types of con-
vergence behaviour with which Theorem 5.1.1 was concerned.

The proofs of these theorems will be given in section 5.3.

THEOREM 5.2.3. The following propositions (i) and (ii) are equivalent.

(1) For any Runge-Kutta method with scalar coefficients L and any sequence
of stepsizes H the iterative process [M,F] where M = M (A,q,L,H) is
stably convergent.

(11) sp([F* )17 k(" x") = (1),

This theorem is a consequence of Theorem 5.2.1 and Theorem 5.1.1(ii).
The next two theorems are consequent on the last three propositions of

Theorem 5.1.1 and of Theorem 5.2.2.

THEOREM 5.2.4. The following propositions (iii) and (iv) are equivalent.
(iii) For any Runge-Kutta method with scalar coefficients L and any sequence
of stepsizes H the iterative process [M,F] where M = M (A,q,L,H) is

regularly convergent.
(iv) 8K ,x") = ' (x).

THEOREM 5.2.5. The following propositions (v) and (vi) are equivalent.
(v) For any Runge-Kutta method with scalar coefficients L and any sequence
of stepsizes H the iterative process [M,F]where M = M (A,q,L,H) is

quadratically convergent.
(vi) 3, K(x",x") = Fr(x").

An immediate consequence of these theorems is, of course, that the pro-

positions (iii) and (v) are equivalent.
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5.2.3. Iterative methods based on Runge-Kutta methods with operator

coefficients

We recall that throughout this subsection A, g and F are given (fixed)
elements belonging to A, S and F1 respectively.

In this subsection we consider iterative methods of the type described
in section 4.2. Analogous to the previous subsection: we shall give three
theorems that give necessary and sufficient conditions on A and g in order
that, for any Runge-Kutta method with operator coefficients R and any se-
quence of stepsizes H, the iterative process [M,F] where M = M (A,q,R,H)
may have one of the three types of convergence behaviour with which Theorem
5.1.1 was concerned.

The proofs of these theorems will be given in the next section.

THEOREM 5.2.6. The following propositions (i) and (ii) are equivalent.

(i) For any Runge-Kutta method with operator coefficients R and any sequence
of stepsizes H the iterative process [M,F] where M = M (A,qg,R,H) is
stably convergent.

(ii) sp([F'(x*)]_lalK(x*,x*)) = {1} and g(t) = 0 (for all t e [0,1)).

Theorem 5.2.6 is similar to Theorem 5.2.3. As may be expected we can

also obtain results similar to Theorem 5.2.4 and Theorem 5.2.5.

THEOREM 5.2.7. The following propositions (iii) and (iv) are equivalent.

(iii) For any Runge-Kutta method with operator coefficients R and any se-
quence of stepsizes H the iterative process [M,F] where M = M (A,q,R,
H) is regularly convergent.

(iv) 3,K(x,x") = F'(x") and g(t) = 0 (for all t e [0,1)).

THEOREM 5.2.8. The following propositions (v) and (vi) are equivalent.
(v) For any Runge-Kutta method with operator coefficients R and any se-
quence of stepsizes H the iterative process [M,F] where M = M (A,q,R,

H) is quadratically convergent.,
(vi) alK(x*,x*) = F'(x") and g(t) = 0 (for all t e [0,1)).

An immediate consequence of these theorems is that the propositions

(iii) and (v) are equivalent.
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5.3. PROOF OF THE THEOREMS

As may be expected, the proofs of the theorems listed above exhibit
similarities. Therefore in the next subsection we have collected some lem-
mata that will be useful for proving the theorems of both section 5.1 and
section 5.2. Lemma 5.3.8 (statement (5.3.13d)), Lemma 5.3.10 (statement
(5.3.144d)) and the Lemmata 5.3.11 and 5.3.12 will play an important role in

the proofs of the theorems.

5.3.1. Preliminary lemmata

Throughout subsection 5.3.1 we denote with R = (pi,j) and H = {hO'hl’
...,hN} respectively a given (fixed) m-stage Runge-Kutta method with opera-
tor coefficients and a given (fixed) sequence of stepsizes.

Furthermore, G = M(F) where M = nd(A,g,R,H). Since F € F1 and K = A(F)

. *
where A € A, there exist positive constants o, B*, He M, H

h
1 2 and u3 suc

that B(x*,c*) c D(F), and such that

(5.3.1a) e (x5 170 < g%,
(5.3:.1b) IF"(x)l <y,
(5.3.1c) "811K(y,x)" <y "alzK(y,x)" < u, and “821K(Y,X)" < My

(5.3.14d) K(x,x) =0

for all x,y € B(x*,c*) (see (2.6.1), (2.6.2) and (2.6.3)). As a consequence

of Lemma 2.6.1 and (5.3.1) we have for all x,y,z € B(x*,o*)

(5.3.2a) Ir'(x) - F'(p)I < pllx-yl,

(5.3.2b) ||81K(y,x) - 9,K(z,x) I < u1||y—z||,
(5:3:2c) ||31K(y,x) - 31K(y,z)|| < ]_12"x—z||,
(5.3.2d) I 3 Kly,x) - 32K(z,x) I < u3"y—z||_

We note that
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* *
81K(y,x)-81K(x /X )
* * * *
= 9, Kly,x) - BlK(y,x )+ BIK(y,x ) - 9 K(x ,x ).

* %
Hence, for all x,y € B(x ,0 ) we have

(5.3.3a) 13, K(y,x) - 81K(x*,x*)" < plﬂy—x*" + u2nx_x*u
and
(5.3.30)  I[(1-0)8,K(y,x) + tF' ()] - [(1-0)3,K(x",x") + tF' ()
< (1-8) fu dy=x"1 + p2ug_x*u} + tuly-x"I (for all t € [0,1]).

The following lemma is a general result that will often be used subse-

quently.

LEMMA 5.3.1. Let P: D(P) > E with D(P) < E. Let x,y € D(P). Suppose V =

{z [z = x+t(y-x) with t € [0,1]} c interior(D(P)). Let P'(z) exist (for all
z € V) and suppose a constant § > 0 exists such that 1P'(z)-P' (x)I < §lz-xl
(for all z € V). Then

IP(y) - P(x) - P'(x) (y-x) | < %—"x—y"z_

PROOF. see [SPIJKER, 1972; Lemma 1]. g
We return to operator K.

LEMMA 5.3.2.
%* *
82K(x,x) = —BIK(x,x) (for all x € B(x ,0 )).
PROOF. Let x,y € B(x ,0"). Using (5.3.1d), (5.3.2b,c) and Lemma 5.3.1,

Ik(x,y) - K(x,x) + 9, K(x,x) (y=x) I

IA

Ik(y,y) - R(x,y) - alx(x,y) (y=x) 1 +||31K(x,y) - BlK(x,x) Il x—yll

IA

e} x-gl? + _lx-yl 2
2 2 .
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This proves the lemma. 0
* %
Let x,y € B(x ,0 ). Then
3. K(y,x) - 3.K(x" ,x") = 3.K(y,x) - 3.K(x",x) + 3.K(x",x)
5 (y,x) - 5 (x ,x = By (y,x) - SK(x,x SKx,x
* %
-9, Kix,x) + 82K(x,x) - 32K(x X)) .
Therefore, as a consequence of (5.3.2d), Lemma 5.3.2 and (5.3.3a) we have
I = *xO0 < — I x—x"1
(5.3.4) 32K(y,x) BZK(x ,x ) p3Hy x I+ (u1+u2+u3) X-X
*x %
(for all x,y € B(x ,0 )).
We recall that the operator ¢ is defined in (2.6.12b). Each iterative
method described in chapter 4 is based on the numerical integration of the

initial value problem (2.6.12a). Therefore, ¢ will play an important role

in the proofs of the theorems. The next five lemmata are concerned with &.

LEMMA 5.3.3. Let t € [0,1] and suppose that (t,x*,x*) € D(®). Assume that

alK(x*,x*) is invertible and set
*  x _=1 *
Cc = [alx(x /X )] TF'(x).
Then the operator [(1-t)I + tC] is invertible. Further
* * *
X € interior(D(®(t,+,x )) n D(®(t,x ,*)))

and the derivatives BiQ(t,x*,X*) (i = 2,3) exist and satisfy

32®(t,x*,x*) = —g(t)I + [(1-t)T + tC]_1[I—C],
* % ' -
a3®(t,x ,x ) = ={1 - g(t) (1-t) }[(1-t)I + tc] ~.
PROOF. The result follows from Lemma 4.2.3 and Lemma 5.3.2. ]

LEMMA 5.3.4. Let t € [0,1]. If (t,x*,x*) € D(®) then positive constants B

and 0 exist such that (t,y,x) € D(®) and



53

(5.3.5) l[(1—t)31x(y,x) + tF'(y)]_lﬂ < B

*
whenever x,y € B(x ,0).

PROOF. Set B = 2"[(1-t)31K(x*,x*) + tF'(x*)]_lu. Set p = max{ul,pz,u} and

E%E}. From Lemma 4.2.1 and (5.3.3b) the result follows. 0

. *
o = min{o ,

LEMMA 5.3.5. Let t € [0,1]. If (t,x*,x*) € D(®) then positive constants Cyr

c2 and 0 exist such that (t,y,x) € D(®) and

(5.3.6) lo(t,y,x)l < c1“x-x*“ + czﬂy-x*"

*
whenever X,y € B(x ,0).

PROOF. Set 6, = It (x)l and 61 = g, & uc*. From (5.3.2a) it follows that

e (z)l < 61 (for all z € B(x*,c*)). From Lemma 2.6.1 it now follows that
* * *
(5.3.7) Ilry)l < Glﬂy—x I (for all y € B(x ,0 )).

- * % _ % .
Set 62 BIK(x ,x )l and 62 62 + (u1+u2+u3)o . From (5.3.3a) it follows

that

"31K(z,x)ﬂ < 82 + (u1+u2)d* (for all z,x € B(x*,c*)).
From (5.3.4) and Lemma 5.3.2 it follows that

"azK(x*,z)" <6, + (u1+u2+u3)0* (for all z € B(x*,o*)).

* *
Let x,y € B(x ,0 ). Then
* * * *

K(y,x) = K(y,x) - K(x ,x) + K(x ,x) - K(x ,x ).

Using Lemma 2.6.1 it follows that ,
* * N * *

(5.3.8) Ik(y,x) I < 52{“y—x I+ Ix-x"1} (for all x,y € B(x ,0 )).
From Lemma 5.3.4 it follows that numbers B > O and 0 € (0,0*] exist such

that for all x,y € B(x*,o) we have (t,y,x) € D(®) and (5.3.5). Together with
(5.3.7) and (5.3.8) this yields the result with ¢, = B[l-+[g(t)l(1—t)]62
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and c, =cy + BL1 + t|g(t)|]51- a

* ok
LEMMA 5.3.6. Let t € [0,1]. Suppose (t,x ,x ) € D(¢). Then positive constants

c1 i’ 02 i (i = 2,3) and 0 exist such that y € interior (D(®(t,+,x))),

’ ’

X € interior(D(®¢(t,y,*))) and the derivatives BiQ(t,y,x) exist and satisfy

(5.3.9) 13,0(t,y,x) - 3,0(t,x ,x)l < Ix-x"1 + ly-x"I (i = 2,3)
i3l i fYeX) =3, X oX < Cl,i X—X 02'i y-X i=2,

*
whenever x,y € B(x ,0).

PROOF. 1. From Lemma 5.3.4 and Lemma 5.3.5 it follows that positive constants
cl, cé, B and a number o € (O,o*] exist such that for all x,y € B(x*,c) we
have (t,y,x) € D(%¢) and (5.3.5), (5.3.6). From Lemma 4.2.3 it follows that
X € interior(D(®(t,y,*))), y € interior(D(®(t,+,x))) and the derivatives
Bi¢(t,y,x) (i = 2,3) exist whenever x,y € B(x*,c).

Let x,y € B(x*,c), set T = [(1—t)61K(y,x) + tF'(y)] and T* =
[a-t)a,k",x") + tr (x)].
2. From Lemma 4.2.3 it follows that

3,8(t,y,%) - Bzé(t,x*,x*)
=-mf%4ﬁwm)+WW)+Ubw%ﬁwm)+wthwde
+ [T*]_l{—alK(x*,x*) +F'(x)}.

Note that
AN RIS R 5 R O ek nl

Using this relation we obtain

1a,0(t,y,%) - a2®(t,x*,x*)"

IA

"[T]_lu{ﬂalK(y,x) - 0, K& x) - Py + B )

+La-la  ky,x)l + e lle(t,y,x) 0}

+

H[T]—lﬂﬂ[T*]—IHHT-T*"{"81K(x*,x*)" + P (x)1}.
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(5.3.1b,c) and (5.3.6) the result follows

Using (5.3.5), (5.3.3), (5.3.2a),

for i = 2.
From Lemma 4.2.3 it follows that

3
5.0 3 B(t,x %X
3 (tIYIX) - 3 (trx lx)
= - g(t)(l-t)){[T]-lazx(y,x) - [T*]-182K(X*IX*)}
= (1-t)[Tj’laZIK(y,x>¢<t,y,x>.
Hence'

Is 3.0(t,x ,x)
3<I>(t,y,x) - 9, (€, % ,%X )
-1 * %
< |1 - g(t) (1-t) [{I[T] “Hazx(y,x) - 3,K(x ,x o+
+ H[T]_iﬂﬂ[T*]_lﬂﬂT-T*"Ha2K(x*,x*)H}

+ (1_t>n[T]‘1nuazlx(y,x)uu¢<t,y,x)u.

(5.3.1c) and (5.3.6) the result follows

g

Using (5.3.5), (5.3.4), (5.3.3b),

for i = 3. This completes the proof.

LEMMA 5.3.7. Let t ¢ [0,1] and suppose (t,x*,x*) € D(®). Let

f: D(f) - E,

f(z) = o(t,y,x) (z = (y,x), z € D(f))

with
D(£f) = {(y,x) | x,y € E; (t,y,x) € D(8)} € E x E.
Then a constant o > 0 exists such that

* * * *
B(x ,0) x B(x ,0) < D(f), {t} x B(x ,0) x B(x ,0) < D(2),

£f' ((y,x)), 32®(t,y,x) and 83¢(t,y,X) exist

and
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(5..3. 10} f'((y,x))(hl,hz) = 32<I>(t,y,x)h1 + 33®(t,y,x)h2 ((hl’h2) € EXE)

*
whenever x,y € B(x ,0).

PROOF. Notice that the operators K, 9,K and 311K are continuous on D(F) x D(F)

1
(cf. Lemma 2.6.3 and (2.6.2,3)). Further the operators F, F' and F" are con-

tinuous on D(F) (cf. (2.6.1)). From Lemma 5.3.6 it follows that a constant
o > 0 exists such that t x B(x*,o) X B(x*,c) c D(®) and the derivatives
aié(t,y,x) (i =2,3) exist>whenever X,y € B(x*,o). Consequently B(x*,o) X
B(x*,d) c D(f). It is easily verified that the mapping (y,x) = 32¢(t,y,x)
and the operator f are continuous on B(x*,c) X B(x*,o). The result now fol-

lows from [BROWN & PAGE, 1970; pp. 284-285 and Theorem 7.4.2]. 0

In the next lemmata Condition O will play an important role. We first

introduce the function G*.
Suppose that, for n = 0,1,...,N,
* * * *

X € interior(D(¢(tn,°,x ))), the derivative 32®(tn,x X

(5.3.11) exists and
* % .

h 3,0(t ,x ,x) € DE(pzlj) £ =2,3,...m+l; j =1,2,...,8-1)
(cf. (2.2.7)). Let
(5.3.12a) G =G
where G is defined in (4.2.5a-d) in which the functions Cz are defined by

tp: D(Lp) > E,
(5.2.12b) D(Cz) ={x|xe D(n); x'€ D(K?)(j =1,2,...,8-1), if £ > 1},

£-1 (n)

n * n n
Lp(x) = n (x) +h jzlA 2, Kj(X) (x € D(Zp))

(n=0,1,...,N; £ =1,2,...,m+1). In (5.3.12b)



57

3.12 K(n) - h 3.0 L x" = 0,1 N; £ =2,3 1
(5.3. c) 'erj = pzlj( n’2 (tn,x X )) (n = rdyoeee Ny = 1370, mtl;

j=1,2,...,2-1).
For n = 0,1,...,N we set
(5.3.12d) 71 =
ede nn - nn,
*n *n n
(5.3.12¢) L, =g, and, if £>1, Ky =xkp, (@ =1,2,..m1).

REMARK 5.3.1. Obviously, if R = L, where L is an m-stage Runge-Kutta method
*
with scalar coefficients, then G = G where G = M(F) with M = ﬂw(A,g,L,H).
]

The operator G* will be a useful tool in investigating the local con-
vergence behaviour of [M,F] where M = ™ (A,g,R,H). To that end we also need
an expression of (6" 1 (x").

Let the functions vy, T (n=0,1,...,N+1), GE and, for £ > 1, nz_l
(n=0,1,...,N; £ =1,2,...,m+1) be defined in (5.1.3).

LEMMA 5.3.8. Let Condition O be satisfied. Then (5.3.11) holds. Let G* be
defined in (5.3.12). Then for n = 0,1,...,N the propositions (5.3.13a),
(5.3.13b) and (5.3.13c) are true.

. . . * *
Positive constants on and Gn exist such that B(x ,on) c D(nn),

CeD (1),
E n
(5.3, 13a)

* * *
the derivative nn'(x) exists and "nn'(x)—Tn(C)H < Gnﬂx-x I

*
whenever x € B(x ,on).

_ - . .
For £ =1,2, /m+1 positive constants 9 pr 62,n,ﬂ and,if £ > 1, Gl,n,ﬂ-l

’
exist such that
n 1 n
B(x* o ) € D(K* ), C e D_(ry .), the derivative k) 1" (x)
"k L-1"" E L-1"" £-1

exists,

(5.3.13b) N
* " _n X
Ikp_ 1" (x) "£—1(C)" < 61,n,£—1"x x |
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(if £ > 1) and

¥ & Bles c "), the derivati [*n]'() ist
B(x Ionlz) D(Cﬂ ), € DE(OLz » the derivative [g, X) exists,

(5.3.13c) n
Ites 1 - oSl < I x-x"1
[Cz (%) aﬂ(C) 62,n,£ X=X
" * = — . * % _ o "
whenever x eNB(x 'on,l)' n particular, since G = nN+1 = ;m+1 an
Y= et T Cper’
* * % * .
B(x ,0 ) ¢ D(G ), the derivative [G ]'(x ) exists and
N,m+1
(5.3.134)
* *
Ifc™ 1" (x) - y(@l <3¢ I x-x"1l

2,N,m+1

*
whenever x € B(x ,0 }.

N,m+1

PROOF. Since Condition 0 is satisfied, (5.3.11) holds (cf. Lemma 5.3.3,
(5.1.2) and (5.1.3e)).

1. Let n = 0. Since n;(x) = x (for all x € D(F)) and TO(Z) = 1, the pro-
position (5.3.13a) is true for n = 0.

2. Suppose (5.3.13a) is true for some n = n, with 0 < n, < N.
n n

2.1. Since C: 0 = n;o and a1o = Tno, the propositions (5.3.13b) and (5.3.13c)

are true for n = n, and P =1,

2.2. Suppose (5.3.13b) and (5.3.13c) are true for n = n, and all £ < 20—1

where 2 < ZO < m+l. Set tnollo-l = tnO + vgo_lhno. Then positive constants

ng’ 61,n0’£_1 & =2,3,...,£,-1) and 62’no'£0_1
we have (5.3.13a) is true, (5.3.13b) is true (for £ = 2,3,...,

51, S exist such that for

n=n0

Ko—l).and (5.3.13c) is true (for £ = Zo—l), if OnO = 0, and Ong, L = 0y
(£ = 1,2,...,ZO~1).
3 *110 * . %10 * *
Since [;1 _1]‘(x ) exists and EZ _1(x ) = x , a constant 6 > 0 and a

- - — n
constant o, € (0,0, ] exist such that B(x*,c = D(C* M ) and
2 1 2 Lo-1

*no * * * -
"Cl _1(x)-x I < ellx-x"1| (for all x € B(x ,02))'
0

From Lemma 5.3.6 and Lemma 5.3.7 it follows that positive constants Cy oy
’

c2 ¥ (i = 2,3) and a constant 53 > 0 exist such that (5.3.9) and (5.3.10)
’

hold for t = t Lo-1 with o = 0y. Set g, = mln{02,03/(1+8)}. Then
)

n,

* - -

Bi(x ,04) [ D(Kzgg1 . Let x € B(x*,04). As a consequence of the chainrule
0
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<70
and (5.3.10) it follows that [Kz J1'(x) exists and

*no n
[KZ _1]'(x) = 32<I>(tn A2 1,C£ (x) X)[CK 1' (%)
0 0’0
+ 33®(t 0' I'CE (x) X) o

Hence, (cf. Lemma 5.3.3),

*no % N no
[k 1'(x) = u (t /Cla (C) + u,(t _4:©)
Zo—l 1 nO,Zo-l ﬂo—l 2 no,ﬂo 1
n
0
=7 (Cc).
Ko—l
Further
n n
Itkp 23000 - [k 210G
0 0
n 1'1
_ I
< "82®(tn ,K 1"& L (0),x) - B0 ) 1,x iX )|u[;£ Il
0 "or%o
+ ﬂazé(t 2 1,x X )"“[CZ Jr(x) - [;2 1 (x5
oo
n
+ I3 ot Ty 0 00X - agete K x)]
3 no, 0 -1 K 3 no, 0-1
< " o)l *n{nno ol +6 5.1
< (o) 5 + oy S8)x-xTlla, ,(C) 2,n,2 -1
0 0'%0
+ 13 ot %, x )6 Ix-x*1 + (c, . +c, .8)0x-x"I.
PR WAL 2,n5,8,-1 1,37%2,3
Set
%o
$ = (c +c. 0){la ol + 3 g} +
1,n0,£0—1 1.2 252 Zo—l 2,no,£O-1 4

I I
HREPAAL A g ) 62 ngby-t ¥ S1,3 F 92,3%

Then (5.3.13b) holds for n=n_ and £ = £_ when © Oye Consequently

0 0 n ZO n
B(x ,0 ) & D(gﬂ 0) and for any x € B(x ,0 ) the derlvatlve [EK ] (x) exists

and

* 0 . _ U, * 0 *Q i
[czo 1'(x) = nno(x) + hn jz A 2 ’j[Kj 1Y (x) .
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Hence,
L -1
[;*noj-(x*) =1 (C) +h OZ o, (b u,(t om0
ZO n, g 3=1 Zo,j n, 1 no' j
= aZO(C).
0
Further

n E n
Ity 2170 - [z 21
0

£ -1°
0 * n0 *
< {8 +nh ) tap, 08, Hxx'l.
"o To =1 0l tMprd
Hence (5.3.13c) is true for n = n, and £ = ZO. Therefore (5.3.13b), (5.3.13c)
are true for n = n, and all £ < m+l
o * *1 ) s
2.3. Suppose no < N. Since nn0+1 = Cm+1 and Tn - am+1, the proposition
(5.3.13a) is true for n = n_+1. This proves the lemma. 0

0

* *
Lemma 5.3.10 describes the similarity between G and G near x . For

the proof of Lemma 5.3.10 we need the following lemma.

LEMMA 5.3.9. Let p be a rational function with real coefficients. If
C0 € DE(p), then positive numbers € and § exist such that all C € L(E) with
"C-—CO" < € belong to DE(p) and satisfy the inequality

lp(c) —p(co)ll < 6Ilc—coll .

PROOF. Let p(z) = [q(z)]—ip(z) whereby p and q are polynomials with real

coefficients. Then 5,61,6 > 0 exist such that all C € L(E) with "C-—CO" <e

2
satisfy

"q(C)-—q(CO)“ < dlﬂc-cou
and

lp(c) —p(Co)" < 621Ic—c0l|.

