Parallelism in the Numerical Integration of
Initial Value Problems

Parallelism in the Numerical Integration of
Initial Value Problems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus
prof. dr. P.W.M. de Meijer
in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui)
op woensdag 5 februari 1992 te 15.00 uur

door

Benjamin Peter Sommeijer

geboren te Vlissingen

Promotor : Prof. dr. P. J. van der Houwen

Faculteit: Wiskunde en Informatica

Printed at the Centrum voor Wiskunde en Informatica (CWI), Amsterdam

To Leny
To the memory of my parents

To the future of my children

vi

Preface

If you are up to date to-day, how dismally
out of date you will look to-morrow !
Logan Pearsall Smith,

Afterthoughts V, 31 (1931)

Algorithms for the numerical integration of ordinary differential equations (ODEs)
have been studied for many years, if not for centuries. Although the most popular
methods of today, i.e., the linear multistep methods and the Runge-Kutta methods,
originate from the last century, the great break-through in their development was
initiated by the introduction of the electronic computer in the 1950s. Since then, many
efficient methods have been constructed and analyzed. This research has resulted in a
couple of robust and reliable codes for the automatic integration of ODEs.
Approximately at the time that questions arose like ‘Is There Anything Left To Do 7’
[Gear, SIAM Review 23, 1981], the appearance of the vector and parallel computers was
a second impulse for the development of numerical methods. Initially, the field of
numerical linear algebra was (and still is) (re)considered to exploit the facilities offered
by the new architectures. Gradually, also researchers in the ODE-field got interested in
these machines since ‘almost anything in nature is described by differential equations’.
The well established algorithms were re-examined in order to take advantage of these
‘supercomputers’.

This research is certainly indispensable, since many problems in the technical
sciences — such as real time applications, computational fluid dynamics, and all kinds of
partial differential equations, in general — are still waiting for a treatment that is

sufficiently efficient to cope with the demands.

At CWI, the study of parallel methods for ODEs started in the fall of 1988; some
of the resulting papers are collected in this thesis. It consists of six papers (chapters),
preceded by an introduction. These papers have been published in scientific journals, or
have been accepted for publication.

The two first papers deal with parallel numerical methods for nonstiff ODEs and
are joined into Part 1. These papers are:

1. Parallel iteration of high-order Runge-Kutta methods with stepsize control,
by P.J. van der Houwen and B.P. Sommeijer,
published in: J. Comput. Appl. Math. 29 (1990), 111-127.

vii

2. Block Runge-Kutta methods on parallel computers,
by P.J. van der Houwen and B.P. Sommeijer,
to appear in: Z. Angew. Math. Mech. 72 (1) (1992), 3-18.

The topic of Part II, containing the remaining four papers, is the construction and
analysis of algorithms for the efficient parallel integration of stiff ODEs. Its contents
reads:

3. A-stable parallel block methods for ordinary and integro-differential equations,
by B.P. Sommeijer, W. Couzy and P.J. van der Houwen,
to appear in: Appl. Numer. Math. 9 (1992).

4. Embedded diagonally implicit Runge-Kutta algorithms on parallel computers,
by P.J. van der Houwen, B.P. Sommeijer and W. Couzy,

to appear in: Math. Comp. (1992).

5. [Iterated Runge-Kutta methods on parallel computers,
by P.J. van der Houwen and B.P. Sommeijer,
published in: SIAM J. Sci. Stat. Comput. 12 (1991), 1000-1028.

6. Analysis of parallel diagonal-implicit iteration of Runge-Kutta methods,
by P.J. van der Houwen and B.P. Sommeijer,
to appear in: Proceedings of the International Conference on Parallel
Methods for Ordinary Differential Equations: The State of the Art;
Grado (It), Sept. 10-13, 1991.

The introductory chapter has been written with the aim to acquaint the reader with the
concepts discussed in the technical papers. It has the intention to provide an entrance for
the unspecialized reader. It discusses in less technical terms the ideas underlying the
technical papers and comprises an example in which a problem from circuit analysis is
integrated on a parallel computer by means of an automatic code based on one of the
methods described in Chapter VI. Its performance is compared with the best sequential
codes currently available.

Ben Sommeijer
Amsterdam, November 1991

viii

Acknowledgements

Obviously, a thesis is not the product of an individual exercise, but the result of a
synergism of the influences of many persons. In my case, the very first initiatives to
guide me in the direction of the subject of this thesis came from my late father. His
stimulating education aroused my interest in mathematics in general, and in arithmetic
in particular. Without doubt, he has laid the foundations for my interest in numerical

mathematics.

After entering CWI, this interest was brought to full prosperity. I have the great
good fortune to work under the inspiring leadership of my promotor, Prof. dr. P.J. van
der Houwen. It is with great pleasure, that I acknowledge my deep appreciation for the
constant encouragement and help he has afforded me over many years, and, in particular,
for his patience. The completion of this thesis would not have been possible without

his perseverance.

Special thanks are due to my colleagues at CWI. Especially, I like to express my
appreciation to Dr. J.G. Verwer for his stimulation and interest during my whole CWI-
period; of equally great importance have been frequent discussions with Dr. W.H.
Hundsdorfer on several topics described in this thesis. Very helpful was also the
assistance offered by Drs. W.M. Lioen in getting me acquainted to the ALLIANT
machine. Furthermore, I am much indebted to Drs. W. Couzy; his enthusiastic and
skilful co-operation during his traineeship at CWI was of great help in preparing the
papers in the Chapters IIT and IV.

It is hardly possible to give proper credit to all those scientists who have in some
way or another contributed to this thesis, through their own work, through
conversations, and particularly through remarks and comments; I greatly acknowledge
them all.

ix
I express my gratitude to the board of CWI for giving me the opportunity to perform

the described research, and to Mr. D. Zwarst and his co-workers for the printing of this

thesis.

It is a pleasure also to record my warm appreciation to my wife Leny for creating the
proper surroundings for writing this thesis and for her support at all stages in its
preparation.

Last but not least, I want to thank my sons Mathijs, Michiel and Maarten for

continuously drawing my attention to interesting matters of a non-mathematical nature.

Contents
It OAUCHOM. + v et v ettt eneeneereeansanesnesnseussnnessssssesossssssessansssasnosssssns 1
PART I
PARALLEL NUMERICAL METHODS FOR NONSTIFF ODES
CHAPTER I : Parallel iteration of high-order Runge-Kutta methods
with StepSize CONIOL.coviiiiiiiier e, 24
CHAPTERII : Block Runge-Kutta methods on parallel computers.................... 42
PARTII
PARALLEL NUMERICAL METHODS FOR STIFF ODES
CHAPTERIII: A-stable parallel block methods for ordinary
and integro-differential equations..............eeiiiiiiiiiiiiiinnnns 74
CHAPTER IV : Embedded diagonally implicit Runge-Kutta
algorithms on parallel COMPULErS..........eveeeiiiiiiiiiinnnianne 94
CHAPTER V : Iterated Runge-Kutta methods on parallel computers............... 124
CHAPTER VI: Analysis of parallel diagonal-implicit iteration
of Runge-Kuttamethods.........coovivieiieieiiiiiiniiiiiinnn, 154
Samenvatting (abstract in DUtCh).ccivvviierrmrurnaciimirsiresssnonnerossievnns 178

Introduction

1. MOTIVATION AND GENERAL SCOPE

Due to the never-ending demand for more speed in scientific computation, the available
computerpower of new architectures has tremendously increased during the last decades.
This is mainly obtained by new hardware design and by a prodigious progress in micro-
electronics. However, this hardware advancement is not sufficient to meet the
requirements as they occur in large-scale problems. The main problem in effectively
exploiting this huge potential of computerpower is the fact that there is very little
software available for these machines. In order to be efficient, this software should be
based on algorithms that are well tuned to the new architectures.

Since many numerical algorithms were designed for the traditional sequential
computers, the existing methods are not necessarily the best. This is particularly true in
the field of numerical methods for ordinary differential equations. Therefore, it is highly
desirable to (re)consider these algorithms and, eventually, replace them with more suitable
candidates.

Herewith, we arrive at the major aim of this thesis: the construction and analysis of
new algorithms, specifically designed for a wide class of new architectures, thus making
an attempt to decrease the arrears of software with respect to hardware.

We will concentrate on numerical methods for the initial value problem (IVP) for the
ordinary differential equation (ODE), written in the autonomous form

(1.1) y(t)=f(y(t)), 0<t<T, yeRN, f:RN RN,

Although parallel computers are available now for quite a few years, it is remarkable that
the construction of parallel methods for (1.1) received only marginal attention and in fact
is still in its infancy. A possible explanation may be that the integration of an IVP by a
step-by-step process is sequentially in nature and thus offers little scope to exploit
parallelism.

Nevertheless, there are some avenues: at first, there is the rather obvious way to
distribute the various components of the system of ODEs amongst the available
processors. This is especially effective in explicit methods, since they frequently need the
evaluation of the right-hand side function f for a given vector y, so that the components
of f can be evaluated independently of one another. Following the terminology of Gear
[13], this is called parallelism across the problem. A more interesting approach, called
parallelism across the method, is to employ the parallelism inherently available within

2

the method. Concurrent evaluations of the entire function f for various values of its
argument and the simultaneous solution of various (nonlinear) systems of equations are
examples of parallelism across the method. Remark that this form of parallelism is also
effective in case of a scalar ODE (i.e., N=1 in (1.1)), whereas parallelism across the
problem aims at large N-values. Also notice that both approaches can be combined
because they are more or less ‘orthogonal’. Still another approach, which could be termed
parallelism across the time, is followed by Bellen et al. [2]. Contrary to the step-by-step
idea, they perform a number of steps simultaneously, thus calculating numerical
approximations in many points on the t-axis in parallel. In fact, these methods belong to
the class of waveform relaxation methods. Experiments have shown (cf. [2]) that a
significant speedup can be obtained by this approach provided that the number of steps is
(very) large. In this thesis we will confine ourselves to parallelism across the method.

Unfortunately, many existing algorithms that perform well on a sequential computer
can take hardly profit from a parallel configuration. This feature necessitates us to
construct new methods, specifically designed for parallel execution. In doing so, it was in
many cases unavoidable to introduce some redundancy in the total volume of
computational arithmetic. Hence, compared with a good sequential solver, it is
overambitious to expect a speedup in the solution time with a factor s, if s processors are
available.

In many of the methods considered in this thesis, a small number (typically in the
range from 2 to 6) of concurrent subtasks of considerable computational complexity can
be distinguished. Consequently, (i) these methods are aiming at so-called ‘coarse-grain’
parallelism and (ii) communication and synchronization overhead will be small compared
with CPU time. In the following sections we will explain several approaches leading to

parallel integration methods.

2. PARALLEL RUNGE-KUTTA METHODS
The general Runge-Kutta (RK) method to proceed the numerical solution of (1.1) from
t, over a step h is given by

s
(2.1a) Ynel =Yn+h ‘21 b; f(Yi),
i=
s
(2.1b) Yi=yn+h Zl ajj fiYj), i=1,.,s.
J=

Here, y,=y(tn), ajj, b; are the coefficients defining the RK method and s is called the
number of stages. The quantities Y;, the stage values, can be considered as intermediate
approximations to the solution y. An RK method is said to be explicit if a;j=0, j 2 1.

Otherwise, it is called an implicit RK (IRK) method. For the algorithms described in this
section, our starting point will always be an IRK method.

A nice feature of IRK methods is that a high order of accuracy can be combined with
excellent stability properties [6]. Well-known examples of such IRKs are the Gauss-
Legendre methods (order 2s and A-stable) and the Radau IIA methods (order 2s—1 and L-
stable). A serious disadvantage however, is the high cost of solving the algebraic
equations defining the stage values Y;. Since the Y; are coupled in general, this is a
system of dimension s-N, thus involving O((s-N)3) arithmetic operations. This is the
main reason that IRK methods have not received great popularity to serve as the basis for
efficient, production oriented software. In the literature, several remedies have been
proposed to reduce the amount of linear algebra per step. Examples of these are the
Diagonally Implicit RK (DIRK) methods [23,9, 1, 8] and the Singly Implicit RK (SIRK)
methods [3, 5]. However, both approaches have their own disadvantages (cf. e.g. [15]).
Another possibility to realize the excellent prospects that IRK methods offer, is the use of
parallel processors.

Motivated by our starting point that parallelism across the method should also be
effective for scalar ODEs, we will assume throughout that (1.1) is a scalar equation. This
has the notational advantage that we can avoid tensor products in our formulation.
However, the extension to systems of ODEs, and therefore to nonautonomous equations,
is straightforward.

In describing the parallel methods, it will be convenient to use a compact notation for
the RK method (2.1). Introducing A=(a;j), b=(b;), Y=(Y;) and e=(1,...,1)7T, all of
dimension s, a succinct notation of the RK method reads

(2.2a) Yn+l =Yn + h BT f(Y),

(2.2b) Y=y,e+hAf(Y)

where f{v):=(f(v;)), for a given vector v=(vj).

The main problem in the application of an IRK is the solution of (2.2b) for the stage
vector Y; once this vector has been obtained, (2.2a) is straightforward. A direct treatment
to solve (2.2b) (i.e., applying some form of modified Newton iteration) offers little scope
to exploit parallelism, except for the linear algebra part, but this aspect is not discussed
here. To solve Y from (2.2b), we propose the iteration process

(2.3a) YO =D AYD)=y,e +h[A-DIfYG-V)), j=1,...m.

4

Here, D is a diagonal matrix. This is crucial, since now, given an iterateY(j‘U, each
individual component Y;(J) of the unknown iterate ¥(i) has to be solved from an implicit

relation of the form
(2.3b) Y{) - hdif(Y{1) - 5 =0, i=1,...,s,

where X; is the ith component of the right-hand side vector in (2.3a) and d; is the ith
diagonal entry of the matrix D. Clearly, all Z; depend on YU-1), but can be computed
straightforwardly (even in parallel). The bulk of the computational effort involves the
solution of the s equations for the components Y{J), i=1,...,s. However, given the Z;, the
equations (2.3b) are uncoupled and can be solved in parallel. Hence, assuming that we
have s processors available, each iteration in (2.3a) requires effectively the solution of
only one implicit relation of the form (2.3b). This is especially advantageous in case of
(large) systems of ODEs, because then each iteration in (2.3a) requires effectively the
solution of a system of dimension N, the ODE dimension. As a consequence, the total
iteration process has the effect that the solution of one system of dimension s-N has been
transformed into the solution of a sequence of m systems, all of dimension N. Moreover,
since D is the same in all iterations, the (parallel) LU-decompositions of the matrices
I—hd;dfldy can be restricted to the first iteration. Summing up, the total computational
complexity of the iteration process is O(N3+mNZ), whereas a direct treatment requires
O(s3N3+MN?2), with M the number of (modified) Newton iterations required. Since
typical s-values range from 2 to 6 and because the required number of iterations m is quite
modest (see the Chapters IV, V and VI), we now arrive at a manageable level of
arithmetic. Notice that this approach is quite similar to that of a DIRK method, where
also only one LU-decomposition of a matrix of dimension N is required per step.

To start the iteration (2.3a), we need the initial approximation ¥(9). One of the
possibilities to choose this vector is given by

(2.3¢) YO - aBfY)=y, e+hCfiye).

Here, the matrix B will be chosen either zero or of diagonal form in order to exploit
parallelism (in the same way as described for (2.3a)); C is an arbitrary full matrix. In the
sequel, the initial approximation ¥(0) will be referred to as the predictor.

If m iterations have been performed with (2.3a), then the new approximation at 7,1 is
defined by (cf. (2.2a))

(2.4a) Ynsli=Yn+h be(y(m)).

5

Once an underlying IRK has been selected (henceforth called the corrector), the freedom
left in the iteration process (2.3) consists of the matrices B, C and D, and the number of
iterations m.

With respect to the matrix D, we have considered several possibilities: first of all,
there is the simplest choice, which sets D equal to the zero-matrix. Methods of this type
are analyzed in Chapter 1. Notice that the choice D=0 leads to an explicit iteration process
and, consequently, the resulting scheme is only suitable for nonstiff equations. This
approach has received relatively much attention in the literature (see [24,21, 18,4, 19)).
Choosing the ‘trivial’ predictor Y(O)=y, e, the order behaviour of the resulting algorithm
can be formulated as (see also [18, 19, 20])

Theorem 2.1. The method {(2.3a) with D=0, (2.3c) with B=C=0, (2.4a)} is of order
min{p*, m+1}, where p* is the order of the corrector (2.2). 0

Notice that this method is itself an explicit RK methods with s-m+1 stages. However, on
a parallel machine, the effective number of stages equals only m+1 (provided that s
processors are available). This means that if the number of iterations m < p*—1, then we
obtain an explicit RK method where the number of effective stages equals the order. This
is an optimal result [18] and compares favourably with the situation for classical
(uniprocessor) explicit RK methods, where the number of stages increases faster than
linearly if we want a high order.

Next we consider the case of stiff problems, leading us to implicit methods, i.e., to
D+#0. Before specifying particular choices of D, we first want to discuss an aspect of the
corrector which is relevant with respect to stiffness. In integrating stiff ODEs, a
favourable property of the method is that it is ‘stiffly accurate’. This notion has been
introduced by Prothero and Robinson [25] and means that the RK method satisfies
bT=es"A, with e the sth unitvector. Hence, bT equals the last row of A, or equivalently,
the last component of the stage vector Y is an approximation to the solution at the new
steppoint t,+1. Therefore, in case of a stiffly accurate corrector, (2.4a) will be replaced by

(2.4v) Ynsl = esT Y(M),

Now, we return to the discussion of the matrix D; we distinguish two cases:
() D is such that after a prescribed number of iterations the resulting method has good
stability properties. This approach is discussed in Chapter IV.
(i) Another option is to solve the corrector and to choose D in such a way that we
obtain fast convergence in the iteration process (2.3a). This strategy is the subject of the
Chapters V and VI.

In the following two subsections these cases will be briefly discussed; henceforth, the
above Parallel Diagonally-Iterated RK methods will be denoted by PDIRK methods.

2.1. Diagonal iteration with a prescribed number of iterations

In Chapter IV, we will consider methods for which the number of iterations m is
fixed. As we shall see, this number is dictated by the orders of the corrector and of the
predictor. This strategy is motivated by the following theorem:

Theorem 2.2. Let p* be the order of the underlying corrector (2.2). Then the order p of
the resulting PDIRK method {(2.3), (2.4a), (2.4b)} is given by

min {p*, m+r} for all matrices B, C and D,
min {p*, m+1+r} if (C+B)e = Ae,
min {p*, m+2+r} if, in addition, BAe = AZe,

where r takes the value 1 if y,,,1 is defined by (2.4a) (i.e., the nonstiffly accurate case)
and r=0 if y,, 1 is defined by (2.4b) (the stiffly accurate case).

Furthermore, if the corrector is stiffly accurate, then the corresponding PDIRK method
has the same property. 1l

Based on this theorem, we stop iterating as soon as the order has reached the order of
the corrector, since a continuation of the iteration process would not increase the order of
the PDIRK method (see also [4]).

With respect to the choice of the predictor, we restrict our considerations to the case
C=0. For the matrix B we remark that B=0 or B=D are obvious choices. Although B and
D may be different diagonal matrices, the choice B=D has the computational advantage
that the LU-decompositions of I — d; h df/ dy, which are needed during the iteration (2.3a),
can also be used in solving (2.3c) for ¥(0),

The diagonal matrix D is still free and can be used to give the resulting PDIRK
method optimal stability characteristics. In Chapter IV we distinguish two approaches:
matrices D with constant and with varying diagonal entries. In the first case, i.e., D is of
the form d'I, it is possible to perform a rather thorough stability analysis. It turns out
that unconditionally stable PDIRK methods can be constructed. A few of these methods
are listed in Table 2.1. The relevant d-values can be found in Chapter IV.

Table 2.1. Unconditionally stable PDIRK methods with D=d"/

corrector matrices B and D attainable orderp # effective stages stability
Gauss B=0,D=dl p<4,p=6 p-1 A-stable
Gauss B=D=dl p<6,p=8 p L-stable
Radau TA B=0,D=dlI p<6,p=8 p L-stable
Radau ITA B=D=dl p<8p=10 p+l L-stable

If we allow the matrix D to have nonconstant entries, then it is possible to save one
iteration without reducing the order, simply by setting B=D=diag(Ae) (cf. Theorem 2.2).
Some of the resulting PDIRK methods turn out to be only A(a)-stable, however with «
close to 90°. In Table 2.2, we collect a few methods with good stability properties.

Table 2.2. PDIRK methods with a nonconstant D-matrix

corrector attainable order p # effective stages stability
Gauss/Radau ITA p<S5 p-1 strongly A-stable
Gauss/Radau ITA p=6,7 p-1 A(a)-stable, a > 83°
Radau ITIA p=3,57 p L(a)-stable, a > 89°

2.2. Diagonal iteration until convergence

PDIRK methods with a fixed number of iterations, as considered in the previous
subsection, are in fact special DIRK methods. It is well known [10] that DIRK methods
possess a so-called stage order equal to 1 which, in general, drastically reduces the
accuracy. As a matter of fact, in many stiff problems the actually observed order equals
the stage order (or, sometimes the stage order + 1). As a consequence of this so-called
order-reduction phenomenon, the relevance of methods with a high algebraic (i.e.,
classical) order and a low stage order is questionable. Therefore, apart from the ‘fixed-m-
strategy’ we also consider the approach where the corrector is iterated until convergence.
This implies that we can rely on all the characteristics of the corrector, like stability and
accuracy behaviour and, in particular, the stage order. For example, s-stage IRK methods
of Gauss and Radau type both have stage order s. In addition, they have a very high
algebraic order (superconvergence) but, as observed above, this property seems to be of
minor importance in many stiff problems. Therefore, in the Chapters V and VI, we also
consider (A-stable) Newton-Cotes and Lagrange type IRKs; in these (collocation) methods
the superconvergence is exchanged for an increase by one of the stage order. This is

8

obtained by adding one explicit stage to the s implicit stages. The time needed for this
extra explicit stage is quite negligible compared with the time involved in solving the
implicit stages. Thus, we arrive at correctors with algebraic order = stage order = s+1,
which are suitable for parallel iteration on an s-processor machine.

Having decided to solve the corrector, we can now consider (2.3a) as an iteration
process, where ‘iteration’ has the classical meaning. This leads us automatically to a
criterion for choosing the matrix D: this matrix should be such that we have fast
convergence in (2.3a).

It is easy to show that the iteration error ¥ — ¥(/), in first approximation, satisfies the
recursion

(2.52) Y - Y0U) = Z(z) [Y - YU-1)], j=1,...,m, z:=ha,
where the iteration matrix Z is defined by
(2.5b) Z(z) := zD[I - 2D)"}[D1A - 1].

Here, A4 denotes an approximation to the derivative gf/dy and should be understood to run
through the spectrum of the Jacobian matrix in case of systems of ODEs. The
convergence behaviour of (2.3a) is completely determined by the iteration matrix Z and
we have the matrix D at our disposal to obtain fast convergence.

The main difficulty in choosing D is that Z depends on z, i.e., on the problem.
Therefore, we cannot expect to find a uniformly ‘best’ D-matrix. Since we are aiming at
the integration of stiff equations, we consider the influence of Z on the eigenvectors of
df/dy corresponding to eigenvalues of large modulus. For |z| — o0, Z behaves as /—D 1A,
Thus a strong damping of these eigenvectors leads us to the minimization of the spectral
radius of I — D~1A. Observe, that the ‘nonstiff’ eigenvectors (corresponding to small values
of |z|) are already damped since Z behaves as z[A — D] for |z] - 0. With this approach we
obtain fast convergence. However, we do not claim that this choice of D is the best
possible. For example, a more sophisticated strategy might be the minimization of (some
norm of) Z(z) over the whole, or the ‘stiff part’ of the left halfplane.

Another possibility could be to minimize the principal stiff error constants in the
resulting PDIRK method; this option is studied in Chapter VI. Several other options to
choose D are discussed in Chapter V and many of these have been used in numerical tests,
but it turns out that the behaviour of the strategy based on the minimization of the
spectral radius p of I—D-1A could not be improved.

Based on this approach, we have constructed methods for s =2, 3 and 4. Only for s =2
it is possible to determine D analytically such that p(/ — D~1A) = 0. For the larger values
of s, the D-matrices have to be calculated numerically. The p-values increase with s and

9

are (for the several correctors) in the range (0.004, 0.01) if s =3 and in the range
(0.02, 0.1) for s =4.

2.3. A numerical example

To obtain insight in the actual performance of these parallel Runge-Kutta methods, we
have tested a parallel implementation of a PDIRK method based on the ‘minimal-spectral-
radius-strategy’. For the corrector, we selected the 4-stage Radau IIA method. Since this
IRK is of collocation type, the collocation polynomial passing through the stage values
is easily computed in each step. The predictor Y(0) is obtained by extrapolating the
collocation polynomial calculated in the preceding step. Since this prediction is rather
accurate, it is to be expected that this will result in fewer iterations compared with the
‘trivial’ predictor Y(Q)=y, e. We equipped this method with a provisional strategy for error
control and stepsize selection (details concerning the implementation strategy can be
found in [27]). The resulting code is termed PSODE.

We have implemented PSODE on the ALLIANT FX/4 computer (four parallel
processors and shared memory) and applied it to several test problems. The goal of these
tests is twofold: (i) we want to investigate to what extent the theoretical parallelization
can be realized in practice; in other words, how close we can approach the ideal speedup
factor on this four-processor machine and (ii) we want to compare the performance of the
code PSODE with that of a good sequential solver. To that purpose we select the recent
(sequential) code RADAUS of Hairer & Wanner [15]. This choice is motivated by the
observation that it solves a Radau IIA method (viz., the 3-point 5th-order one); this
starting point is quite similar to that of PSODE, although the approach to obtain the
Radau-solution is completely different. Furthermore, we included in our tests the code
LSODE of Hindmarsh [16]. This BDF-based code has formulas up to order 5 available,
from which only those of first and second order are A-stable. Hence, LSODE is less
robust as a general stiff solver, but, on the other hand, it is generally accepted as a good
sequential solver and enjoys considerable usage over a long period.

In comparing the parallel code PSODE with the two sequential codes, we do not take
into account effects originating from a possible ‘parallelization over the loops’. By this
we mean that a long loop is cut into s smaller parts which are then assigned to the s
processors. In Section 1, this effect is termed ‘parallelism across the problem’ and can in
fact be used by any ODE solver. Here we merely want to test intrinsic parallelism (called
‘parallelism across the method’). In order to exclude the effects of ‘parallelism across the
problem’, LSODE and RADAUS are run on a single processor. In fact, the amount of

10

intrinsic parallelism offered by LSODE and RADAUS is very modest (see also the remark
at the end of this section).

Of course, if one is interested in ‘parallelism across the problem’, then the sequential
codes could be implemented on an s-processor machine. However, in that case a fair
comparison would require assigning 4s processors to PSODE, since in each of the 4
concurrent subtasks of PSODE, the ‘parallelism across the problem’ can equally well be
exploited (cf. Section 1, where we have mentioned that both parallelization techniques are
‘orthogonal’).

Summarizing, we may say that PSODE needs 4 times the number of processors given
to a sequential code, simply because it possesses a 4-fold amount of intrinsic parallelism.
The large number of processors utilized by PSODE reflects the current tendency in
parallel computing, since modern architectures — and certainly those entering the market
in the coming years — have an ‘almost unlimited’ number of processors (massive

parallelism).

Another aspect which is of utmost importance for the performance of a stiff code, is
the amount of linear algebra per step, which in turn strongly depends on the dimension of
the ODE. Prior to the specification of our test problem, we will briefly discuss the
characteristics of the various codes with respect to this aspect:

A common feature of the three codes is that they need from time to time an LU-
decomposition of the matrix involved in their respective iteration processes to solve the
nonlinear relations. Since the factorization of a general N-dimensional matrix requires
approximately N3/3 arithmetic operations, this will dominate the total costs of the
integration for large-scale problems. Here we may think of complicated problems from
circuit analysis or semi-discretized (higher-dimensional) partial differential equations. In
such applications, systems of ODEs with several thousands of equations are quite usual.
In this connection we remark that both LSODE and PSODE deal with matrices of
dimension N. Hence, it is to be expected that their mutual comparison is only marginally
influenced if N increases and all other aspects are left unchanged.

Matters are different for the code RADAUS, since it has to deal with matrices of
dimension 3N. By exploiting the special structures in these matrices, Hairer and Wanner
are able to reduce the total work of the LU-decomposition to SN3/3 operations [15], thus
gaining a factor 5 compared with a direct treatment, which would have required (3N)313
operations. However, this number 5N3/3 compares unfavourably with the number N3/3
(associated with LSODE and PSODE), and causes a serious drawback for RADAUS when
applied to large-scale problems.

11

To get a first indication of the performances of the codes, we have applied them to a
small test problem originating from circuit analysis. It was first described by Horneber
[17] and extensively discussed in [14, p.112] and [11]. This (stiff) system describes a ring
modulator, which mixes a low frequency and a high frequency signal. The modulated
signal is then used as input for an amplifier. The resulting system of 15 ODEs is defined
by

y1'=C-1[yg = 0.5 y10 + 0.5 y11 + y14 — y1/R]
¥2' = C-1[yo = 0.5 y1 + 0.5 y3 + y15 — ¥2/R]
y3' = Cs71 [y10 - 8(21) + 8(24)]

Yo' = Cs7 [= y11 + 8(22) — 8(23)]

ys' = Cs7 [y12 + 8(21) — g(23)]

¥s' = Cs7t [= y13 - 8(22) + g(24)]

y1' = Cpt [yalR; + g(21) + 8(22) — 8(23) — 8(24)]
yg =—Lp 'y

Yo =—Lp'y;

y10"=Ls1 [0.5 y1 — y3 = 17.3 y10]
yu'=Lst [- 0.5y +y4—17.3 y11]

y12' = Ls7 [0.5 y, — y5 = 173 yp5]

y13' = Lg [- 0.5y, + ys = 17.3 y13]

yia' =Lt [= y1 + e1(0) - 86.3 yi4]

y1s' =Lt [- 32— 6363 yis],

where
71 i=y3—Ys—y1—ex(h), 73 1=—Y4+Ys— Y1 — €2(t),

Z31= Y4 + Y5 + Y7 + €2(0), Z4:=—Y3— Y6 + y1 + €2(1),

and the function g, which models the characteristics of the diodes, is defined by
g(2) := 40.67286402:10° [exp (17.7493332-z) - 1].

The signals e; and e, are defined by
ei(t) := 0.5sin (2103), ey(t) :=2sin (2104 7).

The technical parameters have been given the values C =16-109, R=25000, Cp=10'8,
R;=50, Lp=4.45, Ls=0.0005 and L,=0.002, resulting in a heavily oscillating solution.

12

Not yet fixed is the value of the capacity Cs. In our test, we give it the value 102, which
seems technically meaningful. It is reported [14] that small Cg-values cause serious
difficulties. In the limit, i.e. on setting Cs=0, we end up with a differential-algebraic
system. The integration interval in our test is [0, 10-3]; the initial values are given by
¥i(0)=0, i=1,...,15. For several values of TOL (the local error bound) the results obtained
by the codes RADAUS, LSODE and PSODE are collected in Table 2.3. Here, 77 and T4
denote the CPU time (in seconds) when the program is run on 1 and 4 processors,
respectively. Recall, that we restrict the timings for the sequential codes to T'1. The
accuracy is measured by means of A, which is defined by writing the maximum norm of
the global (relative) error in the endpoint in the form 10-4. Furthermore, Nsteps denotes
the number of (successful) integration steps and m stands for the average number of
(effective) f-evaluations per step.

Table 2.3. Performance of the codes RADAUS, LSODE and PSODE

for the circuit problem
Method TOL Nsteps m A T T4
RADAUS 102 1275 9.0 1.1 33.1
103 2277 7.6 2.6 48.6
104 3922 6.7 3.8 72.4
105 6761 6.1 4.9 110.9
LSODE 103 7054 1.5 1.4 33.6
104 9772 1.4 2.8 44.1
105 13266 1.4 2.9 57.7
106 17887 1.3 3.8 74.7
107 23310 1.3 4.5 93.1
108 30253 1.2 4.9 114.3
PSODE 10-2 1185 7.3 1.4 80.0 21.4
103 1561 7.3 3.1 104.5 27.8
104 2272 7.1 4.1 146.4 39.6
103 3437 6.9 5.2 212.1 57.7

These results give rise to the following conclusions:
(i) with respect to our first goal, we see that the speedup factor for PSODE (obviously
defined by T1/T4) is approximately 3.7, which is pretty close to the ‘ideal’ factor 4 on

13

this machine. This factor rapidly converges to 4 if the dimension of the problem
increases.

(ii) concerning our second goal, we observe a remarkable similarity between RADAUS
and PSODE: both codes need approximately 7 f-evaluations per step; moreover, to
produce the same accuracy, the required number of steps is of the same order of magnitude
(for the more stringent values of TOL, the difference in the number of steps increases,
which is probably due to the higher order of PSODE). There is however a striking
difference between the two Radau-based codes and LSODE; this code is very cheap per
step, but needs much more integration steps to produce the same accuracy. For example,
to obtain a relative accuracy of about 5 digits, PSODE needs = 3400 steps, RADAUS
twice as many, whereas for LSODE this number is 9 times as large. Taking into account
the computational effort per step of the various codes, the comparison with PSODE
yields a double amount of time both for LSODE and RADAUS. Approximately the same
ratios are observed in the low-accuracy range (say, A=3).

As mentioned before, this example is only a model problem describing a small (part of
an) electrical circuit, and is still far away from a real-life application. However, even for
this small system of ODEs, the performance of (this provisional version of) PSODE is
already superior by a factor 2 to that of the (well-established) codes LSODE and
RADAUS.

Summarizing, we can say that
- the PSODE-approach is much more promising to serve as the basis for an efficient,
‘all-purpose’ stiff solver than the LSODE-approach. This is due to the improved
mathematical qualities, viz. the high order in combination with A-stability.
- In comparison with RADAUS, PSODE has the advantage that in large-scale
problems, the (dominating) LU-factorizations require a factor S less computational
effort. In this connection we remark that a few preliminary experiments with a
problem of dimension 75 reveal that the overall gain of PSODE is already more than
a factor 4.
For really large-scale problems we expect that the speedup factor will be in the range
6 - 8, depending on the required accuracy. This number is composed of the asymptotic
factor 5 coming from the algebra part and the remaining factor 1.2 - 1.6 originating
from the higher order of PSODE.
Remark: it should be mentioned that RADAUS offers a possibility to exploit a small
amount of intrinsic parallelism. In using two processors, the total number of
arithmetic operations to perform the LU-decomposition can be reduced from SN3/3 to
4N3/3. We refrained from adapting the code RADAUS in order to exploit this feature.

14

3. PARALLEL BLOCK METHODS

Another technique to construct parallel methods for ODEs is based on block methods
[26, 12, 28, 29]. For the construction of this type of methods, it is convenient to introduce
the so-called block vector

3.1 Ynel = ()’n,clv Yn,cps oo s)’n,cs)T, cs=1,

where yp,c; denotes an approximation to the exact solution y(¢) atf = tp + cjh. Similar to
the preceding section, the methods will be presented for a scalar ODE; however, also for
block methods, the extension to systems of ODEs is straightforward. Again using the
convention that f(v) = (f(vj)), a (one-step) block method is defined by

(3'2) YIH—I =A Yn + h Bf(Yn) +h Cf(Yn+1)» n= O’ la 2’ eee y

where A, B and C are matrices of dimension s. Notice that (3.2) is a direct generalization
of the (one-step) linear multistep (LM) method

3.2) Yn+l=aYn+hbflyn) +h ¢ f(yn+1)s

with a, b and c scalars variables.

Initially, the block methods were introduced to circumvent the restrictions that apply
to LM methods: the limitation on the order because of zero-stability (known as the ‘first
Dahlquist barrier’) and the order-restriction with respect to A-stability (which is usually
called ‘Dahlquist's second barrier’). As we shall see, both restrictions can be avoided by
changing from the LM methods to the block methods. Moreover, parallelism can be
achieved in a very natural way.

However, it should be observed that — in contrast to the Runge-Kutta type of methods
considered in Section 2 — the block methods are not self-starting. Clearly, the recursion
(3.2) needs the vector Yo, which requires as many starting values as there are distinct
values ¢;.

In the next two subsections, we will consider parallel block methods for nonstiff and
stiff ODEs, respectively.

3.1. Parallel block methods for nonstiff equations

Within the class of LM methods, nonstiff ODEs are usually solved by the so-called
predictor-corrector (PC) approach. We will consider a similar technique in the case of
block methods. To be more specific, let us call the (implicit) block method (3.2) the
corrector. Solving implicit relations is avoided by defining an explicit predictor of the

form

15

(3.3) YP _EY, +hFf(Yy),

with E and F matrices of dimension s. Substitution of ¥ P into the right-hand side of
(3.2) yields the block predictor-corrector (BPC) method

(3.4) Yn+1=AYn+hBﬂYn)+th(EYn+th(Yn)).

In accordance with the terminology used in the LM case, this application is called the
PECE mode. Of course, one can continue this process by substituting the result of (3.4)
into the right-hand side of (3.2), etc.; in this way we arrive at the PE(CE)™ mode.

The parallelism in this type of methods is obvious: the s components in f{Y,) (and in
ftY P)) can be computed concurrently, so that (3.4) requires effectively only two right-
hand side evaluations per step (provided of course, that sufficiently many processors are
available).

In the literature, several parallel BPC methods have been proposed. We mention the
work of Miranker and Liniger [22], of Shampine and Watts (cf. Worland [30]) and the
multistep block methods of Chu and Hamilton [7]. In Chapter 1I of this thesis, methods
of the form (3.4) are analyzed and new BPC methods are derived for the cases
s=2,3 and 4. Contrary to the methods given in the literature, the BPC methods in
Chapter II exploit the feature that the components of the block vector represent
approximations to the exact solution at not necessarily equidistant points.

Using this property, it is possible to obtain (zero-)stable BPC methods with as high
an order as 2s. This is obtained by first constructing a predictor of the form (3.3) of order
2s—1. Notice that, similar to the LM situation, this predictor itself does not necessarily be
zero-stable.

A next question might be: ‘how many processors are needed for the parallel
implementation of these BPC methods ?’ For the schemes presented in Chapter II, we
have the uniform answer: ‘two’. This is achieved by requiring the first s — 2 rows of the
matrices B, C and F to contain zero elements. This implies that we do not need to assign
a processor to the first s —2 components of the block vector, since their values and
derivatives can be adopted from the preceding step. However, assuming that there is no
restriction on the number of available processors, this property is not of a great practical
value.

Summarizing: for s=2,3 and 4, it is possible to construct BPC methods with a
nonempty stability region including the origin, which

(i) are of order 2s,

(i) need (at most) s starting values,

(iii) require, on a two-processor machine, effectively two right-hand side
evaluations per step.

16

We remark that the methods proposed by Donelson and Hansen [12] share the
properties (i) and (ii). However, their stability regions are not available and moreover, if
they are implemented on a parallel machine, they would need s processors. In this
connection, we remark that Donelson and Hansen did not have in mind to apply their
methods in a parallel context; they merely wanted to circumvent the first Dabhlquist
barrier.

Finally, we remark that the methods proposed by Chu and Hamilton [7] share the
aforementioned properties (ii) and (iii), but have an order not exceeding four. On the other
hand, the stability regions of their BPC methods are larger than those of the methods
derived in Chapter II.

3.2. Parallel block methods for stiff equations
For the numerical integration of stiff ODEs, a method should preferably
(i) be A-stable, and
(ii) have a high order of accuracy.
However, it is well known that these are conflicting demands for linear multistep methods
(this is the so-called ‘second Dahlquist barrier’). One possible way to achieve the goals (i)
and (ii) is to consider implicit block methods. In the literature, several methods of this
type have been proposed. For example, in [28] Watts and Shampine construct block
methods based upon quadrature formulas of the Newton-Cotes type and show that these
schemes are A-stable for orders < 8 (see also [29]). These methods fit into the class (3.2),
however, they have a full C-matrix. As a consequence, the s components of the block
vector have to be solved simultaneously, a situation similar to the one encountered in
implicit Runge-Kutta methods (observe the resemblance between (3.2) and (2.2b)). Hence,
these implicit block methods are not suitable for parallel execution.
In Chapter III we discuss what can be achieved within the class of parallel implicit
block (PIB) methods, subject to the aforementioned requirements with respect to order and
stability. To that end, the matrix C in (3.2) is replaced by a diagonal matrix D:

3.2 Yni1 =AY, +hBf(Y,)+hDf(Yp1), n=012,...

As a result of this ‘simplification’, we sacrifice a lot of free parameters originally
occurring in the matrix C but, on the other hand, we now arrive at a scheme in which the
various components of ¥, 1 are uncoupled as far as implicitness is concerned (cf. (2.3b)
for a similar situation in the Runge-Kutta context). Hence, having s processors available,
scheme (3.2") requires effectively the solution of one implicit relation, the dimension of
which equals that of the system of ODEs. This means that the computational effort per
step is quite similar to that of the celebrated backward differentiation formulas (BDFs).

17

The next step is, of course, to raise the order of the PIB method beyond 2. To that end
we perform a numerical search in the space of free parameters. For example, for s=2 we
have the A-stable PIB method

—
H
<2
—
=)
—

147 161 7
01 v 220 220 _— o © v
3.5 Y = +h + 5
(3.5) n+l (0]) n 5_0 22 f(Yn) 3 13 f(¥nt1)
33 66 6

with ¢1=21/10 and c,=1. In this PIB method, the second component of ¥,,1 (i.e., yn+1)
yields a third-order approximation to the exact solution.

Continuation of the numerical search process for s=3, yields several fourth-order A-
stable parallel block methods. For the same value of s it is even possible to raise the
order to five, however, then we loose the property of A-stability. It turns out that an
extremely small lobe in the nonpositive halfplane does not belong to the stability region
of these methods. An adequate characterization of the stability region of these methods
(and of the BDFs, as well) is obtained by extending the well known concept of A(a)-
stability:

Definition 3.1.: A block method of the form (3.2) is said to be A(a, 3, y)-stable if:
i) its region of stability contains:
the infinite wedge {z | — @ < 7 — arg(z) < a}, with 0 < ¢ < /2, and
all points in the nonpositive halfplane with |z| > S,
(i) yis the maximum value of the spectral radius of the amplification matrix
[/ - 2CT"1 [A + 2B] for all z with Re(z) <0 lying in the instability region. []

Using this definition, the stability characteristics of the methods derived in Chapter III and
of the BDFs are summarized in Table 3.1 (notice that BDFs are straightforwardly fitted in
the formulation (3.2)). In this table, the vector ¢ contains the abscissae defining the block
vector, i.e., ¢ := (¢y, €3, ..., C5)T, and an ‘*’ means that the corresponding value is not
relevant.

18
Table 3.1. Values of « (in degrees), 8 and 7y for the BDFs and some PIB methods

Method et Order o B ¥

BDF3 (-1,0, 1) 3 88.4° 1.94 1.046
PIB3 (21/10, 1) 3 90° 0 *

BDF4 (-2,-1,0,1) 4 73.2° 4.72 1.191
PIB4; (5, 13/4, 1) 4 90° 0 *
PIB4; (3,5 1) 4 o0° 0 *

BDFS (-3,-2,-1,0,1) 5 51.8° 9.94 1.379
PIBS] (-2.747, -2.122, 1) 5 >89.98° 0.16 1.0000026
PIBS1 (1.6153, 4.7871, 1) 5 >89.98° 0.30 1.000069

4. CONCLUSIONS AND FUTURE RESEARCH

We have shown that iterating a fully implicit RK method leads in a natural way to
parallel integration methods. This approach can be used both for stiff and nonstiff ODEs.
Although it is conceptually not necessary to start with a fully implicit RK method, such
IRKs are an excellent choice to serve as a method, underlying the iteration process.

In the nonstiff case, the Gauss methods are recommended because of their highly
accurate behaviour. Moreover, the optimal order of these IRKs with respect to the number
of stages, minimizes the number of required processors. Observe however, that this aspect
is only of marginal interest. Following this approach, it is possible to construct explicit
RK methods for which the (effective) number of stages equals the order. This property
holds for an arbitrarily high order and is principally impossible within the class of
sequential explicit RK methods.

For stiff equations, a stiffly accurate IRK is a good choice; in particular, Radau IIA
methods are suitable candidates. In the stiff case, the parallel, diagonally-implicit iteration
leads to methods with nice features, both from a computational and a mathematical point
of view. The property that only one matrix of the ODE dimension has to be factorized
per step, reduces the amount of linear algebra to an acceptable level. We have seen that
performing a fixed number of iterations results in L-stable methods with a high algebraic
order, but with a (at least, formally) low stage order. Alternatively, iterating until
convergence yields a high algebraic order as well as a high stage order. Moreover, already
after a modest number of iterations, these methods are unconditionally stable .

A different approach to obtain parallel ODE solvers is provided by the class of block
methods. Contrary to the RK-based methods, they are, in general, not self-starting.

19

The results for nonstiff equations seems to be even more promising than for the RK-
based methods: using s starting values, it is possible to obtain order 2s (thus far, only for
s < 4) with 2 f-evaluations. Moreover, the number of processors can be restricted to 2,
but again, this is not a significant advantage. However, the stability regions of the
resulting block methods are much smaller than those of the RK-based methods and,
moreover, we expect the block methods to have much larger error constants.

In the stiff case, A-stable block methods of orders < 4 can be constructed as well as an
‘almost A-stable’ method of order 5. This result is less favourable than for the RK-based
methods, where very high orders can be combined with unconditional stability. On the
other hand, the block methods require only one implicit relation to be solved per step (and
per processor), whereas the RK-based methods have to solve a sequence of implicit

relations.

In the future, we plan to perform an extensive comparison between the parallel RK
methods and the parallel block methods on the basis of a broad collection of test
problems.

Apart from that, the code PSODE (cf. Section 2.3) is still in a research phase and
needs a better tuning of its strategy parameters, since the performance of any code
critically depends on such a tuning. In particular, these parameters have to be chosen in
such a way that the number of LU-factorizations is minimized. Furthermore, we plan to
extent the code with the facility to treat ODEs of the form M y’(t) = f{y(t)), where M is a
matrix which may be singular, resulting in a differential-algebraic system.

To exploit the abundance of the available processors, one can reserve a number of
processors — apart from those performing the integration method — which continuously
update the Jacobian matrix and calculate LU-factorizations, corresponding to various
stepsizes that are realistic for the present part of the integration interval (this would of
course require an adaptation of the stepsize selection strategy).

Another, more theoretical, aspect that needs attention in the future, is the construction
of A-stable block methods of orders exceeding 4. This might be obtained by exploiting
more free parameters in the matrices A, B and D (see (3.2")).

20

REFERENCES

(1]

(2]

3]

[4]

(5]

(6]

|

(8l

1

(10]

(11]

(12]

(13]

(14]

(15]

[16]

Alexander, R. (1977): Diagonally implicit Runge-Kutta methods for stiff ODEs,
SIAM J. Numer. Anal. 14, pp. 1006-1021.

Bellen, A. , Vermiglio, R. & Zennaro, M. (1990): Parallel ODE-solvers with
stepsize control, J. Comput. Appl. Math. 31, pp. 277-293.

Burrage, K. (1978): A special family of Runge-Kutta methods for solving stiff
differential equations, BIT 18, pp. 22-41.

Burrage, K. (1991): The error behaviour of a general class of predictor-corrector
methods, Appl. Numer. Math. 8, pp. 201-216.

Butcher, J.C. (1979): A transformed implicit Runge-Kutta method, J. Assoc.
Comput. Mach. 26, pp. 731-738.

