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Chapter 0
Introduction

Since the invention of the computer, computational fluid dynamics has
influenced the science of aerodynamics considerably. In the sixties, panel
methods were introduced to compute potential flows around airfoils. In the
seventies, major advances were achieved in the simulation of transonic flows
by the full potential approximation with finite volume methods. Nowadays,
we see rapid developments in methods for solving the Euler and compressible
Navier-Stokes equations.

Euler flow simulation is especially valuable for flows where the potential
hypothesis is no longer valid, e.g. flows which contain strong shocks and /or
vorticity. For example, Euler flow simulation is important for transonic flow,
which is the principal operating regime of both civil and military aircraft. The
Euler equations describe inviscid compressible gas flows. In practice, the
viscosity of air is so low that viscous effects are confined to thin boundary
layers adjacent to the surface of bodies present in the flow. Such flows are usu-
ally well described by the Euler equations. But there are cases of steady tran-
sonic flow over a two-dimensional airfoil where the shock wave location is very
sensitive to the boundary layer thickness distribution. A striking example of
this is given in [4]. Because the lift to drag ratio of an airfoil in a transonic
flow is very sensitive to the shock wave position, viscosity cannot be neglected
in such cases. Then the compressible Navier-Stokes equations should be used.

At very high Reynolds numbers, the flow in the boundary layer becomes
turbulent. Adequate modelling of turbulence at acceptable cost poses a chal-
lenge that will have to be met in the future. We may regard the solution of the
Euler equations as a preparatory stage for the development of solution
methods for Navier-Stokes equations with or without turbulence modelling.

The objective of this work is to contribute to the development of efficient
numerical methods for the computation of steady solutions of the Euler equa-
tions. The major considerations for the computation of Fuler flows are the
capability to treat flows in complex geometrical configurations, with proper
representation of shock waves and contact discontinuities, with high order of
accuracy in the smooth parts of the flow, and with computational efficiency
and robustness.

In this work we do not use complex geometrical configurations, to avoid
grid-generation problems. Furthermore, we restrict ourselves to the Euler
equations in two dimensions (2D). However, all techniques used can be
extended in a straightforward way to the 3D Euler equations. In this study, we



2

focus on the space discretization, in order to combine second-order accuracy in
the smooth parts of the flow field with a proper representation of discontinui-
ties. Furthermore, much attention is payed to computational efficiency and
robustness.

A conservative finite volume scheme is used for the space discretization. The
scheme is a so-called ‘shock capturing’ scheme, i.e. the same numerical scheme
is used everywhere in the flow; no adaptions are made in the neighbourhood
of discontinuities. This is possible because the scheme is a finite volume
scheme, i.e. it is based on the integral form rather than the differential form of
the Fuler equations. The integral form is applicable everywhere, the
differential form is not valid where the solution is not differentiable. Nowa-
days, finite volume schemes are almost universally used for shock capturing
codes.

In a finite volume scheme, flux-computation must be carried out at the
boundaries of the volumes. A flux at a cell boundary is the amount of mass,
momentum and energy transported per unit of time across the cell boundary.
We use a cell-centered finite volume scheme, i.e. the numerical approximations
are stored inside the volumes. The equations are obtained by demanding that
the total flux is zero for each volume. At each cell boundary a flux is com-
puted by approximately solving a local one-dimensional Riemann problem. As
a consequence, the scheme is characteristic-based or upwind. The approximate
Riemann solver used is as proposed by Osher [5]. The implementation of
Osher’s scheme is not so complex as is generally believed, provided that the
proper dependent variables are used and that the local Riemann problems are
solved approximately by using an ordering of the constituent parts of the
integral path in state space which is the reverse of that proposed by Osher.

One of the merits of Osher’s approach to solve the Riemann problem is that
boundary conditions can be discretized in a way which is completely consistent
with the discretization of the steady Euler equations in the interior of the
domain. This is a consequence of the fact that Osher’s scheme is based on
Riemann invariants, just as proper boundary condition treatments. Osher’s
scheme is based on a sound mathematical theory. The scheme fulfils an
entropy condition and therefore unphysical solutions are excluded. In its origi-
nal form Osher’s scheme is first-order accurate. Shocks and contact discon-
tinuities are captured very well (in at most two interior grid points) as long as
they are aligned to the grid. But oblique (with respect to the grid) shocks and
contact discontinuities are smeared out disastrously. Furthermore, in smooth
parts of the flow, first-order accuracy is too low for practical purposes. There-
fore we wish to improve the order of accuracy and to steepen oblique discon-
tinuities.

This is done by the so-called MUSCL (Monotone Upwind Schemes for Con-
servation Laws) -approach as proposed by Van Leer [6]. In that approach, the
data is first prepared and modified (limited) before a Riemann solver is
applied. The limiting is done to prevent spurious oscillations in the neighbour-
hood of discontinuities. The limiting must be nonlinear even when applied to
linear problems. This approach allows monotonicity to be achieved



simultaneously with second-order accuracy.

In chapter II, these topics are studied thoroughly. The study concerns
Riemann solvers, Osher’s scheme, boundary condition treatments, lineariza-
tion, the MUSCL-approach, limiters etc. Chapter I is an introductory chapter
in order to prepare the material necessary for the succeeding chapters. At the
end of chapter II, a first- and second-order accurate discretization of the
steady Euler equations has been determined completely. The two succeeding
chapters III and IV describe respectively the solution methods for the first-
and second-order discretization. The first-order discretization is solved by a
Nonlinear Multigrid Method (NMG), also called FAS (Full Approximation
Scheme), see Brandt [1]. Nested iteration, also called FMG (Full Multigrid
Method), is used to obtain a good initial approximation on the finest grid. The
multigrid method is very straightforward. A Collective Symmetric Gauss-Seidel
(CSGS) ralaxation procedure is used as a smoothing method. The numerical
examples given in section 3.3 show that the characteristic features of a success-
ful multigrid method are obtained: robustness, efficiency (about 3 NMG itera-
tions are sufficient to surpass truncation error accuracy) and grid independency
of the convergence rate (at least for transonic and supersonic flow). The
numerical examples cover channel flows, resolution of contact discontinuities,
and a blunt body (circle cylinder) in a supersonic flow.

A defect correction method is used to improve the accuracy of the first-order
solutions. The defect correction method, which is the topic of chapter IV,
makes use in a very effective way of the excellent multigrid solver for the solu-
tion of first-order discretizations. In fact, the second-order discretization is
used only to construct appropriate source terms, and the solution of the first-
order discretization of the steady Euler equations with these source terms are
obtained by the multigrid solver. This process is repeated iteratively. In section
4.3, the numerical solutions of the second-order discretization obtained by the
defect correction method are given and comparison with the first-order solu-
tions given in section 3.3 show clearly the improvement in accuracy and reso-
lution of discontinuities.

Finally, we refer to the work of B. Koren [2,3] who used the discretizations
and solution methods as described in this work for airfoil flow computations.
His results clearly show the feasibility of the method for such applications.

This thesis is based on the following publications:

[A] P.W. HEMKER, S.P. SPEKREUSE (1985). Multigrid Solution of the Steady
Euler Equations. In: Advances in Multi-Grid Methods. (D. BRAEss, W.
HAckBUSH, U. TROTTENBERG, eds.). Notes on Numerical Fluid Mechan-
ics, Volume 11, 33-44. Vieweg, Braunschweig.

[B] P.W. HEMKER, S.P. SPEKREUSE (1986). Multiple Grid and Osher’s scheme
Jor the Efficient Solution of the Steady Euler Equations. Appl. Num. Math.
2, 475-493.

[C] S.P. SPEKREUSE (1986). Second-Order Accurate Upwind Solutions of the 2D
Steady Euler Equations by the Use of a Defect Correction Method. In:



(D]

(E]

Multigrid Methods II. (W. HACKBUSH, U. TROTTENBERG, eds.). Lecture
Notes in Mathematics 1228, 285-300, Springer Verlag, Berlin.

S.P. SPEKREUSE (1987). Multigrid Solution of Monotone Second-Order
Discretizations of Hyperbolic Conservation Laws. Math. Comp. 49, 135-
155.

B. KOREN, S.P. SPEKREUSE (1987). Multigrid and Defect Correction for the
Efficient Solution of the Steady Euler Equations. In: Research in Numeri-
cal Fluid Dynamics/Proceedings of the 25th Meeting of the Dutch Associ-
ation for Numerical Fluid Dynamics. (P. WESSELING, ed.). Notes on
Numerical Fluid Mechanics 17, 87-100, Vieweg, Braunschweig.
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Chapter 1
The Euler Equations

1.1. DERIVATION OF THE EULER EQUATIONS.

In this section the Euler equations are introduced. We consider the Euler equa-
tions in two dimensions only. The restriction to two dimensions is only for
practical reasons and is not fundamental (see the introductory chapter 0).

Let there be given a Cartesian coordinate system (x,y). Let ¢ denote the time.
With p=p(x,y,1), u=u(x,y,1), v=v(x,y,t) and p =p(x,y,t) we denote density,
velocity components in the x- and y-direction and pressure. These quantities
are the so-called primitive variables. Consider an arbitrary simply-connected
region QCR? and let n=(n,,n,)" be the outward unit normal on the boun-
dary 9. The region  Ts a so-called control volume; we will apply the physical
laws of conservation of mass, momentum and energy to the fluid flow in Q.

L. Conservation of mass.
The law of conservation of mass is given by

difpdv:—/p(n .v)do (1.1.1)
1a e - T

where v=(u,v)7 is the velocity, dv is a volume element and do a surface ele-
ment. With n . v we denote the mnerproduct: n . v=n,u+n,v. Using Gauss’s
theorem for a vector-field, we may write, assuming that pv is differentiable,

[o(n . v)do= [ div (ov)dv
e - T Q -

where div (ov)= %(pu)+ ai(pv) is the divergence.
Using the fact that @ CR? is arbitrary we find the equation of continuity:

0 0 0

—p+—— ——(pv)= i
P TPt ay(»ov) 0 (1.1.2)
Equations (1.1.1) and (1.1.2) are the equation of continuity in integral and
differential form respectively. Both forms are very important.

I1. Conservation of momentum.
Assuming frictionless flow and absence of body forces, the law of conservation
of momentum is given by



—j:fpldv=—fpz(!t_ . X)do—fp_rldo. (1.1.3)
Q 0 0

Equation (1.1.3) is a vector equation. The x-component is

—fpu(n .v)do— [/pndu]
e T 7 pe —

I

d
@ [P

X

- ({ div (puv)dv — [ ﬂ[ Vpdv] (1.1.4)

X

where we have uTsed the theorem of Gauss for both a vector- and scalar-field,

_ (2 @], -
vp o’ ay] is the gradient.

The y-component of equation (1.1.3) is

ad—fpvdv = —[pv(n .v)deo— [[pndo]

2 @ - 0~ ),

= — [ div (ow)dv — [prdv} . (1.1.5)
Q - Q v
Because { is arbitrary, we obtain from equations (1.1.4) and (1.1.5)

9 D 2 -

o (pu)+ i (pu”+p)+ B (puv)=0 (1.1.6a)
i(pv)-i-—a—(puv)+—a-(pv2 +p)=0 (1.1.6b)
ot 0x dy

which are the momentum equations in differential form.

II1. Conservation of energy.
Let e denote the internal energy of the fluid. The energy of the fluid consists of
internal and kinetic energy and is equal to pe+>p(u?+v?) per unit of

volume. We define the total energy as
E=pe+3pu+v2). (1.1.7)

Under the assumptions of a nonviscous, nonconducting fluid and absence of
body forces, the law of conservation of energy is given by

4 (Edv=— [E(n . v)do— [p(n . v)do (1.18)
dt g @ — — e

and, with similar reasoning as before, the energy equation in differential form
is obtained as

0 0 0 _
81E+ ax(E-i-p)u+ 3 (E+pyp=0 | (1.1.9)
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Combining the equations (1.1.2), (1.1.6) and (1.1.9) we find the Euler equa-
tions:

p pu pv
2
9 |pu 9 |pu”+p 9 |pw B
o |ov| Tax | | Ty [pv2tp | =0 (1.1.10)
E (E+p)u (E+p)y

These equations are valid for a nonviscous, non-heat-conducting fluid without
body forces. Notice that there are 5 unknowns in the 4 equations. Another
equation is provided by the thermodynamical equation of state, which can be
written in general as

p=pp.e). (1.1.11)
For a perfect gas we have
p=pRT, e=¢,T (1.1.12)

where T is the temperature, R S =1ty the gasconstant, and €vsCp the specific
heat at constant volume and constant pressure, respectively. Define the ratio
of specific heats y=c,/c,. For a perfect gas the thermodynamical equation of
state gives

R 1
p=—"pe=(y—Dpe=(y—1) (E—5p(u?+v?)). (1.1.13)
4
For almost all aerodynamical problems one can assume that the non-
dimensional quantity vy is constant (y= 1.4 for air).
Important physical quantities and relations are listed in the appendix.

1.2. SOME GENERAL PROPERTIES OF SOLUTIONS OF THE EULER EQUATIONS.

In this section we introduce two important quantities: the total enthalpy H
and the entropy s. We show, under certain rather general circumstances, that
these quantities are constant along streamlines. Furthermore, we investigate
what kind of discontinuities are possible in solutions of the steady Euler equa-
tions. It turns out that there are two types: shock waves and contact discon-
tinuities.

1. The total enthalpy.
The enthalpy 4 and the total enthalpy H are defined by

h=e+% (1.2.1)
H=h+5u?+v?). (12.2)

Using the definition (1.1.7) of the total energy E, we find

H:E—:E . (12.3)
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Hence, the energy equation in integral form (1.1.8) can be written as
d [
- [oHdv=— [pH(n . v)do+ [ —a%dv (12.4)
Q a9 2
and this equation becomes in differential form
0 0 0 op
= -+ = == b
ar (PH)+ 5 (put) + 5 ()= (1:2.5)

Combining this equation with the continuity equation (1.1.2) we find that
(1.2.5) can be written as

oH , 3H  8H _1 %p
o1 +u 3 TV S p B (1.2.6)

In this equation we recognize the material derivative

D_d ., 8, @
Dr—a1 +u P +v By (1.2.7)
The material derivative (or total derivative) expresses the rate of change of a
property of a fluid particle. Combining (1.2.6) and (1.2.7) we find for steady

flow (all time derivatives are 0)
DH _
T
Thus, in the case of steady flow, the total enthalpy H is constant along stream-
lines. We shall see that the total enthalpy remains also constant when a

streamline passes a discontinuity (shock wave). When H is uniformly constant
the fluid is called isenthalpic or isoenergetic.