1

- -1 -1 -1 .
Further [CIJ - [C2] = [C2] [C2-C1][C1] (for all Cl,C2 € L(E) which

are invertible). Together with Lemma 4.2.1 this yields the result. O
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LEMMA 5.3.10. Let Condition O be satisfied. Then (5.3.11) holds. Let G* be

defined in (5.3.12). Then for n = 0,1,...,N the propositions (5.3.14a),

(5.3.14b) and (5.3.14c) are true.

Positive constants Un and 6n exist such that

B * ) - D( *
(x ,Un nn) n .D(nn) ’

(5.3.14a)

: 2 *
I -nt )l < s Ix-xTI B "
nn(x) nn(x) o XX whenever x € B(x ,cn)

For £ = 1,2,...,m+1 positive constants o g $§
’
exist such that
n
* n *
C
B(x ,Gn,’e) D(Kz_l) n D(K/e_l)r

(5.3.14b)
n

I K'L}_l(x) _K;_-i(X) I <6 K_lllx-x*ll2

1,n

(if £ > 1) and
* & n «1
B(x ,Gnlz) D(C‘e) n D(CZ ),

(5.3.14c) N
n * * 2
"‘z(") -z, Wl < 62,n,£"x—x Il

*
whenever x € B(x ,cn 2)' In particular, since G =
’

* *
B(x 'ON,m+1) € D(G) n D(G ) and

(5.3.144)

I -l < T
G(x) -G (x) 62,N,m+1|x X

)

*
whenever x € B(x ,0
(x, N,m+1

2,n,

2 and, if £ > 1, §

N
Cm+1

PROOF. Since Condition O is satisfied, (5.3.11) holds.

1. Let n = 0. Since D(F) = D(no) =‘D(n;) and no =

(5.3.14a) is true for n = 0.

*
and G = ¢

2. Suppose (5.3.14a) is true for some n = n. with 0 < n_ < N.

n, *Ng 0

0

1,n,£-1

«N

m+1’

*
Ny the proposition

2.1. Since ;10 = nno and Cl = n;o, the propositions (5.3.14b), (5.3.14c)

are true for n = n, and € = 1,

2.2. Suppose (5.3.14b), (5.3.14c) are true for n

)

and all £ < £ -1

0
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where 2 < £ < m+l. Set t 2 =t + Vv h_ . Then positive constants
0 ng,4Q- 1 np »@ -1 no
2,n9,Lg-1 and Gl,no,l-l £ = 2,3,...,[0-1) exist such that for

n =n, we have (5.3.14a) is true, (5.3.14b) is true (for £ = 2,3,...,

o] §_ , ¢
Ko-l) and (5.3.14c) is true (for £ = KO-—l), if cno =0, and Ono,l =0,
€= 1,2,...8-1).
From Lemma 5.3.8 it follows that constants 32 € (0,51] and 31 > 0 exist
*x = * *Mp
such that B(x ,02) c D(nno) n D(Cﬂo—i)'

(5.3.152)  In* (x) -x"1 < § Ix—x"1

n 1

0
and

n — ’* * -
(5.3.15b) ng (x)-x I < 61"x—x I (for all x € B(x ,02)).

n
Moreover, for £ = 2,3,...,[0, B(x*,az) c D(Kz_?) and

(5.3.15c) "KK (x)" < glux—x*" (for all x € B(x*,az)).

From (5.3.14c) (n = ng gy k= K -1) and (5.3.15b) it follows that

* - n0 no * - *
(5.3+15d) B(x ,0,) < D(g ) and l¢ (x) -x I < 8§ lx-x Il
2 10—1 £0—1 2

(for all x € B(x*,az))

where 3 =3 Since (t,x ,x") € D(8) (for all t ¢ {tno,

1 62 no,£0—1 2°
tno 2 }), because of Lemma 5.3.6 and the relations (5.3.15d), (5.3.15c)
’
2 ), there exist p051tlve constants c1, c, and a constant 03 e (0, 0 ]

10

such that B(x ,0 ) c D(K ) n D(k* ) and
zo £o-1

(5.3.16) “82¢(t,y,x)-32¢(t,x*,x*)" < c1"x—x*"1-02"y—x*"

(for all t ¢ {tn 't e ~1} and all x,y € B(x*,53)).
0 0’70

3- Then, from Lemma 2.6.1 it follows that for all
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n n
0 * 0
Il (x) - (x) I
£0-1 20—1

%o «"0
= "‘I’(t ' (x) X)) = o(t ' C (x) IX)"
no,zo-1 1_0-1 nO,EO-l 1&0-1
= = 2
< {la 0t x4+ e 5.5.)6 Ix-x"1%,
s, no,f_o—l”‘ o) 1 2°2°4"%2,n 8 -1 %
Therefore, a constant § ’ exists such that (5.3.14b) is true for
l,no,zo—l _
n =n, and 2= ZO with Gnollo € (0,04].
Observe that
*x ok ) . _
hn032¢(tno,x X)) € DE(%O,J.) (3= 1,2,...4-1)

Hence, from Lemma 5.3.9 and relation (5.3.16) it follows that constants

55 € (0,54] and 33 > 0 exist such that for all x,y ¢ B(x*,as)

h 93,8(t_ ,y,x) € D_(p .)
ng 2 n, E ZOr]
and
lo, .(h_ 23.0(t )) = p, (b 3.0(t ,x,x NI
. 1Y i X ™ . X X
ZO,J n, 2 n, ZO,J n, 2 n,
< 5. {c Ix-x"I _— { = o
63{c1 X-X +c2"y x I} (j 1,2,...,[O 1).
Let §, =38, +8_ 0_. Th *,5.) <D I I <3 Ix-x"1
e 2= 8 + - 05. "hen B(x ,05) D(nno) and nno(x)-x S 6, lx-x (for

* = = z 1-1= * = 0 *0g
all x € B(x ,05)). Set Og = [1-+64J 0g- Then B(x ,06) c D(CKO) n D(CKO )

and for all x € B(x*,56)

n n
n;zo(x) - g Qisqi
0 0

£o-1 (n) n (n,) .n
=In o -y oo +n Tty 0ok %00 -y 2k Qo
IIO 0 0 J=1 OIJ J OIJ 3J
£ -1
0 (n.) n n
<6 Ix=x"1%+n_ 7 @a, Ok Q) -k* Ol +
n By y=1 Lo 3 J
n
(n.) (n.) 0
1A, O a0l <
’eolj 'Kolj J
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20-1 (

s{s_ +n ] {0l

+ 33(c1+c § 10,16
0 0 =1 0

nO)"
.3 24767 1,n

OIJ
. < 2

I x-x"1
- 63(cl-+c264)61}}|x x :

Hence (5.3.14b), (5.3.14c) hold for n = nO and all £ < m+1.
n

=59 gndn . =20, (5.3.148) hold
notl = Cm1 379 Mpyr T Oy (5-3-14a) holds

for n = n0-+1 as well. This proves the lemma.

2.3. If no < N then, since n

*
From Lemma 5.3.10 it follows that x ¢ interior(D(G)) whenever Condi-

tion 0 is satisfied. The next lemma shows that the reverse is also true.
*
LEMMA 5.3.11. Condition 0 is satisfied if and only if x € interior(D(G)).

* * *
PROOF. 1. Suppose x € interior(D(G)). Obviously, (t,x ,x ) € D(®) for all
* *
t = tn-+v£_1hn (n = 0,1y e eells £ = 2,350 s m#l) s Tn particular BlK(x X )
is invertible. Using Lemma 5.3.3, it is easily verified that Condition 0
is satisfied.
2. If Condition O is satisfied, from Lemma 5.3.10 it follows that

*
X € interior (D(G)). O

The following important lemma is a consequence of Lemma 5.3.8 and

Lemma 5.3.10.

*
LEMMA 5.3.12. If Condition O is satisfied, then x € interior(D(G)), the

*
derivative G'(x ) exists and G'(x*) = y(C).

* *
PROOF. From Lemma 5.3.8 it follows that x € interior(D(G )), the derivative
* * * *
[G 1'(x") exists and [G ]'(x ) = y(C). From Lemma 5.3.10 it follows that
* . *
X € interior(D(G)). From (5.3.14d) it follows that G'(x ) exists and

¢ (x") = [6"1' (xY). 0

The next three lemmata will be useful in the proofs of the Theorems

5:2.1 and 5.2.2.

LEMMA 5.3.13. Suppose —hng(tn) € Dc(pﬂ,j) and pﬂ,j(-hng(tn)) = pﬂ,j(o)
(n=0,1,...,N; £ =2,3,...,m+1; j = 1,2,...,4-1). Then

n n
(5.3.17a) 1 eDelmp )y mp_ (1) = -1
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(if £ > 1) and

n n i ~
(5.3.17b) 1 e DC(GE)’ uz(l) =1 tn Vﬂhn
0,1,...,N; £ = 1,2,...,m+1). In particular we have

(n =

(5.3.17c) 1€ DC(Y) and y(1) = 0.

PROOF. Notice that ul(t,l) = -g(t) and u2(t,1) = -(1-g(t)(1-t)).
1 a? = TO and TO(Z) = 1 hold. Hence (5.3.17a), (5.3.17b) are true for

n=0and £ = 1.
2. Suppose (5.3.17a), (5.3.17b) hold for n = no-l with 0 < n0 < N and
£=1,2,...,m1. n-1 o 5

; ng 0 0 0
2.1. Since a =1 =0 , we have 1 ¢ D (o, ) and a, (1) = 1-t -
¢ 1 ng-1

1 ng m+1
v .h =1-t . Thus (5.3.17a), (5.3.17b) hold for n = n, and £ = 1.
m+l ny-1 n 0
2.2. suppose (5.3.17a), (5.3.17b) are true for n = n, and all L < KO-l

n,
0
< < =
where 2 < £, < m+l. Set t“0r£o—1 tnO + vﬂo'lhno' Then 1 € Dc("ﬁo—l) and

%o
T, _, (1) = -g(t -t )
zo 1 no,zo 1 “o'ﬂo 1
- {1 -gq(t )(1 -t ) = -1,
no,lo—l no,lo—l
Further
n
0
1 €D (a,)
C to
and
n0 no Z%;l no
a, (1) =a, (1) +h P (O)m, (1) =1 -t =-v,h .
KO 1 Ny 4=1 ﬂo,j j n, ZO n,
This proves the lemma. g .

The next two lemmata are direct consequences of Lemma 5.3.13.

LEMMA 5.3.14. Let the assumptions of Lemma 5.3.13 hold. Suppose
- -1 * Kk
sp([F' (x) 17 0, K(x ,x)) =

{0}.

{1}. Then Condition 0 is satisfied and sp(y(C))
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PROOF. Set T = [F'(x*)]-la K(x*,x*) According to Theorem 2.2.2 the operator
T is 1nvert1ble. It ls ea51ly verlfled that 9 K(x /X ) ls invertible and
[aK(x x) 17 —[TJ g (x)17L. set ¢ = [BK(x %17 F(X).SlnceC=
[T] + from Theorem 2.2.2 it follows that sp(C) = {1}. Consequently, from
Lemma 5.3.13 and Theorem 2.2.2 it follows that the statement of the lemma

is true. 0

LEMMA 5.3.15. Let the assumptlons of Lemma 5.3.13 hold. Suppose 93 K(x 71X ) =
F' (x ). Then Condition O is satisfied and y(C) = O.

PROOF, According to Lemma 5.3.14 Condition O is satisfied. In this case

C = I. It is easily verified that y(I) = O. 0

5.3.2 Proof of Theorem 5.1.1

a. The propositions (i), (ii), (iii) and (iv) are immediate consequences
of Lemma 5.3.11, Lemma 5.3.12 and Theorem 2.5.1.
b. Suppose that Condition 5 is satisfied. Due to Lemma 5.3.8 and Lemma

5.3.10 positive constants o, 61 and 62 exist such that B(x*,c) c D(G) n D(G*)

and

ILG*1 (x) < 51ux_x*u,

1660 - 6" (0l < 6 x-x"1?

* % * *
whenever x € B(x ,0). Since G (x ) = x , from Lemma 5.3.1 it follows that
* * 61 e 2 *

lc" (x) -x I < Tf-ﬂx—x I (for all x € B(x ,0)).

Hence
* 61 *) 2 *
le(x) -x"II < (52-+7;0"x—x I (for all x € B(x ,0)).

Thus [M,F] is quadratically convergent.
i Suppose [M,F] is quadratically convergent. From Lemma 5.3.11 it follows
that Condition O is satisfied. From Lemma 5.3.12 and Theorem 2.5.4 it follows

that Condition 5 is satisfied. This completes the proof. a
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5.3.3. Proof of the Theorems 5.2.1 and 5.2.2

Suppose that (5.2.1) holds.

1. PROOF OF THEOREM 5.2.1. Suppose sp([F'(x*)]—lalx(x*,x*)) = {1}. Due to

Lemma 5.3.14 Condition 1 holds. Theorem 5.1.1(i) yields the result. |

2. PROOF OF THEOREM 5.2.2. Suppose F'(x*) = 31K(x*,x*). Due to Lemma 5.3.15

Condition 5 holds. Theorem 5.1.1(v) yields the result. 0

5.3.4. Proof of the Theorems 5.2.3-5

1. PROOF OF THEOREM 5.2.3. a. We show that (i) implies (ii). To that end we

need the following two lemmata. For 6 € (0,1] and § € IR, define

0 0 0
(5.3.18) L(6,8) =| 6 0 0
8 1-6 0

LEMMA 5.3.16. Let 6 ¢ (0,1] and 6 ¢ TR. Let L = L(0,8) and H = {1}. Set G =
M(F) where M = M (A,q,L,H) . Let the rational function Y be defined in
(5.1.3) where R = L. Suppose x* € interior(D(G)). Then Condition O holds,

BlK(x*,x*) is invertible and [ (1-6)I +6C] is invertible where
(5.3.19) ¢ = [o,kx",x") 17 e ().

* *
Further C € DE(Y), the derivative G'(x ) exists, G'(x ) = y(C) and y(C) =

C1-+6C2 where

(5.3.20) C1 =1+ {[(1-6)I-+9C]_1[I—C]-g(G)I}[I—GC]

- {1-g(8) (1-8) }[ (1-8) T + 6]+

and

(5.3.21) C, = 6{2+eg(9)}[(1-6)1+GC]_lc[I-C].
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PROOF. According to Lemma 5.3.11 Condition O is satisfied (where R = L).
* %
Hence 31K(x ,X ) 1is invertible, [(1-6)I +6C] is invertible and C ¢ DE(Y).
. *
From Lemma 5.3.12 it follows that G'(x ) exists and G'(x*) = y(C). A little

calculation shows that

(5.3.22) Y(C) = I1+6{-C}+ (1—6){{[(1-e)I+ec]'1[1-c]—g(e)I}[I—ecJ

1

- [1-g(®) (1-8)1[(1-6)T +6C] " }.

Resolving relation (5.3.22) one obtains

y(C) = C1 + 6C2.

This proves the lemma. 0

LEMMA 5.3.17. Let 6 € (0,1] and let C, and C2 be defined in (5.3.20) and

1
(5.3.21) respectively. Then for any § € IR

sr(C1-+6C2) > ldlsr(cz) - sr(Cl).

PROOF. Let § ¢ IR. It is easily verified that C1 and C2 commute. Hence

C1-+6C2 and —C1 commute. Therefore (cf. [RUDIN, 1973; Theorem 11.23])
sr(Cl-+6C2-C1) < sr(C1-+6C2) + sr(—Cl).

Consequently,
sr(C1-+602) > sr(dcz) - sr(-cl) = Iélsr(C2) - sr(Cl). 0

Suppose (i) holds and sp([F'(x*)]_lalK(x*,x*)) # {1}. There follows
that (O,x*,x*) € D(®) so that 31K(x*,x*) is invertible. Choose 6 € (0,1]
such that 2 +6g(6) # 0. (This is possible since g € S, cf. (2.6.9).) Let
§ € IR. Since (i) holds, Lemma 5.3.16 applies. Let C1 and C2 be defined in
(5.3.20) and (5.3.21), respectively. From Theorem 2.2.2 it follows that
sp(Cz) # {0}. Choose 61 € IR such that |61|sr(C2) - sr(Cl) > 1. Let
L = L(e,él) and H = {1}. Let the rational function y be defined in (5.1.3)

where R = L. From Lemma 5.3.16 and Lemma 5.3.17 it follows that
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sr(y(C)) = l61|sr(C2) - sr(Cl) > 1z

Using Theorem 5.1.1(ii) this yields a contradiction.

b. From Theorem 5.2.1 it follows that (ii) implies (i). O

2. PROOF OF THE THEOREMS 5.2.4, 5.2.5. We shall show that (vi) implies (v),

and that (iii) implies (iv). This is of course sufficient to prove both
Theorem 5.2.4 and Theorem 5.2.5.

a. From Theorem 5.2.2 it follows that (vi) implies (v).

b. We show that (iii) implies (iv). Assume (iii) holds and suppose
alx(x’_‘,x*) # F'(x"). Choose 8 € (0,1] such that 2+6g(8) # 0. Let § ¢ IR.
Lemma 5.3.16 applies. Let C, C1 and C2 be defined in (5.3.19), (5.3.20) and
(5.3.21), respectively. Since I-C # 0 and C is invertible, we have "C2” #0.
Choose 6, ¢ R such that |6 [lc, - c/ | > 1. Let L = L(6,8,) (cf. (5.3.18))
and H = {1}. Let the rational function y be defined in (5.1.3) where R = L.

From Lemma 5.3.16 it follows that C € DE(Y) and
I =1 I > lc I =lic, | .
Y (C) 61C2-+c1| Idll C2 C1 > 1
Using Theorem 5.1.1(iv) this yields a contradiction. 0

5.3.5. Proof of the Theorems 5.2.6 -8

1. PROOF OF THEOREM 5.2.6. a. We show that (i) implies (ii). We shall use

the following lemma.

* =1 * %
LEMMA 5.3.18. Suppose sp([F'(x )] 9, K(x ,x)) = {1} and g(6) # O for some
® e [0,1). Then a Runge-Kutta method with operator coefficients R and a se-
quence of stepsizes H exist such that x* ¢ D(G) where G = M(F) and M =

™ (A,g,R,H).

. * -1 % % * % ) )
PROOF. Since sp([F'(x )] 31K(x ,x )) = {1}, the operator 31K(x ,X ) is in-
vertible. Set C = [BlK(x*,x*)]_lF'(xf). Since sp(C) = {1} it follows that
the operator [(1-6)I +6C] is invertible. From Lemma 5.3.3 it follows that

* %
32¢(6,x ,X ) exists and

32<I>(9,x*,x*) = ~g(8) + [(1-8)1 +8eT [1-c].
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From Theorem 2.2.2 it then follows that
* *
sp((1-6)3,0(6,x ,x)) = {-(1-8)g(6)} # {0}.

Let R = (pi j) be a one-stage Runge-Kutta method with operator coefficient
- 1 -1 _ _ ;

where p2,1(z) = [1 + S (1=8) z] . Let H{ = {ho,...,hN}, where H = {1} if

6 =0 and H = {6,(1-6)} if 6 # 0. Let G = M(F) where M = M (A,q,R,H) . Then

* *
hN82¢(tN,x X ) ¢ DE(pzll), Hence x ¢ D(G) (cf. (4.2.5e)). O

Since any Runge-Kutta method with scalar coefficients is a Runge-Kutta
methoq with operator coefficients, it follows from Theorem 5.2.3 and Lemma
5.3.18 that (i) implies (ii).

b. From Theorem 5.2.1 it follows that (ii) implies (i).

2. PROOF OF FHE THEOREMS 5.2.7, 5.2.8. We shall show that (vi) implies (v),

and that (iii) implies (iv).

a. From Theorem 5.2.2 it follows that (vi) implies (v).

b. Suppose (iii) holds. From Theorem 5.2.4 it follows that alK(x*,x*) =
F'(x*). From Theorem 5.2.6 it follows that g(t) = 0 (for all t € [0,1)).

This completes the proof. 0
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CHAPTER 6

RADIUS OF CONVERGENCE

In this chapter we determine the radii of convergence of some of the
iterative methods described in section 4.1.

In section 6.1 we introduce F<o,B,y>, the subclass of F1 (see (2.6.1))
to which the radii of convergence to be considered in Part I of this chapter
will be related. In section 6.2 we determine the radius of convergence of
Newton's method. In section 6.3 a class of iterative methods, which are
denoted by M&, is introduced. These have greater radii of convergence than
Newton's method. Any method Mm, which is a kind of damped Newton method, is
of a type considered in subsection 5.2.2. We also give a result which shows
that certain damped Newton methods have greater radii of convergence than
Newton's method.

Part II of this chapter is concerned with F<o,a>, the subclass of Fl
that is introduced in section 6.4. In section 6.5 we determine the radius
of convergence of Newton's method with respect to F<o,a>. As in Part I of
this chapter, we investigate in section 6.6 the convergence behaviour of
the iterative methods Ma (introduced in section 6.3) with respect to F<o,o>.
In this case, we are able to give an explicit expression for the radii of
convergence.

We finally note that we base the determination of the radius of conver-—
gence of an iterative method M with respect to a subclass FO of Fl on the
following principle. We first give a lower bound, say r, of r(M;FO). Then
we consider the case E = IR and construct an f € FO for which r(M,f) = r.
When E is an arbitrary Hilbert space we "extend" f to an operator F on E
such that F € FO and r (M,F) = . The extension of f to F is described in

subsection 6.2.3.
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PART I

6.1. THE CLASS F<o,B,y>

In the first part of this chapter we shall be concerned with the fol-
lowing subclass of Fl (see 2.6.1)).

For given 0 € (0,«] and B,y > O

.

(6.1.1) F<o,8,y> = {F | F ¢ Fui B(x ,0) < p(®; IF' (xH 171 < g;

IF"(x)l < v (for all x € B(x*,O))}.

We notice that for any F € Fl’ numbers 0 € (0,*] and B,y > 0 exist such that

F € F<o,B8,y>. Hence

(6.1.2) F, = ] F<o,B,v>.
o€ (0,°]
B,y>0

Let B > 0 and let F € L(E) with F = % I (I is the identity). Obviously,

F € F<o,B,y> (for all 0 € (0,»], Y > 0). Consequently, for each ¢ € (0,«]
and all B,y > 0, the set F<o,B,y> is not empty.

6.2. THE RADIUS OF CONVERGENCE OF NEWTON'S METHOD WITH RESPECT TO F<o,B,Yy>

Let 0 € (0,»] and B,y > 0. Let M be Newton's method, which means that

for F € Fl’ the function G = M(F) is defined by

G: D(G) -~ E,
(6.2.1) D(G) = {x|x € D(F); F'(x) is invertible},

G(x)

x - T'(x)F(x) (x € D(G)).

We recall that I'(x) denotes [F'(x)]_1 (for x € D(G)) .

THEOREM 6.2.1. Let M be the Newton's method, then

(6.2.2) r(M;F<o,B8,y>) = min{o, 1.

2
3By



We shall prove Theorem 6.2.1 in the next subsections.

6.2.1 Proof of Theorem 6.2.1

In order to prove Theorem 6.2.1 we need the following two lemmata.
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LEMMA 6.2.2. If F € F<0,8,y> and x € B(x",0) n B(x", —) then F'(x) is in-

By

vertible and

8
1-gyl x-x"1

Ly <

I[P (x) 1"

L

% e
PROOF. Since F € F<o,B,y>, it follows that I[F'(x )] < B and

* * * *
IlF' (x) -F'(x )l < ylx-x I (for all x € B(x ,0) n B(x , E;

2.6.1). Therefore, Lemma 4.2.1 applies, thus proving this lemma.

LEMMA 6.2.3. For F ¢ F<o,B,y> let G be defined by (6.2.1). Then

B(x*,0) n B(x*, =) < D(G)
r X I BY
and
*y 2
St =5l 2 _Bylx-x 17

2(1-Bylx-x"1)

* * 1
whenever x € B(x ,0) n B(x , =) .

BY

PROOF. The first part of the conclusion is a consequence of Lemma 6.2.2.

*
Let x € B(x*,c) n B(x , g?). From Lemma 5.3.1 it follows that 0 =

F(x) + F'(x)(x*—x) + r(x), where lr(x)ll < %—"x—x*ﬂz. Thus
Ix-T(x)F(x) —x 1 = IT(x)r(x)l.