Butcher, J.C. (1987): The numerical analysis of ordinary differential equations,
Runge-Kutta and general linear methods, Wiley, New York.

Chu, M.T. & Hamilton, H. (1987): Parallel solution of ODE’s by multi-block
methods, SIAM J. Sci. Stat. Comput. 8, pp. 342-353.

Cooper, G.J. & Sayfy, A. (1979): Semiexplicit A-stable Runge-Kutta methods,
Math. Comp. 33, pp. 541-556.

Crouzeix, M. (1975): Sur [l'approximation des équations différentielles
opérationelles linéaires par des méthodes de Runge-Kutta, Ph. D. Thesis,
Université de Paris.

Dekker, K. & Verwer, J.G. (1984): Stability of Runge-Kutta methods for stiff
nonlinear differential equations, North-Holland, Amsterdam.

Denk, G. & Rentrop, P. (1989): Mathematical models in electric circuit
simulation and their numerical treatment, in: Numerical Treatment of Differential
Equations, Halle/DDR 1989, Teubner-Texte zur Mathematik.

Donelson, J. & Hansen, E. (1971): Cyclic composite multistep predictor-corrector
methods, SIAM J. Numer. Anal. 8, pp. 137-157.

Gear, C.W. (1988): Parallel methods for ordinary differential equations, Calcolo
25, pp. 1-20.

Hairer, E., Lubich, C. & Roche, M. (1989): The numerical solution of differential-
algebraic systems by Runge-Kutta methods, Lecture Notes in Mathematics, vol.
1409, Springer-Verlag, Berlin.

Hairer, E. & Wanner, G. (1991): Solving ordinary differential equations, II: Stiff
and differential-algebraic problems, Springer Series in Comp. Math., vol. 14,
Springer-Verlag, Berlin.

Hindmarsh, A.C. (1980): LSODE and LSODI, two new initial value ordinary
equation solvers, ACM/SIGNUM Newsletter 15 (4), pp. 10-11.

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

21

Horneber, E.H. (1976): Analyse nichtlinearer RLCU-Netzwerke mit hilfe der
gemischten Potentialfunction mit einer systematischen Darstellung der Analyse
nichtlinearer dynamische Netzwerke, FB: Elektrotechnik, Universitit
Kaiserslautern, Dissertation.

Iserles, A. & Ngrsett, S.P. (1991): On the theory of parallel Runge-Kutta
methods, IMA J. Numer. Anal. 10, pp. 463-488.

Jackson, K. & Ngrsett, S.P. (1990): The potential for parallelism in Runge-Kutta
methods, Part I: RK formulas in standard form, Technical Report No. 239/90,
Dept. of Computer Science, University of Toronto.

Jackson, K. & Ngrsett, S.P.: The potential for parallelism in Runge-Kutta
methods, Part II: RK predictor-corrector formulas, in preparation.

Lie, I. (1987): Some aspects of parallel Runge-Kutta methods, Report No. 3/87,
Dept. of Mathematics, University of Trondheim.

Miranker, W.L. & Liniger, W. (1967): Parallel methods for the numerical
integration of ordinary differential equations, Math. Comp. 21, pp. 303-320.
Ngrsett, S.P. (1974): Semi-explicit Runge-Kutta methods, Report Mathematics
and Computation No. 6/74, Dept. of Mathematics, University of Trondheim.
Ngrsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta
methods, in: Numerical methods for ordinary differential equations, A. Bellen,
C.W. Gear & E. Russo (eds.), Proceedings of the L'Aquila conference, 1987,
Lecture Notes in Mathematics, vol. 1386, Springer-Verlag, Berlin, pp. 103-117.
Prothero, A. & Robinson, A. (1974): On the stability and accuracy of one-step
methods for solving stiff systems of ordinary differential equations, Math. Comp.
28, pp. 145-162.

Shampine, L.F. & Watts, H.A. (1969): Block implicit one-step methods, Math.
Comp. 23, pp. 731-740.

Sommeijer, B.P. (1991): Parallel-iterated Runge-Kutta methods for stiff ordinary
differential equations, Report NM-R9117, Centre for Mathematics and Computer
Science (CWI), Amsterdam, submitted for publication.

Watts, H. A. & Shampine, L.F. (1972): A-stable block implicit one-step methods,
BIT 12, pp. 252-266.

Williams, J. & Hoog, F. de (1974): A class of A-stable advanced multistep
methods, Math. Comp. 28, pp. 163-177.

Worland, P.B. (1976): Parallel methods for the numerical solution of ordinary
differential equations, IEEE Trans. Computers C-25, pp. 1045-1048.

PART 1

Parallel numerical methods for nonstiff ODEs

CHAPTERI

Parallel iteration of high-order Runge-Kutta methods

with stepsize control

published in: J. Comput. Appl. Math. 29 (1990), 111-127

Ermrata: - In Theorem 2, on p. 28, the sentence ‘RK methods of
the form (2.5) are optimal if m=p—1." can be
formulated more generally as ‘RK methods of the form
(2.5) are optimal if m<p-1.’

- In Corollary 6, on p. 31, ‘... the interval [Breal, 0], ..."
should read °... the interval [— Breal, 01, ...

- In the last line of Section 6.2, on p. 34,
‘... favourable ..." should read ‘... favourably ...”

25

Journal of Computational and Applied Mathematics 29 (1990) 111--127
North-Holland

Parallel iteration of high-order Runge-Kutta

methods with stepsize control

P.J. VAN DER HOUWEN and B.P. SOMMEIJER
Centre for Math ics and Comp Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Received 6 December 1988
Revised 3 March 1989

Abstract: This paper investigates iterated Runge-Kutta methods of high order designed in such a way that the
right-hand side evaluations can be computed in parallel. Using stepsize control based on embedded formulas a highly
efficient code is developed. On parallel computers, the 8th-order mode of this code is more efficient than the DOPRIS
implementation of the formulas of Prince and Dormand. The 10th-order mode is about twice as cheap for comparable
accuracies.

Keywords: Numerical analysis, Runge-Kutta methods, parallelism.

1. Introduction

Implicit Runge-Kutta (RK) methods for solving the initial-value problem for the system of
ordinary differential equations (ODEs)

DO sy, Y

are seldom used in predictor—corrector (PC) iteration, because RK correctors are much more
expensive than linear multistep (LM) correctors. This is due to the increased number of coupled
nonlinear algebraic equations. Although RK correctors of order p usually possess smaller error
constants than LM correctors of comparable order, an accuracy-computational effort graph will
be in favour of PC methods based on LM methods. However, matters are different when parallel
computers are used. It is well known that PC iteration, being a form of functional iteration (or
Jacobi iteration), allows a high degree of parallelism, because, by partitioning the system of
equations into subsystems of equal computational complexity, we can assign to each processor
such a subsystem and perform the iteration steps in parallel. The problem is of course the
partitioning in subsystems of equal computational complexity. In the case of iterating s-stage
RK methods, there is a natural partitioning based on the s subsystems corresponding to the s
stages of the RK method. In this way, the computation time involved in applying RK correctors
can be reduced a great deal on parallel computers. We shall call these “parallel, iterated” RK
methods PIRK methods. The idea of iterating an implicit RK method to exploit parallelism goes
back to Jackson and Nersett [10] and also in [9,11,12] such methods have been debated. Before

0377-0427,/90,/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)

26

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

continuing our discussion on PC iteration, we emphasize that the choice of an implicit RK
corrector has nothing to do with the excellent stability characteristics such methods usually
possess, since this property is not preserved when the PC approach is followed. Their choice is
solely determined by the fact that a high order of accuracy is easily obtained and, particularly,
because of the potential parallelism exhibited by these methods. Hence, in the sequel we will
assume that the class of ODEs (1.1) is nonstiff and has to be solved with high accuracy demands.

If the predictor is itself an (explicit) RK method, then the PIRK method also belongs to the
class of explicit RK methods. In [9] it was proved that explicit RK methods of order p
necessarily require at least p effective stages, and in [12] the question was posed whether it is
always possible to find explicit RK methods of order p using not more than p effective stages,
assuming that sufficiently many processors are available (an explicit RK method is said to have
p effective stages if the computation time required for evaluating all right-hand sides in one step
is p times the computation time required by one right-hand side evaluation). This question
motivated us to look in the class of PIRK methods for explicit RK methods, the order of which
equals the number of effective stages; such methods will be called optimal RK methods. We will
show that PIRK methods generated by any (not necessarily implicit) s-stage RK corrector of
order p do not require more than p effective stages provided that s processors are available. The
next question is the least number of processors needed to implement an optimal explicit RK
method. For example, in [12] a Sth-order, 6-stage RK method of Butcher which can be
implemented on two processors requiring only 5 effective stages is mentioned. This method is
clearly an example of an optimal “minimal processor” RK method. So far, we did not succeed in
answering the question of least number of necessary processors. Therefore, we have looked for
RK methods of which the number of stages is small with respect to their order. It is well known
that, within the class of RK methods, those of Gauss—Legendre type require least number of
stages to obtain a given order; to be more precise, s-stage Gauss—Legendre methods have order
p =2s. Hence, for an “optimal” implementation of these methods, we need only s processors.
Furthermore, the stability regions can directly be derived from known results for truncated
Taylor series, they allow an extremely simple implementation, and we obtain automatically a
sequence of embedded methods of varying order which can be used for stepsize control. PIRK
codes of order 8 and 10 using automatic stepsize control are compared with the code DOPRIS8 of
[5] which is a variable step implementation of the 8th-order explicit RK formula with 7th-order
embedded formula of [13]. All codes use the same stepsize strategy. By a number of experiments,
the performance of PIRK codes is demonstrated. Both codes are considerably cheaper than
DOPRI8 for comparable accuracies. In the Appendix to this paper, we provide a FORTRAN
implementation of the PIRK methods. This implementation has the feature that the user can
introduce arbitrary RK correctors by means of their Butcher arrays.

Instead of using (one-step explicit) RK predictors one may use LM predictors reducing the
number of effective stages. First results based on LM predictors are reported by Lie [11], using a
4th-order, 2-stage Gauss—Legendre corrector and a 3rd-order Hermite extrapolation predictor.
With this PC pair, one iteration suffices to obtain a 4th-order PIRK scheme. We shall briefly
discuss the use of multistep predictors, in particular for RK correctors of general (nonquadra-
ture) type. Various predictor methods are compared showing that the efficiency of PIRK
methods using multistep predictors is higher, but the price to be paid for the increased efficiency
is more storage and a less easy implementation.

Finally, the methods proposed in the following sections will be described for scalar differential

27

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

equations of the form (1.1). Their application, however, is straightforwardly extended to systems
of ODEs.

2. Optimal RK methods

Our starting point is the s-stage, implicit, one-step RK method of the form
Yua1 =Yat hb'r, 5, (2.1a)
where r, ., is implicitly defined by
i =f(y.e+hAr,.,). (2.1b)

Here, h is the integration step, e is a column vector of dimension s with unit entries, b is an

s-dimensional vector and A is an s X s-matrix. Furthermore, we use the convention that for any

given vector v=(v,), f(v) denotes the vector with entries f(v;). By iterating the equation for

r,., m times by simple functional iteration and using the mth iterate as an approximation to
+1. we obtain the method

r,
r=f(ye+hArV "), j=1,....m, Vne1 =Vn + hBF™. (2.2)

n

Since the s components of the vectors r'”) can be computed in parallel, provided that s
processors are available, the computational time needed for one iteration of (2.2) is equivalent to
the time required to evaluate one right-hand side function on a sequential computer. Hence, the
total costs of (2.2) per integration step comprise the calculation of the initial approximation r
plus m right-hand side evaluations. In the following, we always assume that we have s processors
at our disposal and, speaking about “computational effort per step”, we mean the computational
time required per step if s processors are available. If the computational effort per step equals
the computation time for performing M right-hand side evaluations, then we shall say that the
method requires M effective stages. Here, and in the sequel, we have assumed that the costs per
step are predominated by the time needed to evaluate the derivative function. If this happens to
be not the case for a particular ODE, then the overhead, which is sequential in essence, will take
a relative large portion of the total costs per step and, consequently, the parallel evaluation of the
s (cheap) right-hand side functions will not result in an overall speedup with a factor s.

We shall call the method providing r® the predictor method and (2.1) the corrector method
and the resulting parallel, iterated RK method will be briefly called PIRK method. 1t should be
observed that in the present case of RK correctors, the predictor and corrector methods do not
directly generate approximations to y,,, as is the case in PC methods based on LM methods.
However, at any stage of the iteration process we can compute the current approximation to y,,
by means of the formula

y D=y, +hb'r?, j=0,1,.... (2.3)
Let r© be an approximation to r,,, satisfying the condition
rO=r +0(h?), (2.4)

resulting in y@ =y, ,, + O(h?*"). Predictor methods satisfying (2.4) will be called predictor
methods of order q.

28

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

Suppose that 4 and b" are such that the corrector (2.1) is of order p and let the predictor
method be of order ¢ — 1. Then, it has been proved in [10] that the (global) order of y,,, as
defined by (2.2) equals p*:=min{ p,q+ m}. By using the simple predictor method r'®:=
f(y)e=r,, ,+O(h), ie, g=1, we immediately have as a corollary of this result the next
theorem.

Theorem 1. Let { A, b} define an s-stage RK method (which need not be implicit) of order p.
Then the PIRK method defined by

rO=f(y)e, r=f(ye+harV=P), j=1,....m, y,.,=y,+hb'r'™, (2.5)
represents an (m + 1)s-stage explicit RK method of order p* := min{ p, m + 1} requiring m + 1

effective stages.

Method (2.5) can also be represented by its Butcher array. Defining the s-dimensional vector 0
and the s X s-matrix O both with zero entries, we obtain

0
A4 O

0 A O

0 .. 0 4 O
[om7 ... o™ o &

We remark that this Butcher tableau represents a direct translation of (2.5), resulting in
(m + 1)s stages. However, written in this form, the O-matrix in the first row could be replaced
by a scalar zero, since the prediction r® has equal components and, consequently, can be
produced by one processor. This would lead to an explicit RK method possessing ms + 1 stages.

Setting m=p — 1, it follows from Theorem 1 that the question posed by Nersett and
Simonsen [12] can be answered in the affirmative: any pth-order RK method { 4, b"} generates
an explicit RK method of the form (2.5) of order p requiring only p effective stages. Such
explicit RK methods will be called optimal RK methods. Of course, within the class (2.5) the
number of processors needed for the implementation is dictated by the number of stages s of the
generating corrector. For example, the 10th-order, 17-stage RK method of Hairer [4] generates
an explicit RK method of the form (2.5) which is also of order 10 if we set m =9 and which is
optimal in the above sense. However, the implementation of this method requires 17 processors.
This suggests the problem of constructing RK methods of order p which are optimal and require
least number of processors. The 5th-order, 6-stage RK method of Butcher mentioned in [12] is an
example of such a method: it can be implemented on 2 processors requiring only 5 effective
stages. From the theory of RK methods based on high-order quadrature methods, such as
Gauss-Legendre and Radau methods [5], we can immediately deduce a lower bound for the
number of processors needed to implement optimal RK methods of the form (2.5).

Theorem 2. RK methods of the form (2.5) are optimal if m = p — 1. For even p the least number of
required processors equals 3p and the generating RK corrector is the pth-order Gauss—Legendre
method;, for odd p the least number of processors is 3(p + 1) and the generating RK corrector is the
pth-order Radau method.

29

P.J. van der H n, B.P. S

/ Parallel Runge—Kutta method

J

Table 1
Comparison of sequential RK methods and optimal RK methods of the form (2.5)
p <4 5 6 7 8 9 10
Sequential RK Semin) 6 7 9 11 >12 >13
S p 6 7 9 11 - 17
Optimal RK Su p 5 6 7 8 9 10
S, - 3 3 4 4 5 5

Thus, optimal RK methods requiring less than | 3(p + 1)} processors cannot be found among
the methods of the form (2.5). Since (2.5) allows an extremely simple implementation and
provides automatically a sequence of embedded formulas which can be used for error estimation
(see Section 5) and order variation, we have not looked for methods requiring less than
|3(p + 1)] processors.

In order to illustrate the significance of Theorem 2, we make a comparison with explicit RK
methods devised for one-processor computers (sequential methods). In Table 1 the minimal
number of stages s, (and therefore the minimal number of right-hand side evaluations) needed
to generate such methods of order p are listed. In addition, we list the number of stages S for
which these RK methods have actually been constructed (cf. [5, Section 11.6]), and the numbers
of effective stages S, and processors S, needed by the optimal RK methods of Theorem 2.

Finally, we remark that if the RK corrector is based on quadrature (or collocation) methods,
then the initial approximation r® can be interpreted as the derivative f(¥?), where Y@ is an
approximation to y(t,e + hAe). Suppose that the components of ¥© are computed (in parallel)
by using an explicit (g — 1)-stage RK method of order ¢ — 1 with stepsizes hde. The resulting
PIRK method is still an explicit RK method itself and it is optimal if m = p — ¢ corrections are
performed.

3. Multistep predictor methods

Evidently, we can save computing time by using multistep predictor methods. As observed
above, such predictors should provide approximations to the derivative values f(y(t,e + hAe)) in
the case where the generating RK method { 4, b"} is derived from quadrature formulas. Any set
of linear multistep methods providing approximations to the components of y(t,e + hAe) serves
this purpose.

In this paper we briefly discuss the case of arbitrary RK correctors where we cannot give an
easy interpretation for the initial approximation 7. In such cases, it is possible to construct
multistep predictor methods by performing the auxiliary vector recursion

for=1(r.e+h8(E)E™**'f,), (3.1a)

where E denotes the forward shift operator, i.e., Ef, =f, . The predictor method is now simply
defined by

r®:=f .. (3.1b)
Here 8({) is a polynomial of degree k—1 whose coefficients are matrices of appropriate

30

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

dimension (cf. [7]). The method defined by (2.2) and (3.1) gives rise to a k-step PC method
requiring m + 1 right-hand side evaluations per step. For m =0, this method fits into the class of
methods investigated in [7].

By Taylor expansion of f,,, (or ¥®), conditions for the satisfaction of r,,; —f,., = O(h?)
can be derived in terms of 4 and 8(¢). For instance we have the following theorem.

Theorem 3. Let the corrector defined by { A, b"} be of order p, then the k-step PC method
foor=1(yse+ h8(E)EX'L,),
r%=f ., r”)=f(y,,e+hArU_”), j=1,...,m, (3.2)
Yus1 = Yo+ BT,
is of order p* == min{ p, ¢ + m}, where
q=2 if Ae—8(1)e=0.
g=3 if, in addition, A’e—8(1)e+k8(1)e—8'(1)e=0,
14% — 16%(1)e + k8(1)e—8'(1)e=0.
Example 4. The most simple example is the case where k =1 and §({) = 0, so that r®=f(y,e
and ¢ = 1. This case has been already considered in the preceding section. Next we choose k =1

and 8(¢) = A. It is readily verified that the order conditions for the predictor are satisfied for
g = 2. The algorithm (3.2) assumes the one-step form

fn+1 =f(yne+ hAfn)’
r®=f ., r(”=f(y,,e+hArU‘”), j=1,...,m, (3.3)
Va1 = Vo + HBTF.

If the RK corrector has order p, then by performing m = p — 2 corrections this method is also of
order p and requires p — 1 right-hand side evaluations per step. Formally, the method no longer
belongs to the class of one-step RK methods. However, in actual applications, the method is
self-starting if we take f,=f(),)e.
Finally, we choose k =2 and 8({) = 24§ — A which satisfy the order conditions for g = 3. The
algorithm (3.2) assumes the two-step form
foir=1(y.e + 2hAf, — hAf, 1),
r®=f.., r(j)=f(y"e+hAr(j_1)), j=1,...,m, (3.4)
Yn+1 =V o+ hbTr(M)'

If the RK corrector has order p, then by performing m = p — 3 corrections this method is also of
order p and requires p — 2 right-hand side evaluations per step.
4. Stability

We consider linear stability with respect to the test equation
y' (1) =Ay(). (4.1)

31

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge- Kutta method

It is easily verified that application of (2.5) yields the recursion

Vi1 =1+ zbTe + z*b"Ae + 2°b"A% + - - - +2"*bTA™e] y,, (4.2)
where we have written z = Ah. The stability polynomial is given by
P, (z2)=1+zb"e+z2b"Ae + z°b"A% + - - - +z"*b"Ae. (4.3)

In the particular case where we choose m = p — 1, p being the order of the corrector, we obtain a
stability polynomial of degree p. According to Theorem 1, this PIRK method is of order p so
that the stability polynomial is consistent of order p, i.e., it approximates exp(z) with pth-order
accuracy. Thus, we have proved the next theorem.

Theorem 5. Let the corrector be of order p. If m=p —1, then the method (2.5) becomes an
(explicit) RK method with the stability polynomial
1
P(z)=1+z+ %22+ %23+ s ot
Using a result on truncated Taylor series (cf. [6,p.236]), we have the next corollary as a
corollary of this theorem.

Corollary 6. The method of Theorem S is stable in the interval [, 0], where
Brea = 0.368 (p + 1)(19(p + 1))/ 7™, (4.4)

Defining [—1 Binag: 1 Bimag] t0 be the interval on the imaginary axis where the method of
Theorem 5 is stable, we list in Table 2 the values of B, (and its approximation provided by
(4.4)) and B for orders p=1, 2,...,10.

imag

5. Stepsize control

In this section we will describe a simple strategy to implement the aforementioned methods
with a variable stepsize in order to control the local truncation error. This strategy is the same as
the one employed by Hairer, Norsett and Wanner [5,p.167] in their code DOPRIS, in which they
have implemented the 13-stage, 8th-order explicit RK method with the embedded method of
order 7 of Prince and Dormand.

This strategy is based on the observation that when iterating the equation (2.1b) for r,,, we
obtain approximations r) of successively increasing order, i.e.,

r = =0(R™r ety =12, m.

Table 2
Brear and B, for the method of Theorem 5

p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10
True value of B, 2.00 2.00 2.52 2.78 3.22 3.55 3.95 431 4.70 5.07

Value according to (4.4) 1.83 217 253 2.90 3.28 3.65 4.03 441 4.78 5.16
True value of B, 0.00 0.00 1.73 2.82 0.00 0.00 1.76 3.39 0.00 0.00

32

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

Thus, apart from our final approximation y,.,= y, + hb'r'™, we can easily construct a
reference solution (cf. (2.3))

y“":=y,,+hbTr“‘), (5.1)

for some k <m. Since r® has already been computed, this does not require additional
right-hand side evaluations. This reference solution y® can be considered as an “embedded”
solution [5]. Now, as an estimate for the local error e in the step from 7, to ¢,,, =1, + h, we take

€:=”yn+l_y ’ (52)

for some norm || - ||. Usually, one uses reference solutions y® such that the orders of y,,, and
y* differ by 1. Here we follow this approach and choose k =m — 1.

First, we will discuss the case where we restrict our stepsize strategy to methods in which the
number of iterations m is fixed in each step and is given by m = p — q. Hence, r' —p ., and
rm=Y _p behave as O(h?) and O(h”~'), respectively, and, consequently,

€=y =" =3+ hb"r™ — y, — hb"r" V|| = O(h?).

(k)

Then € is compared with some prescribed tolerance TOL and the step is accepted if e < TOL,
and rejected otherwise. Furthermore, the value of € allows us to make an estimate for the
asymptotically optimal stepsize:
TOL \'/?
(o)

€

which will be taken in the next step (or to recompute the current step in case of rejection).
However, to give the code some robustness, we actually implemented (cf. [5,p.167])

1/p
hoew=h min{6, max{%, 0.9(TOL) }} (5.3)

€

The constants 6 and } in this expression serve to prevent an abrupt change in the stepsize and
the safety factor 0.9 is added to increase the probability that the next step will be accepted.

Apart from the variable stepsize implementation mentioned above, the PIRK methods allow
for a simple extension of the control strategy by which also the order of the method may vary
from step to step. This can be achieved by abandoning the approach of a fixed number of
iterations. Referring to the description above, we can construct a sequence of reference solutions,
i.e., after each iteration the “embedded” solution

y D=y + hbTP)

is computed. Then, we can use the difference of two successive reference solutions as an estimate
for the local error, i.e.,

€D =]y — yuD|.

If, during the iteration, the tolerance criterion ¢’ < TOL is satisfied for some j = j, <m, then
there is no need to proceed with the iteration process and we accept y"o as the numerical
solution y,,,. This suggests to try the next step with the value of m defined by m = jo. Since

€U0 =0O(h?"), p*=min{p+1,g+jo},

33

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

a prediction for the next stepsize can be made according to (5.3), where p is replaced by p* and
€ by E(Jo)

It may happen that the tolerance condition is not satisfied for j = j, < m. In such cases, the
values of m and h predicted in the preceding step were not reliable. One may then decide to
reject the current value of m and to continue the iteration process. This is particularly
recommendable if the value of the current p* is less than p. If the continuation of the iteration
process does not help to satisfy the tolerance condition ¢ < TOL for j < M, where M is some
prescribed upper bound for the number of iterations per step, then the (relatively costly)
alternative is rejection of the current value of A, to redefine & according to (5.3) using the most
recent information on the error, and to perform the present step once again. In this way a
variable order variable stepsize RK method can be constructed.

6. Numerical experiments

We present few examples illustrating the efficiency of PIRK methods on parallel computers.
The calculations are performed using 14-digits arithmetic. The methods tested were all applied in
P(EC)"E mode.

6.1. Comparison of various predictor methods

In order to examine the effect of various predictor methods on the efficiency of the PIRK
algorithm we performed a few tests by integrating the equation of motion for a rigid body
without external forces (cf. [8, Problem BS5)):

Y1 =Y2)3 »n0)=0
V1= ~N)s »(0)=1, (6.1)
»3=-051y3, »m0)=1, 0<t<T.

In these tests we used the 10th-order Gauss-Legendre corrector and the following predictor
methods:

Predictor I: ~ r@=f(y,)e (cf. (2.5)), g=1, p=min{m+ 1,10},
Predictor II: 7 defined by standard 4th-order RK, g=S5, p=min{m+35,10},
Predictor III: r@ =f(y,e + hAf,) (cf. (3.3)), g=2, p=min{m+2,10},
Predictor IV: r@ =f(y,e + 2hAf, — hAf,) (cf. (3.4)), ¢=3, p=min{m+3,10}.

In Table 3 we have listed the values D\ N, where D denotes the number of correct decimal
digits at the endpoint, i.e., we write the maximum norm of the error at r = T in the form 102,
and where N denotes the total number of effective right-hand side evaluations performed during
the integration process. Furthermore, we indicated the effective order p,, that is the order of
accuracy which is shown numerically.

Comparing experiments with equal N (notice that this table contains for each A and each
predictor an experiment with N = 180kh~") we conclude that in most experiments the 3rd-order

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge-Kutta method

Table 3
Values D\ N for problem (6.1) with T =20
h~! Predictor I Predictor 11 Predictor III Predictor IV

m=38 m=9 m=10 m=4 m=>5 m=6 m=7 m=8 m=9 m=1 m=8
1 56\180 6.5\200 6.9\220 5.3\180 7.0\200 6.8\220 4.8\160 5.5\180 7.5\200 4.6\160 5.7\180
2 8.0\360 9.7\400 9.8\440 7.8\360 10.2\400 9.7\440 7.2\320 8.5\360 9.6\400 7.2\320 8.8\360
4 10.6\720 13.0\800 12.3\880 10.5\720 13.3\800 12.2\880 9.7\640 11.6\720 12.1\800 10.4\640 12.4\720
Pur= 9 10 10 9 10 10 9 10 10 10 10

predictor IV and the 2nd-order predictor III yield the most accurate values. However, the price
we pay is more storage and a more complicated implementation because of the auxiliary
recursion for f,. The predictors I and II produce comparable accuracies. As the added storage
for the predictors III and IV is not offset by comparable reduction in the volume of computa-
tion, we recommend predictor I in actual computations. The resulting PIRK method is a true
one-step RK method of an extremely simple structure, and consequently allowing an easy and
straightforward implementation. A FORTRAN code based on this PIRK method can be found
in the Appendix to this paper.

6.2. Comparison with the 10th-order methods of Curtis and Hairer

Curtis [2] and Hairer [4] used the test problem (6.1) for testing and comparing their 10th-order
RK methods. In Table 4 the results of the experiments performed by Curtis and Hairer are
reproduced together with results obtained by the PC pairs consisting of the predictors I, IT and
111, and the 10th-order Gauss—Legendre corrector. Again we see that the simple predictor I can
compete favourable with the predictors II and IIL.

6.3. Comparison with the 8(7)-method of Prince and Dormand

The 8(7)-method of Prince and Dormand [13] is nowadays generally considered as one of the
most efficient methods with automatic stepsize control for TOL-values approximately in the

Table 4

Values D\ N for problem (6.1) with T =60

Method)4 60/h D N
Runge-Kutta 4 12000 9.6 48000
Adams-Moulton-Bashforth 4 6000 8.1 12000
Bulirsch—Stoer: polynomial extrapolation - - 8.9 5276
Bulirsch—Stoer: rational extrapolation - - 9.6 4860
Runge-Kutta—-Curtis 10 240 9.9 4320
Runge-Kutta—Hairer 10 240 10.1 4080
(2.2) with predictor I and m =9 10 156 10.0 1560
(2.2) with predictor I and m =10 10 150 10.0 1650
(2.2) with predictor Il and m =5 10 150 10.1 1500
(2.2) with predictor Il and m =6 10 156 10.1 1716
(2.2) with predictor IIl and m =8 10 210 10.0 1891

(2.2) with predictor IIl and m =9 10 168 10.0 1681

35

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

Table 5

Values of N for problem (6.2)

Method D=5 D=6 D=7 D=8 D=9 D=10 D=11
DOPRIS8 595 759 963 1227 1574 1990 2503
PIRKS 379 495 623 786 978 1383 1874
PIRK10 327 388 490 704 884 977 1078

range 1077 to 10 '3, In this subsection we compare the DOPRIS8 code, as given by [5], with the
PIRK method based on predictor I and the Gauss—Legendre correctors of orders 8 and 10. To
let the comparison of the DOPRI8 code and the PIRK codes not be influenced by a different
stepsize strategy, we equipped the PIRK codes with the same strategy (see Section 5). These
codes are respectively denoted by PIRK8 and PIRK10.

6.3.1. Fehlberg problem
As a first test problem we take an example from [3]:

¥ =20, log(max{3;,107)). y,(0) =1.

¥ =2y log(max{y,, 10_3}), »2(0) =e,
with exact solution y,(7) = exp(sin(z?)), y,(t) = exp(cos(t?)). For tolerances TOL running from
1073 up to 10~ '2 we computed the D and corresponding log,,(N) values. Instead of presenting
the polygon graph for these values as was done in [5], we preferred to present the D\ N lying on
this polygon for a number of integer values of D. In Table 5 these values are listed.

0<r<5, (6.2)

6.3.2. Euler equations
Next, we apply the codes to Euler’s equation for a rigid body (cf. (6.1)). The performance of
the code is presented in Table 6.

6.3.3. Orbit equations
Finally, we apply the codes to the orbit equations (cf. [8, Problem D2]):

Y=, n0)=1-¢
Y2 =Y »,(0) =0,
’ N
3= 3,2 y}(O) = Ov
2 2)3/2 5
(»2+y7) (6.3)
’) 1+e¢
)Q‘—‘ﬁ, y4(0)= 1_(,€=%, 0<1<20.
(»i+y?)
Table 6
Values of N for problem (6.1)
Method D=6 D=1 D=8 D=9 D=10 D=11 D=12
DOPRIS8 415 576 728 898 1133 1422 1817
PIRKS 294 381 534 728 961 1172 1746

PIRK10 252 297 357 426 580 730 920

36

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

Table 7

Values of N for problem (6.3)

Method D=5 D=6 D=7 D=8 D=9 D=10 D=11
DOPRI8 615 723 831 1062 1284 1780 2024
PIRKS 463 559 679 859 1099 1411 1876
PIRK10 378 448 540 662 784 911 1076

The performance of the codes is presented in Table 7.

An obvious conclusion which can be drawn, is that—at least for these three testexamples—both
PIRK codes are more efficient than DOPRIS; in the average, PIRKS requires 3 of the number of
f-evaluations that are needed by DOPRIS to yield the same accuracy, whereas PIRK10 is almost
twice as efficient. The superiority of PIRK10, especially in the high-accuracy range, is un-
doubtedly due to its higher order. Therefore, it would be interesting to compare this method with
an embedded (sequential) Runge-Kutta pair of comparable order. Unfortunately, to the best of
our knowledge, such formulae have not been constructed in the literature.

7. Conclusions

Iterated Runge-Kutta methods of arbitrarily high order have been constructed that are
capable of efficiently exploiting the parallelism of an MIMD computer architecture. Assuming
that sufficient processors are available, it is shown how to derive “optimal methods”, i.e.,
methods requiring a number of parallelised f-evaluations equal to the order. Within the class of
optimal methods considered, the required number of processors s is least with respect to the
order p if the algorithm is based on an iterated Gauss—Legendre RK method and this minimal
number is given by s = }p. It is known that optimal methods exist requiring a smaller number of
processors (an example is the Sth-order method of Butcher, mentioned in the Introduction), but
it is not clear how to formulate a general construction procedure to arrive at such methods for
arbitrary order.

A nice feature of the methods proposed is that they provide an embedded reference solution
without additional f-evaluations. This advantage has been utilized to make a variable step
implementation which has been compared with the code DOPRIS8, nowadays considered as * the
state of the art” for the automatic integration of ODEs. On the basis of some testexamples, the
performance of the new code is compared with DOPRI8 and, in terms of the required number of
f-evaluations, demonstrates a superior behaviour.

Another aspect is the simple implementation of the new algorithm. In the Appendix a
FORTRAN subroutine is provided which accepts a general RK method of arbitrary order,
defined in terms of its Butcher tableau. For example, if there is need for an automatic integration
routine of order higher than 8, as is furnished by DOPRIS, then we can suffice to specify, e.g., a
high-order Gauss method (the construction of which is simple and fully described in [1]) and call
this subroutine. Furthermore, for such accuracy demands, we remark that even in the case that
the parallel evaluation of the derivatives is not possible (e.g., on a uniprocessor machine) or not
relevant (e.g., because the evaluation of f is very inexpensive and offset by the overhead), this
code may still be of value. Since classical embedded RK pairs of such high orders are lacking, it

37

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge-Kutta method

may turn out that, even in the nonparallelised form, the present code is more efficient than
DOPRIS, in spite of its large redundancy with respect to the number of f-evaluations (cf. the
discussion following Theorem 1). It is easily verified that this approach can offer sequential
embedded RK methods of arbitrary order p, using ms +1=3(p?—p +2) stages. This aspect,
which is a direct consequence of the simplicity of the PIRK algorithm, needs further investi-
gation.

Appendix

Here we give the implementaticn (in FORTRAN 77) of the optimal PIRK methods of the
form (2.5), including error control. This subroutine offers the user the facility to specify an
arbitrary Runge-Kutta method by means of the matrix A4 and the vectors b7 and ¢ (see also the
description of these parameters).

Although this routine has been coded in standard FORTRAN 77, it will require machine-de-
pendent amendment as to exploit the parallelism. Therefore we shall discuss in some detail the
most important loop in this subroutine, i.e., the 80-loop. It is here, that the parallel calculation of
the components of the iterate r/) is to be performed (cf. (2.2)). A first observation is that this
loop contains a call to another subprogram (viz. FCN). The separate compilation of subprograms
prevents the compiler from actually parallelising this loop, since it is unknown what happens
within FCN. Nevertheless, if the present source is offered to a compiler without giving any
instructions, the outcome (i.e., the “optimized” object code) will be the product of all kinds of
operations, like unravelling, interchanging, distributing loops etc., and will certainly speedup the
execution. However, the parallelisation will probably not completely fit in with the ideas as
advocated in the present paper. Therefore, we have to insert an explicit specification concerning
the way the compiler had to do its job; for example, we can specify that it is in this case without
any danger to parallelise over the FCN-calls. Most parallel computers offer so-called ““directives”
for this purpose (e.g., using an Alliant, one can specify: cvd$ cncall). Since these directives may
differ for the various parallel machines, we decided to code this loop in standard FORTRAN.

Another observation is that the 80-loop contains two nested innerloops: one over the
components of the ODE and one to form the innerproduct of a row of A and the iterate vector
r~D_If the parallel machine at hand has an architecture in which each processor is a
vectorprocessor, then it may be advantageous to interchange these innerloops. Such consider-
ations depend on the dimension of the ODE, the startup time of the particular VeCctorprocessor,
the “smartness” of the compiler, etc.

To sum up, in order to obtain an optimal performance, the user of the subroutine PIRK is
advised to adjust the 80-loop to the specific situation he is dealing with, like the number of
processors available (perhaps even larger than s), the dimensions of the problems to be solved,
etc.

SUBROUTINE PIRK(N, NR, FCN, T, Y, TEND, TOL, H, S, P,
+ NRA, A, B, C, YN, FN, RJ, RJM1, BIGY, YREF)

PIRK SOLVES AN INITIAL VALUE PROBLEM FOR A SYSTEM OF FIRST-ORDER
DIFFERENTIAL EQUATIONS OF THE FORM Y' (T)=F(T,Y(T)).

THE ROUTINE IS BASED ON AN ITERATED RUNGE-KUTTA METHOD AND
DESIGNED IN SUCH A WAY THAT PARALLELISM IS EXPLOITED.

IN COUNTING THE NUMBER OF REQUIRED F-EVALUATIONS, IT IS ASSUMED
THAT THE NUMBER OF STAGES IN THE RUNGE-KUTTA METHOD DOES NOT

[eXeNeNeReRe Kol

38

00000Oﬂ{')()00OO00O00OOO00()OOOOOOOG0000000000000000000000000()00000 [eKe K2 K2!

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

EXCEED THE NUMBER OF PROCESSORS AVAILABLE.

MEANING

OF THE PARAMETERS:

N Bt

NR -

FCN =

TEND -

TOL =

NRA -

aOwy
|

YN -

FN =

RJM1 -

BIGY -

YREF -

INTEGER VARIABLE
THE DIMENSION OF THE SYSTEM
INTEGER VARIABLE
FIRST DIMENSION OF THE ARRAYS RJ, RJM1 AND BIGY AS
DECLARED IN THE CALLING PROGRAM (NR .GE. N)
SUBROUTINE
A USER-DEFINED SUBROUTINE COMPUTING THE DERIVATIVE
F(T,Y(T))
ITS SPECIFICATION READS:

SUBROUTINE FCN(N,T,Y,F)

DIMENSION Y (N),F(N)

ON RETURN, F(I) (I=1,...,N) MUST CONTAIN THE VALUE OF
THE I-TH COMPONENT OF THE DERIVATIVE VECTOR
FCN MUST BE DECLARED EXTERNAL IN THE CALLING PROGRAM
REAL VARIABLE
THE INDEPENDENT VARIABLE; ON ENTRY, T SHOULD BE SET
TO THE INITIAL VALUE. ON RETURN, T CONTAINS THE VALUE
FOR WHICH Y IS THE SOLUTION
REAL ARRAY OF DIMENSION (AT LEAST) N
THE DEPENDENT VARIABLE. ON ENTRY, Y SHOULD CONTAIN THE
INITIAL VALUES OF THE DEPENDENT VARIABLES.
ON RETURN, Y CONTAINS THE NUMERICAL SOLUTION AT T
REAL VARIABLE
TEND SPECIFIES THE END POINT OF THE RANGE OF INTEGRATION
REAL VARIABLE
TOL (>0) SPECIFIES A BOUND FOR THE LOCAL TRUNCATION
ERROR
REAL VARIABLE
ON ENTRY, H SHOULD BE GIVEN A VALUE WHICH IS USED AS A
GUESS FOR THE INITIAL STEP SIZE
INTEGER VARIABLE
NUMBER OF STAGES OF THE SPECIFIED RUNGE-KUTTA METHOD
INTEGER VARIABLE
ORDER OF ACCURACY OF THE SPECIFIED RUNGE-KUTTA METHOD
INTEGER VARIABLE
FIRST DIMENSION OF THE ARRAY A AS DECLARED IN THE
CALLING PROGRAM (NRA .GE. S)
REAL ARRAY OF DIMENSION (NRA,L) WITH L .GE. S
REAL ARRAY OF DIMENSION (AT LEAST) S
REAL ARRAY OF DIMENSION (AT LEAST) S

THE PARAMETERS A, B AND C DEFINE THE RUNGE-KUTTA METHOD,

WRITTEN IN THE SO-CALLED BUTCHER-NOTATION (USUALLY, THE

ELEMENTS OF C ARE EQUAL TO THE ROW-SUMS OF THE MATRIX A)

IN PRINCIPLE, ANY RUNGE-KUTTA METHOD CAN BE USED.

HOWEVER, THE OPTIMAL ORDER WITH RESPECT TO THE NUMBER OF

STAGES IS OBTAINED IF A 'GAUSS-LEGENDRE' METHOD IS

SELECTED. THE CORRESPONDING A, B AND C CAN BE FOUND IN:

J.C. BUTCHER, IMPLICIT RUNGE-KUTTA PROCESSES, MATH.COMP.
18, (1964) PP. 50-64

REAL ARRAY OF DIMENSION (AT LEAST) N

USED AS SCRATCH ARRAY

REAL ARRAY OF DIMENSION (AT LEAST) N

USED AS SCRATCH ARRAY .

REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S

USED AS SCRATCH ARRAY

REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S

USED AS SCRATCH ARRAY

REAL ARRAY OF DIMENSION (NR,L) WITH L .GE. S

USED AS SCRATCH ARRAY

REAL ARRAY OF DIMENSION (AT LEAST) N

USED AS SCRATCH ARRAY

[sEeNeXeEeNe e Xel

P.J. van der Houwen, B.P. Sommeijer / Parallel Runge—Kutta method

DIMENSION Y (N),YN(N),FN(N), YREF (N),RJ(NR, *) ,RIM1 (NR, *),
+ BIGY (NR, *) ,A(NRA, *) ,B(*),C(*)

INTEGER S,P

LOGICAL REJECT

THE COMMON BLOCK STAT CAN BE USED FOR STATISTICS CONCERNING THE
INTEGRATION PROCESS
NFCN NUMBER OF EVALUATIONS OF THE DERIVATIVE FUNCTION F
NSTEPS NUMBER OF INTEGRATION STEPS
NACCPT NUMBER OF ACCEPTED STEPS
NREJCT NUMBER OF REJECTED STEPS

[sNeNe el

[eNeXe]

[sEeReKeKel

ano

[eXe N2

COMMON/STAT/NFCN, NSTEPS, NACCPT, NREJCT

SMALLEST NUMBER SATISFYING 1.0 + UROUND > 1.0
UROUND MAY REQUIRE AMENDMENT ON DIFFERENT MACHINES

DATA UROUND/7.1E-15/

REJECT=.FALSE.

NFCN=0

NSTEPS=0

NACCPT=0

NREJCT=0
TOL=AMAX1 (TOL, 10 . 0*UROUND)

ON ITERATING THE RUNGE-KUTTA METHOD, WE USE A PREDICTION
OF FIRST-ORDER. THEREFORE, WE NEED M=P-1 ITERATIONS TO
OBTAIN A RESULT OF ORDER P.

M=P-1

INTEGRATION STEP

10 CONTINUE
IF(H .LT. 10.0*UROUND)THEN
WRITE(6,1)T

1 FORMAT (' THE ROUTINE HAS ADVANCED THE SOLUTION UP TO T=',
+ E16.8,/,' AND STOPPED BECAUSE THE STEP SIZE HAS',
+ ' BECOME TOO SMALL'/' TRY A LESS STRINGENT VALUE',
+ ' OF TOL OR CHANGE TO A HIGHER-ORDER METHOD')
RETURN
ENDIF

IF (TEND-T .LT. UROUND)RETURN
IF(T+H .GT. TEND)H=TEND-T

FORM THE PREDICTION

DO 20 1I=1,N
20 YN (I)=Y(I)

CALL FCN(N,T, YN,FN)
NFCN=NFCN+1
30 NSTEPS=NSTEPS+1
DO 50 L=1,S
DO 40 I=1,N
40 RJIM1 (I, L)=FN(I)
50 CONTINUE

IN THE 110-LOOP, THE ITERATION IS PERFORMED

DO 110 J=1,M

o000 o000

IN THE 80-LOOP, THE S STAGES ARE PERFORMED CONCURRENTLY

DO 80 L=1,S
DO 70 I=1,N

39

40

P.J. van der H. , B.P. S ijer / Parallel Runge—Kutta method

BIGY (I, L)=YN(I)
DO 60 K=1,S
60 BIGY (I, L)=BIGY(I,L)+H*A(L,K)*RJMI (I,K)
70 CONTINUE
CALL FCN (N, T+C (L) *H,BIGY(1,L) ,RJ(1,L))
80 CONTINUE
NFCN=NFCN+1
c
C SHIFT THE ITERATES
c
IF (J.LT.M) THEN
DO 100 L=1,S
DO 90 I=1,N
90 RJM1 (I,L)=RJ(I,L)
100 CONTINUE
ENDIF
110 CONTINUE
c
C CALCULATE THE FINAL SOLUTION OF THIS STEP
C AND A REFERENCE SOLUTION FOR ERROR CONTROL
c
DO 130 I=1,N
Y (I)=YN(I)
YREF (I)=YN(I)
DO 120 K=1,S
Y(I)=Y(I)+H*B(K)*RJ(I,K)
120 YREF (I) =YREF (I) +H*B (K) *RJM1 (I,K)
130 CONTINUE
G i
C ERROR CONTROL
C ________________
ERROR=0.0
DO 140 I=1,N
DENOM=AMAX1 (1.0E-6, ABS(Y(I)), ABS(YN(I)), 2.0*UROUND/TOL)
140 ERROR=ERROR+ ((Y (I)-YREF (I))/DENOM) **2
ERROR=SQRT (ERROR/N)
FAC=AMAX1 (1.0/6.0,AMIN1 (3.0, (ERROR/TOL) ** (1.0/P)/0.9))
HWEW=H/FAC
IF (ERROR.GT . TOL) THEN
c
C STEP IS REJECTED
c ___________________
IF (NACCPT.GE.1) NREJCT=NREJCT+1
REJECT=.TRUE.
H=HNEW
GOTO 30
ELSE
c
C STEP IS ACCEPTED
c
NACCPT=NACCPT+1
T=T+H
IF (REJECT) THEN
HNEW=AMIN1 (HNEW, H)
REJECT=.FALSE.
ENDIF
H=HNEW
GOTO 10
ENDIF
END
References

[1] J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964) 50-64.

[2] A.R. Curtis, High-order explicit Runge-Kutta formulae, their uses, and limitations, J. Inst. Math. Appl. 16 (1975)

35-55.

41

P.J. van der H , B.P. S ijer / Parallel Runge—Kutta method

v

[3] E. Fehlberg, Classical fifth-, sixth-, seventh-, and eighth-order Runge-Kutta formulas with s* psize control,
NASA Technical Report 287, 1968; extract published in Computing 4 (1969) 93-106.

[4] E. Hairer, A Runge-Kutta method of order 10, J. Inst. Math. Appl. 21 (1978) 47-59.

[5] E. Hairer, S.P. Nersett and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems (Springer,
Berlin, 1987).

[6] P.J. van der Houwen, Construction of Integration Formulas for Initial Value Problems (North-Holland, Amster-
dam, 1977).

[7] P.J. van der Houwen, B.P. Sommeijer and P.A. van Mourik, Note on explicit parallel multistep Runge-Kutta
methods, J. Comput. Appl. Math. 27 (3) (1989) 411-420.

[8] T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing numerical methods for ordinary differential
equations, SIAM J. Numer. Anal. 9 (1972) 603-637.

