OVINGSGRD METHODR

FOR TIME-DEPENDENT
PARTIAL DIFFERENTIAL EQUATIONS

Paul Zegeling




Moving-Grid Methods
| for
Time-Dependent

Partial Differential Equations






Moving-Grid Methods for Time-Dependent
Partial Differential Equations

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus,
prof. dr. P.W.M. de Meijer,
in het openbaar te verdedigen in de Aula der Universiteit
(Oude Lutherse Kerk, ingang Singel 411, hoek Spui),
op donderdag 8 oktober 1992 te 13.30 uur

door

Paul Andries Zegeling

geboren te Moskou

Centrum voor Wiskunde en Informatica
Amsterdam
1992



Bewegende roostermethoden voor tijdsafhankelijke parti€le
differentiaalvergelijkingen
Promotor: Prof. Dr. P.J. van der Houwen

Co-promotor: Dr. J.G. Verwer

Faculteit: Wiskunde en Informatica

Het onderzoek voor dit proefschrift werd uitgevoerd in het kader van het CWI/Shell-project
‘Adaptive-Grid Techniques in Software for Evolutionary Partial Differential Equations’. Dit
project werd financieel ondersteund door de ‘Nederlandse Organisatie voor Wetenschappelijk
Onderzoek’ (NWO) via de ‘Stichting voor de Technische Wetenschappen’ (STW).



Dedicated to:

Mo

Tea & Goejp

Evert Kaplan (his brother)
Lokomotiv TNT






Acknowledgements

The subject of this thesis is moving-grid methods for time-dependent partial dif-
ferential equations in one and two space dimensions. The research for this thesis
was carried out at the Department of Numerical Mathematics of the CWI (Centre
for Mathematics and Computer Science). It was part of a joint CWI/Shell project
titled ‘Adaptive-Grid Techniques in Software for Evolutionary Partial Differential
Equations’. This project was financially supported by the ‘Netherlands Organization
for Scientific Research’” (NWO) via the ‘Netherlands Foundation for the Technical
Sciences’ (STW).

[ want to thank all those who contributed somehow to the realization of this work.
First of all, I"d like to express my particular gratitude to dr. J.G. Verwer for his gui-
dance during this project and for his many contributions to this thesis. I am also
grateful to Prof. dr. P.J. van der Houwen for acting as a promotor and, as head of the
department, for creating a pleasant and stimulating environment for doing scientific
research. My special thanks are due to Joke Blom. As ‘wandelende manual’ she was
always ready to provide assistance whenever it was needed. Her contributions to
many chapters of this thesis are also indispensible. Further, I thank Joke Blom and
Ron Trompert for the "fruitful” discussions on mathematics and other subjects, that
we had in M026. Finally, I’d like to thank the CWI, STW, and NWO, respectively,
for giving me the opportunity to prepare the thesis.






Contents

1. General Introduction

1.1.
1.2,
1:3:

THE METHOD OF LINES
MOVING-GRID METHODS
CONTENTS OF THE THESIS

REFERENCES

2. A Numerical Study of Three Moving-Grid Methods for One-

Dimensional Partial Differential Equations Which Are Based on

the Methods of Lines

2:1.
2.2

2.3.
2.4.

2.5

INTRODUCTION

OUTLINE OF THE MOVING-GRID TECHNIQUES

2.2.1. The Lagrangian approach

2.2.2. Method I

2.2.3. Method II

2.2.4. Method III

THE NUMERICAL TIME INTEGRATION

NUMERICAL COMPARISONS

2.4.1. Problem I: A scalar reaction-diffusion problem from combus-
tion theory

2.4.2. Problem II: Burgers’ equation

2.4.3. Problem III: Waves travelling in opposite directions

CONCLUSIONS

REFERENCES

3. A Moving-Grid Method for One-Dimensional PDEs Based on the
Method of Lines

3.1.

3.2.

3.3.

3.4.

3.5

INTRODUCTION

THE SEMI-DISCRETE PDE

THE MOVING-GRID EQUATION

3.3.1. Spatial equidistribution

3.3.2. The grid-smoothing procedures

DISCUSSION OF THE SMOOTHING PROCEDURES

3.4.1. Preliminaries

3.4.2. Spatial grid-smoothing

3.4.3. Temporal grid-smoothing

THE COMPLETE SEMI-DISCRETE SYSTEM

3.5.1. The moving-grid equation in terms of nodal values

3.5.2. The complete semi-discrete system and its numerical integra-
tion

AN W N =

11
11
14
18
21
25
25

26
32
38
43
45

47
47
48
50
50
50
52
52
53
56
58
58

59



3.6. NUMERICAL EXAMPLES
3.6.1. Problem I: The Dwyer-Sanders flame-propagation model
3.6.2. Problem II: A ‘hot spot’ problem from combustion theory
3.6.3. Problem III: Waves travelling in opposite directions

3.7. CONCLUSIONS

REFERENCES

4. An Evaluation of the Gradient-Weighted Moving-Finite-Element
Method in One Space Dimension
4.1. INTRODUCTION
4.2. DESCRIPTION OF THE METHOD
4.2.1. MFE
4.2.2. GWMFE
4.2.3. Implementation
4.3. NUMERICAL EXPERIMENTS
4.3.1. Problem I: Burgers’ equation
4.3.2. Problem II: A shifting pulse
4.3.3. Problem III: Pulses traveling in opposite directions
4.3.4. Problem IV: The Dwyer-Sanders flame-propagation model
4.3.5. Problem V: A gasdynamics problem with a small diffusion
term
4.4. A COMPARISON WITH A MOVING-FINITE-DIFFERENCE METHOD
4.4.1. The moving-finite-difference method
4.4.2. MFD versus GWMFE
4.5. CONCLUSIONS
REFERENCES

5. A Note on the Grid Movement Induced by MFE
5.1. INTRODUCTION
5.2. THE MOVEMENT OF THE NODES IN MFE
5.2.1. Description of MFE
5.2.2. Relation of MFE with the method of characteristics
5.2.3. Node movement for parabolic equations
5.3. NUMERICAL EXAMPLES
5.3.1. Example I (‘Anisotropy’)
5.3.2. Example II (‘Grid rotation’)
5.3.3. Example III (‘Parabolic pulse’)
5.4. CONCLUSIONS
REFERENCES

6. Application of a Moving-Grid Method to a Class of 1D Brine
Transport Problems in Porous Media
6.1. INTRODUCTION
6.2. THE MOVING-GRID ALGORITHM
6.2.1. The moving-grid algorithm

60
60
62
63
66
66

69
69
70
71
73
76
79
80
85
86
90

92
95
95
96
98
99

101
101
103
103
104
105
108
108
111
113
115
115

117
117
119
119



6.2.2. Grid smoothing

6.2.3. Integration in time

6.2.4. A moving-grid interface

6.2.5. The spatial discretization in MGI
6.3. THE 1D FLUID-FLOW/ SALT-TRANSPORT PROBLEM
6.4. NUMERICAL EXAMPLES

6.4.1. Example 1

6.4.2. Example II

6.4.3. Example III
6.5. CONCLUDING REMARKS
REFERENCES
APPENDIX

7. Moving-Finite-Element Solution of Time-Dependent Partial Dif-
ferential Equations in Two Space Dimensions

7.1. INTRODUCTION

7.2. DESCRIPTION OF MFE IN TWO SPACE DIMENSIONS
7.2.1. The method
7.2.2. Second-order operators

7.3. AN EVALUATION OF MFE IN 2D
7.3.1. Application to convection-reaction equations
7.3.2. Application to reaction-diffusion equations
7.3.3. Application to convection-diffusion equations

7.4. CONCLUSIONS

REFERENCES

SAMENVATTING

120
122
122
123
125
128
129
130
133
135
136
138

141
141
143
143
146
148
149
152
155
161
163

167






Chapter 1

General Introduction

"FAB, Lady Penelope"

Standard numerical methods to solve time-dependent partial differential equations
(PDEs) integrate on a uniform grid that is kept fixed on the entire time interval. If
the solutions have regions of high spatial activity, a standard fixed-grid method is
computationally inefficient, since to afford an accurate approximation, it should con-
tain a very large number of nodes. The grid then needs to be locally refined. If the
regions of high spatial activity are, moreover, moving in time, like for steep moving
fronts, then methods are needed that also adapt the grid in time.

Roughly spoken, one may distinguish two classes of time-dependent adaptive
methods: 1. (class I) dynamic-regridding (moving-grid) methods and 2. (class II)
static-regridding methods. In the latter class of methods, for which the adaptivity is
also denoted by terms like ‘local refinement’ or ‘h-refinement’, the grid is only
adapted at discrete time levels. Methods from class I, sometimes characterized by
the term ‘r-refinement’, have the special feature to move the spatial grid continu-
ously in the space-time domain while the discretization of the PDE and the grid
selection procedure are intrinsically coupled. Both approaches have their advantages
and disadvantages, depending, e.g., on the PDE model to be solved, the hardware
used, the spatial domain in the model, etc..

The main advantage of class II methods is their conceptual simplicity and robust-
ness in the sense, that they permit the tracking of a varying number of wave fronts.
A drawback, however, is that interpolation must be used to transfer numerical quan-
tities from the old grid to new grids. Also, numerical dispersion, appearing, e.g.,
when hyperbolic PDEs are numerically approximated, is not fully annihilated.
Another disadvantage of static-regridding methods compared with methods using
moving-grids is the fact that they produce no ‘smoothing’ in the time direction. For
these methods the time-stepping accuracy therefore will demand, in general, smaller
time steps than for moving-grid methods. Examples of methods belonging to class
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II are found in [5, 10, 25, 33].

Class I methods use a fixed number of grid points, without need of interpolation,
and let them move with whatever fronts are present. In the case of several steep
fronts acting in different regions of the spatial domain, this could give problems in
the numerical computation, if the grid is following one wave front and another one
arises somewhere else. Since the number of grid points is fixed throughout the entire
course of the computation, no ‘new’ grid is created for the new wave, but rather the
‘old’ grid has to adjust itself abruptly. Another difficulty is of a topological nature,
viz., the so-called ‘mesh-tangling’. Moving-grid methods, therefore, often need a
kind of regularization to cope with this phenomenon. This, unfortunately, involves,
more or less, tuning of the extra regularization parameters. On the other hand, even
though more computations per grid point are needed, the use of moving-grid
methods may work out very efficiently, since, in general, fewer spatial grid points
will be necessary. Some characteristic members in this class of methods can be
found in [11, 13,15, 17].

This thesis deals with moving-grid methods for time-dependent PDEs in one and
two space dimensions. Below we will give a short description of the essential com-
ponents of which such methods consist.

1.1. THE METHOD OF LINES

The discretization of time-dependent PDE:s is often performed in two basic stages.
First, the spatial variables are discretized on a selected space mesh, e.g., using
finite-difference or finite-element approximations, so as to convert the PDE problem
into a system of ordinary differential equations (ODEs) with time as independent
variable. These ODEs are usually stiff. The discretization in time of this stiff ODE
system then yields the required fully discretized scheme. This two-stage approach is
often referred to as the method of lines (MOL). With this approach in mind, several
sophisticated PDE software-packages have been developed in recent years. These
MOL packages greatly benefit from the very successful developments of automatic
stiff ODE solvers. A key factor here is the development of implicit BDF codes, such
as the ones described by Hindmarsh [21], Petzold [26], and Berzins and Furzeland
[6,7]. Although most BDF codes have been designed to solve stiff ODE systems in
an accurate and efficient way, experiences with MOL packages have revealed that
this is also true for PDE problems. However, for solutions possessing large space-
time gradients, like travelling wave fronts, a grid held fixed for the entire calculation
can be computationally inefficient, since the grid will have to contain a very large
number of nodes and the time steps still have to be small. In such cases, a moving-
grid procedure, that attempts to adjust automatically both the space and the time
stepsizes, is likely to be more successful. Since the grid movement, in general, will
permit larger time stepsizes, it is attractive to automatize the time integration by
combining the MOL procedure on a moving grid with a BDF code, just as for the
fixed-grid case.



1.2. MOVING-GRID METHODS
Consider the scalar PDE in one space dimension

aa—b;=£,(u), xeQ, >0, (1.1)

with initial and boundary conditions

ulo=u(x), xeQ,
d
B =)o = g (1), 150,
X

where u” and g are given functions, and L represents a differential operator involv-
ing only spatial derivatives up to second order. In the following, the domain
Q = (x,, xg) is supposed to be fixed for all times >0 under consideration. In gen-
eral, the solution u (x,?) of (1.1) may have a very complex behaviour. Even for a res-
tricted situation (a scalar linear PDE with simple boundary conditions), one can
have severely varying u-values in space x and time 7.

A common approach handling these phenomena is to introduce a transformation
which maps the variables x and 7 into new variables & and 7. Such a transformation
can be defined as, e.g.,

x=x(§7)
=1 (1.2)
u(x,t)=v(E&,).

The effect of the transformation ought to be to stretch the co-ordinate in boundary or
internal layers so that dv/0& is small when du/dx is not. More generally, transforma-
tions are required to map strongly varying behaviour of u to a more moderate
behaviour of v. An attractive side-effect of the time-dependent transformation may
be to obtain values for 0v/dtT essentially smaller than the Ju/dr values, a
phenomenon also appearing in the method of characteristics. If we take for example
L(u) =~y du/dx, the ‘optimal’ mapping is defined by the characteristic equation
0x/0t =7, and the grid points merely follow the characteristics of the PDE, in which
case we have the inverse transformation &(x,z) =x—yr. Of course, when using a
transformation, most difficulties are shifted to the problem of how to define and
carry out the mapping.
The Jacobian of the transformation (1.2) is given by

_0(x,1)
A&
and, in order to preserve invertibility of the transformation, its determinant (= x¢) is
supposed to be non-zero for all points of time. This is, in the discrete case,

equivalent to demanding that the grid points do not cross. Using the chain rule and
the inverse of 7, equation (1.1) can be rewritten as

W _ v
3 (1.3)

J
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where u,=v¢/xe, and an additional equation for x, must be defined. Equation (1.3)
is usually called the Lagrangian form of the PDE.

Several possibilities are on hand to proceed further. A well-known choice is to
define the mapping implicitly as )

xg M= constant, for all >0, (1.4)

where M is a positive function, the so-called weight or monitor function, e.g.,
depending on first and/or second order derivatives of the solution. Equation (1.4)
reflects the basic principle of equidistribution. In discretized form, this becomes
more obvious:

(X;~X;_1) M; = constant, (1.5)

where X; (i=1, - - -, N) are the time-dependent grid points subdividing the spatial
domain Q into N+1 parts, and M; is a discrete formulation for M on the interval
(X;_1,X;). Note, that we have assumed a uniform grid distribution in &-space. With
this condition, the grid interval in x-space will, of course, be small where the weight
function is large, and vice versa. The term equidistribution stems from the observa-
tion that (1.5) can be rewritten as

X
j M(0,t) dd = constant,
X1

thereby showing that the weight function M is equally distributed over the spatial
domain. The inverse co-ordinate transformation belonging to (1.5) then reads

X
E(x1) = [ M(o.1) do/[ M(o.1) do.
XL Q

Equidistribution principles have been used in many different ways to numerically
solve one-dimensional PDEs having solutions with steep transitions. One of the ear-
liest attempts to apply equidistribution to 1D time-dependent PDEs can be found in
[34]. A more sophisticated application of the equidistribution idea is described by
Dorfi and Drury [16]. They produce an adaptive method based on (1.4) with an
arc-length monitor function /M. Additionally, the equidistribution principle is sup-
plemented by two regularization procedures to cater for smooth grid trajectories in
both space and time. Other examples, related to equidistribution being applied to
1D PDEs, are described in, e.g., [1, 8, 29].

Beside equidistribution, a well-known approach to define a moving-grid method
is to use a minimization of a functional (or integral) depending on measures of the
error of the solution and/or grid structure properties. One approach is described by
Petzold [27]. Using the transformed PDE (1.3), she defines the grid movement by
minimizing a measure consisting of a combination of node velocities and time-
derivatives of solution values. Two regularization terms serve to keep the transfor-
mation non-singular and to smooth the grid movement. A regridding strategy is
added to insert or delete or move nodes to resolve the spatial gradients.

Perhaps the most important representative in this class of methods is the moving-



5

finite-element method of Miller et al. [19,23,24]. In this method the error measure
may be interpreted as being the square of the residual of the PDE written in finite-
element form. Semi-discrete ODEs for the solution and the grid points are obtained
by minimizing the integral of this error measure over these unknown quantities.
Regularization of the minimization is needed to prevent it from becoming degen-
erate and to keep control over the grid movement in time. An additional regulariza-
tion must be used for second order PDE operators if the approximation space con-
sists of piecewise linear trial functions.

In two space dimensions application of moving-grid methods is much more
difficult than in 1D. For instance, there are many possibilities to treat the one-
dimensional boundary and to discretize the spatial domain, each having their own
difficulties for specific PDEs. However, the essential concepts underlying the co-
ordinate transformation in 1D also apply to higher dimensions. Important references
in this respect are, e.g., [11,13,15,17]. It must be noted, that the application of
equidistribution principles in 2D is less straightforward than in 1D. This is not the
case for methods that are derived from a functional minimization, which are, in
theory, easily extendable to PDE operators in higher space dimensions. It is also
interesting to note, that the 1D equidistribution principle (1.4) can be derived from
the minimization method in [11] by restricting the method to one dimension. In fact,
equation (1.4) can be obtained by applying the minimization, i.e., working out the
Euler equations for the functional, and then integrating the so-obtained elliptic PDE
for the grid.

Other moving-grid methods in 2D based on minimization or equidistribution prin-
ciples are described in [2, 12, 14,22, 28,30, 35]. For more information on adaptive
methods, in general, and on moving grids, in particular, the interested reader is
referred to [3, 4, 18, 32] or the review papers [20] and [31].

1.3. CONTENTS OF THE THESIS

Chapter 2 describes a numerical study of three sample moving-grid methods for
1D time-dependent partial differential equations. The three methods are: 1. a
moving-finite-difference method (MFD) proposed by Petzold [27], 2. a moving-
finite-difference method originally due to Dorfi & Drury [16], and 3. a moving-
finite-element method (MFE) introduced by Miller et al. [23,24]. The paper
emphasizes the performance of the methods with respect to efficiency, accuracy and
robustness (effect of regularization parameters and reliability of the numerical solu-
tion as for the fixed-grid case). The methods are tested on a set of three test prob-
lems each having their own characteristic solution behaviour. Chapter 2 has also
been published in the ‘Journal of Computational Physics’ (Volume 89, pp.349-388,
1990). The paper is joint work with J.G. Verwer (CWI) and R.M. Furzeland (Shell
Research).

Chapter 3 deals with some theoretical and analytical properties of the moving-
finite-difference method due to Dorfi & Drury. Especially, the effects of the appear-
ing regularization parameters, which serve to smooth the grid distribution in space
and the grid movement in time, are examined. This paper (together with J.G.
Verwer, J.G. Blom (CWI) and R.M. Furzeland) has been published in the
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proceedings [18] of the workshop on ‘Adaptive Computational Methods for Partial
Differential Equations’, held at Rensselaer Polytechnic Institute, October 13-15,
1988.

In Chapter 4 the 1D gradient-weighted MFE (GWMFE) method of Miller is
evaluated. GWMEE is an extension of MFE based on adding a weighting term, that
depends on the first spatial derivative of the solution, to the minimization procedure
that determines the movement of the grid points. A brief comparison is made
between this method, its predecessor MFE and the MFD method of Chapter 3. This
paper, which is joint work with J.G. Blom, is accepted for publication in the ‘Journal
of Computational Physics’.

Chapter 5 describes the grid movement induced by the MFE method, when
applied to hyperbolic and parabolic PDEs in one and two space dimensions.
Numerical examples show the relation between MFE and both equidistribution prin-
ciples and the method of characteristics. This paper is joint work with J.G. Blom
and is accepted for publication in the ‘International Journal for Numerical Methods
in Engineering’.

Chapter 6 combines the CWI-report [9], describing a software interface in which
the moving-grid method of Chapter 3 is incorporated, and a paper (co-authors: J.G.
Verwer and J.C.H. v. Eijkeren (RIVM)), which is accepted for publication in the
‘International Journal for Numerical Methods in Engineering’. It shows an applica-
tion of the software interface to a class of 1D brine transport problems in a porous
medium, stemming from hydrology.

Chapter 7 presents numerical testresults obtained by applying the MFE method in
2D to different classes of PDEs. Among others, MFE is applied to the so-called
‘Molenkamp test’, a standard test problem from meteorology, to a ‘flame problem’
from combustion theory, and to a 2D brine transport model from hydrology (a 2D
version of the model used in Chapter 6). Some of the examined aspects are: the
effect of the regularization parameters on the 2D grid movement, the quality of the
solution, and the numerical time-stepping procedure. Also, the effect of a small dif-
fusion coefficient in a convection-diffusion equation on the semi-discrete MFE sys-
tem is studied. This paper is submitted to the journal ‘Computational Fluid Dynam-
ics’.
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Chapter 2

A Numerical Study of Three Moving-Grid Methods
for One-Dimensional Partial Differential Equations
Which Are Based on the Method of Lines

"Het is weer tijd om dubbel 6 te gooien"

2.1. INTRODUCTION

It is well known that many discretizations of time-dependent problems in partial
differential equations (PDEs) can be derived by means of the following two-stage
procedure. First, the space variables are discretized on a selected space mesh,
mainly using finite-difference or finite-element approximations, so as to convert the
PDE problem into a system of, usually stiff, ordinary differential equations (ODEs)
with time as an independent variable. The discretization in time of this stiff ODE
system then yields the required fully discretized scheme. In the literature this two-
stage approach is often referred to as the method of lines (MOL). With this approach
in mind, several sophisticated PDE packages have been developed in recent years,
notably for one-space-dimensional problems [3,4,11,15,25,26]. These MOL
packages greatly benefit from the very successful developments of automatic stiff
ODE solvers. Needless to say, the development of implicit BDF codes, initiated by
Gear and further improved by, among others, Hindmarsh and Petzold, is a key factor
here (see [11,23] and the references therein). Indeed, certainly for intelligent users
who know their problem, Gear-type solvers have proved to be highly efficient,
robust and reliable, in that they work for a broad class of problems and usually solve
the stiff ODE system under consideration in an accurate and efficient way. The
experiences with MOL packages have revealed clearly that this is also true for
semi-discrete PDE problems.

However, from the PDE point of view, conventional MOL packages integrate in a
semi-automatic way in the sense that they adjust the time step sizes automatically,
but use a fixed space grid, chosen a priori, for the entire calculation. Depending on
the degree of spatial activity, such a space grid is usually equispaced or mildly
nonuniform. In many cases this semi-automatic approach works very satisfactorily,
notably for problems in which the solution does not exhibit a high degree of spatial
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activity, but also for problems where regions of rapid variation in space do not move
when time evolves (stationary layers). However, for solutions possessing sharp
moving spatial transitions, like travelling wave fronts or emerging boundary and
interior layers, a grid held fixed for the entire calculation can be computationally
inefficient, since this grid will almost certainly have to contain a very large number
of nodes. In such cases, methods which attempt to adjust automatically both the
space and the time step sizes are likely to be more successful in efficiently resolving
critical regions of high spatial and temporal activity. Methods and codes which
operate this way belong to the realm of adaptive or moving-grid methods.

Over the past several years the interest in moving-grid methods has rapidly
increased. Unfortunately, very few, if any, moving-grid software packages, gen-
erally applicable up to nearly the same level of efficiency, robustness and reliability
as conventional packages, are available yet, even for the relatively simple 1-D case.
Admittedly, for an interesting variety of difficult example problems, various adap-
tive techniques have been shown to be potentially very efficient, a prominent exam-
ple being the moving-finite-element method invented by Miller and his co-workers
[6, 10, 16-18,20]. However, most of the techniques, including the moving-finite-
element method, require some form of tuning to ensure that the automatic choice of
the changing space nodes is safely governed. This additional tuning is to the detri-
ment of reliability. Experience so far has made clear that, in general, the automatic
space node selection is intrinsically difficult, in the sense that the tuning, being
rather problem-dependent, does not lend itself to automation. Hence, algorithms
employing moving-grid techniques usually require considerably more expertise of
the user than most of the common fixed-grid algorithms in order for the best possi-
ble results in terms of efficiency, robustness and reliability to be obtained.
Noteworthy, in this connection, is that the moving-grid construction, with the
accompanying tuning, is often a determining factor for the computational effort
spent in the time integration. Traditionally, this point has been neglected in most of
the work on time-dependent problems, probably because the greater part of the
development effort is spent in doing a good job in the spatial direction.

Following the philosophy of the MOL approach, this paper is devoted to an
evaluation and comparison, mainly based on extensive numerical tests, of three
moving-grid methods for 1-D problems, viz., the finite-element method of Miller et
al., the method published by Petzold [24], and a method based on ideas adopted
from Dorfi and Drury [8]. The two latter ones are finite-difference methods. Con-
cerning the time integration, all these three moving-grid methods can be straightfor-
wardly combined with a stiff solver, just as in the conventional MOL approach. In
the referenced papers, interesting results have been shown already using such a type
of time integrator. Our examination of the three methods, presented in this paper, is
principally aimed at assessing which of the three methods is most suitable from the
point of view of retaining the acknowledged features of reliability, robustness and
efficiency of the conventional MOL approach. As already indicated by the remark
made above, in such an examination the moving-grid determination should be con-
sidered not only in relation to spatial solvability properties, but also in relation to the
time-stepping process. Hence we shall pay considerable attention to the question of
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efficiency of the time-stepping process.

Briefly, the paper is arranged as follows. In Section 2.2 we present an outline of
the three methods under consideration, preceded by some general observations on
the Lagrangian approach. This approach underlies the two finite-difference methods,
while also the finite-element method can be interpreted this way. This section con-
centrates on the semi-discretization. Section 2.3 deals with the numerical time
integration by means of stiff BDF solvers. In Section 2.4 we discuss results of exten-
sive numerical testing on a set of three test models from existing moving-grid litera-
ture. This test set includes a reaction-diffusion equation which models a problem
from combustion theory, the well-known convection-diffusion equation of Burgers’,
and a system of two quasi-nonlinear hyperbolic equations, which may be considered
as a prototype of an opposite travelling waves problem. It is worth emphasizing at
the outset that these three problems show different solution behaviour. This is of
importance with respect to our aim, which is to assess which of the three methods
under consideration best enables the acknowledged features of reliability, robustness
and efficiency of the conventional MOL approach to be realized. We are aware, of
course, that experience based on a test set containing three example problems is
necessarily limited. By choosing problems differing in solution behaviour, however,
we are confident that our conclusions and recommendations have a much wider
scope. This holds particularly true for the time integration aspect. Our conclusions
and recommendations are summarized in Section 2.5.

To conclude this introduction we wish to emphasize that in the present paper we
do not consider the extension of the methods to higher space dimensional problems.
It should be acknowledged, however, that work reported by Miller, Baines, Wathen
and others contains interesting results in this direction for the moving-finite-element
method (see, e.g., [6] and the references therein). We do not know of higher space
dimensional applications of the two finite-difference methods examined here.

2.2. OUTLINE OF THE MOVING-GRID TECHNIQUES

In order for this article to be read independently, we present in this section a brief
outline of the main principles on which the three moving-grid methods are based. In
view of the need for brevity, as well as for simplicity of presentation, this outline
concentrates on the scalar form. This restriction is not essential. Concerning the
automatic grid generation, the principles behind the three methods are the same as
for systems and none of the three methods really distinguishes between scalar prob-
lems and systems (the necessary changes for systems are always at the implementa-
tion level, see [8,10,23] where applications to systems are discussed). For clarity,
Section 2.2 deals only with the semi-discretization. We begin our outline with some
general observations on the Lagrangian approach.

2.2.1. The Lagrangian approach

Virtually all of the space mesh adapting techniques for time-dependent problems
attempt to move the nodes in such a way that, in regions of high spatial activity,
there is enough spatial resolution. In other words, the construction of these methods
is aimed at minimizing the number of space nodes relative to a certain level of
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spatial accuracy. On the other hand, in most time-dependent applications large spa-
tial gradients are accompanied by large temporal gradients, the standard example
being provided by the simple running wave form u(x,t) =w(x —ct). It thus is
natural not only to minimize the computational effort put into the spatial discretiza-
tion, but also to attempt to minimize the computational effort put into the time
integration. Lest we miss the obvious, on a non-moving mesh a steep wave form
such as u (x,z) = w (x — ct) will require standard time-stepping techniques, including
the sophisticated Gear methods, to use small time steps. This is inevitable, because
when on a non-moving mesh the moving front passes a grid point, the solution at
this grid point will change very rapidly. Small time steps are then necessary to retain
accuracy.

The above observation naturally leads one to consider the Lagrangian approach,
which is best introduced via a co-ordinate transformation. Consider the PDE prob-
lem

ou/ot = Llu), x; <x<xg, t>0, 2.1
where L represents a differential operator involving only spatial derivatives, e.g.,
u/dt = Lu) = —dc(u)/dx +€*u/dx> + g(u), (2.1a)
xp <x <xg, t>0, 0.

The space interval is supposed to be fixed for all times #>0 under consideration. Let
(s,t) be new independent variables linked with the old independent variables (x,7)
through a co-ordinate transformation x =x(s,z). Denote v (s,t) =u(x,t). Then the
total derivative of u is dv/d0t = du/dx dx/dt + Ju/dt and the Lagrangian form of
(2.1) reads

dv/0t = Ju/dx ox/dt + Lu), s, <s <sg, t>0, 2.2)
and that of (2.1a),
v/t = u/dx dx/ot — oc (u)/ox + €0*u/ox> + g(u), (2.2a)

sp <8 <sg, 1>0.

Note that du/dt measures the changes of u as a function of ¢ at a fixed x value
(Eulerian description) and dv/0t at a fixed s value (Lagrangian description). Thus
the basic idea of the Lagrangian approach is that in the variables (s,7) the problem
should be easier to handle numerically than in the original pair (x,¢). Ideally, in the
new variables any rapid transition should be absent; we can then take acceptable
step sizes in the time direction while using a coarse uniform s-grid in space. A suit-
able nonuniform x-grid then exists according to the change of variables x = x (s,1).
In classical Lagrangian methods, as are being applied successfully to some types
of fluid-flow problems, the movement of the nodes is attached, in an a priori
manner, to a physically motivated, specific flow quantity. For example, for a prob-
lem like (2.1a) it makes sense to attach the movement of the nodes to the convection
term dc (1)/0x, i.e., to choose dx/dt = dc (u)/du so as to obtain the parabolic equa-
tion dv/dr = € 9°u/dx* + g (u) (in a moving reference frame). The rationale behind
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this choice is that parabolic problems without large first order terms usually possess
smoother solutions and thus are less difficult to solve numerically. Of course, the
numerical realization of the prescription 0x/df =dc(u)/du involves its own
difficulties, but these are usually surmountable.

Because we aim at application to a wide variety of problems we require that the
transformation be based on a general ‘systematic rule’, e.g., spatial equidistribution.
In fact, the choice of this ‘systematic rule’ determines to a great extent the moving-
grid method under consideration. This will be illustrated quite clearly in the remain-
ing sections. Here we wish to point out that it is not always possible to smooth the
solution, through the co-ordinate transformation, in space and in time simultane-
ously. This obviously depends on the nature of the solution sought, which can be
nicely illustrated by examining Problem I of Section 2.4 (cf. [27], Section 2.5.3). Let
us consider its solution near the left boundary, while the steep front is forming (the
ignition phase). Assuming a uniform grid at the initial line (a choice suggested by
the constant initial solution u (x, 0) = 1), the derivatives dx/dt of many of the trajec-
tories should be negative in order for the required refinement in the region of the
steep front to be obtained, which is in accordance with the objective of smoothing
the problem in space. However, during the formation of the front, du/dx <0 and
ou/dt > 0. It then follows immediately that dv/dt > du/dt, violating the objective of
getting a smoother problem in time. Most Lagrangian-type methods do underly the
first objective through a co-ordinate transformation based on spatial equidistribution
properties. Spatial equidistribution forces nodes to migrate to regions of high spatial
activity. So, during the formation of the front, for the present combustion problem
these methods offer no benefit as far as the time stepping is concerned. Once the
front is formed and starts to propagate, both smoothing objectives are fulfilled if the
transformation underlies spatial equidistribution, because then dx/df >0 and still
du/dx <0 and du/dt >0. Any simple travelling wave form u (x,t) = f(x —ct) is a
trivial solution, in this respect, provided the grid trajectories satisfy dx/df = c.
Interestingly, the Lagrangian approach followed by Petzold [23] underlies the
second objective. This approach, originally due to Hyman [13], is basically aimed at
finding those trajectories along which the time rate of solution change is minimized,
that is, dv/0t < ou/dt. However, during the formation of the front in the present
combustion example, this must imply that, in the front region, dx/dt >0, which
means that points are moved away from the front, and thus the first objective is
violated. This is contrary to the desired aim; however, Petzold’s algorithm has a
built-in regridding step which corrects this deficiency (see the next section). For this
method it also holds that, once the front is formed and starts to propagate, both
smoothing objectives are fulfilled.