(1.2.8)

I1. The entropy.
In the same way as we have combined the energy equation with the continuity
equation, it is possible to combine the momentum equations (1.1.6) with the
continuity equation. Then we find
Qu, du du__13p
ot +u8x +v8y p dx
ov v v 1 op
Lty =—— 1.2.
o Yax Ty poy’ (129)

which can be written as

D __1
Dil= p vp . (1.2.10)
One easily derives from (1.1.2), (1.1.7) and (1.1.9) that
D 1 N
D (et+7(v.v)= ple @v) . (1.2.11)

Combining the last two equations we find

De __p
= ) div . (1.2.12)



The continuity equation (1.1.2) can be written as

—D—B 3 frad
Dr +p leZ 0. (1.2.13)
Thus, we also have
De _p Dp
Dr 2 Dt (1.2.14)
We assume that the fluid is a perfect gas, hence (see 1.1.13)
p=—1)pe (1.2.15)
which gives
De__1 J1 Dp p Dp
Dt y—1 {p Dr 2 Di [ (1.2.16)
Combining (1.2.14) and (1.2.16), we conclude that
Dp_yp Dp_
D o Di 0. (1.2.17)
The entropy s is defined as
s=c¢, In £ . (1.2.18)
pY
Using (1.2.17) we find
Ds _& )Dp ypDpl_
D p {Dt o Dr 0. (1.2.19)

Hence, we have found the important result that the entropy of a fluid particle
remains constant in the fluid. This result is only true for an inviscid non-
conducting gas. If we take into account viscosity, a similar derivation [4] shows
that

Ds

Dr =0 (1.2.20)
Hence, in the case of viscous flow, the entropy of a fluid particle cannot
decrease.
In the derivation of (1.2.19) we have assumed that the flow is smooth. There-
fore, from (1.2.19) one cannot conclude that the entropy of a fluid particle
remains constant when the particle crosses a discontinuity (shock wave).
Indeed, we shall show that there is an entropy jump at a shock wave. Because
of the fact that in a viscous flow the entropy of a fluid particle cannot decrease
and because all real fluids are, in fact, viscous, we demand that the entropy of
a fluid particle, which passes a shock wave does not decrease. This is the so-
called entropy condition. Thus, the idea behind the entropy condition is that a
solution of the inviscid Euler equations is the limit of a sequence of solutions
of the viscous Navier-Stokes equations with vanishing viscosity.
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When s is uniformly constant, the fluid is called isentropic.

II1. Discontinuous solutions of the steady Euler equations.
Now we investigate under which conditions a flow field composed of two uni-
form flows, separated by a straight line /, is a solution of the steady Euler
equations. We choose the x-axis perpendicular to / and the y-axis along L
Hence, the question becomes when is:

qL x<0

q(X,)’): {qR x>0
a solution of the steady Euler equations. Because g(x.y) is discontinuous we

have to apply the Euler equations in integral form. Take a control volume
with infinitesimal width but finite length across the discontinuity (see fig. 1.2a).

Y
A

qL qr

T
I

FIGURE 1.2a. Discontinuous steady flow field with a control volume.

Application of the equations of continuity, momentum and energy gives:

PLUL = PRUR (1.2.21a)
prul +pL=pruk +Pr (1.2.21b)
PLULVL = PRURVR (1.2.21¢)
prupHy =prugHp (1.2.21d)

Consider two posibilities:

A. Contact discontinuity.

Suppose u; =0. Then (1.2.21) is fulfilled if ug=0 and p; =pg. Hence, a flow
field composed of two uniformly constant flows with the same flow direction
and pressure but different densities and speeds is a solution of the steady Euler
equations. The discontinuity at the interface between the two flows is called a
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contact discontinuity (or slip line). Notice that a fluid particle does not cross a
contact discontinuity.

B. Shock wave.

Suppose u; 0. Then ug70, vy =vg and H; =Hy. Because u; =ug implies
gL =qr 1.e. a uniformly constant flow field, we may assume that u; %ugz. From
the continuity equation (1.2.21a) it follows that u; and ug have the same sign.
Therefore, without loosing generality, we suppose that u; >0, ug>0. This
kind of discontinuity is called a shock wave. Notice that a fluid particle crosses
a shock wave. From equation (1.2.21) we shall derive several jump relations.
First, we introduce the speed of sound c:

-~/ 1222
- VE 22

One easily derives that the total enthalpy H can be expressed as

2
—_C do2,.2
H = +2(u +v%) (1.2.23)
From (1.2.21a,b) we see that
PL PR
u; + =up+
L pLuL - PRUR
or
2 2
CR CT
U —uUg=———. 1.2.24
LR Yur  Yup ( )

Because H; = Hp, v; =vg, we also have

2 2
L 1, R 1, 1y+1 .
‘Y—l +2“L ‘Y—l +2uR_2 ‘Y_lc (1.225)
with ¢* a constant. Combining these last two equations, one easily derives
upug =c*? (1.2.26)

which is known as the Prandtl relation.
Introducing M =u/c, M* =u/c*, the Prandtl relation becomes

MpM; =1 (1.2.27)
and the relation
2
¢ 1, _1y+l o
1 + U 2 —1 ¢
results in a relation between M and M*:

2
M2=_(QtDM” (1.2.28)

(- DMI 42
Now, the jump relations are easily derived. For instance
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i +1)Mj
e Mo Wy COPCICED (1.2.29)
pPL  UR  ULUR (y—DML +2
The jump relation for the pressure becomes:
Ur
PR—PL=PLUL — PRUR =PLUL (UL~ UR) =prui(l— :1:—)
thus
PR _ 14 A _op-1y. (1.2.30)
PL y+1

The difference between the entropy in front of and behind the shock is

_ 2 Y
1+7—1YT(M1— 1)]- [(Y—QM } (1231

—s;=¢, In
S { G+ )M}

This is an important relation, because according to the entropy condition
sg=sp. Using sg>sp, (sg =sp =M =1, ug =u;), we can conclude that M; >1,
hence, M} >1, M3 <1 and Mg<1. In the case of a normal shock (vp =vg =0),
M is the Mach number and the important conclusion can be drawn that in
front of a normal shock the flow is supersonic (M>1) and behind the shock
the flow is subsonic (M <1). Notice that this conclusion is a consequence of
the entropy condition. This is an example of the importance of the entropy
condition.

It is easily derived that, in the case of a weak shock i.e. M;=1+¢ 0<e<<1,
we have

se—52=0©); 2=00; 2L=00¢;X¥=00 (123
PL PL uL

with Ap =pr—pr; Ap=pr —prL, Bu=ugp —u,.

Thus, a small but finite change of pressure, for which there are corresponding
first-order changes of density and velocity, causes only a third-order change in
entropy. Therefore, a weak shock produces a nearly isentropic change of state.
This is an important result because the assumption that the fluid is isentropic
(and isenthalpic) leads to a drastic simplification of the Euler equations (see
section 1.4).

1.3. HYPERBOLIC SYSTEMS.
1.3.1. GENERAL THEORY.

In this section we study a general first-order system of quasi-linear equations
in two independent variables of the form

%ﬁ%ﬂq):o (13.1.1)

where ¢=(q1, . . . ,¢»)" €R" and (x,/)eR XR™. We assume that the vector-
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: “R" n 1 : —_éﬁ
valued function f:R"-R" is C'. We define the n Xn matrix 4(q)= dq @.

DEFINITION 1.3.1a.
System (1.3.1.1) is called hyperbolic if there exists a real diagonal matrix D(g)
and a non-singular real matrix R(g) such that

A(@R(@)=R(@)D(g) YgeR" . (13.12)

The column vectors of R(q) are eigenvectors of A(¢g) and the diagonal entries
of D(q) are the corresponding eigenvalues. We shall denote by R,(g) the kth
column vector of R(q) and with A.(q) the corresponding -eigenvalue:
A(9)=Dyi(q). Furthermore we shall assume that the eigenvalues A (¢q) have
been labeled in increasing order i.e. Aj(q)<Ay(q)< - - - <A,(q).

ExampLE 1.3.1a (The linear case).
Suppose f(q)=Aq where A is a constant nXn matrix. Hence, (1.3.1.1)
simplifies to

9, ,9q _
AL +A-L=0. (1.3.1.3)

A solution g=g¢q(x,t) of (1.3.1.3) can be expressed with respect to the basis
{Rj; ~~~:R,) ie

n
q=q(x,1)= Eai(x,t)Ri
i—1
where a;:R XR* »R. Substitution of this expression in (1.3.1.3) leads to

99 , 499 _ i -
il z{at x,0)+A; x(x,t)}R, 0

and because the elgenvectors R; are independent
) ,
i(x H+A; x’ x,)=0 i=1,---,n

The general solution of this equation is
a(x,)=al(x—Nt) i=1,---,n
with a?:R-R. Hence, we have found that the general solution of (1.3.1.3) is
q(,0)= D al(x —N1)R; .
i=1
The solution of the pure initial value problem on R* XR
99 4 494 -
ot 0x
(1.3.1.4)

4(x,00=go(x) xR
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becomes

)= Sal(x-N0R, (13.15)
with |

ﬁla?(x)Ri =go(x) . (1.3.1.6)

Hence, the solution of (1.3.1.4) is obtained after representing the function
go:R-R" with respect to the basis {Ry, - - - ,R,}.

Now, we shall introduce the Riemann problem. The Riemann problem is very
important because it forms the underlying physical model of many upwind
schemes for the Euler equations. For instance, the famous Godunov upwind
scheme uses the exact solution of the Riemann problem for the numerical solu-
tion of the Euler equations [2]. Other well known upwind schemes use approxi-
mate solutions of the Riemann problem.

DEFINITION 1.3.1b.
The Riemann problem for a general hyperbolic system is the following initial
value problem

d d
B?q+3;f(q):0 (1.3.1.7)
with
q. x<0
q(x’O):{qR x>0

where g; and g are constant states.

THEOREM 1.3.1a.
Suppose there exists a unique solution q=gq(x,t) of the Riemann problem
(1.3.1.7). Then the solution q=q(x,t) can be written in similarity form

q(x,0)=q(x/1).

PROOF.

Define g,(x,t)=q(ax,ar) with acR*. Then it is easily verified that g,(x,?) is
also a solution of the Riemann problem. Hence, g(x,t)=g(ax, a?) VaeR™, so
qg(x,n)=q(x/t). 0O

ExaMPLE 1.3.1b (The linear case).
Consider the Riemann problem for a linear hyperbolic system (see example
1.3.1a). Following the solution method outlined in examples 1.3.1.a, suppose
9L= X &R;, gr= X BiR;. Hence,

i=1

i i=1
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40 0= S (BH)+a(1 = H)R

with H:Rw-R the Heavyside function (H(x)=1 if x>0, H(x)=0 if x <0). The
solution of the Riemann-problem becomes

q(x, )= i {BiH(x—\t)+a;(1—H(x—N))}R,; .
i=1

This solution is illustrated in fig. 1.3.1a for n=3. We have assumed that
A} <0<\, <A;. The solution is represented by a triple (a,8,y) ie. (a,8,y)
corresponds with g=aR; +BR; +YR;.

dx

dt ‘ 71.:}\2
(Bl,az,a3 (BI,BZ>a3) =
—:A
a "
(al9a2’a3) (BI’B2’B3)
X

FIGURE 1.3.1a. Illustration of the solution of the Riemann problem for a linear
hyperbolic system (n =3).

The solution of the Riemann-problem for a nonlinear hyperbolic system is
hard to obtain in general. But for certain pairs (g.,qg) the solution of the
Riemann problem may become simple. In the remainder of this section we
show how to obtain these simple solutions. For this purpose we introduce the
following concept:

DEFINITION 1.3.1c.
Consider the hyperbolic system (1.3.1.1). Let Ry(¢) be an eigenvector of
Alq)=1(q) ie. AQRUD=MQR(g) with M(g) the corresponding cigen-

value.
We call R, (g) genuinely nonlinear if

(VM) Re(@)#0 VgeR" . (13.1.8)
We call R, (¢) linearly degenerate if
(VA(9), Ri(g)=0 VgeR". (1.3.1.9)

Here (,) denotes the wusual inner product in R" and
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[V oAk
V}\k(q) (3(]1 ’ ’ aqn
Euler equations, each eigenvector Ry(q) is either genuinely nonlinear or
linearly degenerate.
To construct certain simple solutions of the Riemann problem, we shall show
that a genuinely nonlinear eigenvector Ry(q) corresponds with a so-called sim-
ple wave solution while a linearly degenerate eigenvector Ri(gq) corresponds
with a contact discontinuity. (To avoid confusion, it should be mentioned that
in this context a contact discontinuity differs from the concept of a contact
discontinuity as introduced in section 1.2; here we are concerned with time
dependent problems while in section 1.2 we were concerned with the time
independent (steady) Euler equations).

). We shall show in section 1.3.2 that for the

Simple wave solution of the Riemann problem.
Suppose Ry(q) is a genuinely nonlinear eigenvector. Then Ry (q) can be nor-
malized such that

(VA(g), Re(g))=1 Vq. (1.3.1.10)

For an arbitrary state g; we consider the following ordinary differential equa-
tion

94 6= Re(q())

dé¢
(1.3.1.11)
q0)=qL
and suppose ¢ =§(£), 0<¢< is the solution. Define gg =g({g)-
Because
ENGE)= TMGD) - RGO=1
we have
A (q()=§&+ const =§+A(q1)
and
Ae(gr)=¢r T Ai(qL) -
Notice that )\k(qR)—)\k(qL)=£R >0.
Define
qL x/t<)\k(qL)
q(x,1)=1q(x/t—M(qr)) Ae(gr)<x/t<M(qr) (1.3.1.12)
qR x/t >>‘k(qR)

We shall verify that g(x,f) is the solution of the Riemann-problem. If
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Ak(qL)<x/t<Ai(qr) then
M(g(x,1)) = Me(g(x/t —Ne(gL))
= x/t—Ne(qr) +Mlgr)=x/1 . (1.3.1.13)
Hence, if Ap(g.)<x/t<<MAi(gr) then

39 0,0+ - flg) =2 05,0+ A (g0 0) Y 1)
=~ ZRUGE0)+ TAGDRAG1)

=— —:;—Rk(q(x, )+ %Ak(q(x, D)R(q(x,1))=0.

So g(x,t) is indeed the solution of the Riemann problem with initial states
(92,gr)- This solution is called a kth simple wave (or rarefaction wave). An
illustation of this solution is given in fig. 1.3.1.6.

dx
LN dx_
=M a4 ar M)

qL qr

X

FIGURE 1.3.1b. Illustration of a kth simple wave solution of a Riemann inital
value problem.

Contact discontinuity solution of the Riemann problem.
Suppose Ri(g) is a linearly degenerate eigenvector. Hence

(VA (9), R(¢))=0 VgeR".

Let g(£) be the solution of (1.3.1.11) and define g =q(£r). Because
LENGO=(VMGEO), R(GE)=0

we have Au(9(6) =M(g) =M (gr) VE€(0,&R).

Define

qr x/t<M(qL)=M(gr)

q(x,0)= {qR */15M(g1)= MR (1.3.1.14)
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Hence, ¢(x,?) is discontinuous. We shall show that g(x,?) is a solution of the

Riemann problem. An illustration of this solution is given in fig. 1.3.1c.

[ L Mg =M(an)

At

qr ar > X

FIGURE 1.3.1c. Illustation of a kth contact discontinuity solution of a Riemann
problem.