[9] A. Iserles and S.P. Nersett, On the theory of parallel Runge-Kutta methods, Report DAMTP 1988/NA12,
University of Cambridge, 1988.

[10] K. Jackson and S.P. Nersett, Parallel Runge-Kutta methods, 1988; to appear.

[11] 1. Lie, Some aspects of parallel Runge-Kutta methods, Report No. 3/87, University of Trondheim, Division
Numerical Mathematics, 1988.

[12] S.P. Nersett and H.H. Simonsen, Aspects of parallel Runge-Kutta methods, in: A. Bellen, Ed., Workshop on
Numerical Methods for Ordinary Differential Equations, L’Aquila, 1987, Lecture Notes in Mathematics (Springer,
Berlin, 1989).

[13] P.J. Prince and J.R. Dormand, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math. 7 (1981)
67-175.

CHAPTER I

Block Runge-Kutta methods on parallel computers

to appear in: Z. Angew. Math. Mech. 72 (1) (1992), 3-18

43

Block Runge-Kutta methods on
parallel computers

P.J. van der Houwen and B.P. Sommeijer

CWI: Centre for Mathematics and Computer Science
Post box 4079, 1009 AB Amsterdam, The Netherlands

In this paper block methods for solving ODEs on parallel computers are
constructed. Most block methods found in the literature produce
approximations to the exact solution at equidistant points. Here, we allow
that the approximations correspond to nonequidistant points like the
intermediate approximations computed in Runge-Kutta methods. This
approach enables us to improve the order of accuracy. We concentrate on
explicit methods such that they are suitable for use on parallel computers.

1980 Mathematics Subject Classification: 65M10, 65M20

1982 CR Categories: G.1.7

Key Words and Phrases: numerical analysis, stability, block Runge-Kutta
methods, parallelism.

1. INTRODUCTION
Block methods turned out to be efficient methods for solving the initial value
problem for the system of ordinary differential equations (ODEs)

%@#(y(1))

on parallel computers (cf. e.g. Worland [11] and Chu & Hamilton [3]). Most block
methods occurring in the literature can be interpreted as block linear multistep methods
(BLM methods), that is, they are derived from the linear multistep (LM) method

P(E)Yn = hot(E) f(yn),

in which yy is replaced by an m-dimensional vector Y :=(Ynm:Ynm+1s - Ynmem—1)T
and where the (scalar) coefficients of the polynomials p and o are replaced by matrices.
Thus, in BLM methods the components of the block vector ¥, represent approximations
to the exact solution at equidistant points.

In this paper, we consider block methods where the components of the block vector
represent approximations to the exact solution at not necessarily equidistant points. In
this way, we obtain additional parameters for increasing the order of accuracy of the

44

method. In the derivation of these methods it turns out to be convenient to start with a
Runge-Kutta (RK) method, and, by analogy with BLM methods, to replace the y-values
generated by the method by vectors the components of which represent approximations to
the exact solution. If these vectors are k-dimensional, then the RK parameters are replaced
by k-by-k matrices. We shall call these methods block Runge-Kutta methods (BRK
methods).

In Section 2, we give a precise definition of BRK methods and we give examples of
methods from the literature which can be written as BRK methods. The representation in
BRK form provides a unifying way of describing all sorts of methods (including BLM
methods) and is particularly convenient for describing block methods for use on parallel
computers. In Section 3 the order conditions for explicit one-stage methods and implicit
two-stage methods are given, and Section 4 is devoted to the construction of these BRK
methods with k=2, 3, 4, We shall particularly be interested in explicit methods. For
explicit methods with given k we tried to maximize the order and to minimize the
number of processors without increasing the number of sequential right-hand side
evaluations per step (we shall call this minimal number of processors the optimal
number of processors). It is possible to derive explicit one-stage methods of order 2k-1,
using not more than 2 processors. However, if the requirement of zero-stability is
imposed (which is crucial if the method is to be used as a method on its own), then the
order reduces to k+1. We also derive zero-stable, explicit two-stage methods of order 2k
for two-processor computers. In Section 5, the various methods are compared for a few
test problems from the literature.

It turned out that, like for all block methods, stability is a critical aspect of BRK
methods. In this paper, we did not concentrate on stability aspects. Only when free
parameters were available which could not be used for increasing the order, we have
employed them to increase the stability of the method. A more systematic construction of
BRK methods with large stability regions is the subject of a forthcoming paper [10].

2. BLOCK RUNGE-KUTTA METHODS
Let us start with the conventional s-stage RK method
(i) : (j)
l 3
yn+l=yn+hzbijf(y'{+l)’ l=1)---’s+l;
j=1
2.1)

s+1
Yn+1 =}’£,+1), n=0,1, ...

45

The general structure of the block Runge-Kutta (BRK) methods considered in this
paper is a direct generalization of this conventional method. We introduce block vectors
Y, the components of which are numerical approximations to the exact solution values
at k points. To be more precise, let Y, be defined by

Ynil = Onep Yncyr s)’n,ck)T’ k=1,

where y, . denotes a numerical approximation to the exact solution value y(t,+ch). For
scalar ODEs, we now define the s-stage block RK (BRK) method

S
Y cA¥,+h Y BAYY)), i=1, ., 541

n+l n+1/?
j=1

(2.1)
(s+1)

Yne1=Yp, 1%

n=01, ..,

where A; and B;; are k-by-k matrices and where we use the convention that for any given
vector v = (vj), f(v) denotes the vector with entries f(vj). This method can be considered as
the block analogue of (2.1). It is straightforwardly extended to systems of ODEs and
therefore also to nonautonomous equations. In order to start the method, one needs the
initial vector Y, which requires as many starting values as there are distinct values c;
(=1,...,k).

In analogy with the Butcher array for describing the RK methods (2.1), i.e., the
(s+1)-by-(s+1) array

bir . . . bis
bs'l . . . bs,s
bs+l,1 . . . bs+1,s

we may describe the BRK methods (2.1') by the k(s+1)-by-k(s+1) array

A1 By, . . . Bjig
Ag Bg1 . s . Bgg
Assl Bs+1,1 . . . Bs+l,s

46

This notation is particularly convenient when more than two stages are involved. It
frequently happens that the two last rows of this array are identical. In such cases, we
shall omit the last row in order to save space.

We call the method explicit if the matrices Bjj vanish for j2i, and implicit
otherwise. In this paper, we are mainly interested in explicit methods. For explicit
methods, the & components of the blocks f{¥™ ;) can be computed in parallel; hence if k
processors are available, then (explicit) BRK methods require not more than s (sequential)
right-hand side evaluations per step. However, the required number of processors is often
less than &, without causing the number of (sequential) right-hand side evaluations per
step to exceed s. For instance, it may happen that in the formula for a particular
component of ¥,,1 no right-hand side evaluations occur, that is, all rows in the matrices
Bjj corresponding to this component vanish. In such cases, the processor assigned to this
component is not needed. Similarly, if the rth column of all matrices B,'j vanishes, then
the computation of the corresponding component of Y51 does not require any right-hand
side evaluation not already occurring in the formulas for the other components, so that
there is no need to assign a processor to this component. We define the optimal number
of processors as the number of processors for which the number of (sequential) right-hand
side evaluations per step is minimal. In the explicit case, the representation (2.1') is very
convenient for implementing the method on a computer, because the actual code is a
direct translation of the formula (2.1') and the instructions for the computer in order to
exploit the built-in parallelism of the method are obvious.

The points t, and ty+cjh (j#k) will respectively be called step points and block
points. Block points coincide with step points if the corresponding value of ¢;j is an
integer. Upon completion of the integration process, the accuracy of the numerical
solution obtained does not necessarily be the same at all points ,+cjh. Points where the
corresponding components of Y,,1 do have the same order as the components
corresponding to the step points ¢, will be called output points.

The general explicit one- and two-stage methods are respectively given by

Al 0
N i.e., Yn+1 = A2Yn + thlf(AlYn),
Az | By
and
Aq o 0
Ay | Bp1 O
, i.e-, Yn+l = A3Yn + hB31f(A1Yn)

A3 | B3 B3 + hB32f(A2Y n + hB21f(A1Y 1)).

Here, O denotes the k-by-k matrix with zero entries.

47

As a numerical example of an (explicit) 3-stage method, we present the modified
multistep method of Butcher [1] of order 5 as a BRK method: the block point vector is
given by ¢ = (0,1)T and the Butcher array assumes the form:

1 0 3/8 9/8

0 1 0 0
-23/5 28/5 |-26/15 0O 32/15 -4
0 1 0 0 0 0
; c=(0,1)T.
0 1 0 0 0 0 0 0

-1/3132/31 | -1/93 12/93 64/93 0 15/93 0

The construction of higher-order BRK methods is rather difficult in the general case.
In this paper, we shall construct high-order methods of a special form which are obtained
by using the predictor-corrector (PC) technique. Our starting point is the special implicit
two-stage method

I o 0 I 10 O

A B C A | B C
(2'2) = ’

A B C

ie, Yny1 =AY, +hBf(Y,) + hCf(Yn41).

If C does not vanish, then we can use this method as corrector and if C=0, then it can be
used as (a one-stage) predictor formula, e.g.,

'y i.e., Yn+1 = AYn + th(Yn).

From this pair we can generate higher-stage BRK methods by PC iteration provided that
the block point vectors ¢:=(c1,...,cx)T are identical. For example, in PECE mode we
obtain the special two-stage BRK method

48

1 | o o
p | E o

2.3) . ie, Ypu1 =AYy +hBf(Yn) + hCf(DYy + hEf(Yy)).
A | B C

Finally, it should be remarked that (2.2) is also the representation of the so-called
general linear methods introduced by Butcher in 1966 (see Butcher [2]). Most methods
from the literature (including the general BRK method (2.1")) can be cast into the form
(2.2). However, although the original method is explicit, the general linear method
version is often implicit. For example, the explicit two-stage BRK method (2.3) can be
rewritten in the form (2.2) by redefining the matrices A, B and C in (2.2), but C will not
be a zero matrix. Thus, for implementation of higher-stage BRK methods on parallel
computers, the representation (2.2) is less suitable.

In the following subsections, we present in BRK form a number of methods which
have been proposed for use on parallel computers. In particular, we give examples of the
predictor-corrector methods of Miranker and Liniger [8] and Shampine and Watts (cf.
Worland [11]), and the multi-block methods of Chu and Hamilton [3]. A discussion of

block methods for parallel computation may be found in Gear [5].

2.1. Methods of Miranker and Liniger
The methods of Miranker and Liniger [8] can be presented as explicit, one-stage
BRK methods. For example, their second-order method can be represented by the array

1 0
0 1

(2.4) , c=(2,1T,
0 12 o
0 1 |1/2 172

and their fourth-order method by

49

10 00
01 00
00 10
00 01
2.5) , ¢=(-1,0,2,1)T,
01 00]J]0 o0 O 0
00 010 o0 o0 0
0 0 01 |-13 4/3 8/3 -5/3
0 0 0 1 |1/24 -5/249/24 19/24

Both methods require only two processors and respectively two and four starting values
when implemented in BRK form.

2.2. Predictor-Corrector method of Shampine and Watts
The PC method of Shampine and Watts [9] is based on the block method of
Clippinger and Dimsdale (1958), which can be presented in the form (2.2) as

0 1 0 5724 1/3 -1/24

0 1 0 1/6 2/3 1/6
(2.6) ; c=(1/2,1)7T,

and on the predictor method defined by

1 0 0 0O
01 0 0O
0 0 1 0
0 0 0 1
(2.7) , ¢ =(-1/2,0,1/2,1)T.
00 1. 0f0 0o o0 o
00 0 110 0o o0 o
0 13 1/3 13| 0 1/4 -1/3 13/12
0 1/31/3 1/3| 0 29/24 -3 79,24

50

Method (2.6) is one of the oldest block methods proposed in the literature. Shampine and
Watts proved that this corrector method is fourth-order accurate at the step points. They
also proved that the predictor method is third-order accurate and possesses favourable
stability properties. This predictor can also be applied as a method on its own and requires
four starting values and one processor.

In order to apply the PC pair (2.7)-(2.6) using the BRK format, we rewrite the
corrector in the form

1 000
0100
0 010
0 00 1
0 010 0 000 ©O0O0O0O O
0 0 0 1 0 000 ©O0O0O O
0 0 0 1 0 0 05/24 0 0 1/3-1/24
0 0 0 1 0 0 01/6 0 02/3 1/6
2.6") , ¢ =(-1/2,0, 172, DT.

The PC method of Shampine and Watts was implemented by Worland [11] on two
Processors.

2.3. Multi-block methods of Chu and Hamilton

Chu and Hamilton [3] generalized the cyclic linear multistep methods of Donelson
and Hansen [4]. Families of third- and fourth-order multi-block methods were derived. We
give two examples of their k=2 methods which can be represented in the form (2.2) or
(2.2". The first example is the explicit third-order method

1 0
0 1

(2.8) , c=(172,1T,
5 -4l 1 2
28271 6 9

and the second example is the fourth-order implicit method

51

0 1 |-1/4813/48 13/48 —1/48

o 1] o 16 23 1/6
29 . e=R

2.4. Parallel MRK methods

An example of methods which can be written in the form (2.3), and which do not
originate from PECE methods, is the family of first-order, explicit parallel MRK
methods (cf. van der Houwen et al. [6])

1 0 0 0 0 o
0 0 1 0 0 0
0 1-a, @ 0 0 0
(2.10) . ¢=(0,c, T,
0 0 1 0 0 0
b3
0 0 1 0 S——
(1-ay)
0 0 1 [|i-c-b, b c

where a1, b1, b3 and c are free parameters. Third-order accuracy is obtained by setting

W=

5 .1 S
+6Ci2 1+ by =35 - cay, b3——6c,

5,

B =

ay =

with ¢ as a free parameter. These methods require three starting values and only one
sequential right-hand side evaluation on two processors. Notice that (2.10) is of the
general explicit one-stage form in which the matrix A1 has not been replaced by the
identity matrix as was the case in (2.2").

3. ORDER CONDITIONS

In this section, we restrict our considerations to parameter arrays of the form (2.2)
either with C=0 or C#0. Let the exact solution be substituted into (2.2). Then, in
general, the order conditions are derived by requiring that the residual vector is of order
hP+1 for all components (that is, we require that all components of ¥, are pth-order

52

approximations to the corresponding exact solution values). In this way, we obtain the
following condition for pth-order consistency:

(I - zC) exp(zc) — (A + zB) exp(zc — ze) = O(P*),

e:=(1,1,..,)T, c¢:=(c1,625e COT.
By defining the error vectors

Co:=Ae—e; Ci:=A(c-e)+Be+Ce—c;
(3.1a)

Cj:=Alc—e) +jB(c— eyl +CdN-d, j=2,3,..,
the conditions for pth-order consistency take the form
(3.1b) Cj=0, j=0,1,..,p.

Here, powers of vectors are meant to be componentwise powers.

In the construction of high-order formulas it is convenient to specify the matrix A
in (2.2) in advance, because the eigenvalues of A should lie in a zero-stable configuration,
that is, they should be on the unit disk, those on the unit circle being simple (such a
zero-stability condition is difficult to satisfy simultaneously with the order conditions
unless k is sufficiently small). A natural choice for the matrix A is suggested by
observing that

tntcih
Yni1 - yne = ([founar) .
tn

Replacing the integral term by a quadrature formula, we obtain a method where A is of
the form

0..01
3.2) A:=(. wva s)
0..01

This matrix has one eigenvalue 1 and k—1 zero eigenvalues, so that a reasonable stability
region may be expected (cf. the analogous situation for linear multistep methods of
Adams type). BRK methods possessing a matrix A of the form (3.2) will be called
Adams-type methods.

Assuming that A is given and is such that Ae=e, the most simple way to derive
high-order formulas is to specify the vector ¢. This leaves us with a linear system of p

53

equations for each component formula of the corrector formula. However, in this
approach, the free parameters in the vector ¢ are not exploited. These free parameters may
be used for minimizing the error vector Cp,]. For instance, we may add to the order
conditions (3.1) the condition that ¢ is such that || Cp+1 || is minimal for some norm || ||.
Alternatively, one may sacrifice the linearity of the order conditions and choose ¢ such
that certain components of the error vector vanish, that is, it is not necessary that all
components of Y, 1 are pth-order approximations.

To be more general, we denote the order of consistency of the formula for yy,¢; by
pi and define the set J, := { i€ {1,2, .., k}| p;=¢}. Now, we introduce the following

property:

Property3.1. (i) JpuJp-1={1,2, ...k},
(ii) for each i€ Jp, the matrix A has vanishing elements a;; for all je Jp-1.

If this property is satisfied, then the method (2.2) produces pth-order results at the points
tp+cih, n=1,2,... and all ie Jp. One may interpret this as a form of superconvergence.

As an example, in the Adams-type BRK methods with matrix A of the form (3.2),
the first k—1 components of Y, only occur in the right-hand side as argument of the
function f, so that these components are allowed to be of one order less than the order of
Yn, Without decreasing the order of the approximations at the points ¢,,.

We recall that from an explicit and implicit BRK method with identical block point
vector ¢:=(c1,...,ck)T, we can derive higher-stage BRK methods by PC iteration. By
requiring that the explicit method (predictor) and the implicit method (corrector) provide
approximations to y(tn+c;jh), respectively of orders ¢ and p, for all j, we obtain after r
iterations a method which provides approximations of order p*=min{p, g+r}. Since the
predictor need not to be stable, one can employ the full freedom of the generating
matrices, so that ¢ is usually sufficiently large to get the maximal attainable order p of
the corrector in just one correction (PECE mode). If not, then one may decide to continue

the iteration.

4. CONSTRUCTION OF BRK METHODS

Since the implementational complexity of the BRK method is mainly determined by
the number of starting values and the associated storage needed to implement the method,
we shall distinguish the various methods by their number of starting values. The methods
constructed in the following subsections will be compared with methods from the

literature.

54

4.1. Methods requiring two starting values
In this subsection we consider methods where the block vector Y, is defined by

Yni1 = Onyes Yn+D)T

At first sight, it would be natural to choose c=1/2. However, as we shall see, a more
judicious choice is possible.

4.1.1. Explicit one-stage methods. We shall construct the family of second-order BRK
methods of Adams type and the general family of third-order methods.

Second-order methods of Adams type. The conditions (3.1) with C=0 and A defined by
(3.2) can be satisfied for p=2 and yield

1 0
0 1
“4.1) , c=(@, DT, c#1,
0 1 = e
2(1-c) 2(1-c)
_— =1 3-2c
2(1-) 2(1-c)

with error vector

3
@ oni(ed)

The following special cases of (4.1) will be tested in the numerical experiments at the end
of this section:

c=0 (4.1) reduces to the Adams-Bashforth method C3 = (0.0, -2.5)T
c=1/2 ‘natural choice’ C3 = (-03, -1.8)T
c=5/3 Local error at t,4] is O(h%) C3 = (-19, 0.0)T
c=2 (4.1) reduces to Miranker-Liniger method (2.4) C3 = (-2.0, +0.5)T
¢ = 1+4183 1C3ll,, minimized C3 = (-14, +1.4)7T
c=3 Local error at t,+ch is O(h%) C3 = (0.0, +2.0)T

We observe that the case c=5/3 will raise the order to 3 at all step points t,, in spite of
the second-order accuracy of yp ¢, because of the special form of the matrix A (cf.
Property 3.1).

55

Third-order methods. Next we construct the family of one-stage BRK methods in which
all components are at least of third order. We find the method

1 0
0 1
(4.3) , e=(@DT, c=#l,
c2(3-c) 1-3c c2 [
(1-c)3 (1-¢)3 (1-cy¢ (1-¢)?
5-3c —c3+3c%2-4 2-¢ (2-¢)?
(1-c)? (1-c)® (1-c)? (1-c)

with error vector

co-f ¢
4" (— (2—c>2) '

This method is zero-stable for all values of ¢ for which the eigenvalues of A are on the
unit disk and are not both equal to 1. Since A has the eigenvalues 1 and (c2-2¢-5)/(c-1)2,
we obtain the condition

c2-2¢-5
(c-1?

-1<1<1, A=

This leads to the necessary condition

@44 c<1-V3, c>21+V3.

The parasitic eigenvalue A vanishes for c=1+ V6. Unfortunately, the value ¢=2 which
makes y,,1 fourth-order accurate is not in the range (4.4). If c=1/2, then the method
reduces to the method (2.8) of Chu and Hamilton.

A number of experiments were carried out in order to illustrate the effect of ¢ on the
accuracy of the methods (4.1) and (4.3). We chose the nonlinear initial value problem

4.5) y'(t) = sin(y5) - sin(sin5(t)) + cos(1), ¥(0) =0, 0<t<l,

with exact solution y(f)=sin(¢).

In the following table the results are given. The absolute error obtained at the end
point of the integration interval is written in the form 10~ and the values of d are given
in the table (d may be interpreted as the number of correct decimal digits). Each column

contains results which required the same number of sequential right-hand sides. In these

56

and subsequent experiments, the starting values incorporated in the initial vector Y are

taken from the exact solution.

Table 4.1. Correct decimal digits at t=1 for problem (4.5) obtained

by BRK methods with k=2 and s=1.

Sequential right-hand sides 6 12 24 48 96 arder
Adams-Bashforth method 18 24 30 36 42 n
Miranker-Liniger method (2.4) 2.7 3.2 3.7 4.3 4.9 2
BRK method (4.1): c=1/2 20 25 31 37 44 2
BRK method (4.1): c=1+41/3 21 27 33 39 45 2
BRK method (4.1): c=3 1.9 25 31 37 43 2
BRK method (4.1): c=5/3 31 40 50 59 68 3
BRK method (4.3): c=1+V6 31 40 49 58 67 3
BRK method (4.3): c=1-V 6 33 41 49 58 67 3

These results show the theoretical order of accuracy. It is clear that the choice c=1/2
is not the best possible. Furthermore, the value c=1+4173 (minimal-norm-value) does not
improve the accuracy, so that we refrain from considering this special case in the
subsequent sections. Notice that the method (4.1) with ¢=5/3 produces results which are
comparable with the results of the method (4.3) with c=1 £ V6.

4.1.2. Implicit two-stage methods of Adams-type. The conditions (3.1) with

nonvanishing matrix C can be satisfied for p=4 by

1 0
0 1
8 g -c3 c(c?-6¢+6) c(c2-6¢+6) -3
12(1-c) 12(1-c) 12(1-¢) 12(1-c)
5 1 (1-2¢c) -6¢2+10c-3 3-2¢ 6c2-14c+7
12(1-c)(2~c) 12¢(1-c) 12¢(1-c) 12(1-¢)(2-c)
(4.6) ,

withe = (¢, DT, ¢#0,1,2.
The corresponding error vector is given by

1 (c3(c2— 5¢+5))

Cs=_ =~
o 6 \ 5¢2-10c+4

57

The following special cases of (4.6) will be considered:

1 : . ; A1 8 n1
c=3 (4.6) is equivalent with the corrector (2.9) Cs = (- 192° " 192)

c=1-=—2 Local error at 1,1 is 0(h6) Cs= (— %—2_, 0)T

4.1.3. Predictor-corrector methods. In order to ‘solve’ the corrector equation defined by
(4.6) one may use a PC method with predictor defined by (4.3). The PC methods
determined by the matrices (4.3)-(4.6) require two starting values and, in PECE mode,
they all have at least order 4. For c=1-vV5/5, we achieve order S in PE(CE)2 mode. We
remark that for the predictor formula, the value of c is not required to satisfy the
inequalities (4.4).

We illustrate the performance of the PC method (4.3)-(4.6) by comparing it with the
2-step Adams PC method (notice that the BRK method (4.3)-(4.6) with c=1/2 is
equivalent with the Chu-Hamilton pair (2.8)-(2.9)). In the Tables 4.2, the correct decimal
digits at =1 and the total numbers of sequential right-hand side evaluations are listed for
the various methods in PECE mode and in PE(CE)2 mode.

Table 4.2a. Correct decimal digits at #=1 for problem (4.5) obtained
by BRK methods in PECE mode with k=2.

Sequential right-hand sides 6 12 24 48 96 order
Two-step Adams-PC method 21 3.1 4.1 5.0 59 3
Chu-Hamilton pair (2.8)-(2.9) 43 54 6.5 7.6 8.7 4

BRK method (4.3)-(4.6): c=1-V5/5 4.8 54 6.5 7.6 8.8 4

Table 4.2b. Correct decimal digits at t=1 for problem (4.5) obtained
by BRK methods in PE(CE)2 mode with k=2.

Sequential right-hand sides 6 12 24 48 96 order
Two-step Adams-PC method 1.8 3.1 42 5.1 6.0 3
Chu-Hamilton pair (2.8)-(2.9) 3.9 5.7 9.3 8.4 9.5 4

BRK method (4.3)-(4.6): c=1—5/5 3.9 5.5 7.0 85 100 S

58

4.2. Methods requiring three starting values
The block vector Y, is now defined by

Yn+1 = (}’n,cl, yn,821 }’n+1)T-

providing us with two free parameters. As before, equidistant output points need not to be
the best choice. Because of the rapidly increasing complexity of the derivations if more
than 2 starting values are used, we shall not consider the general case as in the preceding
section, but we shall restrict our considerations to a few special cases.

4.2.1. Explicit one-stage methods. We consider Adams-type methods and a more general
family of zero-stable methods.

Third-order methods of Adams type. If C=0, then the following array satisfies the order
conditions (3.1) for p=3 and for all (distinct) values of c1 and c different from 1:

1 0 O
0 1 0
0 0 1
“.7 s
0 0 1 a;—(ca-1)by (c-1)by ¢y —ay+(c—cpby
0 0 1 as — (Cz—l)bz (Cr—l)bz Cyp—das + (Cz—Cl)b2
2 9 1 az—(cp-1)bs (c;-Db3 c3— a3+ (ca—c1)b3

where ¢ = (c1, ¢2, 1)T and

e pane ci2(2ci-3c1+3)
2c1-1) " ' 6(c1-1)(c2-1(cz-c1)

a;: i=1,2,3.

We restrict our considerations to the two-processor case, that is, we set c1=0. By
virtue of the special form of A we obtain order p=4 at the step points if the third formula
has order 4 while the first and second formula have order 3. Setting the third error
component equal to zero we find ¢2=17/10.

59

Fourth-order methods. Let us consider methods of the form

1 0 O
0 1 O
0 0 1
4.8) , c=(,c,1T.
0 1 0O 0 O
ay ap ap | by by by
@ a3y az3 | bayy b3y bag

Solving the conditions (3.1) for p=4 with ¢=1/2 we obtain

, ¢ =(0,1/2,1)T,

1 0 O

0 1 0

0 0

0 0 1 0 0 0
9a 9 1+a (-10-a)/6 (-22-4a)/6 (8-a)/6
-b 64 -63+b | (-9-b)/6 (108-4b)/6 (99-b)/6

where a and b are free parameters. We could have used these parameters for increasing the
order of accuracy to p=5. However, then the method turns out to be zero-unstable.
Therefore, we shall employ them for improving the stability of the method. In particular,
we choose a and b such that the parasitic roots of the characteristic equation of A vanish.
This characteristic equation is given by

(6-1) (62 + (55 -b)8+9b— 64a — 576) =0,

so that we are led to the values a=—81/64 and b=55. The corresponding Butcher array

s ¢ = (0, 172,)T,

becomes
1 0 0
0 1 0
0 0 1
(4.9)
0 0 1 0 0 0
-495/64 9 -17/64 |-559/384 -271/96 593/384
-55 64 -8 -32/3 -56/3 22/3

60

The following table illustrates the performance of the above explicit, one-stage

methods.
Table 4.3. Correct decimal digits at t=1 for problem (4.5) obtained
by BRK methods with k=3 and s=1.
Sequential right-hand sides 6 12 24 48 96 arder
Adams-Bashforth 3.2 3.9 4.8 5.6 6.5 3
BRK method (4.7): (c1,¢2) = (0,1/2) 34 42 5.1 6.0 6.9 3
BRK method (4.7): (c1,¢2) = (0,17/10) 4.1 5.3 6.5 7.7 8.9 4
BRK method (4.9) 4.0 5.1 6.4 7.6 8.8 4

4.2.2. Implicit two-stage methods. We assume the generating array in the form

1 0 O

0 1 0

0 0

0 0 1 0 0 0 0 0

@y ayp ax | by by byy 0 cpp o3
@y ap ay3 | by by b3z 0 3 o3

(4.10)

c=(0,c, 1T

and we derive a fifth-order method of Adams type and a sixth-order method with increased

stability interval which is not of Adams type.

Adams-type method of order 5. We choose ¢=1/2 and A of the form (3.2), and find that

the order conditions (3.1) can be satisfied for p=5 by

1 0 0
0 1 0
0 0 1
0 0 1 0 0 0
0 0 1 |11/1440 -37/720 19/60
0 0 1| -1/180 1/45 2/15
(4.11)

0
0

0

0

0

173/720 —-19/1440

31/45

29/180

with ¢ = (0, 172, DT.

61

4.2.3. Predictor-corrector methods. We consider two PC methods which are in PECE
mode of orders 5 and 6, respectively.

Method of order 5. The fourth-order predictor (4.9) and the fifth-order corrector (4.11)
determine a PC method of order p=5. It requires three starting values and, if two
processors are available, then only two sequential right-hand side evaluations per step are
needed.

Method of order 6. Next we consider PC methods where the predictor and corrector are
generated by matrices of the form (4.8) and (4.10), and where c is still a free parameter.
We try to construct a PC method which is of order 6 in PECE mode by choosing the free
parameters such that the corrector formula for y,, 1 becomes of order p=6, whereas the
other corrector formula and the two predictor formulas have order p=5.

To that purpose, we have investigated methods where

0 0 1
A= 00 1
a 0 l-a

(notice that A does not refer to the second component of the block vector so that the
corrector formula corresponding to this component may be of one order less than that of
the third component). This leads to a one-parameter family of sixth-order PECE methods
which can be represented in the form (2.3), i.e.,

Yni1 =AYy, + hBf(Y) + hCA(DY , + hEf(Yy)).

The free parameter will be used to improve the (linear) stability of the method. The
(linear) stability of this two-stage BRK method can be investigated by applying the
method to the test equation y’=Ay to obtain the recursion

Yni1=R(2) Y, R(z):=A+z(B +CD)+2z2CE, z:=Ah,

and by requiring that the matrix R satisfies the simple Von Neumann stability condition,
that is, it has its eigenvalues on the unit disk those on the unit circle being simple.
Choosing c as the free parameter, we start with determining a range of relevant c-values
by requiring that R(0) satisfies the stability condition (zero-stability). Since the
eigenvalues of R(0)=A are given by 0, 1 and —a, we require —1<—a <1. It can be shown
that imposing the conditions for sixth-order accuracy on the corrector formula for Yn+l
leads to

62

15¢2-31c +13
15¢2+¢-3

so that ¢ should be not less that 1/2 in order to ensure zero-stability. As before, we shall
not consider the maximization of the general stability boundary. Instead we consider the
simpler case of maximizing the real stability boundary. A numerical search reveals that
the real stability boundary is maximized for ¢ =4.16 and is approximately given by 2.247.
In order to obtain (simple) rational expressions for the entries of the various matrices, we
do not choose this ‘optimal’ value of ¢, but we set ¢ =4 yielding the stability boundary
1.766.

The predictor is generated by the matrices

1 0 0
0 1 0
0 0 1
(4.12) : ¢=(0,41"
0 0 1 0 0 0
27 225 35 | 25 100
2 54 27 9 9
305 6 | L L16
2 54 27 2 18 9
and the corrector by
1 0 0
0 1 0
0 0 1
0 1 0 0 0 0 0 0
§ ; 416 2 58 88
75 45 45 225 45
129 12 1141 =47 2110 o 26 896
41 241 7230 4338 2169 10845 2169
(4.13) ,

with ¢ = (0,4, 1)T.

63

The following table is the k=3 analogue of the preceding tables:

Table 4.4. Correct decimal digits at /=1 for problem (4.5) obtained
by BRK methods in PECE mode with k=3.

Sequential right-hand sides 6 12 24 48 96 order
Three-step Adams-PC method 3.6 4.5 9 6.9 8.1 4
BRK method (4.9)-(4.11) 45 6.0 1.5 9.0 105 5
BRK method (4.12)-(4.13) 50 69 89 109 13.0 6

4.3. Predictor-Corrector method requiring four starting values
We have searched for two-processor predictors in the class of methods of the form

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
s ¢c=(-1,0,c,1)T.
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
ay ap an ay | by by by by
Gy Qg G Oy by bsy by by

For a given value of ¢ we can achieve order 7 by solving two linear systems of 8
equations each in 8 unknowns.

The corrector was chosen such that

1 0
0 1
0 o0
0 O
0 1
0o o0
a3 ap
Gy Gy

0 0

0 0

1 0

0 1

0 0

0 1

0 1l-az—ayp
0 l-as-ayp

0 0
0 0
by b3y
by bsy

0
0
b33
by

0
0
by,
bu

© O© O ©o

0 O 0
0 0 0
0 c3 c3
0 ¢35 cau

with ¢ = (-1,0,¢c, 1)T.

By this choice we achieve that the order conditions (3.1) simplify considerably. Given the
value of c, this method can be made order 8 accurate in each component equation, again

by solving two linear systems of 8 equations in 8 unknowns. These four systems of 8

equations have been solved numerically in terms of the parameter ¢ and for a range of c-
values we computed the real stability boundary Brea] of the PECE mode. We found that
Breal was maximal for ¢ =2.58 (Brea] = 0.358). In order to obtain a method with (simple)
rational parameter values we chose c = 5/2 resulting in Brea] = 0.302. The corresponding

predictor is generated by
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(4.14)
0 1 0 0 0 o0 0 0
0 0 0 1 0 0 0 0
5975 1539 537 2793 | 225 567 2205
224 20 35 32 32 8 32
82 117 63232 2 3 18 128
343 125 128625 3 49 25 T 1225

and the corresponding corrector by

, ¢=(-1,0,52,)T,

65

1 o O
A B C
(4.15) ’
where
0 1 0 0
0 0 0 1
1
=g 53731383 3653263 3673827 |,
30469 51O 57 0 - =
4549 331039 0 -3379
0 0 0 0
0 0 0 0
_ 1 33.54.73 36.52.7.17.67 35.52.73 35.5.73.13
30469 29 510 23 23 :
23029 33-13:1709 283231 3261337
37 57 57 5
0 0 0 0
0 0 0 0
1 32.5.7.809 33537337
C=35269| 0 0 53 1 y
291
0 57 14369

and ¢ = (-1,0, 52, 1)T. Table 4.5 compares this method in PECE mode with the four-step
Adams and four-step Shampine-Watts method.

Table 4.5. Correct decimal digits at t=1 for problem (4.5) obtained
by BRK methods in PECE mode with k=4.

Sequential right-hand sides 6 12 24 48 96 order

Four-step Adams-PC method 33 4.8 6.4 79 95 5
Shampine-Watts pair (2.7)-(2.6") 3.6 4.8 6.0 7.2 8.4
BRK pair (4.14)-(4.15) 73 102 128 8

66

5. SUMMARY OF METHODS AND NUMERICAL EXAMPLES
The explicit, zero-stable methods and the PC combinations discussed in the

preceding sections will be applied to a number of initial value problems. In addition, we

give the results obtained by the classical Adams formulas. First, however, we summarize

the main characteristics of the various methods.

5.1. Summary of methods

Below we have listed a few important features such as the block point vector ¢, the

order p, and the number of processors Popt needed to implement the method with only

one right-hand side evaluation per step.

Table 5.1a. Survey of explicit one-stage BRK methods of the form (2.2°).

Reference cr Popt P Remarks
Miranker-Liniger [8] 2,1) 2 2 See (2.4)
(-1,0,2,1) 2 4 See (2.5
Shampine-Watts [9] (-1/2,0,1/2,1) 1 3 See (2.7)
Chu-Hamilton [3] (1/2,1) 2 3 See (2.8)
This paper (c,1) 2 3 See (4.1) with c¢=5/3
(1) 2 3 See (4.3)
(c1,c2,1) 2 3 See (4.7)
(€1,¢2,1) 2 4 See (4.7) with (c1,¢2) = (0,17/10)
0,1/2,1) 2 4 See (4.9)
0,4,1) 2 5 See (4.12)
(-1,0,5/2,1) 2 7 See (4.14)

Table 5.1b. Survey of implicit BRK methods of the form (2.2).

Reference e’ Popt p Remarks
Clippinger-Dimsdale (1/2,1) 2 4 See (2.6)
Chu-Hamilton [3] (1/2,1) 2 4 See (2.9)
This paper 1) 2 5 See (4.6) with c=1-Y5/5
(0,1/2,1) 2 5 See (4.11)
0,4,1) 2 6 See (4.13)
(-1,0,5/2,1) 2 8 See (4.15)

67

Table 5.1c. Survey of PC pairs in PE(CE)” mode.

Predictor Corrector & p r
2.7 2.6) (-1/2,0,1/2,1) 4 1
(2.8) 2.9 (1/2,1) 4 1
(4.3): c=1-V5/5 (4.6) with c=1—‘]§/5 (c,1) 5 2
4.9 4.11) 0,1/2,1) S 1
4.12) (4.13) (0,4,1) 6 1
4.14) (4.15) (-1,0,5/2,1) 8 1

5.2. Nonlinear problem with rapidly increasing solution
The first test problem is the nonlinear problem

G y()=—y3+23010+ 2, y0)=0, 0<r<1,

with exact solution y(t)=t10_ In Table 5.2 the results are listed. Since the number of
sequential right-hand side evaluations per step varies from 1 to 3 for the various methods,
we adapted the stepsize as to obtain that each column of this table contains results with
an equal number of sequential right-hand side evaluations over the whole integration
interval.

A first observation is that most parallel methods behave more efficient than the
corresponding one-processor Adams methods, showing that already on two-processor
machines parallelism can be exploited. Furthermore, these results clearly demonstrate the
superiority of the high-order methods, especially the 6th- and the 8th-order BRK methods.
It should be remarked that these two methods produce unstable results (indicated by an ‘*’
in Table 5.2) for large stepsizes, in spite of their large real stability boundary. The reason
is that these methods employ a block point t,+ch, with ¢ much larger than 1, viz. c=4
and c=5/2, respectively. Since the modulus of df/dy, which determines the maximally
allowed stepsize, is a rapidly increasing function of ¢ (at the solution, |gf/dyl behaves as
3-120), it is clear that an evaluation of f beyond the endpoint t=1 may easily cause
instabilities.

68

Table 5.2. Correct decimal digits at #=1 for problem (5.1).

Sequential right-hand sides 6 12 24 48 96 order
Two-step Adams-Bashforth method 0.3 08 13 1.9 25 2
Miranker-Liniger method (2.4) 0.6 1.2 19 25 3.1 2
BRK method (4.1): ¢=5/3 26 24 3.1 3.9 48 3
BRK method (4.3): c=1-V6 05 12 20 29 38 3
Two-step Adams pair: PECE 02 09 17 25 34 3
Chu-Hamilton pair (4.3)-(4.6): PECE, c=1/2 1.1 19 30 42 55 4
BRK pair (4.3)-(4.6): PE(CE)2, c=1-V5/5 20 29 41 57 74 5
Three-step Adams-Bashforth method 0.5 1.1 1.9 27 36 3
Method (4.7): (c1,¢2) = (0,17/10) 20 26 37 48 60 4
Three-step Adams pair: PECE 0.3 1.1 21 33 45 4
BRK pair (4.9)-(4.11): PECE 12 22 36 51 67 5
BRK pair (4.12)-(4.13): PECE ¥ * 1.5 53 7.4 6
Four-step Adams-Bashforth method 06 14 25 3.6 48 4
Miranker-Liniger method (2.5) 1.1 23 35 47 59 4
Four-step Adams pair: PECE 1.3 26 40 55 70 5
Shampine-Watts pair (2.7)-(2.6'): PECE 1.1 1.8 29 41 53 4
BRK pair (4.14)-(4.15): PECE * 13 56 90 116 8

69

5.3. Orbit equation
The second problem was taken from the test set of Hull et al. [7]:

»n'=ys, y10)=1-¢, €=03

y2'=ya, ¥20)=0
(5.2

3= 012+»2H32, »0)=0

1+ ¢
ya' =-y2 012 + y22)73/2, nO=\1—"
Table 5.3. Correct decimal digits at /=20 for problem (5.2).

Sequential right-hand sides 240 480 960 1920 3840 order
Two-step Adams-Bashforth method 0.3 07 12 1.7 23 2
Miranker-Liniger method (2.4) 0.5 21 21 25 31 2
BRK method (4.1): ¢=5/3 0.3 12 21 30 39 3
BRK method (4.3): c=1-V6 03 12 21 30 39 3
Two-step Adams pair: PECE -0.1 06 14 23 32 3
Chu-Hamilton pair (4.3)-(4.6): PECE, c=1/2 -1.5 01 37 52 6.5 4
BRK pair (4.3)-4.6): PECCE)2, c=1-V5/5 14 32 48 64 19 5
Three-step Adams-Bashforth method 0.1 10 19 28 37 3
Method (4.7): (c1,¢2) = (0,17/10) 1.9 35 44 55 6.7 4
Three-step Adams pair: PECE 04 1.8 34 S50 62 4
BRK pair (4.9)-(4.11): PECE 1.3 28 44 59 174 5
BRK pair (4.12)-(4.13): PECE 33 49 6.8 8.6 9.6 6
Four-step Adams-Bashforth method 14 23 34 46 58 4
Miranker-Liniger method (2.5) 2.0 44 48 58 69 4
Four-step Adams pair: PECE 0.8 20 35 50 65 5
Shampine-Watts pair (2.7)-(2.6"): PECE 1.1 29 4.1 5.1 62 4
BRK pair (4.14)-(4.15): PECE 39 68 9.0 8

For this example, which describes a system of ODEs, the errors are measured in the
maximum norm. Since most methods nicely show their asymptotic order behaviour, the
high-order BRK methods are again superior to the low-order ones. Hence, the conclusion
can be drawn that the introduction of non-equally spaced block points tn+cjh favourably
influences the performance of the BRK methods.

70

5.4. Euler's equation of motion
The third problem is Euler's equation of motion (cf. Hull et al. [7]):

y1'=y2y3, y1(0)=0
(5.3) ¥2'=-y1y3 »20)=1
y3'=-0.51y1y2, y3(0) = 1.

Table 5.4. Correct decimal digits at 1=20 for problem (5.3).

Sequential right-hand sides 120 240 480 960 1920 order
Two-step Adams-Bashforth method 1.2 1.9 2.5 31 3.7 2
Miranker-Liniger method (2.4) 1.6 24 3.1 38 44 2
BRK method (4.1): ¢=5/3 1.7 26 35 44 53 3
BRK method (4.3): c=1-V6 16 26 35 44 53 3
Two-step Adams pair: PECE 1.2 20 29 38 47 3
Chu-Hamilton pair (4.3)-(4.6): PECE, c=1/2 * 33 4.7 60 73 4
BRK pair (4.3)-(4.6): PE(CE)?, c=l—\[§/5 25 39 5:5 70 85 5
Three-step Adams-Bashforth method 1.5 24 33 42 51 3
Method (4.7): (c1,¢2) = (0,17/10) 28 4.1 54 66 79 4
Three-step Adams pair: PECE 14 27 4.0 53 65 4
BRK pair (4.9)-(4.11): PECE 27 4.1 5.6 71 86 5
BRK pair (4.12)-(4.13): PECE 32 5.1 6.9 87 107 6
Four-step Adams-Bashforth method 33 3.8 48 60 7.1 4
Miranker-Liniger method (2.5) 31 5.0 6.3 72 83 4
Four-step Adams pair: PECE 2.5 34 48 62 17 5
Shampine-Watts pair (2.7)-(2.6"): PECE 19 33 4.6 59 172 4
BRK pair (4.14)-(4.15): PECE 29 74 9.8 8

This table gives rise to the same conclusions as formulated at the previous test
problems.

To sum up, these examples clearly show that, even when only 2 processors are
used, a substantial gain in efficiency can be obtained when compared with sequential
(uniprocessor) methods. This especially holds for the high-order BRK methods.

71

REFERENCES

(1

(2]

[3]

(4]

(51

(6]

7N

[8]

91

Butcher, J.C. (1965): A modified multistep method for the numerical integration of
ordinary differential equations,J. ACM 12, 124-135.

Butcher, J.C. (1987): The numerical analysis of ordinary differential equations,
Runge-Kutta and general linear methods, Wiley, New York.

Chu, M.T. & Hamilton, H. (1987): Parallel solution of ODE’s by multi-block
methods, SIAM J. Sci. Stat. Comput. 8, 342-353.

Donelson, J. & Hansen, E. (1971): Cyclic composite multistep predictor-corrector
methods, SIAM J. Numer. Anal. 8, 137-157.

Gear, C.W. (1988): Parallel methods for ordinary differential equations, Calcolo 28,
1-20.

Houwen, P.J. van der, Sommeijer, B.P. & Mourik, P.A. van (1989): Note on
explicit parallel multistep Runge-Kutta methods, J. Comput. Appl. Math. 27, 411-
420.

Hull, T.E., Enright, W.H. , Fellen, B.M. & Sedgwick, A.E. (1972): Comparing
numerical methods for ordinary differential equations, SIAM J. Numer. Anal. 9,
603-637.

Miranker, W.L. & Liniger, W. (1967): Parallel methods for the numerical
integration of ordinary differential equations, Math. Comp. 21, 303-320.
Shampine, L.F. & Watts, H.A. (1969): Block implicit one-step methods, Math.
Comp. 23, 731-740.

[10] Sommeijer, B.P. (1992): Stability boundaries of block Runge-Kutta methods, in

preparation.

[11] Worland, P.B. (1976): Parallel methods for the numerical solution of ordinary

differential equations, IEEE Trans. Comput. C-25, 1045-1048.

PArT II

Parallel numerical methods for stiff ODEs

CHAPTER III

A-stable parallel block methods for
ordinary and integro-differential equations

to appear in: Appl. Numer. Math. 9 (1992)

75

A-stable parallel block methods for ordinary
and integro-differential equations

B.P. Sommeijer, W. Couzy and P.J. van der Houwen

Centre for Mathematics and Computer Science
Post box 4079, 1009 AB Amsterdam, The Netherlands

In this paper we study the stability of a class of block methods which
are suitable for integrating ordinary and integro-diffential equations on
parallel computers. A-stable methods of orders 3 and 4 and A(w)-stable
methods with a>89.9° of order 5 are constructed. On multiprocessor
computers these methods are of the same computational complexity as
implicit linear multistep methods on one-processor computers.

1. INTRODUCTION
Many algorithms for numerically solving initial value problems for ordinary
differential equations (ODEs):

ay o gym), v =0

or Volterra integro-differential equations (VIDEs):

t
2 sy, [kexymax), v =0

to

are based on implicit linear multistep methods (LM methods), in particular on Backward
Differentiation methods (BDF methods). The main reason for their popularity is the
relatively low computational effort per step, at least when compared with other suitable
methods for stiff equations, such as implicit Runge-Kutta methods. However, the BDFs
have one serious disadvantage: they are subject to the so-called ‘second Dahlquist barrier’,
which says that the order cannot exceed two if the method has to be A-stable. Thus the
higher-order BDFs lack the property of A-stability. This means that if a high-order
formula is selected (dictated by accuracy considerations), then it may happen that — for
certain types of stiff ODEs or VIDEs — the algorithm encounters stability problems
which usually results in a dramatical degradation of the performance. To circumvent this
behaviour it is highly desirable to have A-stable methods of high order without increasing
the computational effort per step.