The two finite-difference methods we examine are based on the standard, central
semi-discretization of the above Lagrangian form (2.2). More precisely, completely
in line with the common MOL approach, consider numerical, continuous-time tra-
jectories

Xr, :X0<...<Xi(t) < Xi+l(t)<“‘<XN+l = XR for0<r < Losids (23)

with the associated grid functions
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U=[Ui, s Uylt, X=[Xg - Xyl

Thus, U represents the semi-discrete approximation to the PDE solution u restricted
to the moving space grid X and is the solution of the ODE system

U =X{(Upsy = Ui )/ Xio =X D1+ LU, X), 1<iSN, (24

where the symbol ~ denotes differentiation to time, U; denotes the semi-discrete total
derivative and the operator L stands for the difference operator replacing the dif-
ferential operator L on the grid. For example, the right-hand side function of (2.1a)
is approximated at grid point i, I <i <N, by

Li(UX)= —{lc(Ujs1) —cU;_DVXi — Xi 1}
+e{((Uis — U/ (Xiy1 — X))
—(U; = Ui )/(X; = XiN/0.5(X 41 — Xim))} + &i(U).

In the discussion to follow, we neglect the treatment of boundary conditions,
since these are dealt with in the usual way. We recall that, for convection-diffusion
problems with steep gradient or near-shock behaviour, the use of central differenc-
ing of first order terms is not ideal and one would probably consider stable upwind
or flux-corrected approximations. In this paper, the central approximation is used
since it facilitates comparisons between the three methods (the finite-element
method uses standard piecewise linear basis functions) and because it represents a
severe test for a good moving grid X (). Any deviation from an ideal Lagrangian
grid movement, assuming this exists, will soon result in unphysical, oscillatory solu-
tions. As already indicated above, the definition of X (¢) is highly important and
determines to a great extent the complete moving-grid method.

2.2.2. Method 1

Method 1 is the finite-difference moving-grid method proposed by Petzold [23]
(version A). Each time step consists of two computational stages: a moving Lagran-
gian step, involving the application of a stiff ODE solver to an augmented semi-
discrete system, followed by a second (regridding) stage in which a redistribution of
points at the forward time level is carried out through a De Boor-type equidistribu-
tion algorithm. Both are equally important for the application of the method. How-
ever, in contrast to most methods, grid points are not necessarily moved in the
desired direction of high spatial activity. Loosely speaking, one of the purposes of
the regridding stage is to correct this deficiency.

The semi-discrete system

We begin our outline with the derivation of the (augmented) semi-discrete sys-
tem, which consists of the equations of system (2.4) together with grid equations for
the implicit determination of the unknown grid X. Consider the Lagrangian form
(2.2) where, for convenience of notation, # and x now denote the derivatives dv/ot
and dx/dt, respectively. The underlying transformation, which is originally due to
Hyman [13], is chosen to minimize in a certain sense the total derivative u. This is
done by selecting x such that
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(U)* + o (x)* = (Qu/dt + x Ju/ox)* + ax)?

is minimized, where o> 0 is a real number. Differentiation to x and equating to zero
yields the differential expression u du/dx + o = 0, which can be written as the sin-
gle ODE

x = (—0u/dt du/dx)/(oL + (Ju/9x)?),

with x as a dependent and ¢ as an independent variable, provided u, du/dt and du/dx
are known functions of x. For given x (0) on the initial space interval, the solution of
this ODE defines the trajectory x (¢) (>0) along which the rate of change of u, that is

i = (0, 0u/d1)/ (0L + (Qu/dx)?),

is minimized in the above sense. It is hereby tacitly assumed that the above ODE is
uniquely solvable. The parameter o serves to regularize the transformation. For
o= 0 we have i = 0, which in general cannot be a solution. Observe that, in regions
where (du/0x)* is negligible relative to o, the transformation has no effect. The
travelling wave form u (x,7) = w (x — ct) nicely shows the idea behind this transfor-
mation. For this solution we have

x = (¢ (Ow/9x)*)/ (0 + (Ow/dx)?),
i = (=0t c(Iw/9x))/(0L + (Ow/dx)?)

and for oo =0 the grid point x (1) moves with the wave with speed c. Recall, how-
ever, that grid points are not always moved in the desired direction.
Hence, the transformation employed leads to the grid equation

wou/ox +ax=0, s, <s<sg, t>0.

When combined with (2.2), it can be solved for the unknowns u and x. The grid
equation is written in this form to avoid ill-conditioning problems in the numerical
solution process [23]. At this stage it is pointed out that in actual application the new
variable s is not used explicitly, that is, computations will always be performed in
terms of the original variables (x,7). Note that explicit use of s would require that its
bounds be properly defined, which we have not done. Like (2.2), this grid equation
is spatially discretized on the grid (2.3) so that we obtain

UlUs1 — Vst Vi =X+ 0 X; =0, 1Zi<N. (2.5)

Equations (2.4), (2.5) form the augmented, semi-discrete system and define the
unknown variables U and X.

In addition to the regularization term o, the grid computation needs an extra reg-
ularization to prevent neighbouring grid points from crossing. Note that, even when
the single ODE for the exact grid trajectory is uniquely solvable, the grid trajectories
for a set of given initial points may approach each other arbitrarily closely. Petzold
[23] has suggested that, instead of (2.5),

U0 — UMy — X )] 4+ 0., (2.6)
+ A X = X)X = Xi)?) = Kooy = X/ Xy —X)?1 = 0
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should be used, where A >0 is the second regularization parameter. This form
results when

()" + o (x;)? 2.7)
+ A LGy = X )2 0 = X P+ Gy — X002 /(g — x0)7]

is minimized with respect to X, ;. This regularization term is related to the ‘internodal
viscosity’ term of the moving-finite-element method (see Section 2.2.4). The use of
this type of regularization is based on heuristic considerations. If neighbouring
points tend to approach each other very closely, the denominators in (2.6) will even-
tually decrease beyond the level needed to let the regularization term dominate the
entire expression. If this happens, the minimization procedure will result in nearly
equal neighbouring grid velocities, with the effect that, when time evolves, neigh-
bouring points are prevented from approaching further.

Necessarily, the regularization is problem-dependent and in actual application
there is no guarantee that points will not cross. On the other hand, at sufficiently
large A the grid becomes non-moving. Hence, if A is chosen too large, it may happen
that points are forced to stay apart too much so that locally the grid is not fine
enough to resolve anticipated small-scale structures. Following [23], we have used
throughout the values oo = 1, A = 0.2. Needless to say other choices of regularization
terms are conceivable. It should be emphasized, though, that it is not easy, if possi-
ble at all, to find an optimal regularization. It is noteworthy that regularization
always has some smoothing effect on the grid trajectories, which is desirable for the
time integration. Hence, regularization not only influences the spatial solvability
performance of the moving-grid method, but also the performance of the stiff solver.

In order to bring the augmented semi-discrete system (2.4), (2.6) into a more

compact form, we introduce the vector ¥ =[U, X, ..., U, X;, . .. ,Un, Xy17. The
semi-discrete system then takes the linearly implicit form
ﬂl(Y))"z G(Y) for t>0 and Y(0) given, (2.8)

where A(Y) is block tridiagonal and the (2i—1)th and the (2i)th element of the
vector-valued function G are given by

Gy (Y) = L(UX), Gu(Y) =0, (1<i<N). (2.9)

Inspection of the matrix M= — A4 reveals that for any vector Y its symmetric part
(M + M")/2 is negative definite, so that, according to the known property that the
real part of any eigenvalue is smaller than or equal to the maximum eigenvalue of
(M+ M")/2, the matrix A is non-singular. This means that system (2.8) is a
genuine, stiff ODE system. Even when grid points cross, the matrix remains non-
singular. This is handy because it means that crossing need not be fatal. More pre-
cisely, after each (modified) Newton iteration within an implicit moving integration
step with the stiff solver, a check on crossing is made. If crossing is detected, the
current step is interrupted and redone with a smaller step size.

The regridding step
The above transformation is interesting in itself, because it provides a smoother
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problem in time. This will be beneficial for the numerical integration process. A
disadvantage is that this transformation may not necessarily move the grid points in
the direction of high spatial activity. To overcome this deficiency, an intermediate
regridding is carried out, in principle after every successful moving integration step.

Suppose the moving step with the stiff solver has delivered the numerical (vector)
values U", X" at the n-th forward time level. Then, by application of a De Boor-
type regridding algorithm, which uses U", X" for input, a second level n grid is
determined. This new grid, Z", say, satisfies (approximately)

Az |0u/dx | + (Az)*|0*u/dx*| = constant. (2.10)

It would lead us too far here to discuss the implemented De Boor algorithm in detail.
Here we only remark that we keep the number of moving points fixed, whereas Pet-
zold [23] adapts the number of moving points so that (approximately)

Az |0u/ox | + (Az)? | 0*u/dx? | < specified tolerance,

while the number of points is the smallest number needed to satisfy this inequality.
We have decided to work with a fixed, given number of moving points for com-
parison with the other two methods. In conclusion, Z" equidistributes (2.10), which
has the effect that points are concentrated in regions of high spatial activity. This
alleviates the deficiency mentioned above. Because the grid Z" will normally differ
from X", it is necessary to interpolate from X" onto Z" prior to the next moving
integration step. This is done via the ‘dual reconnecting grid” approach, which is a
compromise between choosing the best grid and avoiding needless interpolations.
Briefly, the idea is as follows. Z" divides the space interval into zones. Each zone is
allowed to contain one point from X". If a zone contains just one point, no interpola-
tion takes place. If a zone is empty, a point is added and a (monotone) interpolation
is carried out. If there are more points from X" in a zone, points are deleted. Grid
points at the edge of zones which are too close to other points are moved apart. In
this way the final grid to be used for the next moving step is created. Hence, on most
time steps only a few interpolations are carried out (and eventually none). This is of
importance, since interpolation usually damages the accuracy a little. Another
attractive feature of the dual reconnecting grid approach is that points can be added
and deleted locally. This is advantageous when locally the solution undergoes sud-
den rapid changes (birth of new layers).

When considered on its own, the idea of intermediate regridding is interesting
because, as a sort of added bonus, it provides the possibility of more direct control
on the placement of nodes through equidistribution (and connected herewith heuris-
tic spatial error monitoring based on equation (2.16)). One could say that the inter-
mediate regridding step makes the regularization less critical, though regularization
should not be omitted. A considerable disadvantage of regridding is that it necessi-
tates interpolation and that it interrupts the time-stepping process. Frequent interpo-
lation may damage the accuracy considerably, while the interruption of the time-
stepping process causes a restart situation for the stiff solver (in our case a BDF
solver). In other words, after a regridding the Jacobian matrix is updated and the
integration is continued with the implicit Euler method on the newly chosen grid
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(with that step size that would have been used on the next step had there been no
restart). The inevitable consequence is that, when there are many genuine regrid-
dings, the solver does not get the chance of switching to a higher order formula,
which no doubt is detrimental when high accuracy in time is needed. It is clear that
this situation is somewhat in contradiction with the MOL approach and that there is
room for some improvement here [23]. .

2.2.3. Method 11

Method II is also a finite-difference method based on the semi-discrete Lagran-
gian form (2.4). The main ideas of moving the grid are derived from Dorfi and
Drury [8]. An implicit equation for X () is used which underlies a spatial equidistri-
bution transformation based on an arc-length monitor function. An important feature
of Method II is that the grid movement is regularized by employing a smoothing
technique in both space and time. The spatial grid smoothing ensures that the ratio
of adjacent grid intervals is restricted, thus controlling clustering and grid expan-
sion. The temporal grid smoothing ensures a smooth progression of X(t) by
preventing the points from responding too quickly to current solution gradients. This
is highly desirable for efficient numerical time stepping.

The semi-discrete system

We shall derive the semi-discrete grid equations for the implicit determination of
the moving grid X (7). Let us first recall the idea of the spatial equidistribution
transformation which is used in Method II. Hence, the theoretical co-ordinate
transformation supposed in equation (2.2) is now of the form

s) = [MEDdEM©), n@) = [MEDE,

X, Xy
where M (x,t) is a chosen monitor function which should reflect space dependence
of the PDE solution. The spatial equidistribution of this monitor function is enforced
by dividing the interval 0 < s < 1 into N+1 equal parts. Through the inverse transfor-
mation, the N theoretical grid trajectories x;(r) = x (i/N,t), t 20, (1 <i <N) where
X0, Xy4 are the given boundaries x; and x, respectively, then satisfy the equidistri-
bution relation

jM(g,r) d& = N(@t)/N (0<i<N).

Consequently, in regions where M will be large, the grid trajectories will become
close and vice versa. By applying the midpoint quadrature rule and inserting semi-
discrete variables, at the semi-discrete level this equidistribution relation is taken to
be

(X;11 — X)) M; =constant (0<i <N), (2.11)

where M; now represents the semi-discrete monitor value at the midpoint of the i-th
sub-interval [X;, X;,]. Following Dorfi and Drury, we use the arc-length monitor
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M; = (1 + (Ui = U)X — X7,

which has the property of placing grid points along uniform arc-length intervals and
gives good point placement at the ‘lip’ of a shock. Of course, other choices of M are
conceivable. Because M is positive, solution values X; of (2.11) cannot cross. For a
discussion of monitor functions and equidistribution, see for example Pereyra and
Sewell [22], Furzeland [9], Carey and Dinh [5]. ’

By elimination of the constant in (2.11), a set of N semi-discrete grid equations
for the implicit determination of the moving grid X is obtained

X =Xi-)M;_y = Xi —X)M; (1<i<N). (2.12)

Combining these with the semi-discrete PDE equations (2.4) yields the (augmented)
semi-discrete problem for the unknown grid functions U and X. However, as men-
tioned previously, Dorfi and Drury regularize the grid movement by performing a
smoothing technique both in space and time. This amounts to modifying the grid
equation system (2.12). We shall first describe their modification for the spatial grid
smoothing.

For this purpose we introduce the point concentrations

n;, = 1/(Xi+l —X,‘) (OSISN) (213)
Using these variables, the grid equation system (2.12) is written in the form
ni_/M;_y = n/M; (1<i<N) (2.14)

and the spatial grid smoothing is then carried out by replacing the point concentra-
tions in this system by their smoothed (numerically diffused) counterparts

ﬁ,‘ =n; — K(K+l)(}’li+| = 2”,‘ + ni_]), K> 0, (215)
to obtain the new grid equation system
n_ /M, = n/M; (2<i<N-1). (2.16)

Neglecting the influence of the boundaries, it can be shown that this filtering pro-
cedure is equivalent to a certain smoothing procedure for the monitor function [3],
thus ensuring that the adjacent point concentrations are restricted such that

K/(x+1) € mpy/np < (k+1)/K. (2.17)

This spatial smoothing can also be achieved by ‘padding’ the monitor function
[9, 14], but this approach is not recommended here since within a MOL framework
the implicit coupling between X and U then varies at each time step. For a given N
and a given monitor function distribution, the choice of x determines the minimum
and maximum interval lengths. The monitor function determines the relative shape
of the X; distribution, ¥ and N determine the absolute level of clustering [8]. In
actual application, a value of k of about 1 or 2 is recommended. This yields mod-
estly graded space grids. In our experiments we have used x =2. The value of «
plays an important role in controlling space discretization errors on non-uniform
grids (see, for example, [9]).

System (2.16) must be completed with boundary conditions. Following [8], at the
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boundaries the ‘concentration gradients’ are set to zero,
Ng=n; and Ny_1 =hy. (218)

Note that the use of the grid equations (2.16), (2.18) introduces a 5-point coupling in
X. Needless to say, this slightly increases the computational costs of the method (per
step).

The temporal grid smoothing described next replaces the set of algebraic equa-
tions (2.16) by the following set of differential equations

(i) +Tdr;_/d)/M;_, = (7, + 1 dn,/dt)/M,, (2.19)
120 (2<i<N-1),

again with boundary conditions (2.18). This system is constructed as follows. Con-
sider the monitor function values M (¢) occurring in equation (2.16) (for conveni-
ence of notation we suppress the lower index 7). The temporal grid smoothing hinges
on the replacement of M () by

R(t) = _[M(t—cr)e“’dc, >0,
0

where M (t) is now thought of as being defined on the semi-infinite interval [—oo, ¢].
In actual application, the extension to the interval [ — o, 0] is neglected. This is
allowed due to the presence of the exponential damping factor and the fact that the
parameter T is supposed to be rather small (the choice T =0 yields R (r) = M (t)). By
partial integration the differential form

M(t) = R(t)+1tdR(t)/dt

can be recovered, which is used to construct (2.19). More precisely, the numerically
diffused point concentration values n(z) of equation (2.16) are now taken propor-
tional to R (), rather than to M (¢). Let ¢ (¢) be the proportionality constant, that is,
R (1) = ¢ (1) n(t). Substitution into this differential form gives

M(t) = c(t)(n(t) + T dn(t)/dt) + T n(t)de (t)/dt.

If we then neglect the time dependence of the proportionality constant ¢ (¢), and sub-
sequently eliminate it, the grid equation system (2.19) is recovered.

The motivation behind the use of the monitor function R (z), which is ‘averaged in
time’, is that, when the grid movement is attached to R (¢) rather than to M (1), it is
prevented from adjusting immediately to the new monitor values. Instead, the use of
R (t) forces the grid to adjust over a time interval of length T from old to new moni-
tor values, i.e., the parameter T acts as a delay factor. The aim of this approach is to
avoid temporal oscillations in the original grid trajectories defined by (2.16). These
oscillations are typical for grids generated via numerical spatial equidistribution
techniques. When applied to solutions with very large gradients, relatively large
errors occur with these techniques. Needless to say, for the numerical time integra-
tion a smooth grid X () is highly desirable, otherwise too many Jacobian evaluations
are needed when an implicit solver is applied.
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Albeit heuristic in nature, there is no doubt that the temporal grid smoothing pro-
cedure is of importance. The choice of the delay factor T requires some expertise
but, in our experience, this is not too critical. Increasing T too much results in a grid
that lags too far behind any propagating wave or shock. Note that, for sufficiently
large values of T, a non-moving grid results. Trivially, too small values for T render
no effect. In practice it makes sense to choose T close to the anticipated temporal
step size value such that, over one or a few time levels, the influence of past monitor
values is felt. The stabilizing effect of T is similar to that of the damping factor A
introduced in Coyle, Flaherty and Ludwig [7].

To sum up, the semi-discrete grid equations (2.19) with the boundary conditions
(2.18) determine the continuous-time moving grid X (7). Of importance to note is
that we work with the 2N unknowns U, X;(1 <i <N) and that in our implementa-
tion the point concentration derivatives that occur in (2.15), (2.19) are replaced by

dni/dt = —Xiq = X}/ (Xi 4y — X0

More specifically, in the numerical integration U;(t) and X;(¢) are computed with the
same integration formulas, which is different from the implementation in [3] (see
formula (10)). Consequently, in our case the i-th equation of system (2.19) couples
the nodal points

Xiv2, Xivs Xin Xio, Xioas
with the nodal point velocities

Xiv2, Xivt, Xin Xio, Xios
and the solution values

Uis, Ui, Uiy

A little inspection reveals that the vector version of the final augmented semi-
discretized system of ODEs can be brought to a linearly implicit ODE form with a
known bandwidth in a similar way to that used for Method I (cf. (2.8)),

AY)Y =G(Y) for t>0 and Y(0) given. (2.20)

2.2.4. Method 111

Method III is the moving-finite-element method introduced by Miller et al.
[16,20]. This method also generates a system of continuous-time ODEs for mesh
points and numerical approximations in these moving points. The grid movement is
regularized by using penalty functions.

The semi-discrete system

Consider the continuous-time grid X introduced in (2.3) with unknown com-
ponents. On such a grid, the moving-finite-element method approximates the solu-
tion u (x,t) of problem (2.1) by an expansion (summation from 1 to N)

Ux1) =Y Uit) oy(x, X(1), (2.21)
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where o are the standard piecewise linear basis functions that depend on the nodal
positions X; and U; are the amplitudes of the approximate solution U (x,t) at the
corresponding nodal positions. Differentiating this expression with respect to ¢
gives, after some elementary calculations

U= Z U0, + X;B;, i (2.22)

where the B; are piecewise linear discontinuous basis functions with the same sup-
port as o;. We have

—m,-OL,- f0r X,',] <x SXI',
B,‘(x) = —m;10; for X,' <x SX[+],
0 elsewhere,

where m; = (U; = U;_1)/(X; = X, ;) is the slope of the semi-discrete approximation
U(x,t) on [X;_;, X;]. It is of interest to note that (2.22) is akin to the Lagrangian
form (2.2); U; plays the role of the Lagrangian derivative dv/dt and the nodal velo-
city X; that of dx/0t (see [2,9,21] for a discussion of the Lagragian nature of
Method III).

The equations determining the semi-discrete unknowns U; and X; are now
obtained in the standard Galerkin way by minimizing the square of the L,-norm of
the residual R (U) = U, — L(U) with respect to U; and X;. This gives a system of 2N
equations in the 2N unknowns U;, X; (boundary conditions are incorporated in the
standard way):

Y<o 05U+ <0, B >X; = <oy, LU)> 1<i<N,  (2.23a)
J

Z<B,-,aj>('/j+ <BiB;>X;= <P, LU)> 1<i<N,  (2.23b)
J

where <.,.> denotes the usual inner product. Assuming zero velocities, the first
equation is readily recognized as the standard, semi-discrete Galerkin equation. The
second equation originates from the additional minimization with respect to the
nodal velocities. Using the linear forms for o; and J;, the inner products on the left-
hand side may be evaluated to give, respectively,

”61”[AX,'U[—1 +2(AX; + AX;,)U; + AX; 4y Up ] (2.24a)
= <[AUK,_; + 20U, + AU )X, + AU, Ko
= <oy, LU)>, 1<i<N,
= (AU, + 28U, + AU U, + AU, U] (2.24b)
+ %[miAUiXi—l +2(m;AU; + mi+]AUi+l))'([ + mi+IAUi+lXi+l]

= <B;, LU)>, 1<i<N,
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where AX; =X; - X; 4, etc. Using the vector notation Y
=U,Xy,...,U,X;,...,Uy, Xy]”, we thus arrive at the continuous-time, semi-
discrete moving-finite-element system

ﬂ(Y)Y =G(Y) for >0 and Y(0) given, (2.25)

where 4(Y) is a block tridiagonal matrix and G (Y) is given by
G(Y) = (<al ) L(U)>s < Bl’ L(U)>v"'s<aN’ L'(U)>9 < BN* L’(U)>)T

The matrix A(Y) contains only quantities from the left-hand sides of (2.24), which
are related to the discretization of du/dt on the moving mesh (cf. (2.8), (2.20)).
What remains now is to integrate this ODE system numerically to obtain the
required fully discretized solution.

The moving-finite-element method has aroused considerable interest yet at the
same time has been subject to criticism because of its complexity and the inherent
problems of parallelism and points drifting extremely close together. Parallelism
occurs when the gradients of U on adjacent cells, say m; and m;,,, become equal.
The (2i+1)—th column of A4 is then equal to m; times the 2i-th column, so that the
mass matrix 4 becomes singular. When nodes drift extremely close together, the
mesh may become tangled or nodes may even cross in the numerical integration
process. Miller [17] suggests that these two problems can be overcome by introduc-
ing regularization terms (penalty functions) in the residual minimization. Instead of
using R (U) alone the minimization is thus carried out for

< R(U), RU) > + X (&,AX; = S,
J

where
e2 = C2/(AX—d), &:S;=C3/(AX—d), (2.26)

with C,, C, and d small, user-chosen constants. In particular, d serves as a user-
defined minimal node distance. The modifications involved are only made to the
mesh point equations (2.23b) and the combined effect is to add

2 Ay 2 y
€/AX; — €1 AX;; and &S, — €154

to the left- and right-hand side, respectively. The e-terms serve to avoid parallelism.
It can be shown that the addition of these terms renders the mass matrix A4 diago-
nally dominant [18], and thus regular. They represent a form of ‘internodal’ viscos-
ity, since they penalize relative motion between nodes and, provided the penalty is
sufficiently large to take over before the mass matrix becomes numerically singular,
result in the degenerate nodes being carried along with the rest of the solution. The
e-terms do prevent node overtaking in a dynamic way since the internodal viscosi-
ties become infinite as Ax tends to zero; however over longer time intervals degen-
erate nodes (those caught in straight line segments where they are unneeded) may
still slowly drift together. The S-terms, sometimes called internodal spring forces,
serve to prevent this long term numerical drift.

As for any other method, the regularization is somewhat heuristic and necessarily
problem-dependent. For example, if C, is chosen too large, the grid movement is
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restricted (C = gives a non-moving grid) with the result that there may not be
sufficient refinement in regions of large spatial activity (a typical phenomenon is
then that the grid moves slower than a front region). On the other hand, if C, is too
small, the mass matrix 4 may become numerically singular. Also of great impor-
tance is that the minimal node distance d be small enough in relation to the antici-
pated small-scale structure. However, too small values of d and C, may allow
numerical errors to lead to near node overtaking (or even worse), which is a source
of severe numerical difficulties in the time integration, even for the most robust stiff
solver. When nodes drift extremely close together, the sets of nonlinear algebraic
equations to be solved at each time step are likely to become badly conditioned.
This hampers the Newton iterative process and results in a higher number of itera-
tions and Jacobian updates than in the conventional MOL application. It is our
experience that Method III is rather sensitive in this respect. We shall illustrate this
extensively in the discussion of the numerical experiments.

At this place we should also mention that the explicit time stepping approach
advocated by Baines, Wathen and their co-workers (see [2] and the references con-
tained in [6]) is aimed at avoiding the necessity of regularization with the accom-
panying difficulties. However, while these explicit techniques work very success-
fully on purely first order hyperbolic problems, they obviously suffer from the expli-
cit time-step restriction when applied to parabolic problems, including those of the
diffusion-convection type, even with little diffusion. Therefore we consider explicit
techniques as less feasible for use in a general-purpose MOL algorithm.

Finally, we list some of the inner products that are needed to handle our test prob-
lems (g represents a nonlinear source function; cf. [10]):

<0, Uy > =miyy —my, <Py, Uy > = — (Mg —m)(myyy +my)/2,
<0y, ~UU, > = — AUU,/9 + U;_,/18) = AU, ,,(U./9 + U, /18),
<Bi, -UU, > =mAU(U;/3 + U;_/6) + m; AU, (U;/3 + U; 1 /6),
<0y, g(U)>=[g((Ui-y + U)/DAX; + g (Uiyy + U)/2)AX;111/2,
<Bi, g(U)>= —[mg(U;_, + U)/2AX;

+ M1 8 (Ui + U)/2D)AX111/2.
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2.3. THE NUMERICAL TIME INTEGRATION

For the numerical time integration of the three derived semi-discrete systems
(2.8), (2.20) and (2.25), we have used two existing stiff Gear solvers. All results for
Method I have been obtained with the original (version A) source code of Petzold
[23], except that we have applied it with a fixed number of moving points. Conse-
quently, Method I uses Petzold’s own BDF code DASSL. The software implement-
ing Methods II and III has been prepared by ourselves. Both these methods use the
LSODI-based BDF code of the SPRINT package [3,4] for the time integration.
Because the Gear codes of SPRINT and DASSL are very much alike, the choice
between the two should be of minor importance for the performances observed. For
all three methods use of the banded form of the equations is exploited in the Jaco-
bian formation and numerical linear algebra computations.

From the user’s point of view it is of interest to note that the stiff solvers can be
used in the same way as in the conventional approach. Apart from providing a sub-
routine for the ODE system (numerical differencing for Jacobians was used) and
specifying the initial vector Y (0) and required output times, one must define the
familiar local error tolerances atol and rtol , the desired local error norm, and,
optionally, an initial time-step value. Throughout we have used atol = rtol = TOL
(to be specified) and the common L,-norm. For the automatic grid determination
one must specify &, the number of moving space nodes, and the various regulariza-
tion parameters. Recall that for Method I their values have been specified already in
Section 2.2.2. For Method II we still must specify T (see Section 2.2.3) and for
Method III the parameters C, C, and d (see Section 2.2.4).

We emphasize that the choice of the regularization parameters is of importance,
not only to obtain a good positioning of grid points, but also to obtain an efficient
time-stepping process. This will be illustrated quite clearly in the next section,
which deals with the numerical experiments. In other words, we wish to pay consid-
erable attention to the efficiency (number of time steps, Jacobian updates and back
solves) of the time-stepping process, a point which has been neglected in most of the
moving-grid work on time-dependent problems.

2.4. NUMERICAL COMPARISONS

We shall present results from extensive numerical testing with three example
problems, viz., (I) a scalar reaction-diffusion equation that models a ‘hot spot’ prob-
lem from combustion theory, (II) Burgers’ equation, a scalar prototype for model-
ling nonlinear convection-diffusion phenomena, and (III) a system of two quasi-
nonlinear hyperbolic equations modelling the interaction of two waves travelling in
opposite directions. It is worth emphasizing at the outset that these three problems
have different solution behaviours. We recall that our main aim is to assess which of
the three moving-grid methods is most suitable for retaining the acknowledged
features of reliability, robustness and efficiency of the conventional MOL approach.
For this reason, our first problem was chosen such that a comparison with results
obtained on a non-moving grid is still feasible. This will enable us to compare the
mutual efficiency of time-stepping on moving and non-moving grids, a point which
has received insufficient attention in the moving-grid literature.



26

2.4.1. Problem I: A scalar reaction-diffusion problem from combustion theory
This problem is described in Adjerid and Flaherty [1] as a model of a single-step
reaction with diffusion and reads

ou/ot = 9*u/ox> + D (l+a—u) exp (=8/u), O<x<I, t>0,
u/ox(0,t) = 0, u(l,t) =1, >0,
ukx,0 =1, 0<x<1,

where D =Re5/(a8) and R, 8, a are constant numbers. The solution represents a
temperature of a reactant in a chemical system. For small times the temperature gra-
dually increases from unity with a ‘hot spot’ forming at x = 0. At a finite time, igni-
tion occurs, causing the temperature at x =0 to increase rapidly to 1 +a. A flame
front then forms and propagates towards x = 1 at a very high speed. The degree of
difficulty of the problem is very much determined by the value of 8. Following [1],
we have selected the problem parameters a =1, § =20, R =5. Petzold [23] also
used this problem as a test example, but with the more difficult parameter choice
a=1,38=30, R=35. The problem reaches a steady state once the flame propagates
to x = 1. For the current choice of parameters, the steady state is reached slightly
before time 7 =0.29, which we take as the end point. The problem has also been
used as a test example in [27], whence we have copied the plotted reference solution
(solid lines in the plots). We use times 7 = 0.26, 0.27, 0.28, 0.29 for output.

For the numerical process two solution phases should be distinguished, viz., the
formation of the ‘hot spot’ with the flame front (the ignition phase) and the propaga-
tion of this front to the right end point x = 1 (the propagation phase). Accurate han-
dling of the formation of the ‘hot spot’ and the ignition is of importance. The igni-
tion proceeds very rapidly, causing a widely different time scale, so that variable
steps in time are a necessity. A difficulty hereby is that the start of the ignition must
be detected accurately and without overshoot by the local error control mechanism
of the stiff solver, so that the step size can be rapidly reduced to a level small
enough to simulate the ignition accurately. Small errors at this time point result in
significantly larger global errors later on. Some trial and error tests have revealed
that the BDF codes need a time tolerance value TOL of 1.E-5, using an initial step
size of 1.E-5. For methods which are able to step in time with higher order formulas,
such a small tolerance should cause no problems. It is certainly detrimental to a
method which is forced to use a low order time-stepping formula, like Method I. For
clarity we emphasize that due to the sensitivity of estimating the ignition point, the
errors resulting from the time-integration are more important than the errors result-
ing from the spatial discretization.

Because the flame is not very thin, this problem can also be satisfactorily solved
in the conventional way on a uniform, non-moving mesh consisting of, say, about 40
to 100 nodes, at least for the current choice of & = 20. The problem is of interest for
moving-grid methods of the Lagrangian type, since these methods should be able to
reduce significantly the number of time steps needed to complete the propagation
phase. Finally, in all the experiments described below, including those done on a
uniform non-moving mesh, we have used 40 moving points and in all cases the start
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grid was taken to be uniform.