Because ¢(x,f) is discontinuous, the integral form of (1.3.1.1) has to be
employed

[ {qn, - f(q)n,}do=0 (1.3.1.15)
a0

with @ an arbitrary volume in the (x,f) space and n=(n,,n,) is the outward
unit normal an 9. It suffices to consider an infinitesimal rectangular volume
with sides Ax and Az straddling the discontinuity, cf. fig. 1.3.1c. Equation
(1.3.1.15) results in

flgr)—flqL) +M(qr) (gL —qr)=0 (1.3.1.16)
(notice that % =M(qr)=M(qr)). These are so called jump relations or

Rankine-Hugoniot relations [3]. We will show that (1.3.1.16) is satisfied.
Because

£ [0 -N@i®] = AGOLE 7G50
= AGEORGO)~MGORE)
= MGORGEO) ~NGORG)=0

we have

(gR)—Ne(gr)gr =f(qL) —Me(qL)qL -
Thus the jump relations (1.3.1.16) are indeed satisfied.
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In addition to simple waves and contact discontinuities there exists another
elementary type of solutions of the Riemann problem, namely shock waves.
Shock wave solutions satisfy the Rankine-Hugoniot relations and the entropy
condition. We refer to [3,7] for a detailed description of shock wave solutions.
The general solution of a Riemann problem is, under rather general cir-
cumstances, composed by simple waves, contact discontinuities and shock
waves (see [7]). Here, we can omit a detailed description of shock wave solu-
tions because this would not contribute very much to the understanding of the
numerical solution methods that will be discussed.

In this work we shall use an upwind scheme proposed by Osher [5] that is
based on an approximate solution of the Riemann problem, obtained by
replacing shock waves by compression waves. A compression wave is the
reverse of a rarefaction wave and leads to a multi-valued solution. For more
details we refer to the next section and chapter 2.

Finally, we introduce the concept of Riemann-invariants.

DEFINITION 1.3.1d.

Consider the hyperbolic system (1.3.1.1). Let Ry(g) be the kth eigenvector of
A(q)=:1-d§(q). A k-Riemann invariant is a smooth function y;:R"~»R such
that

(V¥(q), Re(9))=0 VgeR".

Notice that if Ri(q) is linearly degenerate, the corresponding eigenvalue A, (q)
is a Riemann invariant (see (1.3.1.9)). In general there are n —1 k-Riemann
invariants whose gradients are linearly independent in R”. Riemann-invariants
are useful for the construction of simple wave and contact discontinuity solu-
tions of Riemann problems. For the construction of simple waves or contact
discontinuities we have to solve (see (1.3.1.11))

%g<a=Rk(q(a)
(1.3.1.17)
q(0)=q,

Suppose ¢ =¢(§€), 0<<¢<&j is the solution. Then
LEHEO=(THGE®), R(GE)=0

hence a k-Riemann invariant is constant along the curve described by 1.3.1.17.

If there are n —1 k-Riemann invariants ¥}, . .. ,¢7 !, then it is easily seen
that the curve described by (1.3.1.17) is part of the curve described by

{q €R” | YA(@=¥k(GL), - - - ,\Pi_l(q):\PZ_l(qL)} :
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In the case of the Euler equations, the Riemann invariants are very simple
functions and, as we shall see in the next section, formulas describing simple
waves or contact discontinuities are easily obtained.

1.3.2. APPLICATION TO THE EULER EQUATIONS.

The Euler equations (1.1.10) can be written as

0 0 0 -
208+ 35D+ 3, 8@=0 (1:32.)

where
q = (p.pu,pv,E) =(41,42,43,94)"
f(q) = (pu,pu® +p,puv,(E +p)u)’
= (92.93/91 +P.9295/91-(qa +P)g2/ 91"
g(q) = (ov,pw,pv* +p,(E+pp)”
= (43,.9295/91.83/91 tP.(qa +p)g3/91)" (1322)
and (see 1.1.13)
p=(0—1 (E—%P(u2 +v)=(r—1) (qa— (g5 +65)/2q1)) - (1.3.2.3)
First, we notice the rotational invariance of the Euler equations.

THEOREM (1.3.2a).
The Euler equations are rotationally invariant i.e.

cosd f(q)+sing g(q)=T(¢)~' AT($)9) (1.3.2.4)

for all R and admissible states q€R*, where T(¢) is the following rotation
matrix:

1 0 0 0
cos¢ sing 0
T@®)= [0 —sin¢ cosp 0 (1.3.2.5)
0 o 0 1
PROOF.
The calculations to verify (1.3.2.4) are straightforward. O

In section 1.3.1 we have introduced the concept of hyperbolicity for a first-
order system of quassi linear equations in only two independent variables.
Similarly, we define:

DEFINITION (1.3.2a).
System (1.3.2.1) is called hyperbolic (with respect to ) if there exist, for all
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¢€R and admissible states geR*, a real diagonal matrix D(q,¢) and a non-
singular matrix R(g,¢) such that

A(q,9)R(9,9)=R(q,$)D(g,9) (1.3.2.6)
where

A(q,¢>=cos¢;‘jqﬁ(q)+sin¢§§(q)zcos¢A(q)+sin¢B(q). (132.7)
LemMA (1.3.2a).

If there exists a real diagonal matrix D(q) and a non-singular real matrix R(q)
such that

A(9)R(9)=R(9)D(q) (1.3.2.8)
for all admissable states q€R®, then the Euler equations (1.3.2.1) are hyperbolic.
PrROOF.

By differentiating the rotational invariance relation (1.3.2.4) with respect to ¢,
we have

A(g,9) = cospA(q)+singB(q)=T($) ' A(T($)9)T(9) -

Hence,
A(g:9) = T(®)™'R(T($)9)D(T$)9)R "' (T($)¢)T($)
= (T(®)"'R(T($)D(T($)9) (T($)'R(T(¢)q)) " .
By taking
R(g.,¢) = T($)"'R(T($)g), D(¢,4)=D(T($)q)
we see that (1.3.2.6) is valid. O

Thus, the Euler equations are hyperbolic if the matrix A(q):gqﬁ(q) has 4
linearly independent eigenvectors. Using the relation

T
=2, 2 B dw2t?), —u -l (1329)

v . s s
P alh 8q2 3q3 8q4

and the relations for total enthalpy H:

H:E—:E= ycjl + 2@ +v?) (13.2.10)
it is easily verified that
0 1 0 0
—w TN @HY) Gpw =1y y-1
Alg)= — ’ u o | (3211

u(z (=1 @ +v)—H) H=(=Du? ~—w yu
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Notice that A(q) only depends on u,v and c. The eigenvalues and correspond-
ing eigenvectors of A(q) are

M@ =u—c, M(q)=u, M(q)=u, M(g)=u+c (1.3.2.12)
and

Ri()=(, u—c, v, H—cu)T

Ry@)=(1, u, v, 3@ +v2)T

R3(9)=(0, 0, 1, v)"

R4(q)=(1, u+c, v, H+cu)" (1.3.2.13)
The eigenvectors are linearly independent and therefore we have found the fol-

lowing theorem:

THEOREM (1.3.2b).
The Euler equations (1.3.2.1) are hyperbolic with respect to t.

Now, we shall consider the Riemann problem for the Euler equations in one
space dimension:

0 0
Eq+—ii?f(q):0 (1.3.2.14a)
with
q x<0
q(x,0)= gr x>0 (1.3.2.14b)

where ¢; and g are constant states, and ¢, f(¢) are defined in (1.3.2.2).

We assume that there is a unique solution. As we have already seen
q(x,t)=q(x/t). 3

Although trivial, it is worth noticing that g(x,y,t)=¢(x/t) also obeys the Euler
equations in two dimensions

3 .2 9
a0 T 9/ D1 5,8@=0 (13.2.15a)
with initial values given by
q. x<0, yeR
q(x,y,0)={qk x>0, yeR - (1.3.2.15b)

We shall seek certain pairs (gz,gg) for which the solution of the Riemann-
problem (1.3.2.14) becomes very simple, e.g. a simple wave or contact discon-
tinuity. Therefore, we shall first investigate whether the eigenvectors
Ri(q), k=1,2,3,4, given in (1.3.2.13) are genuinely nonlinear or linearly
degenerate.
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THEOREM (1.3.2¢).
The eigenvectors Ry(q) given in (1.3.2.13) are genuinely nonlinear for k =1 and 4,
and linearly degenerate for k=2 and 3.

PrOOF.
Because

VA(9)= Vks(q)=Vu=%(—u,1,0,0) (1.3.2.16)

it is immediately clear that R;(g) and Rj(g) are linearly degenerate. Using
definition (1.2.22) of the speed of sound ¢, we see that

Vc=-2{;{pr—c2Vp} (1.3.2.17)
where Vp=(1,0,0,0)" and Vp is given by (1.3.2.9).
Thus
(TM@R@) = (ViR @) =7 (TP.R1@)+ 5 (V6 Ri(g)
——
= — 55 (1750
and

(VAs(g),Ra(q)) = (w,R4(q))+—2§c—(vP,R4(q»—i(w,m(q»

= +<
=+ 2P(1 +v)#0 .
Hence, R (q) and R4(q) are genuinely nonlinear [J .

Thus R;(g) and R4(g) correspond with simple waves while R,(¢) and R3(q)
correspond with contact discontinuities.

Riemann invariants are very useful for the construction of a simple wave solu-
tion or a contact discontinuity solution of the Riemann problem (1.3.2.14). In
the following theorem, the Riemann invariants corresponding with the eigen-
vectors Ry(g) are given.

THEOREM (1.3.2d).
The functions

a(g)=u+ ¢, a(q)=v, a3(q9)=s (1.3.2.18)

y—1
are Riemann-invariants corresponding with the eigenvector R (q).
The functions

Bi(@)=u, B(q)=p (1.3.2.19)
are Riemann-invariants corresponding with the eigenvectors Ry(q) and R(q).
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The functions

n(qQ)=u— Yil ¢ 12(9)=v, v3(g@)=s (1.3.2.20)
are Riemann-invariants corresponding with the eigenvector R4(q).
PROOF.
From (1.2.18) we deduce that

Vs= %—(Vp —2Vp). (13221
Furthermore

Vv Z%(—v,O, 1,0). (1.3.2.22)

With these expressions and with the expressions for Vp,Vu and Ve (see
1.3.2.9, 16 and 17) the calculations to verify this theorem become straightfor-
ward. O

Thus, if the pairs (gz,gg) of the Riemann problem (1.3.2.14) are such that

uL+ cL=uR+ CR s VR=VL ; SR=SL (13.223)

2 2
y—1 y—1
and

u; —cp <ugr —CR (1.3224)

then a simple wave solution, corresponding with R (g), exists, given by

q9 = qL if x/t<up—cp,
u+y_1c = u,_+y__1cL’
vV =
L if uy — ¢ <x/t<ug—cg (1.3.2.25)
s =5
u—c =x/t )
q = qr if x/t>ugr—cp

Notice that u —c=x/t follows from (1.3.1.13). This solution is also called a 1-
rarefaction wave. If (qz,qr) are such that (1.3.223) holds, while
u; —c, >ug —cg, the solution given by (1.3.2.25) corresponds with a multi-
valued solution. Then we speak of a compression wave. Allthough such a
compression wave has no physical meaning, it will be shown in chapter II that
allowing compression waves, an approximate solution of the Riemannn prob-
lem can be obtained which leads to an excellent upwind scheme for the Euler
equations. This scheme was introduced by Osher in 1982 [5].
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Similarly, if ¢; and gg are such that

YA CL=Ur— —) CR, VL=VR, SR=SL (1.3.2.26)
and
up +cp <ug +cg (1.3.2.27)
then a simple wave solution, corresponding with R4(q) exists, given by
q9=4qL if x/t<up +cp
u— =1 c=u,— =1 cL\
vV =
> if up +cp <x/t<ug+cg (1.3.2.28)
s =5
utc =x/t J
q = qr if x/t>ug+cg

This solution is also called a 4-rarefaction wave. If u; +c¢; >ug +cg, we have a
multivalued 4-compression wave.

Finally, if ¢, and gg are such that u; =ug , pp =pg then a contact discon-
tinuity solution, corresponding with R,(g), R3(q) exists, given by

qg=qr if x/t<up=ug

g=qr i x/t>up=ug" (1.3.2.29)

1.4. SIMPLIFICATIONS OF THE EULER EQUATIONS: THE TFP AnND TSP
EQUATIONS.

I. The Transonic Full Potential (TFP) equation.

The TFP equation is derived from the Euler equations by assuming that the
flow is steady, isenthalpic and irrotational. Before deriving the TFP equation
we shall show that a consequence of these assumptions is that the flow must
also be isentropic. This follows from the Crocco-theorem, which is derived in
the following way.

Choose the primitive variables u,v,p and p as dependent variables in the Euler
equations. Then the entropy s and the internal energy e are functions of p and
p. Assuming an ideal gas, these functions are given by:

=s(p,p)=c, In £~
s=s(p,p)=c oy

_ __1 p
e=e(p,p)=—— =.
PO=T"7 ",
After some algebraic manipulations, it is easily seen that
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de=-'%dp+;l—l . —:)-{dp—cldp}
Tds=—y_1_—1 . %{@—czdp}
hence
Tds-——de—-’;dep
which implies
TVs= Ve— “%Vp .
From the definition of total enthalpy H (see (1.2.1), (1.2.2)), it follows that
VH = Ve+%Vp—-’%Vp+%V(u2+v2)
= TVS"":;VP‘*%V(uZ +v2).

Using equation (1.2.10), we find

TVs=VH+-2v—2v(u?+v2)
Dt -
thus
ds _OH , du _
x  ox + ot v
9 _OH ,
ay By + o +ut (1.4.1)
: . v,
with ¢ the vorticity {= ™ + By

This equation is known as the Crocco theorem and it tells us that, in case of a
steady isenthalpic flow, the assumption that the flow is isentropic is equivalent
with the assumption that the flow is irrotational. Equation (1.4.1) is only appli-
cable in smooth flow field regions. In shocks the Crocco theorem does not
hold. But we know that in fluid particles passing through a shock the entropy
increases, depending on the strength of the shock. Hence, eq. (1.4.1) (which
holds again behind the shock) tells us that unless the shock strength is uni-
form, the vorticity behind the shock will not be zero. Hence, the irrotational
flow assumption is not compatible with the appearance of shocks. However, if
the component normal to the shock of the upstream Mach number M, is
sufficiently close to unity, the flow is almost isentropic; the entropy variation is
of the order of (M2—1)® (see (1.2.31) and (1.2.32)). Thus in case of transonic
flows with weak shocks, the irrotational flow assumption is a good approxima-
tion.
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Derivation of the TFP equation.
We assume that the flow is steady, isenthalpic, irrotational and thus isentropic.
A potential $=¢(x,y) can be introduced:

—33 v_aﬁ (14.2)
The continuity equation becomes
x (p—Q) (p—@) 0. (14.3)

Because the flow is 1senthalp1c and isentropic, we have
2

2
c 24,2y S o 2 4
- + 3t +v?)= Y (1.4.4)
J%ZE;L_ (1.4.5)
p P

(With oo we denote a freestream value at infinity). Using c¢2=vyp/p, we can
eliminate p and derive the following expression for p:
=L
b= {1+ 15102, (1 - L1 ) 7T (146)
uoo

where M uo,,/c(,o is the Mach number at infinity. Equation (1.4.3) with p
glven by (1.4.6) is the TFP equation in conservative form. The TFP equation
in non-conserative form is also well known and will be derived for complete-
ness. Define

2,242,009 0.
g =u+v (ax)2+(ay) (1.4.7)
then
c? _ —1
:2——1+-72—M§°(1 —(;‘1—)2) (1.4.8)
o0 [o¢]
and
2 1
p=pu{5) =1 (1.4.9)
With these expressions, it is easily seen from (1.4.6) that
dp= —Edeqz . (1.4.10)
C

Using (1.4.3) we have
pAp+Vp. Vé=0
thus

A¢+—7“Z’7 . V=0
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or
1
A¢——2c—2Vq2. Vé=0
ie.
- =Xy BV, g 1.4.11
( c—2)¢xx+( C2)¢yy —C_T‘ny_ : (1.4.11)

This equation with ¢? given by (1.4.8) is the TFP equation in nonconservative
form. The TFP equation is a second-order non-linear partial differential equa-
tion of mixed elliptic-hyperbolic type.