76

It is our aim to construct such methods. They are most easily formulated as so-called
block methods. Block methods can be considered as a set of simultaneously applied linear
multistep methods to obtain several numerical approximations within one application.
Numerous block methods have been proposed in the literature including high-order A-
stable ones (see e.g. Watts & Shampine [16]). However, these implicit methods require in
each application an amount of work which by far exceeds the computational effort required
by a BDF. In recent papers (cf. e.g. Chu & Hamilton [3]), block methods have been given
which solve the huge implicit relations on a parallel computer which indeed significantly
reduces the computational costs. However, all these techniques follow the approach of
predictor-corrector iteration, which in fact restricts their application to nonstiff problems.

Like Chu and Hamilton, we will employ parallelism to obtain the aforementioned
goals. We shall construct A-stable methods of orders three and four, and A(a)-stable
methods of order five with a= /2. Furthermore, by carefully segmenting the total work
per step into a few subtasks of approximately equal computational length, these methods
require an amount of work which is very similar to what a BDF requires when
implemented on a uni-processor machine. In Section 5.3 we will see that a high degree of
parallelization is obtained. Since the implicit relations are solved by a Newton-type
process (as is the case in BDF implementations) rather than in a predictor-corrector
fashion, the property of A-stability is preserved.

In Sections 2 and 3, we present the construction of block methods for ODEs, in
Section 4, block methods for VIDEs employing these block ODE solvers are discussed,
and in Section 5, numerical experiments are reported. The way of construction is based on
extremely simple tools: firstly, certain order-conditions are imposed such that a number of
parameters are left free, and secondly, a numerical search over the free parameters is carried
out to give the method the optimal stability characteristics. So far, we did not succeed in
developing more sophisticated search techniques by analytical means.

2. PARALLEL BLOCK METHODS FOR ODES
In order to simplify the formulas, we present the derivations of the block methods for
scalar, autonomous ODEs. The extension of these methods to systems of ODEs, and
therefore also to nonautonomous equations, is straightforward.
The block methods studied in this paper are a direct generalization of the implicit one-
step method

(2'1) y’l+1 =a}'n+hbf(}'n)+hdf(}’n+l)s n=0, 11 eee y

where 4 is the stepsize and y, an approximation to y(t,). By introducing block vectors

77
(2'2) Yn+1 = (.Yn.l, see s }’n,k)T» c:=(Cly > Ck)Tv ck=1,

where yj, ; denotes a numerical approximation to the exact solution value y(t,+c;h), and
assuming that (1.1) is a scalar equation, we can define the block method

2.3) Ypni1 =AY, + hBf(Yy) + hDf(Y 1),

where A, B and D are k-by-k matrices. Here we use the convention that for any given
vector v = (vj), f(v) denotes the vector with entries f{v;). This method can be considered as
the block analogue of (2.1). A characteristic of these methods is that, unlike conventional
block methods based on linear multistep methods, the block point vector ¢ is allowed to
have k—1 noninteger components. In order to start the method, one needs the initial vector
Yo, which requires, in general, as many starting values as there are distinct values c;
(j=1,...,k). Notice that the last component of Y, contains the step point value yp,].
Furthermore, we remark that, in general, y,,; # ym,j, even if n+c; = m+c;.

The method (2.3) is suitable for direct use on parallel computers if the matrix D is
diagonal, since such a form uncouples the various components as far as implicitness is
concerned; the corresponding methods will be called parallel block methods. Using k
processors, each processor has to evaluate a component of f(Y,) and to solve a system of
equations whose dimension is that of the system of ODEs (1.1). If Newton's method is
used for solving the system of equations, then each processor needs the Jacobian matrix
I —hdjj of/dy and its LU-decomposition. Either the various processors have to compute
themselves the data they need, or one may consider the use of additional processors for
computing the Jacobian matrices and their LU-decompositions. Let us consider the second
strategy. As soon as the additional processors have completed an update of the matrix
df/dy and computed the LU-decompositions of the k matrices /- h djj gfl dy, then the first k
processors can replace their data by the new data. However, usually the computational job
of computing Jacobian matrices and LU-decompositions is so substantial that the speed of
updating may not be great enough. In such cases, the use of matrices D with equal
diagonal elements is recommendable, because then the Jacobian matrices / — h djj f/ dy are
all identical, so that only one instead of k decompositions are required. Therefore, methods
where D is of the form d'/, I being the identity matrix, have some advantage.

If D is a full matrix, then the block method is not directly suitable for use on parallel
computers. However, (2.3) allows the application of an iteration process that has a high

degree of parallelism. This iteration method is of the one-level form

[1-nc @gyi]y(ju) _ hEf¥+1)) =
AY, + hBf(Yn) - h ci‘(;yﬂm’) +h[D - E] f(Y(1)),

78

where C and E are suitable iteration matrices. There are several possibilities for choosing
these matrices in order to achieve parallelism and to preserve stability. We mention:

(i) C diagonal and E=O (linear diagonal iteration),
(ii) C=0 and E diagonal (nonlinear diagonal iteration), and
(iii) C=D, E=0 combined with diagonalization of C (diagonalized Newton).

A survey of properties of diagonal iteration in the case where (2.3) corresponds to Runge-
Kutta methods can be found in [10]. The diagonalized Newton process was proposed by
Lubich [12]. In passing we remark, that one might also consider higher-level iteration
methods. For example, the ‘pipeline’ iteration proposed by Feldstein [5] fits into the
family of three-level iteration methods.

In a forthcoming paper, we will study the above iteration process if the matrix D in
(2.3) is a full matrix. In the present paper, we assume that D is diagonal.

The conditions for pth-order consistency for methods of the form (2.3) are extremely

simple and read (cf. [9])

(2.4)
Co:=Ae—e¢; Cy:=A(c—e)+Be+De-c;
Cj:=A(c—ey +j[Bc—eyl + D] -d, j=2,3, ..,

where e denotes the vector with unit entries and where powers of vectors are meant to be
componentwise pOwers.

In order to compare the components of these vectors with the error constants
corresponding to conventional linear multistep methods, we introduce the normalized error
vectors [8]

C;

(2.5) Ej:= j_!EB—-i_E)T ,

where the division of vectors is meant component wise. When a linear k-step method is
written in the form (2.3) with ¢ = (=k+2,..., —2,-1, 0, 1)T, then the last component of E;
equals the normalized error constant of the linear k-step method. Since these block
methods are in fact a composition of k conventional linear multistep methods, the theory
developed for the latter class of methods (see Henrici [8] or Hairer, Ngrsett & Wanner [7]),
is to a large extent also applicable in the case of block methods. In particular, this theory
can be used to determine the order of convergence of the block methods, that is the
behaviour of ¥p41 = Y(tne1)s With ¥(tns1):=((tn+c1h), (tn+c2h),..y(tn+h))T, for
h— 0 and t,,=tg+nh fixed (see also the paper by Cooper [4]).

79

3. STABILITY
The (linear) stability of block methods can be investigated by applying the method to
the test equation y'= Ay. This leads to a recursion of the form

@3.1) Ypi1=M(2)Y,, M(z):=[-zD1"[A+2B), z:=A4h.

M will be called the amplification matrix and its eigenvalues the amplification factors.
Here we observe that, by requiring the elements of the diagonal matrix D to be positive,
the matrix 7 —zD is nonsingular for all z on the negative real axis. Therefore, in the sequel
we will assume that the (diagonal) elements of D are positive.

In our stability analysis we shall use the following result on the power of a matrix N
(cf., Varga [15, p. 65]):

(3.2 N7l = O(nd-1[p(N)]"*) as n—> oo,

where |l - Il and p(N) are the spectral norm and radius of N and where all diagonal
submatrices of the Jordan normal form of N which have spectral radius p(N) are at most
g-by-q. If p(N)< 1 or p(N)=g=1, then N is said to be power bounded.

Following the familiar stability definitions used for RK and LM methods, we shall
call the region where the amplification matrix M(z) is power bounded, the stability region
of the block method. If the stability region contains the origin, then the method is called
zero-stable. The region where lIM”Il tends to zero will be called the strong stability
region. If the (strong) stability region of a block method contains the left half plane, then
the block method is called (strongly) A-stable; furthermore, if the amplification matrix of
an A-stable method has vanishing eigenvalues at infinity, then the method is called L-
stable.

For some methods (i.e., the BDF methods) a less demanding definition of stability is
more appropriate. Therefore the notion of A(o)-stability has been introduced The angle &
defines a wedge in the left half plane and the method is stable if z lies inside this wedge.
This is, however, a rather crude way to describe the stability region, since for the higher-
order BDF methods the part of the left half plane which is not included in the stability
region is a small lobe near the imaginary axis. To provide more detailed information on
the stability region, we introduce two additional parameters leading to the notion of
A(a, B, 7)-stability:

80

Definition 3.1. A method is said to be A(a, B, 7)-stable if (i) its region of stability
contains the infinite wedge {z: — @< nw—arg(z) < a}, 0< a< /2, and all points in the
nonpositive halfplane with 1zI> B, and (ii) 1+y is the maximum value of the spectral
radius of M(z) when z runs through the region of instability lying in the nonpositive
halfplane. (1

Note that A(7/2,0,0)-stability implies A-stability. The degree of instability of the
method is measured by 7.

If we set A=D =1 and B =0 in (2.3), then the method reduces to a set of k£ completely
uncoupled one-step methods of the Backward Euler type, each advancing the solution from
th-1+Cih 10 ty+cih (i=1,2,....,k). Evidently, these k formulas can be efficiently
implemented on a k-processor machine (in fact, they could equally well run on k separate
computers). Such methods have excellent stability properties (e.g., the property of L-
stability), but are only of first order. However, by using full matices A and B, that is the
k formulas of the block method share the same information from the previous step, the
order can be considerably increased. In the next two subsections, we investigate for k=2
(‘two-dimensional block methods’) and k=3 (‘three-dimensional block methods’) to what
values the order can be raised while preserving the favourable stability properties of
Backward Euler (stability plots may be found in [14]).

3.1. Two-dimensional block methods
First we consider the case k=2 and choose the coefficient matrices of the form

a l-a b11 b12) d 0)
. = = = - T_
(3.3) A (it), B by, bay) D 0ab) € (c,])

Imposing the conditions for second-order consistency we can express the entries of the
matrix B in terms of the five free parameters c, a1, a2, d1 and d3:

1 ci(2d; — cj) .
(3.42) b,-1=5(1—c)a,-+-12$(71;7)1—, bjp=cj+(1-c)aj—bj1—dj, j=1,2,

where c1=c and c2=1. The components Cj;j of the vectors C; (i23) are given by
i . .o i . . .
Cij=qQ —E)(c—- 1) aj+ict 1dj+ ;—Cj(Cj— 2dj) (c - 1) 2_ ¢t, Jj= 1,2.
An elementary calculation shows that C3; vanishes if

(34b) aj= (c—_”'-l)—3 [3(c-1) (¢j-24) + 2 ¢} Bdjcp),

81
and that Cy; also vanishes if, in addition,

c—-2

c
(3.4c¢) d e+’ dy = m ;

The characteristic equation of the amplification matrix in (3.1) can be written in the

form

(3.5) P({z):=det[A +2B- {(I-2D)] =

. ay+b11z2-¢(1-dy2) 1-aj+byyz
az+b21z 1-ap +byyz- {(1-daz)

We shall determine the z-region where this polynomial has its roots { within the unit
circle, that is, the region of strong stability. In addition, we should impose the condition
of zero-stability, i.e., the condition that the two eigenvalues o= 1 and o= a1—ap of A are
on the unit disk those on the unit circle being simple, i.e.,

(3.6) -1<a1-a3<1.

A further restriction on the range of the free parameters is obtained by imposing the
‘stability at infinity’ condition. By this we mean that the roots of the polynomial P({,e)
are on the unit disk (which is of course anyhow a necessary condition for A-stability). By
virtue of the Hurwitz criterion we obtain (recall that d and d; are assumed to be positive)

(3.7 | b11ds + byody | < dydy [dydy + det(B)], det(B) < ddy.

3.1.1. Second-order methods. If we are satisfied with second-order accuracy, then we may
choose the free parameters aj and d; in (3.4a) such that the matrix B vanishes while
preserving the property of A-stability. For example, if c=0 then the method is equivalent
with the familiar two-step backward differentiation formula generated by

0 1 00 0 0
(38 A=) B=() D=() ¢ = (0,1)T.
-13 43 00 0 23

3.1.2. Third-order methods. Third-order accuracy is achieved by choosing C31=C32=0,
leaving us with three free parameters for monitoring the stability of the method. We find

82

c(c2 - 3¢ + 6dy) 3¢ + 12dy — 6¢cdyp— S
al = 3 » a) = 3 ’
(c-1) (c-1
2 2
cc—2cdy - c%dy c—2cd)1—dy
3.9 b1 = , biz = ;
(3.9 11 - 1)2 12 - 1)2

G 2)2 - d2(c2 - 6¢ + 8)
B (c-1)?

' ba2 ;
leaving ¢, d1 and d as the free parameters. Taking into account the conditions of zero-
stability and ‘stability at infinity’ (conditions (3.6) and (3.7)), we performed a numerical
search in the (c,d,d2)-space. It turned out that the regions of A-stable (c,d1,d)-values are
so small that A-stable points and strongly unstable points are close together, that is, a
small perturbation of these values causes the method to violate the A-stability conditions.

For example, the values
(3.10) ¢ =0917387, dj=0.319523, dp =0.347067,

generate such a ‘marginally’ A-stable method. There is, however, an alternative approach.
It is easily verified that putting a2=C32=0 yields methods providing third-order
approximations at the step points ¢, and second-order approximations at the points #,+ch.
It turns out that in the space of free parameters the regions of A-stable methods are larger
so that it is easier to find A-stable methods by a numerical search. For example, we found
the A-stable, third-order method

147 161 7
0 1 220 220 0 O 1 .
(3.11) A=(0 1), B=| o 53 | P~ ., 13 , €=75(21,10)
T 33 66 6

with the normalized error vectors E3 = (0.19,0)T and E4 = (0.20,—0.017)T. The ampli-
fication factors at the origin equal O and 1, and the maximal amplification factor at
infinity is = 0.94.

3.1.3. Fourth-order methods. Fourth-order accuracy for both components is obtained by
choosing C31 = C33 = C41 = C42 = 0. Alternatively, replacing C41 =0 by a3 = 0, reduces the
order of the first component to 3, without affecting the order of the second component. In
both approaches we are left with one free parameter for monitoring the stability of the
method. Unfortunately, the stability regions of these fourth-order methods are rather
limited and do not even allow for A(c)-stability. Thus, in the class (3.3) the fourth-order
methods seem to be of no interest.

&3

3.2. Three-dimensional block methods
For k=3 we expect to find A-stable methods of order four and we may hope for A(a)-
stable methods of order five. These two cases will be investigated in the following

subsections.

3.2.1. Fourth-order methods. Let us choose the matrix A such that a;3 =1 - a;1 — a2,
i=1,2,3, so that Cg vanishes. The vectors C;j vanish for j=1, 2, 3, 4 if the entries b;;
and dj satisfy the linear systems

1 1 11 bi1
c1—-1 c-1 0 ¢ bin
@12 @12 0 c2 || ba |~
=13 (-1 0 ¢? d;

(3.12)
ci—aj1(c1-1) — aia(c2-1)
(e - ain(c1-1)2 - ain(cr-1)?]

1
3e - ain(e1-1)% - ain(ca-1)%]

1
7le# —ainc1-D* - an(c-1)4]

, i=1,2,3.

This shows that there is a family of fourth-order block methods with eight free
parameters: a;1, a;2 (i=1,2,3), ¢ and c3.

In order to ensure zero-stability, we require that the matrix A has its two parasitic
eigenvalues within the unit circle. Writing the characteristic equation of A in the form
(&= 1)(L2 + qol + rg) = 0, we find that we have zero-stability if

(3.13) lgol <ro+l, rg<1,

q0:=a31+a33—a11—a22, 10 :=a11a12+a31a12+4a32a21-411432-421412-42203].

Taking this constraint into account, we performed a numerical search over the free
parameters to obtain the A-stable method

1 3
4 L 3 13-1303
1T 3 Ps511 0 0
1 1 277
A=l 7 1 -3 | B 23213 0 ’
16001
-1 E E 29.32.5

(3.14)

5-13-43 15161 29-43-83
21T 253211 211.325
-73 — 467 -737
2327 2337 23313

5:16069 54419 41927

211.32.7 25.33.5.7 211.33

with ¢=(5,13/4, 1)T and with normalized error vector E5 =(0.13,0.27, 0.075)T. Its
amplification factors at the origin are 0, 1/2 and 1, and at infinity the maximal
amplification factor is = 0.92.

The above direct search method is rather expensive, and therefore we also applied an

alternative approach where
m k

BG15) DY, luij
i=1 j=1

was minimized over the free parameters b; and d; (i=1, 2, 3), ¢1 and c3. Here, k=3, the
qij are control parameters and u;j, j=1, ... ,k denote the eigenvalues of the amplification
matrix M(z;) defined in (3.1) with z; running through a set of m points lying on the
imaginary axis. In this way we found the A-stable method

2820 -183 -1037 800
1 1
=255 | 7100 -3423 12123 || D=z (080 |
~1020 -1607 4227 0038

(3.16)
-398 -92 -177
1 _ T
705 | 6282 -92 2143 | ¢=(.51)
1098 272 507

B=

with normalized error vector Es5 = (3.67,0.19, 0.064)T. At the origin the amplification
factors are 0.81, 0.81 and 1, and at infinity the maximal amplification factor is = 0.37.

3.2.2. Fifth-order methods. Along the same lines as we constructed the fourth-order
method (3.16), we proceeded with the fifth-order case. Now only five free parameters are
available, say d; (i=1,2,3), c1 and c¢. Imposing the constraint (3.13), we found a few
A(a, B, y)-stable methods which may be considered as A-stable in most practical
applications.

We mention the A(¢, f, y)-stable method with o ~ 89.9988°, B~ 0.16 and y=~2.6:10-6
generated by

85

(—0.37354856915573 1.3772028209449 -0.0036542517891531
A= 0.45636214490330 0.58957191150098 -0.045934056404276 |,
\ —71.558907928027 69.945110840701 2.6137970873262

(—0.089579683013023 -0.020791477924637 0.0023118793010643
(3.17) B = 0.037434812789650 0.78549538208108 0.024702269787981
\ —18.279469309687 —-29.674965823418 -1.6401568285440

0.261 0 0 -2.747
D= 0 0.581 0 N c= -2.122 |,
0 0 0.832 1

with normalized error vector Eg = (0.007,0.0038,—0.015)T. At the origin the amplification
factors are 0.92, 0.92, and 1, and at infinity the maximal amplification factor is = 0.993.

Finally, we present the A(e, B, y)-stable method with & =~ 89.98°, 8= 0.30 and
y=6.9-10-5 generated by

0.58694824150708 -0.042737729478577 0.45578948797150
A= | 73.394943213338 2.5499812910344 —74.944924504372
1.3881897627759 -0.0035265226034516 —0.38466324017241

0.78434821208875 0.023439431423946 0.033345158796322
(3.18) B= -30.332265183768 —1.5938561820999 —18.934741340575
—0.012761141648945 0.0022604702667178 —0.092097195902230

0.57487 0 0 1.6153
b= 0 083102 0 |, c=|4.7871 |,
0 0 0.2618 1

and with normalized error vector Eg = (0.004,-0.016,0.007)T. At the origin the
amplification factors are 0.88, 0.88 and 1, and at infinity the maximal amplification
factor is = 0.89.

3.3. Survey of method characteristics

We conclude with a survey of the parameters ¢, B and y characterizing the stability
regions of the block methods derived in this paper (see Definition 3.1) and compare them
with those of the BDFs (details about the BDF methods can be found in [6]). In Table 3.1
these values are listed (an ‘*’ in the y-column means that the corresponding value is not

86

relevant). In addition, we give the normalized error vectors defined in (2.5) of all methods.
For a uniform presentation, we first formulated the BDFs as block methods. We recall
that a k-step BDF method can be cast in the form (2.3) with block point vector
¢=(2-%,...,-1,0,)T

Finally, we remark that a k-step, kth-order BDF requires k starting values, independent
of its formulation, whereas the block methods of this paper need only 2 (for p =3) or 3
(for p =4, 5) starting values.

Table 3.1. Normalized error vectors and values of ¢, B and ¥.

Method Order p Ep, T a B Y
BDF3 3 (0,0, 1/4) 88.4° 1.94 0.046
(3.11) 3 (0.20,-0.017) 90° 0 *
BDF4 4 0, 0,0, 1/5) 73.2° 4.72 0.191
(3.14) 4 (0.13,0.27,0.075) 90° 0 *
(3.16) 4 (3.67,0.19, 0.064) 90° 0 *
BDF5 5 0,0,0,0, 1/6) 51.8° 9.94 0.379

(3.17) 5 (0.007,0.0038,-0.015) >89.9° 0.16 0.0000026
(3.18) 5 (0.004,-0.016, 0.007) >89.9° 0.30 0.000069

4. APPLICATION TO VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Consider the initial value problem for VIDEs given by (1.2). The most
straightforward way of solving numerically this problem replaces the integral term in
(1.2) by a quadrature formula and integrates the resulting ODE by some ODE integrator.
This ‘direct quadrature’ method will be indicated by DQ method. The stability of DQ
methods strongly depends on the quadrature formula used for approximating the integral
term, particularly if the VIDE in (1.2) is stiff. For example, DQ methods using Gregory
quadrature formulas become easily unstable (see, e.g., [1]).

A more stable approach is based on the approximation of the integral term by
converting it into a differential equation and by integrating this differential equation by an
ODE solver. For that purpose, we introduce the function

s

4.1 2(t,8) = J k(t,x, y(x)) dx,
to

and we write the initial value problem (1.2) in the form

87

@2 L fy0),200), ¥00) = 0.

The method now consists of the application of an ODE solver to the initial value
problem (4.2a), where the values of z(1,z) needed by the ODE solver are obtained by
integrating the initial value problem
(4.2b) Qz—g-;ﬂ =k(t,s,y(s)), 2(t,tg) =0
from s=tg until s=¢. This method still belongs to the class of DQ methods, however, it
uses a special quadrature formula derived from an ODE solver. If the ODE solver is an
LM method (p,0), then the quadrature formula is called (p,0)-reducible (cf. Matthys [13]).
Similarly, we shall call the DQ method (p,o)-reducible if both initial value problems
(4.2a) and (4.2b) are solved by the same LM method (p,0), and (A, B, D)-reducible if (4.2a)
and (4.2b) are solved by the same block method (2.3) generated by the matices A, B
and D.

Let us consider the stability of (A, B, D)-reducible DQ methods. Following the usual
stability analysis of VIDE solvers (cf., e.g., Brunner and Lambert [2] and Matthys [13]),
we shall consider stability with respect to the basic test problem

t
@y H_gu.q [wan yew -
t

Using the representation (4.2) and writing z(z,t)=2(t), this problem can be represented in
the form

@ Yo gwsnzw, Yo =0, Z Ly, 20)=0

Application of the block method (2.3) to each of these equations yields the recursions

Yni1 =AY, + hB[EY, + NZp) + hD[EY pi1 + NZpy1l,
4.5)

Zni1=AZ, + hBY,, + hDY ,, 1.

We shall show that (4.5) is algebraically equivalent with the recursion obtained by
applying (2.3) to the system (4.4). Writing (4.4) in the form

) Lyy- (‘f”)um, w = (2)).

the block method (2.3) takes the form

88

Un+1=A°Up+hBof(Up)+hD° f(Upt1), Un+1:=0n,1,2n,15 - s Ynks zn,k)T,
4.5")

f(Un+1) = (Eyn,1+M 20,1, 0,15 - 3 EYn it N Zn.ks }’n,k)T,

with y, j and z, j denoting the components of the (column) vectors ¥,41 and Z,,;1 used
in (4.5), and where the tensor products A ° Uy, and B ° f{Up) are defined according to

A ° Un:=(a1Yn, alZn; ose ;akYn, aan)T,
4.6)
B o f(Up):=(b1(€ Yn+1 Zp), 51Y i ... ; bi(E Yt 1) Zp), biY)T,

with a; and b; denoting the jth row vectors of the matrices A and B, respectively. It is
now readily verified that by reordening the equations occurring in (4.5") such that the first,
third, fifth, ... equations come first and the second, fourth, sixth, ... equations come next,
we obtain the recursions (4.5).

Hence, if A and u denote the eigenvalues of the Jacobian matrix associated with (4.4"),
then the recursion (4.5) is stable if both A4 and Au are in the stability region of the block
method (2.3). The corresponding region of (h&, h2n) = (hA+ hy,— h224)-values will be
called the stability region of the (A, B,D)-reducible DQ method. Furthermore, if this
stability region contains the set {(hS, h2n): £<0, n<0), then the DQ method is called
Ag-stable. The preceding considerations can be summarized in the following theorem
which generalizes a result for LM methods originally given by Brunner and Lambert [2]:

Theorem 4.1. Let S be the stability region of the block method (2.3) generated by the
matrices A, B and D, and let A and u be defined by A+ u=&, A u=-n. Then the set
((hE h21m): hAe S, hpe S) defines the region of stability of the (4, B, D)-reducible DQ
method. 0

From this theorem it follows that the (4, B, D)-reducible DQ method is Ag-stable if,
and only if, the generating block method (4, B, D) is A-stable. Thus, the use of the block
methods constructed in this paper avoids the so-called ‘second Dahlquist barrier’ which
applies to Agp-stable (p,o0)-reducible DQ methods for VIDEs (cf. [13, Theorem 5]).

89

5, NUMERICAL EXPERIMENTS
5.1. Accuracy test

To verify the order of the various methods we integrated the test problem proposed
by Kaps [11]:

6D B @repreton?t Ley-naen)., nO=n0=1,

with 0 < ¢t < T. The exact solution is given by y;=exp(—2¢) and yy=exp(—?) for all values
of the parameter €. In Table 5.1, we have listed the values 4, where A denotes the number
of correct decimal digits at the endpoint (i.e., we write the maximum norm of the error at
t=T in the form 10-4). In all experiments the theoretical order of the method is shown for
sufficiently small values of 4 (if p is the order of the method, then, on halving the step
size, the value of A should increase by = 0.3 p).

Table 5.1. Values of A for problem (5.1) with T=1, £=108,

Method p h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 h=1/128
BDF3 3 2.8 3.7 4.6 55 6.5 7.4
(3.11) 3 2.8 3.6 44 5:2 6.1 7.0
BDF4 = 34 4.7 59 7.1 84 9.6
(3.14) 4 3.8 5:2 9.5 1.9 89 10.0
(3.16) 4 3.1 3.9 4.3 59 7.1 8.2
BDFs 5 4.0 5.6 72 8.7 10.2 12.0
3.17) 5 2.6 4.0 55 73 9.2 10.3
(3.18) 5 4.7 5.4 6.4 7.3 9.2 10.1

5.2. Stability test
We tested the stability of the methods by integrating a problem in which the Jacobian
matrix has purely imaginary eigenvalues:

d
(5.2) %: —ayy + (1+ &) cos(d), %= ay1 - (1+0)sin(s), 0<t<T,

with initial conditions y1(0)=0, y2(0)=1 and exact solution y1=sin(f) and yp=cos(¥) for all
values of the parameter o.

90

In Table 5.2, the results are listed for T=100. Values of A corresponding to stepsizes
that are theoretically unstable are in boldface and overflow is indicated by *. The unstable
results of the BDFs are in agreement with their regions of instability indicated in Table
3.1 (the phenomenon that BDF5 becomes stable again for sufficiently small 4 is due to
the fact that its imaginary interval of instability is given by i [0.71, 9.94]).

Table 5.2. Values of A for problem (5.2) with 7=100, a=10.

Method p h=4/5 h=2/5 h=1/5 h=1/10 h=1/20 h=1/40

BDF3 3 2.0 2.9 39 * * 4.9
(3.11) 3 2.1 2.8 34 4.0 4.6 5.3
BDF4 4 2.2 * * * 2.9 8.2
(3.14) 4 2.8 4.0 49 5.8 6.8 8.0
(3.16) 4 1.6 2.7 3.8 49 5.8 6.8
BDFj5 5 -0.1 * * * 8.5 10.3
3.17) 5 12 2.0 34 4.7 6.2 7.6
(3.18) 5 2.9 3.9 5.1 6.4 7.6 8.6

Next, we show that the ‘almost’ A-stable fifth-order methods (3.17) and (3.18) behave
as A-stable methods in practice. We performed experiments for ¢=1 and a=4 with A=1/8:
for a=1 both integration processes are theoretically unstable, and for a=4 the processes
are stable. In Table 5.3 the results are listed for increasing length of the integration
interval: these results clearly show that both methods perform perfectly stably for a=1
and the T-values chosen.

Table 5.3. Values of A for problem (5.2) for h=1/8.

Method a= 1: theoretically unstable a=4: theoretically stable
=10 T=100 T=1000 T=10 T=100 T=1000

3.17 3.6 3.8 3.6 4.0 3.9 39
(3.18) 4.5 4.3 4.8 54 5.4 54

91

53. Volterra integro-differential equation
Consider the initial value problem

t

dyr) 1+a(1+n? @ (242r _dx _1
o @ - a2 y(t)l"(2+: e 0‘[Ty 7P =73

with 2<¢<T and o> 0. The exact solution is given by y(¢)=1/(1+f). For a= 1, this
problem has been discussed in [2]. From the expressions

9o (2420 _ of ok _ 1+¢
e W‘n(24070 1%y T ey

it follows that (5.3) is stable if £>0 and y >0. Furthermore, we see that in the vicinity of
the exact solution we have &=— oz(1+t)2 and 7 =— a(1+1?), so that the stiffness of this
problem increases with « and ¢. For example, if a=T=10, then an Ag-stable methed is
highly desirable.

Table 5.4 lists results for various methods and values of the stepsize . Notice that
the results for the stiff problem (o= 10) are not less accurate (even more accurate) than the
results for the nonstiff problem (= 1), showing that stiffness does not cause any
problem. Similar to the ODE case (cf. Table 5.1), the method (3.14) performs very
accurately, whereas (3.17) is significantly less accurate.

Table 5.4. Values of A for problem (5.3) at 7=10.

a=1 a=10
Method Orderp h=12 h=1/4 h=1/8 h=12 h=1/4 h=1/8
BDF3 3 5.7 6.8 79 6.0 6.9 7.8
(3.11) 3 5.5 6.5 73 5.4 6.5 7.3
BDF4 4 5.4 7.0 8.3 6.5 8.1 94
(3.14) 4 6.0 8.3 9.1 6.4 8.6 10.9
(3.16) 4 52 6.2 7.2 6.7 7.9 8.5
BDF;5 5 5.1 7.2 8.9 6.1 8.2 9.9
(3.17) 5 2.5 52 7.2 2.9 53 1.5

(3.18) S 6.0 6.9 8.2 6.8 8.5 9.3

92

5.4. Performance test on the ALLIANT FX/4

Finally, we tested the methods (3.11) and (3.18) on the ALLIANT FX/4 by
integrating the problem (5.1) of Kaps. In Table 5.5, we have listed timings on P
processors and the rate of efficiency of a k-processor method, i.e., the execution time on
one processor divided by k times the execution time on k processors. These results show
that the gain factor is close to its optimal value.

Table 5.5. Timings (in seconds) for problem (5.1) at T=1 with e=10~ 8 and h=1/256.

method & P=1 P=2 P=3 P=4 Efficiency rate
311y 2 0.43 0.23 0.23 0.93
318 3 0.66 0.45 0.25 0.25 0.88

From this table we conclude that the performance is close to its optimum, that is, the
gain factor obtained for a k-processor method is almost equal to k. Table 5.5 also lists
timings in cases where methods have the disposal of one more processor (i.e., k+1) than
the number (i.e., k) they are designed for. We see that this additional processor is not
utilized, since the k processors (concurrently) solve the k implicit relations and the extra
processor is idle. As mentioned before, it could have been exploited for updating the
Jacobian matrix, but in this test we did not include such a technique.

It should be noted that the efficiency rate is slightly dependent on implementation
strategies, such as how accurately the nonlinear systems are solved. For example, it may
happen that the first (or any other) implicit relation requires less Newton iterations than
the other implicit relations (e.g., because of a more accurate initial approximation); in
such cases this first processor will be idle for some time, which of course, has a bad

influence on the efficiency rate.

93

REFERENCES
[1] Brunner, H. & Houwen, P.J. van der (1986): The numerical solution of Volterra

(2]

(3]

(4]

(5]

[6]

N

(8]

9

(10]

(11]

(12]

(13]

(14]

[15]

(16]

equations, CWI Monograph No.3, North-Holland, Amsterdam.

Brunner, H. & Lambert, J.D. (1974): Stability of numerical methods for Volterra
integro-differentialequations, Computing 12, 75-89.

Chu, M.T. & Hamilton, H. (1987): Parallel solution of ODE’s by multi-block
methods, SIAM J. Sci. Stat. Comput. 8, 342-353.

Cooper, G.J. (1978): The order of convergence of general linear methods for ordinary
differential equations, SIAM J. Numer. Anal. 15, 643-661.

Feldstein, A. (1990): Oral communication at the International Conference on the
Numerical Solution of Volterra and Delay Equations, Arizona State University, May
25-28.

Gear, C.W. (1971): Numerical initial value problems in ordinary differential
equations, Prentice Hall, Englewood Cliffs, N.J..

Hairer, E., Ngrsett, S.P. & Wanner, G. (1987): Solving ordinary differential
equations I. Nonstiff problems, Springer Series in Comp. Math., Vol. 8, Springer-
Verlag, Berlin.

Henrici, P. (1962): Discrete variable methods in ordinary differential equations,
Wiley, New York.

Houwen, P.J. van der & Sommeijer, B.P. (1989): Block Runge-Kutta methods on
parallel computers, Report NM-R8906, Centre for Mathematics and Computer
Science, Amsterdam (to appear in Z. Angew. Math. Mech. 72 (1) (1992), 3-18.
Houwen, P.J. van der & Sommeijer, B.P. (1990): Parallel ODE solvers, in: Proc. of
the International Conference on Supercomputing, Amsterdam, June 11-15, ACM
Press, 71-81.

Kaps, P. (1981): Rosenbrock-type methods, in: Numerical methods for stiff initial
value problems (eds.: G.Dahlquist & R. Jeltsch), Bericht Nr.9, Inst. fiir Geometrie
und Praktische Mathematik der RWTH Aachen.

Lubich, Chr. (1990): Oral communication at the /nternational Conference on the
Numerical Solution of Volterra and Delay Equations, Arizona State University, May
25-28.

Matthys, J. (1976): A-stable linear multistep methods for Volterra integro-
differential equations, Numer. Math. 27, 85-94.

Sommeijer, B.P., Couzy, W. & Houwen, P.J. van der, (1989): A-stable parallel
block methods, Report NM-R8918, Centre for Mathematics and Computer Science,
Amsterdam.

Varga, R.S. (1962): Matrix iterative analysis, Prentice Hall, Englewood Cliffs,
NJ..

Watts, H.A. & Shampine, L.F. (1972): A-stable block implicit one-step methods,
BIT 12, 252-266.

CHAPTER IV

Embedded diagonally implicit Runge-Kutta algorithms

on parallel computers

to appear in Math. Comp. (1992)

95

Embedded diagonally implicit Runge-Kutta
algorithms on parallel computers

P.J. van der Houwen, B.P. Sommeijer and W. Couzy

Centre for Mathematics and Computer Science
P.0. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper investigates diagonally implicit Runge-Kutta methods in which the
implicit relations can be solved in parallel and are singly diagonal-implicit on
each processor. The algorithms are based on diagonally implicit iteration of
fully implicit Runge-Kutta methods of high order. The iteration scheme is
chosen in such a way that the resulting algorithm is A(x)-stable or L(c)-stable
with o equal or very close to /2. In this way, highly stable, singly diagonal-
implicit Runge-Kutta methods of orders up to 10 can be constructed. Because
of the iterative nature of the methods, embedded formulas of lower orders are
automatically available allowing a strategy for step and order variation.

1980 Mathematics Subject Classification: 65M10, 65M20
Key Words & Phrases: numerical analysis, Runge-Kutta methods, parallelism.

1. INTRODUCTION

In Ngrsett & Simonsen [21], Jackson & Ngrsett [16], and Iserles & Ngrsett [15], it
was observed that on parallel computers, predictor-corrector methods (PC methods) based
on implicit Runge-Kutta (RK) correctors are particularly attractive for solving initial
value problems for the system of ordinary differential equations (ODEs)

wy 2y,

On sequential computers, implicit RK methods are seldom used as corrector equation,
because of the large number of implicit relations to be solved when using these
correctors. However, matters are different when parallel computers are used, since PC
methods, being a form of functional iteration, possess a high degree of parallelism. First
results based on the PC approach were reported by Lie [18], using a fourth-order, two-
stage Gauss-Legendre corrector and a third-order Hermite extrapolation predictor. In [12],
these ‘parallel, iterated’ RK methods (which we shall briefly call PIRK methods) have
been investigated for a variety of predictor methods and it was concluded that, from an
implementational point of view, one-step predictors are preferable. Related PC methods

96

were studied by Tam in his thesis [24]. In particular, families of methods were
constructed with elliptically-shaped stability regions. An analysis of the error behaviour
of a very general class of PC methods, including all methods indicated above, was given
by Burrage [2].

An attractive feature of PIRK methods is the availability of embedded formulas of
lower orders allowing a strategy for step and order variation without additional costs. On
the other hand, owing to their explicit character, PIRK methods have rather limited
regions of stability and are therefore only suitable for integrating nonstiff systems.

In this paper, we shall be interested in integrating stiff systems, and we will
investigate the possibility of constructing methods that are more stable than PIRK
methods by diagonally implicit iteration of fully implicit RK methods. After a fixed
number of iterations, such methods belong to the class of DIRK methods, and are
therefore essentially different from the explicit PIRK methods studied in the
aforementioned papers. DIRK methods resulting from diagonally implicit iteration have
the property that effectively they are singly diagonal-implicit RK (SDIRK) methods
when run on parallel computers. Furthermore, like the PIRK methods, they possess
embedded formulas of lower order which make them an ideal starting point for developing
variable order/variable step codes. We shall call the ‘Parallel, Diagonal-implicitly Iterated’
RK methods PDIRK methods.

In the literature, various (S)DIRK methods were published for the integration of
stiff systems of ODEs. The most recent contributions are the parallel DIRK methods of
Iserles and Ngrsett [15], which are, like PDIRK methods, effectively of SDIRK-type on
multi-processor computers (these methods are the first and, as far as we know, the only
parallel DIRK methods published in the literature). However, the order of most DIRK
methods is limited to p =4 (the only DIRK methods exceeding this order are those of
Cooper & Sayfy [S]). By diagonal iteration of implicit RK methods it is possible to
construct highly stable PDIRK methods of orders up to 10.

Table 1.1 presents the characteristics of a number of SDIRK methods from the
literature together with the most stable PDIRK methods of order p >4 derived in the
present paper. In this table, DIRK II denotes the Type II methods of Iserles and Ngrsett
[15], pemp indicates that embedded methods of orders < p,p,p are available and s denotes
the number of stages of the underlying corrector in the PDIRK methods (by choosing
Gauss-Legendre or Radau IIA correctors we may set s=| (p+1)/2], where | -] denotes the
integer part function). Furthermore, the number of sequential stages is defined as the
number of implicit systems to be solved on each processor in each step. Finally, we
introduce the concept of L2-stability, which means that the method possesses an A-
acceptable stability function for which the degree of the numerator is two less than the
degree of the denominator.

97

Table 1.1. (S)DIRK and PDIRK methods.

Seq. Proces-
Method Order Stages Stages sors Stability Pemb Reference
SDIRK p=3 p-1 p-1 1 A-stable 1 [19]
SDIRK p=3 p-1 p-1 1 Strongly A-stable 1 [6]
SDIRK p=4 p-1 p-1 1 A-stable 1 [6], [1]
SDIRK p=5,6 5 5 1 A-stable 1 [5]
SDIRK p=3 P p 1 S-stable p-1 [4]
SDIRK p=3 p+l p+l 1 L-stable p-1 [22]
SDIRK p=4 p+l1 p+1 1 S-stable p-1 [4]
DIRKI p=4 P p—2 2 L-stable p-1 [15]
PDIRK p=5 3(-1) p-1 3 Strongly A-stable p-1 §32
PDIRK p=6 3(pp-1) p-1 3 Strongly A(@)-stable p-1 §3.2, a>89.9°
PDIRK p=7 4(p-1) p-1 4 A(a)-stable p-1 § 3.2, >89.9°
PDIRK p<4,p=6 s(p-1) p-1 s A-stable p-1 e
PDIRK p<6,p=8 sp p s L-stable p-1 §3.1
PDIRK p<8,p=10 s(p+1) p+l s L2-stable p-1 §3.1

This table shows that the PDIRK methods constructed in this paper have the
advantages of high order, good stability and embedded formulas, but the disadvantage of
quite a large number of sequential stages per step. For example, in spite of its inherent
parallelism, the number of sequential stages per step of an L2-stable, eighth-order PDIRK
method is 3 times as large as that of the A-stable, fourth-order SDIRK method of
Crouzeix [6] - Alexander [1], and 9 times as large as that of the BDF methods. However,
due to the iterative nature of PDIRK methods, the ‘later’ stages are relatively cheap
because there are accurate initial iterates available for solving the associated implicit
relations. This feature, and in particular their high order and unconditional stability, make
PDIRK methods a promising starting point to base a code on. This is confirmed by a few
preliminary experiments reported in Section 4, where we show by means of two
‘difficult’ test problems taken from the literature, that a provisional implementation of an
L2-stable, seventh-order, four-processor PDIRK method is already far superior to the
SDIRK code SIMPLE of Ngrsett & Thomsen [22] and at least competitive with the BDF
code LSODE of Hindmarsh [11]. The development of a more sophisticated code based on
PDIRK-type methods and much more extensive comparisons with existing sequential
codes on a significant class of stiff problems will be subject of our future research and
should provide more reliable data on the efficiency of PDIRK-based codes.

98

2. PDIRK METHODS
For notational convenience, we shall assume in the following that the equation

(1.1) is a scalar equation. However, all considerations below are straightforwardly
extended to systems of ODEs, and therefore, also to nonautonomous equations. Our

starting point is the s-stage, implicit, one-step RK method

(2.1a) Ynel=Yn+ h be(Y):

where Y is implicitly defined by the set of algebraic equations
(2.1b) Y :=yne + hAf(Y).

Here, 4 is the integration step, e is a column vector of dimension s with unit entries, b is
an s-dimensional vector and A is an s-by-s matrix. Furthermore, we use the convention
that for any given vector v=(v)), f(v) denotes the vector with entries f{v)).

By iterating, say m times, the equation for ¥ by diagonally implicit iteration, we
obtain the method

@2 Y0 =yue+h [A-DIfYG)+ kDAYD), ¥ =yu+ hb"FYV),

where j=1,2, ... ,m, and D is a diagonal matrix with arbitrary, nonnegative diagonal
elements and Y(0) denotes an initial approximation to the vector Y. Notice that after each
iteration the current approximation y(f) t0 yn4+1 can be computed. As we shall see in
Section 2.1, the order of these approximations increases by 1 in each iteration. Therefore,
the mth iterate will be used to continue the integration process and the preceding iterates
can be used for error control.

Since the matrix D is of diagonal form, the s components of each vector ¥(/) can be
computed in parallel, provided that s processors are available. Thus, effectively, we
obtain a method which requires per integration step the computational time needed for
computing one component of the initial approximation Y(0) and the successive solution
of m equations. In the following, we always assume that we have s processors at our
disposal and we shall speak about computational effort per step when we mean the
computational time required per step if s processors are available. We shall call the
method providing YO the predictor method and (2.1) the corrector method.

There are several possibilities for choosing the matrix D. The most simple choice
sets D = O to obtain an explicit iteration method (fixed point or functional iteration). This
approach was followed in, e.g., Ngrsett & Simonsen [21], in Lie [18], and in van der
Houwen & Sommeijer [12]. These papers deal with the iteration of implicit methods for
solving nonstiff ODEs. As stated in the introduction, we are aiming at stiff ODEs, which
requires the use of matrices D # O. One possibility of exploiting nonzero matrices D is

99

improving the rate of convergence of the iteration process. For example, by identifying
the diagonal elements of D with those of A we obtain the nonlinear Jacobi iteration
method. Alternatively, one may choose D such that the stability region of the iterated
method rapidly converges to that of the corrector (cf. [13]). In this paper, however, we
choose D such that we have for a prescribed number of iterations favourable stability
characteristics, such as A-stability or L-stability (as far as we know, this approach has
not yet been investigated in the literature). We restrict our considerations to the case
where the predictor method is itself an RK-type method. Hence, by performing m -
iterations with (2.2) and by accepting y(™) as the final approximation 10 y,+1, we obtain
an RK method with a fixed number of stages. Furthermore, we assume that the predictor
is explicit or at most diagonally implicit. Then, the resulting parallel RK method
belongs to the class of DIRK methods (Diagonally Implicit RK methods), and will be
briefly called the PDIRK method.

2.1. Order of PDIRK methods
Assuming that the iteration process (2.2) converges as m — oo, the values y(/)
approximate the solution of the corrector method (2.1), i.e., y(°°) =Yn4+1. The

approximation y(J) differs from y(°) by the amount
Y0 =y = y0) = ypiy = kBT [YD) - V)]

If the right-hand side function is sufficiently smooth, then the iteration error YU) -y

satisfies the approximate recursion
Y0 —¥ = hi—h L1 L ia-piyG-V-y] =
U-hgDI" 551 Il 1
Wu-nLor1 La-p)Yro-y ,
(v-ng ot Lia-p1Y 1y -v]
so that

@3 ¥ = ypur =t Lor(r- w0yt Zia - 0) " yO -).

Let the predictor be of order ¢, i.e.,

24) YO-y=007) = yO -y, =00,
then
Y™ = yne1 = ORI,

so that y(™) has (global) order g+m.

100

In this paper, we shall study PDIRK methods with predictors of the form
2.5 YO :=y,e + hEf(yne) + hBAYO).

Because this predictor is implicit, we will choose the matrix B of diagonal form in order
to exploit parallelism. Since

YO - Y = yne+hEf(yne) + hBf(yne + hEf(yne) + hBf(yne)) -

Yne — hAf(yne + hAf(yne)) + O(h3),

it is easily verified that the predictor (2.5) is always first-order accurate; it becomes of
order two if (E + B—A) e vanishes and of order three if, in addition, (BA — A2) e vanishes.

By defining yp41 according to
(2.6) Yn+l = y(m) =yp+h be(Y(m)),

the PDIRK method is completely determined. For this method, we summarize the above

order considerations in the following theorem:

Theorem 2.1. Let the corrector be of order p*; then the approximation y,+] generated by
the PDIRK method {(2.5), (2.2), (2.6)} has order min{p*,m+1} for all matrices B and E,
order min{p*, m+2} if (E+B)e=Ae, and order min{p*, m+3} if, in addition, BAe=AZe. [

We remark that correctors of any order are explicitly available. Correctors of any even
order p* are provided by the p*/2-stage Gauss-Legendre methods and correctors of any odd
order p* are provided by the (p*+1)/2-stage Radau methods.

2.2. Stiffly accurate PDIRK methods

As was discussed by Alexander [1], when integrating stiff equations it may be
advantageous to use RK methods {A,b} of which b equals the last row of A, i.e.,
bT=esTA, where s is the number of stages of the RK method. Such RK methods are
termed stiffly accurate. Therefore, it is of interest to look for PDIRK methods possessing
the property of stiff accuracy. Formally, we can associate with any PDIRK method a new
PDIRK method possessing the property of stiff accuracy, simply by replacing (2.6) with

2T Yne1 =eTY(M),

101

Of course, this only yields a feasible method if the last component of the vector ¥Y(™)
provides an approximation to y,+1. For example, this is true if the corrector itself is
stiffly accurate, i.e., bT=e;TA. We shall call the two versions corresponding to (2.6) and
(2.7) PDIRK methods of Type I and II, and denote them by PDIRK! and PDIRKII,
respectively. Thus,

Typel :PDIRK method {(2.5), (2.2), (2.6)}
Type I : PDIRK method {(2.5), (2.2), (2.7)}.