In the plots the solid or dashed lines represent accurate reference solutions while
the marks represent the PDE approximations generated in the experiment discussed.
Integration information, which serves to compare the mutual time-stepping
efficiency of the three methods, is presented in terms of STEPS = total number of
successful time steps, JACS = total number of Jacobian evaluations, and BS = total
number of back solves. The two latter quantities determine, to a great extent, the
CPU time needed to complete the integration over the specified time interval.

Results for Method 1

For the present problem Method I (version (A)) is indeed not competitive because
the low order time-stepping method turns out to be too expensive. Only during the
formation of the ‘hot spot’ can the advantage of using higher order in time formulas
be really employed. At the start of the ignition and during the whole of the propaga-
tion phase, the method keeps regridding, which means that very many restarts are
made with the first order implicit Euler rule, for which the local accuracy demand of
TOL = 1.E-5 is simply too high. Fig. 2.1 shows the PDE solution generated at the
four output times (specified above) and gives the values for STEPS, JACS and BS.
Observe that the numerical front is ahead of the true one. Concerning the quality of
the reference solution we note that in [27] it is claimed that the reference solution is
‘exact up to plotting accuracy’, except perhaps in the neighbourhood of x =0 at the
first output time 7 = 0.26. All experiments with the present flame problem, including
those with Methods 11 and III, show a deviation here. It should be remarked that we
counted a large number of 259 error test failures. The greater part of these occur
directly after a genuine regridding, indicating that the step-size selection of the res-
tart mechanism is not well tuned. To test this we have repeated the integration using
a maximal order of one, so that then at all integration steps the implicit Euler
method is used. We now counted 960 successful steps and only 28 error test
failures, which is normal. The results of this experiment are also shown in Fig. 2.1.
One sees that the results of the backward Euler run are less accurate, in spite of the
fact that more time steps are used. This shows nicely that, during the formation of
the ‘hot spot’, version (A) benefits from the use of the higher order formulas. It
should also be realized that a large number of step rejections will considerably
increase BS and, most likely, also JACS (compare the given quantities of the two
experiments). No attempt has been made to repair this failure because, even without
these many rejections, the method would not be competitive with Method II and III.

We recall that we have applied the method with a fixed number of nodes, whereas
in [23] the number of nodes is variable. This, however, is of minor importance.
Even with a variable number of nodes many regriddings are performed, which is the
main shortcoming. Admittedly, when a fixed number of nodes is used the dual
reconnection strategy will probably lead to somewhat more interpolations, as it is
then not possible to truly delete points.

A natural question is how Method I would perform if the regridding were carried
out not every time step, but every k-th time step (k to be prescribed) or at prescribed
times. If the chosen time intervals are large enough, so that DASSL can enlarge the
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FIGURE 2.1. Results for Problem I obtained with Method I. We have used
t= 0.26, 0.27, 0.28, 0.29 for output. The left-hand plot corresponds to
the version (A) run with STEPS = 663, JACS = 709, BS = 1845,
and the right-hand plot to the implicit Euler run with
STEPS =960, JACS = 663, BS = 1974.

order and use the same Jacobian, the drawback of the intermediate regriddings
should then be alleviated considerably. In addition, the co-ordinate transformation
governing the grid movement softens the solution behaviour in time, which in itself
is beneficial for the time-stepping process. A word of warning is in order, of course.
During the moving-integration process, the nodes may be sent away from the evolv-
ing front (cf. Section 2.2.1), which makes this alternative mode of operation a bit
risky. Yet we do believe that this approach of intermediate regridding is much more
promising and that it deserves further attention. By way of illustration, we have
again solved the current flame problem with regridding at step points nearest to the
prescribed times ¢ = 100k/0.29 for k = 1(1)100. This gives a solution of comparable
accuracy to that observed in the version (A) run, but with a significant reduction in
computational costs. The data are STEPS = 331, JACS = 98, BS = 739 and we
counted 35 error test failures. As anticipated, DASSL now also uses higher order
formulas (mostly order 3) over the entire time interval.
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Results for Method 11

An important parameter of Method II is the grid parameter T, which has been
introduced to govern the temporal grid smoothing. Figure 2.2 shows typical results
for four decreasing values of T, of which the largest value has been chosen such that
a non-moving grid results. This enables us to compare the mutual efficiency of
time-stepping on a moving and a non-moving grid. We see that, as the values of ©
decrease, the grid follows the flame better and better and STEPS is steadily reduced,
which nicely reflects the Lagrangian nature of the method in the propagation phase.
Further, and this is most important for efficiency reasons, the method keeps JACS
and BS at the same low level, which is the desired MOL behaviour. Needless to say,
compared to the first method Method II performs much more efficiently. This is
largely due to the fact that in all runs BDF orders up to three (occasionally four and
five) were used over the entire time interval. The accuracy is also much better,
though it should be observed that the numerical flame front is a little too fast over
the entire solution interval because the scheme is taking too large time steps. The
accuracy improves notably by reducing TOL, but at the cost of more computational
work. The experiments indicate that it suffices to work with a fairly small value for
7. In fact, for the present problem temporal grid smoothing turns out to have little
effect. The choice T= 1.E-8 yields STEPS = 162, JACS = 41, BS = 511 without a
noticeable change in accuracy.

Finally, we wish to point out that the ‘non-moving, uniform grid computation’ of
Fig. 2.2 (the case T = 1.0) should not be interpreted as the conventional uniform grid
computation, because the semi-discrete systems differ. Although this should have no
influence on the PDE solutions generated, it obviously may influence the solution
process through the Newton iteration.

Results for Method 111

Let us inspect Fig. 2.3, which shows plots of grids and PDE approximations for
four decreasing values of the regularization parameter C, beginning with C; =10
(in all four cases C, =d =0). This largest value for C, yields a virtually non-
moving grid. The aim of this experiment, as mentioned with respect to Method I, is
to illustrate the dependence of the time-stepping process on the grid movement. It is
our experience that in this respect the finite-element method behaves less satisfac-
torily than Method II. The approximations on the uniform non-moving grid are very
accurate, except perhaps within the vicinity of x = 0 during ignition. The attractive,
conventional MOL behaviour is nicely visible. JACS is only a small fraction of
STEPS and also BS is rather low. This is just why the conventional MOL approach
is often so efficient. To avoid a possible misunderstanding, it should again be real-
ized here that the ‘uniform grid computation’ (the case C; = 10) differs from the
conventional one, in the sense that the semi-discrete systems, and thus the Jacobian
matrices encountered, are different. This may have some influence on the solution
process but the PDE solutions generated should be identical.

Let us now consider the remaining cases. As to be expected, we see that the grid
follows the flame better and better for decreasing C, with the result that an even
better resolution is obtained during the propagation phase. We also see that, in spite
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of the fact that STEPS slightly decreases with C, JACS and BS steadily grow. For
example, the increase in JACS and BS when C,; changes from 10 to 0.1 is
significant, while the grid movement is still rather modest and also the nodes are
well separated (hence, it here suffices to put C, =d =0). Disappointingly, for the
smaller C, values quite a lot of computational effort must be spent in order to solve
the nonlinear systems which arise. It will be clear that, in such a situdtion, antici-
pated savings in total computational effort, due to a reduction of the number of
space nodes, may well be largely annihilated owing to the much larger costs for the
time-stepping. It should further be observed that, in contrast to Method II, the
Lagrangian nature of the moving-finite-element method during the propagation
phase does not lead to a considerable decrease of time steps.

In a sense, the application of the moving-finite-element method places us in a
dilemma. A near-‘optimal’ value for the regularization parameters would yield a
near-‘optimal’ grid movement and an excellent approximation. On the other hand,
the current experiment indicates that the grid may move at the expense of consider-
ably higher computational costs. One might argue here that for C; small the points
come too close, since a further decrease of C; would yield node overtaking. How-
ever, in all four cases illustrated, the grid points are still sufficiently separated. We
conjecture that the problems associated with the iterative Newton solution of the
nonlinear algebraic moving-finite-element system are probably due to some kind of
ill-conditionedness which is inherent to the moving-finite-element construction. This
conjecture is supported by the observation that in all four runs BDF orders of three,
and occasionally four, have been used over the entire time interval, which indicates
that the semi-discrete solutions cannot be very unsmooth. Moreover, the number of
time steps is not markedly large. In other words, the observed difficulty of the high
frequency of Jacobian evaluations is probably hidden somewhere in the nonlinear
equation system itself.

Another point of concern is the choice of the regularization parameters C,, C,
and d. In spite of the fact that the meaning of these parameters is sufficiently clear, it
is not clear at the outset how to select them. Loosely speaking, the control offered
by them is in a sense not direct enough. By way of illustration, consider the two
choices C; =0.025, 0.05. For C; =0.025 the grid is positioned rather well, which
can be seen by taking a closer look at the steady state solution. Most of the points
are concentrated where the curvature is largest and also the distribution within the
layer is good. On the other hand, one might still argue that the ratio of adjacent
points left of the front is rather large, which, as is well known, may be detrimental to
spatial accuracy. Doubling C yields better ratios, but then the grid is somewhat too
slow, with the result that now too many points are wasted in the flat part. We admit
that these observations are rather subtle and that similar observations can be made
for Method II concerning the choice of the parameter T. Still, it is our experience
that fine-tuning Method III can be rather troublesome, which brings us in direct
conflict with the important issues of robustness and reliability. For example,
decreasing C, further to 0.0125 results in a totally wrong steady state solution,
whereas the generated transient solution is perfectly all right (with C, = d =0; this
failure can be overcome by adjusting C, and d).
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FIGURE 2.2. Solutions and trajectories for Problem I generated by Method II.

The output times are as in Fig. 2.1.
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2.4.2. Problem II: Burgers’ equation
Our second example is the well known Burgers’ equation
u/dt = — of u)/ox + €d*u/ox®>, 0<x < 1,1t >0,
f) = u®2, e6=10",
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FIGURE 2.3. Solutions and trajectories for Problem I generated by Method III.
The output times are as in Fig. 2.1.

supplemented with the smooth initial function u (x, 0) = sin (27mx) + 0.5sin (1x) and
homogeneous Dirichlet boundary conditions. This problem also served as a test
example in [10,12]. The solution is a wave that first develops a very steep gradient
and subsequently moves towards x = 1. Because of the zero boundary values, the
wave amplitude diminishes with increasing time. We consider the time interval [0,2]
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and use times ¢t = 0.2, 0.6, 1.0, 1.4, 2.0 for output.

In contrast with the previous problem, the location of the fine grid region is very
critical, since all three methods are known to generate spurious oscillations readily if
the grid in the layer region is too coarse, just as with standard central differences on
a non-moving grid. Concomitant with this form of space instability is the danger of
having non-smooth continuous-time, semi-discrete solutions. In other words, despite
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the fact that we move the grid, these solutions still have a tendency to oscillate, even
for small grid deviations. There is no doubt that this non-smoothness is detrimental
to any ODE solver and therefore the present problem provides a difficult test for any
moving-grid method. In all experiments we have worked with 40 moving nodal
points and a uniform start grid.

Results for Method 1

For the above Burgers’ equation problem, Method 1, at least the (A) version, falls
dramatically behind when compared with Methods II and III. Using an initial step
size of 1.E-5, we have run the method for three values of TOL, viz., 1.E-2, 1.E-3 and
1.E-4. In all three cases the method generates the correct spatial profile; however,
the numerical wave runs much too fast, in particular for the two lower tolerances.
This must be attributed to the inaccuracy of the implicit Euler scheme, which is used
in almost all steps, and to the very frequent interpolations. Taking into account the
computational effort needed for TOL = 1.E-4, a further reduction of TOL was not
considered worthwhile. Again we must conclude that the disappointing performance
is due to the regridding at virtually all steps, forcing the method to use the first order
Euler formula. In passing we note that for this problem the number of step failures,
which in an experiment with Problem I turned out to be uncommonly large, is here
virtually negligible.

Again the question arises as to what extent the less frequent regridding approach
mentioned in the discussion of results for Problem I would be more promising. By
way of illustration we have rerun the method for TOL = 1.E-3, 1.E-4 while regrid-
ding only at step points nearest to the prescribed times ¢ = k/50 for k = 1(1)100. As
for Problem I, this gives a considerable improvement, both in accuracy and with
respect to computational costs. The results are shown in Fig. 2.4. These results,
while not yet competitive with those of Method II and III, do, however, indicate
clearly that the approach of occasional regridding in time is to be preferred to the
approach of regridding at (nearly) every step, which underlies version (A). It is
likely that here is room for considerable improvement. For example, the number of
time steps for TOL = 1.E—4 is about V10 times larger than for TOL = 1.E-3, which
indicates that the (locally second order) implicit Euler method is still used very fre-
quently. No doubt, had higher order formulas been used, better performance would
have been observed.

Results for Method 11

Figure 2.5 depicts the grids and solutions for Method II for T = 1.E-1 and 1.E-3
(TOL = 1.E-3 and the initial time step is 1.E-5). The corresponding integration data
are listed in Table 2.1, together with the results obtained for T = 1.E-2 and 1.E-4.
The (plotting) accuracy for the three smaller T values is the same and without doubt
can be called excellent. Recall that the solid lines represent a highly accurate refer-
ence solution and that the marks correspond to the numerical solutions generated in
the present experiment.

As already observed in the problem description, due to the small amount of diffu-
sion the semi-discrete solutions have a tendency to oscillate as soon as the grid
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FIGURE 2.4. Results for Problem II obtained with Method I using the intermediate
regridding approach. The output times are r = 0.2, 0.6, 1.0, 1.4, 2.0. The
left-hand plot corresponds to TOL = 1.E-3
(STEPS =561, JACS =482, BS = 1486) and the right-hand one to
TOL = 1.E-4 (STEPS = 1650, JACS =919, BS = 3986).

becomes a little bit too coarse in the layer region. This makes the problem difficult
to solve and, in fact, is the main cause for the relatively large number of Jacobian
updates. It also explains the much larger effort and wiggles for T = 0.1, for which
value the grid is a little bit too slow. It is obvious that, for a problem like this, the
choice of 1, which dictates the grid movement, is more critical than for Problem I
On the other hand, as for Problem I, a rather small value for t (of the order of the
averaged time step used) turns out to be most appropriate. Most of the time steps
used were for the shock formation and collision with x =1; very few steps were
needed to propagate the shock from x = 0.6 to x = 0.95. Finally, the cusps in the (T =
1.E-3) grid near ¢ = 1.4 are due to the change of shape in the solution when the
shock reaches the right-hand boundary. The fact that these are virtually absent in the
(t=1.E-1) grid nicely illustrates that here the temporal grid smoothing is too large.

Results for Method 111

In all the experiments we have used the time tolerance value TOL = 1.E-3 with
initial step size 1.E-5. As a first experiment we tried the method using regularization
parameter values copied from Hrymak, McRae and Westerberg [12]. Their values
are: C, =0.01, C, = 1.LE-4 and d =5.E-5. Hrymak et al. integrate Problem II only
until # =1 and on this time interval the integration is successful. However, upon
continuing the integration to the end point ¢ = 2, we experienced node crossing near
approximately 7 = 1.4. Increasing C, for example, overcomes the crossing. For C,
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FIGURE 2.5. Results for Problem II obtained with Method II. The output times
are the same as in Figure 2.4. The two upper plots correspond to T = 0.1
and the two lower ones to T=0.001.

= 0.025 the integration is successful over the entire time interval 0 <t <2 and leads
to a very accurate solution, but at rather large costs, viz., STEPS = 364, JACS =270
and BS = 941. This, in turn, can be improved by enlarging the minimal node dis-
tance parameter d, for example, d = 1.E-4 yields an equally accurate solution. Figure
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T STEPS | JACS BS

1L.LE-1 747 428 2595
1.E-2 293 164 910
1.E-3 212 120 708
1.LE-4 224 134 749

TABLE 2.1. Variation of t.

2.6 shows this solution, obtained using C| = 0.025, C, =d = 1.E-4, for which the
costs are STEPS =271, JACS = 190, BS =719.

A further increase of d, to about 5.E —4, is not possible since then the grid in the
layer becomes too coarse and thus the familiar oscillations arise. In the present
experiment these also end in node crossing. In view of the oscillations, we recall that
there should be an upper limit on ¢ and that this upper limit is related to the size of
the viscosity parameter € in Burgers’ equation, since it is this parameter which deter-
mines the width of the layer region. Some further trial and error runs, with the ear-
lier values C; = 0.025 and C, = 1.E-4, revealed that the admissible range for d is
not very large. We observed node crossings for d = 1.E-5 and d = 5.E—4.

In conclusion, Method 1III is able to solve the present difficult Burgers’ equation
problem with high accuracy, but not without considerable tuning. It should also be
noted that the costs of the successful, accurate computation of Fig. 2.6 are larger
than those of the successful runs with Method II for the smaller t values. We attri-
bute this to the fact that here SPRINT starts to integrate with the first order implicit
Euler scheme as soon as the wave develops the steep gradient, and hence does not
exploit the higher order BDF formulas. This, in turn, indicates that, for the convec-
tion dominated problem, the continuous-time, semi-discrete solution generated by
the moving-finite-element method will be rather non-smooth in time, a situation we
already anticipated in the problem description.

2.4.3. Problem IlI: Waves travelling in opposite directions

Our third example problem is a two-component, semi-linear hyperbolic system,
the solution of which is constituted by two waves travelling in opposite directions
(copied from Madsen [15], see also [27]). The system is given by

ou/ot = — du/dx — 100uv,
ov/dt =  dv/dx — 100uv,

for 1>0 and —0.5<x<0.5, and the solution is subjected to homogeneous Dirichlet
boundary conditions and to the initial condition

u(x,0)=(1+cos(10nx))/2 for xe[-0.3,-0.1] and u(x, 0) =0 otherwise,
v(x,0)=(1+cos(10mx))/2 for xe[0.1,0.3] and v(x,0) =0 otherwise.



39

2

FIGURE 2.6. Solutions for Problem II computed with Method III. The output times
are the same as in Figures 2.4 and 2.5. The parameter values are
C,=0.025C, =1E-4,d=1E-4

uix,T)

Note that these are functions with a mere C'-continuity, which represent wave
pulses located at x =—0.2 and x = 0.2, respectively. Initially, the nonlinear term
100uv vanishes, so that for >0 these waves start to move without change of shape
and with speed 1, u to the right and v to the left. At 7= 0.1 they collide at x =0 and
the nonlinear term becomes positive, resulting in a nonlinear interaction leading to
changes in the shapes and speeds of the waves. Specifically, the crests of the waves
collide a little beyond ¢ =0.25 and they have separated again at approximately
t =0.3, so that from this time on the solution behaviour is again dictated by the
linear terms. At the nonlinear interaction, the pulses lose their symmetry and experi-
ence a decrease in amplitude.

To save space, in this section we restrict ourselves to presenting results for
Method II and III (Method I was applied, but with rather inaccurate results). As out-
put times we have selected the values 7 =0.1, 0.2, 0.25, 0.3, 0.5 and in all experi-
ments the integration has been started at 7 =0 on a non-uniform, solution-adapted
grid consisting of 41 points. For both methods we have used the time step tolerance
value TOL = 1.E-3 and an initial step size of 1.E-5.

Results for Method 11

Figure 2.7 shows the grid and the numerical approximations at the specified out-
put times, obtained with a value of 1.E-3 for the grid delay parameter 1. We see that
the solutions are fairly accurate and point out that the visible inaccuracies are only
due to a somewhat optimistic choice for TOL and the number of points. These inac-
curacies will vanish if more points and a smaller tolerance are used. Also the grid
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positioning is good over the entire time interval, i.e., there is sufficient refinement
near the travelling waves before and after the interaction. In the present experiment
we have replaced the (regularization) constant 1 of the arc-length monitor

(14 (Qu/dx)? + (Iv/ox)?)"

by 0.1. The reason is that when the waves have separated they are no longer very
steep, with the result that the value 1.0 is somewhat too large for obtaining sufficient
refinement in the vicinity of the two waves, at least when only 41 points are used.
With this number of points, it is also necessary that, after the separation, the grid
refines properly in the vicinity of the waves, since otherwise spurious oscillations
will become visible. Recall that after the separation we are just solving the first
order hyperbolic model problem using standard central differences. This experiment
shows that it is desirable that the regularization constant of the monitor function be
made solution-dependent, in some way or another. Finally, the costs of the run are
STEPS = 105, JACS = 58 and BS = 332.

Results for Method 111

A typical result obtained with the parameter values C| =0.05, C, = 1.LE-4 and d =
1.E-5 is shown in Fig. 2.8. The costs of the run are STEPS =71, JACS = 38 and BS
= 177. We see that up to approximately ¢ = 0.25 the grid moves in the right way and
the two numerical waves follow the exact ones quite accurately. As for Method II,
the small, visible inaccuracies are due to a somewhat optimistic choice of TOL and
the number of points. Unfortunately, the method fails to track accurately the separa-
tion of the waves, which can be seen by inspecting the grid. Although after the
separation the solution is quite accurate, except for the wiggle at the tails (see
t =0.5), the grid positioning is not in accordance with the location of the two waves,
in contrast with the positioning for 0 < < 0.25. For #>0.25 the grid tends to become
more or less uniform over the greater part of the space interval and does not refine in
the vicinity of the travelling waves.

It is noted that this grid deficiency does not vanish upon increasing the number of
points and the temporal accuracy level, at least for 60 moving points and TOL =
1.E-4 (the right upper plot of Fig. 2.8 depicts the corresponding grid). Attempts to
overcome it by changing the penalty parameters were not successful either; nor was
the addition of a small amount of viscosity (1.E-4) to suppress spurious oscillations.
The addition of a small amount of artificial viscosity, which was suggested by Keith
Miller (personal communication), does reduce the oscillations in the solution, but
does not have a visible impact on the grid. It is conjectured that the observed
difficulty has to do with the property that, for the hyperbolic model problem we are
actually solving after the separation, the moving-finite-element method moves the
grid at speed one and returns the exact solution, but does not adjust the grid to the
new separated pulse profile. Nodes are dragged out of the pulses as they separate
because of the large, internodal viscosity coefficient C3 which we found necessary
to use to get the code to work. This value of C? is 100 to 600 times the standard
choice of Miller [18].
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2.5. CONCLUSIONS

We have examined three Lagrangian-based moving-grid methods for systems of
1-D time-dependent partial differential equations. Our aim has been to assess which
of these methods offers the best prospects for reliable, efficient and robust method-
of-lines application, preferably with as little user intervention as possible. For this
purpose we have carried out a numerical comparison with three different test exam-
ples. For the time integration we have used two existing, closely related stiff ODE
codes, both of which are based on the acknowledged BDF formulas. We formulate
the following conclusions:

(i) We cannot recommend Method 1 for general use, although it is quite reliable
and robust; for example, we never found it necessary to use values for the parame-
ters o and A different from the specified default values. The very frequent regrid-
dings mean that the method has to integrate almost always with the first order impli-
cit Euler rule, thus preventing the Lagrangian procedure from exploiting the attrac-
tive, higher order BDF formulas. In many situations this will be detrimental to
efficiency, apart from incurring the extra cost of a Jacobian update after regridding.
A second drawback of regridding is the need to interpolate. In spite of the fact that
accurate monotone interpolation is combined with the dual reconnection strategy,
which implies that after a regridding the number of point interpolations is not very
numerous, many successive interpolations can still cause a perceptible loss of spatial
accuracy. In this connection it is worthwhile to note that one of the recognized
advantages of Lagrangian schemes, when operating with a fixed number of moving
points, is that they do not require interpolation.

Our experiments indicate that a significant improvement can be obtained when
the number of regriddings is limited in some way or another (the intermediate
regridding approach) because then the time-stepping can benefit more from the
Lagrangian nature of the method. When considered on its own, the underlying
Lagrangian transformation is of interest since the aim is to achieve smoothness in
time, which is of course attractive, certainly when the higher order BDF formulas
are available for the time integration.

(ii) We do not wish to conceal the fact that we have mixed feelings about the
moving-finite-element approach underlying Method III, at least as far as our appli-
cation is concerned. This is based on the following observations. In this approach
the movement of the grid is basically governed by a minimization procedure, akin to
the procedure for standard non-moving-grid Galerkin schemes. For practical appli-
cation within an implicit method-of-lines procedure it is necessary, through the use
of penalty terms, to regularize this minimization so as to avoid node overtaking and
singular mass matrices. Inevitably, the choice of the parameters involved is
problem-dependent and experience has revealed clearly that this often leads to trou-
blesome application. Quite some tuning may be needed to make the grid move in a
satisfactory way. In a sense, the effect of the regularization on the minimization
does not seem to provide a sufficiently clear and unique set of rules for moving the
grid. In this respect the spatial equidistribution approach which underlies Method II
is more transparent.

The need for tuning is obviously in conflict with the aim of robustness. Another
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point of concern we should like to bring forward here is that the time-stepping
behaviour of Method III is rather sensitive with respect to the grid movement. If the
grid does not move in the right way, the time-stepping can easily become rather
expensive. Furthermore, even if the grid does move satisfactorily, it may still hap-
pen that the time-stepping costs are rather large compared with the costs of time-
stepping in the conventional way on a non-moving grid (assuming of course that a
non-moving grid is feasible); see, for example, the experiment carried out with
Problem I. We admit that this comment will apply to any moving-grid procedure,
including Method II. It is our experience, however, that in this respect the latter
method behaves better.

(iii) We believe that, for the application we have in mind, the approach of the
finite-difference Method II is to be preferred above the moving-finite-element
approach of Method III. We have found Method II easier to work with and imple-
ment than Method III and also more efficient. The grid movement of Method II is
directly attached to equidistribution in space of a chosen monitor function whereas
that of Method III has no underlying equidistribution principle and so there is no
improvement mechanism for an incorrect initial node distribution. As already indi-
cated under (ii), it is our experience that this approach provides a better and more
unique way of automatically adjusting the grid to large spatial gradients.

However, Method II may easily encounter difficulties in tracking sharp corners of
a solution where, nearby, the first derivative is not very large. A simple example of
such a situation is provided by the model convection equation u, + u, =0 with a tri-
angular pulse as initial value. Computing the moving triangular pulse solution with
Method II will result in a numerical solution showing the familiar spurious oscilla-
tions. This does not happen with genuine shocklike structures because these have an
arclength associated with it. Very large spatial derivatives attract enough points to
prevent the oscillations to arise but the triangular pulse form does not lead to
sufficient refinement near the sharp moving corners. We have experienced numeri-
cally that this sort of difficulty will also arise when solving the Burgers’ equation
with a trapezoidal pulse as an initial value instead of the sinusoidal one, a test exam-
ple suggested by Keith Miller [19]. In this connection it should be emphasized that
the MFE method does not suffer from this particular deficiency and can handle this
sort of initial values in the Burgers’ equation with great accuracy using relatively
few points [10,20].

An important feature of the approach of Method II is the grid smoothing capabil-
ity. Despite involving two method parameters, viz., K and T, the choice of these
parameters has not proved to be troublesome. The meaning of x is very clear and for
general use x can be taken equal to, say, 1 or 2. Admittedly, the actual choice to be
made for 7 is less clear. Our experience in the experiments is that it is best to keep T
small so that the grid movement is almost exclusively dictated by the spatial equidis-
tribution at the forward time level, as long as this does not lead to oscillatory grids.
However, for general use it is not recommended to set T=0. The temporal grid
smoothing property deserves some more study.

(iv) In conclusion, we consider the approach of Method II as most promising for a
general method-of-lines application. In the near future we therefore plan to study
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this specific approach in more detail, with the aim of extending the current (ad hoc)
implementation of Method II into a reliable, efficient and robust, user-oriented piece
of software which can be easily linked to existing PDE packages like SPRINT.
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Chapter 3

A Moving-Grid Method for One-Dimensional PDEs
Based on the Method of Lines

"We were surprised at the simplicity of this result and the almost

trivial nature of its proof”

3.1. INTRODUCTION
We consider systems of partial differential equations (PDEs) in one space dimen-
sion,

u, = Lu,x,1), x;<x<xg, t>0, (1.1a)
with the initial and boundary conditions
u(x,0)=u"(x), x,<x<xgp and b(ux,t)=0, x=x;, xg, t>0. (1.1b)

Here £ and b are spatial differential operators and it is tacitly assumed that the prob-
lems under consideration are well-posed and that they possess a unique solution.
The differential operator L is supposed to be of at most 2-nd order. In particular, we
are concerned with problems with disparate space and time scales giving rise to
solutions with large space-time gradients. However, we do not consider genuinely
discontinuous shock solutions as those arising in first order hyperbolic problems.
Problems with disparate space and time scales occur in many applications from the
engineering sciences and often an adaptive or moving grid can improve the
efficiency and accuracy of a numerical computation.

The method described here is based on the method of lines (MOL) which is a
well-known approach for numerically solving PDE problems such as (1.1). In the
MOL approach the discretization of the PDE is carried out in two stages. In the first
stage the space variables are discretized on a selected space mesh, normally chosen
a priori for the entire calculation, so as to convert the PDE problem into a system of,
usually stiff, ordinary differential equations (ODEs) with time as independent vari-
able. The second stage then deals with the numerical integration in time of this stiff
ODE system to generate the desired numerical solution. With this MOL approach in
mind, several sophisticated PDE packages have been developed in recent years,
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notably for one-space-dimensional problems (see, e.g., [2,3,8,10,11,14,15]).
These MOL packages greatly benefit from the very successful developments of
automatic stiff ODE solvers. In particular, the implicit Gear-type BDF solvers play
a prominent role here. Gear-type solvers have proved to be efficient, robust and reli-
able, in that they work for a broad class of problems and usually solve the stiff ODE
system under consideration in an accurate and efficient way. The experiences with
MOL packages have revealed clearly that this is also true of semi-discrete PDE
problems on fixed space grids. However, for solutions possessing large space-time
gradients, like travelling wave fronts or emerging boundary and interior layers, a
grid held fixed for the entire calculation can be computationally inefficient, since
this grid will almost certainly have to contain a very large number of nodes. In such
cases, a moving grid procedure that attempts to adjust automatically both the space
and the time-stepsizes is likely to be more successful in efficiently resolving critical
regions of high spatial and temporal activity.

The method described in this paper is of Lagrangian type and, at the semi-discrete
level, automatically moves continuous-time grid lines to regions of high spatial
activity. The grid movement underlies the principle of spatial equidistribution of
nodes and employs regularization techniques borrowed from Dorfi and Drury [4].
The spatial discretization is based on standard central differencing since we aim at a
large problem class. For the numerical integration in time we use a sophisticated
BDF code [2,3,11]. From the users point of view it is of interest to note that this
stiff solver can be used in a similar easy way as in the conventional (non-moving)
approach. Some parameter tuning is required to govern the regularization of the grid
movement as well as to optimise the efficiency. Needless to say, tuning is an impor-
tant issue since the need for tuning is in conflict with robustness and ease of use.
The numerical study of [7], where a comparison is presented between our current
method, the adaptive moving-grid method of Petzold [12], and the moving-finite-
element method (MFE) of Miller, shows that in this respect the current method com-
pares favourably with the MFE method.

In Section 3.2 we introduce the semi-discretization in a moving reference frame,
completely in line with the common MOL approach. In Section 3.3 we give the
moving-grid equation that determines the continuous-time grid trajectories impli-
citly in terms of the semi-discrete solution on this grid. Section 3.4 is devoted to a
discussion of the two grid-smoothing procedures that are used to regularize the grid
movement. In Section 3.5 we discuss the complete semi-discrete system and its
numerical integration. Section 3.6 presents results of numerical experiments with
three different example problems and the final Section 3.7 is devoted to a brief con-
clusion.

3.2. THE SEMI-DISCRETE PDE

Virtually all of the space mesh adapting techniques for time-dependent problems
attempt to move the nodes in such a way that, in regions of high spatial activity,
there is enough spatial resolution. In other words, the construction of these methods
is aimed at minimizing the number of space nodes relative to a certain level of spa-
tial accuracy. On the other hand, in most time-dependent applications large spatial
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gradients are accompanied by large temporal gradients, the standard example being
provided by the simple running wave form u (x,f) = w(x—ct). It is thus natural not
only to minimize the computational effort put into the spatial discretization, but also
to attempt to minimize the computational effort put into the time integration. Note
that on a non-moving mesh a steep wave form such as u (x,t) = w (x —ct) will require
standard time-stepping techniques, including the sophisticated Gear methods, to use
small time-steps. The reason for this is that as the moving front passes a grid point,
the solution at this grid point will change very rapidly and so small time steps are
then necessary to retain accuracy. The above observation naturally leads one to con-
sider the Lagrangian discretization approach where the grid is moved continuously
along with the solution with the aim of reducing these rapid transitions. Note, how-
ever, that it is not always possible to reduce them simultaneously in space and time
(see [7, 16] for a more comprehensive discussion).