Using Lemma 6.2.2, we obtain

By" x—x*" 2

||I‘(x)r(x)|| & "
2 l-By|| x-x I

This completes the proof. 0

We are now able to prove the following lemma.

)), (cf. Lemma

g

F(x*)
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LEMMA 6.2.4. Let M be the Newton's method, then
r(M;F<o,8,y>) > min{o, =—=—}.
3BY

PROOF. Let F € F<o,B,y>, and G = M(F). Thus G is defined by (6.2.1). For
€ € (0,%0, set a(e) = [%1—25]_1E§—e]. Note that O < a(e) < 1. From Lemma

6.2.3 it follows that for any x € B(x*,o) n E(x*,(gn-s)é%ﬂ we have x € D(G)

and

* gyl x—x*"2 E i x, *
(6.2.3) le(x) -x"II < < Ix-x"I = a(e)lx-x"1.

2(1—Byl|x—x*||) 2(1-(3-e))

If XO € B(x ,0) n B(x 7 38 =) then an € ¢ (O,—Q exists such that X, €

B(x ,0) n B(x*,(—-—e)——o. The relation (6.2.3) shows that x. € D(M,F) (cf.

BY 0
(2.3.3)) and that the sequence {xk} generated by X, and [M,F] satisfies

||)ﬁ{—-x*" < [a(e)]kuxo_x*n >0 T

Hence XO € S(M,F) (cf. (2.3.5)), so that r(M,F) = min{o, 35;}. Since F was

an arbitrary element of F<o,B,y> this proves the lemma. g

Results similar to Lemmata 6.2.3 and 6.2.4 can also be found in

[RHEINBOLDT, 1975].

REMARK 6.2.1. Notice that, if F € F<o,B,y>, then at the same time, F €
F<o,B,y> where F is the restriction of F to B(x 25) 4 (D(Fc) = B(x ,0)).

Obviously r(M,FO) < 0, so that r(M;F<o,B,y>) < o. ]

REMARK 6.2.2. Suppose E = IR and let ¢ > 3é;u In view of Lemma 6.2.4 and

Remark 6.2.1 the proof of Theorem 6.2.1 is completed if we can show that an

€ D(f) with "xo-—x*" = —2—-exist such that X, Pl

f € F<o,B,y> and an x 3By

0
S(M,f). Consider

f.x IR =+ IR,
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r 1 1
(if £ 2 =),
282y o7
1. _x,2 ; 1
ze-T¢ (€ € € [0, ),
_J
£, ()
1 Y .2 : _ 1
B£+2£ (1f£€ ( B,Y IO))I
1 1
- — (if £ £ = —).
2
L 28% a

It is easily verified that
a) fO is continuously differentiable on IR, fa(E) exists and |f6(£)| <y
1 1

for all R with By miy a2

(for a £ € with £ ¢ {0, By BY}) X
b) the equation fO(E) = 0 has a unique solution at § = 0 and

- * _=1

ILEG(EDT "I = B;

; -2
c) with EO =3By we have
fO(EO) fo(-Eo)

Es ¥ o = 2 and, =Ei = S s
0 fO(EO) 0 0 fo( EO) 0

Consequently, |g0-g*| = and EO ¢ S(M,fo). However, since fO ¢ F<o,B,y>

2
3By 1
(fO is not twice-differentiable at & = 0, & = and & = ——?0, this example

1

By B

does not complete the proof of Theorem 6.2.1. The proof can be completed by
using the next lemma. It states that an f with the desired properties exists,
which is not only twice but infinitely differentiable on D(f). 0

LEMMA 6.2.5. If ¢ > 3%;-then for any € > 0 there exists an F € F<o,B,y>

which is infinitely differentiable on D(F), for which

2
r(M,F) < m + €.

For the case E = IR we prove this lemma, with the function f0 of Re-
mark 6.2.2 in mind, in the next subséction. If E # IR then Lemma 6.2.5 is
proved in the subsection 6.2.3 (cf. p. 86).

In view of Lemma 6.2.4 and Remark 6.2.1 the proof of Theorem 6.2.1 is

easily completed by application of Lemma 6.2.5.
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6.2.2. Proof of Lemma 6.2.5 where E = IR

In this section we shall prove Lemma 6.2.5 if E = IR with innerproduct

(51162) = El 52 (for all 51,52 € IR).
PART A
We start with a lemma which will be used subsequently.

LEMMA 6.2.6. Let ¢: D(¢) » IR with D(¢p) < IR. Assume that D(¢) > (-€,€)

for some € > 0. Suppose that ¢ has a fixed point & = 0. Assume that ¢ is
continuous on D(¢) and that [$(E)| < |g| (for all £ € IR with 0 < |E]| < €).
If some X > O satisfies [-A,A] < D(¢), |d#(X)| = X and |$(-A)| = A, then a
number EO € [-\,\] with EO # 0 exists for which ¢(EO) € D(¢) and ¢[¢(€O)] =

g+

PROOF. If ¢(X) = X or ¢(-A) < -X then ¢(EO) = EO (for some EO € [-A,A] with
EO # 0), so that the statement is true. Suppose ¢(A) < -X and ¢ (-A) = A.
Then a number 61 € [-1,0) exists such that ¢(61) = XA and a number 62 € (0,A]
exists for which ¢(62) = -A. We assume that [¢(§)]| < XA (for all £e [61,62]).
This is no restriction. Hence ¢ (§) € D(¢) (for all £ e [61,62]). Since
9Lo(8)1 = ¢(-2) = X and [4[¢(E)]] < |E| (for all £ € (0,e)), a number Ey &

(0,62] exists such that ¢[¢(£O)] = EO. This proves the lemma. O
PART B

We note that in Remark 6.2.2 we were not able to complete the proof of
Theorem 6.2.1. But with the function fo in mind, we can construct an F that
satisfies the proposition of Lemma 6.2.5.

We introduce some function classes. Let T € (0,»]. We define

(6.2.4a) Cw(—T,T) = {f[ f: (-1,7) > IR; f is infinitely differentiable

on (-1,T)}.
If T = », we set
(6.2.4b)  C (IR) = C (-1,1).

We give two well-known results (see also [COURANT, 1961; p. 172]).



(o]
LEMMA 6.2.7. There exists a function Yy € C (IR) such that

v(Eg) =0 (if £ = 0),

v(Eg) >0 (if £ > 0).

PROOF. Let y: IR - IR,

0 - (if £ <0),
(6.2.5) v (&) {
e L/e (if & > 0).
It is easily verified that the statement of the lemma holds. 0

LEMMA 6.2.8. Let the numbers Yyr Yoo §, and 8§, be given. Suppose 61 < 62

1 2
Set d = (Yl,Y2,51,62). Then a monotone function ha € Cm(IR) exists such

that

IA

Yy (if £ <6,),
(6.2.6) ha(E) = {
Yo (if & 2 62).

PROOF. We assume that Yy # Y, (Y1 =, is a trivial case). Let ¢(§) =
w(62-—£)¢(£-—61) where y is defined in (6.2.5). Set

h-: IR »> IR,

d
6i:2s1
( ) £
T5=J3
h=(g) = vy, + [ ¢(t)dt] —— .
d 1 62
—o [f(S ¢(t)dar]
1
It is easily verified that ha has the properties stated. 0
PART C

Let 0, B and Yy denote the constants introduced at the beginning of

section 6.2, which also appear in Lemma 6.2.5. Let ¢ € (O,éﬁ and set

o

1
= Y~ s (=146 ’
d1 0,y By (=1+ )BY)
3 = Po i S
d2 - (Yl Y B_Yl B,Y) ’

77
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3 gy’ B
Let
ﬁ: IR - IR,
h= (&) (if £ < - L)
4, 28y
(6.2.8) ;
N 1 1
h = - i - N
(&) hdZ(E) (if & € ¢ 28y ZBY))'
h- (£) (if £ 2 =)
d, 2By
We define the function f by
£: IR + IR,
«249
(6 ) £
£E) =g €+ J (E-1)h (1) dt (£ e m).
0
R ﬁx AA
A=h(&) A=£(&)
TY
6 .
- ‘o 1 - _L 0 1
By BY BY BY
-yt
graph of ﬁ graph of f
Fig. 6.2.1 Fig. 6.2.2

The following lemma holds.
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LEMMA 6.2.9. The function f defined in (6.2.9) has the following properties:

£(0) =0, fe C (R,
£f'(§) > 0 (for all £ € IR) and

f e F<o,B,v>.
PROOF. Notice that h e Cm(JR) . Furthermore, for all £ ¢ IR we have f'(§) =
%+ fg h(tydr, £(8) = AE) and £ @) = 5% (@) (x = 3,4,...). Conse-
quently, f € Cw(IR) and £'(0) = -é Furthermore, for all § € IR we have
a) [£&) | = |h(®)] < v;
1

b) if £ > 0, £'(E) 2§+IC1)/BY h(t)dr >%-%=o;
if £ <0, £'(E) z%+fé/SY h(1)dt >%-%=0.

Since f(0) = 0 it follows that £ = 0 is the unique solution of f(§) = 0.

This proves the lemma. 0

LEMMA 6.2.10. Let § € (0,%) . Let M be Newton's method and let £ be defined
in (6.2.9). Set ¢ = M(f). Then D(¢) = IR. Further, a number EO €

2 1 2 i . - -
[-(—3-+ ZG)W' (§+ 26)B—Y-] exists such that ¢L¢(Eo)] = Eo and E"O ¢ S(M,f).

PROOF. From Lemma 6.2.9 and (6.2.1) it follows that D(¢) IR. Set A =

2 1 2,21 _s)L Ly, _x,2
(3+26)8.(Thuso<)\<(3+9)BY< (1 G)BY.)Thenf(A)>B>\ 2)\ and
£'(A) < B Y()\-EY—). Hence
1,_xy,2
A £(A) N B & 2 A
£'(0) L P
B By
Ex-8) G+6-8)
= -gyres (=2) = T:‘g‘ (=1) < -A

Analogously we can show that

f(-A)

_f'(—A) > Al

)y

From Lemma 6.2.3 and Lemma 6.2.6 it follows that a number EO € [-A,A] exists
such that ¢[¢(£0)] = EO and go ¢ S(M,f). This proves the lemma. 0O
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By virtue of this last lemma, for all € > 0 we are able to construct
an F that satisfies the statement of Lemma 6.2.5 for the case E = IR.
In the next subsection we shall prove Lemma 6.2.5 where E is an arbi-

trary Hilbert space.

6.2.3. The E-extension of a real function

From [BROWN & PAGE, 1970; Theorem 9.2.13, 9.2.16] it follows that a
subset B of E exists such that the following three statements (i), (ii) and
(iii) hold.

(i) All u,v € B satisfy (u,v) = 0 (if u # v) and (u,v) =1 (if u=v).
(ii) For any x € E, the set Bx = {u [u € B; (x,u) # 0} is countable.

(iii) Let x € E and let Bx= {ulu=un with n € ]NO}. Here N) < N is a

set of consecutive integers with 1 € IN.. In the case that IN. contains

0 0
only £ < ® numbers, put = 0 (n = £+1,£+2,£+3,...). Put
B ={u|u=u_ withn e IN}). Then

x n
o
X = Z (x,un)un
n=1
and
2. ® 2
Ixll < = X (x,u ).
n
n=1

From now on, B denotes a fixed subset of E for which the above men-
tioned properties hold.

We call a sequence {jn} in IN in which every positive integer appears
once and only once, a reordering of IN.

Let {un}(:B u {0} satisfy (ui,uj) =0 (i,j e N, i # j).

LEMMA 6.2.11. Let the sequence {nn} in IR satisfy n,=0ifu =0 (n=

1,2,...). Suppose Z:=1 ni < «. Then the following four statements (i) - (iv)
hold. ;
" N @
(i) The sequence {Zn=1 nnun} converges. PutNy = Zn—l nnun.
(ii) Let {jn} be a reordering of IN. Then {Zn_l ny ug } converges and
- n Jn

z n,. u, =y.

HHF% Jn Jn 2y
(iii) lyl = Zn=1 nn.
(iv) Let c>0. Suppose {an} is a sequence in IR that satisfies Ianl < c]nn| (n=

T O Then{Zg

oo
a_u_} converges. Put z =%
1 n'n

. Izl <clyl .
n=1 %% Then Iz clly
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PROOF. (i) Let € > 0. Then an N, € IN exists such that

1
N+m 2
(6.2.10) I no<e (for all Nym € IN with N 2 N).
n=N+1
Consequently,
N+m N 2 N+m 2
I Z nu - z nnun" = z n < g (for all N,m ¢ IN with
n=1 n=; n=N+1 N = Nl)-

This proves (i) .

(ii) Let € > 0. Then an N, ¢ IN exists such that (6.2.10) holds. Choose

1

> ] 3 o =
N, 2 N such thatzn € {31,32,...,3N2} (n 1,2,...,N1). Then
ly =N . n. u, I” <e (for all N > N,). Hence (ii) holds.

n=1 jn Jn 2
(iii) Suppose By = {u |u =V with n € IN} and Cn = (y,vn) = 1;2;s:5)0

It is easily verified that a reordering {jn} of IN exists, such that Cj =
n

n (n=1,2,...). Consequently,

2_ % z_ % B % 2
2= § 2= o = I o
n=1 n=1 In n=1
(cf. [RUDIN, 1953; Theorem 3.56]).
(iv) Let N,m = 0. Then
N+m N N+m N+m
1} au - § aul®= ] o< ] n )’
n=1 n n=1 n n=N+1 n=N+1
Hence {Z§=1 anun} is a Cauchy sequence and Izl < clyl. g

We shall now define the E-extension of a real function. Let T € (0,~].

Let

(6.2.i1a) ¢ € C (-T,T).
Suppose

(6.2.11b) $(0) = 0.

Let x € B(0,1) and Bx = {u Iu =u with n € IN}. Let the constant c > 0

satisfy
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(6.2.12a) c = [¢'(&) | (for all & € IR with |g| < lxl).
Set En = (X,un) (n=1,2,...). Thus x = Z:=1 gnun and |5n| < Ikl (n =

1,2,...). From Lemma 2.6.1 it follows that
(6.2.12b) |¢(£n)l < clgnl (n=1,2,...).

Lemma 6.2.11(iv) implies that {Z:_l ¢(§n)un} is a Cauchy sequence. We set

n£1 (€ du

(6.2.13a) F(x)

for

©

(6.2.13p) x= ] €u.

n=1
o 2 & 2 o
Let {nn},{cn} €R. Let I _, n <« and L 4%, <= Suppose Lot WV =
n=1 ann = x with VoW © Bu iO} (n = 1,2,..;) and (vi,vj) = (wi,wj) =0
(i,j € N, i # j). Then F(x) = Zn=1 ¢(nn)vn = Zn=1 ¢(§n)wn (cf. Lemma 6.2.11(ii)),

For given ¢ satisfying (6.2.11) we call

F: B(O,t) - E, where
(6.2.14)
F(x) is defined in (6.2.13) (for all x € B(0,T1)),

the E-extension of ¢.

THEOREM 6.2.12. Let ¢ satisfy (6.2.11) and suppose $'(£) # 0 (for all

£ € (-1,T1)). Let F be the E-extension of ¢. Then

(1) \x = 0 is the unique solution of F(x) = O.

(ii) F is infinitely differentiable on D(F). Let k € IN. For x € D(F)
and hj €E (j=1,2,...,k) Let

'

k
Bx u {jgl th} ={u|us= v with n € IN}.

For n =1,2,..., let En = (x,vn) and hj 0 = (hj,vn) (G = 142; s siK)s
’

Then

(k)
[} (gn)hl,nhZ,n"'h v .

(k)
o k,n n

(6.2.15a) (x)h1h2...hk =

n

I~ 8

1
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Suppose the number ck satisfies

6.2.156) <, = |6 %) (&) (for all £ ¢ TR with |E] < Ixl).

k

Then

6.2.150)  18* @l < ¢ .
(iii) F'(x) is invertible (for all x € D(F)). Let x € D(F) and y € E, and
let B u B = {u |u =u withne IN}). Let £ = (x,u ) and n_ =
x % n n n n

(y,un) (n=1,2,...). Then

©

[F'(x) 1y = ) [¢'(En)]-1nnun.

n=1

In particular

o
-1 -1
(6.2.16) (F'(x)]) F(x) = ) [6" ()] "¢(E)u .
n n n

n=1
PROOF. (i) Obviously, x = 0 is a solution of F(x) = 0. Suppose F(x) = 0 has
a solution x = y*. Let By* = {u ]u =v, with n € IN} and n, = (y*,vn) (n =
1,25 5s) « Then F(y*) = Z:_l ¢(nn)vn. Consequent on Lemma 6.2.11(iii),

_ *2_00 _2 _ _ _

0=Iry)Hl*® = Zn=1 [¢(nn)] . Hence ¢(nn) = 0, so that n, = O (n=1;2;c..).

This implies y* 0.

(ii) Suppose F(k)(x) exists and satisfies (6.3.15a,c) (for all x € D(F)),

with k 2 0 (if k = 0 then (6.3.15a) should read F(x) = Z:=1 ¢(£n)vn).

Let x € D(F). Let the positive numbers 8 and e satisfy Ixl + € < 6§ < 1.
We notice that a constant c > 0 exists such that

(k) (k)

(Eind = ¢ gy = B

g)n| < cn2 (for all &,n € IR
with |E] + [n| < 6).

(6.2.17) | ¢

Let the number c satisfy

k+1

(k+1)

(6.2.18) |¢ (g) | < o (for all £ € IR with |g]| < Ixl).

+1

Let y’hl'hZ""’hk € E. Let Bx U By U {UJ;=1 Bhi} = {u [u = v, with n € IN}.

For n=1,2,..., let
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(6.2.19) En = (x,vn), nn = (y,vn) and hi,n = (hi'vn) (4 = 14,24 00 0uK)e

_ (k+1) )
Set a_ = ¢ (En)nnhl,nhZ,n"'hk,n'

< In, in_l... In |l
n then Ianl it h1 h2 hk Innl
(n=1,2,...). From Lemma 6.2.11(iv) it follows that {Z§=1 unvn} converges.

Set z = Zw a v_. Then
n=1 nn

(k+1)

(6.2.20a) z = [} (En)nnhl,nhZ,n"'h v

I

Il o~ 8

1

and

A

I < I I
(6.2.20Db) zll ck+1"y"ﬂh1 s hkﬂ.

k ; ~
Euppose EX U EY u {Ui=1 Bhi} - {u|u-= v, with n € N}, and for n = 1,2,...,
En = (x,vn), nn = (y,vn) and hi,n = (hi'vn) (i=1,2,...,k). Then 3 reorder-
ing {j } of IN exists such that for n = 1,2,... we have Vo= v. , & =E&E: ,
~ " ~ ~ a1l ~ Ao AL o
N, = T, and hi,n = hi'jn (1 = 1,24 ws4K) . T8t a = ¢ (En)nnhl,nh2,n"'
...hk (n=1,2,...). By virtue of Lemma 6.2.11(ii), the sequence
AR ar_, &9 =
n=1 %pVyJ converges and  _, a V = z.
Let
k+1
Q€ L( )(E),

(6.2.21)

(for all yr/hy,hy,. . hy € E. Here z is de-
thth"'hk =2z fined in (6.2.20a) with y/hq,ho, oo hy
satisfying (6.2.19)).

In view of (6.2.20b), gl < ¢ )
(k+1) k+1
We show that Q = F (x) . Let y'hl’hz""’hk
Suppose Iyl < € and Ih I = Ih Il = ...In |l = 1. (Notice that {I n2}2 >
22 . N ! 2 k n=1 "n

€ E satisfy (6.2.19).

{Zg=1.nn} > Zn=1 n (for all N € IN) .) Then (cf. (6.2.17))
“F(k)(x+y)h1h2...hk - F(k)(x)hlhz...hk - thlhz...hkﬂz
1201 6% € +n) - ¢“")(an) - o0 g yn %2 Ll
<y nt <l d,
n=1

Hence,
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Y it = B ) = gl € g% (Bor all ¥ ¢ E with Ayl

IA

g €) .

This implies that Q = F(k+1)(x). Therefore (6.2.15) holds for k+l1. Conse-
quently, (6.2.15) holds for all k € IN.

(iii) Let x € D(F). Then a constant c exists such that
(6.2.22) |[¢'(£)]'1l < ¢ (for all £ € IR with |g] < Ixl).
For y e E let B_uB_ = {u|u=v withn e IN}. Let

x y n

(6.2.23) En = (x,vn) an§ n, = (y,vn) (n=1,2,...).
According to (6.2.22) and Lemma 6.2.11(iv), the sequence

N } =1 ,
{Zn=1 L' ()] nnvn} converges, and with

(6.2.24a) z = ) [¢'(En)]_1nnvn

=1

we have

A

(6.2.24b) Izl < clyl.

1]

Suppose Bx u B {u|u-= v withn e IN}. Let b = (x,vn) andNnn = Ly,vn)

y 0 -
(n=1,2,...). From Lemma 6.2.11(ii) it follows that Zn=1 [¢'(€n)] 1nnvn:z.

Let

C: E>E,
(6.2.25)

Cy = z (z is defined in (6.2.24a) with y € E satisfying
(6.2.23) ).

Obviously C is linear in y and from (6.2.24b) it follows that C is bounded.

Moreover
F'(x)Cy = CF'(x)y = y (for all y € E).

This completes the proof. a
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Let the constants ¢, B and y denote the constants appearing in Lemma

6.2.5, which were introduced at the beginning of section 6.2.

PROOF OF LEMMA 6.2.5. Let § € (O,éﬁ. Let f be defined in (6.2.9). F is the

E-extension of f. From Lemma 6.2.9 and Theorem 6.2.12 it follows that the
equation F(x) = 0 has a unique solution x = 0, that F is infinitely differ-
entiable on E, that F'(0) is invertible and [}:“'(O):I_1 = BI, and that

lF" (x)I < y (for all x € E). Hence F ¢ F<o,B,y>. Let u € B. Then I'(Au)F(Au) =
[£' M I YEQ)u (for all A € ), (cf. (6.2.16)). Set G = M(F). Let ¢ be de-
fined in Lemma 6.2.10. It follows that G(Au) = ¢(A)u (for all A € IR).

L, (%—+ 26)L] with £, #0

By By
Consequently, G(G(Eou)) = Eou. Hence Eou ¢

According to Lemma 6.2.10 a number EO € [—(§~+26)
exists for which ¢[¢(EO)] = EO.
S(M,F). This proves Lemma 6.2.5. O

6.3. ITERATIVE METHODS WITH GREATER RADII OF CONVERGENCE

Let 0 € (0,»] and B,y > 0. In this section we present a class of itera-

tive methods (for Fl) which all have greater radii of convergence with re-

spect to F<o,B,y> than Newton's method when o > 5%7.
Let
(6.3.1a) AeA with [AF)I1(y,x) = Fly) - F(x) (for all F € Fy),
let
1 .
e (if t € [0,1)),
(6.3.1b) geS with g(t) =
1 (if t = 1)
and let
(6.3.1c) L be Euler's method

(cf. (2.6.1), (2.6.3) and (2.6.9)).

In this section we shall be concerned, among other things, with the

iterative methods M that satisfy
(6.3.2) M = M(A,qg,L,H)

(cf. (4.1.3)). Here H = {ho,h ..,hN} with N € IN.

L
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Let M satisfy (6.3.2) and let F € Fl' We notice that proposition (vi)
of Theorem 5.2.5 with K = A(F) is true. Consequently, the iterative process
[M,F] is quadratically convergent,

For F € Fl' the function G = M(F) is defined by (cf. (4.1.4))

G: D(G) +~ E,

(6.3.3a)
G = Nyt

In (6.3.3a) the function nN+1 is defined as follows:
T10= D(T‘IO) > E,

(6.3.3b) D(no) D(F),

no(x) X (for all x € D(no))

and for n = 0,1,...,N the functions nn+ are defined by

1

n D(nn+1) -+ E,

n+1’

(6+3+3¢) D(n_,.) ={x|xe D(n ), n (x) € D(F) and F'(n_(x)) is invertible},

n+1

nn+1(X) = nn(x) - wnF(nn(X))F(nn(x)) (for all x € D(nn+1)).
In (6.3.3c)
hn
(65:3,4) wo= T (n=0,1,...,N).
n
Let
(6.3.5) Q={o|w= (Wgryre-pwy) With N € IN;

w e (0,1) (n = 0,1;...,N—1) and wy = 1}.