Besides the wrong modelling of strong shocks, another disadvantage of the
TFP equation is that contact discontinuities or slip lines cannot be modelled.
It can be easily seen that no contact discontinuity can appear in an isenthalpic
and isentropic flow.

Examples of discrepancies between potential flow solutions and solutions of
the Euler equations can be found in [1,6]. Even at quite moderate Mach
numbers, such as the NACA0012 airfoil at Mach 0.8 and an angle of attack of
1.25° large discrepancies were observed.

II. The Transonic Small Perturbation (TSP) equation.

The TSP equation is a simplification of the TFP equation and is therefore even
more restrictive for general applications. The TSP equation is derived in the
following way. Write the TFP equation as follows

(c2 —u)u, +(c? —vz)uy —uv(u, +v,)=0

—1 (1.4.12)
=gk -i—-YT—(u,z,o —(u2+v2))
Define
u = ug(l+u)
- . (1.4.13)
V = Uk

#,y are called “perturbation” velocity components. We assume that
|i|,|7 | <<1. Substituting (1.4.13) in (1.4.12) and neglecting terms containing
squares of the perturbation velocities, in comparison to those containing first
powers, we obtain the simpler equation

(1-M%)u, +v,=(y+ M2, i, +(y— )M, v, + M2,V (14, + ) (1.4.14)
where M o, =u o /Cop, Uy :% etc. The TSP equation is obtained from (1.4.14)

by neglecting the last two terms in the right-hand side. The first term of the
right-hand side of (1.4.14) cannot be neglected in general. For instance, in
transonic flow, where M1, the coefficient of u,, on the left-hand side,
becomes very small. Then it is not possible to neglect the first term on the
right-hand side of (1.4.14). Thus the TSP-equation becomes (U=¢x,v =)
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(=M% )+, =(r + DM b6 (1.4.15)
or

[(1= M2} =7 (+ DMZ 931 +y}, =0 (1.4.16)

Finally, if the term with ¢2 is neglected in the TSP equation (1.4.16), we
obtain the linear equation

(1= M%)+, =0 (1.4.17)

This equation furnishes a useful approximation only for flows in which M is
not close to 1 (subsonic or supersonic flows).
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Chapter 11
Finite-Volume Upwind Discretization

of the Steady Euler Equations

2.1. INTRODUCTION

The subject of this work is the numerical solution of the steady Euler equa-
tions in 2D. The numerical solution of the steady Euler equations consists of
two separate parts; the discretization and the solution of the system of discre-
tized equations. In this chapter we consider the discretization while a solution
method for the system of discretized equations is developed in the next two
chapters.

We have seen in chapter I that in general solutions of the steady Euler equa-
tions contain discontinuities (shock waves, contact discontinuities). At discon-
tinuities the differential form of the Euler equations is not valid. On the other
hand, the integral form is valid both at discontinuities and in the smooth part
of the flow field. This observation suggests that it will be better to base the
discretization on the integral form instead of the differential form. Let 2 CR?
be the physical domain in which we wish to solve the steady Euler equations
numerically. The differential form gives relations at each point (x,y) €, while
the integral form gives relations for each control volume " C{Q. The Euler
equations in integral form are

% [qav+ [{cosef(q)+singg(q)}do=0 V' CQ (2.1.1a)
[*3 o’

where
q=(p,pu,pv,E)"
S(@)=(pu,pu* +p, puv,(E +p)u)’
8(@)=(pv,puv,pv* +p,(E +p)v)” (2.1.1b)

and " is an arbitrary simply connected region in £, (cos¢,sing)=n is the out-
ward unit normal on the boundary 0Q*. Equation (2.1.1) is a direct conse-
quence of equations (1.1.1), (1.1.3) and (1.1.8) derived in chapter 1. Using the
rotational invariance of the Euler equations (see (1.3.2.4)) equation (2.1.1a) is
found to be equivalent with

di [gdv+ [T@) AT @)g)do=0 Ve CQ 2.12)
tﬂ' o

where T(¢) is the rotation matrix
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1 0 0 0

B cosp sing 0
T(¢)= 0 —sing cosp 0| (2.1.3)

0 0 0 1

To discretize the integral form, we subdivide the domain € into a finite
number of disjunct control volumes (or finite volumes). Just for practical rea-
sons (namely simple implementation) we will use only finite volumes that are
quadrilateral, and use only structured grids. A structured grid is characterized
by the fact that each interior finite volume has a common boundary with pre-
cisely four neighbours.

Different possibilities exist for the shape of the finite volumes. Triangular
volumes are a reasonable choice as well. The use of quadrilateral finite volumes
has the advantage that, on a smooth 2D grid, discretizations of the Euler equa-
tions in 1D can be generalized in a straightforward manner. As a consequence
of the choice of a structured grid with finite volumes we can order the finite
volumes such that the neighbouring volumes of &;; are €4y, @;;+1, Q-1
and ;. An example of a subdivision of a physical domain © in disjunct
quadrilateral finite volumes is given in fig. 2.1a where  is a windtunnel section
[12].

i ||||||.
mEImmNHmm .
Hiinijgyggd SUEE

[ !

FIGURE 2.1a. Subdivision of a windtunnel section in disjunct quadrilateral
finite volumes.

Once the domain £ has been subdivided, we approximate the integral form in
each volume &;;. Assume that at time ¢, the mean values of a solution

¢=q(x,y,t) are known in each control volume i.e. the set {g;;(¢)} is known
where

1
4/(0=5— [qCey.ndv (2.1.4)
ijg,,
here V;; is the area of €, ;. From equation (2.1.2) we see that

Vg 0+ [T@) AT@Hy0Mo=0 Vij).  (215)
80,

Hence, the space discretization is determined by the way the total flux
[ T@®) ' AT@)q(x.y,1))do
a0,
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is approximated. Due to the fact that the control volumes have a quadrilateral
shape, the total flux consists of four parts:

[ T@) AT @)q(x,p,1)do=
30,

= [ T@i+5)) ' T (@i+1,)9(x.p,1)do+

00y,

+ f T(ij+4) " T ($ij+1)q(x.p,1)do+

8.,

- f T($i— 1)~ AT ($i-1,)q(x.p,1))do+

0Q;_y,;

- fT(¢i,j—’/$)_lf(T(¢i,j—%)q(x’y’t))do (2.1.6)
o,

where 9%, ;=0Q; ;N3 +;; and ¢;1y; is the angle between the outward
unit normal on the boundary 3%, ; and the x-axis (see fig. 2.1b), and simi-
larly for the other three boundaries.

(cos i’ sin ¢m/2,)\
|

¢|~I/Z.]

FIGURE 2.1b. Geometry of a control volume &; ;.

A very simple way to approximate the flux through 9%, 4 ; is
| T@i45))" AT @i+ 1,)q(x.p,1))do~
a0

i+ )

Y O B (A I 7 O (O R RN (3)) (2.1.7)

where /;;; ; is the length of boundary 9%, ;. Formula (2.1.7) leads to a cen-
tral difference scheme on a Cartesian grid and is second-order accurate if the
mesh is sufficiently smooth. This scheme is not resistent to high frequency
oscillations between odd and even mesh points and dissipative terms must be
added to suppress spurious oscillations (wiggles) of this type. Moreover, dissi-
pative terms are also necessary to prevent wiggles in the neighbourhood of
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shock waves. The numerical solution of the (steady) Euler equations by a cen-
tral difference scheme with additional dissipative terms is advocated by Jame-
son [9,10]. An important drawback of Jameson’s scheme is that the dissipative
terms must be tuned, i.e. the amount of dissipation (or artificial viscosity)
depends on the problem considered. But certainly, at the moment, Jameson’s
scheme is the most widely used scheme for solving practical aerodynamical
problems. Another approach, which becomes more and more popular, is given
by upwind schemes. Upwind schemes are based on the Riemann-problem and
can be interpreted in the following way. First, assume that each state g; () is
constant in &; ;. Then, at the boundary 39+, the states g; ;(r) and g; +1,;(t)
meet in a discontinuity. Fix the states g; ;(r) and g +,;(¢) at time : g;; =¢;;(?)
and qi+1,j =qi+ ],j(t). Notice that

p P
_|eu| pu N
T($i+4,)4i,j= E: =qij 5 T(i+u,)qi+1;= B ={gi+1,j (2.1.8)
E ij E i+1l,j

where # denotes the velocity component normal to 9%; . ; and v denotes the
velocity component tangential to 9%, 15 ; (see fig. 2.1c).

FIGURE 2.1c. The boundary 9%, ; with local cartesian frame (x,p)-

With respect to a new Cartesian frame (x,y) (see fig 2.1c) we consider the fol-
lowing Riemann-problem:

0 ~, 0 g~
) (2.1.9)
e 4ij=T(Pi+%,)4i x<0
x0=1. B
1 qgi+1,;~= T(¢i+:/,,,~)q.~+1,, x>0
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As we have seen in section 1.3.1, the exact solution of (2.1.9) is a similarity
solution; g(x,t)=gg(x/t). Thus the state at x =0, given by gg(0), is constant
for all 7>0. Then the flux at x =0 becomes f(qr(0)). Notice that f(gr(0))
represents the amount of mass, x-momentum, y-momentum and energy tran-
sported per unit of length and time across 9%; 44 ; from @;; to ;4 ;. There-
fore, the amount of mass, x-momentum, y-momentum and energy transported
per unit of length and time across 0%; ;5 ; from §; ; to ;1 ; is

1 0 0 0

0 cospi+y; —singi+y; 0 1=
0 sing;+y; cospi+y; O SGrO)=T($i+4,)" f(gr(0)) . (2110}
0 0 0 1

This motivates the following approximation, as an alternative for (2.1.7):

[ T@i+4)) " AT @i+4,)9(x,p,1))do~

0.y,

by T(di+15) ' f(qr(0)) (2.1.11)

where gr(x/1) is the exact solution of (2.1.9).

Formula (2.1.11) leads to the upwind scheme of Godunov [3,28] and is first-
order accurate, provided that the mesh is smooth enough. Godunov’s scheme
achieves high resolution of stationary discontinuities if the discontinuity is
aligned with the grid. Then, the resolution is perfect in the sense that a discon-
tinuity has only one interior grid point (i.. a finite volume). But Godunov’s
scheme has some severe disadvantages. The flux calculation (2.1.11) requires
too much computational effort. The computation of the state gg(0) requires the
numerical solution of a nonlinear algebraic equation [19]. Furthermore, the
flux across 921 ; is not continuously differentiable with respect to the states
¢i; and g; ;. Differentiability of the flux is very desirable for the relaxation
method for solving the system of discretized equations, as we shall see in
chapter III. Due to these drawbacks of Godunov’s scheme, new upwind
schemes have been developed which are all based on an approximate solution
of the Riemann problem (2.1.9). To introduce these schemes, we again con-
sider the Riemann problem

d d _
at + axf(q)_o

g %<0 2.1.12)

Let fr(qr,qr) approximate f(qr(0)) where gr(x/t) is the exact solution of
(2.1.12). The function fz:R*XR*-R* is called an approximate Riemann solver
or numerical flux function. Several approximate Riemann solvers have been
proposed.
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Well known are the approximate Riemann solvers proposed by Steger and
Warming [22], Van Leer [27], Roe [18] and Osher [16,17]. With a given approx-
imate Riemann solver fz the flux across the cell boundary 9%, ; is approxi-
mated by

| T@i45))" ST (@i 5,)9(x,p,0))dor
2.,
ligis T@iv )" SROT @i+, T(Pi 5,05 +1,7) - (2.1.13)

Notice that if fz(qz,qr)=/f(qr(0)) with gg(x/t) is the exact solution of (2.1.12).
then (2.1.13) is equivalent with (2.1.11) i.e. Godunov’s scheme.
Using (2.1.5), (2.1.6) and (2.1.13), we arrive at the following semidiscretization:

Vs g+ sy T )™ FrT @1 M1 O TG, i1, O+
Ty ) fr(T 1y 1) O TG0 11 () F
~ by, T@®i—15,)) " fR(T(@i— 15,09 —1,;(), T(Di—,1)g;, /(D) +
T ) Tr(T 1)y 10, TGy () =0.(2.1.14)

The term %qi' ;() must be approximated by a time integrator to solve the
time dependent Euler equations. But in this work we restrict ourselves to the
numerical solution of the steady Euler equations. Hence, the term ad?q,-, (D=0,

and we obtain the following nonlinear system of discretized equations
G Tid SR (TG0 > T+ 6,90 +1,5)

e Tij s wfo(Tjr iy Tij+ 5gij+1)

~bi—y Ty i fR(Ti— 3,45 -1, Ti— 1,i90.7)

—b s T ufo(Ti j—u4ij-1>Tij- 49:)) =0 (2.1.15)
where

Tity;=T(@i+4,)

T j+u5=T@ij+4) -
Throughout the remainder of this chapter, we shall use this abbreviated nota-
tion for T(¢;+ ;) etc. The system of discretized equations in the interior of the
grid is determined completeldy after the construction of an approximate
Riemann solver fz:R*XR*~R".
The construction of an approximate Riemannn solver is the main topic of the
next section. It will appear that, for our purposes, Osher’s approximate
Riemann solver is the best.

In section 2.3 we consider the treatment of boundary conditions. Just as the
Riemann problem is the underlying physical model for the flux computation at

(2.1.16)
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interior finite volume boundaries, the Riemann boundary problem is the
underlying physical model for the flux computation at finite volume boun-
daries which are part of the boundary of the domain .

In section 2.4 we consider the linearization of the discretized equations. Local
linearization is used in the nonlinear relaxation method for solving the system
of discretized equations.

In section 2.5 we consider the accuracy of the space discretization. It will
appear that the space discretization (2.1.15) is only first-order accurate. First-
order accuracy is too low in regions where the flow is smooth, and for the
resolution of oblique (with respect to the grid) shocks or contact discontinui-
ties. Therefore, the scheme is extended to second-order accuracy. In general,
solutions of second-order schemes suffer from spurious oscillations in the
neighbourhood of discontinuities. To prevent these oscillations a monotonicity
concept is introduced and it is shown that it is possible to construct monotone
second-order accurate schemes. Solutions of monotone second-order accurate
schemes are second-order accurate in smooth parts of the flow field and admit
steep oblique discontinuities without showing under- or overshoot.

In the publications [7,8,20,21] a large part of the contents of this chapter can
be found.

2.2. APPROXIMATE SOLUTION OF THE RIEMANN PROBLEM
2.2.1. GENERAL OBSERVATIONS

In this section we concentrate on the approximate solution of the Riemann
problem. First, we consider the Riemann problem for a scalar hyperbolic
equation and then for a hyperbolic system. Furthermore, we distinguish linear
and nonlinear equations. In the linear case, an approximate solution of the
Riemann problem is not necessary; an exact Riemann solver is easily obtained.
In the nonlinear case, we generalize the exact Riemann solver of the linear
case. The generalization can be performed in several ways and leads to
different approximate Riemann solvers. The most simple generalization is the
flux-splitting method; examples for the Euler equations are the method of
Steger & Warming [22] and Van Leer [27]. A more refined approach is the
flux-difference-splitting method; examples for the Euler equations are the
method of Roe [18] and Osher [16]. We shall prefer Osher’s approximate
Riemann solver, which is described in detail in section 2.2.2.