The following theorem is the analogue of Theorem 2.1:

Theorem 2.2. Let the corrector be stiffly accurate (bT=es"A) and be of order p*; then the
approximation y,+1 generated by the PDIRKI method is also stiffly accurate, and has
order min{p*, m} for all matrices B and E, order min{p*, m+1} if (E+B)e=Ae, and order
min (p*, m+2} if, in addition, BAe=A2e. I

2.3. Various types of PDIRK methods and their Butcher arrays

Given the generating RK method (corrector) {A,b} defined by (2.1), we shall
investigate three special families of PDIRK methods, either of Type I or of Type II,
which differ from each other by the way in which the predictor is defined, i.e., in
choosing the matrices B and E. Let O denote the s-by-s matrix with zero entries, then we
distinguish:

Type A : Last-step-value predictor (E=B=0) Y©):=y, e
Type B : Backward Euler predictor (E=0,B=D) YO := y,e + h Df(Y(©®))
Type C : Theta method predictor (B=D) Y0 .= Yne + hEf(yne) + hD f(Y(©®).

Notice that the matrix B either vanishes or is chosen equal to D. Although, in general, B
and D may be different (diagonal) matrices, the particular choice B =D has advantages
with respect to the implementation of the method. Typically for stiff equations, the
implicit relations in which the matrix D = diag(d,, d,...., ds) is involved, will be solved by
some form of Newton iteration, which requires (in the case of systems of ODEs) the LU-
decomposition of the matrices /- d; h df/dy. Clearly, if B=D then these decompositions
can also be used in solving the predictor (see also the discussion below). In the remainder
of this paper, the analysis is performed in terms of a general matrix B and concrete results
are only specified for B=0 or B=D.

For future reference, we specify the various PDIRK! families of methods in terms
of their Butcher arrays and give the corresponding orders of accuracy pI:

102

TypeIA:
1. D#0: pl=min{p* m+1}
j=0 (]
j=2 O A-D D
j=3 O O A-D D
jem| O . . . O AD D
oT . ; ‘ 0T 0T BT
Type IB:
1. D #0: p! = min{p*, m+1}
D := diag(de): p! = min{p* m+2}
j=0 | D
j=1 |A-D D
j=2 | 0 A-D D
Jj=3 O O A-D D
Jj=m (0] : : : O A-D D
0T . y s 0T 0T BT
TypeIC:
1. D#0,E#O0: pl = min{p*, m+1}
2. D :=diag(Ae—FEe), E+O: pl = min{p*, m+2}

3. D :=diag(Ae—Ee), DAe = A%: p! = min{p*, m+3}

(0

Jj=0 E D

Jj=1 O A-D D

j=2 O O AD D

j=m 0 . . . O A-D D
or . : : 0T 0T BT

103

In these arrays, 0 denotes the s-dimensional nullvector. Type II versions are
obtained by defining y,,1 by means of (2.7) instead of by (2.6), and, if the weights of
the corrector satisfy bT=e,TA, then by virtue of Theorem 2.2, we may replace pl by pll
and m by m~1. Notice that the b-vector is not actually needed if the algorithm is based
on Type II methods. Furthermore, we remark that methods of Type B.2 are completely
determined by the generating corrector, and that those of Type C.3 prescribe the matrix D
and the row sums of the matrix E.

As already observed, PDIRK methods all belong to the class of DIRK methods
(since the name DIRK is not consistently used in the literature, we remark that we shall
call an RK method of DIRK type if the strict upper triangular part of its Butcher tableau
vanishes). Moreover, the ith processor (i=1,2,...,s) is faced with solving a sequence of
implicit relations in each of which the decomposition of the matrix I—d; % df/dy is
required (in case of systems of ODEs). Since this decomposition can be used in all m
iterations in (2.2), we shall say that PDIRK methods are singly diagonally implicit RK
methods (SDIRK methods). Here we remark that this terminology is often reserved for
methods in which all stages are implicit with the same diagonal entry in their Butcher
array. However, the zero diagonal entries in PDIRK methods of the Types A and C
(originating from B=0) do not exclude these methods from the class of SDIRK methods,
since these zeros mean that f{y,) has to be evaluated prior to the iteration process.
Because the bulk of the computational effort per step consists in solving the implicit
relations, the costs of this explicit stage are relatively negligible.

Therefore, taking parallelism into account, we shall say that PDIRK methods
require k sequential stages if each processor has to solve k implicit relations per step.
Thus, Type A methods require m sequential stages, whereas for Type B and Type C
methods this number is given by m+1.

Finally, we observe that if the diagonal matrix D has equal diagonal entries, then all
processors need the same LU-decomposed matrix in their solution processes. In such
cases, this decomposition, as well as the evaluation of the Jacobian matrix gf/dy, may be
performed by an additional processor, providing a ‘fresh’ decomposition for all processors
as soon as it is available.

3. STABILITY
Applying the PDIRK method to the test equation

G Y=y,
yields a relation of the form

Yn+l = Rm(2)yn,

104

where z:=Ah and R,,(z) is a rational function, the so-called stability function. The
stability functions corresponding to PDIRK! and PDIRK!I methods will be denoted by
RY,,,(z) and R1L,,,(z), respectively. They can be directly derived from the Butcher arrays by
using the familiar ‘determinant formula’ (cf., e.g., [7, p.72]). However, the dimension of
these arrays is usually so high that the evaluation of the determinants is rather tedious,
even for small values of the number of iterations m. Therefore, we shall derive these
stability functions by alternative techniques.

From (2.6) and (2.7) we see that the stability functions are respectively determined by

B2 Yns1=Ya+2bTY(™W =Rlu(2)y, and yuu1= e ¥ = RIL(2)y,.
In order to derive an expression for Y(") we write

Y0) = (I - zD)"1Qjype,
where the matrix Q; follows from

Y0) = [I- 2D [yne + 2[A - DIYU-V] =
[/ — zDT! [yne + 2[A - DI - 2D11Q).1yne].

Introducing the matrix function

Z = Z(z) := z[A - D][I - zDT},
we find that Q; satisfies the recursion

Qo=U-zD)I- 2B\ +2E), Qj=1+2Qj1, j=1.
Hence, the stability functions are given by
. Rly(z) = 1+ 26T - 2DY'Qm(z)e, RUpy(2) = €571 - zD1 1 Qpm(2)e,

Om=0m(2)i=1+Z+Z2+..+2Zm1 4 ZM[] — DI -zB]" 1[I + zE].

We shall separately consider the case where the diagonal matrices B and D have
constant diagonal elements, and the case where the matrices B and D are arbitrary diagonal
matrices.

105

3.1. PDIRK methods with constant diagonal elements

First, we consider the effect of setting D=d'I on the attainable order of those
PDIRK methods which already impose conditions on the matrix D. Assuming that the
generating corrector always satisfies the condition Ae=c, we find, according to the
specification of PDIRK methods in Section 2.3, that

Type B.2: D = diag(Ae) = de =c,
Type C.3: DAe = AZ¢ = de = Ac.

By observing that third-order correctors require that bTe=1, bTc=1/2, bTAc=1/6 and
bTc2= 1/3, we see that PDIRK methods of Type B.2 cannot satisfy these conditions, so
that their order is limited to p*=2, which is obtained for d=1/2. A necessary condition for
Type C.3 methods to satisfy these third-order conditions requires d=1/3. However, the
fourth-order condition bTA2¢ = 1/24 cannot be satisfied, so that the order of Type C.3
methods is limited to p*= 3. Obviously, we are not interested in such low-order methods.
Furthermore, as will be shown below, we shall exclude methods of Type C.1, because
the number of sequential stages is not optimal with respect to the order p. Thus, in this
section we shall concentrate on PDIRK methods of Type A.1, Type B.1 and Type C.2.

Next, we return to the stability functions (3.3). For B=b'I and D=d"I the matrix
Om(z) can be written as

Nm(2)
(1 -bz)(1 —dzym1 "’

Om(2) =

where N,,(2) is a polynomial in z with matrix-valued coefficients; (3.3) becomes

es"Nm(2)e
1 -b2)(1-dz)™

BTZN,,(2)e
(1-5b2)(1 —dz)™

(3.4) RL(2)=1+ , RO, (2) =

This representation shows that both stability functions are of the form

r
(3.5a) R(z):=(1-dz)"91P(dz), P(dz):= 2 ¢j (dzy,
j=0
where the coefficients c;j depend on ¢ and d (recall that either b=0 or b=d). For future

reference, it is convenient to specify the values of r and ¢ for the various types of
methods. In Table 3.1 these values are listed for general values of d.

106

Table 3.1. Values of 7 and q in the stability function (3.5a).

Type 1A B IC A 1B j1(®
r= m+1 m+1 m+2 m m m+1
q= m m+1 m+1 m m+1 m+1

For an arbitrary given value of d the order of consistency of the stability function
(3.5a) cannot exceed r, hence, by choosing m such that the order p of the PDIRK method
equals 7, we achieve that the number of sequential stages is minimal with respect to the
order p.

3.1.1. Derivation of A-acceptable and L-acceptable stability functions. The following
theorem defines an explicit representation of the stability function.

Theorem 3.1. Let p be the order of the method and let m be such that r=p; then the
coefficients of (3.5a) are given by

PN A e
=

where j = g+1, ¢+2, ..., p,and 0! := 1.

Proof. Since it is assumed that the method is of order p we necessarily have
R(z)=exp(z)+0(zP+1). By expanding the function (1 — dz)4 exp(z) in a Taylor series at z=0
and by equating corresponding coefficients in this expansion and in the polynomial P(z),
defined in (3.5a), we can find the first p+1 coefficients of P. Hence, all coefficients of P
are uniquely determined and are given by (3.5b) (see also Ngrsett [19] and Butcher [3, p.
246] for expressions in terms of derivatives of Laguerre polynomials). []

Notice that the condition r=p excludes methods of Type C.1, because for Type I and
Type II variants the maximal order is m+1 and m, respectively, which is one lower than
the corresponding value of r. As a consequence, for methods of Type C with stability
functions of the form (3.5), the order should be increased by one, which is obtained by
requiring the matrix E to satisfy the condition Ee = Ae — de.

By means of Theorem 3.1 the stability analysis is now rather straightforward.
Following Ngrsett [20] and Butcher [3], we write u=y2 and define the so-called E-
polynomial

107
E@) :=|1-ip)?2[1 - [RGy/d)|?] = |(1 - iy)9|? - |P(iy)|?
=(1+u)-[co—cou+ cau? — ... 12— ufcy — c3u + csu? - ... 1%

From the condition R(z)=exp(z)+O(zP*1) it follows that | R(iy/d) |2=1+O(yP+1), so that
E(y?)=0(yP+1). Hence, all terms of E(y?) of degree less than p+1 in y vanish, so that

E(u) = i €j W, ej = ej(d) := (;I) - 012 -2 z (—l)i Cj-i Cj+is
J=lp/2}+1 i=1

with ¢j:= 0if j>porj<O0.

Because of the maximum principle, we have A-stability if |R(iy) | is bounded by 1 for all
real y, so that the method is A-stable if, and only if, E(u) is nonnegative for u>0.

Values of d for which R(z) is A-acceptable will be called A-acceptable. Let the range
of d-values which are A-acceptable be denoted by I, i.€., Ipg:={d: E(u)20 for all u20};
then the following summary is easily obtained by using Table 3.1 and the order results
obtained for the various types of methods (p* denotes the order of the corrector {A,b}):

Table 3.2. Summary of properties of PDIRK methods with constant diagonal elements.

A-acceptable
Type Condition Order Sequential stages d-values
1A1 m<p*-1 m+1 m Imi1,m
IB.1 m<p*-1 m+1 m+1 Imi1m+1
1C.2 m<p*-2 m+2 m+1 Imi2 m+1
A1 m< p* m m Iy m
IIB.1 m< p* m m+1 Imm+1
IIc.2 m<p*—1 m+1 m+1 Imsl,m+1

Notice that R(z) is L-acceptable if R(z) is A-acceptable and if ¢ > p. From Table 3.2
we see that the methods of Type IIB.1 possess L-acceptable stability functions. Since L-
stable methods are usually more suitable for integrating stiff equations than A-stable
methods, the methods of Type IIB.1 are of interest in spite of the additional sequential
stage when compared with the other methods. However, just as in the case of SDIRK
methods, it is possible that an A-stable method can be made L-stable if the interval of A-
acceptable d-values contains a value for which ¢, vanishes. For g=p <15, this has been
investigated by Wolfbrandt [25] and it was found that such values of d exist for p < 6 and
p = 8. This information is summarized in Table 3.3a.

108

In a similar way, L-acceptable ranges of d-values can be found in the case ¢ = p+1.
These ranges turn out to be nonempty for p < 8 and for p=10, and are given in Table 3.3b.
Moreover, we list the values of dp p,1, which are inside these L-acceptable ranges and
cause cp to vanish, resulting in even stronger damping at ‘infinity’ (L2-stability).

Finally, we considered the case g = p—1, resulting from IA.1 and IC.2 type methods.
Since now the degree of the numerator in R(z) is larger than that of the denominator, a
necessary condition for this case to yield A-stability, is that c, vanishes. For p=2,3,...,10
we determined the zeros of cp(d) and checked the resulting stability function on A-
acceptability. Only for p=2 (d=1/2), p=3 (d=(3+V3)/6), p=4 (d=1.0685790213), and p=6
(d=0.47326839126) A-stability can be obtained. Hence, in this way we have found A-
stable methods of orders p <4 and p=6 requiring p—1 sequential stages. This result is
similar to what is possible in the case of RK methods for sequential computers (cf. [1]
for p<4 and [5] for p=6); however, the present methods contain embedded formulas of

lower order.

Table 3.3a. A-acceptable and L-acceptable values of d for p =gq.
rP=q Range Ipp dpp

1 [1/2, o] 1
2 [1/4, o] 1+V1/2
3 [1/3, 1.068] 0.43586650
4 [0.395, 1.280] 0.5728160625
5 [0.247, 0.361] + [0.421,0.473] 0.2780538410
6 [0.285, 0.54] 0.3341423671
7 empty
8 [0.218, 0.264] 0.2343731596
9 empty
10 empty

Notice that any s-stage, pth-order corrector (even explicit corrector methods) can be
used for generating A-stable methods of Type IB, and any pth-order corrector satisfying
the condition bT=esTA for generating the A-stable methods of Type IIA and IIC, or the L-
stable methods of Type IIB.

Furthermore, we have seen that the stability can be improved by selecting special d-
values. Another possibility, which might be useful in a variable-stepsize implementation,
is to exploit the length of the A- and L-acceptable ranges: for small changes in the step-
size h, the value of 4-d could be kept fixed (as long as the corresponding d-value is still in
the allowed range, of course), so that a new decomposition of / — 4 d dfl dy can be avoided.

109

Table 3.3b. Ranges of L-acceptable values of d for p=g-1.

p=q-1 Range Ipp+1 dpp+1
1 n=V1/2, 1+V12] 0.5
2 [0.181, 2.185] 0.5+V1/12
3 [0.224, 0.572] 0.3025345782
4 (0.248, 0.676] 0.3888576711
5 [0.184, 0.334] 0.2168805435
6 [0.205, 0.378] 0.2579552416
7 [0.157, 0.2029]+[0.2052, 0.234] 0.1690246379
8 [0.171, 0.259] 0.1929778040
9 empty

10 [0.147, 0.165]+[0.1938, 0.1961] 0.1541460739

3.1.2. Accuracy test. It is well known [7] that, when integrating general stiff systems,
the actually observed order is usually much lower than the classical order p. In fact, the
order behaviour is often dictated by the so-called stage order r (for a definition of this
notion and its consequences the reader is referred to [7]). Since most (P)DIRK methods
have stage order r=1, one might question the relevance of PDIRK methods possessing a
high classical order. And indeed, for a general stiff problem, this order reduction
phenomenon has great impact on the accuracy of this type of methods.

However, in [10], Hairer, Lubich and Roche give a thorough analysis of the
behaviour of RK methods when applied to a singular perturbed problem of the form

d d .
(3.6) e-%-ﬁ(yl,yz), -g,yl-fz(yl,yz), with € << 1,

and show that for special RK methods the classical order may still dominate the global
error, especially if stiffness increases (i.e., if €— 0). The motivation for considering this
particular problem class is that it has practical significance and has been extensively
studied in the literature (see the references cited in [10]). An important characteristic of
problems of the form (3.6) is that the eigenvalues of the Jacobian matrix can be clustered
into two groups, and behave as O(1) and O(e~?), respectively. Here we give the essential
result of Hairer et al. concerning the global error (cf. [10, Theorem 1 on p. 680]):

110

Theorem 3.2. Let the RK method be A-stable and let £ < Constant-4; then the global error
for the stiff component y; behaves as O(eh”) + O(hP) if bT = esTA and as O(h” +1y §f
|R(e0)| < 1. For both cases, the global error for the nonstiff component y behaves as
O™+l + 0(wP). 11

This result indicates that Type II methods are to be preferred if € — 0, since then the
global error is dominated by the classical order, whereas methods of Type I will behave
according to their (low) stage order.

To illustrate these properties, we applied a few of the PDIRK methods derived in
the preceding subsection to a problem of the form (3.6), proposed by Kaps [17]:

d
%1' =-Q+elyr+et ot ¥y =1,
3.6) 0<t<1,
d
22 _y1-y0 +), y200) =1,

with the smooth exact solution yj=exp(—2¢) and yp=exp(—t) for all values of the
parameter €.

The methods we have used in our tests are based on correctors of different classical
order (a specification of these correctors can be found in the appendix to the report [14]).
Moreover, all methods were equipped with the special dpp or dp 5,1 values given in the
Tables 3.3 and, consequently, are L-stable and L2-stable, respectively.

For £=10-8 the absolute error for the stiff component y; at the end point t=1 is
given in Table 3.4; here, the error is written in the form 10-4 and the values of A are
listed. Notice that the Type II methods require a stiffly accurate corrector (such as the
Radau ITA formulas) and that L-stable, seventh-order PDIRK methods are only possible
within the family of Type IIB.1 methods (cf. Tables 3.2 and 3.3b). This table clearly
demonstrates the superiority of the stiffly accurate Type II methods over the Type I
methods, which show only a second-order behaviour for the global error (recall that r=1
for the Type IB.1 methods). On the other hand, the stiffly accurate methods exhibit the
classical order in the error behaviour and thus both results are in perfect agreement with
the estimates in the theorem of Hairer et al.

From this experiment we may conclude that it is relevant indeed to have high-order
PDIRK methods for integrating stiff systems of the form (3.6), in spite of their low
stage order.

Comparing the efficiency of the various parallel methods of Type II, we observe
that schemes of Type A and C are equally efficient, since they require the same number of
sequential stages (cf. Table 3.2). The Type IIB.1 methods yield slightly more accurate
results, but need an additional stage to reach the same order (we remark that the seventh-

111

order method of this type does not show full advantage, since the integration process was
impeded by the machine precision).

Table 3.4. Values of A at t=1 for the first component of problem (3.6) with e=10-8,

Seq. Stages
Type Corrector Order h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 per step Proc.
IB.1 RadaullA 3 3.7 4.1 4.6 5.2 5.8 3 2
Gauss-Legendre 4 2.9 3.6 4.2 4.8 54 4 2
Explicit RK 4 3.0 3.7 4.3 4.9 5.5 4 4
Radau ITA 5 3.6 4.3 4.9 5.5 6.1 5 3
Gauss-Legendre 6 3.1 3.7 4.4 5.0 5.6 6 3
ITA.1 RadauIIA 3 4.0 49 5.8 6.7 7.6 3
Radau ITA 5 6.9 8.4 9.8 10.6 11.0 5 3
IIB.1 RadauIlA 3 4.3 5.2 6.1 7.0 7.9 4 2
Radau ITA 5 7.2 87 103 11.8 11.8 6 3
Radau ITA 7 9.7 10.2 10.6 109 11.2 8 4
IIC.2 RadauIIA 3 4.0 4.9 5.8 6.7 7.6 3 2
Radau ITA 5 6.9 8.4 9.8 10.6 11.0 5 3

3.2. PDIRK methods with arbitrary diagonal matrices
In the case where B and D are allowed to be arbitrary diagonal matrices, it is
convenient to express Q)y(z) in the form

Om(@) =U-Z1"W-2m+2Z"Qg
= [I - ZI"\[I - 2™ + Z™(I - D)l - zBY"}{I + 2E).
Since [/ — zD1™! = [I - zA]1{I - Z], we find
Om(2) = [— 2D - zAY 1[I - Z™ + (I -)21 - 2Dl - zBY V(I + 2E]] ,
so that (3.3) yields
. RL,(z) =1+2bT[I — 2AY 1[I - Z™ + [- Z)Z"[I - D)l — zBY1(I + zE]] e,

R (z) =e I -zAl"\[I - Z™ + (I - Z)ZMI - zD){I - zB]"MI + zE]]e =

=1+ &1 — zA]"Y[2A - Z™ + (I - Z)Z™(I - zD][I - zB1}{I + zE]]e.

112

In the following two subsections, a representation for the stability functions
without inverses of matrices will be given, and stability characteristics of PDIRK
methods of the Types IB.2, IIB.2 and IIC.3 are presented.

3.2.1. Representation theorems. The following theorem gives a representation of the
stability functions in terms of determinants containing only inverses of diagonal

matrices:
Theorem 3.3. The stability functions (3.3") can be represented by

RL (2) = det{/—zA+z[1-27m 4+ [I-Z)Zm(I - z2D)[I - zB] 1[I + zE]]eb™ }
m det {I-zA} ’

3.7
det{I—zA + [zA — Z™ + (- Z)Z™[I - zD][I — zB] 1[I + zE]] ee,T}
det {1 zA}

RUp(2) =

Proof. Applying the identity

Tn-1, det{N + yxT}
1+x'Nly= det (N}

to the stability functions (3.3") straightforwardly leads to the representations (3.7). []

The expressions (3.7) can be simplified for the respective Types A, B and C:

Corollary 3.1. Let the matrix Z be given by Z = z[A-D][/ - zD]-1; then the following
assertions hold:

(a) The stability function of PDIRK methods of Type A.1 are given by

det{/ - zA + z[I — z2ZmA)ebT }
det {I - zA}

det{ - zA + z[I — Z™Aee T}
det {I - 24} ’

(3.8a) Rlyu(2) =

R“m(z) =

(b) The stability function of PDIRK methods of Type B are given by

det{ - zA + z[1 - Zm+1]ebT}
det {I - zA}
det{/ - zA + [2A — ZMm+1]ee T}
det {I - zA} '

(3.80) RlL,(z) =

RHm(Z) -

113
(c) The stability function of PDIRK methods of Type C.2 or Type C.3 are given by

I-zA + z[I — z2Zm+1A]ebT

38¢) Rl = det{/-zA + z[I -z JebT} ’
det {I - zA}

det{ - zA + z[I - Zm+1]1Aee,T}

det {I - zA}

R, (2) = 0

Notice that these expressions no longer explicitly depend on E and B and are
completely determined by the corrector and the matrix Z.

3.2.2. Stability characteristics. In this subsection, we consider the stability of PDIRK
methods. We shall distinguish between methods based on Radau IIA correctors and on
Gauss-Legendre correctors.

The Radau ITA correctors have order p=2s—1, where s is the number of stages, and
satisfy the condition bT=esTA (their Butcher arrays for s=1,...,4 are given in the appendix
to [14]). Owing to this property, PDIRK methods of Type I and Type II are both
relevant. We confine our considerations to types which require (with respect to their
order) less sequential stages than the corresponding methods indicated in Table 3.2, that
is, we consider methods of the Types 1B.2, IIB.2, and IIC.3. For these types of methods,
the stability functions are completely determined.

Table 3.5. Characteristics of PDIRK methods based on arbitrary B- and D-matrices

Type Corrector Order Seq.Stages Processors Stability
IB.2 RadaullA 3 2 2 Strongly A-stable
Gauss-Legendre 4 3 2 Strongly A-stable
Radau 1A 5 4 3 Strongly A-stable
Gauss-Legendre 6 D 3 Strongly A(a)-stable, o=89.97°
Radau ITA 7 6 4 Strongly A(a)-stable, @=83.3°
IIB.2 Radau ITA 3 3 2 L(a)-stable, a=89.75°
Radau ITA 5 5 3 L(a)-stable, @=89.12°
Radau ITA 7 7 4 L(a)-stable, @=89.02°
IIC.3 RadauIlA 3 2 2 A-stable
Radau ITA S 4 3 A(a)-stable, @=89.997°

Radau ITA 7 6 4 A(a)-stable, a=89.95°

114

In Table 3.5, we present a summary of the characteristics of these methods for several
orders. Based on the stability functions (3.8), the stability region of the methods was
determined numerically. It turned out that some stability functions are only A(a)-
acceptable. However, in these cases a is very close to 90° (in the Appendix to [14], a set
of stability regions is given, including the regions of the embedded lower-order methods).

Furthermore, we considered PDIRK methods based on Gauss-Legendre correctors.
Such s-stage correctors have order 2s, but are not stiffly accurate and, hence, only Type I
methods are relevant. In Table 3.5 we have included the characteristics of fourth- and
sixth-order methods of Type IB.2 (the generating correctors can be found in [3, p. 219]).

In comparison with the PDIRK methods constructed in Section 3.1, we observe
that the above PDIRK methods of Types IB.2 and IIC.3 require one sequential stage less
to obtain a given order of accuracy. Moreover, with the exception of the 7th-order method
of Type IB.2, these methods possess almost the same good stability properties.

For the methods of Type IIB.2 (for which the order equals the number of sequential
stages), only the seventh-order is relevant, since in Section 3.1 it turned out to be
impossible to construct an L-stable method of order 7 with 7 sequential stages; the third-
and fifth-order methods of Type IIB.2 do not have an advantage over the L-stable methods
described in Section 3.1.

3.2.3. Accuracy test. We conclude this section by applying the methods specified in Table
3.5 to the problem (3.6"). Using the same notation as described in Section 3.1.3, the
results are given in Table 3.6.

Again, the stiffly accurate Type II methods are much more efficient than the
methods of Type I. Moreover, the order behaviour nicely illustrates the results of the
theorem of Hairer et al. (cf. Section 3.1.2). Furthermore, within the class of stiffly
accurate methods, the C-variant is superior to the B-variant, since it is cheaper and yields,
for this example, more accuracy.

115

Table 3.6. Values of A at t=1 for the first component of problem (3.6") with 10738,

Seq. Stages
Type Corrector Order h=1/4 h=1/8 h=1/16 h=1/32 h=1/64 per step Proc.
IB.2 RadaullA 3 2.8 3.8 4.1 4.7 53 2 2
Gauss-Legendre 4 2.7 3.4 4.0 4.6 53 3 2
Radau TA d 2.4 2.8 3.4 4.1 4.8 4 3
Gauss-Legendre 6 3.0 3.5 4.1 4.8 5.4 5 3
Radau A 7 4.2 4.6 5.2 5.8 6.4 6 4
IIB.2 RadauIlA 34 4.1 4.9 5.8 6.7 2
Radau TA 5 4.9 6.1 7.5 9.0 104 5 3
Radau TA 7 6.4 82 10.1 119 125 7 4
IIC.3 RadauITA 3 4.3 5.2 6.1 7.0 7.9 2 2
Radau ITA 5 6.6 8.0 9.4 10.8 11.6 4 3
Radau ITA 7 8.7 10.6 12.0 123 12.6 6 4

4. EFFICIENCY TESTS

Finally, we will investigate the performance of PDIRK methods when run on a
parallel computer. Because it is highly desirable to use an unconditionally stable method
of high order, we selected a PDIRK method of Type IIB.1 with a D-matrix of the form
D=d'I. On the basis of the accuracy test described in Section 3.1.2, we decided to choose
the seventh-order, four-point Radau IIA corrector (see (A.3) in the Appendix to [14]),
with m=7 iterations. The resulting method is of order seven (cf. Theorem 2.2) and by
choosing d=0.1690246379 we achieve strong damping at infinity (L2-stability, cf. Table
3.3b). Hence, taking into account the (implicit) predictor, the method requires eight
sequential stages per step. We have implemented this method on an ALLIANT FX/4
computer, having four parallel (vector-) processors, shared memory and approximately 16
digits arithmetic precision. Since the underlying Radau method has four stages, we may
expect an efficient use of this machine.

In order to be able to test problems with a strongly fluctuating solution, we
equipped the above fixed-order PDIRK method with a simple strategy for error control and
stepsize selection. Since the PDIRK approach provides a whole set of embedded reference
solutions of lower order, we can construct an estimate of the local truncation error
without additional costs. For this purpose we take Il e4TY(™) — ¢4TY(™-1)|| as an estimate
for the local error. All implicit relations are iterated using modified Newton iteration. If
convergence happens to fail within a fixed number of iterations (in our version, we
choose this number equal to 10), then we update the Jacobian and, if still no convergence
can be obtained, we halve the stepsize (repeatedly, if necessary). Furthermore, the Newton

116

process to solve for ¥(/) is started with the initial guess ¥(~1), which is of increasing
accuracy for increasing j. It should be observed that this provisional implementation
certainly can be improved by a better tuning of the separate elements (for example, all
kinds of thresholds and strategy parameters should be tuned on the basis of extensive
testing). Since it is not the aim of this paper to present such a ‘production code’, we will
give results for our ‘research version’.

The goal of our tests is twofold:

(i) We want to investigate to what extent the theoretical parallelisation can be realised in
practice; in other words, what speedup factor can be obtained on this four-processor
machine. Obviously, the ideal factor of four will be too optimistic, due to some
unavoidable overhead, like communication and sequential parts in the program.

(ii) We want to compare the performance of the parallelised PDIRK code with that of a
good sequential ODE solver. Within the class of sequential solvers based on
unconditionally stable methods, we selected the code SIMPLE of Nérsett and Thomsen
[22]. The method underlying this robust and reliable code is closely related to the PDIRK
method, i.e., it is also based on an unconditionally stable, diagonally implicit Runge-
Kutta method. Furthermore, SIMPLE is, like PDIRK, equipped with embedding techniques
to control the local error. A disadvantage of this code is that its order is rather low; it is
based on a third-order DIRK method. However, high-order A-stable DIRK-codes are not
available in the literature. Since many problems are more efficiently integrated if high-
order formulas are available, we also looked for a code based on methods of various
orders. This leads us to LSODE of Hindmarsh [11]. This BDF based code has enjoyed very
successful usage over a long period. However, the fact that only the first- and second-
order formula in this code are unconditionally stable, makes LSODE less robust as a
general stiff solver. It is well known that the performance of this code may decrease
significantly when it is applied to problems with eigenvalues in the vicinity of the
imaginary axis (see, for example, Stewart [23]). On the other hand, since LSODE is
generally accepted as being a good sequential ODE solver, we decided to include it in our
tests.

In the next subsections, we describe the results obtained when the aforementioned
three codes are applied to some hard problems. Since the codes are different in nature (low
order versus high order, onestep versus multistep), we refrain from specifying the
traditional statistical output of an automatic ODE solver, like number of steps, number of
LU-decompositions etc. It should be observed that the work involved per step is quite
different for the various codes: for instance, the sequential number of implicit relations to
be solved per step equals 1 for LSODE, 4 for SIMPLE, and 8 for PDIRK. Since the codes do
not yield equal accuracy for the same value of the local error control parameter TOL, we

117

list results for various values of TOL and measured the accuracy produced as well as the
CPU-time required. All accuracies are given in terms of A, the number of correct digits in
the endpoint of the integration interval (see Section 3.1.2), and the CPU-times are given
in seconds.

4.1. Robertson kinetics example
In our first example we solve a set of reaction-rate equations:

d

%1-=—0-04y1+104y2y3,

dyy 7 tony2
@) =F =004y - 104y y3-3107 02)%,

[P g

= = 3107 5%,

defined on the interval [0,108] with initial conditions y1(0) = 1, ¥2(0) = y3(0) = 0. This
problem is also used by Hindmarsh and Ngrsett-Thomsen to illustrate the performance of
LSODE and SIMPLE.

Initially, the solution changes rapidly and small stepsizes are required; gradually the
solution reaches a steady state and the stepsize can be increased considerably. In a typical
situation we observed stepsizes in the range [10-3, 106]. Hence this problem imposes a
severe test on the stepsize selection procedure. The results obtained by the various codes
are collected in Table 4.1. Here T means the CPU-time when only one processor is used,
and T4 denotes the CPU-time required when the program is run on four processors.

Table 4.1. A-values and CPU-times for problem (4.1)

Method TOL A Ty T4
104 6.5 0.63 0.85
SIMPLE 105 7.8 1.38 >Tq
106 9.5 3.67 >Tq
105 7.4 0.35 >Tq
LSODE 107 8.6 0.80 >Tq
109 10.3 1.71 5T
PDIRK 102 8.5 0.51 0.19

100 11.1 1.08 0.37

118

These results give rise to the following conclusions:

(i) Concerning the parallelisation of the PDIRK code we observe a speedup with a factor
(T1/T4 =) 2.68 and 2.91 for the two values of TOL that we have used. One reason why
these numbers are less than the optimal speedup factor 4, is the introduction of inevitable
overhead (and of scalar code). Another reason is algorithmic in nature. Each component of
the prediction Y(9 is a numerical approximation to the ODE solution at the point #,+d h
(actually, all processors have solved exactly the same implicit relation in this predictor
stage). These components are used as an initial guess in the various Newton processes
computing Y(1). Since the components of Y(1) are approximations to the ODE solution
at different points (i.e., the Radau points), these initial guesses do not have equal
accuracy, so that we may expect different numbers of Newton iterations on the various
processors. In the case TOL = 1, we measured the actual numbers of Newton iterations
over the whole integration interval and found, for the four processors, 848, 924, 1012
and 1043, respectively. This means that in some steps a few processors have met the
convergence criterion in the Newton process, and thus have been idle for some time while
waiting for the other processors to complete solving their implicit relation. Taking this
aspect into account, the optimal parallelisation cannot exceed a speedup factor equal to
(848+924+1012+1043)/1043 = 3.67. The measured speedup in this case equals 2.91 (i.e.,
79%), showing that the overhead (communication, scalar code etc.) only slightly degrades
the performance. The reduction of the ideal facor 4 to 3.67 is a price we have to pay in
choosing a PDIRK method. We may conclude that the actual efficiency of the method as a
whole, defined as the total speedup devided by the number of processors used, equals
2.91/4 = 0.73.

(ii) Concerning the scalar codes SIMPLE and LSODE, we observe that they run faster on
one processor than on four (see the result obtained by SIMPLE for TOL=10-4).
Apparently, the parallelization and vectorization overhead does not pay for this problem
(this might be different in case of an ODE with many components). Therefore, we only
give timings for the uniprocessor experiments.

(iii) When compared with PDIRK, we see that SIMPLE needs much more time in the high-
accuracy range. This is obviously due to its low order. LSODE, which can utilize higher
orders, is more efficient in this range but, when compared to PDIRK, its CPU-time is
approximately four times larger to obtain 8.5 digits precision and this factor increases if
still higher-precision results are requested (notice that even on one processor, PDIRK is
faster than LSODE on this problem).

119

(iv) Finally, we observe that the value for TOL used by PDIRK is several orders of
magnitude larger than the value used by either SIMPLE or LSODE to achieve the same
global error. This can be explained as follows: Owing to its high order, the local
truncation error of PDIRK is usually relatively small. Therefore, if crude tolerances are
used, the error control mechanism signals that a large stepsize can be used in order to
balance the estimated and the requested local error. On the other hand, the Newton process
imposes a limitation on the stepsize. In our implementation, the Newton processes to
solve for Y(0) are given the value yj, as initial iterate. Unfortunately, for large values of
h (as suggested by the error estimator) this initial iterate is not always inside the
contraction domain for the Newton process, resulting in an adequate reduction of the
stepsize. As a consequence, this high-order scheme, using a small(er) stepsize, will
produce a local error which is much smaller than requested.

In conclusion, for this test problem (and also for the problem to be discussed in the next
subsection), the restriction on the stepsize imposed by the Newton process is more
stringent than that imposed by the local error control, unless very small values for TOL
are used. We have also integrated some linear ODEs (for which the convergence problems
are not relevant, of course) and observed a relation between TOL and the global error
similar to that of SIMPLE and LSODE.

Summarizing, for obtaining highly accurate results, the above experiment shows
that the high order of the PDIRK method is worth the large amount of redundancy
introduced in its construction. In this connection we remark that the order of these
methods can still be raised to 10, whereas an increase of the order is not possible for BDF
methods and not feasible for embedded DIRK methods underlying the SIMPLE code.

4.2. Van der Pol's equation
Our second example is given by the van der Pol equation

@2 Yy -p(-y)y+y=0.

For p=5, this is problem E2 from the testset of Enright et al. [8]. However, as reported
there, on the interval [0,1] the spectral radius of the Jacobian does not exceed 15, so that
the problem is not really stiff. Therefore, we set this parameter to 50. For this y-value
the equation exhibits so called ‘relaxation oscillations’, which means that the solution
possesses internal boundary layers. Furthermore, we consider an integration interval
sufficiently large to capture such an internal layer, which again requires an adequate
stepsize selection procedure. The problem tested in this section is defined by

120

y2, y1(0) =2,
4.2) 0<r<415.

50(1-G12) y2-y1, y20= 0,

&S &f®

This test example has also been discussed by Gottwald and Wanner in [9]. At
approximately ¢=40.7, the solution y; drops from 1 to —2 on a very short interval,
forcing the codes to reduce their steplengths dramatically (several orders of magnitude).
The results of the various codes applied to this problem can be found in Table 4.2.

Again, we see that PDIRK can take advantage from the availability of four
processors: on the average, the speedup is 2.9 (or, equivalently, the efficiency is = 0.72).
For this problem the loss in efficiency due to overhead is less than (1-0.72 =) 0.28,
because the various processors required a different number of Newton iterations (viz., for
TOL=10"3 we found 3186, 3561, 3882 and 4092 iterations, respectively, thus reducing
the optimal speedup factor from 4 to 3.6).

Furthermore, it is quite clear that the low-order SIMPLE code becomes excessively
more expensive for smaller values of TOL. On the other hand, LSODE behaves rather
efficient for this problem and is approximately equally efficient as PDIRK.

Table 4.2. A-values and CPU-times for problem (4.2")

Method TOL A T T4
106 5.6 1.07 >T1
SIMPLE 10°8 6.9 5.64 >Tq
10-10 7.8 25.5 >T1
10-6 43 0.24 >T1
LSODE 10-8 6.3 0.42 >T1
10-10 7.8 0.83 >T1
10 5.1 0.56 0.20
PDIRK 10-2 6.1 1.20 0.41

103 12 2.44 0.82

121

4.3. Conclusions
On the basis of these (difficult) problems we may draw the following conclusions:

- the actually obtained degree of parallelization of the PDIRK method is fairly close to its
ideal value.

- the reason that SIMPLE is less efficient than the other two codes, especially in the high
accuracy range, is because of its low order.

- it is well known that the higher-order BDF formulas lack the property of L-stability.
This may result in serious difficulties for LSODE in the case that the Jacobian has
eigenvalues in the vicinity of the imaginary axis. However, the two test problems do
not belong to this category; hence, LSODE has not been faced with the limitation of
the stability regions of the higher-order BDFs.

- unlike the implementation of SIMPLE and LSODE, the implementation of PDIRK does
not require additional costs in calculating a reference solution.

- the present research version of the PDIRK code is at least as efficient as the well-
balanced, extensively tested LSODE code.

- a future version of a PDIRK code can be improved as follows:

(i) better tuning of the stepsize strategy parameters and, particularly, finding
more accurate initial iterates for the Newton process in the prediction stage,

(ii) implementation of a variable-order strategy; L-stable PDIRK formulas of
orders up to 10 (excluding order 9) are available;

(iii) implementation of a stiffness detector, like the one in SIMPLE, and
switching to parallel fixed-point iteration (PIRK methods, cf. [12]) in
nonstiff regions of the integration interval.

Acknowledgement. The authors like to thank dr. W.H. Hundsdorfer for the fruitful
discussions on the order reduction phenomenon and drs. W.M. Lioen for assisting them
with the experiments on the ALLIANT FX/4.

122

REFERENCES

[1] Alexander, R. (1977): Diagonally implicit Runge-Kutta methods for stiff ODEs,
SIAM J. Numer. Anal. 14, 1006-1021.

[2] Burrage, K. (1991): The error behaviour of a general class of predictor-corrector
methods, Appl. Numer. Math. 8, 201-216.

[3]1 Butcher, J.C. (1987): The numerical analysis of ordinary differential equations,
Runge-Kutta and general linear methods, Wiley, New York.

[4] Cash, J.R. & Liem, C.B. (1980): On the design of a variable order, variable step
diagonally implicit Runge-Kutta algorithm, J. Inst. Maths. Applics. 26, 87-91.

[5] Cooper, G.J. & Sayfy, A. (1979): Semiexplicit A-stable Runge-Kutta methods,
Math. Comp. 33, 541-556.

[6] Crouzeix, M. (1975): Sur l'approximation des équations différentielles
opérationnelles linéaires par des méthodes de Runge-Kutta, Ph. D. Thesis,
Université de Paris.

[71 Dekker, K. & Verwer J.G. (1984): Stability of Runge-Kutta methods for stiff
nonlinear differential equations, CWI Monograph 2, North-Holland, Amsterdam-
New York-Oxford.

[8] Enright, W.H., Hull, T.E. & Lindberg, B. (1975): Comparing numerical methods
for stiff systems of ODEs, BIT 15, 10-48.

[91 Gottwald, B.A. & Wanner, G. (1981): A reliable Rosenbrock integrator for stiff
differential equations, Computing 26, 355-360.

[10] Hairer, E., Lubich, Ch. & Roche, M. (1988): Error of Runge-Kutta methods for
stiff problems studied via differential algebraic equations, BIT 28, 678-700.

[11] Hindmarsh, A.C. (1980): LSODE and LSODI, two new initial value ordinary
differential equation solvers, ACM/SIGNUM Newsletter 15 (4), 10-11.

[12] Houwen, P.J. van der & Sommeijer, B.P. (1990): Variable step iteration of high-
order Runge-Kutta methods on parallel computers, J. Comp. Appl. Math. 29, 111-
127.

[13] Houwen, P.J. van der & Sommeijer, B.P. (1990): lterated Runge-Kutta methods on
parallel computers, SIAM J. Sci. Stat. Comput. 12, 1000-1028.

[14] Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. (1989): Embedded diagonally
implicit Runge-Kutta algorithms on parallel computers, Report NM-R8912, Centre
for Mathematics and Computer Science, Amsterdam.

[15] Iserles, A. & Ngrsett, S.P. (1990): On the theory of parallel Runge-Kutta methods,
IMA J. Numer. Anal. 10, 463-488.

[16] Jackson, K. & Ngrsett, S.P. (1988): Parallel Runge-Kutta methods (manuscript).

123

[17] Kaps, P. (1981): Rosenbrock-type methods, in: Numerical methods for stiff initial
value problems, G. Dahlquist and R. Jeltsch (eds.), Bericht nr. 9, Inst. fiir
Geometrie und Praktische Mathematik der RWTH Aachen.

(18] Lie, L. (1987): Some aspects of parallel Runge-Kutta methods, Report No. 3/87,
Division Numerical Mathematics, University of Trondheim.

[19] Ngrsett, S.P. (1974): Semi-explicit Runge-Kutta methods, Report Mathematics and
Computation No.6/74, Dept. of Mathematics, University of Trondheim.

[20] Ngrsett, S.P. (1975): C-polynomials for rational approximation to the exponential
function, Numer. Math. 25, 39-56.

[21] Ngrsett, S.P. & Simonsen, H.H. (1989): Aspects of parallel Runge-Kutta methods,
in: Numerical methods for ordinary differential equations, A. Bellen, C.W. Gear &
E. Russo (eds.), Proceedings L'Aquila 1987, Lecture Notes in Mathematics 1386,
Springer-Verlag, Berlin, 103-117.

[22] Ngrsett, S.P. & Thomsen, P.G. (1984): Embedded SDIRK-methods of basic order
three, BIT 24, 634-646.

[23] Stewart, K. (1990): Avoiding stability-induced inefficiencies in BDF methods, J.
Comput. Appl. Math. 29, 357-367.

[24] Tam, H.W. (1989): Parallel methods for the numerical solution of ordinary
differential equations, Report No. UIUCDCS-R-89-1516, Computer Science
Department, University of Illinois.

[25] Wolfbrandt, A. (1977): A study of Rosenbrock processes with respect to order
conditions and stiff stability, Ph. D. Thesis, Chalmers University of Technology,
Goteborg.

CHAPTER V

Iterated Runge-Kutta methods on parallel computers

published in: SIAM J. Sci. Stat. Comput. 12 (1991), 1000-1028

Ermrata: - The C.R. classification (p. 125) should read: G.1.7
- In formula (4.10a), on p. 140, ‘bg = 0’ should read ‘bg =0’
- The name of Section 4.3.2, on p. 140, should read ‘Lobatto
IITA method’

SIAM J. Sc1. STAT. COMPUT. © 1991 Society for Industrial and Applied Mathematics 125
Vol. 12, No. 5, pp. 1000-1028, September 1991 002

ITERATED RUNGE-KUTTA METHODS ON PARALLEL COMPUTERS*

P. J. vaN DER HOUWENT AND B. P. SOMMEUIJERT

Abstract. This paper examines diagonally implicit iteration methods for solving implicit Runge-Kutta
methods with high stage order on parallel computers. These iteration methods are such that after a finite
number of m iterations, the iterated Runge-Kutta method belongs to the class of diagonally implicit
Runge-Kutta methods (DIRK methods) using mk implicit stages where k is the number of stages of the
generating implicit Runge-Kutta method (corrector method). However, a large number of the stages of this
DIRK method can be computed in paraliel, so that the number of stages that have to be computed sequentially
is only m. The iteration parameters of the method are tuned in such a way that fast convergence to the
stability characteristics of the corrector method is achieved. By means of numerical experiments it is also
shown that the solution produced by the resulting iteration method converges rapidly to the corrector
solution so that both stability and accuracy characteristics are comparable with those of the corrector. This
implies that the reduced accuracy often shown when integrating stiff problems by means of DIRK methods
already available in the literature (which is caused by a low stage order) is not shown by the DIRK methods
developed in this paper, provided that the corrector method has a sufficiently high stage order.

Key words. diagonally implicit Runge-Kutta methods, parallelism, stability
AMS(MOS) subject classifications. 65M10, 65M20

C.R. classification. 5.17

1. Introduction.

1.1. Runge-Kutta methods. Suppose that we want to solve stiff initial-value prob-
lems for systems of first-order, ordinary differential equations (ODEs), i.e.,

dy(t

) Eogy@), v =y, yR-R, LRxRIRY
by means of a Runge-Kutta (RK) method. Then the stiffness of the problem requires
that the RK method should be sufficiently stable, preferably A-stable, and therefore
implicit. This leads us to fully implicit RK methods (IRK methods) in which the
Butcher array,

(1.2) %,

has a full A matrix. Most widely used are the IRK methods based on Gaussian
quadrature formulas (such as Gauss-Legendre, Lobatto, and Radau methods), which
are known to be A-stable for any order of accuracy. However, the high degree of
implicitness of these methods implies that solving the implicit relations is rather costly.
In general, a k-stage IRK method (that is, b and ¢ are k-dimensional vectors and A
is a k-by-k matrix) requires in each step the solution of a system of dimension kd, so
that the computational complexity is of order (kd)’. This compares unfavourably with
implicit linear multistep methods which require in each step the solution of a system
of dimension d.