We start our derivation at the semi-discrete level. Thus, completely in line with
the common MOL approach, consider smooth, continuous-time trajectories

xL=XO< <Xi(t)<Xi+l(t)< <XN+|:xR for 120, (21)
which are, as yet, unknown. Introduce, along x (1) = X;(t), the total derivative
i=xu, +u, =X, u, + L, X(1),1), 1<i<N, (2.2)

and spatially discretize, for each fixed 7, the space operators d/dx and L so as to
obtain the semi-discrete system

Ui =X; [(Uis = Ui )/Xisy = Xi)1+ L, t>0, 1<Si<N. (2.3)

As usual, U,(t) represents the semi-discrete approximation to the exact PDE solution
u at the point (x,¢) = (X;(¢),1) and L; is the finite difference replacement for Lu,x,t)
at this point. Note that the standard, central difference approximation for u, is used.
It is supposed that L; is also based on standard, 3-point, central differencing. Further
it is of interest to observe that at this stage of development the only errors intro-
duced are the space discretization errors. With the associated grid functions

X=[Xy, -, Xy, U=[U], - URI", L=IL], -~ LA),
D;= Uy - U )/Xiy - X)), D=[D, -+, D}l
we reformulate (2.3) in the more compact form
U=XoD+L, t>0, U(0)given, (2.4)

which represents the semi-discrete system to be numerically integrated in time. The
notation X oD means that X; is to be multiplied with all components of the vector
D;.

In the discussion to follow, we neglect the treatment of boundary conditions,
since these are dealt with in the usual way. We also wish to emphasize that for
convection-diffusion problems with steep gradient or near-shock behaviour, the use
of central differencing of first order terms is not ideal and one would probably con-
sider stable upwind or flux-corrected approximations, since otherwise any deviation
from an ideal Lagrangian grid movement, assuming this exists, readily results in



50

unphysical oscillatory solutions. It is emphasized that the actual generation of the
moving grid is the central issue here and that other spatial discretizations can be
easily implemented.

3.3. THE MOVING-GRID EQUATION

3.3.1. Spatial equidistribution

We shall construct an equation that defines the time-dependent grid X implicitly
in terms of the continuous-time solution U. This grid equation underlies the familiar
notion of spatial equidistribution. Introduce the point concentration values

n=(AX,)", AX;=X,,,-X;, O0<i<N, (3.1)
and the spatial equidistribution equation
ni,l/M,-_] =n,»/M,—, 1 SISN, (32)

where M; > o > 0 represents a monitor value that reflects spatial variation over the
i-th subinterval [X;, X;,,]. Typically, M; is a semi-discrete replacement of a solution
functional m (1) containing one or more spatial derivatives. For example, the 1-st
derivative functional (in scalar form; the change for systems is obvious)

m(u) = (0t + (u,)*)” (3.3)
yields, employing central differencing,
M; =+ Uiy = U)X = XD 3.4)

The parameter o > 0 serves to ensure that M; is strictly positive. Unless noted other-
wise o= 1, which leads to the well-known arc-length monitor which has the pro-
perty of placing points along uniform arc-length intervals. All numerical results
reported in this paper have been obtained with the monitor (3.4) or its modification
for systems. Of course, other choices for the monitor (e.g., solution curvature) could
be used.

3.3.2. The grid-smoothing procedures

Equation (3.2) prescribes X in an implicit way in terms of U. However, as well
known, for practical application the grid movement dictated by such an equidistribu-
tion equation needs to be regularized in order to avoid an oscillatory, distorted grid.
For this purpose we now introduce two grid-smoothing procedures (borrowed from
[4]), one for generating a spatially smooth grid, and the other for avoiding oscilla-
tions for evolving time. Use of the two grid-smoothing procedures amounts to modi-
fying (3.2). We will first briefly describe these modifications and delay a more
comprehensive discussion of the grid-smoothing to Section 3.4.

The spatial grid-smoothing is effected by replacing the point concentrations in
(3.2) by their numerically ‘anti-diffused’ counterparts

ng=ng—k(k+1)(n; —ny),

n,-:n,-—K(K+1)(n,-+| —2n,'+ni—])’ K>0, 1 SISN-], (35)
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ny =ny — K(k+1)(ny_ —ny),
which results in the now 5-point coupled (in X) system
ﬁi~l/Ml'fl =ﬁi/M,‘, 1 SISN (36)

The first and last equation in (3.5) involve the ‘zero concentration gradient’ boun-
dary conditions

nog=n_y, Hhny4 =Ny,

where n_; and ny,, correspond to the artificial points X_; and Xy, respectively. In
[7], and also in [4], the similar conditions ny =n, ny_, = ny have been used. How-
ever, these imply that the first and last monitor values, M, and My, respectively, are
removed from the moving grid equation (in (3.6) the index i then runs from 2 to
N-1). This is not appropriate in cases where the boundary monitor values are much
larger than the interior ones, like, e.g., in Problem I of Section 3.6 during the genera-
tion of the steep flame front at the right boundary. The present boundary conditions
overcome this deficiency.

The introduction of the ‘anti-diffused’ point concentrations is equivalent to a cer-
tain smoothing procedure for the monitor function (see Section 3.4), thus ensuring
that the adjacent point concentrations are restricted such that

K/(c+1) <y /n; < (k+1)/K. (3.7)

This condition implies that the grid we compute is locally bounded and, most impor-
tantly, provides a natural way to control clustering and grid expansion. While the
monitor function determines the relative shape of X, the value of kK and N determine
the level of clustering. Further, for a given N and a given monitor function distribu-
tion, the choice of x determines the minimum and maximum interval lengths. In
actual application, a value of k of about 1 or 2 is recommended so that modestly
graded space grids are obtained. In all our experiments we have used the (rather
conservative) default value k = 2. Recall that the grading of the space grid plays an
important role in controlling space discretization errors (see, for example, [6]).

When combined with the spatial grid-smoothing, the temporal grid-smoothing is
effected by replacing the system of algebraic equations (3.6) by the following sys-
tem of differential equations

(ni_y + ‘c;t,-,])/M,-_l =(n; + Tﬁ,-)/M,-, >0, 1<i<N (3.8)

The introduction of the derivatives of the point concentrations serves to prevent the
grid movement from adjusting solely to new monitor values. Instead, the use of
(3.8) forces the grid to adjust over a time interval of length T from old to new moni-
tor values, i.e., the parameter T acts as a delay factor (see Section 3.4). The aim here
is to avoid temporal oscillations and hence to obtain a smoother progression of X (1).
These oscillations can arise in grids generated via spatial equidistribution tech-
niques, because when applied to solutions with extremely large gradients, the
numerical monitor values are very sensitive to small perturbations in the grid and
vice versa. With oscillatory trajectories it is certain that near steep fronts one or
more components in the ODE system rapidly vary for evolving time. This is
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detrimental for the numerical time stepping and also causes difficulty in the Newton
solution of the sets of nonlinear algebraic equations that arise in the implicit time
integration with the stiff solver.

In contrast to the choice of «, the choice of a good value for 7 is less simple.
Increasing T too much results in a grid that lags too far behind any moving spatial
transition. In fact, for sufficiently large values of T a non-moving grid results. For-
tunately, our numerical experience (see Section 3.6) indicates that in many situa-
tions temporal grid-smoothing is actually redundant. We owe this to the spatial
grid-smoothing which also helps to prevent the grid from oscillating. However, in
situations where smoothing in time is advisable, it makes sense to attempt to choose
7T close to the anticipated temporal step size value such that, over one or a few time
levels, the influence of past monitor values is felt. The discussion of the next section
is aimed at providing more insight in this matter.

3.4. DISCUSSION OF THE SMOOTHING PROCEDURES

3.4.1. Preliminaries
Equations (3.8) are based on the relation

w+a;=cM,, t>0, 0<i<N, (4.1a)

where ¢ = ¢ (¢) is the proportionality constant involved. This proportionality constant
is solution dependent and in fact also depends on the parameters T and x. This
dependence is suppressed in our notation and we shall use ¢ (¢) as a generic notation
for, possibly, different constants of proportionality. Using W =xk(k+1), we first
rewrite 7, in (3.5) as

o=, + (1,
ﬁi = —Uun; +(1+2].1)n, — Mg, 1<i SN_I, (41b)

ny = —Wny_y + (1+ny.

For initial conditions we suppose a given concentration distribution ;(0), 0 <i <N,
that has been subjected already to the spatial grid-smoothing procedure, i.e., the ini-
tial grid satisfies (3.6) at 1 = 0. For the actual practice this is a natural assumption
because the space smoothing is also applied at later times. Violation of this assump-
tion makes it likely that already within the first time-step the grid is forced to
undergo a large change. However, in principle, an initial grid not satisfying (3.6) can
be used.

We have N+1 equations for the N+1 unknowns n;, 0 <i <N, if we consider the
proportionality constant ¢ (¢) and the monitor values M;(¢) as being given. In fact,
for the analysis presented in the remainder of this section it is convenient to
uniquely represent the N+1 concentrations n;(¢) for ¢ 2 0 in terms of the initial con-
centrations n;(0) and the values c (t), M;(¢) as described below. First, solving (4.1a)
yields the nonlinear Volterra integral equation system

3
ni(t) = e [1;(0) + jr"‘emc ()M;(s)ds], t>0, 0<i<N, 4.2)
0
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where 1;(0) is determined by n;(0) through (4.1b). We have a system of nonlinear
Volterra integral equations because the monitor function values M; depend on all
concentrations in a nonlinear way. Second, the matrix M associated to the system of
linear equations (4.1b), i.e.,

Mn=n, n=[ng, -, nyl’,n=[ng, -, nyl", (4.3)

is symmetric, positive definite. Hence, M is non-singular and the point concentra-
tions n; are uniquely expressed into n; by

n=M"'n (4.4)

Equations (4.2)-(4.4) define the moving grid X (¢) in an implicit way. Although this
definition is not of much practical use, it is useful for a qualitative study of the
smoothing procedures.

3.4.2. Spatial grid-smoothing

Let us first discuss the spatial grid-smoothing in isolation from the temporal
smoothing (t=0, ¥>0). As outlined above, given n, the spatial grid-smoothing
amounts to solving for the point concentrations n; from system (4.3). We present a
rather technical lemma that gives the precise form of the solution of this system.

LEMMA 3.1. Let v=x/(x+1). The solution of the linear system (4.3) can be
represented in the form

N 3
n=(+207' YviFly, 0<i<N, (4.5)
Jj=0
where
Vo=(142K)C,, V;=n,, 1<j<N-1, Vy=(1+2k)v"C,

J J
with, for k =1 and 2,
~ ~ Nﬁl . s~
Ck =ap\ng+agny + K(1+2K)_l Z [ak le + akzvN_’]nj,
J=1

ay = —x/D, a 11 = VNGZZ, ap= —(1+K)/D, ar = ViNa 125

D =1vN — (1+x)> v,
PROOF The characteristic equation of the homogeneous recursion associated with
(4.1b) has the roots v and v™', so that the associated homogeneous solution is given
by

ni‘hom:ClV—ii‘szi, OSISN,
where C,, C, are arbitrary constants. A particular solution of the inhomogeneous
recursion is easily checked to be

N-1
Nipar =(142€)" T VIR, 0<i<N,
j=1
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which is just (4.5) with the first and last term omitted. Hence, the general solution of
(4.1b) reads

N-1
n=Cv'+Cv' +(142) TV, 0<i<N,
j=1
where the two constants C;, C, serve to match the boundary conditions, i.e., the
first and last equation of (4.1b). An elementary calculation leads to (4.5). The intro-
duction of the auxiliary quantities V; only serves to express the solution in this
specific form. [J

At first sight expression (4.5) is a bit complicated by the incorporation of the
boundary conditions. Neglecting these leads to the more transparent expression

N-1
n =142 Y v, (4.6)
j=I
given in [4]. The relevant point in all this is the appearance of the ‘smoothing ker-
nel’ vI'/1 Note that 0 < v < 1.
Next the equidistribution equation (4.1a) is taken into account, i.e., we now sim-
ply substitute n; = cM into (4.5) to obtain

N =
n=c(+2k)' IvIIM;,  0<i<N, (4.7)
j=0
where Ajlj =M; for 1 <j<N-I and A:10 and A71N are defined in exactly the same
way as V, and Vy in (4.5). Likewise, (4.6) then reads

N-1
n=c(1+2x)"' Y vIiipm;. (4.7a)
j=1

The following important corollary can thus be made:

COROLLARY 3.1. Taking the anti-diffused concentrations n; proportional to M; is
equivalent to taking the concentrations n; proportional to the smoothed monitor
value

N .
Ai=YviHIM, O

j=0
REMARK 3.1. A trivial consequence of the proportionality of n; to the positive ‘mon-
itor’ values A;, is that all concentrations n; remain positive which means that the
spatial grid-smoothing cannot lead to node crossing. Of course, this is also a direct
consequence of the grid ratio condition (3.7). Further it is of interest to note that all
values n; are positive too, which can be concluded from the two following observa-
tions. First, all n; are either positive or negative, as they are proportional to M,.
Second, if all n; <0, then all n; must be negative which is a contradiction. []

The motivation behind the spatial grid-smoothing lies in the desirable grid condi-
tion (3.7) which serves to control clustering and grid expansion:
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THEOREM 3.1. The spatial grid-smoothing restricts the concentrations n; such that
(3.7) is satisfied.

PROOF Consider (4.7). From the inequalities |i—j—1] < [i—j|[+] and 0<v <1 we
directly deduce

N .~ N o~
nifnig =V IMVII T M v
Jj=0 j=0
because all terms in the numerator are smaller than or equal to the corresponding
terms in the denominator. In a similar simple way the left-hand side inequality of
(3.7) is proved. [J

In the proof, the size of the ‘monitor values’ M; plays no role whatsoever, only
the fact that they are positive is used. As a matter of fact, for any randomly chosen
set of positive values M;, condition (3.7) is satisfied. This is an attractive feature
with respect to robustness, but also makes it difficult to precisely quantify the effect
of the space smoothing on the original equidistributing grid. An additional compli-
cating factor, in this respect, is the effect of the ‘zero concentration gradient’ boun-
dary conditions, although having

X -Xo=Xo-X_1, Xyu —Xy=Xyn—Xyvu (20)

is a natural restriction and certainly advantageous with respect to spatial accuracy
near the boundary. Further, while neglecting the boundaries, the averaged expres-
sion (4.7a) looks very natural. Our practical experience is that the spatial grid-
smoothing procedure leads to a point distribution where the monitor function will
determine the relative shape of the distribution and the value of x and N the level of
clustering. We refer to Dorfi and Drury [4] for a numerical illustration.

It is of interest to observe that, for a given N, the choice of ¥ determines the
minimum and maximum interval lengths. In actual application, the minimum should
be related to the expected small scale features in the solution to be computed. Sup-
pose that in a transition from small to large space gradients and back, a solution
requires a local refinement in a grid with a factor of 10™. Let N, be the number of
points in this transition region. Then, if the point concentration variation is bounded
by 1+1/x, it follows from

(14171 = 10",
that N, is at least
Nipe = 2mIn(10)/In(1+1/x) = 4.6m/In(1+1/xK). (4.8)

For example, for m =3 and k=1, 2, 3, we have, respectively, N, = 20, 34 and 48.
Note that the factor of 0.5 above accounts for the fact that a local grid refinement is
supposed to be followed by a local grid expansion. Using the ‘rule of thumb’ (4.8),
one can make a quick (but somewhat crude) estimate of the number of points
needed for a particular problem by summing the minimum number required to solve
each small scale feature [4].
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REMARK 3.2. The range of summation in (4.7) may be changed without violating the
grid ratio condition. For example, if only the direct neighbouring monitor values are
used, n; becomes proportional to
i+]
A= Y VM =vM; | + M +VM,,,, 1<i<N-1,
j=i-1

while condition (3.7) remains valid. This suggests, for example, to realize the grid
smoothing directly via the rule

X; = Xi-DAi = Xy = X)A,,  2<iSN-L. (4.9)

We have not tested this alternative. Note that this technique preserves the 3-point
coupling in X, but a drawback is that M; becomes coupled to M;_,, M;_; and M, .
Another obvious alternative which comes to mind is to perform the smoothing on
the AX; values rather than on the point concentrations. The AX; values are then
replaced by

G, = AX; — K(x+1)(AX; 4y — 2AX; + AX; 1), k>0,
so as to obtain the grid equation system
Gi*lMifl =G,‘Mi. (410)

This smoothing procedure also leads to a grid X satisfying condition (3.7) and to
slightly simpler equations (certainly so after the temporal grid-smoothing). As yet
we don’t know whether this particular choice of smoothing is better or worse than
that based on the point concentrations. []

3.4.3. Temporal grid-smoothing

In terms of equidistribution, temporal grid-smoothing means that ‘cﬁ,- + n; is taken
proportional to the monitor values M;, as can be seen in equation (4.1a). The intro-
duction of the derivative of the point concentration implies that the grid movement
is no longer dictated by solution values at the current time level ¢, but also depends
on past solution values. By preventing the grid movement from adjusting solely to
new monitor values at time ¢, we hope to introduce a smoothing effect so as to avoid
oscillatory trajectories X;(z), t 2 0.

Let us examine the solution for 7;(¢) in the following form (cf. (4.2)), where At
represents a typical stepsize that is taken in a numerical time integration:

4
ni(t) = e i (t—At) + j 1 e e (s)M(s)ds, t=At, 0<Si<N. (4.11)
t—At

We see that 1;(¢) is determined by the sum of e /*5;(t—At) and a weighted average

of values ¢ (s)M;(s) over the interval [t—At,t]. The weighting is determined by the
size of T and is exponentially decaying for backward time values. One can see that T
acts as a delay factor for the grid movement and that the influence of past solution
values is exponentially decaying.

For 10, n;(t)—c (t)M,(t) whereas n;(t)—n;(t—At) as T—oo. It follows that for
sufficiently large values of T a non-moving grid results. This means that increasing T
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too much will result in a grid that lags too far behind any moving steep spatial tran-
sition. On the other hand, too small values for T render no smoothing effect. In
situations where temporal grid-smoothing is advisable, it makes sense to choose T
close to the anticipated At-values, so that over one or a few time levels the influence
of past monitor values is felt. This suggests allowing T vary with Az. Note that so far
we have assumed that T is constant over the whole range of integration.

For an alternative interpretation of the smoothing in time procedure, it is illustra-
tive to examine the implicit Euler discretization (1-st order BDF formula) of the
equation

—TAX; (AX) 2 + (AX) ' =cM;,  1>0, 0<i<N, 4.12)
which arises from (4.1a) by putting x = 0 and by substituting
dn;/dt = —AX,/(AX;).

Spatial grid-smoothing is omitted here to simplify the presentation. Observe that,
apart from the spatial smoothing, it is just this semi-discrete equation which is
numerically integrated in time after elimination of the constant of proportionality
(see Section 3.5). Let y=1/At. Then the implicit Euler replacement of (4.12) is
given by

AKX — X )AX )2+ (AX ) =My, k21, 0Si<SN, (4.13)

where AX;, is the approximation to AX; attime 1 =, fy =t + At and ty =0. This
fully discrete relation shows that, instead of taking (AX,;,()'1 proportional to M, ;,
with numerical temporal grid-smoothing we take the entire grid point expression at
the left-hand side of (4.13) proportional to M, . This term contains only grid values.
The contribution from the previous time-level should introduce the desired smooth-
ing effect. For the special choice T = Az, the simple equidistribution relation

(AX; 1) (AX; 1 /AX; ) = cxM g (4.14)

results. Observe that for the higher order BDF formulas, similar equidistribution
relations are found, the only difference being that then AX; ,_, is replaced by a linear
combination of such differences over more previous time-levels.

Finally, the following result shows that smoothing in time does not interfere with
the grid-ratio condition (3.7):

LEMMA 3.2. The combined space-time grid-smoothing restricts the concentrations n;
such that (3.7) is satisfied. _

PROOF For condition (3.7) to hold, the actual size of the values M; is irrelevant,
according to the proof of Theorem 3.1. It is sufficient that all M; > 0. It thus suffices
to prove that the solutions n; of the differential equations (4.1a), as given in (4.2),
remain positive for all # > 0, since this implies that all M; > 0 (see Lemma 3.1). First
we recall that 7;(0) > 0, as shown in Remark 3.1. Now suppose that at a certain time
¢’ the constant of proportionality ¢ (r) becomes negative (if ¢ (r) >0 for all 7, the
proof is complete). Then, since M; > 0, a right neighbourhood of 7 = t’ exists where
all n;(¢) will decrease. Because all entries of the matrix M arising in equation (4.3)
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are positive (see again Lemma 3.1 or observe that M is a Stieltjes matrix), all point
concentrations #;(¢) will also decrease in this right neighbourhood. This is impossi-
ble since the interval [x;, xgz] is fixed. Hence we have a contradiction for the
assumption that ¢ (¢) can be negative and the proof is complete. []

REMARK 3.3. The temporal grid-smoothing discussed here is closely related to that
suggested in [1,9]. The main difference lies in the fact that in [1, 9] the derivative
of X; is introduced directly into an equidistribution equation based on nodal values
Xi, whereas here the equation for the concentration values n; is modified. This leads
to a different system of grid equations when written in terms of X; and X;. [J

3.5. THE COMPLETE SEMI-DISCRETE SYSTEM

3.5.1. The moving-grid equation in terms of nodal values
Inserting

ni=(AX)", n=-AX/(AX;)? (5.1)

into (3.8) leads to the moving-grid equation system that is actually used. Its i-th
equation reads, 2 <i <N-1,

u ;

oM Iy s (5.2)
| Mioi(AX, )

+1 £ P ... . = S AT

\Mi(AXi—l)z M;_(AX; ) MH(AXi—z)ZJ

. ! _ 1+2u2+ 1+2u 4 o 7]-
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-

i
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7t >t 2
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m :
5| Xin=
\Mi(AXm)ZJ :
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l

The 1-st and N-th equation slightly differ due to the boundary conditions and are
easily found. Note that, away from the boundary, the nodal points X;,,, X;,, X;,
X;_1, X;_, are coupled with the nodal point velocities X; ., X;.1, X;, X;_;, X;_» and
the monitor values M;_;, M;.

For future reference, system (5.2), together with the 1-st and N-th equation, is
represented in the form of the nonlinear ODE system

1BX, U)X = g (X,U) (5.3)

where B is the NxN penta-diagonal matrix associated to the left-hand side part of
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(5.2). In order that we have a genuine ODE system, it is required that B(X,U) is
non-singular for any X, U. If no time smoothing is carried out, i.e., T=0, we are left
with the algebraic system

g(X,U)=0, (5.4)

which represents the equidistribution relation combined with spatial grid-smoothing.

REMARK 3.4. An alternative and somewhat simpler moving-grid equation system
that has essentially the same smoothing properties as (5.2) is obtained by putting
=0 in its left-hand side. This renders B tri-diagonal and symmetric positive
definite. In terms of point concentrations, the resulting system reads tn; + n; =cM;
(cf. (4.1a)), which shows that the temporal grid-smoothing is carried out on the con-
centration values n; rather than on n;. (]

3.5.2. The complete semi-discrete system and its numerical integration
Systems (2.4) and (5.3) together form the complete semi-discrete system that is
numerically integrated in time,

1BX =g, t>0, X(0)given, (5.52)
U-XoD=L, t>0, U(0)given. (5.5b)

In case of Dirichlet boundary conditions, the total number of equations and
unknowns is (NPDE +1)xN, where NPDE is the number of components of the origi-
nal PDE problem (1.1). For other types of boundary conditions, the number of equa-
tions and unknowns slightly differs. The supposed non-singularity of the matrix B
trivially implies that for T> 0 we have a genuine ODE system; for T=0 we have a
DAE system of index one. The large matrix that multiplies the derivatives X, U in
(5.5) has a rather simple, lower block-triangular structure. We cannot exploit this
advantage since the system is numerically integrated with an implicit method. The
Newton iteration matrix involved contains the partial derivative matrices of g and L
with respect to X and U, or approximations thereof, and hence the lower block-
triangular structure is lost. It is therefore computationally more attractive to change
the order of unknowns so as to obtain a band-matrix. When using the order
<o Ui, Xio1, Ui, Xi, Uiy, Xig1, -+, the band-width for the Newton matrix
becomes 4x(NPDE+1) + 1. This is based on the fact that we work with standard 3-
point central differences for the spatial operators, that X is 5-point coupled, and that
the monitor M; is given by (3.4).

For the numerical integration of the above semi-discrete system, one can use, in
principle, any stiff method designed to solve linearly implicit systems of the present
type. The results of the next section have been obtained with the BDF code DASSL
(version of 830315) [11]. A similar code is the LSODI-based BDF code of the
SPRINT package [2,3]. We have experimented with both these codes (see also [7])
and since they are very much alike, the choice between the two should be of minor
influence to the performances observed. This indeed turns out to be true in the case
of successful runs. However, in some cases we have experienced a rather different
performance. With both codes and for different problems runs were interrupted due



60

to fatal Newton errors, especially so when using extremely fine grids. This could be
due to the fact that in our experiments the local error and Newton convergence test
has been applied to X; and not to AX;. Also, with moving grid methods a poor pred-
iction of X; can be generated in the preparation of the actual BDF step, thus causing
convergence problems for the Newton solver. These aspects need further attention
(e.g., in a study along the lines of Petzold and Létstedt [13]).

From the user’s point of view it is of interest to note that DASSL, and likewise
the stiff solver of SPRINT, are used in the same way as in the conventional, non-
moving MOL approach. Apart from providing a subroutine for the semi-discrete
system (numerical differencing for Jacobians was used) and specifying the initial
values and required output times, one must define only the local absolute and rela-
tive error tolerances, atol and rtol, the desired local error norm, and an optional ini-
tial time-step value At,. Throughout we have used arol = rtol ‘= TOL and the stan-
dard weighted Euclidean norm; TOL and At,, will be specified with the three exam-
ple problems in the next section.

The method parameters for the grid are N, the number of moving points, the grid-
smoothing parameters K and T, and the constant o of the monitor (cf. (3.4))

NPDE 4
M;=|0.+ NPDE™" ¥ (Ui — Ui )*/Xisi - X)) . (5.6)
j=l
The choice a=1 yields the common arc-length monitor; this we have used
throughout, unless noted otherwise. For k the default value 2 was selected, while T
was simply put equal to zero. Additional tests have shown that for the three exam-
ple problems below the temporal grid-smoothing is redundant, which is of course a
favourable situation. We wish to emphasize, however, that for other problems a
positive value for T may lead to a better performance. As observed previously, this
aspect deserves more attention.

3.6. NUMERICAL EXAMPLES

We present numerical results for three different example problems. In the plots
the solid or dashed lines represent accurate reference solutions (obtained from [16])
while the marks represent the generated PDE approximations. Integration informa-
tion, which serves to show the time-stepping efficiency of the process, is presented
in terms of STEPS = total number of successful time steps, JACS = total number of
Jacobian evaluations, and BS = total number of back solves. The two latter quanti-
ties determine, to a great extent, the CPU time needed to complete the integration
over the specified time interval.

3.6.1. Problem I: The Dwyer-Sanders flame-propagation model

This model, first proposed as a test example in [5], simulates several basic
features of flame propagation. It has two components, a mass density  and a tem-
perature v. The PDE system is given by

ou/dt =*u/ox* —uf v), O<x<l1, 0<t<.006,
/ot =0*v/ox* +uf v), O<x<l1, 0<t<.006,
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where f(v)= 3.52><106exp(—4/v). The initial functions are u(x,0)=1, v(x,0)=0.2
(0 £x £1) and the boundary conditions are given by

du/dx (0,t) =dv/dx (0,¢) =0,
du/dx (1,t) =0and v (1,1) =0.2 + ¢/0.0002 (¢ < 0.0002),
v(l,1)=1.2 (r 20.0002).

The given function for v at the right boundary represents a heat source that generates
a steep flame front. When v reaches its maximum, this front starts to propagate from
right to left at a relatively high speed. The speed of propagation of the front is
almost constant. At the final time ¢ = 0.006, the front has come close to the left
boundary.

.0 0.0 0.2 0.4 0.8 0.8 1.0

FIGURE 3.1. Problem I (N = 40). Grid and temperature front at times
1=.15x107, .3x1073, .6x107 (.6x107%) .6x1072,

The initial grid X (0) was taken uniform with N =40. A uniform start grid pro-
vides a difficult test since the method rapidly must refine near x = 1 in order to accu-
rately simulate the fast generation of the front. The remaining parameters to be
specified are Ay =107% and TOL = 10™*. In passing we note that the error control
mechanism of DASSL may reduce the specified initial stepsize At. In the present
experiment Az, was reduced to .1276x107°.

Fig. 3.1 shows plots of the grid and the computed temperature front for a range of
output times. The costs of the run amount to STEPS = 148, BS = 410, JACS = 52.
Inspection of the plots justifies the conclusion that the grid movement and the accu-
racy of the approximation are very satisfactory over the entire time interval (also for
the density which is not shown here). The small lump for early times is genuine and
is contaminated with only very little overshoot (not visible here). For later times the
numerical front is slightly too fast. These small errors are spatial, i.e., they remain if
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many more time steps are spent and disappear if more space points are used. For
example, for N = 80 and TOL = 10~*, which costs STEPS = 164, BS = 492, JACS =
66, the approximations are exact up to plotting accuracy. Admittedly, 80 moving
points for this problem is quite a lot. It turns out that a relatively large number of
points are wasted in the front, especially for N =80, while there are not too many
near the foot and the top. We owe this to the arc-length monitor. A comparison with
results shown in [16], where a second derivative monitor is used that deemphasizes
the front and places more points where the curvature is largest, suggests that imple-
mentation of a second derivative monitor in the current algorithm would improve
the spatial accuracy.

3.6.2. Problem II: A ‘hot spot’ problem from combustion theory
This problem is described in Adjerid and Flaherty [1] as a model of a single-step
reaction with diffusion and reads

u/ot =*u/ox* + D(1 +a —u)exp(=d/u), 0<x<1, t>0,
ou/ox (0,6)=0, u(l,r)=1, >0,
ulx,0=1, 0<x<l,

where D = Rea/(aﬁ) and R, 0, a are constant numbers. The solution represents a
temperature of a reactant in a chemical system. For small times the temperature gra-
dually increases from unity with a ‘hot spot” forming at x = 0. At a finite time, igni-
tion occurs, causing the temperature at x =0 to increase very rapidly to 1 +a. A
flame front then forms and propagates towards x =1 at high speed. The degree of
difficulty of the problem is very much determined by the value of 6. Following
[1,7,16], we have selected the problem parameters a = 1, 8 =20, R =5. The prob-
lem reaches a steady state once the flame propagates to x = 1. For the current choice
of parameters, the steady state is reached slightly before time ¢ =0.29, which we
take as the end point. We use times 7 = 0.26, 0.27, 0.28, 0.29 for output. It is noted
that for 7 = 0.26 the reference solution is not sufficiently accurate near x = 0, but it is
very accurate for the remaining output times [16].

For the numerical process, two solution phases should be distinguished, viz., the
formation of the ‘hot spot’ with the flame front (the ignition phase) and the propaga-
tion of this front to the right end point x = 1 (the propagation phase). Accurate han-
dling of the formation of the ‘hot spot’ and the ignition is of importance. The igni-
tion proceeds very rapidly, causing a widely different time scale, so that variable
steps in time are a necessity. A difficulty is that the code must detect the start of the
ignition very accurately at the right time, so that the step size can be rapidly reduced
to a level small enough to simulate this ignition in a sufficiently accurate way. Small
errors at this time point result in significantly larger global errors later on. Some trial
and error tests have revealed that the BDF code needs at least a time tolerance value
TOL of 107, while using an initial step size of 10 [7]. These are the values we
have used. The small tolerance does not cause any problems with the high-order
integrators.

Figure 3.2 shows a plot of the computed grid and the flame front on this grid for
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FIGURE 3.2. Problem II (N = 40). Grid and flame front at times
t=.26, .27, .28, .29.

the four specified output times, using 40 moving nodes. The costs of this experi-
ment amount to STEPS = 136, BS = 382, JACS = 35. The ‘hot spot’ nature is clearly
visible from the grid. The numerical flame appears to be too slow, but is almost in
the right position for 7 =.27 and .28 (the plot at t =.29 is the steady state solution).
As for the previous problem, it is the spatial error that dominates and decreasing
TOL gives no further improvement. Changing N to 80 yields a very accurate solu-
tion (up to plotting accuracy), while there is no great increase in the number of time
steps, viz., STEPS = 159, BS = 423, JACS = 37. Inspection of the solution shows
that, similar as for Problem I, there are quite a few points in the flame front, but not
very many at the top. Also here a curvature monitor would improve the spatial accu-
racy, see [16] for comparison. Finally we refer to [7] where results for a range of
values T > 0 are shown.