DEFINITION 6.3.1. Let w € 9 with @ = (Wgswyreswywy) and N € IN. By M- we de-
)

note the iterative method for which, for all F € Fl' the function G = MG(F)

is defined in (6.3.3).

Let H = {ho,h ...,h_} with N ¢ IN. Since 0 < h < 1-t
N n n

1!
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it follows that M (A,qg,L,H) = Mm. Here
1,...,N) is defined by (6.3.4).

(n=20,1,...,N-1) and hN = 1-tN,
0,

w = (wo,wl,...,mN) and w (n =
Conversely, let W e Q with w = (mo,wl,...,mN). Then the sequence H =
{hO’hl""'hN} where hn (n=0,1,...,N) satisfies (6.3.4), is uniquely deter-

mined. Consequently, Mm = mM(a,q,L,H).

For notational convenience, instead of iterative methods M of the type
(6.3.2) we shall consider the iterative methods M_ (w € Q). In view of the
above considerations, this is no restriction. N

The following theorem holds.

THEOREM 6.3.1. Let w € Q. Then Mm is quadratically convergent. Further

r(Mm; F<o,B,y>) =0 (if o < 3§§0,
) 2 ) 2
r(MGS; F<o,B,v>) > m (if o > 3—BY').

We shall prove this theorem in the next subsection.
Let F € Fl (cf. (2.6.1)). A well-known class of numerical methods for
solving F(x) = 0 are the so-called damped Newton methods. For given X, € D(F)

these methods generate a sequence {xn} for which

(6.3.6) X o1 =X~ wnF(xn)F(xn) (n: = 0id ;2 se)
(cf. [ORTEGA & RHEINBOLDT, 1970; chapter 14.4]). Here 0 < W <1 (n=0,1,

2,...) and w, < 1 for at least one k. Obviously, the methods Mm (0 € Q) are

k
damped Newton methods with periodic coefficients w, and with wg < I, wy < L,
o < = 2 1.
,wN_1 1, wN 1 for some N 1
If o > , one may conjecture that the general damped Newton methods

3By
have a greater radius of convergence with respect to F<o,B,Y> than Newton's

method (cf. [ORTEGA & RHEINBOLDT, 1970; Theorem 14.4.4], [DEUFLHARD, 19741]).
This means that, for an F € F<o,B,y>, these methods are expected to gener-
ate sequences {xn} that converge to ,x*, even if "xo—x*“ > 3%7. Theorem
6.3.1 shows that this holds for the damped Newton methods MG' The next
theorem shows that the conjecture is also true for all damped Newton methods

with inf{w |n 2 0} > o.

THEOREM 6.3.2. Let 0 < wn <1 (n=20,1,2,...) and Wy < 1 for at least one

k. Let inf{mn | n 2 0} > 0. Then a constant y exists such that the following
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propositions hold.

5 e el s Bl mmd s B {0 Bt
(1) pw=o0 (if p < 3BY) and |y > 38y (if o > 3BY)'

* ~
(ii) Let F € F<o,B,y>. Then for any X, € B(x ,u) a sequence {xn} exists

such that for n = 0,1,2,...
xn € D(F), F'(xn) is invertible,

X =X - wnF(xn)F(xn),
and lim X =X .
n>e n

We shall prove this theorem in the next subsection.

6.3.1. Proof of the Theorems 6.3.1 and 6.3.2

In order to prove the Theorems 6.3.1 and 6.3.2 we require the following

lemmata.

LEMMA 6.3.3. Let P: D(P) > E with D(P) an open subset of E. Let X, € D(P) .
Suppose that P is twice differentiable on D(P) and that P'(xo) is invertible.
Suppose positive constants ao, Bo, YO and T exist such that
(1) Ite (x )17 <8, 10 (x) 1 p(x )l < o
0 o’ 0 0 0’

(ii) " h<~ where h= 8

2 € = %FoYo’
(iii) B(xo,r) c D(P) and lp"(x)I < o (for all x € B(XO,T)),
(iv) r, <t<r, with r =[1+ (-1)*V12R1/(BY) (i = 1,2).

Under these assumptions the equation P(x) = 0 has a solution X in ﬁ(xo,rl)

and ; is the unique solution of P(x)'= 0 in B(xo,r).

PROOF. The conclusion is a direct consequence of the well-known Newton-
Kantorovich theorem (cf. [KANTOROWITSCH & AKILOW, 1964; Theorem 6(1.XVIII) ],
[GRAGG & TAPIA, 1974]). O

LEMMA 6.3.4. If u,x,y,z € E and z = wx + (l-w)y with w € IR, then
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lzmal? = wlx-ul? + (1-0)ly-ul? - &(1-0)bx-yl 2.

PROOF. Observe that the following relations (a) and (b) hold.
(a) Hz—uH2 = Hm(x-u)+(1—w)(y—u)||2 = mzﬂx-uﬂ2+(1—w)2"y—u“2+2w(1—m)(x—u,y—u).
(b) "x‘YIl2 = "(x—u)—(y—u)"2 = “x—u"2+"y-u"2—2(x-u,y-u).
Therefore,
2(-u,y-0) = bx-ul? + Dg-ul? - Ix-yl 2,

Together with relation (a), this proves the lemma. O

Throughout this subsection

= . 1
(6.3.7) o = mln{o,BY}.

Let w € (0,1]. Define
§ : [0,0) > [0,%),
w

(6.3.8)

2 2
o Bye [ _(2-Bye) -
Sy lst = Heo) & w[Z(l-Bye)] v w)L2(1+BYe)] (& e [O,00) .

The following lemma holds.

LEMMA 6.3.5. ém is continuous and strictly isotone on [0,5), and 6w(0) =
2
(1-w) .

PROOF. The proof of this lemma is straightforward. 0

As a consequence of this lemma we have

(6.3.9) §,(6) 20 (for all € € [0,0)).

'

Let the function ew be defined by

o : [0,0) > [0,%),
w
(6.3.10)

6, (e) = /aw(e) (e € [0,0)).
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Let

(6.3.11a) y = suple|e ¢ [0,0); 8, (e) < 1}

and

(6.3.11b) m = supfe|e ¢ [0,0) ; 8, (e)e < o).

Obviously, Hy £ "w < 5 (see also Fig. 6.3.1).

LEMMA 6.3.6. Let w € (0,1]. Let Sw be defined by (6.3.10). The following

statements (i), (ii) and (iii) hold.

(i) ew(O) = 1-w and ew is continuous and strictly isotone on [O,c;) i
. # 2 5 2 , 2 _ g _
(ii) If(f > 3—Y— then ew(3BY) <1 (if w e (0,1)) and ew(3BY) =1 (if w=1).
< 2 . R : . R =
If o < 38y then llme+o ew(e) <1 (if w e (0,1)) and lJ.m810 ew(e) <1
(if w=1).
(48] p > wos (IF 0 > o and n_ =0 HE 9 £ o).
w 3By 3BY w 3By

PROOF. By virtue of Lemma 6.3.5 it follows that Sw(O) = 1 -w and that em is
continuous and strictly isotone on [0,5). If ¢ > §§? then it is easily veri-
2 2
. < . —_) = 3 = . i =
fied that ew(_—3ﬂy) 1 (if w € (0,1)) and ew(3BY) 1 (if w 1) . This com
pletes the proof. 0

EA

F,=Gw(£)£
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The following important lemma holds.

LEMMA 6.3.7. Let F € F<o,B8,y> and w € (0,1]. Let 9w be defined by (6.3.10).
Let y € B(x*,é). Then F'(y) is invertible. Set

z =y - wl(y)F(y).
Then the following estimate holds.

lz-x"I < ew("y-x*")"y-x*",

IA

*
Further, if ly-x'| o< then

A

% *
lz-x*Il < cly-x*1.

Here k = ew(p) and it follows that k € [0,1).

PROOF. 1. According to Lemma 6.2.2 the derivative F'(y) is invertible. Set

€= "y—x*“ and let
v=y-T(y)F(y).
Then z = wv + (1-w)y. According to Lemma 6.3.4 we have
(6.3.12). llz—x*ll2 = (1—w)ﬂy—x*"2 + wllv—x*ll2 - w(l-w)llI‘(y)F(y)lI2

Using Lemma 6.2.3 we thus obtain

2 2
Bye ] - w(l—w)A2

%y 2 2 W ) (T
(6.3.13a) lz-x'17 < (1-w)e” + w[Z(l-BYs)

where
(6.3.13b) A = IT(y)F(y)l. ‘
In order to show that lz-x"l < ew(s)e it is sufficient to prove that

(2-Bye)e

(6.3.14) A > 2(1+87¢)

(cf, (6.3.8), (6.2.10)).
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2. Suppose

(6.3.15) 0 < 2ABy(1+Bye) < Bye(2-Bye).

Consider
P: D(F) -~ E,
(6.3.16)
P(x) = F(x) - F(y) (x € D(F)) .
Then P'(x) = F'(x) (for all x € D(F)). Consequently, P'(x*) is invertible
and

(e (x) 17 lp (™) = -rx™)F(y)

r(x")F (x) - F' (9 T F(y) - T(y)F(y).

I

Hence, with a = A(1+Bye), we have

1

6.3.17) I xH 17 eI < a.

Set h = aBy. According to (6.3.15) we have

(6.3.18) 0 <h < % .

Since 2h < Bye(2-Bye) it follows that
1 - vV1-2h < 1 - /1-2Bye+(Bye)” = Bye.

Consequently,

1-v1-2h e %G < 1+v1-2h .

(6.3.19) By By

From (6.3.18) and (6.3.19) it follows that Lemma 6.3.3 applies (with T = 8).
Hence P(x) = 0 has a unique solution ; in B(x*,c) and ; € E(x*,rl). Since
P(y) =0 and y € B(x*,o), it follows that x = y, so that y € ﬁ(x*,rl). There-

fore
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1-v1-2h

Ix* -yl < iy m S (cf. (6.3.19)).

This yields a contradiction. Consequently (6.3.14) holds. Hence
lz-x"I < 6 (e)e.
w

If e <p < Myt then Bw(e) < Gw(o) <1 (cf. Lemma 6.3.6(i)). This com-

pletes the proof. 0

PROOF OF THEOREM 6.3.2.

PART A. A number k 2 0 exists for which w,

ewn and L “wn where ewn and ﬂwn are defined by (6.3.10) and (6.3.11b)

<1. For n = 0,1,...,k set en =
respectively. For n = 0,1,...,k let

¢,: [0,061 > [0,05],

(6.3.20)

en(e)e (if € € [0,7.)),
¢n(6) = { J

o (if € € [nj,éj).
Consider the following function.

y: [0,6] - [0,5],
(6.3.21a)

Y(e) = €re1”

Herewith we define the quantities € (n=20,1,...,k+1) by

(6.3.21b) EO =€
and
(6.3.21c) ™ ¢n(sn) (n=20,1,...,k).

The following lemma holds. )

LEMMA 6.3.8.

(i) The function y defined by (6.3.21) is isotone on [0,5] and continuous
on [0,0).

(ii) A constant ﬁ exists such that ﬁ =g (if 5 < 55?9, 3%?_< ﬁ < 8 (if

~ 2 . s 12

o > 3@;9 and llm€¢ﬁ v(e) < mln{o,sgy}.
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(iii) Let € e [0,n) . Let € (n=20,1,...,k) be defined by (6.3.21b,c). Then

gn < nn <0 (n=20,1,...,k).

PROOF. From Lemma 6.3.6(i) it follows that Y is isotone on [0,0] and con-

tinuous on [O,é). ItAis e;sily verified that w(gg;d < 3%7 (if o > 3%;0 and
lim€18 Y(e) <o (if o < 3@?_' (cf. Lemma 6.3.6(ii)). Consequently, a con-

stant ﬁ exists such that statement (ii) is true.
Let € € [O,ﬂ) and let ¢ (n =0,1,...,k) be defined by (6.3.21b,c).

Suppose EnO 2 ﬂno for some n, with 0 < n, < k. Then ¢n0(en0) = 0 and it is

n
0
easily verified that Y(e) = o. This yields a contradiction. O

PART B. Let ﬁ satisfy statement (ii) of Lemma 6.3.8. Let F € F<o,B,y>.

Let x, € B(x*,ﬁ) and set € = “xo—x*". Let € (n=0,1,...,k+1) be de-
fined by (6.3.21b,c). It is easily verified that for n = 0,1,...,k

Ilx -x*ii < €, < Ty < g, F'(xn) is invertible, and, with

xn+1 - Xn - wnF(xn)F(xn)
we have
I I <o (I 1yl I <0 (e )e = } =
TS e xS G lede, =a.08) =5
(cf. Lemma 6.3.7, Lemma 6.3.6(i) and Lemma 6.3.8(iii)). Hence
I *I' < ylx.-x"1) < min{o,=>}
xk+1-x <y xo—x min 0,3BY M
PART C. From part B of the proof it follows that a number p € (0,357) with

- *
p < 0 exists such that X4 € B(x ,p). Set

6 = sup{6, (p) | n > k+1}.
n
Since p < by (for all w € (0,1]), (cf. Lemma 6.3.6(iii)), it follows that
ew(p) < 1 (for all w € (0,1]). Further, Gw(p) is continuous in w (for all
we [A,1] with X = inf{wn ln > k+1}). Hence 8 < 1. From Lemma 6.3.7 it fol-

lows that for n = k+1,k+2,...

* ~ * *
uy—wnF(y)F(y)-x I < elly-x"| (for all y € B(x ,p)).
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Consequently, the statement of the theorem holds. O

PROOF OF THEOREM 6.3.1. Theorem 6.3.1 is a direct consequence of Theorem

6.3.2 and Remark 6.2.1. 0

PART II

Let M denote Newton's method and let the method Mm (with w € Q) be de-
fined by Definition 6.3.1. In part I of this chapter we were able to prove
that r(Mm; F<o,B,v>) 2 r(M; F<o,B,y>) (for all ¢ € (0,~] and B,y > 0). How-
ever, we did not manage to determine r(Mm; F<o,B,Y>). In this second part
of chapter 6 we shall present the subclass F<o,a> (0 € (0,*] and a € [—%7%])
of Fl' It will appear that in this case we can determine not only
r(M; F<o,a>) but also r(Mm; F<o,a>).

Before we introduce F<c,a> we observe the following. Let F € Fl with

F € Ll(E) where
(6.4.0.1) L (E) = {F |F: E~>E, and F(x) = b+L(x) with b € E, L € L(E)}.

Let M be Newton's method. It is easily verified that, with G = M(F), we have
*

G(x) = x (for all x € E). Consequently, for any starting point X € E,

Newton's method requires only one step to solve F(x) = 0. More generally

speaking, let o € (0,»], let F ¢ Fl and suppose that the following holds:

B(x*,c) c D(F), F'(x) is invertible and
(6.4.0.2)
(x-x*,F(x)F(x)) = %{"x—x*ﬂz-k"F(X)F(x)ﬂz} (for all x € B(xf,o)).

A little calculation shows that (6.4.0.2) implies ﬂG(x)-x*"2 = 0 (for all

x € B(x*,0)). Hence Newton's method requires only one step to solve F(x) = 0

* 1
whenever x0 € B(x ,0). The subclass F<o,=> consists of all functions F for

which (6.4.0.2) is true. Further F<o,%> c F<o,a2> c F<c,a1> c F<c,—%> = F1

5 € E—%y%J with a, < a2). See also Fig. 6.4.1 on page 99. Conse-

quently, r(M; F<o,+>) is isotone on E—%y%ﬂ, r(M; F<O,—%>) =0 (cf. (6.1.2)

and Theorem 6.2.1) and r(M; F<o,%>) = 0.

(for all oy .o
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6.4. THE CLASS F<o,a>

Before we present the class F<o,a> we give two lemmata.

LEMMA 6.4.1. Let F € Fi' Then for any x € D(F) for which F'(x) is invertible

we have
(6.4.1) —%ﬁ"x-x*"2+"F(x)F(x)“2}S (x—x*,T(x)F(x)) Sé{"x—x*"2+"F(x)F(x)"2}-

Further, positive numbers p and § exist such that B(x*,p) c D(F), and F'(x)

is invertible and

(6.4.2) (x-x", T F(x)) 2 [L-slx-x12]{Ix=x"12 + IT(x)F(x) 12}
2 .

(for all x € B(x*,p)).
PROOF. 1. Let x € D(F) and suppose F'(x) is invertible. Then
(ex" , TOOF(0) = 2lxx"1 = ITGF@ 132 < (e, T F ()
* 1 * 2
< (x-x ,T(X)F(x)) + E{Hx-x I - Ir(x)F(x)I}".

From Schwarz's inequality (see [KANTOROWITSCH & AKILOW, 1964; section 7.1
(I1)]) it follows that

Ax-x" T () Fx) € (x-x,T(x)F(x)) < lx=xMIT (x)F(x).
Hence (6.4.1) holds.

2 Let M denote Newton's method. From Lemma 6.2.3 and (6.1.2) it follows

that [M,F] is quadratically convergent. Hence p,61 > 0 exist such that

*
B(x ,p) < D(F), and F'(x) is invertible and
Hx—F(x)F(x)—x*"2 < df"x—é*"4 (for all x € B(x*,p)).

Consequently,

v

Fi=x T lExl) 2 Ven'T? 4 1Pt psl® - 5fux_x*n4

*
(for all x € B(x ,p)).
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Therefore, with § = %— Gf, (6.4.2) is true. O
Let
X: F1 x (0,0] x R - IR,
*
. ex TEIFE)
6.0 0<lxex* <o Ix-x"1 241 T () F ()1 2

X (F;0,0) = (if B(X*,O) c D(F) and F'(x) is invertible
’ F -

for all x € B(x*,o)),

- o (otherwise).

[}
N

The following lemma holds.

LEMMA 6.4.2. For any F € F1 we have

(6.4.4) - % - o £ x(F;0,0) < %- o (for all 0 € (0,~] and o € IR)
and
(6.4.5) lim x(F;o0,a) = —;— -a (for all a € IR).
ov¥0
PROOF. This lemma is a direct consequence of Lemma 6.4.1. 1]

Let F € F1 and 0 € (0,o]. From (6.4.4) it follows that

(6.4.6) x(F;o,a) 20 (for all a < -%) ,
(6.4.7) X (F;o,a) < O (for all a > %).

For ¢ € (0,»] and o € [-%,l] we define
(6.4.8) F<o,0> = {F | F ¢ F ; x(F;o,a) 2 0}.

When o0 € (0,2] and a € (—%,-;—] then the following relation holds.
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(6.4.9) F<o,0> = {F |F ¢ F; B(x",0) < D(F); F'(x) is invertible and
* *y 2 2
(x=x ,T(x)F(x)) 2 a{lx-x 1“4+IT(x)F(x)1“} (for all
*
X € B(x ,0))}.
Further
(6.4.10) F<c,-é> = F, (for all o € (0,%]).

Let 0 € (0,»]. We notice that

(6.4.11) F<o,a1> > F<o,a2> (for all numbers a e, with

~
.

NI[ =
IA
Q
—
IN
Q
N
IA
N =

Let Ll(E) be defined by (6.4.0.1). It is easily verified that

(6.4.12) Fl n Ll(E) c F<c,%> (for all o € (0,»]).

1
Thus for each 0 € (0,*] and o € [-Eyéi, the set F<o,0> is not empty .

Let 0 € (0,») and a € (—%V%J. Let F € F<o,a> and let F0/2 denote the
restriction of F to B(x*,0/2). Then Fo € Fl but F ¢ F<o,0> (cf. (6.4.9)).

/2 /2

Consequently

il

(6.4.13) @ ¢ F<o,0> ¢ F1 (for all 0 € (0,«] and a € G—l 3

2

Fig. 6.4.1 illustrates the properties of F<o,a> listed above.

<0

ay

Fig. 6.4.1 Fig. 6.4.2
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REMARK 6.4.1.

2

a e, € [O,%J and oy # a, (this is a consequence of the Lemmata 6.6.8 and

6.6.11).

2. If E = IR, then it is easily verified that F<o,a> = F<o,0> whenever

1. Let 0 € (0,»]. It can be shown that F<o,a1> # F<o0,0.> whenever

a € (—%70] and 0 € (0,=].
If E # IR, then this need not be the case. We shall illustrate this
for the case E = IR2 with innerproduct (x,y) = £1n1-+£2n2 (for x = (51,52),
2

y = (ng,n,) € IR). Let

F: IR2 > 1R2,
(6.4.14)

4 2.4 2
Flx) = (E5(1+ED " +E (1+£),5,(1+E2)) (for all x ¢ R,

where x = (51,52)).

It is easily verified that F(0) = 0, F € Fl and that F'(x) is invertible

(for all x € IR2). With xo = (2,1) it can be shown that —%—< ao < 0, where
a. = (x,T(x)F(x))/{x 12 + IT(x)F(x)1%}
0 o’ 0 0 0 0 0 .
Consequently, since “xO" = V5, we have x(F;/S,aO) < 0. From Lemma 6.4.2 it

follows that lim0+0 X(F;o,ao) = ln-a > 0. It can be shown that in this case

2 70
x(F;o,ao) is continuous on (0,»]. Consequently, a number 0. € (0,V5] exists

0

o> and F ¢ F<00,O>. Hence F<ao,ao> # F<oo,o>.

Even if E is an arbitrary Hilbertspace with E # IR, using the above

such that F € F<00,a
example it can be shown that numbers a and ¢ with —%-< a < 0 and 0 > 0 exist
such that F<o,a> # F<o,0>. O

Let 0 € (0,o] and F € F1' Notice that (cf. (6.4.3) and (6.4.4))

(6.4.15) X(F;0,¢) is strictly antitone and continuous on [-%yéﬂ, and

'

1
X(F;O,—E) > 0.

We define

11
a: Fl x (0,=] *‘[-EVEJ,

(6.4.16)
a(F;0) = sup{a | o € [-éy%ﬁ; x(F;o,a) 2 0} (F € Fl’ o€ (0,°]).



Let F € Fl' It is easily verified that (cf. Fig. 6.4.2
(6.4.17) a(F;*) is antitone on (0,~] and lim a(F;0)
o+Y0

From (6.4.15) and (6.4.16) it follows that

(6.4.18) F € F<o,a(F;o0)> (for all o € (0,»]).
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and (6.4.5))

1
- >

Let a € [—1-10 and F € Fl' Notice that (cf. (6.4.3) and (6.4.5))

2'2

(6.4.19) X(F;+,0) is antitone on (0,~], left-continuous on (0,®), and

lim x(F;o0,0) = %n-a > O.
oY0

We define

s: Fy x [-3,3) > (0,%],

(6.4.20)
s(F;a) = sup{o |0 € (0,2]; x(F;o,a) 2 0}

Let F € Fl' It is easily verified that (cf. Fig. 6.4.2)

(6.4.21) s(F;+) is antitone on [—éyéO.

From (6.4.19) and (6.4.20) it follows that

(6.4.22) F € F<s(F;a),a> (for all a € [-%,%)).

6.5. THE RADIUS OF CONVERGENCE OF NEWTON'S METHOD WITH

Let 0 € (0,] and o € EvL L

2133

THEOREM 6.5.1. Let M be the Newton's method. Then

(ISEGITS
<
.

0 (if o <
r(M; F<o,0>) = {

(o] (1f a > =

We shall prove this theorem in the next subsection.

11
(F € F1' ae [-53)).

RESPECT TO F<o,0>
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6.5.1. Proof of Theorem 6.5.1

First, we introduce an auxiliary function, which will be used frequently

in this chapter. Let

0: (o,lj x {1,2} » IR,
(6.5.1)

6(g,k) = ((g,k) € D(©)).

1+(-1%/1-4¢2
28

Direct computation shows that the following relations hold.

(6.5.2) E(L+6(E,%) %) = 0(E,k) (k =1,2)
and
(6,5,3) 6(£,1) = [8(E,217" (for all € e (0'%]"

The following relations, that are easily verified, will be used subsequently.