I. Approximate solution of the Riemann problem for a scalar hyperbolic equation.
Consider the Riemann problem

%qus@;f(q):O Q.2.1.1)

with
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q x<0
q(x,0)= qr x>0

and ¢:RXR*HR,feC!:RR. First, we consider the linear case i.e. f(9)=aq
where aeR is constant. Then g is constant in the characteristic direction

ix—:a. The exact solution of (2.2.1.1) is

dt
qr f x—at<0
q(x,t): qr if x—at>0 (2.2.1.2)
Thus
qr ifa>0
90.0=140 if a<0 (22.1.3)

and f(q(0,r))=a* g, +a~ qgr where a* =max(a,0), a~ =min(a,0). Hence, the
exact Riemann solver is

fR(qL,qR)=a+qL+a_qR. (2214)
In the nonlinear case, the exact Riemann solver is also very simple when f(¢)

has the property that %f(q)?O VgeR or %f(q)<0 VgeR. From

(2.2.1.1) we see that in the characteristic direction a4 (9), g is constant.
at  dg’ 1

Hence, if % f(9)=0 VgeR then the exact Riemann solver is
Jr(qL,qr)=f(qL) and if —;—f (9)<0 VgeR the exact Riemann solver becomes

simply fr(qL,qr)=f(qr) is result motivates the flux splitting method where
the function f (¢) is split in a forward and a backward flux:

Q=@+ @ (22.1.5)
where

diqﬁ (q)>0;diqf‘ (9)<0 VgeR. (2.2.1.6)
The approximate Riemann solver fz(qy,qr) is taken to be

frqr.qr)=1"(qL)+f (4r)- (22.1.7)

In the following example, we show how to split the function f(g). Further-
more, we show the difference between the exact Riemann solver and the
approximate Riemann solver (2.2.1.7), see also [28].

EXAMPLE (2.2.1a). The inviscid Burgers’ equation.

We consider (2.2.1.1) with f(q)="%¢?. With this choice for f, eq. (2.2.1.1) is
the inviscid Burgers’ equation. The function f(g)=%gq* can be split in a for-
ward and backward flux as follows
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f@=%¢*=f*(@)+f (q)

where
fF@Q=%q" Y [ (@=%{q }
q* =max(¢,0) ; ¢~ =min(q,0).

Then the approximate Riemann solver becomes

fr(qL.qrR)=f"(qu)+f (qr)=¥{qi }* +%{qx }-

It is easily seen that fz(qy,qr) is continuously differentiable.
In this case the exact solution of (2.2.1.1) is not difficult to obtain. Notice that

in the characteristic direction —d—t=q, q is constant. Let us therefore distin-

guish the cases g, <qg and g, >qgr. When g, <¢qr the exact solution of the
inviscid Burgers’ equation is the simple wave (or rarefraction wave) solution
q ifx/t<gq
qx,)=<x/t if g <x/t<qr
gr f x/t=¢qg .

When g; >gr the exact solution is a shock wave. From the Rankine-Hugoniot

relation (1.3.1.16) it follows that the shock speed s = % is

s=£= (gL —qk)
At 9L —4qr
Hence, the exact solution is
qL le/l<1/2(qL+qR)
150= 14 if x/t>YxqL +qr) -
From these exact solutions it can be derived that the exact Riemann solver
f®(qL,qr) becomes
SR (qL.qr)=max{%(q} ), %(qx )*}.
Of course, f%(qr,qr) corresponds with the Godunov scheme for the inviscid
Burger’s equation. The function f%(¢.,qg) is not continuously differentiable.
Now, we show that a steady shock has only one interior grid point with
Godunov’s scheme and two interior grid points with the flux splitting scheme.

Consider a sequence {g;};cz. This sequence is a steady solution of Godunov’s
scheme when

JR(4i,qi+1)=/K(gi-1,q;) Viel.
A sequence {g;} of the form

=YAqL+qr)

q9i=19m i=0 (2.2.1.8)
qR i=1
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is a solution of Godunov’s scheme when

f(qL)=fx (qL.9m) = fX (qm,9R)=f(4r)
e
g1 =max(%{qi *, %(qm}))=
=max(%4{qi )*, %{qr }*)="%qk- (2:2.19)
From this equation we see that
<0 = gu=qL, r=qL
9r>0 = gm=qr, 9L=qr

Thus, a shock structure is only possible when g, >0,9r <0,gr = —q.. Equa-
tion (2.2.1.9) is fulfilled for all gr <qp<q.. Hence, we have a shock with one
interior grid point.

A shock structure with two interior grid points is not possible. The deriva-
tion is analogous with the derivation that a three point shock structure is not
possible for the flux-splitting scheme, as is shown further on.

A sequence of the form (2.2.1.8) is a solution of the flux splitting scheme
when

g1 =%{qL Y +%qu )* = %{qi Y’ + %(qr )} =Ygk (2:2.1.10)
From this equation we see again that

9.<0 = gu=4qL, r=4qL

9r>0 = gu=qr, 9L=4r

Thus, a shock structure is only possible when g, >0,g98 <0,9r = —q.: Equa-
tion (2.2.2.10) is fulfilled only if ¢, =0. This is a special case of the general
shock structure with two interior grid points. A sequence of the form

g i<—2

qqa i=—1
9%~ g5 i=0

qr i=1

is a solution of the flux-splitting scheme when
Yoqh =Ygl )P +¥4(qa ) =4qd Y +4qs )} =
=44(gi )+ ¥Mqr ! =Ygk @211
From this equation we see that
9.<0 = 94=q1, 98=qL 9r=qL
4r>0 = gs=qr, 94=9r» 9L=9r
thus, a shock structure is only possible when ¢, >0,z <0,qg = —¢,. Equation
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(2.2.1.11) is fulfilled when g,>0,qp<O0,%q% +%q%="4qi. Then, we have a
shock with two interior grid points. We shall show that a shock structure with
three interior grid points is not possible. For such a structure we must have

Yoqt =Ygl Vo + 15(qa VP =g Y + (g5 ' =
=Yqs P+ 14qc ) = 1(qd P + ¥4(gr ) = Yogk- (221.12)

When ¢;<0, or ¢g>0 then ¢4=¢p=qgc=qr=qgr- Thus, suppose
q.>0,qr = —¢1.<0. Then (2.2.1.12) is fulfilled when g, >0,gc <0 and

Vgt =Y5qa + ¥qp ) =¥qE )’ +Yeqe = Viqk
Thus gp>0=¢q,=¢q; and ¢p<O=qc=qgr. Hence, no shock structure with
three interior grid points is possible.

I1. Approximate solution of the Riemann problem for a hyperbolic system.
Consider the Riemann problem (1.3.1.7) for a general hyperbolic system.
First, suppose f(q) is a linear function f(q)=Aq where A4 is a constant n Xn
matrix. Then the exact solution is (see example 1.3.1a,b):

goon)= S (BHE A1) +a(1— Hx—AO)R,
i=1

n n
where g, = Y a;R;,qr = D, BiR;. Suppose \| < - - - SN <O<MA 4 < - - <A,.
i=1 i=1

Then

q(0,1)=§BiRi+ i a;R;. (2.2.1.13)
i=1 i=k+1
and
f(q(0,1))=A44(0,1)
:iﬂi)\iRi'f' i oA R;. (2.2.1.19)
i=1 i=k+1

Define the nonsingular matrix R=(R; - - - R,) and the diagonal matrix D by
D;=M\,i=1,...,n. Thus A=RDR™'. Define the diagonal matrices
D*,D” and |D| by

Di-lt- :A,+ ;D"— :Al_’IDlll:lA'I l:1, R
where A" =max(\;,0),A; =min(A;,0). Let

AY=RD*R™ 1,4 =RD"R"! and |[4|=R|D|R"".
Hence A=A +47,|4|=A% —A~. We find

n n n
A+qL =A +(2(1,~R,‘): Ea,-}\f R,': 2 a,}\,‘Ri (221153)
i=1 i=1 i=k+1

and



42

n n k
A" gr=A4" (_ng,R,-)= glﬁ,-)\,-— R;= .gl,B,}\,R,- (2.2.1.15b)

Combining (2.2.1.14) and (2.2.1.15) we find that
f@O))=4"q.+A4 qr (2.2.1.16)

Thus, the exact Riemann solver is

fr(qr,qr)=A g+ A4~ qr="{Aq +Aqr—|A|(gr —qL)} (2.2.1.17)

This expression is a generalization of (2.2.1.4). Thus, even for systems, the
exact Riemann solver is easily obtained when the equation is linear.

Finally, we have to consider the Riemann problem for a general nonlinear
hyperbolic system. The most simple approach is the flux splitting method
where f:R"-R” is split in a forward flux f*:R"-R" and a backward flux
f~:R"-R" such that

f@=f"(@+f (@) YVqeR" (2.2.1.18a)

and

é{g— has all eigenvalues =0

égq; has all eigenvalues <0

Then, the approximate Riemann solver fz(g.,qr) becomes

frqL.qr)=f" @)+ (gr) (2.2.1.19)

This expression can be considered as a generalization of the scalar case
(2.2.1.7) and the linear case (2.2.1.17).

The splitting of f(¢g) in a forward- and backward flux is not unique. Flux-
splitting methods for the Euler equations have been proposed by Steger &
Warming [22] and Van Leer [27]. In contrast with the Steger & Warming
flux-splitting, Van Leer’s flux-splitting leads to a continuously differentiable
forward and backward flux. As noted before, differentiability of the approxi-
mate Riemann solver fz(qr,qr) is desirable in the relaxation method for solv-
ing the system of discretized equations. (Newton’s method is applied in the
relaxation method). Therefore, Van Leer’s flux splitting method is preferable
to Steger & Warming’s method. The requirement that fr(qz,qr) is continu-
ously differentiable is very restrictive. Only Van Leer’s method and Osher’s
method result in a continuous differentiable approximate Riemann solver, the
other well known approximate Riemann solvers of Steger & Warming and Roe
do not.

(2.2.18b)

Osher’s method can be seen as a refinement of the flux splitting method and
can be understood in the following way. Because (1.3.1.7) is a hyperbolic sys-

tem, the matrix A(q)ngﬁ(q) has a linearly independent set of eigenvectors
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R(g), - - . ,R,(gq) with corresponding eigenvalues A (), . . . ,A,(q) labeled in
increasing order Aj(g)< ‘--<AMA,(g). Define the nonsingular matrix
R(9)=(Ri(9), - - . ,Ry(q)) and the diagonal matrix D(q) by (D(q))i; =Ai(q)-
Just as in the linear case, introduce the diagonal matrices D *(¢),D ~(q) and
ID|(q):

DT (@)i=N"(9) ; D™ (@)i=N (@)

(IDI@)i=I(g) ;i=1,...,n (2.2.1.20)
where A;* (9)=max(A;(¢),0);A;” (¢)=min(A;(¢),0).
Introduce
A*(9)=R(@)D*(9)R "' (g)
A~ (@)=R@D™ (R '(9)
l4|(9)=R(@)ID|(R ' (9)=4"(9)—4"(9) (2.2.1.21)
Suppose there exist functions f*(¢) and £~ (¢) such that
Q=" @+f @ (2.2.1.22a)
and
"‘Lf*( )=A47( )'ij‘( )=A4"(q) (2.2.1.22b
dq q q); dq q q) .2.1.22b)
Then, a natural approximate Riemann solver is
Sr(qL.qr)=/" (qL)+f (qr) (2.2.1.23)
which can also be written as
frlqL.qr)=f"(qL)+ /" (4r) (2.2.1.24a)

qr
=flg)—f(qu)+f (gr)=flg)+ [A ™ (g)dq (2.2.1.24b)
qL
4r
=flgr)—f" (gr)+ 1" (qL)=flgr)— f A*(q)dg (22.1.24c)
q

['/3
=%{flqL)+flgr)~ [|A(q)|dq} (2.2.1.24d)
q

and the integrals in (2.2.1.24b,c,d) are independent of the integration path.
Notice that the integrals are evaluated in the state space ie. in R". Unfor-
tunately, in general no functions f*(gq) and f~ (g) exist such that (2.2.1.22) is
valid. This is equivalent with the observations that the integrals

qr qr

[A7(q)dq and [A™(g)dq (2.2.1.25)
9 9

depend on their integration path. Now, Osher’s scheme is defined as
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qr
fe(qL.gr)=flg)+ [A ™ (9)dg (2.2.1.26a)
9
qr
=flgr)— [A7(9)dq (2.2.1.26b)
q
qr
=%{f(q)+ flgr)— [1A41(9)dq) (2.2.1.26¢)
q.

where the integration path is chosen in such a way that the evaluation of
(2.2.1.25) is easy.

Suppose that the states g, and gg can be connected with each other by an
integration path I', which is tangential to the eigenvector Ry i.e.

ij%(s):Rk(q(g»

(2.2.127)
q(0)=qz; q(Er)=4r

Then, we see that

gr 13 o
[A™(@)dg= [A~ (q@)5Ldé
b d¢

qL

&
= [A™ (g®)Ri(q(§))dt
0

&
= [ Ak (@E)Ru(q(®)dé (22.1.28)
0

Let us distinguish the following possibilities:
A M\(q(9) does not change sign along the integration path.
If A(q(§))=0 VE€(0,€g) then

4r
j A~ (¢q)dg=0. (2.2.1.29)
q.

If M (9(§)<0 VE€(0, &) then

qr &
[A7(9dg= [N (gE)Ru(q(®)dé
2 %
{r
= [M(q@)Re(q(®)dé
0

§x
= [A(@E)R(q(®))dE
0
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N
= (g @dt=flgr) - flgr) (2.2.1.30)
o 94 d¢

B A (q(%) changes sign along the integration path.
Suppose Ax(q(§€)) changes sign only once at {§=§s5 0<{s<<{z. Define

gs =q(&s).
If Me(q(8))=0 V£€(0,£5) and A (¢(£)<0 VEe(és,€r) then

qr &
[4~ (@)dq= [ A (g®)Re(q®)dé
q. 0

&
= [M(G@)Re(qE)dE= flgr) — f(gs) (2:2.1.31)
&
If M(g(8)<<0 V€€ (0,€5) and Ai(q(§)=>0 VE€(£s,ér) then

qr &
JA™ (@dg= [\; (g@)Ri(g(@)dé
q. 0

&
= [M(g@)Re(q@)dE=1(g5)— fqr) (22.1.32)
0

Thus, when the states ¢; and gg can be connected with each other by an
integration path which is tangential to the kth eigenvector Ri(g) then Osher’s
approximate Riemann solver is

flqu) if A, =0 along T
f(qR) if Ak <0 along I‘k

Je@90=1 fige)figs)+ fig) if M@ >0, Melg)<0, Mlgs)=0 @*13)
£(gs) if MA(qL) <0, Ai(gr)>0, Ai(gs)=0,

where we have assumed that A, changes sign along I, at most once. The
point g is called a sonic point. If the eigenvector R(q) is genuinely nonlinear
(see definition 1.3.1.c) then

digxk(q(a):vxk(q(s»;‘jg(a

= VA (@@)R(9(§)70 (22.1.34)

and this implies that A, is monotone along I'y. Thus if Ri(q) is genuinely
nonlinear then indeed A, changes sign along I'y at most once. If the eigenvec-
tor Ry(q) is linearly degenerate then Ay is constant along I';. Then, we find

@ 0 if A,>0

qf A”@4=1 fa)— flgw) if Ae<O (2.2.1.35)
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and
flqu) if A>0
JR@LIR= 1 fige) if A <0 (2.2.1.36)

A general pair (g;,4g) can be connected by a continuous integral path T
which is decomposed into n subcurves I'; :

n
r=yrx (2.2.1.37)
k=1
where each subcurve T is tangential to the eigenvector Ry (q). The subcurve
T, starts in gg=qo and the subcurve I', ends in gg=g,. Define the n —1
points of intersection gx/,> k=1, ...,n—1by

il VIR VESE (2.2.1.38)

The intersection points are easily found with the use of Riemann invariants
(see definition 1.3.1d); along the subcurve I, the Riemann invariants
Yk, .., ¥ 7! (Yk:R"-R) are constant, then

Y Ge—1m) =V (Gm)s k=1, .. o0 (2.2.1.39)
In this way, we obtain n(n—1) equations for the n(n—1) unknowns
q1/ns - - - sGn—1/n- Once the points of intersection are known, the integrals in

(2.2.1.26) along each subcurve T are evaluated in the manner described by
(2.2.1.27-32).