In order to reduce the computational labour involved when using implicit RK
methods, various people have considered diagonally implicit RK methods (DIRK
methods) possessing a lower triangular A matrix and therefore requiring (in general)

* Received by the editors January 16, 1990; accepted for publication (in revised form) September 12, 1990.
T Centre for Mathematics and Computer Science, Post Box 4079, 1009 AB Amsterdam, the Netherlands.

126 PARALLEL ITERATED RUNGE-KUTTA METHODS

in each step the solution of k systems of dimension d. Hence, the computational
complexity is now of order kd* instead of order (kd)®. Unfortunately, the price we
have to pay for the less expensive DIRK methods is a considerable drop in accuracy
in many stiff problems. This is caused by the phenomenon of order reduction (cf,, e.g.,
[21], [9], [11]) which reduces the observed order of RK methods to their stage order
(or their stage order plus one). Most DIRK methods are particularly sensitive to order
reduction because their stage order is only one or two, which is much smaller than
for k-stage Gauss-Legendre, Lobatto IIIA and Radau ITA methods which have all
stage order k.

An alternative for the DIRK methods are the singly implicit RK methods (SIRK
methods) of Burrage [2] which possess a high stage order. By means of a transformation
technique due to Butcher (see [5], [6]), these SIRK methods can be transformed into
methods that are, like DIRK methods, only diagonally implicit. However, the additional
transformations required in each step cause that the total costs per step are considerably
higher than for DIRK methods.

Yet another possibility is the use of parallel processors. In this paper, we shall
show that on parallel computers the fully implicit relations associated with IRK methods
can be solved efficiently by using the highly parallelizable iteration methods of
diagonally implicit type proposed in van der Houwen, Sommeijer, and Couzy [13].
This brings us back to using IRK methods as corrector method instead of using DIRK
or SIRK methods. In particular, we shall concentrate on iterating IRK methods
possessing high stage orders.

1.2. IRK methods with high stage orders. Most IRK methods are designed in such
a way that they have a high order at the step points. However, as already remarked
above, a high order at step points is often spoiled by order reduction, so that it seems
more natural to look for IRK methods with as high a stage order as possible. In order
to achieve this, we shall consider (k+1)-stage IRK methods of the type

0olo0 o7
cla A

(1.3) ,
b, bT

where b, is a scalar, a, b, and ¢ are k-dimensional vectors, and A is again a k-by-k
matrix. IRK methods of this type have roughly the same computational complexity as
the IRK methods of type (1.2), but they possess the additional parameter vector a
which can be used for increasing the stage order. To see that (1.2) and (1.3) are (almost)
equally expensive, let us assume (for simplicity of notation) that (1.1) is a scalar
problem (i.e., d =1), and let us introduce the vectors

YrH-I:.: (yn,l’. : .’yn,k)T: c= (cls. : 'ack)T,

where y,; denotes a numerical approximation to the exact solution value y(t,+ ch),
h being the stepsize. Then we can write (1.3) in the form

Y,+1—hAf(et,+ch,Y,+,) =ey,+ haf(t,, y,),
yn+1 = yn + hbof(tru yn)+ hb’l.-f(etn +Ch, Yn+1)-

Here, e is the vector with unit entries, and we used the convention that for any given
vectors v=(v;) and t=(¢;), f(t, v) denotes the vector with entries f(¢, v;). If b,=0 and
a=0, then it follows from (1.3’) that (1.3) reduces to (1.2), so that in each step the
computational complexity of (1.2) and (1.3) differ by the evaluation of f(t,, y,), but

(1.3")

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 127

both methods require the solution of a system of dimension kd. Since the bulk of the
computational effort goes into solving this system, the methods (1.2) and (1.3) may
be considered as equally expensive.

The vectors Y,.., and ¢ will, respectively, be called the stage vector and the block
point vector, and the points ¢, and ¢, + ¢k will, respectively, be called step points and
block points. The minimal order achieved at the block points and step points are,
respectively, the stage order and step point order.

If the method parameters are chosen in such a way that the stage order is as large
as possible with ¢ arbitrary, then (1.3) is equivalent to the IRK method derived from
Lagrange quadrature formulas and will be called a Lagrange method. If c; = j/k, then
Lagrange methods reduce to the Newton- Cotes methods studied in Watts and Shampine
[23], and if the components of ¢ equal the Lobatto quadrature points, then they reduce
to the Lobatto IITA methods. However, Newton-Cotes and Lobatto IIIA methods are
only weakly A-stable (i.e., the method hardly damps the highly stiff components in
the numerical error). It is our aim to construct Lagrange methods with better stability
properties than Newton-Cotes and Lobatto IIIA methods, i.e., methods which damp
both nonstiff and stiff components occurring in the numerical error (strongly A-stable
methods).

An important family of IRK methods are the so-called stiffly accurate methods
(cf. Alexander [1]). If the IRK method is of the form (1.3), then this family is obtained
by setting .

(1.4) bo=eia, b =elA =1,

where e, is the kth unit vector. Notice that, when represented by their Butcher array
(1.3), the last row in (1.3) equals the preceding one. It was shown by Hairer, Lubich,
and Roche [11] that this property implies that for certain classes of stiff problems the
method does not suffer the effect of order reduction. Examples of stiffly accurate IRK
methods are the Lobatto IITA, Radau IIA and Newton-Cotes methods.

1.3. Diagonally implicit iteration of IRK methods. After a finite number of m
iterations of the implicit relation for Y,., given in (1.3') by the aforementioned
diagonally implicit iteration process (or briefly diagonal iteration) (see also § 3), the
resulting scheme actually is an (mk+1)-stage DIRK method. One of these stages is
explicit and the other mk stages are of diagonally implicit form. However, a large
number of these mk implicit stages can be computed in parallel, resulting in a process
where only m stages have to be computed sequentially.

The iteration parameters of the method can be tuned in such a way that we get
fast convergence to the stability characteristics of the corrector method, provided that
the corrector is stifly accurate (in § 3.3.1, we will show that the diagonal iteration
of the type employed in this paper is not suitable for iterating nonstiffly accurate
correctors).

Second, it has been demonstrated that the iterated methods based on strongly
A-stable correctors (such as the Radau IIA correctors and the Lagrange correctors
derived in § 4) are within a few iterations strongly A-stable themselves. It is highly
unlikely that this nice property is shared by the methods based on (weakly) A-stable
IRK correctors because the stability function of the iterated methods should converge
to a (weakly) A-acceptable function. In fact, for a number of Newton-Cotes and
Lobatto IITA correctors it was checked that the stability function becomes A-acceptable
only after an infinite number of iterations.

Finally, numerical experiments reveal that the drop in accuracy, exhibited in many
stiff problems by the conventionally constructed DIRK methods, is not shown by the

128 PARALLEL ITERATED RUNGE-KUTTA METHODS

DIRK methods constructed by the diagonal iteration process of this paper. In a
forthcoming paper [4] it is intefided to present a theoretical analysis of this phenomenon
using the error analysis proposed in Burrage [3].

2. Accuracy and stability of the corrector. In the following two subsections, we
discuss the stage order, step point order, and stability of the corrector equation (1.3').

2.1. Stage order. Let Y(7,.,) denote the vector with components y(t, +ch) where
y is the locally exact solution of (1.1) satisfying y(t,) = y,, then, following Butcher
[7], (1.3') is said to have stage order r if the residual left upon substitution of Y(#,.,)
into the formula for Y, ,, is of order r+1 in h, i.e.,

(2.1) Y(t,.,) — hAf(et,+ch, Y(t,.1)) —ey, — haf(t,, y,) = O(h""").

The stage-order conditions for (1.3') are straightforwardly derived (cf. [22]) and are
given by

(22) C;=0, j=1,---,r, C;=a+Ae—c, C;=jAc’'—¢/, j=2,3, -,

where ¢/ denotes the vector with components (c;). Thus, to achieve stage order r for
a given block point vector ¢, we have to solve rk linear equations in k*+ k unknowns,
so that the maximal stage order equals k + 1. The corresponding methods will be called
Lagrange methods.

2.2. Step point order. Consider the formula for y,., given in (1.3'):
(23) yn-H = yn + hbof(tm yn) + hbe(etn +Ch’ Yn+1)'

Since Y,,, approximates Y(,,) with (local) order r+1, r being the stage order (cf.
(2.1)), we can derive that y, ., has (at least) order p=min {r+1, g} if the conditions

(24) D;=0, j=1,---,q, Dy=by+bTe—1, D;=jb'c¢’'-1, j=2,3,---
J d

are satisfied. We remark that p may be larger than min {r+ 1, g} if the methods possess
the property of so-called “superconvergence” which for example is the case in Gauss,
Radau, and Lobatto methods. The error constant of (2.3) is given by

(25) o Dy (g+1)b7c’—1
. q+1°"

(g+1)! (g+1)!

Assuming that ¢ is given, the conditions (2.4) present a linear system of g equations
in k+1 unknowns, so that by setting g =k+1 we achieve at least step point order
p=min {r+1, k+1} for any block point vector c.

As already observed in the introduction, the usual approach in exploiting the
vector ¢ is the maximization of the step point order (to obtain ‘“superconvergence”).
Alternatively, we may use ¢ for improving the stability of the method or for the
minimization of error constants. In this paper, we shall use ¢ for achieving strong
A-stability.

In the special case of stiffly accurate methods satisfying condition (1.4), y,, equals
the last component of Y ., so that the step point order p is also at least the stage order
r, but is sometimes higher. For instance, the Newton-Cotes methods have stage order
k+1 and, if k is even, step point order k+2.

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 129

2.3. Stability. By applying (1.3') to the test equation y’= Ay, we are led to recur-
sions of-the form

(26) Yn+l=[I_ZA]_1[e+za]ym yn+1=(1+b02)yn+ZbTYn+l, z= Ah
Hence,
2.7 Vi1 =R(2)Yn, R(z):=1+boz+zb"[I —zA] '[e+ za].

R(z) is called the stability function of the one-step method. In the special case of
stiffly accurate methods where (1.4) is satisfied, (2.7) reduces to

(2.8) Y1 =R(2)ya, R(z):=e[I-zA] '[e+za].

The stability region of the method is defined by the region where R is bounded
by 1. In the case of the Newton-Cotes methods where the components of ¢ are equally
spaced, it was shown in Watts and Shampine [23] that they are A-stable for k=8 (but
they are not for k=9 and k= 10).

We conclude this section by summarizing in Table 2.1 the characteristics of a
number of correctors available in the literature. In this table, it is assumed that the
IRK method is presented in the form (1.3'), so that for all methods listed the dimension
of the implicit relation to be solved equals kd, d being the dimension of the system
of ODEs.

3. Diagonal iteration. We shall use a diagonal iteration method to solve the stage
vector Y,., from the fully implicit (corrector) equation defined in (1.3'). For scalar
differential equations, the iteration method reads

YV — hDf(et, +ch, YV) = y, e+ haf(t,, y,) + ([A— D] f(t?, Y?),
(3.1a) Y —hDf(et,+ch, YV)=y,e+haf(t,, y,)
+h[A—-D]f(et,+ch, YU™), j=2,3,---,

where (t©, Y?) is an initial approximation to (et,+ch, Y,,;) and D is an arbitrary
diagonal matrix. If m iterations are performed, then y,., is defined by

(3.1b) Yps1=Ynt+hbof (1, ya) + b f(et, +ch, Y™) or y.., =erY™,

respectively, for nonstiffly and stiffly accurate correctors (cf. (1.4)).

By virtue of the diagonal structure of D, the iterated method (3.1) is suitable for
use on parallel processors because in each iteration the components of Y can be
computed in parallel.

TABLE 2.1

Summary of characteristics of IRK methods.

Stage Stiffly
Method Stages Order p order r Stability accurate Reference
Gauss-Legendre k 2k k A-stable for all k no Butcher [7]
Lobatto IITA k+1 2k k+1 A-stable for all k yes Dekker and Verwer [9]
Radau ITA k 2k—1 k L-stable for all k yes Butcher [7]

Newton-Cotes k+1 2[(k+2)/2] k+1 A-stable for k=8 yes Watts and Shampine [23]
Lagrange k+1 k+1 k+1 Strongly A-stable yes Fork=4see§4

130 PARALLEL ITERATED RUNGE-KUTTA METHODS

There are many possibilities for choosing the matrix D which we summarize below:

(i) D= O: this is the most simple choice and yields an explicit iteration method
(fixed point or functional iteration). This approach was followed in Ngrsett and
Simonsen [20], Lie [18], van der Houwen and Sommeijer [12], and Burrage [3]. These
papers deal with the iteration of implicit methods for solving nonstiff ODEs. In the
case of stiff ODEs, we should use matrices D # O.

(ii) D is such that for a prescribed number of iterations the method has favourable
stability characteristics like A-stability or L-stability. This approach was followed in
van der Houwen, Sommeijer, and Couzy [13], where the corrector only serves for
providing its order of accuracy. In fact, it was shown that one may even use explicit
correctors and still can obtain A- and L-stability after the particular number of iterations
and a suitable choice of the matrix D.

(iii) D = diag (Ae) or D =diag (A): this choice leads to nonlinear Jacobi-type
iteration. The few experiments we performed revealed that the convergence is rather
poor, so that we dropped this option.

(iv) D is such that the nonstiff components in the iteration error are strongly
damped. This type of diagonal iteration will be called nonstiff iteration. Nonstiff iteration
can be achieved by minimizing the spectral radius of the matrix A— D (see §3.2). A
large number of experiments showed that this is not the way to proceed, at least not
in the case of the one-step initial approximations to Y, used in this paper.

(v) D is such that the stability function R,,(z) of the iterated method rapidly
converges to the stability function R.,.(z) of the corrector. Hence, the corrector not
only serves for providing its order of accuracy as in [13], but the iterated method also
reflects the (assumed) nice stability properties of the corrector. Within this “stability
function approach” there are various approaches:

- D '¢=A""c: this relation uniquely defines D provided that A is nonsingular.

As observed by Hundsdorfer [15], such matrices D imply that the stability
functions of the corrector and of the iterated method are identical at infinity.
Although a few first experiments did not yet show satisfactory results, this option
should be investigated more closely (see [4]).

- Minimization of the spectral radius of the matrix I — D' A. This choice implies
that R,, converges fast to R, at infinity, but, at the same time, it also strongly
damps the stiff components of the iteration error. This type of diagonal iteration
will be called stiff iteration. It is the approach adopted in the present paper (see
§ 3.3). Our experiments in § 5 reveal that stiff iteration is suited for suppressing
the phenomenon of order reduction within a few iterations, and in this respect,
the methods of this paper perform much better than the methods proposed in
[13].

- Other options as suggested by one of the referees, where some norm of I — D 'A
is minimized rather than the spectral radius, or where R,, — R, is minimized
along the negative z-axis (or larger portions of the left halfplane), has not yet
been tested and may turn out to be still more effective.

(vi) D issuchthatthe lower order error terms in the truncation error are minimized.
Since after a finite number of iterations the iterated method (3.1) formally is still a
DIRK method and therefore suffers from order reduction, such an approach directly
attacks the source for order reduction. This topic will also be considered in [4].

The approach of stiff iteration followed in this paper seems to be rather effective.
However, by no means we do claim that this is the best way to proceed. In [4] we
shall present more firm theoretical and experimental evidence of the merits of the
various approaches for choosing the matrix D.

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 131

3.1. Computational costs. Each step of the (outer) iteration method (3.1a) requires
the solution of a diagonally implicit relation. In order to solve this relation, we apply
Newton iteration (inner iteration). There are various possibilities for starting the
iteration method (3.1a) and the Newton iteration method, and for choosing the Jacobian
matrix J = 9f/dy needed in the Newton iteration process. Obvious choices are listed
in Table 3.1.

All possible combinations are equally expensive because the values of f(t,, ya),
f(et,+ch, YY) and diag (J) are anyhow needed. The first-order approximations will
reduce the magnitude of the smooth error components (low frequencies) more than
the zero-order approximations do, but, unlike the zero-order approximations, they will
also introduce stiff error components in the case of stiff differential equations. This
particularly applies to the Jacobian matrix and the initial inner iterate because these
approximations are needed in each outer iteration. Therefore, we shall only consider
zero-order approximations to the Jacobian matrix and to the initial inner iterate (notice
that in the case of systems of equations, the matrix J becomes a block-diagonal matrix).
Furthermore, our experiments revealed that using zero-order approximations for the
initial outer iterate is more robust than the above first-order approximations, and yields
comparable accuracies. However, it should be observed that the topic of choosing
suitable initial approximations to the stage vector (including multistep approximations
in order to reduce the number of iterations) is extremely important and needs further
research. Burrage [3] discussed this topic in the case of a general class of explicit
predictor-corrector methods for nonstiff problems. His approach may be used to study
initial approximations in the case of diagonally implicit predictor-corrector methods
for stiff problems.

By performing m iterations, the method (3.1) may be considered as a DIRK
method with mk+1 stages, of which one stage is explicit and the other mk stages are
diagonally implicit. In fact, we may represent the method by the Butcher array:

j=0| 0
j=1|c—De D
Jj=2 a A-D D
j=3 a O A-D D
j=m| a o i n o A-D D
(3.1
b, 07 L or o b (nonstiffly accurate correctors)
efa 07 ce 07 el(A-D) efD (stiffly accurate correctors)

Since each iteration step in (3.1a) essentially requires the “wall clock time” involved
in evaluating one component of f(et, +ch, YY~1) and solving one system of dimension
d, we conclude that, effectively, the work involved in performing one step by the DIRK

TABLE 3.1

Starting the inner and outer iteration processes.

Order of approximation 0 1
Jacobian matrix diag[J(et,,ey,)] diag [J(et, +ch, y,e+ hef(t,, y,))]
Initial iterate in (3.1a) YO=y e tO=et, YO =y e+ hef(t,,y,), t P =et,+ch

Initial Newton iterate yu- yae+haf(t,, y,)+hAf(et, +ch, YU)

132 PARALLEL ITERATED RUNGE-KUTTA METHODS

method (3.1") consists of
(evaluation of f and J)+ (LU decomposition of I —d;hJ)
+m[evaluation of f+ N(forward/backward substitution+ evaluation of f)].

In this expression N is defined by

N+ N,+---+N,,
(3.3) N=— zm ,

with N; denoting the number of Newton iterations for computing that component of
Y which requires the largest number of Newton iterations. Usually, the m iterations
are the most expensive part of the total effort per step, and therefore we shall say that
a DIRK method has m effective or sequential stages if there are m diagonally implicit
systems to be solved.

3.1.1. Comparison with conventional DIRK methods. In the experiments reported
in this paper, we used the stopping criterion that the Newton correction should be
about the machine precision which is for our computer 10'%. It turned out that N;
rapidly decreases with j which can be explained by observing that the initial iterate
for starting the next inner iteration becomes more accurate when j increases. This is
an advantage when compared with conventionally constructed DIRK methods already
available in the literature (such DIRK methods will be indicated by “‘conventional”
DIRK methods), because, for conventional DIRK methods, the number of Newton
iterations for solving the implicit relations in the successive stages do, in general, not
decrease.

In order to appreciate the computational costs of DIRK methods of type (3.1'),
we should compare m with the number of sequential stages of conventional DIRK
methods. In Table 3.2, the characteristics of such DIRK methods are listed together
with the PARK and PDIRK methods derived in [16] and [13].

3.2. Order of accuracy. In order to analyse the order of accuracy of the iterated
method (3.1), let Y(¢,.,) denote the vector with components y(t,+ c;h) where y is the
locally exact solution of (1.1). Then, in first approximation, we obtain

Y(t011) =Y = [Y(ty11) = Yo]+ [Yur = Y]
(3'4a) =[Y(t"+1)—Y"+]]+Z[Y"+1—Y(j_l)]
= [Y(trH—l) _Yn+1]+Zj[Yn+l —Y(O)]’ J = 1’ 2’ Y

TABLE 3.2
Summary of characteristics of DIRK, PARK, and PDIRK methods of order p = 3.

Stage Sequential

Order order stages Processors Stability Reference

p=3 1 p—1 1 A-stable Norsett [19]

p=3 2 p—1 1 Strongly A-stable Crouzeix [8]

p=4 1 p-1 1 A-stable Crouzeix [8], Alexander [1]
p=4 1 p—-2 2 L-stable Iserles and Ndrsett [16]
p=3,4,5 1 p—1 [(p+1)/2] Strongly A-stable van der Houwen et al. [13]
p=6,7 1 p-1 [(p+1)/2] Strongly A(a)-stable ibid

p=6,p=8 1)4 [(p+1)/2] L-stable ibid

p=1,8,10 1 p+1 [(p+1)/2] L-stable ibid

P. J. VAN DER HOUWEN AND B. P. SOMMEUJER 133

where Z is the iteration matrix defined by
(3.4b) Z=2Z(hDJ)=[1-hDJ] '[AD™' - I]hDJ,

with J again denoting the Jacobian matrix of f.
Let r be the stage order of the corrector (1.3), then (cf. (2.1))

Y(tn+l) —Yn+l = O(hr+l)'

Since Z = O(h) and Y,.,, — Y” = O(h), the local error of the stage vectors satisfy the
order relation

(3.5) Y(t,1) Y= 0™+ O(K™),

so that, after m iterations, (3.1) defines a method in which Y™ approximates Y(#,+,)
with order r* = min {r, m}. We shall say that (3.1) has stage order r* (although formally,
when (3.1) is considered as a DIRK method, its stage order is only 1). Thus, the
optimal stage-order methods, that is the methods based on the Lagrange methods as
defined above, have stage order r* =k+1 provided that at least m = k+1 iterations
are performed.

In order to get more insight into the rate of convergence of the iteration process
(3.1), we consider the test equation

dy(1)
) == y(1),
(3.6) 2 @
where A runs through the spectrum A(J) of J. The matrix Z assumes the form
(3.7) Z=zD[I-zD]'[D'A-1I]=z[I-zD] '[A- D], z:= Ah.

Suppose that J has a complete eigensystem, and let us call the eigenvectors of hJ
corresponding to the eigenvalues of large and small modulus, respectively stiff and
nonstiff components. From (3.7) we see that for the nonstiff components (i.e., corre-
sponding to small values of |z|) the matrix Z behaves approximately as z[A— D].
Hence, these components in the iteration error are strongly damped if the matrix A— D
has eigenvalues of small magnitude. Thus, rapid convergence of the nonstiff components
is obtained by minimizing the spectral radius of A— D. However, as already remarked
above, such a nonstiff iteration process gives a poor overall convergence. Alternatively,
for the stiff components (i.e., corresponding to large values of |z]), the matrix Z behaves
as —D'[A— D]. Hence, a strong damping of these components requires the minimiz-
ation of the spectral radius of I —D™'A, leading to stiff iteration. In the following
section, we shall see that this condition also plays a role in the stability of the iterated
method.

3.3. Stability. One may argue that there is no reason to continue the iteration
process after m =r iterations, because the stage errors of the corrector and of the
iterated method have become of the same order in h and may therefore be expected
to be of comparable magnitude. However, there is no guarantee that after m=r
iterations the stability properties of (1.3') are also comparable with those of the corrector.
This brings us to consider the stability of the DIRK method (3.1'). In order to see how
the stability depends on the number of iterations m, we apply the method to the test
equation (3.6), so that (3.1a) reduces to

Y™ = (Z™e+[I—-Z]'[I-Z™)[I-2D] '(e+za))y,.

We shall discuss the stability of iterating a nonstiffly accurate and a stiffly accurate
corrector separately.

134 PARALLEL ITERATED RUNGE-KUTTA METHODS

3.3.1. Nonstiffly accurate correctors. If y,., is computed by means of the formula
Vns1=[1+zboly, +zbTY™,

then it can be expressed as

(3.8) Yu1=[1+zby+zb"(Z™e+[I—-Z] '[I-Z™][I-2zD] " (e+za))]y.,
so that the stability function is given by

(3.9) R,.(z):=1+2zby+zb"(Z™e+[I—-Z] '[I-Z™][I — zD] '(e+ za)).

It is easily verified that this function can be written in the form
R,.(z):=1+2zby+zb"[I —zA] '(e+ za) — z°b"Z™[I — zA] '(Ae+a).
Assuming that the stage order of the corrector is at least one, we may set Ae+a=c¢

(see (2.2)), so that
(310) Rm(z) = Rcorr(z) - Zsz[Z(ZD)]m[I - ZA]_lca
where R, denotes the stability function of the corrector given by (2.7). Finally, on
substitution of (3.7) into (3.10) we obtain
(3.11) R,.(2) = Reor(z) — 2™ ([I — zD] '[A— D])"[I - zA] 'c.
From this expression we can derive the convergence behaviour of R,, to R, for large
values of |z|:
R,(2) = Reo(z)+2zb"[I-D'A]"A7'c as |z| >,
showing that for any fixed m the stability function becomes unbounded as |z| tends to
infinity, unless the matrix D is such that
b'[I-D'A]"A 'c=0.
Writing this equation as
b [I-D A" '[I-D'A]JA'¢=b"[I-D'A]" '[A"'¢— D 'c] =0,
we see that it can be satisfied for all m if we choose D such that [15]
(3.12) D '¢c=A""c.
Unfortunately, a few first experiments showed that the performance of the correspond-
ing method (3.1') is not satisfactory (see § 5.3). Therefore, we conclude that diagonal
iteration as defined by (3.1’) is in general not suitable for iterating nonstiffly accurate
correctors and excludes the Gauss-Legendre formulas as suitable corrector methods.
However, it should be remarked that by defining the initial iterate Y implicitly, rather
than just setting Y = y,.e, the above stability problem can be avoided (cf. [13]), so
that the matrix D remains available for improving the performance of the iteration
process. As observed in § 3.1, the topic of finding suitable initial approximations to

the stage vector in diagonally iterated RK methods deserves further research, but will
not be an issue in this paper.

3.3.2. Stiffly accurate correctors. In the stiffly accurate case where y, ., is computed
by means of the formula

yn+l =e;{Y(M)’
we arrive at the stability function
(313) R,,,(z)=Rco,,(z)—ze{[Z(zD)]"'[I—zA]_lc,

P. J. VAN DER HOUWEN AND B. P. SOMMEUER 135

where R, is defined by (2.8). We may express this function in the form
(3.13) R,.(2) = Reore(2) = [0 (2)]7,
where _
Om(z)=[ze{[Z(zD)]"[I - zA] "c]/"
=[z"*'ef ([—zD] '[A— D]))™[I —2zA] 'c]"/™

For fixed values of m and assuming that D has positive diagonal elements, the function
o,.(z) is bounded for all z in the closed left halfplane. This suggests to characterize
the rate of convergence of R,, to R, by means of 0,(z). We shall call 0,,(z) the
convergence factor associated with z. For example, we have

(3.14) 0, (0)=0, o, (0)=[-el[Z(-0)]"A 'c]/™ =[~el[I-D'A]"A c]/™

Ideally, in order to get fast convergence of the stability function R, (z) to that of
the corrector, we should try to minimize o,,(z) in the closed left halfplane. However,
since in actual computation m is determined by some error criterion, we do not know
m in advance, so that such an approach may be unattractive, particularly for larger
values of k where more values of m have to be considered. Nevertheless, in a future
paper [4], this possibility will be studied more closely in order to get further insight
into how crucial the choice of D really is.

Another possibility is the minimization of ¢,,(z) for the highly stiff components
(large values of |z|), because (3.14) shows that o,,(z) is already small for the nonstiff
components. The most simple way to achieve this determines D according to (3:12);
so that o,,(c0) vanishes for all m [15]. In the experiments done so far, the convergence
of the corresponding iteration process (3.1) is not satisfactory.

However, by choosing the matrix D, for a given corrector, such that the spectral
radius of Z(—)=1I—D'A is minimized over all possible diagonal matrices D with
positive entries, we obtained a satisfactory convergence behaviour in a large number
of experiments (see § 5, and the Appendix to [14]). The better convergence may be
explained by observing that in this way, not only the value of o,,() is expected to
be small (cf. (3.14)), but as already shown in § 3.2, at the same time the stiff components
in the iteration error are strongly damped.

Together with the computation of the matrix D (cf. §4), we computed, as a
posteriori test, for a few values of m the “worst” convergence factor defined by

(3.15) = max |om(2)]-

Because o,,(z) is an analytic function in the closed left halfplane, its maximum is
assumed on the boundary, i.e., on the imaginary axis.

In calculating o, it turned out that this quantity is larger than 1 for small values
of m but rather quickly decreases to a moderate size as m increases. The values of o,,
show by what factor the (maximal) difference between the two stability functions is
reduced in each iteration if we continue to iterate when the stage order of the corrector
has been reached. Due to the fact that o,,>1 for small m, it is likely that the
corresponding iterated method is not A-stable. On the other hand, assuming that the
iteration process (3.1) is convergent, we know that [0,,(z)]™ > 0 for m >, i.e., R,(z)
converges to the A-acceptable stability function R.,..(z). Therefore, it is of interest to
know the minimal value of m such that R, (z) is A-acceptable for all m equal to or
larger than this minimal value. This for the iteration process critical number of iterations
will be denoted by m.,. Evidently, the value of m.; is expected to be large if the

136 PARALLEL ITERATED RUNGE-KUTTA METHODS

corrector is not strongly A-stable. In order to illustrate this, we considered the methods
using weakly A-stable Newton-Cotes and Lobatto IIIA correctors (cf. Table 2.1) with
minimized spectral radius of I— D™ 'A. We verified that (for z in the closed left
halfplane) the value of max |R,(z)|J1 as m > oo, so that A-stability is only obtained
in the limit. Hence, the Lobatto IITA and the Newton-Cotes formulas seem to be less
suitable as corrector methods. For the strongly A-stable Lagrange correctors and the
L-stable Radau IIA correctors however, we found modest values of m_,, so that after
a few iterations the resulting method is already A-stable (see § 4).

4. Construction of methods. In this section, we consider a number of stiffly accurate
correctors and we will construct the corresponding matrices D for use on two-, three-
or four-processor computers (i.e., methods of dimension k=2, 3, 4).

For k =2, we shall give a rather detailed derivation, because in this case, it is still
possible to construct suitable matrices D analytically. We derive matrices D for
correctors of Newton-Cotes, Lobatto IITA, strongly A-stable Lagrange, Radau IIA,
and Gauss-Legendre type. The Gauss-Legendre method is not stiffly accurate, and
therefore not suitable for diagonal iteration of type (3.1'), but it is included to
demonstrate its unstable performance. For k > 2, we resort to numerical search methods
for finding suitable matrices D. Here, we refrained from looking for D matrices for
the Gauss-Legendre method because of the rather poor two-processor results. In § 4.4
a summary of the main properties of the various methods is given.

It may be of interest to note that in our numerical search for strongly A-stable
correctors we encountered strong numerical evidence for the following conjecture.

Conjecture. A necessary condition for a stiffly accurate Lagrange method as defined
in § 1.2 to be strongly A-stable is

k+1

—.]
2

k
L¢G>

Jj=1
In order to save space, the correctors are presented by means of the matrix A and
the vectors a and ¢, and the iterated versions by only giving the matrix D, because,
together with the corrector, D completely defines the iterated method. In the following,
we only consider stiff iteration, that is, the construction of D will always be based on
the minimization of the spectral radius p(I — D 'A) of the matrix I — D™ 'A. If the
entries of D are not exact (i.e., for k=3), then they are approximated by rational
expressions. In addition to D, we present the values of p(I — D' A), the range for o,,
with r = m = 10, the corresponding interval I, on the imaginary axis where the maxima
are assumed, and the value of m;, are given (cf. § 3.3.2). Finally, the stage and step

point orders of the method are denoted by r and p, respectively.

4.1. Two-processor methods.

4.1.1. Lagrange methods. Let us first consider two-dimensional Lagrange methods
(k =2) satisfying the condition (1.4). The stage-order conditions (2.2) can be solved
for r=3 and yield the stiffly accurate Lagrange method

. 1 (c(3—2c) —c’) . 1 (3c—4c2+cs)
6(1—-c) c’! 2-3c)’ T6(1—c)\—c'+4-3¢)’

c—(c) =r=3
- 1 s P=r=J,

where c is a free parameter (recall that p =4 if ¢ =3). An elementary calculation shows

(4.1a)

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 137

that the stability function of (4.1a) is given by

__6+2(2-—c)z+(1—c)z2
(4.2) R(z)= 6—2(ct Nz +ez

This function is A-acceptable for ¢ =3 and strongly A-acceptable for ¢ > 3
Next, we determine the matrix D in (3.1). It is convenient to write

1 (1/8 0
D‘6(1—c)(o 1/62)’

so that

e (1 - c(3:2c)61 c’s,)
) 1-(2-3¢)8,
The eigenvalues of I — D' A satisfy the equation
w’—Su+P=0, S:=2-¢(3-2¢c)8,—(2-3¢)é,,
P:=[1-¢c(3-2¢)8,][1-(2—3¢)8,]+c?8,5,.

By setting S = P =0 we achieve that p(I — D 'A) vanishes. The parameters 8, and 8,
then satisfy the equations

c(3-2¢)8,+(2-3¢)8,=2, [1-¢c(3-2¢)8,]’—¢5,8,=0,

leading to
1+Q 1-Q +v6¢
61 = ’ 62 = s Q = s
c(3—2c¢) 2-3¢ 6(1—c¢)

so that the matrix D is given by

1 (c(3—2c)/(1+Q) 0
6(1-c) 0 (2-3¢)/(1-Q)
The iterated Lagrange method with zero convergence factor at infinity is completely

determined by the corrector (4.1a) and the matrix (4.1b).
For ¢ =3 we derive from (4.1a) the Newton-Cotes corrector (with p=4 and r = 3)

1/8 -1 1/5 1
(4.3a) A=2j4‘(16 4), a=52(4), c=(l).

We observe that this corrector coincides with the three-stage Lobatto IIIA method.
The stability function R of (4.3a) reduces to the (2,2) Padé approximation to the
exponential function. Recall that R is A-acceptable but not strongly A-acceptable.
From (4.1b) we obtain the matrix

_1(2/(3+V3) 0
D"z(0 1/(3-3)

0,€[021,036], I, =[3.9i51i], Mey=00.

(41b) D) p(I-D'A)=0.

>, p(I-D7'A)=0,
(4.3b)

A natural question now is, whether it is possible to choose c such that the stability
is improved. Unfortunately, (4.1a) shows that it is not possible to achieve L-stability

138 PARALLEL ITERATED RUNGE-KUTTA METHODS

(which would require ¢ = 1), but strong A-stability is obtained for ¢> 1. For example,
by choosing ¢ =3 we have R(c0)=3. The corresponding Lagrange method is defined by

1 (216 -81 1 (81 3 %)
(4.42) A‘zss(zss —48)’ 8-288(80)’ c—<1

for which p = r=3. The iterated version is defined by
), p(I-D7'A)=0,

_1 (9/(~/§+1) 0
12 0 2/(V2-1)
(4.4b)

0,€[021,033], I,=[3.2i,4.1i], m=2.

4.1.2. Gauss and Radau methods. As reference methods for our numerical experi-
ments, we take the conventional two-stage Gauss-Legendre and Radau ITA methods.
The Gauss-Legendre corrector, and its iterated version is defined by

1 3 3-2V3
A=— =0, b,=0
12(3+2J§ 3) =% T
(4.5a)
1 1 /(6-2V3
= — = — ::4 —
b=3& ¢ 12(6+2J§>’ > =3
1/1 0
4.b D:— I_D_lA =0'
(4.5b) 6(0 3), p()

The Radau ITA-based method is given by

1/(5 -1
A:— = = T= T
12(9 3), a=0, b,=0, b =e, A,
(4.6a)

- i(zo—sx/a 0

= I-D'A)=0
30\ 0 12+3J€)’ p()=0,

(4.6b)
0,€[027,035], I, =[2.6i3.7i], me=1.

4.2. Three-processor methods.
4.2.1. Newton—Cotes method. For k =3 and equidistant abscissas the corrector is

given by

1 19 -5 1 1 9
=—|32 8 0}, a=—|8]|,
= 27 27 9 = 9

(4.7a)

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 139

with p = r =4, and with A-acceptable stability function (see Watts and Shampine [23]).
By a numerical search we found the matrix

897
7303 0 0

D=0 2 0| p(I-DT'A)=001,
0 0 3w

(4.7b)
o,,€[0.49,0.77], I, =[7.1i,8.4i], Mg = OO,

4.2.2. Lobatto INIA method. For k=3 and Lobatto abscissas the corrector is given

by
i 25—v35 25-13V5 -1+V5 11+v5
A=a 25+13v5 25+V5 —1-V5), T 11-V5,
50 50 10 10
(4.8a)
5—5
bo=eia, b =ejA, o= 5+V5 |,
10

with p =6 and r =4, and with A-acceptable stability function (see Dekker and Verwer
[9]). The iterated version is generated by

2661
s 00
D=0 & 0| p(I-D'A)=0.0043,
0 0 1567
9771

(4.8b)
0, €[0.52,0.88], I,=[8.9i10i], mg=00.

4.2.3. Lagrange method. By keeping ¢, and ¢, free, we can construct strongly
A-stable methods with stage order four. It can be shown that the stability function is
A-acceptable for ¢, + ¢, = 1 and strongly A-acceptable for ¢, +¢,> 1. A numerical search
produced the block point vector ¢ = (35,32,1)7 for which parameter values of acceptable
magnitude and a damping factor |R(c0)|=0.143 are obtained. The corresponding
corrector reads

98392 —81634 31213 22589
A= 112000 —61600 28000 |, a= 22400 |,
12060 110592 —48384 36288 L0960 22464
(4.9a)
7
b,=ela, b =ejA, c=é 10
12

with p =r=4. The iterated method is generated by

2246
2 0 0

D= 0 EZ 0] p(I-D'A)=0011,
0 0 3%

(4.9b)
0,,€[049,0.69], I, =[5.1i,62i], mu=3.

140 PARALLEL ITERATED RUNGE-KUTTA METHODS

4.2.4. Radau method. The 3-stage Radau IIA corrector is defined by [7]

88-7V6 296 — 169v6 -2+3V6
360 1800 225
(4.10a) . 296+ 169v6 88+7V6 -2-3v/6
1800 360 225 ’
16—v6 16+v6 1
36 36 9

a=0, b,=0, b '=elA c=Ae

with p=5, r=3, and L-acceptable stability function. The matrix D is given by

4365 0 O
13624
D= 0 33 0| p(I-D'A)=0.0047,
(4.10b) 0 0 188

0,€[0.52,1.0], I,=[6.6i,9.3i], m.=S5.

4.3. Four-processor methods.
4.3.1. Newton—Cotes method. For k =4 and equidistant abscissas the corrector is

given by

646 —264 106 -—19 251
A 1 992 192 32 -8 1 232
Lo ve— » a=—— 1)
28801 918 648 378 -27 28801 243
1024 384 1024 224 224
(4.11a)
1
12
b,=el pT =e’ =i
n=¢€sa, e, A, c als
4

with p =6, r=5, and with A-acceptable stability function. A numerical search did not
produce a better matrix D than
i 0 0 0
0 25 o 0
(4.11b) 0 0o % o
0 0 0 3

0,€[0.76,1.04], I,=[8.7i11.8i], m.,=00.

p(I-D'A)=0.1,

4.3.2. Lobatto IIA method. For k=4 and Lobatto abscissas the corrector is given

343-9v21 392-96v21 343 -69v21 -21+3v21
2520 2205 2520 1960
392+105v21 8 392-105v21 3
@128) A~ 2880 45 2880 320
343+69v/21 392+ 96v21 343+9v21 -21-3V21
2520 2205 2520 1960
L 16 L) !

180 45 180 20

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 141

119+3v21 7-21
1960 14
13 1
320 2
= bo=er b’ =elA = __
A= q19-3vaT |° T SR I 5
1960 14
1
— 1
20

with p =8, r =5, and with A-acceptable stability function. A numerical search produced
the matrix

5 0 0 0
0 11083735’4 0 0 -1
D= I-D'A)=~0.021
(4.12b) 0o o0 & o P () ’
0 0 0 5%

0,€[087,1.32], I,=[15.4i19i], mg=00.

4.3.3. Lagrange method. Numerically, we found that the stability function is
A-acceptable for ¢;+c,+c;=3 and strongly A-acceptable for ¢, +c,+¢;>3. For ¢c=
1 2,4 1)T we obtained parameter values of acceptable magnitude and a damping
factor |R(c0)|=0.325. The corresponding corrector with p=r=35 reads

5452832 —872784 926800 —556248

. 1 17484082 13296591 —6182575 3486252
49896000 | 16192946 22005423 7263025 -—1229844
16232832 21897216 9676800 598752

(4.13a) 22436 2
1 6811 1] 7
= an > b0=e:{.’ bT:C;rAs e=—
332640 | 10043 12| 11
9936 12

The iterated method is generated by
#H o 0 0
0 as 0 0
0 0 % O0)
0

0 0 3086

12339

0,€[0.59,093], I,=[82i118i], m.y=6.

p(I—D™'A)~0.045,

(4.13b)

4.3.4. Radau method. The four-stage Radau IIA corrector reads

.11299947932316 —.04030922072352 .02580237742034 —.0099046765073
.23438399574740 .20689257393536 —.04785712804854 .01604742280652

A
(4.14a) .21668178462325 .40612326386737 .18903651817006 —.02418210489983
.22046221117677 .38819346884317 .32884431998006 =

a=0, b,=0, bT=elA, c=Ae

142 PARALLEL ITERATED RUNGE-KUTTA METHODS

with p=7, r=4, and with L-acceptable stability function. The iterated method is
generated by

W0 0 0
0o 3 0 o0
D= o o 11 o} p(I-D7'A)=0.024,
(4.14b) B9 s
0 0 o 14

0,€[074,1.31], L =[10.0i17.2i], m=7.

4.4. Survey of methods. In Table 4.1, we have summarized a few characteristics
of the methods derived in the preceding sections. In this table, the value of the step
point order p corresponds to values of m equal to or greater than p, and the value of
the stage order r corresponds to that of the corrector. From a computational point of
view, the Lagrange and Radau ITA methods are the most attractive ones, because M
is relatively small. Thus, if these methods are implemented with some local error
strategy for automatically estimating the number of iterations m and the stepsize h
needed to meet local error tolerance, then the value of the “computational efficiency”
quantity mL/h for integrating an interval of length L will not be unnecessarily large
because of the development of instabilities. This observation is confirmed by the
numerical experiments in § 5.4.

5. Numerical experiments. In this paragraph, the (stiff) diagonal iteration method
developed above will be tested by integrating a number of stiff test problems. Section
5.1 presents these test problems. Section 5.2 compares the effective orders of Gauss-
Legendre, Newton-Cotes, Lobatto IIIA, Radau IIA and Lagrange correctors, and in
§ 5.3, the performance of the diagonal iteration process with respect to the number of
iterations is tested for a few two-processor correctors. Finally, in § 5.4, we compare
the efficiency of the iterated methods with a few DIRK methods from the literature.

We recall that we only used the zero-order approximations to the Jacobian matrix
and to the initial inner and outer iterates. In the tables of results, the accuracy of the

TABLE 4.1
Main characteristics of diagonally iterated IRK methods.

Method p r k p(I-D7'A) o,-range (r=m=10) mg;
Newton-Cotes (4.3) 4 3 2 0 [0.21,0.36] 0
Lagrange (4.4) 3 3 2 0 [0.21,0.33] 2
Radau IIA (4.6) 3 2 2 0 [0.27,0.35] 1
Gauss (4.5) 4 2 2 0 s} s}
Newton-Cotes (4.7) 4 4 3 0.008 [0.49, 0.77] <)
Lobatto IIIA (4.8) 6 4 3 0.0043 [0.52, 0.88] ©
Lagrange (4.9) 4 4 3 0.01 [0.49, 0.69] 3
Radau IIA (4.10) 5 3 3 0.0047 [0.52,1.0] 5
Newton-Cotes (4.11) [3 5 4 0.1 [0.76, 1.04] ©
Lobatto ITIA (4.12) 8 5 4 0.021 [0.87,1.32] ©
Lagrange (4.13) 5 5 4 0.045 [0.59, 0.93] 6
Radau I1A (4.14) 7 4 4 0.024 [0.74,1.31] 7

P. J. VAN DER HOUWEN AND B. P. SOMMEUJER 143

results is given by means of the number of correct digits A of the numerical solution
at the endpoint T (i.e., we write the maximum norm of the error at t=T in the form
107%). The computational costs are proportional to mL/h, where h is the fixed
steplength, L:= T — t, is the length of the integration interval, and m is the fixed number
of outer iterations per step. In actual applications of these methods, some strategy is
needed to select h and m. However, since our test problems are such that the exact
solution is equally smooth in the whole integration interval, it is reasonable to use
fixed h and m.

5.1. Test problems. We briefly discuss a few test problems partly taken from the
literature and partly constructed in order to test some special aspect of the methods.
All problems are defined on the interval [t,, T].

Our first problem is the stability test problem of Prothero and Robinson [21]

d _ , :
(512) ==s"-gM+g(D, yw=gl), =0, T=1,
where the exact solution equals g(¢) and ¢ is a small parameter. Prothero and Robinson
used this problem to show the order reduction of RK methods when ¢ is small. In
our experiments we set

(5.1b) g(t)=cos (1), e=10".
The second test problem is the nonlinearization of problem (5.1):

d o ’
(522) T ==sP-g)+g (W, yw=gl), =0, T=1
with exact solution y(t) = g(t) for all values of the parameter €. As in the preceding

problem we set
(5.2b) g(t)=cos (1), e=107".
The third test problem is that of Kaps [17]:

ay

dt yi=y(1+y,),

=—Q@+en+e 00, —P=
(5.3)
yi(to) = y2(te) =1, t,=0, T=1,

with the smooth exact solution y, =exp (—2t) and y, =exp (—t) for all values of the
parameter ¢. This problem belongs to the class of problems for which stiffly accurate
RK methods do not suffer order reduction whatever small ¢ is (cf. Hairer, Lubich,
and Roche [11]).

The test set of Enright, Hull, and Lindberg [10] contains the following system of
ODEs describing a chemical reaction:

: 013+1000y; 0 0
(5.42) —f= " 0 2500y, 0 v,
013 0 1000y, +2500y,

with y(0) = (1, 1,0)". Since we use fixed stepsizes in our experiments, we avoided the
initial phase by choosing the starting point at t, =1 and we used the corresponding

144 PARALLEL ITERATED RUNGE-KUTTA METHODS

initial values

0.990731920827
(5.4b) y(1)= 1.009264413846
—.366532612659x 107>

At t= T =51 we found the approximate solution

0.591045966680
y(51)= 1.408952165382
—.186793736719x 107>

In order to show the performance of the methods on PDEs we included the
convection-diffusion problem

ou du ou .
(5.5) —=u-——2—xcos(t)——xzsln(t), 0=x=1, t,=0, T=1
at ax ax

with Dirichlet boundary conditions and with exact solution u(x, t) = x? cos (t). Stan-
dard finite difference discretization of the spatial derivatives on a uniform grid with
meshsize 1/40 leads to a system of 39 ODEs whose exact solution is given by
(j/40)*cos (1), j=1,-- -, 39.

5.2. Effective orders of the correctors. First of all, we want to show that in many
stiff problems the property of superconvergence does not pay because of the
phenomenon of order reduction, and that strong stability properties may improve the
accuracy considerably.

The Tables 5.1(a) and 5.1(b) present A values for the various test problems obtained
for L/h=1,2, 4,8, 16 by iterating the corrector to convergence. From these results we
can derive for each test problem the effective orders by computing (A(h) —A(2h))/0.3.
For h we chose the smallest value for which results are available. The resulting effective

TABLE. 5.1(a)
Problems (5.1), (5.2), and (5.3) with e =10>. Values of A for L/h=1,2,4,8, 16.