6(+,2) is strictly antitone on (O,%J, lim 6(§,2) = =,

(6.5.4) , 1 £40
9(§v2) = 2, 9(572) = 1.
. . . 1 2 1 1
(6.5.5) 6(+,1) is strictly isotone on (O,EJ, 6(371) = 5 6(571) = 1.

The following lemma holds.

LEMMA 6.5.2. Suppose a € (O,%J. Let F € F<o,a>. Then B(x*,o) c D(F), and

F'(x) is invertible and

(6.5.6) o(a,)lx-x1 < ITx)FEI < 8(a,2)lx-x"1  (for all x € B(x ,0)).

'

* *
PROOF. In view of (6.4.9) we have B(x ,0) < D(F). Let x € B(x ,0). Then

F'(x) is invertible and (cf. (6.4.9))
(x=x", T(OF(x)) > all x-x"12 + IT(F 1%},

Using Schwarz's inequality, we obtain
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AT FEI2 = I T () F )l + alx-x12 < 0.
This implies (6.5.6). 0
Let
1
q}: (OI_] % ml
(6.5.7)

V() = B(£,2) - 1 (€ € (0,30).
From (6.5.4) it follows that
: 2 . 1 2
(6.5:8) Y is strictly antitone on (O'EJ and w(g) =1,

The following lemma holds.

LEMMA 6.5.3. Suppose a € (O,%J. Let F € F<o,a>. Set G = M(F) where M is

Newton's method. Then B(x*,o) c D(G) and
(6.5.9) le(x)-x"1 < y(a)lx-x"1 (for all x € B(x ,0)).

PROOF.In view of (6.4.9) we have B(x*,c) c D(G). Let x € B(x*,c). It follows
that (cf. (6.4.9))

"G(x)—x*"2 = "x—I‘(x)F(x)—x*II2

Ix-x*12 + 1T () F )12 = 2(x=x", T () F(x))

(1 - 20) Ux=x"12 + IT(x)F ()02},

IA

Hence, using Lemma 6.5.2,
(6.5.10)  la(x)-x"1% < (1 -20){1+6(a,2) M x-x"12,

Since [¢(a)]2 =1+ 6(&,2)2 - 26(a,2), from (6.5.2) and (6.5.10) it follows
that (6.5.9) is true. ]
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A consequence of Lemma 6.5.3 is the following lemma.

LEMMA 6.5.4. Let M be the Newton's method. Then

0 (if o € [—%v%]),
r(M;F<o,a>) 2 {
f w e B0,
N 52

PROOF. Suppose 0 € (%qéﬂ and let F € F<o,a>. Notice that § is strictly anti-
tone on (O,%ﬂ and that w(éﬂ =1 (cf. (6.5.8)). Hence, in view of Lemma 6.5.3,

*
we have B(x ,0) © S(M,F). This proves the lemma. g

2
REMARK 6.5.1. Suppose E = IR and suppose a € (O,EJ. In view of Lemma 6.5.4
and Remark 6.2.1 the proof of Theorem 6.5.1 is completed if we can show
that for all € > O there exist an f € F<o,a> and an X € D(f) with

Ix -x*I < ¢, such that xqy £ S(M,f). Consider

f: IR 2> IR,
1
ghlens) (1f £ > 0),
£(E) =40 (if € = 0),
o (if £ < 0).

It is easily verified that f is continuous on IR, £ = 0 is the unique solu-

tion of f(§) = 0, and, for all £ # 0, f is twice continuously differentiable
and f'(g) # 0. Further

er @)1 E(8) = 6(a,20E  (for all € # 0).
Consequently (cf. (6.5.2)),

€ [f'(E)]-lf(E) = Eze(a,é) = E2a{1+e(a,2)2}

alg? + (£ (&) 17 e 12 (for all £ # 0).

If £ # 0 then (cf. (6.5.8))
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E- [ (1 6@ = [1 - 0(a,2)]E = ~p(a)E < -E.

It is easily verified that & ¢ S(M,F).

However, since f ¢ F<o,a> (f is not differentiable at £ = 0), with this
example we have not completed the proof of Theorem6.5.1. With the next lemma,
however, we can complete the proof of Theorem 6.5.1 by showing that an
f € F<o,a> with the desired properties exists, which is not only twice but

infinitely differentiable on D(f). 0

2
LEMMA 6.5.5. Let M be the Newton's method. Suppose o. € [—%VEJ. Then for any
€ > 0 there exists an F € F<o,0> which is infinitely differentiable on D(F)

for which r(M,F) < g.

We shall prove this lemma, with the function f of Remark 6.5.1 in mind,

in a more general setting in subsection 6.6.2 (cf. p.119).
6.6. THE RADIUS OF CONVERGENCE OF MLT) WITH RESPECT TO F<G,a>

Let Q be defined in (6.3.5); for w € Q the iterative method Mm is de-
fined by Definition 6.3.1.
In this section we give a theorem concerning the radius of convergence

of Mm with respect to F<o,a>, where o ¢ (0,»] and o € [—%V%J. To that end

let
Vs 0,11 x (0,3] > R,
te-8.4) 1-wo(g,1) (if 0 < w < 28 < 1),
‘PI(N:E) =
wb (§,2) -1 (if 0 < 28 <w < 1),

Here 6 is defined in (6.5.1). Let w ¢ (0,1]. In view of (6.5.2~-5) the fol-
lowing relations (6.6.2a,b,c) hold.

(6.6.2a) ¥, (w,*) is continuous and strictly antitone on (O,%J,

Lim ¢, (@,8) = ©, ¥, (w,3) = 1-w.
Y0

(6.6.2b) If w = 1 then wl(w,éo =1, if w € (0,1) then wl(w,i) <1

(for all £ € [éu%]).
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(6:6.2¢c) wl(m,E) > ¢1(2E,E) = V1-48" > 0 (for all & € (O,éﬂ with
28 # w).

Consider the functions

$,: 2 % (0,31 > R,

(6.6.3)
_ . n
¢1(w,5) = max{1, jEO wl(wj,g) (n=20,1,...,N-1)}
1 - =
(£ € (0,] and w € Q with w = (wo,wl,...,wN))
and
1
¢2: Q x (0,=] » IR,
(6.6.4)

- N
0,8 = [T b, (0,8

1 -~ X P
(E € (O’EJ and w € Q with w = (wo,wl,...,wN)).

Let w € Q. Note that wN = 1. In view of (6.6.2a,b) we have

(6.6.5) ¢1(a,-) is continuous and antitone on (0,%J, ¢1(5,£) =1
~ 1 o 2
(for all & € [a,iﬂ), where 0 < o < 5
and
(6.6.6) ¢2(5,-) is continuous and strictly antitone on (O,éJ,

lim ¢2(a,g) = » and ¢2(5,§) < 1.
£40

The following theorem holds. !

1 =
THEOREM 6.6.1. Let 0 ¢ (0,*], o € ['%VEJ and w € . Then the equation
¢2(5,£) = 1 has a unique solution & = oy in (O,%J and aw € (O,%). We have
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o . 1
¢1(m,u) (if a_ < a < 2),
(6.6.7) r(Mm; F<o,0>) =<8 (if a = am),
0 (if =< a < am)-

Here § satisfies

< ___1g__;_
¢1(w,am)

(6.6.8) 0<3$
The proof of Theorem 6.6.1 will be given in the next two subsections.
It depends on the following principle. Let ¢ ¢ (0,®], a € (O,%ﬂ, w e 9 and
w e (0,1]. For F € F<o,0> and y € B(x*,o) set
z =y - wl(y)F(y).
It can be shown (see Lemma 6.6.5) that

lz-x"Il < q)l(m,a)"y—x*",

From this relation it can be shown that

o ‘ _
$;TETET (. F ¢2(w,a) <1,
r(M_; F<o,a>) =
® 0 (otherwise) .

Using specially chosen iterative processes [MG'F] it can be shown that

(6.6.7) holds.

We give some illustrations.

1. Graph of wl; £ e (O,%J is fixed.

' A=, (w,E)

1

Fig. 6.6.1a (& E(O,%?) Fig. 6.6.1b (§=%)
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A A A
)\=l1)1(u)15) >\=IP1((D,E)
1 1 §— —— =

[
|
I
[

: 1
Fig. 6.6.1c (¢ (5,2) Fig. 6.6.1d (£=3)

2. Graph of r(Mm; F<o,a>); 0 € (0,»] and w € § are fixed.

AN A A
A=r(M_;F<o,a>) X=r(M_;F<o,a>)
6~ O T 0
/i
i
T — 55— i =t
] O oy 32 @ ~g O @% 53 ¢
¢2(m,am)=1 ¢1(w,am) =1 ¢2(w,am) =1 ¢1(w,am) >1
Fig. 6.6.2a Fig. 6.6.2b

3. Graph of r(M; F<o,0>), where M is Newton's method; 0 € (0,«] is fixed.

A
A=r(M_;F<o,a>)
o ﬁ‘_.w
T 31
“3 & 5% ¢
Fig. 6.6.3

4. Graph of r(Mm; F<o,a>); a € [-l l:I and w € Q are fixed (o # am).

2’2
A // i )\1

4 A=r(M-; F<o,a>)
s oz

A=r(M_; F<o,a>) ,

@

0 r(M_;F<o,a>) g 0 r(Mﬁ;F<O'a>)

N =1 0o<{\—m8M8Mm ——«<1

o g
Fig. 6.6.4a Fig. 6.6.4b
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>\=r(Mm; F<o,a>) ,
0 r(M-;F<o,a>) ¢
)
N S, o
o
Fig. 6.6.4c

We give some corollaries of Theorem 6.6.1.

COROLLARY 6.6.2. Let 0 € (0,#] and w € Q. Let M be Newton's method. Then

(6.6.9) r(Mm; F<o,a>) 2 r(M; F<o,a0>) (for all a € [-%7%]).
More specifically,
21
(6.6.10) r(M(T); F<o,0>) = r(M; F<o,0>) = o (for all a ¢ (-S-’EJ)
and there exist constants a& and &6 with 0 < OL5 < &5 < %—such that
(6.6.11a) 0 < r(Mm; F<o,0>) <0 and r(M; F<o,a>) = 0
2
(for all a € (a_,=])

@'5
and
(6.6.11b)  r(M;; F<o,a>) = ¢ (for all a € (am,é]).

109

PROOF. According to (6.6.5) and (6.6.6) it follows that numbers a_,a e (0,

exist such that ¢ (w,a) = 1 (for all a e [a,2]), ¢2(w a) <1 (for all

a € [a_,2]) and ¢ (w a ) = 1. Let am‘= max{a,am}. From Theorem 6.6.1 and

Theorem 6.5.1 it follows that the statement is true.

0

Let 0 € (0,°], o € [—%y%J and © € Q. Corollary 6.6.2 shows that Mm has

a radius of convergence with respect to F<o,a> that is not smaller and, for

certain values of a is even greater, than the radius of convergence of

Newton's method. See also Remark 6.3.1.

)
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Corollary 6.6.2 can also be interpreted as follows. Let F « Fl' Then

F € F<s(F;a),a> (for all o € E—%q%d) (cf. (6.4.20), (6.4.22)). Consequently, -

r(M,F) Zp.0.=sup{s(F;a) |oe (%;1-]} andr(Ma,F) me=sup{s(F;ot) |<xe (&m,%]}. In

view of (6.4.21) it follows that pm 2 p_ . Corollary 6.6.2 guarantees that

0
*
[M,F] generates a sequence {xk} that converges to x whenever the starting
*
point X, € B(x ,po). Furthermore, [Mm’F] generates a sequence {xk} that con-

* * *
verges to x whenever x_ ¢ B(x ,pm) > B(x ,po).

0

Let NO € IN be given. Let ENO € (O,é& satisfy
AR
(6.6.12) ( 1—4EN ) (S(EN ,2)-1) = 1.

0 0
gNo is unique (cf. (6.5.4)). Define
(6.6.13) nlNg] = (NOENOJ,ﬂlfNOJI...,WNO[NOJ) where

(3 = O,1,...,N0—1) and L [NO] =1.

m.[N.] = 2
j 0 N0 0

Hence, E[NO] € @ and the following result is a consequence of Theorem 6.6.1.

COROLLARY 6.6.3. Let 0 € (0,]. Let & € Q with & = (W Wy reeeswy), N < Ny

and w # E[No]. Then

(6.6.14) r(Mi[NOJ; F<o o>) 2 (M F<o,0>) (for all a € [—%V%J).

More specificallly,

o (for all a € (EN ,%])

(6.6.15) r (M- ; F<o,a>)
ﬂ[NO] o

) 1
and there exists a constant Uz with ENO < U= < E-such that

(6.6.16) r(Mm; F<o,0>) =0 (for all a € E—%qua)).

'

PROOF. From (6.6.2c) it follows that for j = O,1,...,NO—1 we have

¢1(nj[N0],ENO) < wl(w,ENo) (forallw € (0,1] with w # ﬂj[NOJ)

and

wl(ﬂj[NOJ,ENO) < 1.
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Consequently,

-
I

= ¢ (N 1,& ) < ¢,(w,E_)
2 0 N0 2 N0

and

1= ¢1(n[N0],£N ) < ¢y (w,E ).
0 0
Hence, from Theorem 6.6.1, (6.6.5) and (6.6.6) it follows that the state-

ments (6.6.14 - 16) are true. ]

Corollary 6.6.3 may be interpreted as follows. Of all iterative methods

Mm for which w € Q with @ = (wo,wl,...,wN) and N < NO’ the iterative method
; ; ; . 1
Mi[No] is optimal in the folloYlng sense. Let 0 € (0,*] and o € El57%€. Any
iterative method MB for which w = (wo,wl,...,wN) with N < NO and w # ﬂ[NOJ,
possesses a radius of convergence with respect to F<o,a> that is never
greater and, for certain values of o is even smaller, than the radius of
convergence of M_— "
g © NG
We conclude this section by presenting another consequence of Theorem

6.6.1.

COROLLARY 6.6.4. For any o € (O,EJ an w € Q exists for which

r(Mm; F<o,0>) = o (for all o € (0,»]).

PROOF. It is easily verified that & v+ 0 (if N, » ), (cf. (6.6.12)). Hence,
it e L No

0
Corollary 6.6.4 follows from (6.6.15). ]

6.6.1: Proof of Theorem 6.6.1

Throughout this subsection, ¢ and o denote the constants that appear
in Theorem 6.6.1 and w the element of Q. We start with a lemma which was

alluded to in the previous section (éage 107) .

LEMMA 6.6.5. Let w € (0,1]. Suppose a € (O,li. Let F € F<o,0>. Then
B(x*,0) < D(F). Let y € B(x*,0) . Then F'(y) is invertible. Set
z =y - wl'(y)F(y). Then

6.6.17)  lz=x"l < vy @ ly-x"1.



112

Here wl is defined in (6.6.1).

PROOF. Notice that
(y=x*, T E) > ally-x"12 + IT () F 12},
Consequently,
lz=x"12 = Iy=x"12 + 2T () F () 12 - 20 (y-x", T (N F(¥))
< (1—2ma)ny—x*H2 + (w2—2wa)“F(y)F(y)"2.

Using Lemma 6.5.2 it follows that

IA

{1—2wa~+(w2-2ma)[6(a,1)]2}"y—x*"2 (if w < 2a),

—_— L { : : g
{1-2wa + (0" -2wa) [0 (a,2) ] Hy-x"| (if w > 2a).

From (6.5.2) it thus follows that

IA

{mz[e(a,l)]z-Zwe(u,l) +1}lly—x*ll2 (if w < 2a),

lz-x"12 < { 5 : .
{w"[6(a,2) 1" - 206 (a,2) + 1} y-x | (if w > 2a).

Thus (cf. (6.6.1) and (6.6.2c)) relation (6.6.17) is true. ]

Let ¢, and ¢, be defined in (6.6.3) and (6.6.4) respectively. A conse-
1 2

quence of the previous lemma is

LEMMA 6.6.6. Suppose o € (O,%J. Let F € F<o,a> and set G = Mm(F). Then for

all x € B(x*,c/¢1(a,a)) we have x € D(G) and

(6.6.18) le(x)-x"Il < ¢2<a,a>ux-x*u.

'

PROOF. Let x € B(x*,o/¢1<5,a)). Using Lemma 6.6.5 we have, with y, = x,

I < ) I ( Il *1 <
Yner ~% 1 S Yyl ly —xl < TG ¢y (wy,a) Bygmx 9

where

y =y, -w Ny )F(y)) (n=0,1,...,N-1).

n+l
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Since G(x) = For — r(yN)F(yN) it follows that
e -x"1 < . (1,m)ly "I < 01 Y Ix—x"1
G(x)-x < ¢1 , 0 yN—x = 305 wl(wj,a x-x 0.

This proves the statement. 0
We are now in a position to give a lower bound on r(Ma; F<o,a>).

LEMMA 6.6.7.

: s (if a € (0,%] and ¢, (@,a) < 1),
(6.6.19) r(Mm; F<o,0>) = { 1

0 (otherwise) .
PROOF. Relation (6.6.19) is a direct consequence of Lemma 6.6.6. 0

The next subsection will be devoted to the proof of the following lemma,

which may be conceived as a generalization of Lemma 6.5.5.

LEMMA 6.6.8. Suppose o € (O,%J. Then the following propositions hold.
(i) If ¢1(5,a) > 1 then, for any 1 € IR for which ¢1(5,a)r > 0, an

F € F<o,a> which is infinitely differentiable on D(F) exists for which
(6.6.20) r(Ma,F) S T

(ii) If ¢2(5,a) > 1 then, for any € > 0, an F ¢ F<o,0> which is infinitely

differentiable on D(F) exists for which
(6.6.21) r(Mm,F) < €.

Notice that
1. r(Mm; F<o,a>) < 0 (cf. Remark 6.2.1). Hence (6.6.7) follows from Lemma
6.6.7, (6.6.6) and Lemma 6.6.8.

; 1 o g
2. F<o,a,> o> F<o,0.> (if —= < o, < a ) . Hence r(Ma; F<o,a>) is isotone

T
11 2 2 1 2 2
on [-EVEJ so that relation (6.6.8) holds.

Therefore, the statement of Theorem 6.6.1 is true.



6.6.2. Proof of the Lemmata 6.5.5 and 6.6.8

PART A.

We assume in this part of the proof that E = IR.

LEMMA 6.6.9. Let the integer n =2 0 and let 0 € (0,~]. Let aj € (0,%],

T4 € (0,0) and ky € {1,2} (3 = 0,1,...,n). Suppose Ty # Ty ifi# g (d,] =

0,1,...,n). Then for any &, with 0 < g < min{aj| 0 £ j < n}, an

f e F<o,0> n C¥(-0,0) (see (6.2.4)) exists such that

(i) x* = 0 is the unique solution of the equation f(x) = 0,
(6.6.22) (ii) £'(§) # 0 (for all § € (-0,0)),
(iii) [f'(E)]—lf(E) = e(aj,kj)E (if |g| = Tj (j =0,1,...,n), or
el € [Tj,c) and Ty 21, (1 =0,1,...,n).

PROOF. We assume that 0 < 1 < 1, < ... < Tn, this is no restriction. Let

0 1
a i d < mi i< =
a satisfy 0 < al_ mln{aj IO < j < n}. Set Te1 = O and let 1_, « (O,TO). Let
. 2o _ < 4 < = i =
€ > 0 with € < 3 Tln{Tj Tj_1| 0 < j < n+l}. Set cj e(uj,kj) (3 ~0,1,...,
n), c_y = 1. Let dj = (cj_l,cj,rj—ZE,Tj—E) (j =0,1,...,n) and let hj = haj

(cf. (6.2.6)) (3 =0,1,...,n). Let

h: [0,0) +~ (0,®),

(6.6.23) 1 (if & € [0,1_1 +el),
ﬁ(E) = Ej(E) (if £ € (Tj_1-+e,1j-+e] (3 =0,1,...,n)),

R (B)  (fEe (1 +e,0).

A
‘1

1]
St

5 S e s ey

graph of h

Fig. 6.6.5.



Define
f: (-0,0) > IR,
exp[f6 .. axl (if € € (0,0))
(6.6.24) T4 h(A)A ! !
f(g) = 0 (if £ =0),
-f£(-¢) (if & € (-0,0)).
1. We show that f € Cw(—o,c).
a. £ is continuous on (0,0) and
(6.6.25) £'(g) = = £(§) >0 (for all € € (0,0)).
h(£)¢g
In general, for k = 2
%y - —£8) @ (for all £ € (0,0))
(h(g)&]

where P is a differentiable function that is composed of the functions
hat,.. B

b. If € € (O,T_l), then

1

£(&) = expl J %—dA] ==
T, =3

(k)(é) exists (for all k € IN

Hence f is continuous on (—T_l,T_l) and f
1)).

c. For £ € (-0,0) we have £(§) = -¢(-£) where ¢ denotes the restriction of

and all & € (—T_l,T_

f to (0,0). Since ¢ is infinitely differentiable on (0,0), the function

£ is infinitely differentiable on (-0,0) with

(k) k+1f(k)

(6.6.26) f () = (-1) (-&) (for all k € N and all § € (-0,0)).
Hence f ¢ Cm(—c,c).

2. We prove that f € F<0,&>. Obviously (cf. (6.6.25), (6.6.26)), £'(§) > O

(for all £ € (-0,0)). Hence £ = 0 is the unique solution of f(£) = 0.

Notice that, since 4 > 0 and 4 < min{ajl 0 < j < n} it follows that
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o j < n} < h(g)

IA

= 0(a,1) < min(8 (o, 1) | o

1v/1-43%

< max(6(a,2) |0 <3 <n}<6(a,2) (for all £¢[0,0)),

24

(see (6.5.4) and (6.5.5)). Hence

h(g) = a{1+[A(&)1%) (for all £ € [0,0)).
Thus

~ 2 w2 - 2

h(g)g™ 2 af{g” + [h(§)E]"} (for all £ € [0,0)).
Therefore (cf. (6.6.25)) it follows that

£(5) 2 £ 2

(6.6.27) £ G > o{g +[f'(£)] } (for all & ¢ [0,0)).

For £ € (-0,0) we have (cf. (6.6.26))

£(6) _ _ £(=E)
(6.6428) mihem =y

Hence (6.6.27) holds for § € (-0,0) as well. Thus f € F<o,&>.

3. Relation (iii) follows from (6.6.23), (6.6.25) and (6.6.28). O

LEMMA 6.6.10. Let 0 € (0,»] and n € IN. Let the numbers aj and Tj (3 =0,1,

...,N) satisfy the conditions of Lemma 6.6.9. Let T > 0 be given. Further-

+1

- . = _ 5 _

more, let w € Q with w (wo,wl,...,wN) and N 2 n. Assume that Tj+1
(w.,,a.)t, (3 =0,1,...,n). Let k, =1 (if w, < 20.) and k. = 2 (if

Wy > 2aj) (j =0,1,...,n). Let £ € F<o,&> n c®(-0,0) satisfy (6.6.22) where

0<as min{aj | 0 < j < n}. Then for any £ € (-0,0) with |E| = T, we have
(6.6.29a) ij+1l = Tj+1 (3 =0,1,...,n).
Here
-1
— - ' i =
(6.6.29Db) yj+1 yj wj[f (yj)] f(yj) (3 0.: 1.4 we 500)

and



(6.6.29c) Yo = E.

PROOF. Let & € (-0,0) satisfy |&]| = T,- Assume £ is an integer with 0<{<n.

Suppose (6.6.29) holds for all j with 0 £ j < £-1. Thus vp € (-0,0), and
Yoo = 2p ™ wz[f'(yz)]—lf(yz) = (1 - wﬂe(aﬁ’kﬂ))yl'
Hence |y£+1| = Tp1 (cf. (6.6.1), (6.6.2c)). This proves the lemma. ad

The following lemma shows that the Lemmata 6.5.5, 6.6.8 hold if E = IR.

LEMMA 6.6.11. Let a € (0,%J and w € Q.