3.6.3. Problem III: Waves travelling in opposite directions

Our third example problem is a two-component, semi-linear hyperbolic system,
the solution of which is given by two waves travelling in opposite directions
(copied from [10], see also [7, 16]). The system is

Ju/dt = — du/dx — 100uv,
dv/dt = + dv/dx — 100uv,

for r >0 and —0.5 < x < 0.5, and the solution is subjected to homogeneous Dirichlet
boundary conditions and to the initial condition

u(x,0)=0.5(1 + cos (10mx)) for x € [-0.3,—0.1] and u (x, 0) = 0 otherwise,
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v(x,0)=0.5(1 + cos (10mx)) for x € [+0.1,+0.3] and v (x, 0) = 0 otherwise.

Note that these are functions with a mere C' continuity, which represent wave
pulses located at x =—0.2 and x = 0.2, respectively. Initially, while the pulses are
separated, the nonlinear term 100uv vanishes, so that for > 0 these waves start to
move with speed 1 and without change of shape, u to the right and v to the left. At
t =0.1 they collide at x =0 and the nonlinear term becomes nonzero, resulting in a
nonlinear interaction leading to changes in the shapes and speeds of the waves.
Specifically, the crests of the waves collide a little beyond 7 = 0.25 and they have
separated again at approximately r=0.3, so that from this time on the solution
behaviour is again dictated by the linear advection terms. At the nonlinear interac-
tion, the pulses lose their symmetry and experience a decrease in amplitude.

DASSL has been applied with N =40, TOL = 10~ and Aty = 107. For conveni-
ence, we have again used a uniform start grid. However, unlike the two previous
problems, this uniform grid does not satisfy the constraint (5.4) which it should if
t=0. To circumvent this start up difficulty, we have simply put T small (107%), so
that we are in an ODE situation and any grid can be used to start up the time integra-
tor. DASSL then lowers our guess of Az, to .3x107'" and completes the integration
using 111 successful steps (46 up to = 107%), 327 back-solves and 78 Jacobian
evaluations. The value T=10"% is of course excessively small, so that, very soon
after the start, we are very close to the T =0 situation. It is emphasized that if T=0
and we start on a grid satisfying (5.4), or choose 7 larger than 107% in case of a uni-
form start grid, the number of required steps will be smaller (see also [7]).

Fig. 3.3 shows the grid and the numerical approximations at the specified output
times. We see that the grid movement nicely mimics the interaction and point out
that the visible inaccuracies are due to a somewhat optimistic choice for TOL and
the number of points. These inaccuracies will vanish if more points are used and
again we remark that a curvature monitor would probably lead to significantly more
accuracy (see [16]). In the present experiment we have replaced the (regularization)
constant oo = 1 of the arc-length monitor by 0.1. The reason is that when the waves
have separated they are no longer very steep, with the result that the value 1.0 is
somewhat too large for obtaining sufficient refinement in the vicinity of the two
waves, at least for N = 40. With this number of points it is also necessary that, after
the pulses separate, the grid refines properly in the vicinity of the waves, else spuri-
ous oscillations become visible. Recall that after the separation we are just solving
the first order hyperbolic model problem using standard central differences. This
experiment shows that it is desirable that the regularization constant of the arc-
length monitor function be made solution-dependent, in some way or another. On
the other hand, the results published in [16] indicate that with a curvature monitor
this is less important.
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FIGURE 3.3. Problem III (N = 40). Grid and solution at times
t= 0.1, 0.25, 0.3, 0.5.
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3.7. CONCLUSIONS

This work has been carried out in connection with a joint CWI/Shell project on
‘Adaptive Grids’. One of the aims of this project is to develop a reliable, robust and
efficient 1D moving-grid method, based on the method of lines, which can be used
in almost the same easy way as existing MOL packages that integrate on a non-
moving grid. The demand of ease of use requires that, as far as possible, the user
should be relieved from fine tuning the grid movement. The results obtained so far
justify the conclusion that the technique discussed in this paper goes a long way
towards fulfilling the above requirements.

An important feature is the grid-smoothing capability involving the two method
parameters X and T. The meaning of K is very clear and for general use k can be
taken equal to, say, 1 or 2. At the present stage of development, the actual choice to
be made for 7 is less clear. Fortunately, our numerical experience indicates that in
many cases it is possible to simply put T=0 or to select T really small, so that the
grid movement is almost exclusively dictated by the spatial equidistribution at the
forward time level. The numerical results also suggest very clearly to implement a
curvature monitor as in [16].

Finally we should mention that, in a few instances, the stiff solvers interrupted the
integration due to a Newton convergence test failure, especially so when using
extremely fine grids. This could be due to the fact that, in the experiments reported,
the local error and Newton convergence test was applied to X; and not to AX;. Also
poor prediction of the velocities may have caused difficulties for the Newton solver.
These aspects need further attention (e.g., in a study along the lines of Petzold and
Lotstedt [13]).
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Chapter 4

An Evaluation of the Gradient-Weighted
Moving-Finite-Element Method
in One Space Dimension

"Dit is geen houtje-touwtje methode!"

4.1. INTRODUCTION

Moving-grid methods are becoming increasingly popular for several kinds of par-
abolic and hyperbolic partial differential equations (PDEs) involving fine scale
structures such as steep moving fronts, emerging steep layers, pulses, shocks, etc..
Moving-grid methods use nonuniform space grids and, like Lagrangian methods,
move the grid continuously in the space-time domain while the discretization of the
PDE and the grid selection are intrinsically coupled. Well-known examples are pro-
vided by the moving-finite-element (MFE) method originally proposed by Miller
and Miller [16] and Miller [11], and by the moving-finite-difference (MFD) method
discussed in Verwer, Blom, Furzeland and Zegeling [20] (see also references
therein). The MFD method is restricted to problems in one space dimension and is
strongly based on ideas due to Dorfi and Drury [6].

Because of the intrinsic coupling between the discretization of the PDE and the
grid selection, the application of moving-grid methods is not without difficulties, not
even in the relatively simple case of one space dimension. The main difficulty we
are referring to is the threat of grid distortion which can only be avoided by using
penalty terms which, to some extent, are artificial and invariably involve parameter
tuning. The parameter tuning is known to be very important, not only to provide for
a safe automatic grid-point selection, but also for efficiency in the time-stepping
process. Another difficulty is that the automatic grid-point selection introduces non-
linear equations which may appear troublesome if handled with standard Newton
solvers as commonly in use in implicit, stiff ODE solvers.

Due to these specific difficulties, the question arises as to how moving-grid
methods combined with implicit, stiff ODE solvers (method-of-lines (MOL)
approach) do compare with common fixed-grid MOL procedures concerning the
important issues of efficiency and, in particular, robustness, reliability and ease of



70

use. This is a natural question because, on the one hand, fixed-grid MOL procedures
are known to become more and more popular, but, on the other hand, their use is
limited when steep moving transitions must be resolved, since in such situations too
many points in space and time may be needed.

In a previous evaluation report, see Furzeland, Verwer and Zegeling [8], we have
attempted to provide insight in this question. There we have tested three moving-
grid methods for time-dependent PDE problems in one space dimension, including
the MFE and the above mentioned MFD method. On account of this investigation a
moving-grid interface was developed meant for automatic use in combination with
the MFD method and a stiff ODE integrator (see Blom and Zegeling [5]). The inter-
face provides the possibility of letting grid points move in time and performs the
spatial discretization of the PDE problem under consideration without additional
programming effort for the user, completely similar as in standard, fixed-grid inter-
faces like those of the SPRINT package [3, 4] and of Sincovec and Madsen [17, 18].

In [8] we have also reported rather severe difficulties in applying MFE. The
current evaluation report is to a great extent devoted to the gradient-weighted MFE
(GWMFE) method, again for the one-dimensional case. The gradient-weighting
amounts to the use of weighting functions in the finite-element formulation that
depend on the gradient u, of the solution. This treatment results in a more robust
process in that the parameter tuning becomes easier and also less critical. A second
improvement, specifically concerning the implicit solution of the nonlinear system
required in the time-stepping process, results from a particular block-diagonal
preconditioning of the fully discretized equations (Miller [15]). One of the goals of
the current examination therefore, is to find out to which extent GWMEFE is a gen-
eral purpose method. While most tests in the literature of (GW)MFE refer to
strongly convection dominated convection-diffusion problems, in this paper we test
GWMEE also on true parabolic equations.

The paper is divided into five sections. In Section 4.2 we describe the main ideas
of MFE and GWMFE and the implementation of the latter. Section 4.3 contains the
results of extensive numerical experiments on a set of five test models. In this test
set are included Burgers’ equation with a small diffusion coefficient, a scalar diffu-
sion problem describing a shifting pulse, a system of two nonlinear convection-
reaction equations, a flame-propagation model with a heat source at the boundary,
and a problem from gasdynamics with a small diffusion term. Section 4.4 is
devoted to a concise comparison between GWMFE and the MFD method from
[5,20]. In Section 4.5 our conclusions and recommendations are summarized.

4.2. DESCRIPTION OF THE METHOD

In this section an outline is given of GWMFE. Miller derived the method from
his own moving-finite-element method (MFE). Since many basic properties of
GWMEE are related very naturally to MFE properties, we first give a description of
the MFE method.
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4.2.1. MFE
Consider the scalar PDE problem

u, = Lu), x;<x<xg, t>0, (2.1)

where L represents a differential operator involving only spatial derivatives up to
second order. The space interval is supposed to be fixed for all times # >0 under
consideration. Corresponding to the common method-of-lines approach, we consider
N time-dependent grid points

xp=Xo<  <Xi) <Xin () < - <Xyy =g (2.2)

On such a grid, MFE approximates the solution u (x,t) of (2.1) by

N
u=U=YU;t) o(x, {X;(1)})
j=1

M=

= Y U;(1) 0 (x.X 1 (1.X,(0).X 1 (1), (2.3)
j=1

where o.; is the standard piecewise linear basis function which is 1 at the jth node
and 0 at the other nodes. Differentiating U with respect to ¢ and applying the chain
rule gives

N . .
U =YUo; +X;B;, (2.4)
j=1
where B; =—U,a;. It must be noted that 3; is piecewise linear discontinuous. The
equations determining the semi-discrete unknowns U; and X; are now obtained in
the standard Galerkin way by minimizing the L,-norm IR (U)||3 with respect to U,
and X;, where

RU)=U, - LU) (2.5)

is the PDE residual. This minimization gives a system of 2N ordinary differential
equations in the 2N unknowns U; and X;:

N “ .
<o, o >U;j+ <oy, B >X; = <oy, LU)> i=1,..,N, (2.6a)
j=1

N s .
Y <Bia;>U;+ <B,B;>X;= <B;, LU)> i=1,..N, (2.6b)
j=1

where <,> denotes the usual L,-innerproduct. It is clear that (2.6a) without the X-

innerproducts is just the standard Galerkin method applied to (2.1) using piecewise

linear basis and test functions on a nonuniform grid. The time dependency of the
grid is reflected in the X-innerproducts in (2.6a) and the complete equation (2.6b).
Working out the innerproducts and defining the vector

Y:=(U]9Xl$ '.‘,Uiins .."UN,XN)Ta

we arrive at the semi-discrete MFE system
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AY)Y=G(Y), t>0, Y(0)given, 2.7)

where A(Y) is a block-tridiagonal matrix, the so-called mass-matrix, containing the
innerproducts of the basisfunctions {o;} and {B;}, whereas the only problem-
specific terms are contained in the vector G (Y). Note that the boundary conditions
are assumed to be incorporated in (2.7).

This ODE-system must be integrated numerically to obtain the required fully
discretized solution. Before starting to integrate in time, we must ask ourselves
whether (2.7) represents a well-defined system. The minimization of |[R (U M3 (cf.
(2.5)) has a unique solution if and only if the basis functions {c;} and {B ;) are
linearly independent. This is only the case as long as m;#m,,, at every node, where
m; is the slope of the semi-discrete approximation U on [X;_;, X;]. But even if the
solution exists and is unique the question remains whether (2.7) is ‘easily’ solvable.
A natural requirement for that is regularity of the mass-matrix A(Y) to avoid the
problem of solving a DAE system of index 1 or higher. Concerning this, it can be
shown that A(Y) is singular in exactly two situations (cf. Wathen [22]).

The first singularity is caused by the same reason as above and is called parallel-
ism, which means that the approximation U has zero second differences at some
node (m; = my,, for some k € {1, ---,N}). This implies that the determinant of 4
is zero. In other words, system (2.7) becomes singular whenever a straight line can
be drawn through the three neighboring points (X; |, U; ), (X;, U;) and
(Xj+1> Uis1)- In physical terms this means that, in absence of curvature (u, =0
locally), the method has no way to determine in which direction the grid points
should be moved.

The second degeneracy of A arises whenever two nodes are coming too close
together. A4 will then become very ill-conditioned and numerically singular. Hence
one will need some mechanism to control the grid-point motion.

Furthermore, the nonlinear steady-state system G (Y) =0 may exhibit degenera-
cies as well, for instance, in the case of parallelism.

To overcome these problems, Miller [12] introduces the following regularization
terms (penalty functions) in the residual minimization. Instead of IR (U)|I3 the
minimization is carried out for

N+l .
IR+ Y (g;AX; - S,)%, (2.8)
j=1
where
3 c3
1 .S 2

2 _ . I
i~ AXj—S’ jRJ (AXj—S)z’

[ AXI :=Xj_Xj—l9 (2.9)
with C,, C, and 8 small, user-chosen, constants. In particular, & serves as a user-
defined minimum node distance. The modifications involved are only made to the

grid-point equations (2.6b) and the combined effect is to add
812A)'{i -€/,1AX;,, and &5 — €S,

to the left- and right-hand side, respectively. The €-terms serve to avoid the degen-
eracy caused by parallelism. It can be shown that the addition of these terms renders
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the mass-matrix 4 positive definite [16], and thus regular. They represent a form of
‘internodal’ viscosity, since they penalize relative motion between the nodes and
result in the degenerate nodes being carried along with the rest of the solution, pro-
vided the penalty is sufficiently large to take over before the mass-matrix becomes
numerically singular. The e-terms do prevent node overtaking in a dynamic way
since the internodal viscosities become infinite as AX tends to §; however over
longer time intervals degenerate nodes (those caught in straight line segments where
they are unneeded) may still slowly drift together. The S-terms, sometimes called
internodal spring forces, serve to prevent this long term numerical drift. For a
clarification of the effect of the internodal spring forces, we refer to Herbst et al. [9].

As for any other method, the regularization is somewhat heuristic and necessarily
problem-dependent. For example, if C is chosen too large, the grid movement is
restricted (C;—oo gives a non-moving grid) with the result that there may not be
sufficient refinement in regions of large spatial activity (a typical phenomenon is
then that the grid moves slower than a front region). On the other hand, if C, is too
small, the mass-matrix 4 may become numerically singular. Also of great impor-
tance is that the minimum node distance & be small enough in relation to the antici-
pated small-scale structure. However, too small values of & and C, may allow
numerical errors to lead to near node overtaking (or even worse), which is a source
of severe numerical difficulties in the time integration, even for the most robust stiff
solver. When nodes drift extremely close together, the sets of nonlinear algebraic
equations to be solved at each time step are likely to become badly conditioned.

As can be seen in the numerical experiments in [8] (using a straightforward
implementation without the features mentioned in Section 4.2.3), it is not possible to
give a problem-independent interval for the parameters C,, C, and §, for which the
MFE method solves the PDE properly, proper in the sense of reliability of the
obtained solution with respect to the user-chosen penalty parameters, and time-
integrational aspects, respectively. Among others, for this reason the gradient-
weighted MFE method has been developed.

4.2.2. GWMFE
An important class of PDE problems may be represented by the well-known

Burgers’ equation
U = Elly, — U, (2.10)

with a steep moving front solution u (x,7) as pictured below for two given points in
time.
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ul
u(x,t)
u
- [uly = et
\I1+u)(2
I I
XL xR

In such a front u, is a near delta function and in case of a true shock not an L,-
function. To use the L,-norm in the minimization of the residual u, — L () is there-
fore for such problems not appropriate. Since the normal component of u,, [u,]y,
remains bounded even in an arbitrarily steep front, it is preferable to minimize the
residual of the PDE for the normal motion of the solution. So, instead of using the
L,-norm, GWMFE uses the weighted L,-norm

IR W) I = U, = LU)1Rds = [(R (U))*wax, Q2.11)

where the weighting function w = w (U,) is defined by

w(Uy) = ——. 2.12)

x/1+U,2,

Baines [2] has proved that for (2.10), with € =0, MFE is identical to the method
of characteristics and therefore will gradually concentrate most of the grid points
into the front. It is likely that such a grid movement will also occur for (2.10) with
0<e< 1. Apart from the fact that points are then wasted in the steepest part of the
front, this leads to numerical problems since the grid points may come very close to
one another. The penalty terms introduced in (2.8) will partly remedy the situation,
but this may require subtle tuning and, as already mentioned in the previous section,
the practical experience with MFE is that tuning alone is not always sufficient for a
good performance. The gradient-weighting, as incorporated in GWMFE, aims at
de-emphasizing the steep parts of the solution and, as a positive side result, at reduc-
ing the need for tuning. The grid points will be concentrated more near the corners
of the front (but still in the front). For scalar truly hyperbolic PDEs, however, both
MFE and GWMFE will be (mathematically) equivalent to the method of charac-
teristics, so in this case the gradient weighting will not provide aremedy.

For GWMFE the minimization of (2.11) with respect to U; and X; gives, as
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before, a system of 2N ODEs in the 2N unknowns U; and X;

N 5 .
Y <o, aw>U;j+ <oy, Bw>X; = <oy, LU)w>, (2.13a)

J

<[3,,OLJW>UJ+ <BI’BJW >Xj= <B,,L(U)W>, (213b)

M=

L
Il

i=l,...,N,

where the weighting function w = w (U,) is defined by (2.12). The only difference
with (2.6) is that the inner products are replaced by weighted inner products. A nice
property of w, due to the piecewise linear approximation (2.3), is the fact that it is
constant on each cell. Like before, insertion of all innerproducts yields the semi-
discrete GWMFE system of the form

A,(Y) Y =G y(Y). (2.14)

Also in this case, the mass-matrix 4, may become singular. It is known that
singularity occurs if we have parallelism. It is also known that in case of parallelism
the steady-state system G,(¥) =0 has at least two linearly dependent equations. In
order to prevent these singularities, Miller [13] has suggested to carry out the
minimization for the penalized expression

N+l .
IRW) I + 3 (&ili = S)° (2.15)
i=l
where €7 == A%/l;, €,S; '= B*/I7, with A and B user-chosen constants, and /; is the
length of the ith segment. In contrast with MFE, the modifications involved induce
changes to both equations (2.13a) and (2.13b). The combined effect is that each ith
segment adds a ‘viscous’ penalty force of magnitude €21, =AL/l;, and a ‘spring’
penalty force of magnitude €;S; = B?/1? to the two nodes at its ends, both penalty
forces working in the tangential direction. It is clear that, with these modifications,
GWMEE produces equations that are even more complicated and nonlinear than the
penalized MFE equations (2.6) (see also Section 4.2.3).

As for MFE, the ‘segment viscosity’ terms €7 serve to avoid parallelism. This
means that the parameter A provides for the regularity of the mass-matrix A, in the
near degenerate situation of an almost flat solution. Likewise, the ‘internodal spring’
terms €;S; take over to regularize the semi-discrete system in the steady-state case
G, =0 whenever parallelism occurs. In applications, it is often possible to put B
equal to zero so that only the parameter A remains. A third penalty parameter, such
as the 8 in MFE, is not considered in the present form of €; or €;S;. The direct analo-
gue I; — & is redundant: it is unlikely that /; tends to zero because this would require
that both AX; — 0 and AU; — 0. Leaving out the penalty parameter to refrain AX;
from becoming zero might be defended by noting that GWMFE is supposed to send
considerably less points in the steep parts of the solution.

It must be noted that we derived MFE and GWMEFE for scalar PDEs. However,
the foregoing can be generalized very naturally to a system of PDEs by replacing
the residual (2.15) by
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NPDE " . , Nl . s
Y IWllUr = L) ik + X plp —Sp) ) (2.16)

k=1 j=1
where k denotes the k-th PDE component, NPDE equals the total number of PDEs,
and

XR 2
016 117 = j———l“’((;)) dx,
xi +HU,

A,)2 B.)?
Jk (! ,k)

Here W, represents a weighting factor to emphasize, if wanted, a particular PDE

component. In our tests we have taken W, =1 for all components. Likewise, A; and

B, have been chosen to be independent of k.

Carlson and Miller use in their code GWMFEIDS a shared set of x positions for
the nodes of all the approximating functions U*. Although it is possible to use more
than one grid this seems only advisable for very specific systems of PDEs, since the
number of equations would be increased and it would complicate the implementa-
tion considerably.

4.2.3. Implementation

The test results with GWMFE in [13] were obtained with the GWMFE1DS code
developed by N. Carlson and K. Miller. In that code a second order Diagonally
Implicit Runge-Kutta method (DIRK2) has been used as time integrator for the ODE
system (2.14). Miller conjectured [15] that it would be profitable to use a higher
order stiff ODE solver like the SPGEAR module in SPRINT. We therefore discon-
nected the modules of GWMFEI1DS which compute the residual and coupled them
directly to SPRINT, using the stiff BDF code SPGEAR as time integrator.

In this subsection we will discuss some of the ‘implementation tricks’ in
GWMFEIDS which we feel to contribute significantly to the performance of the
code and which are not previously described in the open literature by the authors
Carlson and Miller.

But firstly we would like to give the reader an idea of the complexity of the ODE
system (2.14). To that intent we work out equation (2.13) + penalty terms for the
scalar PDE

u =€y + (f (tx,u)), + g (t,x,u).

Let w; be defined by w; := 1/4/14m; and AU, '=U; — U,_, for X;_; <X <X;. Then
(2.13a) plus penalties yield fori =1, - - - ,N,

Wi A? 2y Wi A? :
(?AX:‘ - “IT(AUI') Wiy + (—?AU[ - 7_3_AXiAUi)Xivl +
1 1
Wi A? s Wiyl A? PN
(‘3—AX:' +——(AU)" + 3 AXip1 + 5— AU ), +
li lin
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2

Wi A~ Wit A? :
(_?AU, + 'TAX,AU, == TAUi+I + _’,;_AX,'+1AU,'+])X,' +
k; Iin
Wit A? s Wiyl A? :
(IT+AX1‘+I - T(AU,‘H)z)UHl + (_%AUH»I — 5 AX; AU )X =
I li
2 2
B AU, - 2—AU,,
JE JE
i i+1

+ 8("11’1("’[,‘ + \fm[ +1 )+ ln(m,-ﬂ + \'ml‘_'_] +1 ))

Xi
1
+w;| f (LX) Uy) - A_XTX{“”"’U("”"

1
AX;

Xi+t
+ Wi |—f 0Xi U + | faxu@)d

+1 X,
Xi Xisi

+w; [0 (L, U)dx +wiyy | 0 (6.x,U (x)dx. (2.17a)

lel XA

(2.13b) together with the penalties gives a similar expression as (2.17a) except for
the diffusion term, which reads

e(\m? + 1 —miy, +1). (2.17b)

It is obvious that the resulting system is extremely nonlinear.

Note, that for the gradient-weighted MFE method the evaluation of hoth the
innerproducts < o, u,,w > and <P;, u,w > has to be interpreted in the sense of
‘mollification’, i.e., the piecewise linear function U is smoothed at the nodal points
(cf. Miller [12,16]). The &e-terms in (2.17a) and (2.17b) are the limits obtained for
the ‘mollified” innerproducts if the mollification parameter tends to zero.

The implementation of the ‘u,-terms’ has to be done carefully because both the
formulae —In(m; + \Jm+1) + In(m; ., + \Im2,;+1) and \Jm>+1 — \m?,; +1 are sus-
ceptible to loss of accuracy by roundoff error if m; and m;,, are small and the first
formula also if m; or m,,, is large and negative. In GWMFEIDS, <f;, u,w > is
evaluated as

2 )
mi miy

RO S PN =~ Ry

which gives automatically the correct expression even for small values of m;. In
<oy, Ugw >, In(m; + \[m,2+l ) is evaluated as

sign(m;) In(|m; | + \[m,2+1 )

to avoid the problems for large and negative m;, and in case 1 = m,-/\[m,2+l is small

\/m,-2+1 —\/m,z+1+l =
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as a truncated Taylor series, viz.,

1 1+ 1 1 1
InGn, + i +1) = ;m(ﬁ) SUREL R

A second problem which arises if one would implement the method straightfor-
wardly within the method-of-lines context is that a tolerance of, say, 10~ for both
the time error and the convergence to the solution of the nonlinear system is quite
insufficient if the horizontal distance between two nodes is also of order 107,
Therefore we have, following the GWMFEIDS implementation, used as acceptance
criterion for both the time error and the convergence of the Newton process that as
well

[Iv/tol|| < 1
should hold as

[v(Xip) —v(X)|
max
i AXip

<1, (2.18)

where v is a vector either containing an estimate of the time error or the last correc-
tion in the Newton process, and p a user-defined parameter to indicate what weight
should be given to the relative error tolerance on node distance. This implies that for
0 < p <1 the ‘uncertainty’ in AX; will not be larger than AX; itself.

Another feature that is implemented in GWMFE1DS and which we also adopted
is the block-diagonal preconditioning of the highly nonlinear implicit BDF equations

Ry(Y) = ﬂlg(Y)% ~G,(1)=0, (2.19)

where (Y — Z)/(At d) is in our case the BDF substitute for Y, with Z a vector depend-
ing on information from previous time steps and d a parameter that depends on the
integration formula in use.

This preconditioning is prompted by the results of Wathen [22] for the MFE
mass-matrix 4 in (2.7). He proved that premultiplying A by the inverse of its block-
diagonal D results in a matrix 27" (Y) A(Y) which is very well-conditioned. In fact,
the condition number is even independent of the grid and the solution. Miller [14]
showed that this holds also for Dg‘(Y ) A,(Y) (the analogue of D "' 4 in case of
gradient-weighting). Although the effects of preconditioning system (2.19) with
Q?;'(Y ) has not yet been analytically shown, numerical results suggest that it has a
considerable influence on the condition number of the Jacobian of the nonlinear sys-
tem (2.19) too. Therefore we solve not (2.19) but instead

D (Y) Ry(Y) =0. (2.19")

Note that the ’D;' in (2.19’) includes also that part of the penalty functions that
occurs in the left-hand side of (2.17).
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4.3. NUMERICAL EXPERIMENTS

In this section we discuss test results obtained with our implementation of the
GWMFE method for five example problems, viz., (I) Burgers’ equation, a scalar
model for nonlinear convection-diffusion phenomena; for this PDE we took two dif-
ferent initial solutions, (II) a linear heat conduction problem with a shifting and
oscillating pulse as solution, (IIT) a system of two nonlinear convection-reaction
equations representing two opposite traveling pulses, (IV) a flame-propagation
model with a heat source at the boundary, and (V) Sod’s problem from gasdynamics
with a small diffusion term. With these five problems we test the performance of the
GWMEFE method on a wide variety of solutions having a high degree of spatial
activity, ranging from steep moving wave fronts to pulses and emerging and dying
layers.

In [12] Miller gives a rationale of the penalty choice, based on a remedy of the
degeneracies in both 4 and the residual system (see also Section 4.2.2). This results
in a ‘standard choice’ coupled with the time-tolerance TOL. The parameter in the
viscous penalty force should be A* >TOL?, say TOL <A < 10 TOL. The standard
choice for the B in the spring penalty force is B? =0, unless it concerns a problem
approaching steady-state with possible geometrical parallelism degeneracies. In this
case the balancing of penalty contributions and true terms lead to B?=0.1e¢ TOL?,
where € is the coefficient of the diffusion term, cf. (2.10). To get an impression of
the dependency of the GWMFE method on the penalty parameters, the first Burgers’
problem was tested for a large set of penalty parameter values A? and B?. More-
over, for this problem the robustness of GWMFE was compared with respect to that
of MFE as tested in [8]. All other problems were run with a smaller range of
penalty parameter values based on the standard choice.

For all runs the ‘cell-width’ relative error tolerance parameter p from (2.18) was
taken 0.1 and block-diagonal preconditioning was used in solving the nonlinear sys-
tem with Newton. For a few cases we evaluated the effects of these ‘implementation
tricks’. The relative error tolerance on cell widths was, as can be expected, espe-
cially effective for the problems with a steep moving wave as solution; e.g., without
this feature Burgers’ problem often broke down at the point where the shock reaches
the boundary due to node crossing. Block-diagonal preconditioning was of great
benefit for the condition number of the Jacobian of the nonlinear system. Without
preconditioning the condition number was frequently of the order of the inverse of
the machine precision (say 10'* with a machine precision of =107'®). Precondition-
ing reduced it to =10. The actual speedup was, in view of these numbers, not so
large, but it is clear that preconditioning makes the method much more robust.

In some cases, for example in problems I, III and V, vertical rescaling of the
PDE-system could result also in a better performance of GWMFE [15]. Such a vert-
ical rescaling, say by a factor M (replacing ‘u’ by ‘Mu’ everywhere in the PDE),
could allow a larger range of successful values of A?. However, to choose the value
of M, some insight into the solution behavior is needed, which makes it difficult to
incorporate this parameter in an automatic code. For this reason we do not present
results for rescaled PDE-systems.

In [23] we have given a catalogue of worked-out innerproducts. The integrals
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resulting from the innerproducts <o, Z(U)w> and <f;, LU)w > were
evaluated exactly unless indicated otherwise. If numerical quadrature was used,
Boole’s rule was applied (closed Newton-Cotes with error O (h”)). We have also
tried Simpson’s rule (0(;,5)) but this gave, for problem IV, far worse results. This
difficulty with numerical quadrature on certain types of problems has already been
mentioned by Miller [11] in his extensive testing of the MFE method.

The results will be presented in tables and for a few parameter choices in plots
wherein marks will indicate the GWMFE approximation and the solid line the exact
solution. If no exact solution was available, we used a very accurate numerical
reference solution.

In the description of the experiments the following notation has been used:

Atg initial step size,

TOL time-tolerance value (absolute and relative) for the SPGEAR integrator,
NPTS number of grid points,

STEPS  number of successful time steps,

JACS number of Jacobian evaluations,

CTF number of correction time failures, i.e., no convergence of the Newton
process after 3 iterations with a new Jacobian, or node crossing,

ETF number of times the ODE integrator rejected a step,

CPU normalized CPU-time, i.e., CPU :=CPU-secs/CPU-secs,,,, where
CPU-secs,;, is the minimum number of CPU seconds used for the prob-
lem under consideration,

ORD average order used by the time integrator measured over the whole time
range.

Finally, we give marks for the quality of the computed solution (compared to either

the exact solution or (in plots) to the numerical reference solution) and the quality of

the grid (distribution and the smoothness of the motion in time): ++ (very good), +

(good), [ (reasonable), — (bad), and — (very bad). x indicates that GWMFE broke

down during the run.

4.3.1. Problem I: Burgers’ equation

This model, which can be considered as the simplest, non-trivial 1-D analogue to
the Navier-Stokes equations, possesses a nonlinear convection term combined with
a very small diffusion term,

U, =¢€u, —uu,, 0O<x<l1, t>0, O<exl. 3.1

We make a distinction between two specific problems (both stemming from Miller

[15)):

a) the initial condition is the smooth function
u |, =sin(2mx) + 0.5sin(mx), 0<x<1,

accompanied by homogeneous Dirichlet boundary conditions.

In this case the solution is a wave that first develops a very steep gradient, with a
shock width proportional to €, and subsequently moves towards the right boundary
x = 1. It then collides with the boundary and forms a very thin boundary layer. This
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collision is a difficult part of the computation. Next, for increasing time ¢ the ampli-
tude u decreases due to the Dirichlet boundary conditions. Finally, for 1 — oo the
solution dies out towards the steady-state solution u = 0. While the choice € = 1073
yields a problem having all properties for testing a moving-grid method, we take the
even smaller value € = 10 as a more severe test case. The problem is solved on the
time interval [0,2]. (See also [8].)

b) the initial condition is the trapezoid

0.2 0<x<0.1
8x — 0.6 0.1<x<0.2
ul—g= 1 02<x<05,
-10x+6 05<x<06

0 0.6<x<1

with the boundary conditions
=02, ul,; =0, 1>0.