Corrector p r k (5.1) (5.2) (5.3) with £=1073
(4.3a) 4 3 2 47 54 60 67 77 47 53 59 66 75 33 43 51 59 7.0
(4.4a) 3 3 2 51 59 68 78 88 5.0 58 67 77 87 27 3.6 44 53 6.2
(4.5a) 4 2 2 19 25 31 38 47 19 25 3.1 38 46 12 18 24 32 43
(4.6a) 3 2 2 42 47 53 59 65 42 47 52 58 64 24 32 41 50 59
(4.7a) 4 4 3 61 73 85 9.7 - 60 73 85 9.7 - 42 54 66 78 -
(4.8a) 6 4 3 61 73 86 98 - 6.1 73 85 9.7 - 47 6.0 73 93 -
(4.92a) 4 4 3 65 76 88 101 - 65 76 88 100 - 38 50 61 73 -
(4.10a) 5 3 3 50 60 69 79 - 49 59 69 78 - 40 53 63 73 -
(4.11a) 6 5 4 70 82 95 - - 69 81 94 - - 54 67 80 - -

~ (4.12a) 8 5 4 71 84 96 - - 70 83 95 - - 56 68 82 - -

[(4.13a) 5 5 4 75 89105 - - 74 89 104 - - 58 72 88 - -
(4.14a) 7 4 4 63 74 86 - - 63 73 85 - - 50 64 78 - -

P. J. VAN DER HOUWEN AND B. P. SOMMEUER ' 145

TABLE 5.1(b)
Problems (5.3) with ¢ =107%, (5.4) and (5.5). Values of A for L/h=1,2,4,8,16.

Corrector p r k (5.3) with e =10"% , (5.4) (5.5)
(4.3a) 4 3 2 33 45 57 69 8.1 45 57 69 82 94 32 42 54 65 7.7
(4.4a) 3 3 2 27 36 44 53 6.2 3.1 40 49 58 67 3.1 40 48 57 6.6
(4.5a) 4 2 2 1.2 1.8 24 30 36 50. 6.1 73 85 97 19 26 32 39 438
(4.6a) 3 2 2 24 32 41 50 59 34 43 52 61 70 25 32 40 48 5.7
(4.7a) 4 4 3 42 54 6.7 79 - 47 59 71 83 - 46 59 72 84 -
(4.8a) 6 4 3 54 72 9.0 108 - 6.4 83 10.1 11.8 - 48 62 7.7 91 -
(4.92) 4 4 3 39 50 62 73 - 42 54 66 78 - 45 56 68 79 -
(4.10a) 5 3 3 44 58 73 88 - 53 68 83 98 - 36 48 61 73 -
(4.11a) 6 5 4 59 1717 96 - - 6.7 85 103 - - 57 74 92 - -
(4.12a) 8 5 4 7.8 10.2 126 - - 8.6 11.0 - - - 60 77 95 - -
(4.13a) 5 5 4 60 74 88 - - 69 82 97 - - 64 78 93 - -
(4.14a) 7 4 4 6.6 8.7 10.8 - - 79 98 11.8 - - 52 65 80 - -

orders are listed in Table 5.2. For each problem, the result of the most accurate corrector
is indicated in bold face. '

The results for the first three problems clearly demonstrate that the various methods
often do not show their step point order, so that the property of superconvergence is
of limited value in the case of stiff problems.

5.3. Performance of the iteration process for two-processor correctors. In this sec-
tion, we consider the performance of the iteration method for solving the two-processor
corrector equations. Since the rate of convergence of a particular iteration method
turned out to be comparable for the Newton-Cotes corrector and the Lagrange
corrector, we only present results for the most accurate one. In the case of the Gauss
and Radau corrector, the iteration methods behaved quite differently so that we include

TABLE 5.2
Effective orders shown by the correctors for problems (5.1)-(5.5).

(5.3) (5.3)

Corrector P r k (5.1) (52) £=10" £=10"% (5.4) (5.5)
Newton-C. (4.3a) 4 3 2 33 3.0 37 4.0 4.0 4.0
Lagrange (4.4a) 3 3 2 33 33 3.0 3.0 3.0 3.0
Gauss (4.5a) 4 2 2 3.0 2.7 3.7 2.0 4.0 3.0
Radau IIA (4.6a) 3 2 2 2.0 2.0 3.0 3.0 3.0 3.0
Newton-C. (4.7a) 4 4 3 4.0 4.0 4.0 4.0 4.0 4.0
Lobatto ITIA (4.8a) 6 4 3 4.0 4.0 6.7 6.0 5.7 4.7
Lagrange (4.9a) 4 4 3 4.3 4.0 4.0 3.7 4.0 3.7
Radau IIA (4.10a) 5 3 3 33 3.0 33 5.0 5.0 4.0
Newton-C. (4.11a) 6 5 4 43 43 43 6.3 6.0 6.0
Lobatto IIIA (4.12a) 8 5 4 4.0 4.0 4.7 8.0 8.0 6.0
Lagrange (4.13a) 5 5 4 53 5.0 53 4.7 5.0 5.0
Radau IIA (4.14a) 7 4 4 4.0 4.0 4.7 7.0 6.7 5.0

146 PARALLEL ITERATED RUNGE-KUTTA METHODS

results for both correctors. Moreover, the Gauss corrector was also iterated with a
matrix D defined by the relation (3.12). Since for the two-processor Gauss corrector
(4.5a) we have Ae=c, i.e., A 'c=e, it follows that D 'c=e, so that

6—2V3 0

— ~3 —
5 6+2\/§), p(I-D'A)=0.5.

D =diag (c)=1—1£(

In the Tables 5.3 and 5.4 we only present results for the problems (5.2) and (5.4)
for which most methods, respectively, show their stage order and their step point order
(additional results for the other test problems may be found in the Appendix to [14]).
Divergence of the inner iteration is indicated by *, and values in bold indicate that
the accuracy of the corrector is reached (and that A does not change anymore). For
several values of L/h the accuracies corresponding to the correctors of Lagrange type
(first column), of Gauss-Legendre with D defined by (4.5b) (second column), of
Gauss-Legendre with D defined above (third column), and of Radau IIA (fourth
column) are listed. These results confirm that, in general, the Gauss corrector is not
suited to be iterated by diagonal iteration methods when started with an explicit
predictor.

5.4. Efficiency of diagonally iterated IRK correctors. In this final section, we
compare the efficiency of the diagonally iterated IRK correctors with three fourth-order

TABLE 5.3

Values of A for problem (5.2) obtained by iterating the Lagrange corrector (4.4a), Gauss corrector (4.5a), and
Radau 11A corrector (4.6a).

m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16

1 35030338 41-22-2253 40* * 48 36* * 50 27* * 53
2 50100742 58 -11 1147 65* 1152 67* 0659 67* * 67
3 19 1.0 24 22 6.7 29 2.6 77393258 8419 38 64
4 14 25 19 3.1 2.5 38 3.1 8.7 4.6 3.8

5 1.8 21 26 32 3.9

10 1.9 26 32 41 53
20 2.5 31 38 46

TABLE 5.4

Values of A for Problem (5.4) obtained by iterating the Lagrange corrector (4.4a), Gauss corrector (4.5a), and
Radau 11A corrector (4.6a).

m L/h=1 L/h=2 L/h=4 L/h=8 L/h=16
1 21121217 23151521 26* * 24 28* * 27 31* * 30
2 34262229 39292835 45* 3441 S52* 4047 S8* 4553
3 43383036 54483845 64574754 14665663 8369 6572
4 45473834 57594943 69716152 81837261 93958470
5 5.0 44 6.1 57 73 7.1 82 85 8.3 9.4 9.7 9.5
6 48 6.1 7.3 85 9.5
7 50 9.7

P. J. VAN DER HOUWEN AND B. P. SOMMEUIJER 147

DIRK methods from the literature, viz. the three-stage method generated by the Butcher
array:

1 1
2149 2 (1+4)
1 1 1
> -3¢ 1+
1
la-o | a+e -0+20 J0+9 ,
aw
(5.6) 1 1 1 s =§\/§ cos (_1_8)
& 3¢ e

(cf. Crouzeix [8] and Alexander [1]), and the four-stage, parallel DIRK methods of
Iserles and Ngrsett [16]:

1] 1
2| 2
1] 0 1
113 31
212 2 2
0l-3 2 0 1
(5.7) .
11 1 1
3 6 3 6
1] 1
2| 2
2 2
—_ 0 =
3 3
1y 5 5 1
3 | 2 2 2
1| 5 4 3
3073 3 % 3
(5.8)
3 3
B T

The method (5.6) is A-stable and requires three sequential stages per step. The methods
(5.7) and (5.8) are A-stable and L-stable, respectively, and require only two sequential
stages per step (when run on a two-processor computer).

We restrict our considerations to the above three DIRK methods and to the
Newton-Cotes, Lobatto ITIA, Lagrange, and Radau IIA correctors where each method
uses a fixed number of m iterations per step. Recalling that iterating an IRK corrector
by means of m diagonal iterations in each step yields a method that is in fact a DIRK
method with m sequential stages, we conclude that all methods have in common that
they belong to the class of DIRK methods. However, in the case of the ‘“genuine”
DIRK methods (5.6), (5.7), and (5.8), the number of sequential stages per step is

148 PARALLEL ITERATED RUNGE-KUTTA METHODS

known in advance, whereas in the case of the DIRK methods based on iteration the
number of sequential stages m that ylelds acceptable accuracies, is not known in
advance and, in actual computation, it should be determined on the basis of some
local error strategy. On the other hand, as we shall see, the accuracy of the iterated
methods is less sensitive to the phenomenon of order reduction.

In the Tables 5.5 and 5.6, m always denotes the number of sequential stages per
step. Hence, all results in one column of these tables correspond to DIRK methods
that use m sequential stages per step, so that all results corresponding to the same
value of mL/h required roughly the same computational effort. In the tables, the
highest value of A corresponding to the same mL/h value, that is, the “most efficient”

TABLE 5.5(a)
Problem (5.2): results for diagonally iterated correctors and for the methods (5.6), (5.7), and (5.8).

Method k L/h m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9m=10 ---m=0
Crouzeix-Alex. (5.6) 1 1 - - 1.0) -
Iserles- Ngrsett (5.7) 2 - 1.5 . -
Iserles- Ngrsett (5.8) - 2.1 -
Newton-C. (4.3) 34 47 4.7
Lagrange (4.4) 35. 50 5.0
Radau IIA (4.6) 38 42 4.2
Newton-C. (4.7) 3 32 37 56 61 6.0 . 6.0
Lobatto IIIA (4.8) 30 27 47 60 6.0 6.1 : 6.1
Lagrange (4.9) 32 39 55 67 65 6.5
Radau I1A (4.10) 34 3.1 5.0 49 49
Newton-C. (4.11) 4 31 3.6 49 4.7 52 6.0 72 7.0 6.9 6.9
Lobatto IIIA (4.12) 2.7 22 23 39 4.6 5.4 6.8 6.9 7.0 . 7.0
Lagrange (4.13) 30 28 31 39 50 64 71 73 174 74
Radau I1A (4.14) 29 2.8 3.0 4.7 5.6 6.8 6.3 6.3
Crouzeix-Alex. (5.6) 1 2 - - 2.5 -
Iserles-Ngrsett (5.7) 2 - 2.4 -
Iserles-Ngrsett (5.8) - 2.7 =
Newton-C. (4.3) 4.0 53 53
Lagrange (4.4) 4.1 58 5.8
Radau IIA (4.6) 53 47 4.7
Newton-C. (4.7) 3 34 35 64 81 72 173 73
Lobatto I11A (4.8) 30 22 53 60 73 7.3
Lagrange (4.9) 35 38 59 15 16 7.6
Radau IIA (4.10) 38 28 59 57 59 5.9
Newton-C. (4.11) 4 33 33 5.2 5.2 53 59 6.7 7.8 8.3 8.1 8.1
Lobatto I11A (4.12) 23 11 14 40 45 55 69 73 84 83 83
Lagrange (4.13) 29 23 27 49 52 65 83 89 89
Radau IIA (4.14) 28 22 26 50 60 70 75 13 13
Crouzeix-Alex. (5.6) 1 4 - - 2.8 -
Iserles-Ngrsett (5.7) 2 - 3.0 -
Iserles-Ngrsett (5.8) - 32 -
Newton-C. (4.3) 39 58 59 59
Lagrange (4.4) 40 65 6.7 6.7
Radau 11A (4.6) 48 52 5.2
Newton-C. (4.7) 3 31 30 66 77 84 85 8.5
Lobatto IIIA (4.8) 23 07 55 62 77 81 85 8.5
Lagrange (4.9) 32 35 62 17 99 88 8.8
Radau I1A (4.10) 36 20 56 62 68 69 6.9
Newton-C. (4.11) 4 29 25 50 55 55 60 68 77 87 98 9.4
Lobatto I11A (4.12) 1.1 . * 50 43 56 64 72 83 90 9.5
Lagrange (4.13) 23 08 15 51 56 68 79 88 97 108 104

Radau IIA (4.14) 21 06 12 52 63 79 84 85 8.5

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 149

TABLE 5.5(b)
Problem (5.2): efficiency test of fourth-order methods.

m k mL/h=4 mL/h=8 mL/h=16

Method P

Iserles- Ngrsett (5.7) 4 2 2 24 3.0 3.6
Iserles-Ngrsett (5.8) 4 2 2 23 . 32 3.8
Newton-C. (4.3) 4 4 2 4.7 53 59
Newton-C. (4.7) 4 4 3 6.1 8.1 17
Lobatto IIIA (4.8) 4 4 3 6.0 6.0 i 6.2
Lagrange (4.9) 4 4 3. 6.7 1.5 1.7
Radau I1A (4.10) 4 4 3 49 3. 6.2
Newton-C. (4.11) 4 4 4 4.7 5.2 5.5
Lobatto ITIA (4.12) 4 4 4 39 4.0 5.0
Lagrange (4.13) 4 4 4 39 49 5.1
Radau I1A (4.14) 4 4 4 4.7 5.0 5.2

integration result, is indicated in bold. As in the preceding section, we only present
results for the problems (5.2) and (5.4). Results for the additional test problems may
be found in the Appendix to [14].

In the case of the nonlinear Prothero-Robinson problem, Table 5.5(a) shows that
the number of iterations needed by the iterated methods to ‘“‘reach” the accuracy of
the corrector solution increases with k, that is, the higher-order methods need more
iterations to solve the corrector; moreover, they have a “slow start”: after two iterations
the accuracy is still rather modest, whereas the lower-order methods have already
converged, showing full corrector-precision. This can be explained by observing that
we used a zero-order predictor for Y for all k, so that the “distance” between predictor
and corrector solution increases with k. Thus, for this problem, the lower-order methods
are more efficient than the higher-order ones, unless very high accuracies are requested.
Furthermore, when we compare the various types of iterated methods (Newton-Cotes,
Lobatto, Lagrange, or Radau), then the Lobatto IIIA methods perform not as well
whereas the strongly A-stable Lagrange methods are slightly superior to the others. In
the case of the “‘genuine” DIRK methods (5.6), (5.7) and (5.8), the Iserles-Ndrsett
methods are more accurate than the Crouzeix-Alexander method, which is presumably
due to the L-stability property of the Iserles- Ngrsett method.

It is of particular interest to see how the iterated methods compare with the
“genuine” DIRK methods. For example, Table 5.5(a) shows that the Newton-Cotes,
Lobatto ITIA, Lagrange and Radau I1A based methods, respectively, produce 5, 0, 21
and 4 “most efficient” results, whereas the “genuine” DIRK methods none. A further
indication of the superiority of the iterated methods is given by Table 5.5(b) where
we list results for the iterated methods with m =4 and for the parallel DIRK methods
(5.7) and (5.8). All these methods have step point order p =4, but the accuracies
obtained for the same computational-costs value of mL/h differ largely, which is
caused by the order reduction exhibited by the “genuine”” DIRK methods.

For the more innocent chemical reaction problem (5.4) the order reduction is not
shown. Table 5.6(a) shows that the high-order iterated methods again require more
iterations to obtain the corrector precision than the lower-order methods, however,
here for low values of m, all iterated methods are roughly equally efficient. Furthermore,
the scores of “most efficient” results for the Newton-Cotes, Lobatto IIIA, Lagrange,
and Radau IIA based methods are, respectively, 8, 5, 6, and 7, and among the DIRK
methods only (5.7) scores twice. The analogue of Table 5.5(b) is given by Table 5.6(b).

150

PARALLEL ITERATED RUNGE-KUTTA METHODS

TABLE 5.6(a)

Problem (5.4): results for diagonally iterated correctors and for the methods (5.6), (5.7), and (5.8).

Method k L/h m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9m=10 ---m=0
Crouzeix-Alex. (5.6) 1 1 - - 3.4 -
Iserles-Ngrsett (5.7) 2 - 3.4 -
Iserles- Ngrsett (5.8) - 33 -
Newton-C. (4.3) 21 3.4 43 4.5 45
Lagrange (4.4) 21 35 31 31
Radau I1A (4.6) 1.7 29 3.6 34 34
Newton-C. (4.7) 3 1.8 35 5.1 4.7 4.7
Lobatto 111A (4.8) 1.6 3.1 43 5.6 6.3 6.4 6.4
Lagrange (4.9) 1.8 35 43 42 42
Radau 11A (4.10) 2.0 3.2 43 59 53 53
Newton-C. (4.11) 4 1.7 3.6 5.2 6.5 6.7 6.7
Lobatto I11A (4.12) 14 2.7 4.6 6.0 7.1 83 8.6 8.6
Lagrange (4.13) 1.6 3.1 58 66 7.0 69 6.9
Radau I1A (4.14) 1.5 3.2 4.8 74 7.8 79 79
Crouzeix-Alex. (5.6) 1 2 - = 4.4 =
Iserles-Ngrsett (5.7) 2 - 4.5 =
Iserles-Ngrsett (5.8) - 4.4 -
Newton-C. (4.3) 23 39 54 57 5.7
Lagrange (4.4) 23 45 40 4.0
Radau I1A (4.6) 21 35 4.5 4.3 43
Newton-C. (4.7) 3 20 42 62 59 59
Lobatto IT1A (4.8) 19 38 51 68 81 83 83
Lagrange (4.9) 21 41 55 54 5.4
Radau IIA (4.10) 22 38 51 69 68 6.8
Newton-C. (4.11) 4 20 45 67 79 85 8.5
Lobatto I11A (4.12) 1.7 33 54 72 85 100 109 11.0 11.0
Lagrange (4.13) 19 37 63 75 83 82 8.2
Radau IIA (4.14) 18 37 56 80 88 101 938 9.8
Crouzeix-Alex. (5.6) 1 4 - - 55 -
Iserles-Ngrsett (5.7) 2 - 57 -
Iserles-Ngrsett (5.8) - 5.6 -
Newton-C. (4.3) 26 45 64 69 6.9
Lagrange (4.4) 26 47 49 49
Radau IIA (4.6) 24 4.1 5.4 52 52
Newton-C. (4.7) 3 23 50 72 171 71
Lobatto I11A (4.8) 22 44 60 79 97 101 10.1
Lagrange (4.9) 24 48 68 6.6 6.6
Radau I1A (4.10) 25 45 60 79 83 83
Newton-C. (4.11) 4 23 54 71 89 106 103 103
Lobatto I11A (4.12) 2.0 4.0 6.1 84 101 119 123 123
Lagrange (4.13) 22 42 72 87 99 97 9.7
Radau 11A (4.14) 21 43 66 91 102 122 118 11.8

It reveals that the iterated methods are usually much more efficient than the parallel

DIRK methods, and in any case they are at least competitive.

6. Concluding remarks. In this paper we have derived a diagonally implicit iter-
ation scheme to solve a fully implicit Runge-Kutta method. The structure of this
iteration process is such that a parallel computer can be fully exploited. Starting with
an implicit RK method with k implicit stages (the corrector), each iteration requires
the solution of k systems of equations of dimension equal to the number of ODEs.
Since these systems can be solved completely independently, the effective computational
work per iteration equals the solution of one such system, provided that k processors

are available.

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 151

TABLE 5.6(b)
Problem (5.4): efficiency test of fourth-order methods.

Method P m k mL/h=4 mL/h=8 mL/h=16
Iserles- Norsett (5.7) 4 2 2 4.5 57 6.9
Iserles-Ngrsett (5.8) 4 2 2 4.4 5.6 6.7
Newton-C. (4.3) 4 4 2 4.5 59 6.9
Newton-C. (4.7) 4 4 3 4.7 59 71
Lobatto IIIA (4.8) 4 4 3 5.6 6.8 79
Lagrange (4.9) 4 4 3 42 5.4 6.6
Radau IIA (4.10) 4 4 3 59 6.9 7.9
Newton-C. (4.11) 4 4 4 6.5 7.9 8.9
Lobatto IIIA (4.12) 4 4 4 6.0 7.2 8.4
Lagrange (4.13) 4 4 4 6.6 7.5 8.7
Radau IIA (4.14) 4 4 4 7.4 8.0 9.1

The free parameters in the iteration scheme are chosen in such a way that the
corresponding stability functions converge as quickly as possible to the stability function
of the corrector, which is chosen to be (at least) A-acceptable. Although we have
numerical evidence that this is not a bad choice, we do not claim that it is the best
possible. In a forthcoming paper it is intended to give theoretical support for this choice.

A second aspect considered in this paper, is the choice of the particular corrector
method. The well-known implicit RK methods of high classical order, such as the
Gauss-Legendre, Radau, and Lobatto methods, seem to be suitable candidates.
However, since it is the stage order which usually determines the order behaviour in
integrating stiff differential equations, these methods are not necessarily optimal correc-
tors. Because the stage order is significantly smaller than the classical order for these
methods, we will encounter the phenomenon of order reduction. Therefore, we also
considered Newton-Cotes and Lagrange correctors, which have—for the same number
of implicit relations per iteration—a stage order which is one higher than for Gauss-
Legendre and Radau methods and is equal to the stage order of Lobatto methods.

Apart from these order considerations, it turned out that the stability behaviour
of the iterated scheme largely depends on the choice of the corrector. For example, it
is shown that the Gauss-Legendre corrector is not suitable in this context, since it is
not stiffly accurate. Consequently, only for very “innocent’ stiff problems, where we
have no order reduction, the Gauss-Legendre corrector is useful, but as a method for
general stiff problems it is disadvantageous.

The other four types of correctors are all stiffiy accurate, which has the effect that
certain classes of stiff problems can be integrated without order reduction. For such
problems the classical order should be a decisive factor, viz. in these cases the Lobatto
ITTIA corrector is superior and aiso the Newton-Cotes corrector is a good choice.
However, these correctors are only A-stable and it is shown that the stability function
of the iterated method is not A-acceptable unless the corrector is really solved. This
means that the iteration process based on these correctors easily encounters stability
problems. Hence, a corrector possessing better stability characteristics, such as the
Radau ITA method (L-stable) and the Lagrange method (strongly A-stable), will be
much more robust. We showed that after a few iterations the stability function of the
iterated methods based on these correctors is A-acceptable.

Since the stage order of the Lagrange corrector is one larger than that of the
Radau ITA corrector, we think that it is a good choice for integrating general stiff

152 PARALLEL ITERATED RUNGE-KUTTA METHODS

equations; it combines adequate stability characteristics with a relatively high stage
order. Our numerical experiments confirm this advice.

Furthermore, we have compared our methods with sequential and parallel DIRK
methods from the literature. This comparison is rather obvious since the effective
computational work per iteration equals the work per stage in a DIRK method. It
turned out that the diagonally iterated RK methods are much more efficient than the
“conventional”” DIRKs. The reason is that only low order “conventional” DIRKs with
good stability properties are available in the literature and, more importantly, these
DIRKs have a stage order equal to 1. This property gives these methods a very poor
performance in case of general stiff problems.

Finally, we remark that the construction of diagonally iterated methods of
arbitrarily high order is straightforward, and we observed in our experiments that,
especially the high order methods, showed remarkably high accuracies.

Acknowledgment. The authors are grateful to Dr. W. H. Hundsdorfer for carefully
reading the manuscript and for many valuable suggestions during the investigations
reported in this paper.

REFERENCES

[1] R. ALEXANDER, Diagonally implicit Runge- Kutta methods for stiff ODEs, SIAM J. Numer. Anal., 14
(1977), pp. 1006-1021.

[2] K. BURRAGE, A special family of Runge- Kutta methods for solving stiff differential equations, BIT, 18
(1978), pp. 22-41.

, The error behaviour of a general class of predictor-corrector methods, CMSR Report, University
of Liverpool, Liverpool, U.K., 1989.

[4] K. BURRAGE, P. J. VAN DER HOUWEN, W. H. HUNDSDORFER, AND B. P. SOMMEUER, Diagonal
iteration of Runge-Kutta methods, in preparation.

[5] J. C. BUTCHER, On the implementation of implicit Runge- Kutta methods, BIT, 16 (1976), pp. 237-240.

[6] , A transformed implicit Runge- Kutta method, J. Assoc. Comput. Mach., 26 (1979), pp. 731-738.

[7] ., The Numerical Analysis of Ordinary Differential Equations, Runge- Kutta and General Linear
Methods, John Wiley, New York, 1987.

[8] M. CROUZEIX, Sur I’approximation des équations différ opérati lles linéaires par des méthodes
de Runge-Kutta, Ph.D. thesis, Université de Paris, Paris, France, 1975.]

[9] K. DEKKER AND J. G. VERWER, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential
Equations, CWI Monograph 2, North-Holland, Amsterdam, 1984.

[10] W. H. ENRIGHT, T. E. HULL, AND B. LINDBERG, Comparing numerical methods for stiff systems of
ODEs, BIT, 15 (1975), pp. 10-48.

[11] E. HAIRER, CH. LUBICH, AND M. ROCHE, Error of Runge-Kutta methods for stiff problems studied
via differential algebraic equations, BIT, 28 (1988), pp. 678-700.

[12] P.J. vAN DER HOUWEN AND B. P. SOMMEUER, Parallel iteration of high-order Runge- Kutta methods
with stepsize control, J. Comput. Appl. Math. 29 (1990), pp. 111-127.

[13] P.J. VAN DER HOUWEN, B. P. SOMMEUER, AND W. Couzy, Embedded diagonally implicit Runge-
Kutta algorithms on parallel computers, Report NM-R8912, Centre for Mathematics and Computer
Science, Amsterdam, the Netherlands, Math. Comp., 1992, to appear.

[14] P.J. VAN DER HOUWEN AND B. P. SOMMEUER, Iterated Runge- Kutta methods on parallel computers,
Report NM-R9001, Centre for Mathematics and Computer Science, Amsterdam, the Netherlands,
1990.

[15] W. H. HUNDSDORFER, private communication, 1990.

[16] A. ISERLES AND S. P. NoRSETT, On the theory of parallel Runge-Kutta methods, IMA J. Numer.
Anal., 10 (1990), pp. 463-488.

[17] P. KAPs, Rosenbrock-type methods, in Numerical Methods for Stiff Initial Value Problems, G. Dahlquist
and R. Jeltsch, eds., Bericht nr. 9, Inst. fiir Geometrie und Praktische Mathematik der RWTH
Aachen, Aachen, Germany, 1981.

[18] I. Lie, Some aspects of parallel Runge- Kutta methods, Report No. 3/87, Division Numerical Mathe-
matics, University of Trondheim, Trondheim, Norway, 1987.

(3]

P. J. VAN DER HOUWEN AND B. P. SOMMEIJER 153

[19] S. P. NORSETT, Semi-explicit Runge- Kutta methods, Report Mathematics and Computation No. 6/74,
Department of Mathematics, University of Trondheim, Trondheim, Norway, 1974.

[20] S.P. NoRSETT AND H. H. SIMONSEN, Aspects of parallel Runge- Kutta methods, in Numerical Methods
for Ordinary Differential Equations, A. Bellen, C. W. Gear, and E. Russo, eds., Proc. L’Aquila
1987, Lecture Notes in Mathematics, Vol. 1386, Springer-Verlag, Berlin, 1989.

[21] A. PROTHERO AND A. ROBINSON, On the stability and accuracy of one-step methods for solving stiff
systems of ordinary differential equations, Math. Comp., 28 (1974), pp. 145-162.

[22] B. P. SOMMEUIJER, W. Couzy, AND P. J. VAN DER HOUWEN, A-stable parallel block methods, Report
NM-R8918, Centre for Mathematics and Computer Science, Amsterdam, the Netherlands, Appl.
Numer. Math., to appear.

[23] H.A. WATTS AND L. F. SHAMPINE, A-stable block implicit one-step methods, BIT, 12 (1972), pp. 252-266.

CHAPTER VI

Analysis of parallel diagonal-implicit iteration
of Runge-Kutta methods

to appear in: Proceedings of the International Conference on Parallel
Methods for Ordinary Differential Equations:
The State of the Art; Grado (Italy), Sept. 10-13, 1991

155

Analysis of parallel diagonal-implicit
iteration of Runge-Kutta methods

P.J. van der Houwen and B.P. Sommeijer

Centre for Mathematics and Computer Science
Post box 4079, 1009 AB Amsterdam, The Netherlands

In this paper, we analyse parallel, diagonally implicit iteration of Runge-
Kutta methods (PDIRK methods) for solving large systems of stiff
equations on parallel computers. Like Newton-iterated backward
differentiation formulas (BDFs), these PDIRK methods are such that in
each step the (sequential) costs consist of solving a number of linear
systems with the same matrix of coefficients and with the same dimension
as the system of differential equations. Although for PDIRK methods the
number of linear systems is usually higher than for Newton iteration of
BDFs, the more computational intensive work of computing the matrix of
coefficients and its LU-decomposition is identical. The advantage of
PDIRK methods over Newton-iterated BDFs is their unconditional stability
(A-stability for Gauss-based methods and L-stability for Radau-based
methods) for any order of accuracy.

1980 Mathematics Subject Classification: 65M10, 65M20

1982 CR Categories: G.1.7

Key Words and Phrases: Diagonally implicit Runge-Kutta methods,
parallelism.

1. INTRODUCTION
Consider the initial value problem for systems of ordinary differential equations
(ODEs) of dimension d

(L) y()=fiy®), y)=yo, y:R->RY, f:RxRISRE, (9<i<tpng.

In this paper, we analyse integration methods based on iteration of implicit Runge-Kutta
(RK) methods of collocation type. Such RK methods possess both a large step-point
order and a large stage order. Furthermore, by a suitable choice of the collocation
parameters, these RK methods are unconditionally stable for any order of accuracy.

We shall employ the diagonally implicit iteration-type methods proposed in [7, 8].
These methods are designed in such a way that a large number of the implicit systems to
be solved can be processed in parallel, so that the number of systems that have to be

156

solved sequentially is substantially reduced when implemented on multi-processor
computers. As a reference method, we take the method based on the backward
differentiation formulas (BDFs), which is considered as one of the best methods for
sequential computers. The sequential computations (i.e., the computations that cannot be
performed in parallel on a multi-processor system) of the parallel diagonal-implicitly
iterated RK (PDIRK) methods are of the same nature as those of Newton-iterated BDFs,
that is, in each step, both types of methods require the sequential solution of a number of
linear systems with the same matrix of coefficients and with the same dimension as the
system of differential equations. Although, this number of linear systems is usually
higher for PDIRK methods than for Newton iteration of BDFs, the effort required for
computing the Jacobian and the LU-decomposition of the matrix of coefficients is
identical. For large systems of equations, these computations are the more computational
intensive work, so that the overall computation time is primarily determined by the
number of Jacobian updates and LU-decompositions. The advantage of PDIRK methods
over Newton-iterated BDFs is their A-stability (Gauss and Lobatto IIIA correctors),
strong A-stability (Lagrange correctors derived in [7]) or even L-stability (e.g. Radau ITA
correctors) for high orders of accuracy. The property that unconditional stability can be
combined with high orders reduces the number of integration steps (and therefore the
number of Jacobian updates and LU-decompositions) considerably.

2. PDIRKMETHODS

In this section we define PDIRK methods by specifying the RK corrector, the
iteration scheme for solving the stage vector equation, the predictor formula, and the
formula for the step-point values. The various families of PDIRK methods are determined
by special choices of the iteration parameters occurring in the iteration scheme. In order
to simplify the notations, the formulas are given for scalar ODEs. The extension to
systems of ODEs is straightforward.

2.1. The corrector
We consider RK methods of the form

Y- hAf(etn + chY) = eyn + ha fitnyn,
2.1)

Yn+l =Yn + hbofitn,yn) + hbTf (etn + chY), c:=a+ Ae,

157

where by is a scalar parameter, e is the vector with unit entries, a = (a;), b= (b;) and ¢ = (c;)
are k-dimensional vectors, and A = (ajj) is a k-by-k matrix. In (2.1) we used the
convention that for any given vectors v = (v;) and ¢ = (t;), f(#,v) denotes the vector with
entries f(¢j,v;). We always assume that the matrix A is nonsingular. If the vector a or the
parameter bg does not vanish, then (2.1) presents an (s = k+1)-stage RK method requiring
k implicit stages and one explicit stage. If a=0 and bg =0, then (2.1) reduces to the
general (s = k)-stage RK method with s implicit stages. For a discussion of the order of
accuracy and the stage order of RK methods, we refer to e.g. [4] and [3]. In the sequel, the
method (2.1) will be called the corrector.

2.2. The iteration scheme

The stage vector equation in (2.1) is solved by applying the diagonal iteration
method studied in [8] and [7]. Let Y(4) denote the successive iterates, then we may define
the (highly parallel) iteration process

Y() — hDf(etp + ch,Y(1)) =
eyn + a hftn,yn) + hAf(etn + c*h,YO) — 1D f(ety + c*h,Y (D),
(2.2)
YW — hDf(ety + ch YW) =
eyn + @ hf(tn,yn) + hAf (et + chYH-1)) — h D f(et,, + ch YH-1)),

where u=2,...,,m, and D is a diagonal matrix whose diagonal elements 6; (i = 1,..., k) are
the iteration parameters which are assumed to be positive. The parameter vector c*
depends on the predictor formula used for computing ¥(®) and serves to make the
arguments of f consistent in the first iteration (see Section 2.4). The step-point formula
defining y,1 and the predictor formula will be discussed in the Sections 2.3 and 2.4,
respectively. Together, the predictor formula, the iteration scheme (2.2), and the step-
point formula determine the PDIRK method.

Each iteration in (2.2) requires the solution of k£ nonlinear systems which can be
obtained by applying modified Newton iteration. We shall call this last iteration the inner
iteration method and the iteration (2.2) the outer iteration method. Notice that in each
outer iteration the k£ nonlinear systems can be solved in parallel, provided that k
processors are available. Thus, the sequential costs per step consist of computing ¥(?)
and of solving m nonlinear systems of ODE dimension.

For particular choices of the predictor formula (e.g., explicit RK formulas) and for
step-point formulas as defined in Section 2.3, the PDIRK method as described above can
be interpreted as a diagonally implicit RK (DIRK) method using mk diagonally implicit
stages. Since the k stages in each outer iteration can be computed in parallel, we arrive at

158

a DIRK method with m sequential diagonally implicit stages. These methods form a
subclass of the much wider class of the PaRK methods investigated by Jackson and
Ngrsett [9, 10].

In [7] and [8] the performance of PDIRK methods was studied in the case where in
each of the m outer iterations the inner iteration method was continued until convergence
before starting the next outer iteration (this iteration strategy is also used in conventional
DIRK methods). However, this strategy may be rather expensive if many iterations are
needed to get the inner iteration converged. Moreover, it does not take into account the
special structure of the method. The essential difference with conventional DIRK methods
lies in the fact that the ith component of each stage vector Y®) is an approximation to
the exact solution at the point ¢, + c;h. This implies that Y®-1) furnishes an excellent
initial approximation to the solution Y(®) to be obtained in the inner iteration process.
As a consequence, each outer iteration needs only a few inner iterations. Furthermore, in
first approximation, the convergence of the inner-outer iteration scheme and the stability
of the PDIRK method does not depend on the number of inner iterations. This motivates
our strategy to perform only one inner iteration per outer iteration, leading to the
iteration process

7 = ko) (YO — Y(V) = YO — 4D f(et,, + ch YD)
— [eyn+ ahfitnyn) + hAf(etn + c*hYO) — kD f(ety + c*h,YOD)],
(2.3a)
[— hDJ) (Y1) — yW)) = y(-1)
— [eyn + ahfitnyn) + hAf(etn+ chYED)], p=2, .. .m.

Here, J denotes an approximation to the derivative of f at the point (tze, yne). Evidently,
if (2.3a) converges, then Y converges to Y. In fact, one may interpret (2.3a) as a
modified Newton iteration scheme for solving Y from the stage vector equation in (2.1)
employing a diagonal approximation to the Jacobian of Y — h A f(etp+ch,Y).

It may be useful to consider (2.3a) in the case of systems of ODEs. Then, the k
components Y of the stage vector iterate Y(#) have to satisfy the equations

- h8J1 (YO - ¥, (D) = YO — h §; f(tn+ cihY{O)
k

— Lyn + ai hfltnyn) + hZ aijf (tn+ cj*hY;®) — h &; f(ta + ci*hYOD)] ,
j=1

[- 7] (D) - y#9) = v, -1

k
— [yn + aihfitnyn) + hz aijf (tn + cihY;B-1)], p=2,...m,
J=1

159

where i = 1, ...,k and where now J denotes an approximation to the Jacobian matrix of f
at the point (t,yn). Notice that this iteration scheme can be viewed as a modified
Newton method for solving the stage vector equation employing a block-diagonal
approximation to the Jacobian. Clearly, the k linear systems that are to be solved in each
outer iteration step can be solved in parallel. Since each system has dimension equal to
that of the system of ODEs, the computational complexity per step and per processor
essentially consists of the computation of ¥;(), the evaluation and LU-decomposition of
the matrix I — h 8;J (or its updating), m+2 evaluations of f, and m forward-backward
substitutions. Of these costs, the evaluation and LU-decomposition of I -k &;J are the
most time consuming, while the evaluations of f and the forward-backward substitutions
are relatively cheap (notice that the iteration parameters &; are independent of u in order to
avoid repeated LU-decompositions of /- §;J in the successive iterations). Thus, when
basing a code on PDIRK methods, first of all the number of stepsize changes (which
automatically requires new LU-decompositions) and the number of Jacobian updates
should be minimized.

It is of interest to compare the sequential costs of PDIRK methods with the
sequential costs of the celebrated BDF-based methods. If the BDFs are solved by using m
modified Newton iterations, then the sequential costs in each step of the PDIRK methods
and the Newton-iterated BDFs are almost identical. We expect that PDIRK methods need
more iterations but, because of their higher order, less steps to produce some given
accuracy. As explained above, evaluations of f and the forward-backward substitutions are
relatively cheap, so that for modest values of m, the sequential costs per step of PDIRK
methods are expected to be not much higher than those of the BDFs. The reduced number
of steps required by the PDIRKs should make them superior to the BDFs.

2.3. The step-point values

Suppose that we adopt Y(m) as a sufficiently accurate approximation to the exact
stage vector solution Y of the corrector (2.1). Then, the most natural way to approximate
the step-point value yy,1 in (2.1) defines this value according to the formula

24) Ynel = Yn + hboftnyn) + h T f (et + chY(™).

However, the presence of the right-hand side evaluations in this formula may give rise to
loss of accuracy in the case of stiff problems (cf. [12]). This difficulty can be overcome
by applying a similar approach as proposed in [6] for the implementation of implicit RK
methods. Observing that the corrector (2.1) can be written in the form

160
Yn+l =Y+ bO hf(t'byn) + bTA—l[Y —€éy,—a hf(tn’}’n)]’

provided that A is nonsingular, we can approximate the corrector solution y, 1 by the

formula
(23b) Ynil =Yp + b0 Aftny,) + BTATI[YM) — ey, — a hf(tn,y,)],

where Y(™) denotes the last computed approximation to Y. In many cases the corrector
satisfies the relations of stiff accuracy, i.e., ck=1, bg=ay and bTA-! = T, so that (2.3b)
reduces to yp41 = ¢;TY(™)_ In order to avoid confusion, we shall from now on denote the
corrector solution and stage vector values obtained from y,, by u,,1 and U, respectively.

2.4. The predictor
In [8] we considered one-step predictors of the form

2.5) YO := ey, + hEfletn,eyn) + hBf (et + c*hY(®),

where B and E are k-by-k matrices. Of particular interest are the cases where E vanishes
and where B is either the zero matrix yielding last step-value predictors (LSP) or B=D
yielding implicit Euler predictors (IEP).

However, by using information from the preceding step, that is the values of y, and
the stage vector Y(™) computed in the last step, we can construct more accurate
predictors. In order to indicate to which step a particular stage vector corresponds, we
define Y, :=Y(m) if Y(m) corresponds to the step [tn-1,tn]. Consider the two-step

predictor
26) YO_-VY,+vy,+hBf(etp+c*hY0),

where either B = O or B = D, and where the matrix V and the vector v satisfy the usual
consistency conditions (we shall assume that the vector v vanishes in the case of stiffly
accurate correctors). The cases B = O and B =D will be referred to as the extrapolation
predictor (EXP) and the backward differentiation predictor (BDP).

If B =D, then both (2.5) and (2.6) require the solution of k implicit relations.
Similar to the strategy followed in solving the implicit relations in (2.2), we shall
perform just one Newton iteration (notice that the right-hand side derivatives required in
the Newton iteration method are identical to those occurring in (2.3a)). In order to
perform this Newton iteration we need an initial guess Y' 1) for ¥(0). For the cases 2.5)
and (2.6) we shall respectively use

161
YD = ey,, c¢* = (E + B)e; YCD) cWYp+wyn, ¢*=c,

where the W and w are to be determined (we shall assume that w vanishes in the case of
stiffly accurate correctors, and that W=V, w = v in the case where B = 0). If the corrector is
based on collocation, then the matrix W and the vector w can be computed by
extrapolating the collocation polynomial defined in [#,-1,t] to the interval [ty,f,,1] and
can be expressed in terms of the Lagrange interpolation polynomials.

2.5. Theiteration parameters
There are various options for choosing the number of iterations m, and the iteration
parameters &;. In this paper, we consider three cases:

Option 1: fixed-number-of-iterations option
— the number of iterations is fixed and such that the orders of the PDIRK and
corrector are equal
— the iteration parameters are chosen such that the stability region in the left
halfplane is optimized.

Option 2: minimal-spectral-radius option
— the number of iterations is sufficiently large to closely approximate the
corrector solution
— the iteration parameters are such that the spectral radius of the matrix
D-14 - I is minimized.

Option 3: minimal-stiff-error-constant option
— the number of iterations is sufficiently large to closely approximate the
corrector solution
— the iteration parameters are such that the principal stiff error constant of the
PDIRK method is minimized.

Several families of methods constructed according to the fixed-number-of-iterations
option were already considered in [8]. An interesting family considered in that paper
possesses the stability functions investigated by Wolfbrandt [13] and uses constant
iteration parameters &; determined by these stability functions. However, because of the
fixed number of iterations, these methods are in fact DIRK methods and consequently,
they have the disadvantage of possessing stage order ¢ = 1. In many stiff problems, such a
low stage order may lead to reduced accuracies. In order to get insight into the extent of

162

this accuracy reduction, we shall consider the magnitude of the stiff error constants for the
‘fixed-number-of-iterations PDIRK methods’ (see Section 4.2, Table 4.1).

For the explicit one-step predictor, [7] presents a number of PDIRK methods
constructed according to the minimal-spectral-radius option. The effect of minimizing the
spectral radius of the matrix D-1A -1 is a strong damping of the stiff iteration error
components. On the one hand, the number of iterations m should be sufficiently large to
solve more or less the RK corrector, on the other hand, m should be sufficiently small to
achieve that the (sequential) costs per step are not excessive when compared with those of
the BDFs. In this paper, we shall investigate a few characteristics of the ‘minimal-
spectral-radius PDIRK methods’ as a function of m. In particular, in Section 3 we
consider the rate of convergence (Table 3.1) and the effect on the stability of the various
predictors (Tables 3.2a and 3.2b), and in Section 4 we consider the magnitude of the
principal stiff error constants (Tables 4.2 and 4.3).

Option 3 offers an alternative to option 2 and directly addresses the truncation error
of PDIRK methods when applied to stiff systems. In this paper, we present preliminary
results for the simple inhomogeneous test equation y'(f) = A y(f) + g(¢). This approach is
a special case of a more general treatment of minimizing stiff error constants which will
be reported in [1].

3. CONVERGENCE AND STABILITY

We shall investigate convergence and stability by means of the scalar test equation
¥’ = Ay. Note that for this simple test equation the particular strategy used in the inner
iterations is not relevant. For a rigorous convergence analysis of parallel RK methods
containing the PDIRK methods of this paper we refer to Jackson and Ngrsett [9, 10].

3.1. Rate of convergence
From (2.2) it can be deduced that the iteration error satisfies the recursion

(1) U-Yp1=20)(U-Ym-D) = =7mz) (U-YO),
Z(z):=zD[I-zD) ' [D-1A-1, z:=Ah.

The region in the complex z-plane where Z™(z) — 0 for m — oo will be called the region of
convergence. We define the iteration function C of the PDIRK method by the spectral
radius of Z(2), i.e.,

(32) C():=pZez) = p(zDU - D1} [D-1A-1).

163

Evidently, the region of convergence is determined by the set of points where C(z) <1.
The rate of convergence is larger as the norm of C(z) is smaller in the region of relevant
values of z. Thus, adopting the maximum norm, we are led to the minimization of C(z)
in this region. In this connection we introduce the following definition:

Definition 3.1. A PDIRK method is said to be strongly A-convergent if its iteration
function C(z) < 11 < 1 in the whole left halfplane Re z <0. If, in addition, C(—) =0, then
the PDIRK method is called L-convergent. []

First we consider the constant-;-case which is of interest in the case of fixed-number-of-
iterations methods.

Theorem 3.1. If D has constant, positive diagonal elements, then minimization of
p(D-1A ~TI) implies that the norm of C(z) is minimized in (any region of) the left
halfplane.

Proof. If D = &1, then we may write C(z) = |6zl p(8~1 A—1I) / |1 - &|. In the left half-
plane, the maximum of the function |6z/(1 — &z)| does not depend on &, provided that
5> 0. Hence, the norm of C(z) is minimized if p(D-1A -I) is minimized. []

In the case where D does not have constant diagonal entries, we cannot derive such a
simple expression for C(z), and a numerical search is needed to find the matrix D that
minimizes the norm of C(z) in the left halfplane. However, our numerical experiments
revealed that also in the nonconstant-&;-case the minimization of p(D~1A —I) yields fast
converging PDIRK methods and that ||C]| := max {C(z): Re z <0} is considerably smaller
than in the constant-J;-case.

Example 3.1. We consider an example of the fixed-number-of-iterations methods studied
in [8] which is based on the third-order Radau IIA corrector. For

=3, A=T1§-(5_1), D=58I &= 043586650
9 3

this leads to a third-order, L-stable PDIRK method. The convergence function associated
with this method is given by C(z) = |8z] p(8~1 A1) /|1 - &z where p(8~1A-1) =
511/6 - 283 + &. Setting &= 0.43586650 we find that C(z) <0.59 in the whole left
halfplane. Among the methods with D = &1 this method is almost optimal (the
minimizing value is given by &= 1/2 leading to C(z) <V1/3 = 0.577).

164

Next, we consider the case where D minimizes p(D~1A - I). In [7] it was shown that
the method can be made L-convergent (i.e., it has vanishing p(D-14 - 1)) for
81 =(4-6)/6 and & = (4 + V6)/10. The corresponding matrix Z(z) is easily computed,
yielding ||C|| = 0.262. []

Table 3.1 lists the ||C||-values for a number of minimal-spectral-radius PDIRK
methods. These methods are based on Radau IIA correctors and on the so-called Lagrange
correctors derived in [7]. The Lagrange methods are strongly A-stable, stiffly accurate
collocation methods which are completely determined by the collocation vector ¢ (see
Table 3.1). Their stage order is one higher than that of the Radau IIA methods which was
achieved by using one explicit and k implicit stages. However, they do not possess the
superconvergence property of the Radau methods, so that the computation of the nonstiff
solution components is considerably less accurate.