This approximate Riemann solver fr(qr,qr) differs somewhat from the
approximate Riemann solver proposed by Osher. Osher proposed a reverse
ordering of the subcurves T, ie. the subcurve T', starts in go and the sub-

curve T'; ends in ¢;. Then n —1 points of intersection gy/n,k=1,...,n -1
are defined by
Gem=Tn—k+1NTh—x k=1,...,n—1 (2.2.1.40)

and are found by

U k1@ —1m) = V0 —k +1(Grrm)iVa k1@ —1m) =2~k +1(Germ) *
Vb 1@ —1n)=Vek+1(qem); k=1,...,n (2.2.1.41)

The computation of the integrals in (2.2.1.26) along each subcurve I, remains
the same. The only difference is the reverse ordening of the subcurves.

We call the ordening corresponding with (2.2.1.38,39) the P-(Physical) vari-
ant and the ordening corresponding with (2.2.1.40,41) the O-(Osher) variant.
The P-variant is more natural in the sense that when the states (q.,qr) are
such that the exact solution of the Riemann initial value problem contains no
shock waves then the flux fz(qz,qr) corresponding with the P-variant is exact.
On the other hand, Osher claims that (in the case of the Euler equations) his
ordening rules out overshoot in the two point transition region between the
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constant states of a steady discrete shock [16]. However, it is our experience
that both for the O- and P-variant a steady shock is monotone (no overshoot)
and has two interior grid points. The construction of the integral path T
corresponding with the O- and P-variant are depicted in fig. 2.2.1a for n =3.

qu3 T, 923 913 I, 923
v, v, ¥
¢ T, T, T
vl i, ¥ ¥, ¥ v vt
qo=qL P-variant 91=4r 9o=qL O-variant 91=4r

FIGURE 2.2.1a. The integral path I' corresponding with the P- and O-variant
for n=3. The Riemann invariants y},y}:R*»R are constant
along the subcurve I';,k=1,2,3.

Finally, we have to explain why Osher’s approximate Riemann solver (with
the O- or P-variant) is the most attractive for our purposes. In the following
table some important properties are listed for several well known approximate
Riemann solvers for the Euler equations.

Godunov  Osher Van Leer Roe

1 fr(qr,qr)is C'. no yes yes no

2 Number of interior one two two one
grid points in a
steady shock.

3  Good resolution of yes yes no yes
a steady contact
discontinuity.

4  Physical inadmissi- yes yes yes (no, but can
ble expansion be repaired)
shock is excluded.

5 Computational cost high low low low

of fr(qr,qr)-

As noted before, we need differentiability of fr(qr,qr). Furthermore, we need
the property that a shock has at least two interior grid points. If a shock has
only one interior grid point the discretized equation becomes singular at a
shock (see equation (2.2.1.9); if g, >0,qg = —q, the equation is satisfied for all
gum Wwith gr<qy<qp). This is disastrous for a (local) relaxation method for
solving the system of discretized equations. Therefore, Roe’s and Godunov’s
method do not suit our purposes. A choice must by made between Van Leer’s
and Osher’s approximate Riemann solver. We prefer Osher’s method because
it has the ability to resolve steady contact discontinuities. Furthermore, as we
shall see in section 2.3, with Osher’s scheme, the flux computation at the
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boundary of the domain can be performed in a way fully consistent with the
flux calculation at interior control volume boundaries. The only disadvantage
of the Osher scheme is its complexity (from a computational point of view).
In the next section we shall show that the computational complexity can be
reduced significantly by choosing suitable independent variables. Both the O-
and P-variant are considered.

2.2.2. OSHER’S APPROXIMATE RIEMANN SOLVER FOR THE EULER EQUATIONS.
Consider the Riemann problem (1.3.2.14) for the Euler equations. In the

preceding subsection we have seen that Osher’s approximate Riemann solver is
given by

qr
fr(qL.9R)=1qL)+ [A™(9)dq
qL
qr
=flgr)— [A™ (9)dq
qL

qr
=%{flqL)+flgr)— [14(9)ldg) (22.1)
qL

The integrals are evaluated in the state space R®. Let the state g be
represented as ¢ =(c,u,v,z) where z is the unscaled entropy:

z=In (&) (2222)
py
First, consider the P-variant of the Osher scheme.

P-Variant.
Define g9=¢q.,q1=qr and the intersection points

qua=T1NTy; q24=T2NT3; q34=T3NT, .

Due to the fact that R,(q) and Rj(g) are linearly degenerate (theorem 1.3.2.c)
and A;(¢)=A3(g)=u, we can omit the intersection point g;/4 because

_ f(q2/4)— flq1/a) if u<0
I‘/A (9)dg = 0 if u>0
_ £(q3/4)— f(q2/4) if u<0
rfA (9)dq = 0 if u>0

Thus

[ A~ (q)dg= [A~(g)dg+ [A™ (9)dq
T,url, I, T,



f(q3/4) —f(q1/a) f u<0
0 if u>0
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Hence, fz(qr,qr) does not depend on g3/4. Therefore, we redefine the inter-

section points

913=91/4» 92/3=43/4-

Thus ¢y,3 and g, are connected by I'j,g/3 and g, are connected by T4y and
q1/3 and q,,3 are connected by an integral path that is composed of I' UT}.
Using the Riemann invariants mentioned in theorem (1.3.2.d), we find that

up+ 7‘2"1 Co u.,3+ 2 —Cn= =¥
Yo=Vi3

Z0=Z1/3

Uy3=uy3=uy

P13=P3

_ 2
27 R 27 Rkl o =%
V2/3=V1

22/3=2)

We have 8 equations for the 8 unknowns ¢,,3 and gy/3.

213=20, Z3/3=21, V1/3=V0, V2/3=V)|. Because

& 1
P=P(c,2)=(v’cT,) =,
P13=P3 leads to
€2/3

¥4
=exp( 2/3 l/3) ep(

€173

)—a
We arrive at the linear system

c13=Y¥

2
+_
uy ‘y—l

2
— — \I,
Uy y—1 €2/3 1
C23=acyy3
This system is easily solved:

y—1 Yo—V¥
i3 =T (—(1)+a1)

Cy3 = acyy3

(22.23)
We obtain directly

(2.2.2.4)

(2.2.2.5)
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_ ‘I’] +a\I'0
S P
A meaningful solution does not exist in the unlikely case that ¥, — ¥, <0.
Thus the evaluation of just one exponential and some arithmetic operations
are sufficient for the computation of ¢;,3 and g3,3. This is made possible by
the representation of the state g as ¢ =(c,u,v,z).
For the evaluation of the integrals in (2.2.2.1) we may need the sonic points
on I'; and I,.
A sonic point ¢ exists along I'y when

(2.2.2.6)

A1(g0) Mi(q1/3)=(uo —co) (ug—c1,3)<0 (22.2.7)
and is found by
ug+ 7_2_1 co=ud+ yil 3
vo=73%
z9=2%
uy—c3=0 (22.2.8)

Thus v =vg,z$ =z, and

W=c}= 5—;—}(“0 t—tra). 2.229)
A sonic point g} exists along I'y when
Aa(92/3) Aa(g1)=(up +c2/3)ur +¢1)<0 (2.2.2.10)
and is found by
ul— - ck=u;— — )
vi=v,
zl=2z1
ub+c=0 (2.2.2.11)
Thus vi=v,;,z5=z, and
u§=—c§=:;}(u|—yilcl) 222.12)

With these results the evaluation of the integrals in (2.2.2.1) becomes straight-
forward. The result is summarized in table 2.2.2a. The verification is left to
the reader.
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Uy <Co,U,>—¢, Uy >Co Uy > —C) Uy <Co,t) <—¢C, Ug=>Coh) < —C
i<ty Sigd) S1q0) S —figh+Aq) | f9)—figh)+1q))
0<uy<cys fqus) f(‘h)—ﬂ‘ﬁ)'*'f(qm) ﬂqlll)_ﬂq&)+ﬂ‘ll) f(‘lO)_ﬂqs)"'f(‘Il/J)

—f(q§)+ﬂ¢l:)
—C23<uy<O0 | flgas) S@)—AAR)+f(g23) | f923)—fgh)+1q)) | £1g0)—flgd)+1q.)

—flgh)+1q,)
Uy<—Cy3 flgh) f(q0) —ﬂq§)+ﬂq§) f(q) ﬂ‘h)—ﬂ'ﬁﬁﬂq.)

Table 2.2.2a. Osher’s approximate Riemann solver fr(q¢,41) for the Euler
equations: P-variant.

Table 2.22a is to be read in the following way: if, for instance,
(uy>—cy,ug>co and 0<uy<cy3) then fr(90,91)=/£(g0)— f(43)+ f(q1/3)-

The case ug>co,u;<—c, is very unlikely while the case ug<<cg,u;>—c,
is the common subsonic situation. Then fr(q¢,4:1) requires only one flux cal-
culation. The case (ug>cg,u;>—c; and uy<<0) is unlikely too, just as the
situation that (ug<cg,u; <—c; and uy>0). The situations (ug>cg,u;>—c,
and uy>cy/3) and (ug<co,u;<—c; and uy<—cy,3) correspond with super-
sonic flow. The situations (uo>cg,u;>—c; and O0<uy<c,;) and
(ug<<co,uy<—c; and —cy/3<uy <0) correspond with a shock wave.

From table 2.2.2a it is easily seen that fz(¢9,41) is continuous.
The flux

f(@)=(pu,pu® +p,puv,(E +p)u)
is computed from the state g =(c, u, v, z) as follows:

2 (@)—
a:C_Y-;pzexp( lnya_l 2,

p=ap;E=’/zp(u2+v2)+p/(y—l). (2.2.2.13)

Thus, in the common situation where the computation of fz(¢9,4:) requires
only one flux computation, the computation takes two exponentials, one loga-
rithm and some elementary operations and Boolean evaluations. This is not
true for the O-variant, as we shall see.

O-Variant

Define go=¢1,91 =qr. Introduce the intersection points ¢,3 and ¢,/3;qo and
q1,3 are connected by I'y,42/3 and ¢, are connected by I';, and ¢,,3 and q;/3
are connected by an integration path that is composed by I'; UT';. Using the
Riemann invariants we find

ug Co=uy3— c13=¥

y—1 y—1
Vo=V1/3
20=21/3

U3 =uz,3=uy
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P13=pPa3
=Y,

2
+ =u;+
U3 y—1 Cy3=U) y—1

V2/3=V1
23721 (2.2.2.14)

Hence, 21/3=20,22/3=21,V1/3 =V, C2/3—QC1/3 where « is giVCIl by (2224)
We arrive at the linear system

2
———c113=¥

Uy v— ]
uy+ 2 Cy3 =V
i — 1
Cy3=acy3 (2.2.2.15)
and this system is easily solved by
y=1 ¥ =¥
A C I TR e
€2/3=0QCyy3
_ ‘I’] +a‘I’0
L A (2.2.2.16)

A meaningful solution does not exist in the unlikely case that ¥; — ¥, <0.
A sonic point g3 exists along Iy when

A4(g0)Ma(g1/3)=(uo +co) (ug +c¢1/3)<0 (2.22.17)
and is found by
uy= 731 co=ul— 731 %
vo =73
29=2%
ud+c3=0 (2.2.2.18)
Thus v =vg,z$ =z, and
W=—cl :51—}(.40 . Yfl il (2.22.19)
A sonic point ¢} exists along I'; when
(2.2.2.20)

Ai1(g2/3)M1(g1)=(up —c2/3)uy —¢1)<0
and is found by

2 2
l+ 1 — +
us y—lcs U Y_lcl
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v}g=v1
zy=1z,
ul —ck=0. (22.2.21)
Thus vi=v,,zL =2z, and
-1, 2
ub=cy= :+1 i+ =27 (222.22)

With these results, the evaluation of the integrals in (2.2.2.1) becomes straight-
forward. The result in summarized in table 2.2.2b and the verification is left
to the reader.

Uy> —Co, Uy, <C Ug>> —Co, U, >C, U< —Co,u4, <€, Uy < —Co,U; >C
Cay <ty figo)—figh+£ig) | fg0) SR —figh+1q) | )
0<uy<cys f(90)— fq3) + f(q)) ﬂlﬁ)—ﬂqm)*'ﬂqk) fig) —f(§:5)+ (1) f(‘??)—ﬂquﬂq&)
—c1s<uy<0 | fig)—flgu) @) | flge)—flgu:) 1) | Ag)—flgis)+fg) | fa8)—fgus)+Sgh)
Uy<—c ﬂqO)_ﬂqg)+ﬂ11) ﬂqO)‘ﬂqg)'*’ﬂq}) flg)) flgh)

Table 2.2.2b. Osher’s approximate Riemann solver f(q¢,q:) for the Euler
equations: O-variant.

Thus, for the O-variant, the computation of fz(4¢,4:) is found to be a sum
of three terms f(q) in general. Therefore, the computation of fr(¢0,91) takes 7
exponentials, 6 logarithms and some elementary operations and Boolean
evaluations. From the point of view of efficiency the P-variant is preferable to
the O-variant. From table 2.2.2b it is easily seen that fr(go,q1) is continuous.
Finally, we mention the following theorem:

THEOREM (2.2.2a).
Osher’s approximate Riemann solver fr(qo,q:) (P-variant or O-variant) has the

following properties:

) fr@9=f9 (2.2.2.23)
for all admissible state g,
@) fr(q0,91)+ Ef(Eq1,Eq0)=0 (2.2.2.24)
for all admissible states qq,q,, where E is the reflection matrix
1 0 00
_[0-1 00
E=1g o0 -10 (2.2.2.25)
0 0 01

PROOF.
These relations are evident from a physical point of view. The mathematical

verification of these relations requires straightforward but tedious calculation.
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REMARK.

The relations (2.2.2.23,24) are not typical for Osher’s approximate Riemann
solver. Other approximate Riemann solvers should obey these relations too, in
order to be consistent with the differential equations.