For this case the course of the amplitude u is roughly the same as for case a), with
the understanding that the solution now possesses several sharp features unlike the
sinusoidal pulse which is very smooth outside the shock region. Again we consider
the case € = 107 and the time interval [0,2].

Numerical results for Problem Ia

Starting on a uniform grid with the number of grid points NPTS = 21, and as
time-integration parameters TOL = 10 and Ary = 107>, we obtain a series of test
results by choosing B2 =108, 107! (standard choice), resp., 0 and by letting A*
increase from 107 to 107>, The results are given in Table 4.1.

It can be seen that except for the largest value of A? the results are very satisfy-
ing. For A% = 107 the speed of the shock was much too slow. There was not much
difference between the grids and the solutions for the other values of A2, but for
extreme values of A2 the ODE system and the resulting nonlinear system sometimes
were harder to solve, which made the computation more expensive. For B 2=0and
to some extent also for the standard choice B> = 10! the grid points were concen-
trated in the shock and no grid points were lying in the curvature. This makes the
behavior of GWMFE more precarious. Choosing a spring penalty value of
B2 =107%, which is too large from the view of a reasonable balance of penalty con-
tributions and terms of the system (2.14), results in a case like this in a very efficient
performance, especially with the standard choice for A?. This efficiency is likely to
be caused by the fact that the grid points are pushed out of the front into the curva-
ture by the large spring forces (see also Fig. 4.2). The computation broke down only
twice, for B> =0, both times because of (near) node crossing. This robustness is
strikingly compared with the MFE method as tested in [8], as can be seen from the
plots in Fig. 4.1 where the acceptable range of penalty parameter values is graphi-
cally represented (by a shaded area) for both the GWMFE and the MFE method.
One should remember, however, that in the MFE implementation neither some form



82

=14 t=20 qual.  qual.
A? B? STEPS JACS | STEPS JACS CTF ETF CPU ORD sol.  grid
1E-9 1E-8 278 205 429 326 91 16 2.3 1.27 ++ +
1E-8 1E-8 274 183 396 280 79 21 2.1 1.18 ++ +
1E-7 1E-8 197 144 266 197 56 13 1.4 1.37 ++ +
1E-6 1E-8 174 140 232 186 56 7 1.3 1.41 ++ TS
1E-5 1E-8 140 105 191 146 49 2 1.0 1.40 ++ ++
1E-4 1E-8 135 111 179 147 55 1 1.0 1.40 ++ ++
1E-3 1E-8 162 138 201 171 62 3 1.2 1.37 - +
1E-9 1E-11 303 214 377 261 80 18 1.9 1.28 ++ +
1E-8 1E-11 276 200 356 250 70 23 1.9 1.24 ++
1E-7 1E-11 243 184 300 229 69 16 1.6 1.31 ++ +
1E-6 1E-11 255 227 315 279 98 5 1.9 1.38 ++ ++
1E-5 1E-11 266 253 334 315 106 11 2.1 1.35 ++ ++
1E-4 1E-11 150 126 400 386 146 0 2.6 1.38 ++ ++
1E-3 1E-11 163 135 206 175 64 3 1.2 1.42 - +
1E-9 0 305 224 424 306 84 31 2.2 1.26 ++
1E-8 0 275 195 351 253 70 16 1.8 1.23 ++
1E-7 0 222 161 292 215 70 11 1.5 1.41 +
1E-6 0 225 196 291 255 87 8 1.7 1.36 ++ ++
1E-5 0 206 189 X 301 6 1.34 ++ ++
1E-4 0 156 136 X 266 1 1.36 ++ ++
1E-3 0 170 138 208 167 63 3 1.2 1.45 - +
TABLE 4.1. Problem Ia. Integration history.
log B2 log C%

-00 -0 -12 -10

L | [

logA? log C?
L5 Pk

x -8

" 10 RRET)

° 0 O0OFFTTFox x x L - 5=10" L -

FIGURE 4.1. Problem Ia. Penalty parameter dependence for GWMFE (left)
and MFE (right). Results at t = 1.4 are:
+: good, o: dubious, x: unacceptable.
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1.4,2.0 (A+,x,0,V) forA? = 1E-5
and B2 = 1E-8 (above), 1E-11 below.

of preconditioning nor relative error tolerance on cell widths was available. We
therefore incorporate only the results up to time # = 1.4 in these plots.

In Fig. 4.2 we give plots of the typical grid behavior and solution. One can see
that in both cases illustrated the solution is accurate up to plot resolution.

The time-integration process is not really satisfying for this problem. The number
of Jacobians almost equals the number of (successful) steps. Even if we take into
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account the number of step failures (ranging from = 50 — 100) the number is still
quite large. Also the observed average order turns out to be rather low. In fact
SPGEAR almost never uses a third order method, not even in the time intervals
where the problem is smooth and no step rejection or convergence failure occurs
(t € [0.4,1.2] and t € [1.5,2.0]). The fact that the order is not increased in these
regions is somewhat amazing since plots of the X;(r) and the U,(¢) show that both
are reasonably smooth curves. However, in these areas the step size is drastically
increased (only 10% of the steps is used in the smooth parts) and it could be that this
is more efficient than an increase of the order for this coarse time tolerance. Most of
the computational work is done where the shock is formed (at ¢ = 0.2) and when the
shock reaches the boundary (at 7 = 1.3). In these regions no high order method will
be used because of the continual (true or near) node crossings within the iterative
Newton process which result in convergence problems.

t=0.9 t=2.0 qual.  qual.
A? B? STEPS JACS | STEPS JACS CTF ETF CPU ORD  sol. grid

1E-6 1E-8 200 168 248 203 64 8 1.1 1.44 ++ +
1E-5 1E-8 178 160 223 191 68 1 1.0 1.38 + ++
1E-4 1E-8 189 161 228 189 65 7 1.0 1.36 + ++
1E-6  1E-11 177 144 227 184 70 3 1.0 1.39 ++ +
1E-5 1E-11 191 176 276 247 91 3 1.3 1.37 ++ ++
1E-4  1E-11 206 179 403 373 138 9 2.0 1.37 + ++

TABLE 4.2. Problem Ib. Integration history.

Numerical results for Problem Ib

For this problem, which is of the same nature as the above, we used only a small
range of penalty parameter values, viz., A> =107, 10, 10 and B2 =10"%, 107",
The integration parameters were chosen the same, i.e., NPTS = 21, TOL = 10‘3, and
Aty =107, The results are given in Table 4.2 and Fig. 4.3. The performance is
comparable with that of problem la. We have also run this problem with B> =0 and
the same A2-values. Again the results are comparable if the method does not break
down, but it seems advisable to take B? slightly larger than zero for this problem to
handle the degeneracies in the near steady-state situation. Although Miller’s stan-
dard choice results in B? = 107!, the larger value of B = 107® seems both for this
and for the previous problem to lead to more efficiency.



85

FIGURE 4.3. Problem Ib. Grid and solution at times ¢t = 0.0, 0.4, 0.8,
0.9, 2.0 (A+,x,0,V) for A2 = 1E-5 and B? = 1E-11.

4.3.2. Problem II: A shifting pulse
The ideas for this problem stem from Adjerid and Flaherty [1], who constructed a
model (in 2-D) of a rotating cone using an exact solution. The PDE reads as fol-

lows:

u, =uy, + f(x1), O<x<l, >0, 3.2)
where f is chosen in such a way that

e—a(.x—rpmf(l —sin(ynr)),  rp(t) = %(2 + sin(Bmr))

u exact

satisfies (3.2). The boundary conditions at x =0 and x = 1, being of Dirichlet type,
and the initial condition, being a Gaussian pulse, are derived from the exact solution
Uexact- The three parameters o> 0, B >0 and y> 0 each have their own meaning in
the model. Choosing y> 0 means that the pulse will decrease and rise again with a
period of 2/v. The steepness of the solution is controlled by the parameter o in the
exponential function and P represents the speed of the pulse which moves periodi-
cally from the left to the right boundary and back again in a period of 2/B. We have
chosen the values oo =320, B =1 and y=2. The PDE is integrated over one period,
i.e., until r = 2.0.

The integrals stemming from <o, fw > and <p;,fw > were evaluated by
numerical quadrature using Boole’s rule.

Numerical results for Problem I1
For this problem we start on a nonuniform grid with NPTS = 41 and all but the
two boundary points concentrated around the pulse, uniformly distributed between
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t=20 qual.  qual.
A? B> | STEPS JACS CTF ETF |lerr|. CPU ORD  sol. grid

IE-6 O 310 215 52 9 5.1E-2 1.0 1.33 0O +
1E-5 0 608 504 173 0 4.2E-2 22 1.34 O ++
1E-4 0 988 912 348 2 3.3E-2 3.8 1.25 O +

TABLE 4.3. Problem II. Integration history.

0.35 and 0.65. If one starts with a uniform grid the results are slightly worse. The
time-integration parameters were again TOL = 10~ and Az, = 107. Since there is
no steady-state involved in this problem we use the standard choice for the spring
force penalty, B* = 0 and for A2 the range 107°, 107, 107*.

The performance of the GWMFE method for this problem is significantly less
satisfying than for the convection dominated Burgers’ problem of the previous sec-
tion. The oscillating character of the solution makes that GWMEFE loses track of the
movement of the pulse when the amplitude goes to zero and picks it up again only if
the pulse is already at some height, thereby losing accuracy. The grid plots show
that after the solution has become zero (at 1 =0.25 and 1.25) the grid points do not
return fast enough to their position around the pulses to get a correct approximation
of the right-hand side of the PDE. The fact that GWMFE does not adjust itself fast
enough to an emerging pulse can also be shown by starting the problem at 7, = 0.25
and on a uniform grid (since u = 0) (cf. Fig. 4.4).

The efficiency of the GWMFE method is, for this problem, strongly dependent on
the penalty parameter choice; for approximately the same accuracy the amount of
work varies rather capriciously with a factor 3 to 4 for different choices of A? (cf.
Table 4.3).

The time integrator reacts on this problem in a similar way as on the previous one.
Again we see that for all parameter choices the number of Jacobian updates is large
relative to the number of time steps even if we add the number of rejected steps.
Also the order behavior is more or less the same. In regions which are supposed to
be easy for GWMFE, i.e., a moving pulse which is significantly larger than zero,
SPGEAR rather increases the step size than the order.

4.3.3. Problem IlI: Pulses traveling in opposite directions
Our third example problem is a two-component, semi-linear hyperbolic system,
the solution of which is given by two pulses traveling in opposite directions (copied
from [10], see also [8,20,21]). The system is given by
u, = —u, — 100uv

-0.5 .3, 0, .
5, = 1, —[00ay <x<05, t> (3.3)

and the solution is subjected to homogeneous Dirichlet boundary conditions and the



FIGURE 4.4. Problem II. Grid and solution at t = 0.5, 0.75, 1.0,
1.5, 1.75 (A+,x,O,V) for A = 1E-6 and B> =0
starting at 7, = 0.0 (above) and 7, = 0.25 (below).

initial condition
' {0.5 (1 +cos(10mx)),  —0.3<x<0.1
Uli=0=

0, elsewhere

0.5 (1 + cos(10mx)), 0.1<x<03
V|, = F
=0 0, elsewhere

87



88

Note that these are functions with a mere C' continuity, which represent wave
pulses located at x =—0.2 and x = 0.2, respectively. Initially, while the pulses are
separated, the nonlinear term 100uv vanishes, so that for 7 > 0 these pulses start to
move with speed 1 and without change of shape, u to the right and v to the left. At
1 =0.1 they collide at x =0 and the nonlinear term becomes nonzero, resulting in a
nonlinear interaction leading to changes in the shapes and speeds of the pulses.
Specifically, the crests of the pulses collide a little beyond ¢ = 0.25 and they have
separated again at ¢ = (.3, so that from this time on the solution behavior is again
dictated by the linear advection terms. At the nonlinear interaction, the pulses lose
their symmetry and experience a decrease in amplitude.

t=0.5 qual.  qual.
A? B* | STEPS JACS CTF ETF CPU ORD  sol rid
g

1IE-6 0 210 166 38 14 1.0 1.30 +
1IE-5 0 267 221 60 10 1.3 1.39 + +
1IE-4 0 345 297 98 12 1.8 1.35 = =

TABLE 4.4. Problem III. Integration history.

Numerical results for Problem III

In contrast with our experience with the MFE method, GWMEFE is not able to
solve this problem without addition of (artificial) diffusion. Therefore, we added to
both equations a diffusion term eu,,, resp. €v,,. The tests as described below are
done with € = 107™*; we also have tried € = 10~ but then GWMFE broke down.

Again we start on a nonuniform grid with NPTS = 41 and all but the two boun-
dary points concentrated uniformly around the pulses. In this case too a uniform ini-
tial grid led to slightly worse results. The time-integration parameters TOL and Az,
and the GWMFE penalty parameters A’ and B> have the same values as in
Problem II. The results are given in Table 4.4 and Figs. 4.5 and 4.6. Note that the
solid (u), resp. dashed (v), line in the plots represents an accurate reference solution
of the original problem without diffusion term.

For this problem a correct choice of A is of importance. A2 = 107 or 107 yields
a satisfactory approximation, but A2 = 10~ results in a very bad performance after
the pulses have collided, as is illustrated in Fig. 4.6. For the other values of A2 the
approximation is much better (cf. Fig. 4.5), but the computation is still quite expen-
sive.

Miller showed [15] that for this problem a ‘vertical rescaling’ of the PDEs by a
large factor (say 1000) could help to improve the performance of GWMFE. Rescal-
ing the PDEs gives the method much lower traveling pulses to deal with. In fact it
means that GWMEFE is replaced by the original MFE method, which is profitable
since for this problem no gradient weighting is needed.
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FIGURE 4.5. Problem III. Grid and solution at times ¢ = 0.1, 0.2, 0.25, 0.3, 0.5

for A = 1E-5 and B% =0.
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FIGURE 4.6. Problem III. Grid and solution at t = (.25
for A> = 1E-4 and B> =0.

4.3.4. Problem 1V: The Dwyer-Sanders flame-propagation model

Our fourth problem (see [7] for more details and also [20,21]) serves as a useful
test example for the simulation of several basic features which occur in physical
flame models. The two PDEs for mass density u and temperature v are given by

Uy =y —u f(v)
Ve =V tuf)’

where f(v) =3.5210%¢". The initial functions are
ul,-o=10

v|,#)=().2

O<x<l1, 0<tr<0.006, (3.4)

7 0<x<l1,

and the boundary conditions read
ux'x:OZO, Vxlxﬂ):o, I>0,

and

241 0 <1 <0.0002

0. .
Uelez1 =0, vy = 0.0002 )
1.2, 0.0002 <1 < 0.006

The time-dependent forcing function for the temperature at the right boundary
represents a heat source which generates a flame front. As soon as the temperature
v | = reaches its maximum value 1.2 at 1 = 0.0002, this flame front starts propagat-
ing to the left at a relatively high (almost constant) speed = 150. For r = 0.006 the
front has nearly reached the left boundary.

The integrals stemming from <oy,ufw > and <B;,ufw > were evaluated by
numerical quadrature using Boole’s rule.
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t =0.006 qual.  qual.
A? B*> | STEPS JACS CTF ETF CPU ORD  sol grid

1E-8 0 1566 627 82 166 39 2.07 - O
1E-7 0 400 181 19 55 1.1 1.71 O +
1E-6 0 361 164 25 27 1.0 1.79 + +

TABLE 4.5. Problem IV. Integration history.

T T T =
0.0 0.0 0.2 0.4 0.8 0.8 1.0

FIGURE 4.7. Problem IV. Grid and temperature component for A% = 1E-6 and
B> =0atr= .15E-3, .3E-3, .6E-3, 1.2 E-3, ..., 6E-3 (from right to left).

Numerical results for Problem IV

For this problem a strongly nonuniform initial grid was needed with NPTS = 41:
20 uniformly distributed grid points in [0.0,0.9], 10 in [0.9,0.99] and 10 in
[0.99,1.0]. The time-integration parameters were TOL = 10™* and Ary = 107°. We
only present data for the standard penalty parameter choices A2 =107, 107, 107°;
B =

If we start on a uniform grid the flame front at the right boundary starts at the
wrong time, but the solution has more or less the correct speed. This behavior is
conform our observation in Problem II that GWMFE can not detect and resolve an
emerging pulse. If one approximates the innerproducts with Simpson quadrature
instead of Boole’s rule (with a nonuniform starting grid) the solution is initially the
same, but the flame propagates much too fast. It is possible that even the seventh
order quadrature rule is not accurate enough to approximate the integral over the
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source term and that this causes the flame to propagate slightly too fast as can be
seen in Fig. 4.7 (plot marks are centered). This problem would probably benefit
from an appropriate adaptive quadrature method. The grid behavior can be
explained for the lower band that points are absorbed in the front and can not pass
through a zero curvature (cf. Baines [2]). Note that the gap in the X-T diagram
above the upper band is desirable because the solution is nearly constant there.

The obtained average order is higher than for the previous problems (probably
because of the tighter tolerance), but unfortunately here the step size behaves very
erratically. A plot of the step sizes shows a saw-tooth: the step size is increased, say
4 times in a row, then a convergence error occurs whereupon the step size is
decreased by a factor of 4. Then the time error is found to be very small, so the step
size is increased, etc., etc.. It is possible however, that this behavior results from the
fact that SPGEAR is not tuned to the strongly nonlinear problems arising from PDEs
discretized on a grid which moves continuously in time. Another explanation, given
by Miller [15], is that each time a new node runs into the front this results in small
residual oscillations set up in the nodes just outside the lip of the shock as the nodes
readjust. The 20 widely spaced nodes placed in the initial grid ahead of the front are
not really needed in the present problem and it would probably be more efficient to
use fewer of them.

4.3.5. Problem V: A gasdynamics problem with a small diffusion term
The system of equations for this problem are the one-dimensional Euler equations
of gasdynamics in conservative form supplemented by a small diffusion term

U, =—V, + €Uy,
b e e T — 08 OT T e
P VW RYIT I e, 150, (3.5)

2
w, = —%{ (yw — 05(7—1)%)5} +EWyy

where u, v and w are the density, momentum and total energy per unit volume,
respectively, and v is the ratio of specific heats (y= 1.4 in the case of a perfect gas).
The initial conditions are linear ramps

1, 0<x<0.5-5¢

ul,-o= <linear, 0.5-5¢ <x <0.5+5¢
0:125; 0.5+5e<x <1

V0= = 0, 0<x<1
2.5, 0<x<0.5-5¢

w |, = {linear, 0.5-5¢ <x <0.5+5¢
0.25, 0.5+5e<x <1

The boundary conditions for u and w are of Neumann-type
Uy 'x=0 =Wy Ix:() = 0’ resp., Uy Ix:l =W, |x=l = 0;

v is subjected to homogeneous Dirichlet boundary conditions. For € =0 there is no
classical solution for this problem, but we are interested in the weak solution, which
is the limiting solution as €l0. This is the so-called shocktube problem, cf. Sod [19],
and the problem and its weak solution are briefly described as follows. Consider a
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long thin cylindrical tube containing a gas separated by a thin membrane, and
assume the gas is at rest on both sides of the membrane, but with different constant
pressures and densities on each side. At time 7 =0, the membrane is broken, for
example by a laser beam, and the problem is to determine the ensuing motion of the
gas. The course of the solution is as follows: at 1 =0 the membrane in the tube
bursts, with the consequence that the initial discontinuity breaks up into two discon-
tinuities, a contact-discontinuity and a shock wave, which move to the right boun-
dary, and a rarefaction wave moving to the left. If the shock wave has reached the
right boundary, it reflects from the wall. For 0 < € < 1 the course of the solution is
expected to be approximately the same, but now without true discontinuities. In fact
the contact discontinuity will be rather smeared in comparison with the inviscid
case. Of course, the shock wave and the rarefaction wave will also be smoothed
depending on the size of €.

The integrals resulting from the innerproducts in the right-hand sides of the
second and third PDE were evaluated by numerical quadrature using Boole’s rule.

Numerical results for Problem V

In the experiment described below we used a diffusion coefficient € = 1073, We
have also tried € = 107*. This resulted in a failure of GWMFE because the stepsizes
taken by the integrator were much too small to reach the endpoint due to conver-
gence problems.

We started on a nonuniform grid with NPTS = 41 with 33 points on the linear
ramp between [0.5-5¢,0.5+5¢], 3 points in an interval of length 10€ on both sides of
the ramp and the boundary points. The time-integration parameters were TOL =
10 and Ary =107 and the (standard) penalty parameter values A?=10"° and
B2 =0. The time-integration interval was [0,1].

The integration statistics at the endpoint were STEPS =698, JACS =522,
CTF =120, ETF =53, and ORD =1.48. To give some insight where GWMFE
experienced most trouble: 33 steps were needed to reach ¢ =0.01, 60 for 1 =0.1 and
only 35 to go from ¢ = 0.1 to the wall at r = 0.28. The reflection phase, ¢ = 0.28 until
t =0.29, took 102 (successful) steps. Until r = 0.41, when the rarefaction wave has
reached the left boundary and the contact discontinuity has crossed the reflected
shock, another 102 steps were needed. The last phase from ¢ = 0.41 until 1.0 took
surprisingly many steps, 399. This can be only explained by the oscillations both in
the grid movement and in the solution itself, the latter caused by a too coarse grid
around the reflected shock. In another run we used the true discontinuities for u and
w as initial conditions and all but the two boundary points uniformly distributed over
the interval [0.45,0.55]. In this case the initial phase gave, as could be expected,
more difficulties. On a total of 586 steps 170 were used to reach 7 =0.1, but from
t = 0.41 until 1.0 only 134 steps were needed, the solution remained without oscilla-
tions and the grid points stayed in the shock band. This difference in behavior
shows that for this problem GWMFE should be applied with care. For the graphical
representation of the results we refer to Figs. 4.8 and 4.9. The reference solution in
Fig. 4.8 was obtained by using 81 grid points and a time tolerance of 107. A com-
parison with the solution for € =0 shows that the added diffusion induces consider-
able smearing, but on the other hand the speed of the shock is approximated satis-
factorily. It should be noted however that more carefully chosen diffusion terms
could be used to decrease the smearing of the contact discontinuity in particular.
The grid movement is not really optimal. The grid follows the shock wave quite
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FIGURE 4.8. Problem V. Grid and PDE components at 1 = .15, .23, .28 (A, +,X)
for A>=1E-6 and B = 0.

well and also the rarefaction wave can be clearly seen in Fig. 4.8; but there are very
few points in the region of the contact discontinuity. And on the whole the grid
movement is not very smooth, although for the last part of the integration this is
probably due to the inaccurate and oscillating approximation of the solution.

This is a very hard problem for a nonspecialized code and we therefore consider
the result as satisfying although GWMFE showed itself more sensitive to the choice
of the penalty parameters and the initial grid or solution than for the previous
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u (A) and v (+) left, and w right.

problems; small changes in A2 (say 107°, with B2 =0 or 10™'") resulted in a failure
and changes in the initial grid more than once caused strongly oscillating solutions
at a later time.

4.4. A COMPARISON WITH A MOVING-FINITE-DIFFERENCE METHOD

In [8] a numerical comparison was made, a.o., between MFE (i.e., without
gradient-weighting) and a moving-finite-difference method MFD (see also [5, 20]).
The methods were tested extensively on three test problems. One of the conclusions
was that MFD performed favorably with respect to efficiency and robustness com-
pared to MFE. In this section we will update that test work with the comparison of
MED versus GWMFE on the current set of test problems which has more variety
(e.g., sharp moving corners) than the previous. For the sake of completeness we will
first give a short description of the MFD method.

4.4.1. The moving-finite-difference method

The MFD method is based on the Lagrangian discretization approach where the
grid is moved continuously along with the solution with the aim of reducing the
rapid transitions in space and in time that occur when a moving front passes a
(fixed) grid point. The PDE (2.1) is transformed to its Lagrangian form

u—ux = Lu), 4.1)
where u denotes the total time derivative. This PDE is discretized in space using N
time-dependent grid points (cf. (2.2)) to obtain

Wi =Uiy)

il e mml, 1S5I2K 4.2)
(Xin —Xio1)
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Here, U, represents the semi-discrete approximation to the exact PDE solution u and
L; is the (centered) finite-difference replacement for the differential operator £, both
at the point (x,1) = (X;(¢),t). To solve the ODE system (4.2) additional equations are
required for the time-dependent grid points X;. The moving-grid technique that con-
trols the spatial grid-movement in time is due to Dorfi and Drury [6]. For the
theoretical background and some analytical aspects of the method we refer to [20],
whereas a description of a MOL interface using this technique can be found in [5].
The underlying idea behind this grid movement is the spatial equidistribution of
some monitor function. The grid equation reads

ﬁi*l +Tﬁ,‘_] _ ;ii +Tﬁi

= , 1<i<N, 4.3)
M;_ M;

where n; ‘= n; — k(k+1)(n;,, — 2n; + n;_;) and n; stands for the, so-called, point con-
centration n; = (AX;)"" of the grid. x and T are smoothing parameters; k > 0 denotes
a spatial smoothing parameter and T>0 is a time-smoothing parameter. M; is a
monitor function, viz., the semi-discrete representation of the first derivative solu-
tion functional

m (u) = \Jou+ [lu |7

The parameter o should regularize the transformation in regions where u is flat; its
magnitude determines the number of grid points in flat regions. In a sophisticated
implementation o could be related to the total integral over m () with ov=0, but
until now we just chose a constant related to the average magnitude (over the time-
integration interval) of the first spatial derivative of the solution.

In the grid equation the parameter k determines the level of clustering of the grid
points and the arclength monitor M; determines the shape of the X;-distribution. The
parameter T prevents the grid movement from adjusting immediately to new values
of the monitor function M;, therefore trying to avoid temporal oscillations in the grid
which may cause relatively large errors, when applied to solutions with steep gra-
dients. A standard choice for the spatial smoothing parameter is K =2 and a typical
choice for the temporal smoothing parameter T = 10~>. Equations (4.2) and (4.3) are
combined to yield a (stiff) system of ODEs.

4.4.2. MFD versus GWMFE

In this section we will compare the performance of the MFD method and
GWMEE. As far as the results have been published before, notably in [8, 20], we
will refer to those papers for the precise results of MFD and restrict ourselves here
to some remarks.

For Problem Ia, the Burgers’ equation with the sinusoidal initial condition, both
methods are comparable (cf. Table 4.1 and the results given in [8]). For Problem III
the over-all performance of MFD is better. Although GWMFE, with A2 =107 or
10 and B% =0, gives a good solution, the computation is still quite expensive
(STEPS = 250 and JACS = 200) in comparison with the data obtained with the
MFD-method in [8], viz., STEPS = 105 and JACS = 58. Also for Problem IV
GWMFE needed much more time steps and Jacobians ( 500 and 250) than the
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MFD method which gave an accurate solution at the cost of STEPS = 148 and JACS
=52 (cf. [20]).
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FIGURE 4.10. Problem Ib. Grid and solution at times t = 0.0, 0.4, 0.8,
0.9, 2.0 (+,*,0,x,+) MFD. 21 grid points (above) and 41 grid points (below).

However, MFD has considerable difficulties with Problem Ib (the trapezoid initial
condition). We did two experiments, with 21, resp., 41 grid points. The first was
roughly twice as expensive as the GWMEFE run (STEPS = 447 and JACS = 224) and
the results were extremely bad (cf. Fig. 4.10). With 41 grid points MFD performs
much better (STEPS = 165 and JACS = 115), but the sharp corners at t = 0.4 are still
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not very well resolved. This can be explained by the fact that MFD applies a grid-
point movement based on the equidistribution of the arclength and accordingly puts
most of the points in the shock ignoring the less steep slope at the left of it. As a
consequence, the space derivatives in that region, using a total number of 21 grid
points, cannot be approximated well enough by finite differences resulting in large
oscillations.

As could be expected the difference in performance between both methods on
problem II is similar to that on problem IV. With comparable results MFD (STEPS
= 158, JACS = 80) is much cheaper than GWMFE. Even more important is the fact
that there is no difference in performance of MFD if one starts at 7 = 0.25, indicating
that MFD has less problems than GWMFE with emerging pulses.

Undoubtedly, GWMFE will perform better than MFD on problem V because of
its resemblance to Problem Ib, although we did no actual experiments with the MFD
method on this problem.

It is obvious from the data above that neither of the two methods is a general pur-
pose method. MFD has problems with solutions having discontinuous derivatives
(sharp corners) (resulting in smearing and/or oscillations), largely different monitor
values in different parts (oscillations), or near-shocks (small time steps caused by
(temporary) node-crossing). Adding more grid points improves almost always the
total performance (including the time stepping), but this makes the method less
efficient of course. GWMFE has its problems with solutions with emerging struc-
tures; it is, in contrast to MFD, dependent on the initial placement of the nodes.
Moreover, it results in a strongly nonlinear ODE system which is difficult to solve
and, in the framework of MOL-methods, most ODE solving packages, to our experi-
ence, will not efficiently solve the system.

4.5. CONCLUSIONS

In this paper we have tested the gradient-weighted MFE method in 1-D on five
difficult problems with steep moving fronts from different areas of application. A
first observation concerns the robustness of the preconditioned GWMFE method
compared with the MFE method as used in [8]. Our experience has been, for one of
the five problems at least, that for GWMFE the range of penalty parameters is much
wider. Miller’s rational choice for the values of the penalty parameters A> and B2
has worked quite well for most problems, but there is some indication that for a
tighter time tolerance the value of the viscous penalty parameter A > should be taken
relatively larger than for a more coarse time tolerance (cf. Problem IV). The rela-
tive error tolerance on node distance (cf. (2.21)) meant an improvement especially
when the nodes were concentrated in a small band; p = 0.1 appeared to be a good
choice. We strongly advise to use the block-diagonal preconditioning of the resi-
dual. Although we as yet do not precisely understand why, it brings down the condi-
tion number of the Jacobian of the nonlinear system with several orders of magni-
tude.

We do not advocate to use GWMFE as a general purpose method for all kinds of
evolutionary problems. The disadvantage is not only the much more complex non-
linear system resulting from the addition of the strongly nonlinear grid equation, but
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also the fact that GWMFE does not get on with the method-of-lines approach. Com-
pared to a fixed grid integration the number of Jacobians needed is much larger, say
1 Jacobian per 10 steps versus 2 every 3 steps, which means a factor 6. Although
GWMEE solves Burgers’ equation quite satisfactorily and the gasdynamics problem
(with diffusion) reasonably, it has its difficulties with problems having an emerging
solution. Our advise is to use GWMFE mainly when the solution is known to have
steep moving fronts (not true shocks) over the whole time-integration interval.
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Chapter 5

A Note on the Grid Movement Induced by MFE

"Mr. G. drew one additional conclusion from his experiments, that

he would like to work on some other kind of mathematics"

5.1. INTRODUCTION

During the last decade, moving-grid methods in one space dimension have
become popular for solving several kinds of parabolic and hyperbolic Partial Dif-
ferential Equations (PDEs) involving fine scale structures such as steep moving
fronts, emerging steep layers, pulses, shocks, etc.. Moving-grid methods use nonuni-
form space grids, and move the grid continuously in the space-time domain while
the discretization of the PDE and the grid selection procedure are intrinsically cou-
pled. Examples are provided by the Moving-Finite-Element (MFE) method of
Miller [11,13], and by the Moving-Finite-Difference (MFD) method discussed in
Verwer et al. [18] (see also references therein). The latter is, in contrast with MFE,
restricted to problems in one space dimension.