(i) Suppose ¢1(w,a) > 1. Let 0 € (0,°). Then for all T € IR with
¢1(5,a)r >0 an f € F<o,a> n Cm(—o,c) and a number 50 € D(f) with
|£O| < T exist such that £(0) = 0, £'(§) # O (for all £ € (-0,0))
and EO ¢ D(Ma,f). N

(ii) Suppose ¢2(5,a) > 1. Then for any € > 0 an f € F<»,a> n C (IR) and a
number EO € D(f) with IEOI < € exist such that £(0) = 0, £'(§) # O
(for all £ ¢ R), ¢(§y) € D(9), ¢[¢(E)] = £y and £y ¢ S(M_,f) . Here
¢ = M_(£). , )

(iii) Suppose a = = Then for any € > 0 an £ € F<®,a> n C (IR) and a number

EO € D(f) with IEOI = € exist such that £(0) = 0, £'(§) # 0 (for all

£ € R), $(€5) € D(¢), ¢£¢(£O)] = &, and €0 ¢ S(M,f). Here M is

Newton's method and ¢ = M(f).

PROOF. (i) Suppose ¢1(5,a) > 1. Consequently a < %—and an n < N exists such

o]
that ﬂ?=0 wl(wj,a) > 1. Let T € (0,0) such that ﬂ?zo wl(wj,a) > - We assume

that ﬂ%=0 wl(wj,a) < %—(for all i < n).
Due to (6.6.2a) an € > 0 exists with a+¢ < %—such that ﬂ% wl(wj,a+e )

< —-(for all i < n) and ﬂn =0 w (w ,a+e ) > -(for any set {E ,E reeer€l } e

1

j+1 (3 = 0,1,...,n) as

follows. Choose ej € (0,e] such that w (w ,a+e )T # Ti (for all i < j).

(0,e]). set TO = T. We construct the numbers aJ and T,

Set aj = a+eJ and TJ+1 ¥ (w ,a )T J Thus {TO,...,T } ¢ (0,0) and T net > O

According to Lemma 6.6.10 an f € F<0 a>nc (-0,0) exists such that for all
EO € IR with Igol = T the relation (6.6.29) holds. Hence Eo ¢ D(Mmf). This
proves statement (i).

(ii) Suppose ¢2(5,a) > 1. Hence a < %; Let € > 0. As in the first part of
the proof we can construct numbers aj (j =0,1,...,N) and Tj
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(3 =0,1,...,N+1), where TO = ¢ and L > Ty such that aSlnin{aj[Os j <N},

and Tye1 = w(mj,aj)Tj and T, # Ty for i <j (j =0,1,...,N). From Lemma

6.6.10 it follows that an f € F<w,a> n Cm(nU exists such that, for all

£ € IR with || = €, we have ¢ (&) =1 > T = |€|. Here ¢ = Mm(f). Since

N+1
¢ is continuous on IR and [Mﬁ'f] is quadratically convergent (cf. p.87),
from Lemma 6.2.6 it follows that a number EO € [-e,e] with EO # 0 exists

such that ¢[¢(€O)] = g This proves (ii).

0
(iii) Suppose o = %u Let € > 0 and let Ty = €- From Lemma 6.6.9 and (6.5.4)
it follows that an f € F<w,a> n c”(R) exists such that [f'(E)]_lf(E) = 2§
(for all £ ¢ IR with |g]| = TO). This proves (iii). O

PART B.

We are now in a position to prove tpe Lemmata 6.5.5 and 6.6.8 where E

is an arbitrary Hilbert space, as will be clear from the next lemma.

LEMMA 6.6.12. Let 0 € (0,»] and o € (O,EJ. Let f € Cw(—o,c) and suppose that
f'(¢§) # 0 (for all § € (-0,0)) and £(0) = 0. Moreover, let

£(8)
£1(8)

£(g) ;2
f,(g)] } (for all £ € (-0,0)).

(6.6.30) £ > a{£2 + [

Let F be the E-extension of f (cf. (6.2.14)). Then F € F<o,a> and % = 0.

PROOF. In view of Theorem 6.2.12 and (6.4.9) it is sufficient to prove that

(6.6.31) (x,T(x)F(x)) 2 a{"x"2-+"F(x)F(x)"2} (for all x € B(0,0)).

Let x € B(0,0). Suppose that Bx = {u|u==un with n e IN} and En:=(x,un)(n==1,2,

...). Hence |€nl <o (n=1,2,...). From Theorem 6.2.12(iii) it follows that

E f(En)
(x,T(x)F(x)) = E. S s
n=1 n £ (En)
Since '
0 £(€ )
12+ reorel® = [ (el + ey,
n=1 n

relation (6.6.30) shows that (6.6.31) holds. ]
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PROOF OF THE LEMMATA 6.5.5, 6.6.8.

1. Suppose ¢1(6,a) > 1. Let T € IR satisfy ¢1(5,a)r > 0. Let f € Cw(—o,c)
and EO satisfy statement (i) of Lemma 6.6.11. Let F be the E-extension of f

Thus F € F<o,0> and there exists an element u of E with lul = 1 such that
I W) F(Au) = ff,(:‘;) u (for all A € (-0,0)).

Set Xy = Eou. Then X ¢ D(MB,F). Finally, from Theorem 6.2.12 it follows
that F is infinitely differentiable on D(F). This proves statement (i) of
Lemma 6.6.8.

2. By a similar argument to the above, (using Lemma 6.6.11(ii)) one can
show that statement (ii) of Lemma 6.6.8 is true, and (using Lemma 6.6.11

(iii)) prove Lemma 6.5.5. 0
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CHAPTER 7

NUMERICAL EXPERIMENTS

In this chapter we present some numerical results. The test examples
will all be finite dimensional problems. Examples of the application of the
imbedding method to problems in infinite dimensional (Banach) spaces can be
found, amongst others, in the following three references: [WACKER, 1972]
(where the discrete imbedding method is used), [BOSARGE, 1971] (where
Davidenko's method is used), [KLEINMICHEL, 1968] (where iterative imbedding
is used), (cf. section 1.1).

We present some numerical results with iterative methods of the type
investigated in Chapters 5 and 6.

All computations have been carried out on a CDC Cyber 73/173-28 compu-

ter (accuracy: 48 binary digits in the mantissa) .
7.1. ITERATIVE METHODS TO BE TESTED

We have divided the iterative methods to be tested into three classes.
Let A € A (cf. (2.6.3)) where [A(F)](y,x) = F(y) -F(x) (for all F e Fl
(cf. (2.6.1)). Let F € Fl'

CLASS 1. Let N > 0 and H = {ho,h ..,hN} with hi =— (i=20,1,...,N).

1"

Let g = 0. Let R, (for 6 € IR) be the one-stage Runge-Kutta method with

6
operator coefficient for which

Py 1 (2) = [1- (1—6)2]_1‘

2
(see also subsection 3.3.2). We notice that, when solving a linear differen-
tial equation with constant coefficients, the method Re with 6 = %—is equi-
valent to the Trapezoidal rule, and the method Re with 6 = 0 is equivalent
to the Backward Euler method. The Trapezoidal rule is more accurate than

the Backward Euler method. However the latter method has better stability
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properties than the former one (cf. [LAMBERT, 1973; pp. 235-236]). If 6 =1

then R, reduces to Euler's method.

0
Set M = M (A,g,R,,H). Then G = M (F) satisfies (cf. section 4.2)
N,© 0 N,©
G: D(G) »~ E,
(7.1.1a)
G(x) = nN+1(x) (x € D(G)) .

In (7.1.1a) nj(x) (3 =0,1,...,N+1) is defined by

ny(x) = x
(7.1.1b) and
1 (1-6)
Wt T e

" —1
nj+1(x) = nj(x) F(nj(x))F (nj(x))F(nj(x))F(x)]

F(nj(x))F(x) (3 =0,1,...,N).

0
ture as the method of tangent hyperbolas (cf. [ORTEGA & RHEINBOLDT, 1970;

We notice that for 6 = %—and N = 0 the method MN is known in the litera-
’

p. 188] for a bibliography on this method) . Furthermore for 6 = 0 and N = 0

the method MN has been investigated in [DI LENA & TRIGIANTE, 1976]. In that
’

6
paper it was supposed that E = IR. In the computations that were performed
on some problems in IR, the method exhibited better convergence behaviour
than the convergence behaviour of Newton's method, especially when the start-
ing points were not close to the desired solution.

From Theorem 5.2.8 it follows that the iterative processes [MN,G’F]

(N 20, 6 ¢ IR) are all quadratically convergent.

In higher dimensional vector spaces computation of F"(z) requires in
general an exorbitant amount of work. Consequently, for 6 # 1, the iterative
methoas MN,@ are rather cumbersome from the computational point of view.

We shall therefore modify MN,G in such a way that F"(nj(x)) need not be
computed. Let y,x € D(F). Suppose F'(y) is invertible. For any € > O there

exists a number p > 0 such that for all T with 0 < [1| < p
ZUF (y + T (F(X) - F'(y) - TE QTP < e,
When T is small, the operator %{F'(Y-FTF(Y)F(X))'-F'(y)} is therefore approx-

imately equal to F"(y)T(y)F(x). Thus we can approximate the iteration func-

tion G, defined in (7.1.1) by an iteration function E,
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E: D(E) + E,
(71.:2a)

~

G(x) = nN+1(x) (x € D(G)).

In (7.1.2a) Ej(x) (3 = 0,1,...,N+41) is defined by

Ny (x) = x
(7.1.2b) and
(1-6)

~ ~ V 1 . ~ . ~ ~
nj+1(x) = nj(X)"ﬁIT{F (nj(x)) _7E1T7¥{F (nj(x)+TF(nj(x))F(x))

- p-(ﬁj(x))}]‘lp(x) (5 =0,1,...,3.

D(E) is defined in a way similar to D(G) (cf. section 4.2.2). E can be con-

ceived as an iteration function of an iterative method, which we denote by

M . H =M B
N, 0 ence G N,G(F)

We notice that for N = 0, iterative methods MN 6
’

by several authors (cf. [TRAUB, 1964; p. 164], where it is assumed that

have been investigated

E = IR; for the case that E is an arbitrary Banach space, an example is

given, for instance, in [KOGAN, 1967]). Just as with the method of tangent
hyperbolas, the main purpose of investigating these methods was their local
convergence behaviour (near x*). Our main interest, however is in what hap-

*
pens when the starting point Xy is remote from x .

CLASS 2. We shall also consider the optimal methods MG defined in Definition
6.3.1, where w = m[N] (cf. (6.6.13)) with N € IN given. We notice that the
iterative processes [Mﬁ[N]'F] (N € IN) are all quadratically convergent (cf.

p. 87).

CLASS 3. Let N > 0 and let H = {ho,hl,...,hN} with hi =——(i=0,1,...,N).

Let 9,49, € S with
(7.1.3a) 9, =0
and

(if t € [0,1)),
(7.1.3b) g9, (t)
1 (ift=1).
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We shall also consider the methods M, 3N where
’ ’

(7.1.4) Mi,j,N = ]M(A,gi,Lj,H) (i = 1127 J = 11213)-

Here, L1 and L2 are defined in (3.3.6). The Runge-Kutta method L3 is the

so-called Modified Euler method (cf. [LAMBERT, 1973; p. 118]) and is defined

by
0 0 0

(7:1+5) L, = i 0 0

S 3 5 .
0 1 0
From Theorem 5.2.5 it follows that the iterative processes [Mi j N,F]
! 4
(i=1,2; j=1,2,3) are quadratically convergent.

We shall test iterative methods EN 6 of Class 1 with 6 = O,%yl. The
’

choice of these methods has been motivated in section 3.3.

Methods of classes 2 and 3 have the following features, which motivated
their choice.

(a) The methods of Class 2, for which we could determine the radius of con-
vergence, are all optimal according to the theory given in Part II of
Chapter 6.

(b) The methods Mi’le(i,j = 1,2) are based on Runge-Kutta methods that are
superior to Euler's method for certain types of differential equations

(see section 3.3).

(c) The methods Mi (i,j = 1,2) are based on first order Runge-Kutta

/3N
methods which require per step at least two evaluations of the function
f (appearing on the right-hand side of the differential equation). The
methods Mi 3N (i = 1,2) are based on a second order Runge-Kutta method
i  ;
which requires two such function evaluations per step.
(d) The methods Mﬁ[N] and M2,j,N (3 f 1,2,3) are both of the type (4.1.3),

ith th . TINT A -
with the same A and g. We thus have MHLN] ﬂﬂ(A:gzlLO,H) and M2,j,N

IM(A,gz,Lj,H) where A, gy H and L, (j = 1,2,3) are defined above. LO

denotes Euler's method and ﬁ = (EO’El""'EN) denotes the sequence of
stepsizes which corresponds to the optimal W= (GO,Jl,...,aN) = 1[N]
by means of (6.3.4).

(e) with j € {1,2,3} and N > 0 both fixed, the iterative methods Mi 5N
I I
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(i =1,2) differ only with regard to function 9; (i =1,2).
7.2. NUMERICAL RESULTS WITH THE METHODS DESCRIBED IN SECTION 7.1

Iterative methods of the Classes 1, 2 and 3 have been applied to two

problems.

PROBLEM 1. This problem arises from a finite-difference approach to the one-
dimensional two-point boundary value problem
d 2

— {s ii—v(s)} - szf(v(s)) =0 (0 <s < 1),
ds ds

(7.2.1)

v'(0) =0, V(1) =1
-1 R
where f(v) = € ;%X (see LKELLER, 1968; p. 162 et seq.]). On physical
grounds the solution of (7.2.1) looked for should be positive and continuous.
It can be shown that a unique positive solution exists, which is strictly
=1 =1

isotone. In [MURRAY, 1968] it is shown that V(0) ~2[eX] Zexp{-[eA]l 2} (if
el << 1).

Let m € IN and let ¢,X > 0. Consider the (m+l)-dimensional problem

F(x) = 0, where for x = (50,51,...,£m) and F(x) = (¢o(x),¢1(x),...,¢m(x))

2
box) = [s)1°(5 - ),

_ 2 2 2, 2
¢j(x) = [sj_%] gj—l + ([Sj—éj + [sj+%] )Ej [Sj+£] £j+1
2 2 :
(7.2.2) + A [sj] f(Ej) (3=1,2,...,m1),
_ 2 2 B, 2
¢ (x) = [sm_%] €1t ([sm_%] + [sm+%] Ve [sm+%]
2 2
+ A [Sm] f(Em).
Here, A = E%T and s; = iA(i=4,1,...,m}). Set
(7.2.3) D(F) = {x|x ¢ B

;o x = (50,51,...,Em) where Ej >0

(j = 0111---,m)}.
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]
o

It can be shown that F'(x) is invertible (for all xe€ D(F)) and that F(x)

has a solution that is unique in D(F). Consequently, F € Fl'
0 .0 0 0
B (Eorilr---,im) where Ej

The starting point X, was chosen to be X

2
(1—5%)[sj] +€eX (j =0,1,...,m). The computations were performed for m

and A = 0.1. For € we took € = 0.05, 0.01 and 0.001.

99

In all these three cases, Newton's method failed. More specifically,

it generated sequences {xk} that converged to a "solution" outside D(F). [J

Any iterative process was considered to yield a sequence {xk} converg-
ing to a solution of the equation F(x) = O whenever, for some k with

1<k <20,

(7.2.4) Ilx -x I < 51(1+|ka|1) or IIF(xk)Il < $

k k-1 2

(see e.g. [BUS, 1975]). For both 61 and 62 we took 10_6. The norm used was
the Euclidean norm. The number of iteration steps required for the stopping
criterion to be satisfied is only given if a process succeeded in generating
a sequence {xk} that converged to the desired solution. In all other cases

we assume that the iterative process failed and indicate this by FAILURE.

TABLE 7.2.1.

Method Class 1 (cf. (7.1.2); T = 1074 .

Problem 1 (A = 0.1, m = 99).

ethod N 0 0 0 1 1 1
Proble 8 1 0.5 0 1 0.5 0
e = 0.05 FAILURE 3 4 4 2 3
e = 0.01 FAILURE FAILURE 5 FAILURE 3 4
e = 0.001 FAILURE FAILURE 7 FAILURE 4 5

method N 3 o3 3 7
N;;;;I;ET\\\\ 8 1 0.5 0 1
e = 0.05 3 2 3 3
e = 0.01 4 2 4 3
e = 0.001 FAILURE 2 4 FAILURE




TABLE 7.2.2.

Method Class 2 (cf.

(6.3.3),

Problem 1 (A = 0.1, m = 99).

(6.6.13)).
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method N 1 3 7
lProblem
€= 0.05 3 2 1
e= 0.01 FAILURE FAILURE FAILURE
(€ = 0.001 FAILURE FAILURE FAILURE
TABLE 7.2.3.
Method Class 3, M1 . (c£. (7.1.4), (7.1.3a), (3.3.6) and (7.1.5)).
IJ’
Problem 1 (A = 0.1, m = 99).
method N 0 0 0 1 1 1 3 3
Problen Jj 1 2 3 1 2 3 1 3
e= 0.05 FAILURE 8 4 3 3 2 3 2
e= 0.01 FAILURE | FAILURE 7 FAILURE | FAILURE | 4 4 3
€= 0.001 FAILURE | FAILURE | FAILURE | |FAILURE | FAILURE !.7| |[FAILURE | 3
TABLE 7.2.4.
Method Class 3, M2 5N (cf. (7.1.4), (7.1.3b), (3.3.6) and (7.1.5)).
( 4 r

Problem 1 (A = 0.1, m = 99).

method N 0 0 0 1 1 1 3 3
;:;;I;EF\\ 9} 1 2 3 1 2 3 1 3
e= 0.05 FAILURE 7 8 3 3 3 2 2
e= 0.01 FAILURE | FAILURE FAILURE [FAILURE | FAILURE | FAILURE 2 3
e= 0.001 FAILURE | FAILURE | FAILURE| [FAILURE |FAILURE | FAILURE| FAILURE | FAILURE|

'

PROBLEM 2. As a second example we consider the problem F(x) = 0, where for

x = (61,52) and F(x) = (¢1(x),¢2(x))

21

(7.2:5)

¢2(x)

(x) =

%{sin(slaz)

1
(1 —Z;Q(e

28

-e) +

1
- E‘.‘ EZ_EI}'

e
T 527 2ey
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(cf. [CARNAHAN, LUTHER & WILKES, 1969; p.319]). This problem has a solution
*
x = (0.30, 2.84). Set

(7.2.6) D(F) = {yo |yO € IR2; a continuous curve X on [0,1] with X(0)==yO
*
and X(1) = x exists, such that F'(X(t)) exists and
is invertible and F(X(t)) - (1—t)F(yO) = 0 (for all
t e [0,1D)}.

It can be shown that D(F) is open. The equation F(x) = 0 also has two "solu- .
tions", y* and z*, outside D(F). y* = (0.5,m) and z* ~ (-0.26, 0.62). The
starting point was chosen to be Xy = (0.4, 3). It appears that X € D(F)

(cf. [BOGGS, 1971]). In this case Newton's method failed in the sense that

* *
it generated a sequence {xk} converging to z instead of x . 0

TABLE 7.2.5.

-4
Method Class 1 (cf. (7.1.2); t =10 ).

Problem 2.
method N 0 0 0 i 1 1
0 1 0.5 0 1 0.5 0
FAILURE 5 7 FAILURE 3 5
method N 3 3 3 7
0 1 0«5 0 1
4 3 3

TABLE 7.2.6.

Method Class 2 (cf. (6.3.3), (6.6.13)).
Problem 2.

hethod N 1 3
FAILURE FAILURE 2
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TABLE 7.2.7.

Method Class 3 (cf. (7.1.4), (7.1.3), (3.3.6) and (7.1.5)).

Problem 2.
N 0 0 0 1 1 1 3 3
3j 1 2 3 1 2 3 1 3
ethod
M, . 4 3 3 3 3 3 3 3
1,3,N

M2 3.8 FAILURE 3 FAILURE 3 2 FAILURE 2 3

7 r

CONCLUSION. The methods MN,G of Class 1 with 6 = 0 and 6 = %y and the methods
M1,3,N of Class 3 appear to be more reliable than the other methodf whose
test results have been presented above (including Newton's method MO,l' which
failed).

The work per step for a method EN,B (with 6 # 1) and for a method M1,3,N
is roughly twice the work for a method MN,e (with 6 = l)N%nd for a method1
Mﬁ[N] - with the same N > O.NEven if we compare methods MN,S (with 8 = 0,2)
and M1,3,N with the methods MN,S (with 6 = 1) and Mﬁ[N] that reguire the
same amount of work per iteration step, the former (especially MN,e with
6 = 0) turn out to be better.

Among the methods ﬁ (0 = O,%O and M the methods ﬁN 6 with 6 = 0
’

’

(in which case the Backw:;g Euler method unééii?es the iterative methods)
appear to be more reliable than the methods EN,G with 6 = %—(in which case
the Trapezoidal rule underlies the iterative methods) and M1,3,N (in which
case the Modified Euler method underlies the iterative methods) . However, if
small stepsizes are taken (i.e. N large) then the last two types of methods
generate sequences that converge faster to the solution than the first ones.

If we restrict our attention to the methods of Classes 2 and 3, methods
of Class 3 appear to be more reliable than the other ones. The methods

M
1,3,N
and the methods M , which are closely related to one another,

Mg 2,3,N
appear to have about the same (non-) convergence behaviour.

If we compare the methods of Class 3 with one another with regard to
the function g, the iterative methods that are based on g1 (cf. (7.1.3a))
appear to be superior to the iterative methods based on 9, (cf. (7.1.3b)).
This indicates that the choice of the function g may significantly affect
the convergence behaviour of an iterative method of the type (4.1.3b). It

therefore seems worth while to investigate in future research the role of

function g in the convergence behaviour of iterative processes [M,F] where
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*
M is of the type (4.1.3b) and X, is remote from x .

In conclusion, the methods ﬁN 6
¥
0. The investigation of these methods in future research

appear to be very reliable for solving

the problem F(x) =

would therefore seem to be desirable.



CHAPTER 8

PREDICTOR-CORRECTOR CONTINUATION ALGORITHMS

Let F € Fl' So far, we have only been interested in iterative processes

for solving
(8.1.0) F(x) = 0.

In [RHEINBOLDT, 1975] an algorithm for solving (8.1.0) is proposed which is
based on discrete imbedding. It has an adaptive step strategy for determin-
ing the partition {tO'tl""'tN} (cf. section 1.1).

In section 8.1 we give an outline of this algorithm. In sections 8.2,
8.3 and 8.4 we go into more detail, and present some variants of the algo-
rithm, in some of which Davidenko's method is used also (cf. section 1.1).
These variants also use the results given in section 6.5. In some of them
Newton's method is used, while in the others the iterative method EO,O is
used also (cf. (7.1.2)). In section 8.5 we present some numerical results
obtained with the algorithms described here.

In this chapter we assume that E is finite-dimensional. Throughout the

sections 8.1 -4 the operator F denotes a given (fixed) element of Fl'
8.1. INTRODUCTION
Let u, € D(F) and let

0

Q: [0,1] x D(F) -~ E, d
(8.1.1)
Q(t,x) = F(x) - (1-£)F (u,)

(cf. (1.1.4)). Suppose that for all t € [0,1] the equation

(8.1.2) o(t,x) =0
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has a unique solution x = U(t), which depends continuously on t.
We recall that the method of discrete imbedding consists of selecting

a partition P = {tO,t ,...,tN} with 0 = t <t , <...<t_ =1 and of solving

(8.1.2) successively éor t = ti (i = 1,2,?..,;), (cf. 71.1.9)).

Let M be the iterative method (the local method) that is used for ap-
proximating the solution U(ti) of (8.1.2) (i =1,2,...,N). By r(t) we de-
note the radius of convergence (see Definition 2.4.1) of the iterative pro-
cess [M,Q(t,*)] (t € [0,1]).

We shall now describe how a partition P and starting points yi,O for
[M,Q(ti,-)](the i-th local process) are selected in the algorithms to be
described here.
1,t2,...,tk with tk <1
and k 2 1, so that close approximations uy of U(ti) (i=1,2,...,k) have

Suppose the algorithm has progressed through t

been obtained. We indicate how t. &

Kl and yk+1,0 are selected (we shall specify

what follows further on).