2.3. APPROXIMATE SOLUTION OF THE RIEMANN BOUNDARY PROBLEM.
2.3.1. OSHER’S METHOD.

In sections 2.1 and 2.2 we have discussed the space discretization of the steady
Euler equations in the interior of the physical domain £ according to Osher’s
method.

In this subsection we consider the computation of the flux at finite-volume
boundaries which are part of the boundary of £. One of the merits of Osher’s
method is that this can be performed in a fully consistent way with the interior
flux computation.

Suppose Q; ; is a control volume and 3; 1 ; is part of 9 (see fig. 2.3.1a).

FIGURE 2.3.1a. The boundary 3, +  ; C3Q with local Cartesian frame (x,y).

In the same manner as for interior control volume boundaries (see fig. 2.1c and
(2.1.9) ) we choose a local Cartesian frame (x,y) and consider the Riemann
boundary problem

ﬁq__{_i a)=

7(.0)=§;=T; 41,95 *x<0 (23.1.1)

and boundary conditions B(g)|;=0=0, with B:R*~R’, where /€[0, ... ,4]
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denotes the number of boundary conditions. Note the use of the abbreviated
notation Ty ;=T($i+y,))- Suppose that the boundary conditions are such
that there is a unique solution g=4(x,1), x<0,1>0. Then the solution is a
similarity solution g(x,7)=qr(x/1).

Godunov’s scheme uses the exact solution and the flux fii,; at 994y
becomes

fivnj=hsu; Tiiy;f(qr(0) 23.12)

(Compare this formula with (2.1.11)). In Osher’s scheme, an approximation
Gi+#, of gr(0) is constructed and the flux f;, 4 ; at 9%, 4 is taken as

fivnj=h+uj Tiduif(Gi+ny) (2.3.13)
The construction of g, is the main topic of this subsection. In this subsec-
tion we consider the approximate solution of the Riemann boundary problem
for a general hyperbolic system. In the next subsection (2.3.2) the results are
applied to the Euler equations. Consider the Riemann boundary problem for a
general hyperbolic system:

§l+%f(q)=0 x<0, 1>0

q(x,00=q. x<0 (2.3.1.4)

B(@)x=0=0; B:R"-R'

where ¢=(q1, - . . ,¢,)T€R”, fR"-R", feC!.
As an example we first consider the linear case f(¢)=Agq, where 4 is a con-
stant nXn matrix (see examples (1.3.1a,b)). Assume that the eigenvalues

{Ai}i=1,....n are such that A< - - - <N <O<MAe4 ;< --- <A,. The exact
solution of (2.3.1.4) is a similarity solution ¢(x,r)=¢q(x/t). Represent ¢; and
gp =4q(0) with respect to the base of eigenvectors {R;, . ..,R,};

qL.= ZalRl > qB= EBI i - (23.15)

From the exact solution of the pure initial value problem (1.3.1.4,5) it is clear
that

B,'=(!,' i=k +1, (4 (2.3.16)

Hence, we need k boundary conditions to specify the state gp, thus B:R"-R.
The state gp is the intersection point of the n —k dimensional manifold
B(¢)=0 and the k dimensional plane through ¢; spanned by {R,,...,Ri}.
In other words, the state gp lies in the n —k dimensional manifold B(q)=0
and the state ¢; and gp can be connected by a continuous (integration) path I'
which is decomposed into k subcurves I’;:

I'= Lk) T, 2.3.1.7)
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where each subcurve T; is tangential to the eigenvector R;. The subcurve I
starts in ¢; and the subcurve I'; ends in gp (P-variant) or the subcurve Iy
starts in g; and the subcurve I'y ends in gp (O-variant). In the linear case, gp
is the same for the P- and O-variant.

These considerations lead to a straightforward generalization of the compu-
tation of gp for a general hyperbolic system. Suppose f(g) is nonlinear and

the eigenvalues of A(q)= dq (q) are such that Aj(q)<< - - - <A,(g). Assume
that
M(g)< -+ - <SN(GL)<O0<Me+1(qL)< - - <An(qr) (2.3.1.8)

Then we need k boundary conditions: B:R"»R*. The boundary state gp lies
in the n —k dimensional manifold B(¢)=0 and can be connected with g, by a
continuokls (integration) path T' which is decomposed in k subcurves

T;: T'= YT, where each subcurve I’ is tangential to the eigenvector R;(q).

i=1
In the P-variant, the subcurve I'; starts in ¢; and the subcurve I'; ends in gp.
In the O-variant the subcurve [ starts in ¢; and the subcurve I'; ends in g5.
For both variants, there are k —1 intersection points between g, and gp, thus
there are k unknown states and nk unknowns. Using the Riemann invariants
and the k boundary conditions we find (n — 1)k +k equations.

REMARK (2.3.1a).
We call (2.3.1.4) a left Riemann boundary problem (x <0). A right Riemann
boundary problem is defined as

%‘,L*':_xf(q):() x>0,1>0
q(x,0)=gr x>0 (2.3.1.9)

B(@)x=0=0; B:R"-R'

It is sufficient to consider only left Riemann boundary problems by stipulating
that at control volume boundaries which are part of 92, the boundary state is
computed by using a local Cartesian frame (x,y) such that the positive x-axis
is directed outward.

REMARK (2.3.1b). k

Due to the fact that the integral path I'= T corresponds with negative
i=1

eigenvalues (see 2.3.1.8) we will usually have that

[A7"(9)dg=1(g8)— flqL) (2.3.1.10)
r

Hence, (see 2.2.1.26)
fr(qL,98)=1(gB)- (2.3.1.11)
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From this observation we see that an alternative for (2.3.1.3) is
Jivny= i+%,jTi—-O-l%,ij(‘}i,j’éi+%,j)
=liy i, Ti3% SR (T4 1,91, T+ 1,9+ 4,)) (23.1.12)

where

Gi+1j=Tiv'n,jGi+n; (2.3.1.13)

is the boundary state with respect to the (x,y) frame. This expression of the
flux agrees with the expression of the flux at interior control volume boun-
daries (see 2.1.13). For implementation purposes, we prefer (2.3.1.12) to
(2.3.1.3).

23.2. APPLICATION TO THE EULER EQUATIONS; BOUNDARY CONDITION
TREATMENT AT INFLOW, OUTFLOW AND SOLID WALL.

Consider the Riemann boundary problem (2.3.1.4) for the Euler equations.
We consider 5 different cases (k is the number of boundary conditions: see the
preceding subsection).
1. Supersonic Outflow: (k =0)

Ai(gL)>0, A(g2)=A3(qL)>0 , Aa(gL)>0

2. Supersonic Inflow: (k =4)

A1(g)<O0, A2(q)=A3(qr)<0, A4(qr)<<0
3. Subsonic Outflow: (k =1)

A1(gL)<0, A2(q1)=A3(qL)>0, As(qL)>0
4.  Subsonic Inflow: (k =3)

A1(L)<0, A(qL)=M3(qL)<0, A4(gL)>0
S. Solid Wall: (k=1 or k =3)

A1(g)<0, Ag(qr)>0.

Only in case of subsonic inflow the boundary state gp is different for the P-

and O-variant. Each case is treated as follows.

1. Supersonic Outflow: up>c;. No boundary condition is to be specified:
98 =qL-

2. Supersonic Inflow: up<—cr. A full set of four boundary conditions is
necessary; B:R*~R* and B(gz)=0 has to specify gp completely.

3.  Subsonic Outflow: 0<u;<c;. One boundary condition is necessary;
B:R*-R. The states q; and gp are connected by an integral path T
which is tangential to R;(q). Using the Riemann invariant we find

2
Cp—uj +_CL

+
Ug ‘Y—l

2
y—1
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Vp=VL
Zp=2| (2321)

The single boundary condition B(gp)=0 and the 3 relations (2.3.2.1)
determine gp.

EXAMPLE (2.3.2a).
Assume that the pressure pp is given. From (2.3.2.1) we see that zp =z,
vg=v;. Thus

1

pp=(ppe )"

cg= "\ YpB/PsB

uB=u,_+

731 m— 2.322)
Subsonic Inflow: —c; <u; <0. Three boundary conditions are necessary;
B:R*-R>. There is one intersection point g;.

In the P-variant the states g; and g; are connected by I'; and the states
g and gp are connected by an integration path that is composed of
I, UT;. Using the Riemann invariants we find:

2
CcL =u1+ — C

uL+ 'Y—l

y—1
VL =Vy
L=z
ur=up
PI=PB (2.3.2.3)

Together with the three boundary conditions we have 8 relations and 8
unknowns (the components of ¢; and gp).

In the O-variant the states ¢; and g; are connected by an integration path
that is composed of I, UT; and the states ¢; and gp are connected by I';.
Using the Riemann invariants we find

Uy =uy
PL=PI

2
u+—
T —

1 c,=uB+—2—-cB

y—1
Vi =Vp
Z1=2zp. (2324)



59

ExAMPLE (2.3.2b).

Assume that up,vp and zp are prescribed.
P-Variant.

Using the relations (2.3.2.3) we find

VI=VL,21=2 , Uy=up
_ y—1
c=c .+ 2 (up —up)

1
T —z |1

Pr= |
Pa=pi= PIC%
B —PI Y
1
8=\ pe/Ps- (2.3.2.5)
O-Variant

Using the relations (2.3.2.4) we find

Ur=uy , z21=2zp , V1=Vp , Pr=pL

1
pr= [pLe_z"] T a=VwL/p

c,,:c,+L;l(uL—uB). (2.3.2.6)

ExAMPLE (2.3.2¢).

Assume that up,vp and cp are prescribed.

P-Variant

Using the relations (2.3.2.3) we find that v,, z;, u;, ¢;, p;, pp=p; are the
same as in (2.3.2.5) and

CB
zp=In [fi] 2.32.7)
Pk

O-Variant
Using the relations (2.3.2.4) we find

Ur=ur , Vi=vp , pr=pPL

c=cpt+ ‘%1(“3 —ur)
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XL
Pr C%
zp=z=In |EL (232.8)
[

5. Solid Wall: At a solid wall, one boundary condition is prescribed, namely
up=0. The state gp is computed as in the case of subsonic outflow. We
find (see 2.3.2.1):

ug+ 7—1 cg=u;+ = cL
VB=VL
Zp=12ZL
ug=0 (2.3.2.9)
Hence,
cg=cLt+ -Y—E—IuL
- [ c} _ZL]T—T
pp= |—¢€
Y
PBC%
pB= ” (2.3.2.10)

Notice that the flux f(g)=(0,p5,0,0). Hence, the pressure pp determines
the flux completely.

It is also possible to compute the flux f(gp) as in the case of subsonic
inflow. Then gp is not uniquely determined, but, in case of the P-variant,
the pressure pp is uniquely determined and given by (2.3.2.10). This is not
true for the O-variant.

2.4. LINEARIZATION OF OSHER’S SCHEME
2.4.1. INTRODUCTION

The space discretization of the steady Euler equations in the interior and at the
boundary of a physical domain @ is described in the preceding sections of this
chapter. For an interior control volume £; ;, we have (see (2.1.15)):

F i =fi+njtfij+u—fi-uj—fij-5=0 (2.4.1.1)
with
Sivnj=lian; Tidufo(Tivnidij » Tivnjgi+1,) (2.4.1.22)
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fijru=bjenTi v ufo(Tij+ iy » Tij+uij+1) (2.4.1.2b)

where I,+%J is the length of 8Qy;, Ti+y;=T($i+y;) and
(coS® + 1., Sing; 154 ;) is the unit normal on 9%; 5, ; directed from i t0Qit;
(see fig. 2.1b). Sumlarly, lj+y is the length of 091y, T;j+y=T(ij+4) and
(cos; j + 4, sing; ;1) is the unit normal on 0%+ directed from £;;

£ j +1. Notice that

F:/ :Fi,j(qi,j:qi+l,jsqi,j+l,qi—l,j,qi,j -1) (24.13)

A nonlinear relaxation method is used in the solution method for solving the
system of discretized equations (see chapter 3). For our nonlinear relaxation

aF;; .
method we need — (a 4 X 4 matrix). Because

3q,-,j
oF; : B R
—a_"L i+ %, 1+1%j af (T:+mq., s T1+'/$qu+l])Tl+'/§j
qij qL
T L2, T, T,
ij+%dij+% aq ( ij+%,j9ij » 1j+%qxj+l) ijt+%
ofr

11 %,j 1_1%_[ a (Tt %,j9i—1,j » 1 'éth_/)T %,j
— R
Ilj % ljl % af (ij qij—1 s 1] ’/ﬁqtj)Tl] Y% (2414)

d d
we need expressions for -éi(qL,qR) and a—?—(q,,,qk). These expressions are
R L

given in subsection 2.4.2.
For a control volume &; ; which has a boundary (say 9%;.,; which is part
of 92 we also have (2.4.1.1) but (see (2.3.1.12, 13)):

Sirnj=hivu;Tidu ife(Tivngi) > Tivnjgivn)) (24.15)

where ¢; ;4 ; is the boundary state at 88,1y ;: g;+y,; is determined by ¢;; and
the boundary conditions. Suppose that gp=gp(q.) is the solution of the
Riemann boundary problem corresponding with the boundary conditions at
0%, 4 4 ;. Then we have (see (2.3.1.1) and (2.3.1.13),

G+ =Tiv%98(Ti+%,4i,) (24.1.6)
and
L. L YR T, i3 2417
dq., 1+%jd ( 1+9§th]) i+%,j - ( s Hede )
The linearization of f;  ; with respect to ¢; ; now becomes
9fi+s . Ofr
a—;jL L+%J .+l%j 8{; (Tx+'4jq,, > T:+%,q,+%1)T.+%j

L O g,
+11+'A] l+1%j a‘; (Tu+'/31qxj ’ Tz+%th+‘/$_[)Tl+%]%;—AL (2418)

i,j
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dgi+yj .
where AL jg given by (2.4.1.7).

dg; ; p
Subsection 2.4.3 gives —;:;;

subsection 2.3.2.

Notice that if 9%;4;C3Q then (cos$;+y, sing; 1 ;) is directed outward
from Q, but if 9Q2; 4 ; CQ then (cosg;—y,j, sing; 4 ;) is directed inward to €.
(Similar observations hold for the case 9%; ;5 COQ or 0%; j— 5 C0%). Then,
due to the conventions introduced in remark 2.3.1a we have

Gi—,j =T (Pi—yp,jtm)~ 'gp(T($i -4, + )i ;)
where ¢p=gqp(q) is the solution of the Riemannn boundary problem
corresponding with the boundary conditions at 9; ;. Furthermore,

Si-nj=Ti % i fe(Ti-1j9i-nj » Ti-1,4i))

with T;_y ;=T(¢i—4,;). The linearization of g;_y ,f;—, with respect to ¢, ; is
similar to (2.4.1.7, 8).