In two space dimensions, however, application of moving-grid methods is less
trivial than in 1D. For instance, there are many possibilities to treat the one-
dimensional boundary and to discretize the spatial domain each having their own
difficulties for specific PDEs. Therefore, 2D moving-grid methods have mostly
been applied only to special types of PDEs. The MFE method ([7,9, 12]), consider-
ing its general approach, allows in principle a large class of problems to be dealt
with. However, because of the intrinsic coupling between the discretization of the
PDE and the grid selection, the application of MFE, as for any other moving-grid
method, is not without difficulties. The main difficulty we are referring to is the
threat of grid distortion. Grid distortion can occur in many different ways due to the
quite complex solution behaviour of 2D-evolution problems. For example, sharp
layer regions could develop and propagate through the domain, or rotating pulses
could emerge and die out again. The purpose of this note is to describe the node
movement induced by MFE for various PDEs and to indicate some problems con-
cerning the grid structure that can result from this movement.
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A standard way of describing moving-grid methods, is the introduction of a
transformation of the three dependent variables x, y (space), and 7 (time) into new
variables &, 1, and T (usually one chooses t=T). The effect of the transformation
may be to stretch the coordinates in a steep region, so that the transformed deriva-
tives are small compared with the old ones. Of course, many of the difficulties that
the spatial discretization yields are now shifted to the problem of how to define the
mapping. After having applied the transformation, we obtain the so-called Lagran-
gian form of the PDE. Within this new formulation the time-derivatives of the spa-
tial variables x and y appear. It is clear, that before using a numerical scheme to
discretize the model, one has to define extra equations for these quantities. There are
various approaches to take care of this. First, one can use a 2D extension of the
equidistribution principle, see, e.g., Brackbill and Saltzman [6], or Dwyer [10]. This
idea is either very difficult to work out and to implement, due to the complicated
structure of the formulas, or, in a simpler form, it can only be applied to a small
class of models. Second, one can use the method of characteristics. This method
can, however, only be applied to certain scalar hyperbolic equations or systems hav-
ing a common convective velocity. For general systems in 2D the use of this method
is problematical if possible at all. We would like to focus our attention on the MFE
method, which defines the transformation in terms of a residual minimization. For
scalar hyperbolic equations MFE is related to the method of characteristics (see,
e.g., Baines [2,3]). This link with the characteristics of the PDE is very useful in
one dimension. For in that case all ‘disturbances’, i.e., shocks, pulses, etc., can
merely follow the characteristics. So, once the user has located the grid points at the
right positions, the characteristics do the rest. This has the advantage that MFE
needs very few points to follow such solutions. In two dimensions it may work
properly as well, for the same reasons (see, e.g., Miller [12], or Carlson and Miller
[7]). However, in some situations one has to be very careful in applying this
method. We will illustrate this with some examples. For parabolic equations the
node movement induced by MFE is less understood. For 1D scalar equations one
can derive asymptotic relations for the node movement and for the node distribution,
indicating that for parabolic equations MFE strives after an equidistribution of
second and first order derivatives. An example gives some indication that these
results possibly also hold in 2D.

The paper is divided into four sections. In Section 5.2 we briefly describe MFE in
two space dimensions, its relation to the method of characteristics for hyperbolic
equations and results on the grid movement that can be derived for the parabolic
case. Section 5.3 contains two examples of hyperbolic PDEs with a typical solution
behaviour. For these two examples it is shown that MFE yields a severely distorted
grid, although the computed solution remains accurate. However, this distortion can
lead to a breakdown of the numerical time-stepping procedure. Section 5.3 also con-
tains an example of a parabolic equation for which MFE strives after a transforma-
tion equidistributing second order derivatives. Finally, Section 5.4 is devoted to
some conclusions.
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5.2. THE MOVEMENT OF THE NODES IN MFE
Let us consider the scalar PDE

—aa% = Lu), (xy)eQ, 1>0, (2.1
with initial and boundary conditions

u It:() = uo(x,)’), (X,Y)e Q,

B(u,Vu)|aq =g (@), >0,

where 1 and g are given functions, and L represents a differential operator involv-
ing only spatial derivatives up to second order. In general, the solution u (x,y,?) of
(2.1) may have a very complex behaviour. Even for a restricted situation (a scalar
linear PDE with simple boundary conditions), one can have severely varying u-
values in space (x,y) and time 7. Some examples in this context are steep moving
fronts and emerging and rotating pulses.

A common approach handling these phenomena is to introduce a transformation
which maps the variables x, y, and f into new variables & 1, and T. Such a
transformation can be defined as, e.g.,

x =x(@E,M,7)
y =yEn,1) 2.2)
t =71

u(x,y,t) =v(E,n,1).
Applied to the left-hand side of equation (2.1) this gives
du _ Jv ox dy

a ot o “Yor
and additionally equations for x and y must be defined. The effect of the transfor-
mation may be to stretch the coordinates in a steep region in space so that, for exam-
ple, u;z and u,, are small in contrast with u, and u,. This type of transformation is
strived after by methods which equidistribute first or higher order derivatives of the
solution. Another effect of the transformation may be to decrease the dv/dT as is
done by the method of characteristics and by the finite difference method of Petzold
([15], in 1D). Of course, when using a transformation, most difficulties are shifted
to the problem of how to define and carry out the mapping. The Moving-Finite-
Element (MFE) method can, in some cases, also be shown to underly a transforma-
tion of variables (Baines [3]). Below we will discuss this method and in particular
the node movement induced.

(2.3)

5.2.1. Description of MFE
MEE restricts v, x, and y to U, X, and Y from a finite-dimensional subspace. The
MFE-approximations are piecewise linear on a, in our case hexagonally connected,
triangularization of Q
v=U= Y U1 aj(z} n,

jeJ
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x=X =Y X;(v)oy& ), (2.4)
jeJ

y=Y=2Y;(1) aj(i, n,
jelJ

where J is the set of indices of the grid points and o are the standard piecewise
linear hat functions. Substituted in the PDE (2.1), (2.3), this approximation gives in
general a non-zero residual R, defined by

QU aX Y. U . ox
R(&-’g’g oot U*ar

A least-squares minimization is performed on R with respect to the unknowns
0U,/0dt, 0X;/97, and dY,/d, yielding a system of implicit ODEs
< R, o > =0
<R, -U,; >=0 (2.6)
<R, -Uyo; >=0, Viel,

= UVﬂ - LU). 2.5)
Yot

where <,> is the usual L,-innerproduct on Q (for an elaboration of (2.6), see [3]).
This ODE-system must be integrated numerically to obtain the required fully discre-
tized solution. It is known, that this system may become very stiff. For integration in
time, therefore, a suitable stiff ODE-solver must be used to cover all possibilities.

In practical applications, regularization terms (penalty functions) will be added
before the minimization procedure is carried out. These penalties prevent the
parametrization of U, X, and Y becoming degenerate (see [9]). Further, they pro-
duce forces on the grid movement to prevent the triangles from getting too thin or
from losing their orientation. In our experiments we use the penalty functions as
defined in [9], but in this section we will not discuss their influence on the grid
movement, since the penalties are not the ‘driving forces’ behind the movement.

Although the Gradient Weighted version of MFE (see, e.g., [7, 20]) is more robust
than MFE for steep solutions, the phenomena observed below will be essentially the
same for GWMFE.

5.2.2. Relation of MFE with the method of characteristics

Only a few theoretical properties of the resulting ODE system (2.6) are known.
One important property is the relation of MFE, in both 1D and 2D, with the method
of characteristics for the scalar hyperbolic PDE with

u

L'(u)= _Bl(uvx’y’t)-a—u _BZ(urx,yat) . (27)
ox dy

It is easy to derive that for B, and 3, linear in u, x, y, while setting aside boundary
effects, the ODE system (2.6) is equivalent to

Xi =B,(U, X;, Y, 1),
Y, =Ba(Up, X;, Y 1), 2.8)
U=0, iel.
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This simple formulation holds for nonlinear B; and B, in 1D as well (see, e.g.,
Baines [2,3]). So, the ODE system is identical to the discretized system of charac-
teristic ODEs for the PDE (2.1). In the case that

Llu) = —Bxa—u—ﬁz—‘FEAu’ (2.9)
ox dy

one can expect, that for small & (and assuming that the parametrization of U, X, and
Y is not degenerate), MFE results in a grid movement more or less the same as (2.8).
(In one dimension one can even quantify the perturbation of the characteristics pro-
duced by the diffusion term (see below).)

In 1D this relation with the characteristics is very useful. For, in that case, shocks
and pulses have only one degree of freedom to move: they propagate along the
characteristic curves of the PDE. In many cases in two space dimensions, this
characteristic behaviour is also very beneficial (cf. [8,12]). However, there are
some situations in 2D for which this behaviour will give problems. The main pur-
pose of this note is to illustrate this. We will discuss some of these problems in Sec-
tion 5.3.

5.2.3. Node movement for parabolic equations

Theoretically, little is known about the grid movement in 2D induced by MFE
when applied to parabolic PDEs. In one space dimension, however, it is possible to
get some insight by examining specific PDEs. Thrasher and Sepehrnoori [16] have
derived expressions for the so-called asymptotic node velocity and density for the
transport equation in 1D. These expressions are obtained by letting the number of
grid points in an arbitrary subinterval tend to infinity using the concept of asymp-
totic grading functions (see below). Here, we will analyze in an analogous way the
node distribution in an asymptotic sense for the scalar PDE

2
%% :ugx—lg + F (x,u,t), (2.10)

where F can also contain spatial derivatives of u.

Let us first write down the MFE-equations (2.6) in one space dimension (without
penalty terms) for the PDE (2.10). These are

Z<ai,aj>Uj+ <o, —Uxaj>)'(j= <O, Pty +HF >, (2.11a)
J
Y<-U,0;, o > Uj +<-U,04,-U,0; >Xj =<-U,0y, lu,+F>, (2.11b)
J

i=l, »= N,

where N denotes the total number of moving-grid points. Before continuing, we
must make some assumptions regarding smoothness of the variables and the rate of
convergence. For more details we refer to [16].

Let ¥ be defined by

4T _oF 9T ou _
dx  ox - du ox F 2l
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Let the spatial domain be defined as [x;, xg] and let [A, B] be an arbitrary subinter-
val, with time-dependent endpoints A (r) and B (z), not including any exceptional
points, i.e., points which have a zero curvature or a zero asymptotic node density.
Define j=j(N) and k=k(N) so that X;_; is the first node and X;,; the last node,
respectively, in [A, B]. Define & to be max; <; <44 {h;} and h; = X; — X;_;. We then
need the following assumptions:
(I) convergence and smoothness of the transformation in (2.2)

1) x (&, 1) is a continuous asymptotic grading function, i.e.,

lim X; ,(7) = limx(i (N)/N, 7).
N—oo N—co
2) x has continuous third derivatives (except possibly at a finite number of excep-
tional points).
(IT) smoothness of u and F
the function ¥ in (2.12) and the exact solution u(x,t) have continuous third

derivatives.
(III) rate of convergence

X; =x(i/N)+ O(1/N), for j—1<i<k+l
X; = x.(i/N)+ O(1/N), for j—1 <i <k+l
X; — X;_; = x(i/N) — x((i=1)/N) + O (1/N?), for j <i<k+]
X; — X;_; = x.(i/N) — x:((i-1)/N) + O (1/N?), for j <i <k+1
Ui=u(X;)+O(/N), forj—1<i<k+l
U = u,(X;)) + u,(X;) X, + O(1/N), for j—1<i<k+l.
Ui—U_ =u(X;)—u(X;_;)+O1/N?) for j<i<k+l
Uy = Uy = (X)) = (X ) + (X)X, = u4,(X, )X,y + O (1/N?)
for j <i<k+l
From these assumptions the following relations can be derived

i)  h=xg(i/N)/N+O0(1/N*)=0(1/N)

i) my=U; = Ui )/hi =u (X)) + O (h) =u(X;_) + O (h)

i) Ul =U -maX,=u,X)+0(), U =U —mX,=u(X)+O0(h)
iv)  m;=u(X;)+ O (h)

V) Xi is bounded

vi)  O(1/N) and O (h) are interchangeable.

Working out the innerproducts and applying Taylor expansions of ¥ around U,
and X;, equations (2.11a) and (2.11b) can be combined to obtain

hi+l(Ui_+l + 2[/:) - hi(ZUIT + U:—l )~
hivi = h mig b —mih; mi+lhi2+1 +mih12

6{ 2 X; ) .r}—u, + 3

Feu + (2.13)
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2 2 2,2
hiv +h; o+ mihiy +mih;
6 - 6

The next step is summation of equation (2.13) on the interval [A, B] from i=j to k.
This yields

Fun} = O(RY).

. . e
hysi(Ugsy +2U) —h;QQU; + U ) -
3{hjst Fo —hjF + b By —mih 5, )+ (2.14)

5 e b h; m;h;
2 [hi(_Ui +Ui—1)_6{ - _(-7'}‘ _fr,,,)_ (Tu, _:Fu,,,)+
i=j+l 2 2
12 2 2,2

thi i m; 2
—3—'(%(14, * fru,,,) i+ ?’(I(x, + I\’x,, ) + (Tuu + Tuu ‘)}] =O0(h").

Using assumption II, the relations ii), iii), iv), and v), and substituting the PDE
(2.10) we arrive at a discrete formulation of the distribution of the nodes

3l e (X) = hjiae (X )] =

k "
T (RN (X)) + o (X)X, + F )1} = O(R?). (2.15)

i=j+1

Applying i), multiplying by N, and letting N—eo results in the continuous form

BBy
IXX + M.X\ [’x + —q:
3u j ] &, (2.16)
E,x
Finally, differennatmg results in the asymptotic node movement
- +p.(2 —3§—”) (2.17)
u.X.X &X

Note, that relation (2.17) is valid only in intervals without points with a zero
asymptotic node density (§, = 0) or with zero curvature (u,, = 0). However, Baines
[3] stated that grid points cannot pass a point with zero curvature with the conse-
quence that grid points are confined to regions between two zero-curvature points
(the so-called anti-cluster property of singular points). In fact, the grid points are
even repulsed from the singular points.

If u # 0, then equation (2.17) can be integrated to obtain the asymptotic node dis-
tribution

6, = K1) e | exp( (=, ~ ). 2.18)

For u=0 and F = F (u,t) equation (2.17) means that a grid point will propagate
along the characteristic x = —%, and is not dependent on the grid distribution. This is
the situation as described in Section 5.2.2. For p # 0 one can easily derive asymp-
totic node distributions for restricted choices of F. For instance, the node distribu-
tion of the so-called shifting pulse, which we used as an example in [20], once every
point travels with the velocity of the pulse, is given by
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E =K uy | (2.19)

which can be derived from (2.18) provided that x = x(z) and F = F(x,¢). So once
every point travels with the velocity of the pulse, the nodes should be distributed by
MFE according to (2.19) and the plots in [20] show indeed that MFE approximately
equidistributes some power of the second derivative of the solution.

For convection-diffusion equations like (2.9), one can derive from (2.18), assum-
ing that x =0, u, =0 and F = F (u,t), a steady-state distribution

e =K luee |7 Jue )7, (2.20)

indicating that in this case a combination of first and second order derivatives is
equidistributed.

5.3. NUMERICAL EXAMPLES

In our numerical experiments we have solved the implicit ODE system (2.6) with
the (implicit) BDF integrator SPGEAR of the SPRINT package [4] in the usual way.
This means, among others, that the resulting algebraic system is solved by a
modified Newton process.

5.3.1. Example I (‘Anisotropy’)

Our first example is an anisotropic wave front (see Whitham [19, p.254]). In
short, anisotropy means that a difference exists between the directions of the charac-
teristic curves of the PDE (the movement of the ‘fluid’-particles) and the movement
of the wavefront. This phenomenon can not occur in one space dimension. In 2D,
anisotropy may give rise to a distorted MFE grid eventually leading to a breakdown
of the numerical time-stepping procedure.

Probably the best way to illustrate this effect is by giving a PDE-example. Con-
sider, for this purpose,

u _ g ou g du

3; = —Bl ax BZ ay +£Au, (31)
on the domain Q = (0,1)x(0, 1), with

Bl =u,

B2 Z(% —u),

Uli=0 = Uexact | 1=0>
u IaQ = Uexact |aQ’

and
1
—dx+4y —z}

3_1
4 4

u exact =

Hexp[ 12

The exact solution of this model problem (a scalar version of the system in [5,
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p.89]) describes a wavefront with a steep transition area of thickness O (€), that
moves, under an angle of 135? with the positive x-axis, from the middle of Q to the
upper left corner. For €l0 the transition area becomes steeper, and for €=0 a pure
hyperbolic situation is created with a discontinuous moving shock.

(2/3,1)

(0,1) 7 ) (1,1)
(0,1/3) - /
(0,0) : / (1,0)

(1/6,0)

FIGURE 5.1. Node movement by characteristics from¢t=0to s =1.

Formulation (2.8) reveals that the method of characteristics, and, to a great extent
MFE as well, at first will send the grid points to the upper right corner of the
domain. This can be seen very easily by writing out the equations (2.8) for this case
(e=0):

for y>x+1¢ (3.2.a)
- 3
X, =UH=7,

> 3 3
YvI:?_Ul(t):Zs

and
for y<x+1t (3.2.b)
- 1
X;=U() =7,
. 3
Y,' = 5— Ul(t): 1

The characteristic movement from 7 =0 until =1 is pictured in Figure 5.1. This
grid movement will lead to a coarse grid in the lower left comer of Q, since all grid
points are moved to the upper right corner. Further, at later points in time, a
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FIGURE 5.2. MFE grid for Example I at = 0.5 and 1.0.
Dividing each quadrilateral by the diagonal from upper left to lower right
gives the MFE triangles.

congestion of grid points near the upper side of the domain Q will arise, due to the
boundary effects. Since, in that area, the relative distance between the nodes will
become very small, the penalty functions should keep the points from moving into
each other and thus the ease with which the ODE system (2.6) can be solved (if at
all), will become very dependent upon the correct choice of the penalty functions. It
could easily result in a drastic drop of performance only caused by inadmissible tri-
angle orientations during the Newton process. It must be noted, however, that for
€10 MFE will resemble the method of characteristics more and more, resulting in an
almost exact solution in each grid point. In Figure 5.2 a boundary layer of points is
shown, obtained by applying MFE to problem (3.1) with € =5.10" and a uniform
starting grid of 11x11 moving grid points. At ¢z = 1.02 the computational process
breaks down because of the unacceptable triangle orientations. This could be
prevented by taking larger penalty values resulting in a less accurate solution.

It is obvious that for these situations a procedure to delete and create nodes could
be added to MFE to prevent a congestion of grid points and to keep the finite ele-
ment approximation of the solution accurate enough. Also for this special case, a
solution to eliminate the anisotropy in the PDE could be found. One could think of
applying a transformation to the PDE that describes a rotation of the variables over
an angle ¢ = 135°. In the new variables the characteristic curves and the direction of
the normal to the wave front would coincide (the anisotropy would then cease to
exist). In general situations, however, it is, a priori, unclear how to choose ¢, espe-
cially ¢ could even be time-dependent. So far, it has not been possible to reformu-
late MFE in a proper way to generate such a transformation automatically.
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5.3.2. Example 11 (‘Grid rotation’)
Our second example, copied from [14], is concerned with the fact that in 2D an
unwanted rotation of the grid can occur. To illustrate this, consider

W g
E - Bl ox BZ ay > (33)

on the domain Q = (-0.5,1.5)x(-0.5,1.5), with
1
Bi=+n(y-73),
1
Br= —mlx - 7),
Lo 302
ul— =exp(=80[(x—73)" + (y=3)7D,
and

ulan =0.

Although the boundary condition is mathematically not consistent with the initial
condition, it is expected that this will give no problems in numerical computations,
since the difference is less than the machine precision.

The exact solution describes a pulse that moves around in circles with a constant
speed. During this movement the shape of the pulse does not change. The charac-
teristic curves are circles with centre (5, 5), which can be derived immediately

from (2.8) and (3.3):
U,- =0 and
1 1
X; -3+ -3)=r, 0<r<l,

with r; =0, Vi.

In contrast with the previous example, the movement of the grid points might be
called ideal. They follow the steep parts of the solution in an optimal way and MFE
benefits by this property, resulting in a good approximation. However, since we
fixed the corner points of the square, the grid will exhibit an unwanted spiral struc-
ture. This occurs when the pulse has moved down to the lower region of Q. A
consequence of this effect is the so-called line tangling, a 2D version of node cross-
ing in 1D. The numerical procedure will break down whenever this occurs, again
because of inadmissible triangle orientations during the Newton process. In this
case, however, larger penalty values can only delay but not prevent the breakdown.
We show this spiral effect in Figure 5.3, where we pictured the grids, produced by
MFE, at various time values. The starting grid consists again of 11x11 points of
which 5x5 are distributed uniformly around the cone in (0.25,0.75)x(0.5,1.0). At
t = 1.52 the computation breaks down. Again the MFE approximation in each grid
point is rather accurate and the performance of MFE in the time stepping process is
satisfying until the spiral structure leads to line tangling.

Note that in this case intermediate grid rezoning or annihilation and creation of
points, based only on the accuracy of the MFE approximation, would be no cure for
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( 1.50, 1.30)

(-0.30,-0.50)

FIGURE 5.3. MFE grid for Example II at r = 0.25, 0.5, 1.0 and 1.5.
Dividing each quadrilateral by the diagonal from upper left to lower right
gives the MFE triangles.

the grid distribution problem. Of course, there are some other means to check this
effect, again for this special case. First, one could allow the grid points on the boun-
dary to move with the internal points (i.e., ‘move around the corner’). For this prob-
lem, for instance, it is easy to replace Q initially by a circular domain and allow free
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movement of the boundary nodes. The grid then produces no longer spirals, but is
congruent with the initial grid and rotated with the characteristic velocity, and the
problem is solved without any trouble. Another trick to avoid that the numerical pro-
cedure breaks down, is described by Mueller and Carey [14]. They add an extra
penalty term to the method, which brings on an anti-rotation to the grid movement.
This regularization term, however, has only a limited working: with any choice of
the constant, appearing in the penalty, there remains some point of time for which
the line tangling takes place. Only, with larger penalty values the method would col-
lapse at a later moment in the time-integration. But, larger penalty values also result
in a worse resolution of the pulse, yielding larger errors during the computation.

5.3.3. Example III (‘Parabolic pulse’)

In the two previous examples we encountered difficulties in applying MFE due to
its strong relation with the method of characteristics for hyperbolic equations. Next,
we give an example of a PDE with an exact solution very similar to that of model
(3.3), but now the PDE has a parabolic character. It has already been treated by
several authors ([1, 17]), and is defined by

ou
E =Au + [ (x,y,1), (3.4)

on the domain Q = (-0.5,1.5)x(-0.5,1.5), with
U|—0 = Uexact It=0:

U |30 = Uexact loq>

The source f (x,y,t) is chosen so that the exact solution is
Uexaer = EXP(=80[(x—r (1) + (y =5 (1))*]),
where
r(t) = (2+sin(nr))/4, s(t) = (2+cos (nt))/4.

This solution is a rotating pulse and thus very similar to the solution of Example II.
However, in contrast with the hyperbolic Example 1II, the grid points do not move
according to a principle like (2.8). In particular, MFE, applied to (3.4), shows no
spiral effect. The points are not stuck to their position on the pulse and the grid
structure remains more or less the same during the time-stepping. This is illustrated
in Figure 5.4, where we pictured the grid at several points in time. Although the
error of the approximation is higher than in Example II (this can be repaired by
increasing the number of points), the procedure does not break down because of grid
tangling. On the contrary, once the grid has been forced around the cone, the time
stepping process is satisfying, although the penalty choice is also of influence in this
case.

Finally, noteworthy is that the concentration of triangles in regions with large
second order derivatives indicates a similar equidistribution behaviour as stated in
Section 5.2.3 for one dimension.
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FIGURE 5.4. MFE grid for Example III at t = 0.25, 0.5, 1.0 and 2.0.
Dividing each quadrilateral by the diagonal from upper left to lower right
gives the MFE triangles.
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5.4. CONCLUSIONS

For hyperbolic or strongly convection dominated convection-diffusion equations,
the grid points are moved by MFE in a way similar to the method of characteristics.
This results in a very good approximation of the solution but sometimes also in dis-
torted grids, because the grid movement is independent of the grid distribution. Such
grids then eventually cause the numerical time-stepping to fail. A procedure to
delete and create points could in some cases be a remedy, but will on the other hand
complicate the method considerably.

For scalar parabolic equations one can show that in 1D the MFE movement of a
grid point does depend on the grid distribution. MFE approximates a transformation
striving after equidistribution of derivatives of the solution. An example showed
that possibly this remains valid also in 2D.
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Chapter 6

Application of a Moving-Grid Method to a Class of 1D
Brine Transport Problems in Porous Media

"Even op spoor 6 binnenkomen"

6.1. INTRODUCTION

The subject of this paper originates from the problem of disposal of hazardous
waste, e.g., high-level radioactive waste, in salt formations. The most probable
mechanism for release of these wastes to the biosphere is by transport via ground-
water. Existing standard mathematical models for the study of groundwater flow and
brine transport assume that the salt concentration is less than or equal to seawater
concentration. This, however, is not true for flows in the vicinity of rock salt forma-
tions. In the vicinity of these formations, e.g., salt domes, the salt concentration may
become very large and in fact to an extent that the groundwater flow is really
influenced by the salt concentration. Recent theoretical and experimental hydrologi-
cal studies indicate that for such high-concentration situations the involved basic
equations of flow and transport need to be modified [9, 10]. This involves a
significant effort in numerical modelling since the partial differential equations
(PDEs) which show up cannot be solved by analytical means. The contents of the
current paper has its origin in part of these numerical modelling studies.

We discuss the application of a numerical moving-grid method, originally
developed for general time-dependent PDEs in one space dimension, to a specific
class of nonlinear, brine transport problems borrowed from [7]. Our purpose is two-
fold. Firstly, while focusing on the application, we wish to show that this numerical
method is a valuable tool for modelling nonlinear (brine) transport problems in one-
space dimension, specifically so for problems having solutions with rapid transi-
tions, such as a solute front transported in the soil or a sharp fresh-salt water inter-
face. Secondly, while now focusing on the numerical analysis aspects, we wish to
show that for the class of transport problems chosen, the grid-movement approach is
successful and may provide a notable improvement compared to the more traditional
approach of time-stepping on a fixed spatial grid.
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The numerical method is based on the method-of-lines (MOL) approach for solv-
ing time-dependent PDE:s (see, e.g., Ch. 10 in [5], and [11]). The method is of the
finite-difference type and implicit, and thus applicable to wide classes of one-space
dimensional PDE systems. In addition, the main feature of the method is that for
evolving time it automatically refines the spatial grid in regions with large spatial
transitions. Since it is a Lagrangian type method, in many cases of practical interest
the grid movement also softens the solution behaviour in time, so that larger time
steps can be taken than on a fixed spatial grid. The actual moving-grid algorithm
underlies the principle of spatial equidistribution and is provided with appropriate
grid regularization procedures to cater for smooth grid trajectories. The principal
ideas for this regularization emanate from [6] and a further comprehensive discus-
sion of the complete moving-grid algorithm can be found in [13] (see also [8] and
the references therein).

An advantage of the moving-grid method is that it can be implemented in most of
the MOL software packages based on sophisticated implicit stiff ODE/DAE solvers.
We mention the BDF solvers developed by Gear, Byrne, Hindmarsh, Petzold and
others (see, e.g., [4]). In the brine transport problem application we have used the
FORTRAN package SPRINT [1]. SPRINT is a package developed for solving gen-
eral algebraic, ordinary and partial differential equations. Its core is formed by
implicit stiff ODE/DAE solvers (of BDF type). In [3] SPRINT has been provided
with a software interface based on the moving-grid method here considered. This
moving-grid interface (MGI), being an extension of the fixed-grid interface based on
[12], is a most convenient tool for researchers who wish to concentrate on modelling
their physics, since it automatically carries out the spatial discretization, thus reliev-
ing them from numerical choices to be made and saving programming time. The use
of MGI merely requires that the mathematical problem be formulated in terms of
FORTRAN statements. Consequently, both the spatial discretization and the tem-
poral integration can then be left to the package and the user only has to set to some
numerical control parameters, like a local tolerance parameter for the numerical
integration in time, the number of points for the spatial discretization, and some
parameters controlling the grid movement. In the experiments reported here we have
used the MGI from [3].

Section 6.2 is devoted to the moving-grid method. An outline is given on impor-
tant properties and principles of this method. The class of fluid-flow/salt-transport
problems we focus on is discussed in Section 6.3. The physical properties involved
here are advection-dispersion and in case of dominant advection solutions with rapid
spatial and temporal transitions arise. In Section 6.4 we present results of numerical
tests, emphasizing the occurrence of the rapid transitions and the use of the
moving-grid method. Section 6.5 is devoted to concluding remarks.
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6.2. THE MOVING-GRID ALGORITHM

6.2.1. The moving-grid algorithm

We will present the algorithm along the lines of the numerical method-of-lines
approach for solving time-dependent PDEs. Consider an abstract Cauchy problem
for a system of PDEs in one space dimension,

du
ot

where u = u(x,1) and L is a spatial operator of at most order 2. We do not discuss
boundary conditions here, since these are dealt with in the usual way. It is assumed
that the solution « has (a sufficient number of) finite temporal and spatial derivatives
and these are allowed to be very large. We thus focus on problems possessing solu-
tions u with very large spatial and temporal variations, but do not consider problems
with genuine discontinuous solutions.

The discretization of the PDE is carried out in two stages. In the first stage £(u) is
discretized on a selected space mesh, which converts (2.1) into a Cauchy problem
for an ODE system. The second stage then deals with the numerical integration in
time of this semi-discrete system. Let us discuss the first stage, which here takes
place in a moving reference frame. First we choose N time-dependent grid points
X;(t), 1 <i <N defining the space grid

X:XL = X() LT X,(t) < Xi+l(l) <"'<XN+1 = XR» t2>0. (22)

= Lu), x, <x < xg, t >0, 2:1)

As yet the trajectories X;(z) are unknown, but they are supposed to be (sufficiently
often) differentiable. Next, along each trajectory x (t) = X,(t) we introduce the total
derivative

W= xu, +u, = Xu, + L), 1<i<N, (2.3)

and spatially discretize the space operators 0/dx and L so as to obtain the Lagran-
gian semi-discrete system

U, = X[(Uis1 = Ui WXy =Xl + Ly, t>0,1 <i £N.(24)

Here, U; and L; represent the semi-discrete approximation to their exact counter-
parts u and L at the point (x,7) = (X;(t),1). The finite-difference replacement for L 1is,
in principle, still free to choose. We discuss this in Section 6.2.5. Note that we use
the standard, central finite-difference approximation for u,. Also note that the boun-
dary values U, and Uy, are to be defined from the semi-discretization of the physi-
cal boundary conditions. The internal grid points X; are still free to choose. The pur-
pose is to let them move automatically such that the grid X becomes fine in regions
of high spatial activity and coarse in regions where the spatial variation is low. One
way to accomplish this is to apply equidistribution. For this purpose we introduce
the point-concentration values [6]

o= AX)", AX; =X -X, 0<i<N, (2.5)

and the equidistribution equation
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ni_l/M,»;l = l’l,‘/M,‘, 1 <i < N, (26)

where M; > Vo > 0 represents a so-called monitor value that reflects the variation in
space. The parameter o > 0 serves to ensure that M; remains positive. Trivially, n; is
proportional with M;. Thus the equidistribution idea assumes that if some measure
of the spatial error is available, here taken to be represented by M;, then a good
choice for the grid X would be one for which the error is equidistributed over X.

In applications the monitor M; is usually taken to be a semi-discrete replacement
of a solution functional m (1) containing one or more spatial derivatives (note that
the variables U; and X; are still time continuous). Lest we miss the obvious, the
choice of monitor is important because it plays a decisive role in the actual local
grid refinement. Following [2,8,13], in the present implicit MOL approach we
advocate the first derivative monitor

1 N%)EB (AUD@aX)™*, AU =Ul, - Ui, 2.7)
NPDE = d
where NPDE denotes the number of PDEs in (2.1) and U/ is the j-th component of
the vector variable U;. Note that, at a given point of time, (2.7) is a semi-discrete
replacement of m () = (& + ||lu,]|*)”, where ||. || is the involved weighted Euclidean
norm. With ao=1 we have the well-known arc-length monitor which places grid
points along uniform arc-length intervals. We use o as a parameter which can even-
tually be used for tuning purposes. In fact, the main purpose of this tuning parameter
is to keep the monitor values positive, saying that a small value of o suffices.
Clearly, o should not be taken too ‘large’ compared to the maximum of [|u||*, since
this would result in a uniform grid, approximately. The weighting parameters [3; in
(2.7) serve to make it possible to let certain components dominate the grid move-
ment. This may be desirable in case of a badly scaled problem, for example. The
actual choice of the monitor parameters o, By, ...,Byppr Will influence the out-
come of a numerical simulation and, therefore, their optimal choice is problem
dependent. On the other hand, our experience is that with the monitor (2.7) the
method is quite robust and a bad choice merely effects the resulting accuracy. This
means that given a well described problem class, like the brine transport problems, a
close-to-optimal choice is normally easy to determine.