For the Radau IIA and Lagrange correctors with k implicit stages, the iteration
parameters are contained in the matrices Dgg and Dy

3
1 /20-5V6 0O 4(V2+1)
3.3a Dop = 5= 5 Dy = "
@) Dz 30(0 1243V6 ok 1
6(V2-1)
4365 2246
136241:32 v 1066925037 g
(3.3b) D3p-= 0 3373 :87 , D3L= 0 8502 0 |
1 3026
0 0 %53 0 0 3533
3055 5147
9532 0 0 0 a7 0 0 O
o S
(3.3c) Dyp = 1471 ’ Dyr= 3197
. 80941*:’48 0 0 TZ090 ©
3086
0 0 0 7579 0 0 0 133%

Table 3.1 shows that these methods can all be made strongly A-convergent, and that
only the methods based on a two-stage corrector are L-convergent (see also [7]).
Furthermore, we observe that the rates of convergence of the Lagrange-based methods are
slightly better. Hence, together with their increased stage order, the Lagrange correctors
seem to be attractive alternatives to the Radau correctors in problems where the order of
accuracy is determined by the stage order. However, in problems where, apart from the

165

stage order, the nonstiff (or, classical) order is important, the superconvergent Radau
correctors are to be preferred. As to the ||C|-values given in Table 3.1, it should be
remarked that these are ‘worst case’ values, that is, in actual computation, where the
relevant values of z are located in a restricted region of the left halfplane, the
corresponding bound on C(z) may be much smaller.

Table 3.1. ||C||-values for minimal-spectral-radius PDIRK methods
based on Radau IIA and Lagrange correctors.

strongly

Corrector k IICll A-convergent L-convergent
RadauIA 2 0.262 yes yes
3 0.401 yes no
0.527 yes no
Lagrange 2 c¢=(3/4,1)T 0.182 yes yes
3 ¢ =(712,56,1)T 0.403 yes no
4 ¢-=(1/6712,11/12,1)T 0.404 yes no

3.2. Region of stability

In order to investigate the stability properties of PDIRK methods we have to
specify the predictor formula. The stability of PDIRK methods using the one-step
predictor (2.5) was extensively discussed in [8] for the case where yp,] is defined by
(2.4). For the case (2.3b) considered in this paper, we have the following theorems:

Theorem 3.2. For the equation y’ = Ay the PDIRK solution generated by {(2.3), (2.5)}
satisfies the recursion

Yn+1 = Rm(2)yn, R(2) := R(2) — Ep(2),
R(z) := 1 + zbg + zbT[I — zA] ! [e + za].

Em(z) = bTA-12m(2) ([- zAT! [e + 28] - [- 2BIL ([+ zE] e).

Here, R(z) is the stability function of the corrector reducing to R(z) = e;[/ — zA}-![e + za]
in the stiffly accurate case.

166

Proof. From the relations

(3.4) YO) = -zBI"1 (I +zE] eyp, U =[I-2A)") [e + za] yp,

it follows that

(3.5) U=-Yn =27 U-YO) = 27)(- 2A]"! [e + za] - [2B [+ 2E] €)y,
Hence, from the step-point formula (2.3b) we obtain

(3.6) Untl = Yns1 = BTA (U - Ypy1)
= a2 ({1 - A1 (e + za] — [- 2BT! [+ 2E] €)y

Furthermore, introducing the stability function R(z) of the corrector, we may write

3.7 Upi1 = R(2)yn,

where R(z) is defined in the theorem. From (3.6) and (3.7) the assertion of the theorem is
immediate. []

Theorem 3.3. For the equation y’ = 1y the PDIRK solution generated by {(2.3), (2.6)}
satisfies the recursion

Yn+1)_ (Yn)
Yn+1 = Mm(@) ynl’

where M,y (z) is the amplification matrix

I 0\"!
M"‘(z):z(—bTA‘l 1) ’

ZM(z) [I-zB]-1V [I-Z"(2)]U—zA)"[e+zal + Z7(z) I-zB] v
(ot 1 + boz — bTA 1[e+za]) '

Proof. By means of the equation for U given in (3.4), relation (3.5) and

(3.8) YO = (1-zBI 1 [VY,, + vy,

we derive that

(39) Ymi1 = 27a) U~ BT VY, + (- Z72))U - 24T (e + 26) + Z7%2) - 2B) 1)yn.

Together with the step-point formula (2.3b) the one-step recursion of the theorem is
easily obtained. []

167

With the amplification matrix M,,,(z) we associate the stability function

(3.10) Rp2) i= pMpm(2)),

where p(M,,) denotes the spectral radius of the matrix M. The region in the complex z-
plane where R,(z) < 1 for all m greater than or equal to some given integer m.;; will be
called the region of stability associated with mcyis.

For future reference, we have computed the value of m,;; for a number of predictor-
corrector (PC) pairs. For the correctors we again chose the Radau IIA methods and the
Lagrange methods of Section 3.1. The predictors are those defined in Section 2.4 and the
matrices D are defined according to the minimal-spectral-radius option (see (3.3)). Table
3.2a shows that m,;; increases if the number of stages of the corrector increases.
However, in actual computation, the minimal number of iterations may be much smaller
because many stiff problems require only A(a)-stability. This means that automatic codes
based on PDIRK methods are likely to choose the number of iterations not larger than
necessary to ensure a stable performance. Table 3.2b presents the corresponding angles o
as a function of m (lack of A(0)-stability is indicated by *). The results illustrate the
favourable A(a)-stability characteristics of minimal-spectral-radius PDIRK methods after
only a few iterations. In general, the implicit predictors IEP and BDP possess (of course)
larger stability angles « than the explicit predictors LSP and EXP, even if we take into
account that the implicit predictors require extra computational effort roughly comparable
with an additional iteration. Furthermore, if we compare IEP and BDP, then IEP has the
best stability characteristics (in particular for Radau-based methods). However, the overall
efficiency will be reduced because of its low-order of accuracy. Therefore, we drop the
low-order predictors LSP and IEP and recommend either the EXP or BDP predictor.

Table 3.2a. Values of m,;; of minimal-spectral-radius
PDIRK methods for various PC pairs

Corrector LSP EXP IEP BDP
RadaulIA k=2 1 1
k=3 5 5 2 4
k=4 7 7 4 7
Lagrange k=2 2 2 2
k=73 3 3 3 3
k=4 6 5 6

168

Table 3.2b. Values of a=0(m) (in degrees) of minimal-spectral-radius PDIRK
methods for various PC pairs

Predictor Corrector k& m=1 m=2 m=3 m=4 m=5 =6 =7
LSP RadaullA 2 90
EXP 90
IEP 90
BDP 90
LSP 3 . * 81.9 89.94 90
EXP * * 64.7 88.7 90
IEP 87.5 90
BDP 65.0 81.8 88.4 90
LSP 4 * * * 40.3 80.5 88.5 90
EXP * * * * 70.3 84.2 90
IEP 60.2 75.9 86.1 90
BDP 43.0 14.6 67.1 78.2 84.6 88.6 90

EXP * 90

IEP 86.5 90

BDP 89.82 90

LSP 3 * * 90

EXP * * 90

IEP 7172 * 90

BDP 83.4 4 90

LSP 4 * * ¥ 60.8 86.7 90

EXP ¥ * * * 73.0 88.0 90
IEP 51.6 * * 86.5 90

BDP 48.8 * * 79.9 87.6 90

169

4. THE ERROR FUNCTIONS FOR THE LINEAR INHOMOGENEOUS TEST EQUATION
The following theorem presents a result for general RK methods derived in [2]:

Theorem 4.1. For RK methods the global error e, when applied to the test equation
Y (1) = A (t) + g(1) satisfies
eny1 =R(2)en + 2 Qj(2) W yexPtn),
Jj=q+1
0/(2) =]1—' [1-jbT 1] + ;72 BT[I - 241! [/ - jACHY],

where yx(t) denotes the exact solution of the test equation, R(z) is the stability function
of the RK method and q is its stage order (i.e., the largest integer such that 1 - jb"’ci'1 =
d-jAd-1 =0forj=1,..,9q). [

We shall prove a similar theorem for PDIRK methods employing one-step
predictors. As before, the simplicity of the test equation y'(t) = Ay(f) + g(#) implies that
the particular strategy used in the inner iteration process is not relevant.

In the following, y(f) denotes the locally exact solution at t,, i.e., yn = ¥(tn). It is
straightforwardly verified that for the linear inhomogeneous equation the recursion (3.5)

changes to
@1 U=Yno1 =27 U-YO + hz-1 [gtne + he) - gltne + he¥)]).

Assuming that g is sufficiently differentiable, we may write for any fixed vector v

2) g(rne+hv)=j§,) 5 () g0 - %}20 5 W0 Ui - 2.

Hence,

h [g(tne + he)— gltne + he™)] = 3, ;—, ¥i(2) W YiXey),

J=1
%(2) = jo1 =zl — j(c*V-1 + z(c*V.
Furthermore, it follows from (2.1) that

U = [I - zAT [y(tn)e + hy'(tn)a + h A g(1ne + hc)),

so that

@3 U=ye+ Y, 5 ei@ W i),

Jj=1
c1z)=¢, ¢jz) = U - zAl" 1A (i1 - 2ef], j22.

170

4.1. One-step predictors
Let us assume that ¥(0) is provided by a one-step formula, then it can also be

expanded in terms of a similar Taylor series with coefficients ¢;j*(z):

@3b) YO -y ;—, ci*(2) W y0)(ep).
1
Thus,

@4) U=Yny1=2%2) D, i) W y0tp),
j=1

q1(2) :=c*—c1*(2), gj(2):= Jl'- [c]-(z) —cj*(2) + z-1 ‘)j(z)], Jj=z2.

Assuming that ¢1*(z) does not depend on z, we may choose in (2.3) ¢* = ¢1* so that ¢1(z)
vanishes. Using the relation

)’(j)(’n) = }’ex(j)(’n) + A Dy(tn) — yex(tn)] =)’ex(j)(tn) + A [yn = Yex(tn)],

the iteration error (4.4) can be expanded in terms of derivatives of the exact solution. We
obtain

@4) U-Yn1=22) , 4j(2) (2 [yn - Yex(tn)] +W yexD(en)).
j=2

Since

4.5) Un+l — Yn+l = bTA-! U-Yn,1l,

we find

@.6) tne1 = Yne1 = Sm@Dn— Yex(tw)] + D, Qmj(2) W yexliXty),
j=2

@.6b) Sm(2):=bTALZM2) D qi(2)J, Qpmy(2) = BTA- Z7(2)g;().
j=2

Applying Theorem 4.1 to the corrector at the point £, with e, = y, — Yex(tn) yields

4.7 Uni1 = Yex(tn+1) = R(2)[yn — yex(tn)]

+ _(q41-1)' ZbT []—ZA]_IA [cq+1 _(q+1)A Cq] hq+1)’ex(q+1)(tn) + O(hq+2)’

hence,

171

Yn+l = Yex(tn+1) = Yn+l — ¥n4l + Unsl — Yex(tn+1)

= Yn+1 — Un+1 + R(2) [yn - Yex(tn)] + O(hq+1)-

Thus, using (4.6) we obtain

4.8) Yn+1 = Yex(tns1) = (R(2) = Sm(2)) [yn — Yex(tn)]

- 2 Omj(@®) W yexi)tn) + O(h3+L).
Jj=2
The functions Q,,j(z) will be called the error functions of the PDIRK method.
Finally, we show that the function R(z) - S,,(z) is identical with the stability
function R,, of the PDIRK method. For that purpose, we consider the particular case
where the inhomogeneous term g vanishes. It is easily verified that we then may write

(4.9) Yn+l = Yex(tn+1) = Rm(2) [yn — Yex(tn)] + Rpm(2) — €2) yex(tn), g =0.

Now, suppose that the initial value yg tends to zero. Then, y.x() also tends to zero.
Since (4.8) holds for vanishing g too, it follows that R,,(z) = R(z) — S(2). Notice that in
the case of the predictor (2.5) the functions S,,(z) and E,,(z) as defined in Theorem 3.2
are apparently identical. Thus, we have proved the following PDIRK analogue of
Theorem 4.1:

Theorem 4.2. For one-step predictors possessing the expansion (4.3b) with ¢* = c1* the
global error of PDIRK methods when applied to the test equation y'(f) = A y(f) + g(#)
satisfies the recursion

Ynal = Yexltne1) = Rm@ [n— Yex(t)] =2, Cmi(2) W yex(tn) +O(ha+1),
j=2

R(®)=R@)~Sm(@)y Sm(@):=BTALZ(2) Y, 4i(2) 7, Qpmy(z):= BTA-1 ZM(2)q(2),
j=2

where q is the stage order of the corrector, and R(z) and Ry,(z) are the stability functions
of the corrector and the PDIRK method, respectively. []

This theorem shows that the stage order of PDIRK methods is only one, unless the
error function Q,,2(z) is identically zero for the m-value used (this is not surprising
because formally PDIRK methods are just DIRK methods which are known to have stage

order one). However, as all error functions Qy,j(z) contain the factor Z™(z), their maximal

172

values |Q,,;| are expected to decrease rapidly with m in any region of the left halfplane, so
that effectively the stage order shown in actual computation is much higher.
The following corollary presents an explicit expression of Op; for the predictor (2.5).

Corollary 4.1. For the predictor (2.5) the error functions are given by
(o) o LpTa-1 1(igi-1 1L ice*V-1 (% ;
Omj(@) = 516747 Z7@) 1 (o - (=B ALV -2e]), j=2 0,
where ¢* ;= (B + E)e.

Proof. In the case (2.5) the expansion (4.3b) becomes
YO = (1-B11 ([+2E])(tpe + hE gltle + hB gltne + he¥))
= Yine + U~2BT (Eny(ee + B Y, 5 1y Lice*V - 2(e*Y]),

j=1
so that

c1*(z) = [I-zBY"! (Ee + Be — zBc*) = ¢* = (B + E)e,
¢*@) =[-zBI1zB [jzl(c*y-1 - (c*y], j=2.
By virtue of Theorem 4.2 we may write

Omj(z) = bTA™1 ZM(2)gj(z) = Jl-. bTA-1 ZM(2) [cj(2) - cj*(2) + 1 %(2)] =

- jl'bTA—l 27z (- 2AT 1 [jo ! - 201] - [T - B [j(e*y-1 - (Y1) .

By means of the simplifying condition C(q) associated with (2.1) (cf. [3]), we obtain the
relation jAc/"! = & for j=2, ..., ¢ which leads to the result of the corollary. []

4.2. Last step-value predictor with constant iteration parameters

In the case of the predictor LSP (predictor (2.5) with B = E = O) with constant
iteration parameters (D = &), the error functions Omj(z) can be factorized into factors that
depend on z and factors that do not depend on z. This enables us to derive an explicit
upper bound for Qp(z).

173

Theorem 4.3. Let D = &1 and let the predictor be given by (2.5). Then the error function
bound in aregion R is given by

IR S | 14 _ i1 » .
IQmjIR = = d(m) |bTA-1D (D-1A-DmdY|, j=2,..,q;
(52)”"1

d(m) := m |R.

If R is the infinite wedge defined by W:= {z: w/2<¢<arg(z)<m, — mw<arg(z)<- ¢}, then

X1

(m(1 = xmeos(¢))

d(m) =)m/2 ’

where x,, is the positive root of the equation x2 - 2-m)xcos(¢)—-m+1=0.

Proof. The expression for the error bound |Q,,jlR immediately follows from Corollary
4.1. In order to derive an expression for the function d(n2) we first observe that

| z 2|
1-2

V1 - 2|zl cos(arg(2)) + |22
where m/2<arg(z)<m or —nm<arg(z)<—m2. Hence,

l zm—l _]zlm—l
(1-zym [1 - 2|z|cos(arg(z)) + |z121m/2

Since the function z-1(1—2z)=™ is analytic, its maximum value in W is assumed at a
point on the line arg(z) = ¢. An elementary calculation reveals that the modulus of this
point is given by the positive root x,, of the quadratic equation x2 = (2 - m)cos(¢p)x — m
+ 1 = 0. This leads us to the bound d(m) given in the theorem. []

This theorem shows that in the case where the relevant z-values are in an infinite
wedge W, the optimal choice of the matrix D = &I does not depend on W. Furthermore,
the function d(m) is slowly varying with m. This can be concluded from the extreme
cases where R is either only the negative axis or the whole left halfplane. We then have,
respectively, xp, = m—1 and x;, = \j_m_—l , which yields

d(m)=m+l(1—;1;)"' and dom) - —=— (1-2)"?% .

Vm-1

Thus, within a few iterations the function d(m) slowly converges to zero.

174

It is of interest to compare the error functions Qj(z) of conventional DIRK methods
(cf. Theorem 4.1) with the error functions Qy,j(z) of PDIRK methods. Table 4.1 presents
a comparison for two conventional Ngrsett-DIRK methods [11] and a few L-stable, fixed-
number-of-iterations PDIRK methods constructed according to option 1 [8]. In this table,
k denotes the number of processors needed, p* is the order of the method, and m denotes
the number of sequential stages per step (both for the Ngrsett-DIRK and PDIRK
methods). Clearly, the PDIRK methods possess considerably smaller error bounds.

Table 4.1. Values of IQ;IR and IQjlR with R = {z: Re z< 0} for the Ngrsett-DIRK
methods and fixed-number-of-iterations PDIRK methods.

Method /PC pair & &i m p* j=2 j=3 j=4 j=5

Ngrsett-DIRK 1 2 3 0.144 0.076 0.024 0.0055
{LSP,Radau 1A} 2 0.43586650 3 3 0.024 0.015 0.005 0.0012
{LSP,Lagrange} 2 0.43586650 3 3 0.038 0.015 0.005 0.0012
Ngrsett-DIRK 1 3 0.112 0.054 0.015 0.0040
{LSP,Radau 1A} 3 0.278053841 5 5 0.019 0.006 0.0014 0.0003
(LSP,Lagrange} 3 0572816063 4 4 0.046 0.013 0.0001 0.0012

{LSP, Lagrange} 4 0.278053841 5 S 0.025 0.005 0.0001 0.0001

4.3. Minimal-spectral-radius PDIRK methods

Table 4.2 lists values of IQmjlR withR = {z: Re z< 0} for minimal-spectral-radius
PDIRK methods (option 2), based on {LSP, Radau ITA} pairs and using the iteration
parameters given in (3.3). It turns out that for m> p* the error constants decrease by an
almost constant reduction factor r as m increases by 1 and that they are substantially
smaller than those of the fixed-number-of-iterations PDIRK methods of Table 4.1 (notice
that 7 is almost independent of j).

For future reference, we give a survey of the principal stiff error constants |Qm2IR
with R = {z: Re z<0} for a number of PC pairs. In Table 4.3, p denotes the order of the
corrector and the order of the iterated method is in all cases given by p* =min{p,m}.
From these results we conclude that the explicit predictor LSP leads to slightly smaller
principal error constants than the implicit predictor IEP, provided that we count the
application of IEP as an additional iteration. Furthermore, the Lagrange-based methods
show considerably smaller error constants. However, we should bear in mind that the
nonstiff error constants of the Radau-based methods decrease much faster than those of the

175

Lagrange-based methods because of the high (nonstiff) orders of the Radau correctors.
Finally, note that the reduction factors are very close to the ||C||-values listed in Table
3.1.

Table 4.2. Values of the error constants for minimal-spectral-radius PDIRK methods.

PC pair k m p* j=2 Jj=3 j=4 j=5
{LSP, Radau I1A} 2 2 2 0.0249 0.0263 0.0102 0.0027
3 3 0.0060 0.0062 0.0024 0.0006
3 r=25 r=.25 r=.25 r=.25
{LSP, Radau IIA} 3 3 3 0.0360 0.0086 0.0027 0.00076
4 4 0.0138 0.0031 0.0009 0.00025
5 5 0.0052 0.0012 0.0003 0.00009
5 r=.40 r=.38 r=.39 r=.38
{LSP, Radau ITA} 4 5 5 0.0153 0.00098 0.000031 0.00004
6 6 0.0079 0.00051 0.000016 0.00002
7 7 0.0041 0.00027 0.000008 0.00001
7 r =.50 r=.52 r=.50 r=.52

Table 4.3. Values of the principal error constant for minimal-spectral-radius PDIRK

methods.

Method k) m=k m=k+1 m=k+2 r

{LSP, Radau ITIA} 2 3 0.025 0.0060 0.0015 0.25
{IEP, Radau I1A} 2 3 0.024 0.0059 0.0015 0.25
{LSP, Lagrange} 2 3 0.013 0.0023 0.0004 0.18
{IEP, Lagrange} 2 3 0.006 0.0011 0.0002 0.18
{LSP, Radau IIA} 3 5 0.036 0.0138 0.0052 0.40
{IEP, Radau ITA} 3 5 0.014 0.0053 0.0020 0.41
{LSP, Lagrange} 3 4 0.008 0.0034 0.0014 0.40
{IEP, Lagrange} 3 4 0.004 0.0018 0.0007 0.40
{LSP, Radau I1A} 4 7 0.027 0.0153 0.0079 0.50
{IEP, Radau IIA} 4 7 0.017 0.0088 0.0044 0.50
{LSP, Lagrange} 4 5 0.022 0.0092 0.0037 0.40
{IEP, Lagrange} 4 5 0.013 0.0054 0.0021 0.40

176

5. CONCLUDING REMARKS

In this paper, we have studied special characteristics, such as the rate of
convergence, the (linear) stability, and the stiff error constants, of PDIRK methods based
on Radau ITA and Lagrange correctors using various types of iteration parameters and
predictors. The minimal-spectral-radius methods turn out to be either comparable or
superior to fixed-number-of-iterations methods. Confining our considerations to minimal-
spectral-radius methods, the following conclusions can be drawn from our analysis:

Rate of convergence: Lagrange correctors are superior to Radau corrector for k=2 or
k =4. For k=3, these correctors are comparable.

Linear stability: Lagrange correctors are slightly superior to Radau correctors.
The implicit predictors IEP and BDP are superior to explicit
predictors EXP and LSP.

Order reduction: Lagrange correctors are superior to Radau correctors (both with
respect to the stage order and the magnitude of the error
constants).

The explicit predictor LSP is slightly superior to the implicit
predictor IEP.

Nonstiff error constants: The two-stage Radau corrector is comparable with the two-stage
Lagrange corrector. Radau correctors are by far superior to
Lagrange correctors for k> 2.
The predictors EXP and BDP are by far superior to the
predictors LSP and IEP.

By these conclusions, we are led to recommend PDIRK methods using an {EXP, Radau}
PC pair and the minimal-spectral-radius iteration strategy as the most efficient in the
class of PDIRK methods.

177

REFERENCES

(1]

(2]

[3]

(4]

(5]

(6]

7

(8]

9]

(10]

(11]

[12]

(13]

Burrage, K., van der Houwen, P.J., Hundsdorfer, W.H. & Sommeijer, B.P.:
Analysis of the error constants of parallel Runge-Kutta methods for stiff ODEs, in
preparation.

Burrage, K., Hundsdorfer, W.H. & Verwer, J.G. (1986): A study of B-convergence
of Runge-Kutta methods, Computing 36, 17-34.

Butcher, J.C. (1987): The numerical analysis of ordinary differential equations,
Runge-Kutta and general linear methods, Wiley, New York.

Dekker, K. & Verwer, J.G. (1984): Stability of Runge-Kutta methods for stiff
nonlinear differential equations, North-Holland, Amsterdam.

Hairer, E., Ngrsett, S.P. & Wanner, G. (1987): Solving ordinary differential
equations, 1. Nonstiff problems, Springer Series in Comp. Math., Vol. 8, Springer-
Verlag, Berlin.

Hairer, E. & Wanner, G. (1991): Solving ordinary differential equations, I1I. Stiff
and differential-algebraic problems, Springer Series in Comp. Math., Vol. 14,
Springer-Verlag, Berlin.

Houwen, P.J. van der & Sommeijer, B.P. (1991): Iterated Runge-Kutta methods on
parallel computers, SIAM J. Sci. Stat. Comput. 12, 1000-1028.

Houwen, P.J. van der, Sommeijer, B.P. & Couzy, W. (1992): Embedded diagonally
implicit Runge-Kutta algorithms on parallel computers, to appear in Math. Comp..
Jackson, K.R. & Ngrsett, S.P. (1990): The potential for parallelism in Runge-
Kutta methods, Part I: RK formulas in standard form, Technical Report No.
239/90, Department of Computer Science, University of Toronto.

Jackson, K.R. & Ngrsett, S.P.: The potential for parallelism in Runge-Kutta
methods, Part II: RK predictor-corrector formulas, in preparation.

Ngrsett, S.P. (1974): Semi-explicit Runge-Kutta methods, Report Mathematics and
Computation No.6/74, Depart. of Mathematics, University of Trondheim.
Shampine, L.F. (1980): Implementation of implicit formulas for the solution of
ODEs, SIAM J. Sci. Stat. Comput. 1, 103-118.

Wolfbrandt, A. (1977): A study of Rosenbrock processes with respect to order
conditions and stiff stability, Ph. D. Thesis, Chalmers University of Technology,
Goteborg.

178

Samenvatting

Het onderwerp van dit proefschrift is de numerieke integratie van beginwaarde
problemen met behulp van algoritmen die geschikt zijn om de speciale eigenschappen
van parallelle computers te benutten. Om te komen tot een efficiénte integratie op dit
type computers, kunnen we ruwweg twee vormen van parallellisme onderscheiden:

(i) Parallellisme over het probleem; deze techniek houdt in dat het probleem in een
geschikt aantal deelproblemen wordt onderverdeeld. Karakteristiek voor deze aanpak is
dat de algoritmen niet of nauwelijks aanpassing behoeven. Een voorbeeld van dit type
parallellisme is het gelijktijdig evalueren van de componenten van de rechterlidfunctie
van een stelsel differentiaalvergelijkingen voor een gegeven argument.

(ii) Parallellism over de methode; hierbij wordt het parallellisme benut dat inherent
aanwezig is in de algoritme. Een voorbeeld is het gelijktijdig evalueren van de gehele
rechterlidfunctie van de differentiaalvergelijking voor diverse waarden van het argument.

Het zal duidelijk zijn dat de eerste vorm van parallellisme tamelijk voor de hand
liggend is; dit proefschrift richt zich dan ook uitsluitend op de tweede vorm. Overigens
kunnen beide aanpakken uitstekend gecombineerd worden (voor grote stelsels
differentiaalvergelijkingen), aangezien ze min of meer ‘orthogonaal’ zijn.

Hoewel de theorie voor het numeriek integreren van (gewone) differentiaal-
vergelijkingen reeds ver ontwikkeld is en er bovendien vele goede methoden (en
bijbehorende computerprogramma's) bestaan voor dit soort problemen, missen deze
technieken veelal de mogelijkheid om ‘parallellisme over de methode’ te benutten. Het
belangrijkste doel van dit proefschrift is derhalve een bijdrage te leveren aan de

constructie en analyse van nieuwe algoritmen dit wel over deze eigenschap beschikken.

Op het CWI is het onderzoek naar deze methoden gestart in het najaar van 1988.
Dit heeft geleid tot de publikatie van een aantal artikelen in de wetenschappelijke
literatuur. Een zestal van deze artikelen is in dit proefschrift (in de Hoodstukken I-VI)
gebundeld en wordt voorafgegaan door een Introductie. Deze inleiding is bedoeld om de
niet-ingewijde lezer een ingang te verschaffen voor de meer technische artikelen.

Het proefschrift bestaat uit twee delen: het eerste deel bevat twee artikelen en
handelt over parallelle methoden voor niet-stijve differentiaalvergelijkingen; de resterende
vier artikelen vormen samen Deel II en hebben als gemeenschappelijk onderwerp de
constructie en analyse van parallelle methoden voor stijve beginwaarde problemen.

179

In het eerste artikel worden parallelle, expliciete Runge-Kutta methoden
geconstrueerd met als belangrijkste eigenschap dat het aantal effectieve ‘stages’ gelijk is
aan de orde van nauwkeurigheid; dit blijkt mogelijk voor willekeurig hoge orde. Deze
eigenschap is principieel onmogelijk voor ‘sequentiéle’ Runge-Kutta methoden.

Parallelle blockmethoden vormen het onderwerp van het artikel in Hoofdstuk II.
Hoewel deze methoden niet zelfstartend zijn zoals de Runge-Kutta methoden, is het
mogelijk met s processoren en (hoogstens) s startwaarden orde 2s te bereiken (s=2, 3,4),
waarbij slechts twee evaluaties van de rechterlidfunctie nodig zijn.

In Hoofdstuk III worden impliciete blockmethoden bestudeerd voor stijve gewone
en integro-differentiaalvergelijkingen. De orde-barriere van Dahlquist, zoals we die
kennen voor lineaire meerstapsmethoden, kan hier verlegd worden: A-stabiele methoden
van orde < 4 zijn geconstrueerd, waarbij de hoeveelheid werk (per stap, per processor)
gelijk is aan hetgeen een impliciete meerstapsmethoden, zoals bijvoorbeeld de BDF
methode, vergt (per stap, op een sequenti¢le machine). Een A(a)-stabiele methode van
orde 5 wordt gepresenteerd met o = 89.98°.

Diagonaal impliciete iteratie van een volledig impliciete Runge-Kutta methode
(zoals bijvoorbeeld de Gauss-, Radau- en Lobatto-methoden) wordt besproken in de
Hoofdstukken IV en V. In het vierde artikel wordt het aantal iteraties zo gekozen dat het
resulterende schema dezelfde orde heeft als de onderliggende Runge-Kutta methode (de
corrector) en worden de iteratieparameters benut om een optimale stabiliteit te
bewerkstelligen. Hoewel deze strategie leidt tot hoge-orde methoden met goede
stabiliteitseigenschappen, is de ‘stage orde’ — althans formeel — laag. Deze eigenschap
heeft geleid tot de aanpak zoals beschreven in Hoofdstuk V, waarbij geitereerd wordt
totdat de corrector voldoend nauwkeurig is opgelost. In dit geval zijn de iteratie-
parameters zo gekozen dat een bevredigende convergentiesnelheid verkregen wordt. Uit
experimenten is gebleken dat het benodigd aantal iteraties nauwelijks groter is dan het
aantal iteraties in een Newton-proces om de (gekoppelde) impliciete relaties behorende
bij de corrector op te lossen (bij vergelijkbare stapgrootten). Bovendien is een aantal
nieuwe correctoren geconstrueerd met verhoogde stage orde.

Tenslotte wordt in Hoofdstuk VI een verdere analyse gegeven van de iteratieve
methoden gepresenteerd in beide voorgaande hoofdstukken. Aan de hand van een lineaire,
homogene testvergelijking wordt een foutenanalyse van deze schema's gegeven. Tevens
wordt de invloed van verschillende predictoren onderzocht.

180

Index

A pagenumber followed by the letter f indicates that relevant information can also be

found on the pages directly following the mentioned page. Major references are in bold

face.
A-acceptable stability function, 107f Chu-Hamilton method, 50
A-convergence, 163f Clippinger-Dimsdale method, 49
A-stability, 75f, 108, 136 Codes '
A(o)-stability, 7, 76, 167, 168 DOPRIS, 31
A(o,B,p)-stability, 17, 80, 86 LSODE, 9, 116
Adams-Bashforth (-Moulton) PDIRK, 116

methods, 34, 54f PIRKS, 35, 37
Adams-type method, 52f PIRK10, 35, 37
ALLIANT FX/4, 9, 92, 115f PSODE, 9
Amplification matrix, 17, 79, 166 RADAUS, 9
Arbitrarily high order, 18, 36 SIMPLE, 116

Computational complexity, 4, 10, 131f
BDF methods, 75, 86

Block methods
A-stable, order 3, 17, 82
A-stable, order 4, 83, 84
A(o)-stable, order 5, 84, 85
Adams-type, 52f
block vector, 14, 45, 76, 77
general definition, 14, 46f, 77
multi-block methods, 50
order conditions, 51f, 78
Block Runge-Kutta methods, 44f
Butcher tableaux, 28, 45f, 102, 126,
131, 147

Convergence
A- and L-convergence, 163f
of diagonally implicit iteration,
130f, 162f
Corrector
for Block methods, 14, 47
for PDIRK methods, 5, 98, 111,
113, 134f, 156
for PIRK methods, 27
CPU-timings, 12,92, 117,120
Critical m-values, 135, 167
Curtis' method, 34

Dahlquist's barriers
first, 14, 16
second, 14, 16, 75, 88
Diagonal(ly)
implicit iteration, 3, 98, 127f, 157f
implicit Runge-Kutta methods
(DIRK methods), 3, 96f, 126, 147
see also Runge-Kutta methods
matrix D
in Block methods, 16, 77
constant entries, 7, 105f, 163
varying entries, 7, 111f
Directives, 37
DIRK methods
see Runge-Kutta methods

E-polynomial, 106, 107
Effective (number of) stages, 5, 27, 132
Embedded formulas, 32, 115
Error constants, 128, 174f
Error control
in PDIRK code, 115
in PIRK code, 32
in PSODE code, 9
Error functions, 171f
Error vectors, 52f, 78f

FORTRAN 77, 37

Gauss-Legendre methods
2-stage, 111,113, 138
3-stage, 111, 113
4-stage, 35
5-stage, 33,35

181

General linear method, 48
Global error, 109, 110, 169f

Hairer's method, 34

Hardware advancement, 1

Integro-differential equation, 75, 86f
Iserles-Ngrsett method, 132, 147
Iteration

functional, 27

diagonal-implicit, see Diagonal(ly)
Iteration function, 162f

L-acceptable stability function, 107f
L-convergence, 163f
L-stability, 108f
L2-stability, 96, 109
L(a)-stability, 113
Lagrange methods

3-stage, 136, 165f

4-stage, 139, 165f

5-stage, 141, 165f
Lobatto ITIA methods

3-stage, 137

4-stage, 139

5-stage, 140
LU-decompositions, 4, 10, 13, 77, 132

Minimal number of processors, 10, 15,
26, 28, 46, 66

Miranker-Liniger methods, 48

Multi-block methods, 50

Multistep predictors, 9, 29, 160

182

Newton-Cotes methods PDIRK methods
3-stage, 137 A-stable, 108
4-stage, 138 A(0)-stable, 113
S-stage, 140

Nonequidistant points, 15, 43, 77 L-stable, 108, 109

Ngrsett-Crouzeix-Alexander (SDIRK) L2-stable, 108, 109

methods, 97, 132, 147 L(o)-stable, 113

stability, 103f, 129, 133f

with constant D-matrix, 105f

fers, 14, 16,7
HAiRRy 1%, 15,55, BB with varying D-matrix, 111

see also Dahlquist’s barriers

PIRK methods
conditions code, 37
in Block methods, 78
corrector, 27

in Block Runge-Kutta methods, 51
effective, 144
of Block methods, 44
of PDIRK methods, 6, 99f, 132f
of PIRK methods, 5,28
reduction, 7, 109, 126
stage, 7, 109, 126, 128
step-point, 128

predictor, 29, 33f
stability boundaries, 31
Predictor
for Block methods, 14, 47
for PDIRK methods, 4, 100f, 160
for PIRK methods, 29, 33f
Prince-Dormand method, 34f

Quadrature formulas, 16, 86f

Parallelism
across the method, 1,9 Radau ITA methods
across the problem, 1, 10 2-stage, 111f, 138, 163, 165f
across the time, 2 3-stage, 111f, 140, 165f
coarse grain, 2 4-stage, 9, 111f, 115f, 141, 165f
massive, 10 Runge-Kutta methods
Parasitic roots, 55, 59 general definition, 2
Partitioning, 25 optimal, 5, 28
PC iteration of (S)DIRK type, 3, 96f, 126, 147
in Block methods, 14, 15, 47 of SIRK type, 3, 126
in Runge-Kutta methods, 25, 95 stiffly accurate, 5, 100

‘the’, 34, 111

S-stability, 97
Self-starting, 14, 77
Shampine-Watts method, 49
SIRK methods
see Runge-Kutta methods
Software, 37
see also Codes
Speedup factor, 12, 36, 92, 118, 120
Stability
see also A-, A()-, A(a,B,D)-, L-,
L2, L(0)-, S-, Zero-stability
functions, 112f, 134f
of PDIRK methods, 103f, 129f, 133
Stability boundaries
of Block methods, 62, 64
of PIRK methods, 31
Stability regions
of BDF methods, 18, 90
of Block methods, 16, 18, 90
of PDIRK methods, 165f
Stiff error constants, 161, 174f

Superconvergence, 7, 128

183

Test problems
chemical reaction, 143
circuit analysis, 11
Euler's equation, 35, 70
Fehlberg's problem, 35
Kaps' problem, 89, 110, 143
nonlinear equation, 55f
orbit equations, 35, 69
PDE (convection-diffusion), 144
van der Pol's equation, 119
Prothero-Robinson problems, 143
rigid body problem, 33f
Robertson kinetics, 117
singularly perturbed problem, 109
stability test problem, 89
strongly increasing solution, 67
Volterra integro-differential equation,

91

Updating Jacobian matrices, 19

Watts-Shampine method, 16, 129

Waveform relaxation, 2

Zero-stability, 52, 61, 79f

STELLINGEN
behorende bij het proefschrift

Parallelism in the Numerical Integration
of Initial Value Problems

van
B.P. Sommeijer

5 februari 1992

I

Het stabiliteitspolynoom R, (z) van een expliciete, m-punts (m=3), 2%-orde
Runge-Kutta methode is van de vorm

m
Rn(z)=1+z +%z2 +j§:3€j 2.
Voor een willekeurige waarde van m zijn er geen analytische uitdrukkingen voor
de cogfficiénten cj bekend opdat

|[Rm(2)1<1, ze[-B,0]
met 3 zo groot mogelijk. Echter, het polynoom
Pu(z2)=1+ z 3 [Tm(cos(n/m) - ;_—(cos(n'/m) - 1)) - 1]
7
met Tp(z) = cos (m-arccos(z)) is een zeer goede benadering voor het ‘optimale’
polynoom. Voor P,(z) geldt

|Pp@) | <1, z€[-%0] met y=—2—
. TE
g 2m

en voor grote waarden van m vinden we y= % m2 = 0.8106 m2.

P.J. van der Houwen & B.P. Sommeijer, A special class of Runge-Kutta methods
with extended real stability interval, IMA J. Numer. Anal. 2 (1982), 183-209.

I

Beschouw het gegeneraliseerde Predictor-Corrector (PC) schema zoals gedefinieerd
in [1]. Laat B,(m) de retle stabilititeitsgrens voorstellen van het PC schema
waarbij als corrector een terugwaartse differentiatie methode van de orde p wordt
gekozen (2<p<6), als predictor een extrapolatie formule van de orde p—1,enm
correcties worden uitgevoerd.

Voor willekeurige waarden van m bestaan er analytische expressies voor de
iteratieparameters in het gegeneraliseerde PC schema zodat fB,(m) monotoon stijgt

met m; tevens geldt
lim Ez(m_) =C
Mm—oo M P
met
Cy = 137, Cy= 101, Cq = 073, Cs= 054, Ce > 0.37.

[1] P.J. van der Houwen & B.P. Sommeijer, Predictor-corrector methods with
improved absolute stability regions, IMA J. Numer. Anal. 3 (1983), 417-437.

Binnen de klasse van 2-punts, diagonaal impliciete Runge-Kutta-Nystr6m
methoden voor de numerieke integratie van y"(¢) = f(t.y()) is het mogelijk 4¢-orde
nauwkeurigheid te bereiken; het schema met het grootste periodiciteitsinterval
(namelijk (0,12)) wordt gegeven door

3+V3 2+V3
6 12
3-V3 V3 2+V3
6 ~ 6 12
3-V3 343
12 12
1 L
2 2

B.P. Sommeijer, A note on a diagonally implicit Runge-Kutta-Nystrém method,
JCAM 19 (1987), 395-399.

v

Voor de integratie van y"(¢) =£(z, y(t)) met een oscillerende oplossing, beschouwen
we de Numerov methode

1
Yn+1 = 5 h2 f(tne1, Yns1) = Zn
met
1
Zn = 290 = Yn-1 + 152 [10£(tn, y0) + £ (tn1, Y1)]

en het gegeneraliseerde Predictor-Corrector schema

YO =2yn - yp.1 + K2 f (tn, yn)

; 1 ; .
® YO0 =1yO & (1) Ty + 75 A1) B2 f a1, y0D), j=1,m-1,
1

Yn+1 1= Y™ = By + 5 h2f (141, D)),
Het schema (x) is consistent van orde 4. De iteratieparameters K kunnen z6
gekozen worden dat de dispersie-orde gelijk is aan 2m+2; de foutconstante in de

. ; 1

kopterm van de dispersiefout wordt dan gegeven door @)

P.J. van der Houwen & B.P. Sommeijer, Predictor-corrector methods for periodic
second-order initial-value problems, IMA J. Numer. Anal. 7 (1987), 407-422.

v

Voor de numerieke integratie van y'(t) =f(¢,y(t)), y(0) = yg met stapgrootte A
definiéren we de methode (n>p)

p
*) Y= _Zoaj(u) Ynj,
]:
(*%) Yn+1 = M((1-p)h; tn+uh, y*) ,

waarbij t,=nh, y, = y(t,) en 0< < 1. De coéfficiénten aj(u) in de extrapolatie-
formule (*) worden z6 gekozen dat y* een p®-orde benadering is voor y(t,+uh).
M(h*; t*, y*) stelt een p-punts, p®-orde (p<4), expliciete Runge-Kutta methode
voor, die de differentiaalvergelijking integreert over het interval [¢*, t,,1] met
stapgrootte h* = (1—4)h en beginwaarde y*.

Door een geschikte keuze van u kan de reéle stabiliteitsgrens B van het schema
{(*), (**)} aanzienlijk vergroot worden in vergelijking met de regle stabiliteits-
grens van het onderliggende Runge-Kutta schema: voor p=1 kan g willekeurig
groot gemaakt worden; voor p=2,3 en 4 kunnen, respectievelijk, vergrotings-
factoren 6.2, 1.9 en 1.8 bereikt worden.

B.P. Sommeijer, Increasing the real stability boundary of explicit methods,
Computers Math. Applic. 19 (1990), 37-49.

VI
Het 313-punts, expliciete Runge-Kutta schema voor y'(£) =f (¢,y(?))

ky =f(tnsyn),

k"...l =f(tn+C[h,yn+C[hk1), 1=1.2,.:::13;
13

k13,'+,'+14 =f(tn+Cih,yn+h 21 Aim k13j+m+l)’ i=1,2,...,13, j=0,l,....22,
m=]

13
Yn+1=Yn+ h Z bm k300+mv
m=1

waarbij
¢1=0.0079084726407059252636, ¢,=0.0412008003885110173967,
€3=0.0992109546333450436029, 4=0.1788253302798298896780,

¢5=0.2757536244817765735610, cs=0.3847708420224326029672,
C7=1/2, C14i = 1- C7-is i=1,2....,6,

b,=0.0202420023826579397600, b,=0.0460607499188642239573,
b3=0.0694367551098936192317, b,=0.0890729903809728691401,
bs=0.1039080237684442511561, bg=0.1131415901314486192062,
b7=0.1162757766154369550971, by,; = by, i=1,2,....6,

A:=(a,-j)=CVRV'1, met C:=diag(c;,c3,...,13), R:=diag(1,1/2,...,1/13) en
V' de Van der Monde matrix (vj) is met vji=c; /! (i,j=1.2,...13),

vu

Het construeren van een Runge-Kutta methode van hoge orde is een hele kluif. Het
aardige van deze kluif is echter, dat hij nooit helemaal raakt afgekloven.

VI

Beschouw (natuurlijke) getallen G van de vorm

G :=1990-10V + 1,
waarbij N =1, 2, ..., 1992.
Er geldt:
(i) als N # 5 (mod 6), dan is G deelbaar door precies één van de getallen 7, 11 of 13
(ii) als N = 5 (mod 6), dan is G alleen priem vcor N =23,59 en 1187.

IX

Beschouw de rij
(*) dy,dr,d3,ds, ds, dg, ...

waarbij dj € {0, 1,2, ...,9}. Elk nieuw element van de rij wordt bepaald door de zes
direkt voorafgaande elementen en wel als volgt:

di+1 := wTr; (mod 10), i>6,

waarbij r; := (d;—5, di—4,di—3,di-2, di—1,d;)T en wT:= (1, w2, w3, wq, w5, we) met

wje {0, 1,2}. Als er, uitgaande van een zekere startvector rg, een (positief, geheel)

getal L bestaat zo dat r; +s=rg, dan spreken we van een cyclus; het kleinste getal L

waarvoor dit geldt, noemen we de lengte van de cyclus.

Zijrg:=(5,2,1,9,9,2)T; dan geldt:

(i) derij (*) is cyclisch voor V wje {0, 1,2} en de lengte is een even getal. De
kleinste cyclus (L=6) wordt gevonden voor wT=(1,0,0, 0,0, 0); de cyclus met
de grootste lengte (L=196812) voor wT=(1,0,0,0,0,1), wT=(1,0,0,2,0, 1),
wl'=(1,0,2,2,2,1), wT=(1,1,0,0,0,0) en wT'=(1, 1, 0,2,0,0).

(i) beschouw vier opvolgende elementen uit de rij (*), geschreven als het vier-
cijferig getal
(%) di-3dj_2d;1di.

Dan zijn er precies 20 cyclische rijen met de eigenschap dat alle jaartallen van
de 20° eeuw (minstens) eenmaal in de vorm () in de cyclus voorkomen.

De kortste van deze cycli heeft lengte 23430 en wordt gevonden voor
wl=(1,1,1,1,2,0). De frequentie (f) van de verschillende cijfers (c) in deze
cyclus is als volgt:

c 0 1 2 3 4 5 6 7 8 9

i 1625 3000 1560 3000 1625 3250 1500 3120 1500 3250

(iii) voor het speciale geval w = rg geldt dat er geen L bestaat waarvoor ry ¢ ="rg.
Ook in dit geval treedt er periodiciteit op, echter met een ander ‘beginpunt’;
er geldt ry 47 = ry, met L=1860.

X
In het geval van ongeletterdheid zal dit veelal worden verzwegen of hooguit

schaamtevol worden beleden. Het is zeer verwonderlijk dat ongecijferdheid [2] in
het algemeen absoluut niet als schande wordt ervaren; vaak gaat men er zelfs prat

op.
[2] John Allen Paulos, Ongecijferdheid (1989).
X1

Parallellisme rijmt op pragmatisme.

X1
Elk woordenboek is subjectief. Daarom verdient de in van Dale [3] gegeven
richtlijn: ‘het gezag van een woordenboek is in beginsel niet groter dan het gezag
dat de taalgebruiker er zelf aan wil toekennen’ meer navolging.

[3] van Dale, Groot Woordenboek der Nederlandse Taal.

X1
Het hanteren van een (meestal moderne) voorkeurspelling naast een (vaak wat

oudere) traditionele spelling van de Nederlandse woorden is uiterst verwarrend. Er
dient dan ook voor elk Nederlands woord precies één spelling te worden gekozen.

X1V

Het valt te vrezen dat in de Verenigde Staten van Europa na 1992 tal van kleinere
Europese talen zullen verworden tot niet meer dan een huiskamertaal.

XV

Lesprogramma's op de middelbare school dienen vooral te bestaan uit datgene waar
de betreffende docent met veel enthousiasme les in geeft.

XVI

Veel middelbare scholieren werken harder dan hun ouders.