1. An approximation Uk of U is constructed. Thus

(8.1.3) Uk(t) r U(t) (t e [0,1]).
2. "Uk(t)-U(t)" is estimated by ek(t) (for all t = tk). Thus
(8.1.4) e, (t) = IIUk(t) -u(e)l (t2t).

3. r(t) is estimated by rk(t) (for all t 2 tk). Thus

(8.1.5) rk(t) & ri(t) (t = tk).

4. Let hk 'be the solution of

(8.1.6) ek(tk‘fh) = erk(tk+'h) (h > 0),

where Yl' 0 < Yl < 1, is a given number which reflects the uncertainties of

the estimates. Then

k+1 Tk k*

5. Set
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(8.1.7) yk+1'0 = Uk(tk+1)'
Yk+1,0 is the starting point of the local process [M,Q(tk+1,-)].
Observe that, when rk(t) = r(t) and ek(t) = "Uk(t)-U(t)“, for any

Yl € (0,1) the (k+1)-th local process yields a sequence {yk+1,j}j=0,1,2,...
that converges to U(tk+1)'

In the algorithms to be presented here, either e, = 0, or €, is strict-

k k
ly isotone on [tk,m), ek(tk) = 0 and llmt+m ek(t) = o, In the first case
we set t = 1, in the last case the equation (8.1.6) has a unique solution.

k+1
Following Rheinboldt ([RHEINBOLDT, 1976]) we call an algorithm of the

type described above a predictor-corrector continuation (PCC) algorithm
(Uk is the predictor and M is the corrector).
In the following survey of the algorithm, we also give a more detailed

description of the way in which the stepsize is selected.

1. k := 0; tk := 0; h.k = hstart; go to 3.

23 hk is the solution of (8.1.6).

3. £ +h (ifh <h ),
. + i < <
) Bty (8 Bgn = B & Bl
£ +h (ifh, >h ).
It > behenty o= by o 3= Ul ).

4. Perform [M,Q(tk+1,°)] with starting point yk+1'0

If convergence criterion is met for some with <
g s 41,00 ¥t £ zmax'

then (u ., := Yyv1,07

if tk+1 = 1 then STOP

else (k := k+1; go to 2))
else
if tk+1 - tk = hmin then FAILURE

else (hk 1= Yzhk; go to 3).

The constant Y2 € (0,1) is given.

X (k =0,1,...), and ek and T (k =

1,2,...) are determined. We assume that for all t e [0,1] the operator F'(x)

In sections 8.2 -4 we specify how U

exists and is invertible (for all x in some open neighbourhood of U(t)).
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Hence, from Theorem 2.6.4(i) it follows that

U(t) ~T(U(£))F(uy) (t e [0,1]),
(8.1.8)

u(0)

]
o

In sections 8.2 -4 we suppose the algorithm has progressed through

t.,t. ,...,t, with k 2 0. Hence close approximations u.,u,,...,u_of respec-
0’1 k op 0’1 k

tively U(to)'U(tl)""'U(tk) are available.

8.2. DETERMINATION OF Uk

We shall describe three types of approximations Uk which we tested. We

suppose k 2 0.

a. Lagrange interpolation. Let an integer p with O < p < k be given. Choose

Uk = Uk,p’ where
)
8.2.1a) U t) = m (Blu, L
( krP( J F kIPIJ( k-3
3=0
and
P [ t_tk-ﬂ
(8.2.1Db) m () = e e (j = 0,1,...,p)
k,P,J [:0 Ltk—j_tk_z] J it p
£#3
It follows that
(8.2.2) Uk,p(tk—j) = uk—j (j =0,1,...,p).
In [RHEINBOLDT, 1975] U, is of this type.

b. Interpolation, using relation (8.1.8). Let an integer p with 0 < p < k

be given. Set
(8.2.3) = -T(a)F(u,).

ch U =10 h
oose k k,p' where

(8.2.4a) Uk,p(t) = Uy (if k = 0)
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and

n oty
(8.2.4b) U (t) = ) ——— (tu,

k,p j=1 tk—j_tk k,p,] k-3

+ "k,p,o(t)[(l - "k,p,o(tk) (t-t, Duy + (-t )u ]
(if k 2 1).
Here ﬂk B3 is defined in (8.2.1b). It is easily verified that, when k = 1,
’ ’

(8.2.5a) Uk,p(tk—j) = uk-j (3 = 0,1,:..,p)
and

(8.2.5b) Uk,p(tk) = .

This type of interpolation curve is, for example, used in [BYRNE & HINDMARSH,
1975] as a predictor for implicit backward differentiation formulae for the
numerical solution of ordinary differential equations.

c. Approximation, using a Runge-Kutta method with operator coefficient.

Consider the one-stage Runge-Kutta method with operator coefficient

R = (pi j) where Py 1(z) = I’1—2]_1 (see section 3.3 and p.121); R is related
’ r

to the Backward Euler method.

Let ﬁk(t) be the approximation through u,_ of U(t), which is obtained

k
by performing one integration step of R on problem (8.1.8). Thus

0 = " =il
Uk(t) =u - (t—tk)[I - (t—tk)I’(uk)F (uk)I‘(uk)F(uO)] I‘(uk)F(uO) .

As in (7.1.2) we approximate F"(uk)F(uk)F(uO) by
1 L} ., 1
3 {r (u + 3T (W IF () - F (uk)}.

Here, Y3 > 0 is a given small number (cf. p.122). We then obtain the approxi-

v
mation Uk to U,

(t-t,)

b8 - ' _ ' @ !
(8.2.6a) U (t) = u - (t-t ) [F (u, ) —Y3—{F (u, +Y5T (W )F (uy)) -F (uk)}]

F(uO).
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Compared to the predictor Uk 3! the determination of ﬁk o with k 2 1,
’ f 4
requires approximately one Newton-step extra work. For k = 1 we therefore
approximate uy by F(Yk,£-1)F(“o)' where yk,ﬂ—l is the last but one iterate
of the k-th local process (the L-U decomposition of F'(yk 2 1)
-
32Q(tk’yk,£-1) is available from the local process).

Similarly, if k =2 1, instead of U defined in (8.2.6a), we use

kl
- t-t
(8.2.6Db) Uk(t) = uk -(tftk)[F'(yklz_l) ——?;—{F'(yklz_l<+Y3F(yk,£_1)F(uo))

. -1
- Py p ) 1T Fg).

When compared to U , the amount of extra work required for U,  is approxi-

/D k

mately equal to one Newton-step. For ease of reference, we put UO = 60.

8.3. ESTIMATION OF HUk(t)-U(t)H

In this section we present the estimates of "Uk(t)—U(t)" we use in the

algorithms. We suppose k = 1. We shall use the following lemma.

LEMMA 8.3.1. Let p and q be integers with -1 < g < p <k and p 2 0. Set
p+g+1l = n. Let Y: [0,1] ~ E be (n+l)-times continuously differentiable on

[0,1] and suppose

n+l

e v(t)l < 8 < o,

(8.3.1) max IS
te[0,1] a4t

Let Yn: [0,1] +~ E be a polynomial of degree < n satisfying

(8.3.2a) Yn(tk_j) = Y(tk_j) (3 =0,1,...,p)
and
(8.3.2b) in(tk_j) = i(tk_j) 6 = Btysaad.
Then
s p
(8.3.3) ly (e)-v(p)ll < DT 550 |t—tk_j[ 51 It—tk_jl

(for all t € [0,1]).
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PROOF. 1. If E = IR then this result can be found in e.g. [STUMMEL & HAINER,
1971; section 3.2.1, 3.2.2].

2. Suppose E = r" (with m > 1). Let t, ¢ [0,1]. Suppose A(TO) # 0 where

0
A(TO) = Yn(ro)-—Y(To). Then a linear functional L: E - IR exists with ILl = 1

= I
such that LA(TO) A(TO) s

Let LY = n and LYn = nn. It is easily verified that n is (n+l1)-times con-

+
tinuously differentiable on [0,1] and that maxtﬁ[o 17 Idn 1/dtn+1 n(t)| < §.
Further nn(tk_j) = n(tk—j)»(J =0,1,...,p) and nn(tk_j) = n(tk_j) (3 =0,1,
...,q) . Consequently (cf. part 1 of this proof)

p g9
: [t-t | LT, |t-t |

= L ——
In &) -nt) | < it 3o 1ot yl 30 175y

(for all t € [0,1]).

In particular, since "A(TO)" = |LA(TO)| = Inn(ro)—n(TO)I, relation (8.3.3)
is true for t = To-
Consequently, (8.3.3) is true for all t € [0,1]. This proves the

lemma. O

a. Let p 2 0 (with p < k-1) be given. Suppose that U is (p+2)-times con-
tinuously differentiable, so that a constant 61 > 0 exists such that (8.3.1)
holds with Y = U, n = p+1 and § = 61. Let Uk = Uk,p (cf. (8.2.1)). If uk—j =

U(tk_j) (j =0,1,...,p) then

"Uklp(t)—U(t)ll < IIUklp(t)—Uk,pH(t)II + IIUk,p_'_l(t)-U(t)"

I : I %1 ml
ke Vet O T gl 16

IA

(for all t € [0,1])

(cf. (8.3.3)). It is easily verifiea that

p
8.3.4 §) - U 2 - .
( ) k,p(t) k,p+1(t) [jEO (t tk_j)]v, where v € E
In this case we therefore set g€, = ¢ , where
k k,p

(8.3.5) eklp(t) = "Uk,p(t)_Uk,p+1(t)"
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or, equivalently,

™
L1
"
<
|
]
t

- where
=
(8.3.6)

P P=
v= I (t—tk_j)} [Uk’p(t)—Uk’p+1(t)]

(for any t € [0,1] with t # tk—j 3 = Og L sz ssD)) &

This kind of estimate of "Uk(t)—U(t)" is also used in [RHEINBOLDT, 1975].

REMARK 8.3.1. Determination of p. The - assumed to be unique - solution of
(8.1.6) depends on p and we might choose p = i such that the solution h of
(8.1.6) is maximum. However, in general, too many changes in p are inadvis-

able. Following [RHEINBOLDT, 1975] we only tested on values of h correspond-

ing to p = P, + 8 (§ = -1,0,-1). Moreover, whenever p was changed we kept
it fixed for at least one further step. 0
bs Let p 2 0 be given (p < k-1). Let Uk = ﬁk B (cf. (8.2.4)). Like case a,
’
‘we estimate T (t)-u(e)ll by 1T t)-U t)l. As in (8.3.4) it can be
k,p : 4 k:P( klp+1( .
shown that
U (t) - U (6) = [0, (t=t, )1(t-t,)¥, where v ¢ E
k,p( ) = Uk,p+1 = L, - k—j) (t- ) Vs where v e E.
We thus set Ek = Ek,p' where
.3. € = lg = b [
(8.3.7) ek,p(t) Uk,p(t) Uk,p+1(t)

or, equivalently,

|, where

™
—~
o
—
1

b
= 15l g £
viL O, It 1le-ty

(8.3.8)

b ‘ il s
v = {[.I (t-t _j)](t—tk)} u

O X (t)-Uk’p+1(t)]

k,p

(for any t € [0,1] with t # tk—j (G = 051 sa9P)) s

The integer p = 128 is determined in the way described in Remark 8.3.1.
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c. Let Uk = Gk' Suppose U is three-times continuously differentiable. Let
f(u) = -P(u)F(uO). Thus
(8.3.9) U(t) = £(U(t))

(t e [0,1]).

It is easily verified that (cf. p.135)
- -1
= - =, - '
Uk(t) = u + (t tk)[I (t tk)f (uk)] f(uk).

Define d1 and d2 such that

Uk(t) Sy o+ (t—tk)[I + (t-tk)f' (uk)]f(uk) + dl(t)

and

2
. 1 2 d
U(tk) + (t—tk)U(tk) + E%t-tk) —_

dt2

u(t) = U(tk) +: dz(t).

It is easily verified that a constant 61 € (0,») exists such that, when
It—tk[ is sufficiently small,

3
lldl(t)lf < dllt—tkl .

Suppose
d3
max Il— u(t)ll < 52 < o,
te[0,1] dt
Then
62 3
| < = |¢-
l|d2(t)l = |t tkl (for all t € [0,1]).

From (8.3.9) it follows that d2/dt2 u(t)

= £'(U(t))£(U(t))
if W = U(tk),

(t € £0,1]). Hence,

P | s

-~ , k 2 1. 13
Iluk(t)_u(t)ll < lf (uk)f(uk)ﬂ—2—+ (61+ 6)]t tkl

(It—tkl sufficiently small).

We can therefore estimate ﬂak(t)-U(t)" by Ek(t), where
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R lt—tkl2
Ek(t) = "f‘(uk)f(uk)ﬂ 5
or, equivalently,
2
5 o et
g (8 = IT(wW)F () [T ()F ) I —— .
Similarly, we estimate ﬂﬁk(t)—U(t)" (cf. (8.2.6a)) by Ek(t), where

. 1 It—tkl2
(8.3.10a) ek(t) E "T(uk);;{F (uk+Y3F(uk)F(uo))—F (uk)}F(uk)F(uO)H———E——— .

Obviously, Hﬁk(t)-u(t)" (cf. (8.2.6b)) is estimated by Zk(t), where

e = 1 ) 1
(8.3.100) g, (t) = “F(yk,£_1)§;{F ¥y, g1Vl g )F(ug))-F (Yk,£-1)}

2
It—tkl
F(yklg_l)F(uo)"—~—?r——- :

8.4. LOCAL PROCESSES; ESTIMATION OF THE RADII OF CONVERGENCE

In this section we present the two types of local processes that are
used in the algorithms whose test results are presented in section 8.5.

The first type uses Newton's method, which requires the least amount
of work per iteration step of all the methods considered in Chapter 7. Since
Newton's method is quadratically convergent, this local process will, in
general, only require a few steps. The second type of local process uses a

combination of Newton's method and the method ﬁ (cf. (7.1.2)), which

appears to have very good convergence behaviourozgf. Tables 7.2.1, 7.2.5).
We also tested algorithms in which the methods Mﬁ[N] (ef. (6.3:3),
(6.6113)) are used as local method. (The radius of convergence of these
methods was estimated by using the theory of chapter 6, Part II.) However,
in contradistinction to the iterative methods in chapter 7, almost all PCC .
algorithms which were tested, managed to deliver the desired solution (within
the required accuracy). Consequently, it is only sensible to compare the PCC
algorithms with respect to the total amount of work, which is roughly the
total number of local steps required to solve the problem. It appeared that,
when using a method Mﬁ[N] or a combination of Mﬁ[N] and Newton's method, the
total amount of work was significantly higher than in the case in which

Newton's method only was used.
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We shall now specify the local process that uses Newton's method, and

the one that uses EO 0 also. We assume k > 1. Both local processes contain
’

the following control mechanism (for the k-th local process) :
ITER: ; = g i
ykrj+1 ykl:l dkl]
. i I I I I I I
(8.4.1a) if ( dk,j < (1+ yk,j )61 or Q(tk'yk,j) < 62)
then "convergence criterion is met"
.4. if | I
(8.4.1b) else if dk,j > Y4rk—1(tk)
then "convergence criterion is not met"
. i j 2 I I I I < I I j
(8.4.1c) else if ((j 7 and dk,j < 63 and dk,j 64 dk,j—l )orj < 7)
then (j := j+1; go to ITER)
(8.4.14) else

"convergence criterion is not met".

Three remarks on this control mechanism.

1. We shall use 61 - 62 = 10_6 in (8.4.1a). Other types of stopping criteria
than requirement (8.4.la) are possible (see e.g. [SCHWETLICK, 1975]). How-
ever, it is not yet clear which stopping criterion is optimal (in the sense
that it minimizes the total number of local iteration steps), (see also
[RIBA_RIé & SELI§KAR, 1974] and [WACKER, 1977b]).

2. In requirement (8.4.1b), the constant Yy 2 2 is given. If r (tk) = r(tk)

and if "dk,j“ > Y4rk_1(tk) (for some j = 0) it seems reasonablz io assume
that yk,j ¢ B(U(tk),r(tk)). In general rk—l(tk) 4 r(tk). In practice it
appeared that in cases where requirement (8.4.1b) was met, in general no
convergence occurred (we chose Yg = 10) .

3. We shall use §, = 6, = 1072 in (8.4.1c). The requirements (8.4.1a,c) then
guarantee that the number of steps in a local process is always less than
10. If after the 7th step no convergence is to be expected, the process is

broken off.
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In the subsections 8.4.1 and 8.4.2 we assume that the k-th local pro-

cess has been performed successfully, so that a sequence {yk j}j—O 1 L
’ =g eLp eie sy

In these subsections we show how

has been generated where Yy p = Uy
!
{ 1. has been obtained and how r, (t) (X r(t)) is constructed.
yk,j J=0; 15 26 el k
Ty will be of the type
(8.4.2) rk(t) = Py

where pk is an estimate of r(tk). Set
(8.4.3) P(x) = Q(tk,x).

8.4.1. Newton's method

If Newton's method (subsequently denoted by MO) is used as local method,

then

0
8.4.4 . = .- .
(8.4.43) ¥y 541 = Y,5 7 %,
where

(8.4.4Db) dg .= [P (

_1 . )
'3 Y,y POy, 4) (F = 0y 1ansd-13-

|

It is easily verified that P € Fl (cf. pp. 131, 133, and (2.6.1)).
Consider the function a, defined in (6.4.16). For all o € (0,»=] we

have r -1
(x—U(tk),[P'(x)] P(x))

inf { 5 ) =}

O<HU(tk)—x"<o "x—U(tk)H +HI[p'(x)] "P(x)

(if B(U(t,),0) © D(P) and P'(x) is
(8.4.5a)  a(P;0) =19 k
invertible on B(U(tk),o)),

(otherwise) .

N =

We set

(B.4.55)  alps0) ==

N
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It follows that (cf. (6.4.18)) P e F<o,a(P;0)> (for all ¢ € (0,»]). Let

(8.4.6) s, = suwplo | a(eio) - 2> 0.

k

Pig. 8.4.1.

By virtue of Theorem 6.5.1 we have r(MO; F<o,a(P;0)>) = 0 whenever o0 satis-

fies a(pP;o) - 2—> 0. Consequently

5
(8.4.7) Sy < r(tk).
pk will be an estimate of sk,
(8.4.8) P, X s

Sy is determined by a(P;-). However, in general, we do not know a(P;+) ex-
plicitly. We therefore estimate a(P;+), using yk,O'yk,l""'yk,Z'
From Lemma 6.4.1, (6.4.17) and (8.4.5b) it follows that a(P;+) is anti-

tone on [0,»], the right-derivative of a(P;+) exists at ¢ = 0 and

‘ a
(8.4.9) = a(P;i0) = 0 (for 6 = 0).

We therefore estimate sk as follows. For j = 0,1,...,8-1 let

4. = -u |
(8.4.10a) Ok,j yk,j uy

and
(yk,j_uk’dk,j)

2

r]

(8.4.100) @ . =
k,J 2
t I —u, 12+l
Vi, 5% T
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0
where .= . is defined b 8.4.4b) .
dkl] dkr] ¥ ¢ :

Define

1 2

8.4.11a) a .(0) ==+ c .o

¢ k,J( 1 E g k,3
where ¢, ., is such that

k,j
4. = j = s wis ple=1) s
(8 11b) ak,j(ok,j) qk,j (3 0,1, A-1)
Set
= < = -

(8.4.12) ak(o) = ak,jo(c), where Ck,jo < ck,j (j 0,1,...,4-1).

Then pk is the solution of ak(c) = é—(o > 0). Thus

-1
(8.4.13 = [V-10c, .
) e =Y kljoj |
(see also Fig. 8.4.2).
We notice that in [RHEINBOLDT, 1975] also, Newton's method is used as
local method. However, in that paper, the estimate rk(t) of r(t) is based

on a result similar to Theorem 6.2.1.
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REMARK 8.4.1. It is easily verified that, when £ = Kk = 1 and "yk 0% 1" #
—_— 7 ’

0, then c = 0. Hence pk cannot be determined. (In fact pk = © 50 that

kIJO
tk+1-—tk = hmax (cf. p.133).) In such a case, either r(tk) is large (so that

Py = is a "good" estimate of r(tk)) or r(tk) is small and it is only by
chance that the k-th local process required only one step. In this last case,
the stepsize hk - hmaX may be too large. Unfortunately too little informa-
tion is available to show us which is the case. Consequently, in order to

prevent the (k+l)-th local process from failing we put (if Zk =1)

(8.4.14) h = /(g -t ) x ok

so that the new step hk will not differ too much from tk-t 0

k-1°

REMARK 8.4.2. For k = 1, the control mechanism of the k-th local process
should contain an estimate ro(t) of r(t), (cf. (8.4.1b)). However, rO cannot
be determined in the way described above without making extra computations.
For k = 1 we therefore drop the requirement (8.4.1b) (or, equivalently, we

put ro(t) = o), O

8.4.2. A mixed method

The method EO 0 (c£. (7.1.2) with N = 6 = 0) exhibited good convergence
’ ~
behaviour on the test problems of section 7.2. Suppose MO 0 is the local me-
F 3
thod, then {y, .}. satisfies
d Y%,375=0,1,...,L

(8.4.15a) 500 T Y5~ Yy

where
(8.4.15b) a .= [P'(y .)—l{P'(y ,+Tdo ) -P'(y .)}]_1P(y .)
k,Jj k,3 T k,J k.3 k.3 k,3
(3 =0,1,...,8-1).

In (8.4.15b) the number T > 0 is a given (small) constant (1 = 10_4) and

~

dg 3 is defined by (8.4.4b). However, the work per step required for MO 0
I 4

is roughly twice the work required for Newton's method. In order to reduce

the amount of work, we therefore use a mixed method which only uses ﬁo 0 when
&

the Newton-step may be expected to be bad. Using this mixed method
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L satisfies
{yk,3}3=0,1,...,£ =

a

8.4.16a) . = , = .
( yk,j+1 yk,j k.3

where

0 0 0
d” . (cf. (8.4.4b)) (if la I < y_2r (t.)),
(8.4.16b) ad, . = { k.3 ke 5%Tk-1""%k

dk . (cf. (8.4.15b) (otherwise)
r] (3 =0,1,...,8-1).
In our test examples we took for the constant s the values O, %-and 1 (eE£.

section 8.5). If Yg = 0, then the mixed method reduces to ﬁ In (8.4.16b)

rg_l(tk) is an estimate of the radius of convergence of Newgég's method for
the k-th local problem. We have assumed the k-th local process has already
been performed. In order to perform (8.4.16) for k+l1 we should estimate the
radius of convergence of Newton's method for the (k+1)-th local problem
(ro(t )). Since in the k-th local process do . 1s evaluated in each itera-

k' k+1 0 k,]
tion step: we set rk(tk+1) = pk, where pk is defined by (8.4.13).

Let r(tk) denote the radius of convergence of the mixed process (solv-
ing the k-th local problem). We shall only use the mixed method if r(MO,P) <
r('l\NdO O,P) is to be expected (cf. (8.4.21)). If this is the case and if Y5

¥ —
is not large (cf. (8.4.16b) and (8.5.3)), it may be expected that r(tk) =
r(ﬁ ,P). We therefore use an estimate of r(ﬁ ,P) as estimate of r(t,).
0,0 0,0 k

We notice that MO,O has been derived from MO,O (cf. (7.1.1)). [MO,O'P]

is equivalent to [Mo,ﬁj, where
- _ -1
P(x) = [P'(x)] "P(x).