Mi = ((X+

6.2.2. Grid smoothing
The Cauchy ODE problem resulting from the first MOL stage thus reads

Ui = XUy = Ui)/ (X = Xio)] + L, 150, 1Si<N, (2.82)
ni_l/M,-_l = n,—/M,-, > 0, 1<i<N. (28b)

After prescribing initial data for U; and X;, 1 < i < N, and the boundary values U,
and Uy, from a semi-discretization of the physical boundary conditions, system
(2.8) can be numerically integrated in time so as to obtain the final fully discrete
solution on the moving grid X. However, since (2.8b) prescribes X in an implicit
way in terms of the unknowns Uj, there is little control over the grid movement. For
example, it may happen that the grid distance AX; varies extremely rapidly over X or
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that for evolving time the trajectories X;(¢) tend to oscillate. A too large variation in
AX; may be detrimental to spatial accuracy and temporal grid oscillations do hinder
the numerical time-stepping since the grid trajectories are computed automatically
by numerical integration. Following [6,8,13], we therefore employ two so-called
grid-smoothing procedures, one for generating a spatially smooth grid and the other
for avoiding temporal grid oscillations. This involves a modification of the grid-
equation system (2.8b).
The modified grid-equation system is given by

(7 +T§t-ﬁ,-_l)/M,-,1 = (ﬁ,»+‘t%ﬁ,-)/M,», >0, 1 <i<N, (2.9)

where 7n; =n; — K(x+1)(n;,; —2n; +n;_y) with n_y =ngy, ny, =ny. We note in
passing that in the actual implementation n; is replaced by (AX;)"" and n; by
— AX,/(AX;)*. The modification thus results in a 5-point coupled, time-dependent
grid-equation system. A consequence of the grid-smoothing is that, in addition to the
monitor parameters o, By, ...,Byppe, two new grid parameters have been intro-
duced, namely x and 7.

The parameter K > 0 is connected with the spatial grid-smoothing. Any grid X
solving (2.9) satisfies

n;._
K < i-1 < K+1

K+1 n; K

(2.10)

showing that we have control over the variation in AX;. Through x we can control
grid clustering and grid expansion. Loosely speaking, the monitor function still
determines the shape of X and « the level of clustering. Note that the extreme value
K = oo yields a uniform grid. Of importance is to emphasize that for a given number
of points N, and any given distribution of monitor function values M; , k determines
the minimal and maximal interval lengths (see, e.g., [13]). In actual application the
minimum should of course be related to the expected small scale features in the
sought solution. In our application we choose x = 2. With this value of k we not
only obtain a rather modestly graded space grid, but also keep a sufficient number of
points within the actual transitions of du/ox.

The parameter T > 0 is connected with the temporal grid-smoothing and serves
to act as a delay factor for the grid movement. More precisely, the introduction of
the temporal derivative of the grid X forces the grid to adjust over a time interval of
length 1 from old to new monitor values, which provides a tool for suppressing grid
oscillations and hence to obtain a smoother progression of X (r). However, choosing
T too large will result in a grid X that lags too far behind any moving steep spatial
transition. In fact, it can be shown that for T—eo a nonmoving grid results. In situa-
tions where temporal grid-smoothing is really advisable, one should therefore
choose T not too large. For practical purposes a good choice is one which is close to
the minimal temporal stepsize taken in the numerical integration, so that the
influence of past monitor values is felt only over one or a few time steps.
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6.2.3. Integration in time

We now have semi-discretized (2.1) on a moving grid. The semi-discrete formu-
lation consists of the combined equations (2.8a) and (2.9), where n; = (AX,-)_’ and
n; = — AX;/(AX;)* are used to convert the dependence on the point concentration
values into a ‘natural’ dependence on the grid points X;. Recall that the boundary
values U, and Uy, are to be defined from the spatial discretization of physical
boundary conditions. The equations can be written in the linearly implicit ODE sys-
tem form

AY)Y=G(Y), t >0, Y(0)given, 2.11)

where Y assumes the natural ordering of unknowns U,f s Xz e, ¥=
(---, U}, -, UNPE X.,.)". Form (2.11) is a standard format for various well-
known stiff ODE/DAE solvers. Note that without temporal grid-smoothing (2.9) is
of purely algebraic form, so that (2.11) then becomes a DAE system. The numerical
results in this paper have been obtained with the LSODI-based BDF solver of the
SPRINT package. A similar solver is DASSL [4] which we have also applied else-
where [13]. It is of interest to note that in our moving-grid application these solvers
are employed in essentially the same way as in the conventional nonmoving MOL
approach.

6.2.4. A moving-grid interface

As the integration in time is done automatically by the stiff integrator, it makes
sense to also automize the spatial discretization of the PDE operator with its boun-
dary conditions. This is particularly attractive for researchers who wish to concen-
trate on modelling their physics, since it saves programming time and relieves them
from numerical choices to be made. Such a FORTRAN interface for use with the
moving-grid method has been developed in [3]. We have also used this interface,
called M@, in the tests reported in Section 6.4.

MGI is an extension of the fixed-grid interface from [12] which is available in the
SPRINT package and covers the following PDE system:

NPDE auk a
> C,-k(x,r,u,ux)T = x”"—a;(x”’R,-(x,t,u,ux)) - Q;(xtu,uy),
k=1
X, < x < xg, t>0. (2.12)

Index j runs from 1 to NPDE, u;, is the k-th component of the vector-valued function
u, and R;, Q; can be thought of as flux and source or sink terms, respectively. The
parameter m serves to cover polar co-ordinates (m = 1 or 2). In our present applica-
tion we work in Cartesian co-ordinates and thus m = 0. The coefficient functions
Ci, Rj, Q; are supposed to be at least continuous. The boundary conditions

J
should fit in the MGI master form

X (60 Ri(x,tu,u,) = Yi(tuu,, ), atx=x;, xg, (2.13)

and the standard initial condition u (x, 0) = u is supposed. The underlying spatial
discretization of MGI is briefly discussed in Section 6.2.5. For a more detailed
description of the use of MGI we refer to [3].
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6.2.5. The spatial discretization in MGI

In order to reduce accuracy problems that arise for coefficients like x™ in (2.12)
when x is near zero and m>0, a spatial discretization method is used which is
second order in space. The nonlinear Galerkin-based method is extensively
described in Skeel and Berzins [12]. In the following we give a summary of this
discretization method when applied to the PDE class (2.12) transformed to its
Lagrangian form. We omit, however, the error analysis which can be found in Skeel
and Berzins.

First we apply the Lagrangian transformation.
Let w be defined by w = u,x and S; by

NPDE
8; —S(xtuux,uw) =3 Cjk(u -w )+QJ
k=1

Then system (2.12) becomes

§;=x"(x"Rj), for Jj=1;:::;NPDE; (2.14)

with Cj, Q;, and R; defined as before. On the spatial grid (2. 2) we will formulate
the Galerkin method for (2.14). Introduce the approximation U* of u*

N+l
Ut = 3 Ulo™ (x).
i=0
Let y™ denote the test functions. The trial functions ¢{"’ and the test functions
y{™ are given in the Appendix. Introduce the weight function x™ and integrate
(2.14) on [x;, xg] partially, so as to obtain

XRr

jx’"\yﬁ-'")dex = XPY RIR | gmy, — XTW GLIR | oy, — (2.15)

XL

for j=l1,...,NPDE and i=0,...,N+1.

Using the fact that y{™ (x)=0 for x <X, and x 2X,,, we get for i=1,..,N and
j=1,..,NPDE
X1 Xisi (m)
J.x q!(””de——jx '

Xia

—Rjdx (2.16)

The integration over an interval [X; ;, X;] is performed by numerical quadrature
using 1 quadrature point &; . After applying the numerical integration on
[X;_;, X;] and [X;, X;,;] and lumping (that is evaluation of u takes place in X;
rather than in &) (2.16) yields

Xi Xii
Sz v J'x \Ij(m)dx+51+/ J'x W(M)dx_
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X X
g™ e €y A
—E_,%‘_%R'j‘/:jx’"’“w—dx—§?+1/2R’j-+/2 [ xm v dx +E, (2.17)
“. dx b dx
where
S =S (&t UE ), Ue(E_), Us W), Uiy = Ui -
» 1Cimst, U (§i1), U (€ 1) Ui, Wi) with W, = +1 IX,-,
S =81t U Gip)s Us (G, Up W), Xiv1 —Xiy

R =R (Gt U i), UrEine)),s

and E stands for the total error due to interpolation, quadrature and lumping. For the
definition of 1 we make a distinction between two special cases
i) the regular case (m =0 orx; >0): u=m
ii) the singular case (m >0 and x; = 0): p=—1.
The choice of § depends on p. On an interval [X;, X;,;] we choose &1, =Y_ 1412,
where v, ;,1,, denotes the GauB-point for the weight function x?, i.e.,

Xini

J (X =Yp,iv12) xPdx = 0. (2.18)
X

The numerical integration in (2.17) is then second order accurate. If we neglect the
error E in (2.17), we arrive at a semi-discrete approximation of (2.14), fori = 1,...,N

m+1 m+l1 +1 +1
i<4 Xi - Si- i+h 73_]/2 _X;'!
S5 +87 =
m+1 m+1
- i+ - i~V
Crok Efos R - CT5R B R, (2.19)
with
Xin (m)
Vi
mil = - J x"———dx, and {0, =1.
¥ dx

For a list of the test functions y{™, the trial functions ¢{™, the quadrature points
&, and the integrals (7!} see appendix A. In [12] a justification is given for all
choices of the parameters and functions: There it is shown that the spatial discretiza-
tion method is second order accurate, both in the regular and the singular case.

The right boundary equation in (2.13) ¥ ;(xg,?) R; | c=, =¥, | «=y, is combined with
the semi-discrete approximation of (2.15) with i=N+1

Xt —Cpt,
N+1)-'% +7 —| N+1/2
S ————— [ EN e RV =aB R ) ooy, (2.20)

m+1
to eliminate R | ,—,, .
In the regular case the same procedure is applied to the left boundary equation in
(2.13) x,;(xp,8) R | x=x, =Y | 1=, and

{7+] _xZ“
0+1s 2% mph_ _.om
S — R = —xf Riliy, (2.21)

from which we can eliminate R) |-, . If x, and m are both zero we take x/'=1. In
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the singular case, however, we use just the semi-discrete approximation of (2.15)
with i =0 which gives

SO /m+1) - &) R} =0. (2:22)

This means, that for X ; —x; the boundary equation tends to R; |, =0, which is a
natural constraint for polar problems.

Equations (2.19) and (2.9) are combined to the now fully semi-discretized system
(2.11).

6.3. THE 1D FLUID-FLOW/ SALT-TRANSPORT PROBLEM

Disposal of radioactive wastes in rock salt formations is being considered as a
serious possibility by a number of countries. An integral part of the safety assess-
ment of waste disposal is the study of mathematical models for nuclide transport to
the geosphere via groundwater flow. Existing standard models for groundwater flow
and salt transport assume that the salt concentration is less than or equal to seawater
concentration. In such low-concentration situations the models in use have been
sufficiently validated and in many cases of interest the fluid flow and the salt con-
centration equation can be treated uncoupled. However, for flows in the vicinity of
rock salt formations the salt concentration may become high and influence the fluid
density to an extent that it effects the fluid flow. On the other hand, salt is tran-
sported by the fluid and thus fluid flow and salt transport are mutually coupled. The
existing standard models and their uncoupled treatment are then no longer adequate
for safety assessment which makes it interesting to study this intricate situation.
Recent theoretical and experimental hydrological studies [9,10] indicate that for
such high-concentration situations the involved basic equations of flow and transport
need to be modified, which requires a significant effort in numerical modelling. Here
the moving-grid method enters the scene, because in the high-concentration situa-
tions also large concentration gradients prevail, making the use of fixed-grid
methods inefficient.

In the modelling of transport of M solutes by groundwater flow generally M + 1
sets of equations appear, viz., one set for each solute and a set for the flowing fluid
[9]. The set for the fluid (brine) constitutes the fundamental balance of mass pro-
perty of the fluid supplemented with a Darcy-law expressing conservation of
momentum. Similarly, for each solute the associated set constitutes the balance of
mass property supplemented with conservation of momentum through a Fickian-
type law. If temperature changes are important, then an energy equation should be
added. Also, if deformation effects of the porous medium and porosity changes are
important, then an additional set of equations for the solid phase of the porous
medium has to be provided. In the present study we do not consider temperature or
deformation effects and assume only one solute, the salt. We thus consider an isoth-
ermal, single-phase, two-component saturated flow model in the idealized case of
one space dimension. It is further assumed that no external body forces except grav-
ity exist and that the two brine components, water and salt, do not react or adsorb.
This specific model, which we have borrowed from the RIVM report [7], has been
selected for demonstration purposes.



126

The model comprises the following set of equations. For the fluid and salt we
have, respectively,
k dp

] d
E("P) + E(PQ) =0, g¢g= i a—x"'Pg), (3.1)

d d 0w

= = J) = 0, =-Alg|=—. 3.2

5 PW) + = —(pwg +pJ) J lg 157 (3.2)
The fluid density p is supposed to obey the equation of state

p = poexp(B(p—py) +y0), (3.3)

with constant reference density pg, constant reference pressure p, constant
compressibility coefficient B, and constant salt coefficient y. Other constants are
porosity n, permeability k, viscosity W, gravity g and dispersion length A. The vari-
ous variables are the (Darcy) velocity of the fluid ¢, the hydrodynamic pressure p
and the salt-mass fraction ®. We thus consider the medium to be homogeneous with
respect to porosity, permeability and viscosity. However, inhomogeneities, and also
sources and sinks, can easily be taken into account.

The set of equations can be formulated as a system of two PDEs with pressure p
and salt concentration ® as independent variables. To this end we compute, from
(3.3),

ap Jap 610
S = B o 34
3 - PR e (3.4)
and subsitute into (3.1) to obtain the fluid-mass balance equation
dp fo10) d
= —-— = - ; 3.5
npP -+ npY—, 5 Pa) (3.5)
A further substitution yields the salt transport equation
0w 1610 d
Z = —pg—— — —(pJ. 3.6
ap Pao o (pd) (3.6)

We have used this form as input for the numerical solution method. A few com-
ments are in order. First, substitution of the expression for J into (3.6) yields the
advection-dispersion equation

d d d d
npa—(:) = —qu + g(pqu Ia—(;)), (3.7)

showing that in the present model the physical salt-transport phenomena are advec-
tion and dispersion. Molecular diffusion is absent here. It is easily built in, however,
since this merely amounts to adding a small constant to A|g |. Assuming ‘frozen’
coefficients, we see that the Peclet number is

Lpg L
= | =] = =, (3.8)
<= prlq | =3

where L denotes the physical length of the medium. Hence, for A < L advection
dominates and this is just the physical situation that gives rise to steep concentration
gradients. Another point worth to mention is that the compressibility coefficient P is
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very small compared to the salt coefficient y. In fact, it is often zero, in which case
the balance equation (3.5) reduces to
0w

__9
npy - = = 5-(p9) (3.9)

and 9 p/ot is absent. We then have two equations for dw/dt of which (3.5) can be
rewritten to a PDE containing only spatial derivatives. Hence this rules out the pos-
sibility of explicit time-stepping. Note that if we would also put y=0, that then the
density p is constant and the mass balance equation reduces to the simple pressure
equation p,, = 0. Of course, a zero salt coefficient y is not realistic in our applica-
tion.

Non-scaled Scaled
Time 0<t<T[sec] 1 =t/ty, tg = UL/ (kopo) = 10*
Space O0<x<L[m] x=x/L
End time T [sec] T=T/ty
Domain length L=1[m] L=1
Pressure p lkg/m/sec?) P=p/Po
Salt concentration o =0/,
Density p (kg/m*] p=p/po
Permeability k=Ko =102 [m?) k=k/kyg=1
Viscosity W= Mo =107 [kg/m/sec) H=p/py=1
Reference pressure po = 10° [kg/m/sec?) po=1
Salt inflow concentration o, =0.26 W, =
Reference density po = 10° [kg/m?] Po=1
Gravity force g=9.81 [m/sec?) g = (poLg)po = 0.0981
Porosity n=02 n=0.2
Salt coefficient v=0.69 v=v0, = 0.1794
Dispersion length A [m] A=A/L
Compressibility coefficient B =107 [msec?/kg) B=Ppo=10"°

TABLE 6.1. Model data. Bold face notation is used for the non-scaled quantities.

To complete the model description, we must give the initial and boundary condi-
tions. Defining the space-time domain as [0,L]x[0,7], the initial and boundary con-
ditions we have imposed for o(x,#) and p (x,t) are, respectively,

ox,0 =0, 0<x <L, (3.10a)
(0,1) = @y >0, 3—‘)’(’(1,:) =0, 0<t<T, (3.10b)

and
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p(x,0) = pol(—x/L)prp + (X/L)prigne), 0 < x <L, (3.11a)
P(O’t) = p()plefrv p(L’t) = pOpright’ 0<rt< Tv (311b)

where @, is the left-end salt concentration and p, and P rignt @T€ pressure
coefficients.

We have selected these conditions with the aim of generating a travelling salt
front. Note that at 7 =0 there is no salt in the medium and that the inflow value
@y > 0. Hence, assuming appropriate model data, this should give rise to a travelling
front. The steepness and speed of the front will of course be determined by the com-
plete set of physical data. A characteristic set is given in Table 6.1 which comprises
all data needed to run the problem, except for the end time 7, the dispersion length
A, and the pressure coefficients Plefi and p gy, Finally, numerically we have
treated the problem in scaled, dimensionless form. We refer to Table 6.1 for the
scaling relations with the dimensionless values of all quantities involved. From these
relations one can check that all equations are left invariant (note that this also holds
for (3.3) due to the fact that after scaling p, = 1). Hence, in the remainder we have
worked with the same set of equations as discussed above. The pressure coefficients
Plefi and p ., are left unchanged and will be specified with the numerical exam-
ples.

6.4. NUMERICAL EXAMPLES

We will present results of three numerical examples. To simplify the demonstra-
tion, these results have been obtained with a fixed set of numerical control parame-
ters:

TOL = 10~ (temporal integration) (4.1a)

k=2 1=10", o =102 B, =0,B, =1 (grid movement) (4.1b)
.
N+1’
SPRINT was called in standard mode, thus providing automatically an initial step-
size and Jacobian evaluation. The Euclidean norm was used for local error control
while (4.1a) was imposed for all components of the vector Y (cf. (2.11);
NPDE=2, u' = p, u> =®). Note that TOL =10"° is quite small. However, to
accurately simulate the rapid birth of the salt front, which arises from the incon-
sistency between the initial and left-end salt concentration, a small tolerance value is
natural. We also emphasize that we always started on a uniform grid, just for con-
venience of use. This means that immediately after start the method should rapidly
cluster most of the grid points near the left boundary.

The grid parameters take on more or less standard values, except for ;. The
choice B; = 0 means that the pressure gradient d p/dx is not taken into account in the
monitor (2.7). We decided to omit dp/dx in the monitor since in our examples
dp/ox varies very slowly and thus acts more or less in the same manner as the con-
stant regularization parameter o. In such cases a too large value for the near con-
stant pressure gradient yields a unnecessarily large regularization effect. This, in
turn, would imply that variations in the concentration gradient dw/dx become of

X;(0) = 0 <i <N+l (uniform initial grid) (4.1¢)
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lesser importance in the spatial equidistribution than desired.

6.4.1. Example 1

The first example is defined by the data of Table 6.1, together with
A=1.E-3,T=5 and pyy =17, pgn =1.0. With this choice of pressure initial
function the arising salt front travels to the right boundary and finally renders a
steady state for p and ® with p equal to the linear initial pressure and @ = @y = 1.
The steady state starts to settle at about ¢ = 2, far before the end time T =5 has been
reached. Consequently, due to the uniform salt concentration, at about ¢ = 2 the grid
should again become uniform. Hence this example provides an interesting test for
the moving-grid method. The pressure p undergoes only a marginal change for 7 > 0
and below we will therefore only plot .

Figure 6.1 depicts the grid and salt concentrations at some values of 7 for N =25
and 50. We see that the grid accurately reflects the anticipated solution behaviour.
At very early times the grid points rapidly cluster near x =0, then the cluster travels
with the front and when the steady state is reached, a uniform grid appears. While
N =25 results in a little overshoot at the top and in a little smearing at the foot,
N =50 gives already very accurate salt concentration profiles. The profiles for
N = 100 (not shown here) do equal those for N = 50 up to plotting accuracy.

Table 6.2 shows integration history for N =25, 50 and 100 and serves to provide
insight in the costs of the implicit numerical integration method. The given data
have the following meaning: STEPS = number of integration steps; JACS = number
of Jacobian updates; RESIDS = total number of evaluations of the ODE system,
including those needed for the Jacobian updates; NITER = total number of Newton
iterations; CPU = central processing time on an ALLIANT/FX4 computer, using
one processor. Note that our decision to start on a uniform initial grid has its price.
For example, for N =100 more than half the number of steps is used to reach
t=0.1. In fact, at t = 107%, 1073, 1072, we have, respectively, STEPS = 39, 152,
271. A great deal of these steps is needed simply to adjust the initial grid to the very
steep concentration profile at the very early times (see the right upper plot in Figure
6.1). Therefore, somehow adjusting the initial grid to the expected solution profile at
the first forward time level will reduce STEPS significantly. We also wish to remark
that the method efficiently detects the steady state, since for ¢ > 2 the temporal step-
sizes are rapidly increased and very few steps are required to complete the integra-
tion. Finally, we have also tabulated ®,,, — ®o, Which is the maximal overshoot at
the given points of time. We see that already for N = 25 the overshoot is very little.

A further inspection of the salt concentration plots shows that, as expected, the
first derivative monitor (2.7) places quite a number of points just within the front
where dw/dx is largest. Fortunately, the spatial grid-smoothing, resulting in relation
(2.10), has the nice side-effect of keeping a substantial number of points at the foot
and top of the front, where dw/dx becomes smaller and finally zero. This only
works, of course, if x is taken not too small. Note that there should be enough points
at the foot and top so as to avoid wiggles, since the spatial discretization is based on
a common central finite-volume scheme. For a comparison of results obtained with a
second-derivative monitor based on m (1) = (ot + ||uxxl|2)%' and with a fixed grid, the
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reader is referred to [14]. There it is concluded that the moving-grid approach with
the first-derivative monitor is to be preferred with respect to accuracy and
efficiency.

6.4.2. Example I1

The second example is also defined by the data of Table 6.1, but now
Pilef = L.11, prign, = 1.0, T=500 and A= 1.E—4. The smaller pressure gradient in
the initial function has two effects. First, it yields a smaller fluid velocity resulting in
a larger time scale, which explains the larger value for 7. The second and more
interesting effect is that the travelling salt front now comes to a stand still before it
has reached the right boundary. This happens at about ¢ = 150, at which point of
time the front lies near x =.6. The reason is that the fluid velocity ¢ tends to zero,
uniformly in x, which settles the system into a steady state and this takes place long
before the salt front has reached the right boundary. We note that this phenomenon
is rather special in the sense that it heavily depends on the initial pressure gradient.
The stand still of the salt front is lost with a relatively slight change in this gradient.
Also note that this stand still requires a zero molecular diffusion which in reality is
not true, of course. However, the simulation of this rather subtle situation provides a
nice numerical test as it requires an accurate balancing of gravity force pg and pres-
sure gradient force d p/dx in the Darcy velocity expression in (3.1). Finally, we have
made the dispersion length ten times smaller than in the previous example, giving a
Peclet number of 1.E+4 and a much steeper front (recall that the spatial discretiza-
tion of the MGI is based on a common central finite-volume scheme). Figure 6.2
shows the computed grid and salt concentration profiles at some values of time for
N =25 and 50. Like in the previous example, we see that the grid movement accu-
rately reflects the anticipated solution behaviour. For early times it is completely
similar, while for later times the cluster around the steep salt front remains in posi-
tion. We also see that N =25 now results in more overshoot, due to the fact that the
dispersion length is ten times smaller than in the previous example. However,
N =50 again gives a very accurate solution and the profiles for N = 100 (not shown
here) do equal those for N = 50 up to plotting accuracy.

Table 6.3 contains part of the integration history for N =25, 50 and 100, provid-
ing the same information as before. With this table we wish to call attention for an
inherent model difficulty stemming from the absolute value function in the
dispersion-flux expression pJ = —pA|q |®,. In the table this difficulty manifests
itself in the large number of time steps and Jacobian updates used over the ‘near
steady-state interval’ [200, 500] for N = 100 (recall that the steady state starts to set-
tle at about # = 150). While the code easily detects the numerical steady state solu-
tion with 25 and 50 points, which can be concluded from the few number of steps
needed to integrate from ¢ =200 to r =500, this is clearly not the case with 100
points. In fact, with 100 points this ‘near steady-state part’ of the integration interval
requires 1038 - 423 = 615 integration steps and 707 - 105 = 602 Jacobian updates,
which is rather extreme. What has happened here is that the iterative Newton algo-
rithm repeatedly fails to converge, so that the strategy of the SPRINT code keeps the
temporal stepsize down and keeps asking for new Jacobians.
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FIGURE 6.1. Example I: Gridlines and salt concentration profiles at
t=0.1, 0.5, 1.0, 5.0. The left part of the figure corresponds with
N =25 and the right part with N = 50. Note the difference
in scaling in each of the two gridline plots.
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STEPS | JACS | RESIDS | NITER | OVERSHOOT | CPUtime (sec.)
N=25 | t=0.1 149 39 931 407 7.0E-3 --
t=0.5 198 47 1175 545 7.0E-3 -
t=1.0 220 52 1302 607 6.0E-3 --
t=5.0 565 144 3532 1610 - 140
N=50 | t=0.1 202 53 1282 574 8.0E-4 --
t=0.5 225 58 1413 638 1.0E-3 --
t=1.0 234 61 1481 667 1.0E-3 -
t=5.0 450 118 2904 1335 -- 236
N=100 | t=0.1 301 83 1988 882 3.0E-4 --
t=0.5 317 87 2085 927 3.0E-4 -
t=1.0 326 89 2140 956 6.0E-4 --
t=5.0 529 142 3533 1648 - 566

TABLE 6.2. Example I: Integration histories.

The Newton convergence failure is caused by |q | if g=0. The following obser-
vations explain this. Due to the absolute value function, entries of the Jacobian
matrix contain sign(q). Consequently, if ¢=0, then during the Newton iteration
approximate values for ¢ readily change sign. Since the size of entries is large, as
they contain terms (AX;)"?, and AX; can be very small, it happens that during the
iteration process entries frequently change their value from large positive to large
negative, or vice versa. No doubt this severely hinders the convergence of the itera-
tive Newton process and, as we have observed, often will lead to convergence
failures and requests for a Jacobian update. This explains why the march to steady
state in the case of 100 points is so troublesome. However, we stipulate that also
with 25 and 50 points the march to steady state eventually becomes troublesome. It
all depends on the size of the computed velocities ¢ and is a matter of accuracy.
With lesser points the computed velocities arrive in the troublesome regime for
larger values of time when the system has become sufficiently stationary or, in other
words, when the numerical velocities have become sufficiently small. Ironically,
with 100 points the accuracy is sufficiently good to have the troublesome Newton
convergence behaviour already for 200 < ¢ < 500.

We emphasize that the troublesome march to steady state originates from the
Jacobian matrix needed in the iterative solution process and not from the integration
formula itself. In fact, we have also run the problem with |g | replaced by \/q2 +&
with €=10"°, which completely remedies the situation and a normal march to
steady state is observed with very large stepsizes towards the end value 7, even up
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to T=10"2. When the modelling does not allow this slight modification in the
dispersion-flux expression, an alternative remedy is to change the expression for
|g | only in the entries of the Jacobian, so as to avoid the sign changes. This
involves a little change of the Jacobian matrix and thus should not interfere
significantly with the convergence behaviour of the iterative Newton method.

6.4.3. Example 111
This example is derived from Example I by changing the salt concentration value
(0,7) = 1 to the step function

1, 0<t<0.75,
(0,1) = 4.2)
0, 0.75<t<50.

Thus for 0 < ¢ < 0.75 the two solutions are equal and at = 0.75 the step function
generates a second front at x = 0 resulting in a block-form concentration profile. The
block then travels to the right boundary and eventually the system runs into steady
state with uniform zero salt concentration. For the moving-grid method this solution
is more difficult to compute, since now two travelling fronts are present which
appear and disappear at different values of 7. Hence, instead of two times, four times
the solution shape is drastically changed and the automatic grid movement and step-
size control should be able to cope with these drastic changes. For example, without
neglecting the already existing first front, at # = 0.75 the method must rapidly cluster
grid points at the left boundary and decrease the time step to timely see the onset of
the second front. Therefore, for the same accuracy, roughly twice the number of grid
points and time-stepping effort will be needed as for Example I.

We have used N =25, 50, 100. Apparently, 25 points is not enough, but with 50
points the solution is already fairly accurate. A comparison for 50 and 100 points
reveals only minor differences at the top of the computed salt block profile and we
may conclude that the results are very satisfactory. The gridline plot in Figure 6.3
for N =100 nicely reveals the onset of the second front where very small time steps
have been taken, similar as at 7 = 0 (see Figure 6.1). The arrival of the two fronts at
the right boundary can also be clearly recovered from the plot, like the change to the
uniform steady state grid. Note that also here small time steps are needed to accu-
rately simulate the rapid solution change. The integration costs tabulated in Table
6.4 indeed show that the time-stepping effort is about twice as large as for Example
I. As anticipated, comparison of Tables 6.2 and 6.4 reveals that the costs are mainly
determined by the drastic changes in the solution shape. Once the front exists, the
time stepping is done very efficiently, as can be deduced from the number of Jaco-
bian updates listed in Table 6.2 at = 0.1 and 1.0.
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STEPS | JACS | RESIDS | NITER | OVERSHOOT | CPUtime (sec.)
N=25 | t=1 160 40 958 421 2.0E-2 =
t=10 239 64 1509 654 3.0E-2 --
t=100 335 92 2155 930 3.0E-2 -
t=200 354 95 2244 980 4.0E-2 --
t=500 373 101 2371 1072 4.0E-2 95
N=50 t=1 249 59 1473 685 4.0E-3 -
t=10 300 72 1787 826 2.0E-3 -
t=100 338 79 1983 931 2.0E-3 --
t=200 355 81 2048 968 2.0E-3 --
t=500 379 88 2204 1033 2.0E-3 185
N=100 | t=1 312 85 2058 926 4.0E-4 =
=10 346 93 2253 1015 4.0E-4 -
t=100 410 103 2538 1168 7.0E-4 --
t=200 423 105 2592 1196 8.0E-4 --
=500 | 1038 707 12700 3344 9.0E-4 1753
TABLE 6.3. Example II: Integration histories.
STEPS | JACS | RESIDS | NITER | CPUtime (sec.)
N=100 | t=1.0 554 159 3734 1624
t=2.0 819 262 6008 2511
t=5.0 1009 308 7259 3154 1146

TABLE 6.4. Example III: Integration histories.

6.5. CONCLUDING REMARKS

We have applied a moving-grid finite-volume method to a particular class of
one-space dimensional fluid-flow/salt-transport problems with rapid spatial and tem-
poral transitions in the salt concentration. The success of this method rests on two
sorts of automatic grid-adaptation. The first adaptation is connected with the space
grid and serves to cope with the rapid spatial transitions. These are dealt with by
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FIGURE 6.3. Example III: Gridlines and salt concentration profiles at
t=0.1, 0.5, 1.0, 2.0, 5.0 for N =100.

integrating on grids that spatially equidistribute a relevant measure of the error. The
equidistribution is realized in a dynamic Lagrangian approach where the grid is
adapted continuously in time. This feature is important since it makes it possible to
accurately and efficiently follow steep travelling fronts. The second adaptation
serves to cope with rapid temporal transitions and is just the use of variable stepsizes
in the numerical integration. Variable stepsizes are a prerequisite when drastic solu-
tion changes have to be dealt with, like the onset of a steep front. The numerical
integration has been performed with the LSODI based stiff ODE solver of the
SPRINT package [1].

Our findings reported in Section 6.4 have convincingly shown that the method is
very well suited to solve 1D brine transport models involving high concentration
gradients. Because we have worked with an a priori chosen set of numerical control
parameters, it is most likely that tuning of these parameters will further enhance the
efficiency and accuracy for the specific model at hand. Since the method has been
originally developed for general, one-space dimensional PDE systems [6,13], the
method is also an excellent candidate for solving fluid-flow/solute-transport prob-
lems from other fields of application. In this connection it is worth to emphasize the
user-friendly computational environment of the SPRINT package and the moving-
grid interface MGI [3], which together provide a numerical software tool that
requires a minimum of programming effort.
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Chapter 7

Moving-Finite-Element Solution of Time-Dependent
Partial Differential Equations in Two Space
Dimensions

"This is duck soup for MFE"

7.1. INTRODUCTION

The aim of this paper is to show the capability of the 2D moving-finite-element
method (MFE) to solve different kinds of time-dependent partial differential equa-
tions (PDEs) having solutions with steep moving fronts, rotating pulses, or ot<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>