(i) - Suppose {yk,j}j=0,1,. L has been obtained by LMO,O'P]' Thus

where

- -1~
= [p' " j = 0,1,...,4-1).
dk,j L (yk,j)] P(Yk,J) (3 £-1)

Similarly to (8.4.13) we can estimate r(MO,P), which is equal to r(MO O,P),
by
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6. = [Vo1oa. 1%,
k kIJO

where ¢ ., = ¢ . and j, and c, ., are defined by (8.4.10-12) with
k.30 k,j0’ Jo k,3g &
dk,j = dk,j (3 =0,1,...,8-1).
i b ined by [M_ ,P . (8.4.15)).
(ii) Suppose {Yk,j}j=0,1,...,£ has been obtained by [MO,O' ] (cf. (8.4.15))

~

Then, similarly, we estimate r(MO 0,P) by Sk, defined by

(8.4.17) 5. = [v-10e ‘7L,
k k.3
0
Here, ¢, . =c_ . , and j. and c are defined by (8.4.10 - 12) with
" "k.Jo k.30’ J0 k,3g Y
d =d (3 =0,1,...,2-1).

k,3J k,J
(iii) Suppose {yk j}j—O 1 2 has been obtained by the mixed method. Hence
¥ TN e se g
{y, .1, satisfies (8.4.16). We would like to estimate the radius
k,J J=OI1I"-I£ ~
of convergence of the (k+1)-th local process by Py (cf. (8.4.17)). However,

it may occur that d = dg i for some j, so that d . 1s not available. In
’

kIJ
only for the purpose of esti-

k,J A
general it is too expensive to calculate dk g
’
. However, if "dg j" is not large, then
¥

~

mating pk

0 0 - o 2
.+ d . =P .) + P =P . ~
dkl] k,j+1 (ykrj) (yklj (yklj))

Q

[T+ (I —ﬁ'(yk,j))]ﬁ(yk,j) ~ [1 —(I-ﬁ'(yk’j))]_lﬁ(yk 3

~d ..

L %] L]

I
o

0 0
. by a4 |, + .
’ %nd k,J dk:J+1

Thus, similarly to (8.4.17) we estimate r(ﬂ0 O,P) by Ek’ defined by

Hence if ak 3 # Ek 5 and 0 < j < £-2 we approximate d
’

- ———= -1
.4. = V- .
(8.4.18) o Y6[ 10ck,j ]
0
Here, ¢, , = . , and j d ¢, ., are defined by (8.4.10-12) with
. X, 30 ckrjo' jo an k.90 re defin v ( ) wi
_ %, UEdy 5= I, 4
(8.4.19) d, 4™ 9 q o 0
< a, . +4d. . ifd . =4 ).
k,3 Tk,j+1 ¢ k,j k,J

The factor Y6 reflects the uncertainties in the estimate.
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Let M denote the mixed method. Suppose the estimate ek(t)of "UCt)—Uk(t)"
satisfies e, (t,+h) = c|h|? (with c > 0), (see e.g. (8.3.8) with p = 0,
and (8.3.10)). Suppose furthermore that M = EO,O' The method EO,O requires
twice as much work per iteration step as Newton's method. It therefore seems
reasonable to use M (=§OIO) only if this implies that the stepsize hk is at
least twice as large as it would be if Newton's method was used. Consequently,

in cases where
(8.4.20) 0t ) =p, 2 Y0, = vy.r (t . .)
k' k+1 k 7"k 7k k+17!
where Y7 = %y it seems advisable to use Newton's method instead of method M
(cf£. (8.1.6)). Obviously, in general M # ﬁ . We therefore use Newton's

0,0
method instead of M whenever the (weaker) requirement (8.4.20) with y7 =

N =

(cf. (8.5.3)) is satisfied. We shall denote this combination of Newton's

method and the mixed method by MO' Hence

_ Newton's method (if (8.4.20) is true),
(8.4.21) M, = {

the mixed method (cf. (8.4.16)) (otherwise) .

REMARK 8.4.3. When £ < 2 and Newton's method only has been used in the k-th

local process, Ek cannot be determined (when £ = 2, then Ek i = 0). In that
rJO

case we use Newton's method only in the (k+1)-th local process. 0

REMARK 8.4.4. In the first local process we use Newton's method only. See
also Remark 8.4.2. g

8.5. NUMERICAL RESULTS WITH THE PCC ALGORITHMS

In all the test examples that are to be presented, we use

§ =6, =10"° (cf. (8.4.1a),

(8.5.1)

'

§. =6 1072 (cf. (8.4.1c)),

3 4

in the control mechanisms for the local methods.

15 As a first example, we consider the behaviour of several PCC algorithms
when applied to Problem 1 (cf. p.125). The control parameters were chosen as

follows:
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1
Ty = 1 (cf. (8.1.6)), Y, =3 (cf. p.133),

(8::5:2)

Ty, = 107 (c£. (8.2.60)), Y, = 10 (cf. (8.4.1p)).

Furthermore, we set
= h =10 7, h =1 (cf. p.133).

h .
start min max

In Table 8.5.1 results are given where Newton's method is used as local

method.
TABLE 8.5.1.
PCC algorithm.
Local method: MO.
Problem 1 (A = 0.1, m = 99).
€ predictor total number total number total amount
of t-steps of local steps | of work
0.01 U 6 25 25
“k,p
0.01 U 5 20 20
kP
0.01 Uk 4 16 21
0.001 U 8 37 37
“k,p
0.001 U 6 27 27
~XrP
0.001 Uk 6 23 30

The total amount of work has been expressed in the number of Newton-steps
required. (We assumed that the evaluation of Ek(tk+1) (k 2 1) was equivalent
to one Newton-step.) As an example, we specify the performance of one of the

algorithms.
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TABLE 8.5.2. i
PCC algorithm.

Predictor: U =

k,p
Local method: MO.
Problem 1 (¢ = 0.001, A = 0.1, m = 99).
rk_ (tk) number of
k tk P ,(estima%e of the local steps
radius of conv.)
1 0.010 0 - 3
2 0.143 1 0.278101 6
3 0::227 1 0.111101 5
4 0.364 2 0.886100 5
5 0.524 2 0.576100 5
6 0.715 2 0.400100 5
7 0.944 2 0.278100 5
8 1 2 0.191100 3

We also used the combination of the mixed method and Newton's method as

local method. Its control parameters were chosen as follows:

i
Y5 5 (cf. (8.4.16Db)),
(8.5.3) Y6 =1 (cf. (8.4.18)),
= 4 (cf. (8.4.20))
Y, 5 (cf. 4. s

TABLE 8.5.3.

PCC algorithm.

~

Predictor: Uk'

1074, cf. (8.4.21), (8.4.15b)).

Local method: MO (t =
Problem 1 (A = 0.1, m = 99).
total number total number of total amount
€ of t-steps Mo—steps MO O—steps of work
0.01 3 12 0 16
0.001 4 15 1 22




151

When both an iterative method and a PCC algorithm manage to solve a problem
F(x) = 0, both starting from the same uO = xO, the latter, in general, re-
quires much more work than the former (see e.g. Table 7.2.1 (for MO,O) and
Table 8.5.3). This phenomenon is due to the fact that PCC algorithms contain
many control mechanisms which prevent divergence. They are therefore reliable

but also rather expensive.

2, Secondly, we consider the behaviour of PCC algorithms when applied to

Problem 3, a problem given in [RHEINBOLDT, 1975].

PROBLEM 3. This problem arises from a finite element approach to the two-

dimensional boundary value problem
3 9 9 9
—LE(T;v, W)z T(v,w) ]+ —{ £ (T;v,w)— T(v,w)] = ¢
v ov ow ow
(8.5.4a) ((v,w) ¢ © =1[0,1]x[0,1]),
T(v,w) =0 (if (v,w) € 00, the boundary of 0).
In (8.5.4a)

- 9 2 3 2
(8.5.4b) £(T;v,w) = q([SG'T(v’W)] + [EG'T(V,W)] )

and

9 (if s < 0.15),
(8.5.4c) a(s) = %(qo+q1) +:11-(q1—q0)(3§—§3) (if 0.15<s<0.5, §=4°S7i),
q (if s 2 0.5).
Let m = 1. Consider the m*m-dimensional problem F(x) = 0
(8.5.5a) ¢i,.(x) =0
where '
(8:5.50) ¢y ;G = of jeoe, -0 g, L -0f Jeog
B st.,j GAEy 59 'Qi,j Mgt 4 +4%

(i, =1,2,...,m).
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Here, gi,j and ¢i j(x) are the ((i-1)m+j)-th components of respectively x
’

and F(x). Moreover,

_ 1
(B.S.SC) A = m—+1° ’

(8.5.5d) Ek 2= 0 (if (kA,LD) € 30 (k,£ = 0,1,...,m+1)).

Further,
N 1 P 2 o 2 § . i i 2
Qi,j(X) = E{q(dv(l’3+1) +6w(1,3) )-fq(év(l—l,j) +6w(1,3) %E,
W 1 2 . 2 L2
Qi,j(X) = E{q(év(l—l,J) +6w(l,J) )-Fq(dv(l—l,J) +6w(1—1,3-1) )},
1 . . 2 .o 2
Qilj(x) = Sla(d (i-1,3-D+6_(i,3-1)°)
(8.5.5e)
.. 2 .. 2
+q(8 (i,3)7+8 (1,3-1) ) 1,
E 1 . L. 2 L2 , oy 2
i,j(x) = 5{q(dv(1,3) +6w(1,j—1) )+q(6v(1,3) +8 (i+1,3) )},
C N W S E oL
Qi,j(x) = Qi’j(x)'FQi’j(x)-FQi,j(x)-FQi'j(x) (1:3 = 1524 s 55m)
and

1 1
(8.5.5f) 6V(k,£) =3 (Ek+1,ﬂ—gk,£)’ 6w(£,k) =71 (gf_,k+1 -Eﬂ,k)
(k = 0,4, essom; & = 0,10 m#l) s

The starting point is u, = 0. For the problems we solved, (8.1.2) (or,

equivalently, (8.1.8)) has aounique continuous solution. Setting x" = u(l),
we define D(F) in a similar way as in Problem 2 (cf. (7.2.6)). Although

F ¢ Fl (F need not be twice differentiable on D(F) if 9 # ql) we tested
PCC algorithms on (8.5.5). The computations were performed for m = 5 and 11,

c = 15 and qy = 1; for q; we took q, = 10, 25 and 50. 0

In the examples to be given, the control parameters Yy Yor Y3 and Y4
satisfy (8.5.2). We chose
2 2 1

(8.5.6) hstart =7.10 -, hmin = 2.10 -, hmax = 5.10 (cf. p. 133).
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Furthermore, following Rheinboldt, we let h, = h .
1 start
In Table 8.5.4 results are given where Newton's method is used as local

method.

TABLE 8.5.4.
PCC algorithm.
Local method: M..

0
Problem 3 (c = 15, m = 5).

qo q1 predictor total number total number of total amount
of t-steps local steps of work
1 10 U 11 53 53
“k,p
1 10 U 8 37 37
Kp
1 10 U 7 28 36
k
1 50 U 14 72 72
_k/p
1 50 U 11 56 56
k.p
1 50 Uk 8 34 43

We also used the combination of the mixed method and Newton's method as local

method. Its control parameters were chosen as follows:

(8.5.7) (cf. (8.4.18)), v, = L (cf. (8.4.20)).

1 1
Y6 T 2 2

For Y5 (cf. (8.4.16b)) we took y5 = 0 and YS =1.

TABLE 8.5.5.

PCC algorithm.

Predictor: Gk'

Local method: M, (T = 1074, cf. (8.4.21), (8.4.15b)).
Problem 3 (¢ = 15, m = 5).

Problem total number total number of total amount
YS 9 a of t-steps MO—steps MO,O—StepS of work

16 14 53
25 1 34

o

1 10 8
1 10 6
0 1 50 8 18 16 59
1 1 50 6 29 1 38

—_




154

As an example, we specify the performance of a PCC algorithm, using M. as

0
local method.

TABLE 8.5.6.
PCC algorithm.

v Predictor: U, .

Local method: M =1, 1 = 10'4, cf. (8.4.21), (8.4.15b)).

o s
Problem 3 (¢ = 15, qy = 1, q = 50, m = 5).

estimate rk—l(tk) of number of

the radius of conv. of local steps
k tk My MO,O
1 0.070 - - hg
2 0.140 - = 7

*
3 0.279 0.16510—1 0.54410—1 7
4 0.366 0.10210-1 0.21710—1 5
5 0.588 0.53810—2 0.13310—1 6
6 1 0.39410—2 0.14210—1 4
* The local process included one EO O—step.
L4
We also tested PCC algorithms on Problem 3 where 9 = 1, q = 25 and m = 11.

This case was also considered in [RHEINBOLDT, 1975]. We present results for

the following two PCC algorithms:

PCCI, which uses ﬁk as predictor and MO (with control parameters Yg = L.,

1 1
Y6 = Z-and y7 = 50 as local method.

PCCII, which uses U
klp

In both algorithms the control parameters y,, Y,, Y, and y, satisfy (8.5.2),
17 Yor Y3 R4 Yy

as predictor and Newton's method as local method.

and h ; h

start’ Pmin satisfy (8.5.6). Further, h, = h

and hmax 1 start”
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TABLE 8.5.7.
PCC algorithm.
Problem 3 (c = 15, 9 = 1, q, = 25, m = 11).

Algorithm total number total number of total amount
of t-steps M. -steps M -steps of work
0 0,0
RHEINBOLDT 18 82 - 82
PCCI 10 47 1 60
PCCII FAILURE**

* The numbers have been obtained from [RHEINBOLDT, 1975].

*%* The 5th local process broke off at t5 ~ 0.17 while to-t, = h

CONCLUSION. From tables 8.5.1 and 8.5.4 it appears that the predictors Gk,p

(see (8.2.4)) and Sk (see (8.2.6b)) allow greater t-steps than the predictor
Uk,p (see (8.2.1)). Furthermore, the total amount of work required to solve
the problem is significantly less when one of the first two predictors is
used rather than the last one.

The predictor Gk requires the least t-steps to solve the problem. As
an evaluation of Uk(t) is more expensive than an evaluation of Uk,p(t)’

~

algorithms using U or Uk require about the same amount of work.

The algorithmzlﬁsing the method MO in which the mixed method with
Yg > 0 is used (see (8.4.21) and (8.4.16b)) required less work than the ones
using Newton's method only as local method.

With regard to the total amount of work, from Table 8.5.5 it appears
that the method MO in which the mixed method with Y5 = 0 is used is inferior
to the method MO in which the mixed method with YS =1 is used. (We recall
that the mixed method with Ye = 0 is equivalent to the method MO,O (cE.
(7.1.2)).)

Obviously, more numerical experiments are required in order to assess
this combination of the mixed method ‘and Newton's method.

We note that, although the algorithm in [RHEINBOLDT, 1975] and the
algorithm PCCII both use the predictor Uk,p and Newton's method, the latter
failed to solve the problem with which Table 8.5.7 is concerned. This may

be due to a better choice of control parameters, which are unknown to us, in
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the former. It may also be due to the different ways in which the radii of
convergence of the local processes are estimated.

We finally notice that the differential equation (8.1.8) is of the type
(2.6.11) where H = Q and g = 0. In view of the computational results of
chapter 7 it also seems worth while to investigate PCC algorithms that use
the differential equation (2.6.11) with H = Q and g # 0.

In conclusion, PCC algorithms appear to be very reliable for solving
the problem F(x) = 0. Among the algorithms tested, the ones in which
Davidenko's method is used, require the least amount of work. With suitably
chosen control parameters, the combination of the mixed method and Newton's
method appears to require less work as local method than Newton's method
alone. It is clear, however, that many questions remain open for future re-

search.
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SUMMARY

In this monograph we are concerned with the numerical solution of the

equation
(%) F(x) = 0.

Here F is a nonlinear operator from D into E, where E is a (real) Hilbert
space-and D a subset of E. Let x* be the (unknown) solution of (%).

A well-known iterative method for approximating x* is Newton's method.
However, if the starting point Xq € D is remote from x*, then in general x*
cannot be approximated by this method. In many such cases, so-called imbed-
ding methods succeed in approximating x* numerically. We restrict our atten-

tion to the imbedding
H(t,x) = (l—t)K(x,xO) + tF(x) (0<t<1, x € D)

where K is an operator from DxD into E for which K(x,x) = 0 (for all x € D).
Let X be the solution of the initial value problem

1

X(t) = -[== H(e,x(t) 178 2 (e, x(8) (0<t<1),
9x dt

X (0) = xo.
With certain restrictions on K and F it follows that x = X(t) is the solu-

tion of
(%) H(t,x) =0 (te [0,1]),

so that X(1) = x*.

In this thesis iterative methods are investigated that are based on the
successive numerical integration of (:) with changing initial value Xy. The
numerical integration is performed by means of (generalized) Runge-Kutta
methods. Hence these iterative methods depend on K and the Runge-Kutta
method used.

The investigations are performed using the concept "radius of conver-

gence of an iterative method" (cf. section 2.4).
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In chapter 5 the restrictions on K and the Runge-Kutta method which
are sufficient for the iterative process to have a positive radius of con-
vergence are given.

In chapter 6 the radii of convergence of some iterative methods of
this type are determined. Iterative methods are presented that have a great-
er radius of convergence than Newton's method.

In chapter 7 numerical results are presented. In particular, an itera-
tive method based on a generalized Runge-Kutta method related to the Back-
ward Euler method appears to be very reliable when X, is a remote from x*.

In chapter 8 algorithms are described that solve successively (%*%)

for t =t t2,...,t (with 0 = to< t,<...<t_ = 1) using an iterative

’
method. Ii some of ihese algorithms ihe diffezential equation (:) is also
used. The numbers tl’t2""'tN are determined during the process itself.

Some numerical results are presented. The algorithms appear to be very re-
liable. The algorithms in which differential equation (:) is used, appear

to require the least amount of work in order to solve (x*).
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SAMENVATTING

In dit proefschrift houden we ons bezig met het numeriek oplossen van

de vergelijking
(%) F(x) = 0.

Hierbij is F een niet-lineaire afbeelding van D in E, waarbij E een (reéle)
Hilberfruimte is en D een deelverzameling van E. x* is de (onbekende) oplos-
sing van (*).

Een bekende iteratieve methode om x* te benaderen is de methode van

* *
Newton. Als echter het startpunt x. € D niet dichtbij x 1ligt, dan kan x

0
meestal niet benaderd worden met deze methode. Het blijkt dat in veel van
dergelijke gevallen x* wél kan worden benaderd met behulp van z.g. inbeddings-

methoden. Wij beperken ons tot de inbedding
H(t,x) = (1-t)K(x,x0) + tF (x) (0<t<1, x € D)

waarbij K een afbeelding is van DxD in E waarvoor K(x,x) = 0 (voor alle

x € D). X is de oplossing van het beginwaardeprobleem

139
3¢ HEX(R))  (0st=<1),

x(t) = —[gi-ﬂ<t,x(t)>1‘
X
)

X (0)

xO.

Onder bepaalde aannamen voor K en F geldt dat x = X(t) de oplossing is van

(%" %) H(t,x) =0 (t e [0,1]),
zodat X(1) = x*.

In dit proefschrift worden iterahieve methoden onderzocht die gebaseerd
zijn op successief numeriek integreren van (:) met wisselende beginwaarde Xq-
De numerieke integratie vindt plaats met (gegeneraliseerde) Runge-Kutta
methoden. De iteratieve methoden zijn dus gebaseerd op K en de gebruikte
Runge-Kutta methode.

Het onderzoek wordt gedaan aan de hand van het begrip "convergentie-

straal van een iteratieve methode" (zie sectie 2.4).
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In hoofdstuk 5 worden voorwaarden voor K en de Runge-Kutta methode
opgesteld waaronder het iteratieve proces een positieve convergentiestraal
bezit.

In hoofdstuk 6 wordt voor enige van dergelijke iteratieve methoden de
convergentiestraal berekend. Er worden methoden gepresenteerd met een con-
vergentiestraal die groter is dan die van de methode van Newton.

In hoofdstuk 7 worden enige numerieke resultaten gepresenteerd. Vooral
een iteratieve methode die gebaseerd is op een gegeneraliseerde Runge-Kutta
methode die verwant is aan de achterwaartse methode van Euler, blijkt bij-
zonder betrouwbaar als Xq niet dichtbij x* Ligt.

In hoofdstuk 8 worden algoritmen beschreven die de vergelijking (***)
achtereenvolgens voor t = t1,t2,..._,tN (waarbij 0 = t0< t1< ove e & tN =1)
met een iteratieve methode oplossen. In enige van deze algoritmen wordt ook
gebruik gemaakt van de differentiaalvergelijking (:). De getallen
t1,t2,...,tN worden tijdens het proces bepaald. Er worden enige numerieke
resultaten gepresenteerd. De algoritmen blijken bijzonder betrouwbaar. De
algoritmen waarin ook van de differentiaalvergelijking (:) gebruik wordt ge-
maakt, blijken de minste hoeveelheid werk nodig te hebben om (%) op te los-

sen.
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De in [1] genoemde stelling kan gegeneraliseerd worden tot de volgende
stelling.

Laat E een complexe Hilbert ruimte zijn. Zij L > O en laat T: E > E een
niet-lineaire afbeelding zijn waarvoor geldt dat IT(u)-T(v)l < Liu-vl en
Re(T(u)-T(v) ,u-v) = 0 (voor alle u,v € E). Zij £ € E, en S: E > E gedefi-
nieerd door S(u) = -T(u) +£. tO’tl’tZ"" zijn niet-negatieve reé&le getal-

len waarvoor geldt dat

J ot (1-—(1+L%)) = =,
n 2
n=0

Onder deze aannamen convergeert het iteratieve proces

vn+1 = (1—tn)vn + tns(vn) (n=0,1,2,...)

voor elke vy € E naar de unieke oplossing van u+T(u) = f.

[1] DOTSON, W.G. JR., An iterative process for nonlinear monotonic
nonexpansive operators in Hilbert space, Math. Comp. 32 (1978),

pp. 223-225.

II

Bij het bewijs van stelling 22.1 in [2] over een z.g. "point of attraction"
van een interatief proces in IRn, wordt gebruik gemaakt van de vorm van
Jordan van een matrix. Dit laatste is niet noodzakelijk: door gebruik te

maken van de formule

| =

nn
(*) p(c) = lim Ic™ ,
n—>«©

kan men het bewijs vereenvoudigen en zelfs generaliseren, zodat het resul-
taat ook geldt voor een iteratief proces in een Banach ruimte X. In (%) is
p(C) de spectraal straal van een lineaire operator C in X. Het bewijs kan

nog meer vereenvoudigd worden door gebruik te maken van de relatie
p(c) = inf{lc| | -] € N}

waarbij N de verzameling is van alle normen op X die equivalent zijn met

de gegeven norm Il -l . Zie 1(1.4) in [3] en 16.2 in [4].



[2] OSTROWSKI, A.M., "Solution of Equations in Euclidean and Banach

Spaces", Academic Press, New York, 1973.
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IIT

Het gebruik van de term "point of repulsion" in stelling 22.2 van [2] is

verwarrend.

v

Het bewijs van propositie 4.2 in [5] is niet correct.

[5] TaPIA, R.A., Differentiation and integration, in: "Nonlinear
Functional Analysis and Applications”, L.B. Rall (red.),

Academic Press, New York, 1971.
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ling 6.2.1 van dit proefschrift.

[6] RALL, L.B., A note on the convergence of Newton's method,

SIAM J. Num. Anal. 11 (1974), pp. 34-36.

VI

Het bewijs van stelling 26.1 in [7] kan aanzienlijk vereenvoudigd en bekort

worden. Bovendien kan een scherper resultaat worden verkregen.



[7] RALL, L.B., "Computational Solution of Nonlinear Operator Equa-

tions", Wiley, New York, 1969.

VII

Dat een slordig geformuleerde definitie makkelijk tot fouten leidt, wordt
geillustreerd door de bewering (2.1.11), die niet correct is, en het bewiijs
van stelling 2.1.19, dat fout is, in [8]. Deze fouten zijn een gevolg van

de niet-precieze formulering in definitie 2.1.4 in [8].

[8] BERGER, M.S., "Nonlinearity and Functional Analysis", Academic

Press, New York, 1977.

VIII
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Indien men de begrippen "limiet" en "convergente reeks" hanteert zoals die

in [9] omschreven zijn, dan is

(i) O niet de limiet van de rij {an};

(ii) a; ta,+a, + ... geen convergente reeks.

[9] VAN DALE, "Groot Woordenboek der Nederlandse Taal", 10¢ druk,

C. Kruyskamp (red.), Martinus Nijhoff, 's-Gravenhage, 1976
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