(q1) for the boundary conditions as described in

2.4.2. LINEARIZATION OF OSHER’S APPROXIMATE RIEMANN SOLVER.
The topic of this subsection is the computation of
] d
e ; i a 5 2.4.2.1
e, fr(qL>qR) 7. fr(qL-9R) ( )

where fz:R*~R* is Osher’s approximate Riemann solver. For the computation
of (2.4.2.1) we need the Jacobian of the flux

_ df _ dpu,pu’+p,ouv,(E +p)u)
F@=- g ) (24.22)

The flux-vector f=(pu,pu’ +p,puv,(E+p)u)’ is found as a function of ¢ by
noting that (see 2.2.2.13):
1

pe= cte % |v-1
Y

2
_pc”
P Y
E = Yip(u? +v2)+?% (24.2.3)

From these relations is easily seen that

O __2 .3 ___p
oc  (y—1c’ 0z y=1

o _2pc . ___p

oc y—1 > 0z y—1
OE _AEtp) OE ___E (2.4.2.4)

dc  (=Dc ’ 3z  y-1
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Hence,
_2pu_ 5 0 ——Lu
(r—De v—1
2p(u? +c?) 2pu 0 — pu*+p
(y—De y—1
f(@= 2 . (24.25)
_<pwy__ pv pu _pw_
(y—De y—1
2“!E+!I+])E! E+o+ u2 - _!E+g!u
| =D pree e y—1
For the computation of (2.4.2.1) we consider both the P- and O-Variant.
P-Variant.
From table 2.2.2a we deduce the following tables (g0=q. ; ¢1=4qr):
ug<co ug=>co
ci3<uy aqs f(qo)
O<uy<c d¢11/3 043 0
HSES i) f(qo)—f(qg) /) ‘“”
—cy3<uy<<0 ‘]2/3
N VO v A CS) f(qs)— +/(q23) aq ;’3
uH< —Cy/3 0
d
TABLE 2.4.2a: afR <—(q0,91) for the P-Variant.
u;>—cC U <—c
c13<u 0 095
i RACOE b TACD

dq 1/3

Oswrsews pqua s | (g ""3 f’(qs) +f’(q1)

— d
w30 igy5)2 ‘“” fqu ‘“’3 f(qs)—+f(ql)
ug<—cy3 (g )3qs f(q1)
dq,

d
Eapln £430: fR (qo,q,) for the P-Variant.

9% 9 0
Thus we need k) : v and q2/3. These 4 X 4 matrices are easily
990" 990 990
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obtained from the relations (2.2.2.3) to (2.2.2.12) which yield

aa :_"2%620
8‘1’0 =8u0+ _laco
3‘1’1 :0
uy = N P
Ocy3 = %l—(a\lfo —duy)
dcas3 :J;—lau,,
ot = —1 Qun + 2 dc
T LR R (2.4.2.6)
and
aqg :(acg,acg,aV(),aZO)T
99173 =(3c1/3,0up,9v0,920)" .
342/3 :(362/3,8uH,0,0)T (24.2.7)
Hence,
2 y-l
y+1 y+1 00
098 | 2 y-1
g ey S (2.42.8)
0 0 10
0 0 01
|
1 -1 4 L. G
I+a 1+« 2y l+a
13 _ | 2 a a ] -
0 |[y—1 1+a l+a -1 I+ta (242.9)
0 0 1 0
0 0 0 1
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a y—1 _«a 0 _ 1 €
1+a 2 l+a 2y l+a
393 _ | 2 a a 1 €23
30 |y-1 1+a 1+a 0 yy—1) 1+a GAL10
0 0 0 0
0 0 0 0 J

The term —aa— fr(q0,91) follows from table 2.4.2b after the computation of
1

3(] 173 993 aqfv
s and

3q, g, dq,

the relations (2.2.2.3) to (2.2.2.12) which yield

. These 4 X 4 matrices are also easily obtained from

da :_201;32‘
8‘1’0 =0
8\1’1 =8u1—y_16c|
du = : 3‘1'1 +;C2 3821
T lta o=
dc1/3 Z—‘%l‘auﬂ
—1
dca/3 =-7—2-—(8u”—6\1',)
1 —xy—1 _
des =277 [7=10¢ au,] (2.42.11)
and
3q1/3 =(8c1/3,9up,0,0)”
3q2/3 =(3ca/3,0up,9v,,92,)" (24.2.12)
aq}' =(6c},—ac},8vl,azl)r
Hence,
2 _x—1
y+1 y+1 G e
g5 | 2 y-1
2= | 74T 3 00 (2.42.13)
0 0 10
0 0 01
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a Y1l _a 1 Cus
1+a 2 1+a 2y l+a
023 _|__2 1 1 0 L. c»
9g, y—1 1+a 1+a yy—1) l+a
0 0 1 0
0 0 0 1
1 =1 1 0 1 <
1+a 2 1+a 2y l+a
s _|__2 1 1 0 L. <
0q, -1 l+a l1+a yy—1) l+a
0 0 0 0
0 0 0 0

(2.4.2.14)

(2.4.2.15)

It is not difficult to verify that both % fr(q0,41) and —a%— fr(q0,91) are con-
0 1

tinuous functions of g¢ and ¢, as long as uy70.

O-Variant.

The computation of %fk(qo,ql) and %—fR(qo,ql) for the O-variant is
0 1

completely analogous to the computation of these terms for the P-variant. We

only give the results.
Uy>—=cop Up<—co
cy3<uy f(qo) a‘Is
o<uy< f]
S pigo)—flgun) ‘“’3 f’(qs)—- Qs
- <uy <0 d
Cs=ur=0" (o) f’(qm) "”3 21t s) D e q
ug<—cys 0

TABLE 2.2.2¢: 3fR

(qo,ql) for the O-Variant.
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u;<c u;>c
Ccy3<u 0
v /’(qs) +f'(q1)
O<uy< 995
= _f(qzla) 470\ =g ‘“” f'(q%)a—Zf-
—c13<up<0 d
e —f(qm)——;’qf +f@) —f'(qus) "”’ 1 )"s
ug<—cus3 f(q1)
+ ___
f(4s) 3q1
0
TaBre 2220 fR (‘10,q1) for the O-Variant.
Furthermore,
2 _x=1
y+1 vl v
990 ¥+1 y#l
0 0 10
0 0 01
1 11 1 1 ¢
l1+a 2 l+a 2y l+a
s _|__2 _a a 0 1.
990 y—1 1+a l1+a yy—1 l+a
0 0 1
0 0 0 1
a _x—1 a _1 <
1+a 2 1+a 2y l+a
392/3= 2 a a 0 1 _ 3
990 -1 l1+a 1+a yy—1) l+a
0 0 0 0
0 0 0 0
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2yl
y+1 y+1 .
g} —
gs _|_2 y—1 00
0q, v+l y+l
0 0 10
0 0 01
a Yy—1 «a 1 ¢
l+a 2 l+a 2y l+a
3q2/3 _|_2 1 1 0 — 1 €3
09, y—1 l1+a l1+a yy—1) l+a
0 0 1 0
0 0 0 1
1 y—1 1 1 ¢
1+a 2 1+a 2y l+a
913 _|_2 1 1 0 — | S &
99, y—1 1+a 1+a yy—1) 1+a
0 0 0 0
0 0 0 0
L

Just as for the P-Variant, %fk(qo,ql) and Eg—fR(qo’ql) are continuous
0 1

functions of ¢9,q; as long as uy+0.
2.4.3. LINEARIZATION OF BOUNDARY CONDITIONS

dﬂ where gp =¢p(q.) is an
qu

approximate solution of a Riemann boundary problem. The computation is
done for the boundary conditions described in subsection 2.3.2. The relations

In this subsection we consider the computation of

d
given in (2.4.2.4) are useful in the computation of %. We consider:
L

1. Supersonic Outflow.
d

g Y8
dB—4qL and qu I.
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Supersonic Inflow.
gs is completely determined by the boundary conditions and independent

d
of qL, -q—B':O

dqy
Subsonic Outflow.

Assume that the pressure pp is prescribed. From (2.3.2.1,2) it follows that

CB
0 00 2y
dqp 2 Cp
=[—— 10 - 243.1
dgp  |[v—1 Y(r—1) ( )
0 01 0
0 00 1
Subsonic Inflow.
We consider two cases:
4a. up,vp and zp are prescribed.
P-Variant.
From (2.3.2.3) and (2.3.2.5) it follows that
apr y—1  Gbr _%B
cgpp 2 CpPB 2y
445 _
a = 0 0 0 0 24.32)
L 0 0 0 0
0 0 0 0
O-Variant.
From (2.3.2.4) and (2.3.2.6) it follows that
P y—1 0 — L
d apr 2 2y
d_B_ 0 0O 0 0 (24.3.3)
T 1o 0 0 o0
0 0 0 O
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4b. up,vp and cp are prescribed.
P-Variant.
From (2.3.2.3) and (2.3.2.7) it follows that

0 0 00
dgp 0 0 00
d—qL_ 0 0 00 (2434
___21 _._Yil__ll 01
Cr Cr
O-Variant.
From (2.3.2.4) and (2.3.2.8) it follows that
0 0 00
dqp 0 0 00
_2y _ya=D) g
Ccr Cr
S. Solid Wall.
ug =0. From (2.3.2.9) it follows that
1 ﬂ—;ﬂ 00
dgp _
o 0 0 00 (2.4.3.6)
“ 1o o 10
0 0 01

2.5. SECOND-ORDER DISCRETIZATIONS
2.5.1. INTRODUCTION

The space discretization of the steady Euler equations described in sections 2.1
and 2.3 is only first-order accurate, as we shall see in the next subsection. It is
highly desirable to improve the order of accuracy. In the smooth part of the
flow field, first-order accuracy is too low for practical purposes. Furthermore,
oblique (with respect to the mesh) shocks and contact discontinuities are
smeared out disastrously because of the viscosity hidden in the first-order
scheme. Therefore, we wish to improve the order of accuracy and to steepen
oblique discontinuities without introducing over- or under-shoots.
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The order of accuracy can be improved in a very simple way. The space
discretization in the interior of the domain is completely determined by the
flux computation at the control volume boundaries. For the first-order scheme,
the flux fi,,; at the interior control volume boundary 8%y, is (see
24.1.1,2):

Sivnj=livn;Titu i fa(Tivnigijs Tivn,jGi+ ) (25.1.1)
The order of accuracy is improved by taking
ﬁ+44,j=Ii+u,jTi_+ln,ij(Ti+44,jq.!’+%,j,Ti+n,jq13+%,j (25.12)

where gF,,; and gf,; are obtained by a more accurate interpolation. The
states gly,; and gfy; are located at the left and right side of the volume
boundary 0%, , 4 ; (figure 2.5.1a).

7
\

FIGURE 2.5.1a: Finite volume &; ;.

Second-order accuracy can be obtained by for example the x-schemes intro-
duced by Van Leer [29]:

1+ 1—
G v =4 +-7i(q: +1, ¢ )t Tx(qi,j —qi-1,)

1+ 1—
qRnj=gi+1,;t _E(qi,j —gi+1,)t —~(g +1,;—Gi+2j) (25.1.3)
4 4

with ke[—1,1]. For k=—1, k=0, k=% and k=1 we find respectively: the
fully one-sided upwind scheme, the Fromm scheme, the upwind biased scheme
(third-order accurate for 1D problems as we shall see in the next subsection)
and the central scheme. A disadvantage of these k-schemes is that near discon-
tinuities spurious non-monotonicity (wiggles or over- and undershoots)
apppears [13].

The space discretization corresponding with (2.5.1.2) is sometimes called the
projection-evolution approach [29]. The projection stage is the computation of
the states g/, ; and gf, 4 ;, while the evolution stage is the computation of the
flux by an approximate Riemann solver f:R*XR*-R*.

In subsection 2.5.2 the accuracy of the space discretization corresponding with
(2.5.1.2) is considered under the assumption that the mesh is sufficiently
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smooth.

In subsection 2.5.3 a monotonicity concept is introduced and it is shown that
it is possible to construct a monotone second-order accurate scheme. A solu-
tion of a monotone second-order scheme has the desired properties: second-
order accuracy in the smooth part of the flow field and steepening of oblique
discontinuities without introducing spurious non-monotonicity.

The analysis concerns a general nonlinear scalar hyperbolic conservation law.
Without the complexity of hyperbolic systems, the analysis is more complete
and more transparant. It appears that it is essential to compute the states
g%+, qR 4, by nonlinear interpolation. The nonlinear part of the interpola-
tion is called a limiter. The results of the scalar analysis is generalized in a
straightforward manner to the Euler equations.

2.5.2. ACCURACY ON A SMOOTH MESH

Consider the Euler equations

0 0 0

219+ 35 @)+ 5,80 =0 @52.0)

on an open domain 2 CR?, g, f(q) and g(g) are given in (2.1.1b). The physical

domain £ is subdivided into disjunct quadrilateral  volumes

Q. GHe(l,...,.M]1,... ,N} in the way described in section 2.1 such that

) Q=

i) @, é,u_,,, j» i j+1 are neighbouring volumes, _

i) (Kisujen Yitnj+u)= BijNQiv1;NQij 41N 41+ is the common ver-
tex of the volumes Q,-’j, 9i+1,j’ Qi,j+l and Q,-+1,j+1.

It is clear that the vertices {(x;+uy,j+4, Vi+#,;+4)} define the subdivision of &

completely.

Let (£7) and (x,p) denote Cartesian coordinates in respectively the compu-
tational and physical space. In the computational space we consider a rec-
tangular domain @' subdivided in square control  volumes
Q;;, G,j)e{l -+ M, 1--- N} of uniform size such that (i-h, jh) is the mid-
point of Q7 ;; h denotes the length of the edges of the control volumes. Assume
the existence of a sufficiently smooth 1-1 mapping between (£,1) and (x,y):

§=&(xy)  |x=x(Em)
n=n(xy) < \y=yEn)

such that the vertices of the control volumes in the physical and computational
space are related by this mapping: for all i,je{0--- M, 0--- N}

(2.5.2.2)

(xi+’/§,j+‘/iw _yi+%,j+'/$):(x(£i+%,"j+'ﬁ),y(§i+’/n77j+%)) (25.2.3)
where £i+‘/$ :(l + I/Z)h and Nj+4% :(]+ l/Z)h
In the computational space (£,1) the Euler equations become

309+ F0 D38+ 5 xis@y@)=0 2529
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where J is the Jacobian of the mapping:
J=Xeyn =YXy - (2.5.2.5)

The discretization of (2.5.2.1) on @ is equivalent with the discretization of
(2.5.2.4) on Q'. Therefore, we can study the order of accuracy of a discretiza-
tion of (2.5.2.4) on Q" as well as of (2.5.2.1) on .

Write (2.5.2.4) as
(Jg)+F(9)=0 (2.5.2.6)
and the steady Euler equations as
F(¢9)=0. (2.5.2.7)

Here F:XvY is a nonlinear operator, X C[L*(@")]* is the space of possible
fluid states and Y =[L%(Q")]* is the space of rates of change (of states).
Define the finite dimensional vector spaces X and Y, by

X, =Y,={g;;eR*|i=1---M, j=1---N}.
The relation between the spaces X and X, Y and Y} is obtained by introduc-
ing Ry: XX, and R,:YpY):
= 1
(Raq)i; = Ragh; =7 [ [amdedn 2.52.8)
q,

for any ge[L2(Q)*. Thus (R,q);; is the mean value of g in ©];. We define the
accuracy of a discretization of (2.5.2.7) as follows:

DEFINITION (2.5.2a).

A p-order accurate discretization of (2.5.2.7) is an associated problem:
F(gn)=0

where F}: XY, has the property that for all sufficiently smooth ge X
(FRRy9):,;— (RuFg),;= O(?) . (25.29)

The relation between the various spaces and mappings in the discretization is

summarized in the following diagram:
F

X ———= 7Y

|

x, B _y,

Notice that

(EFq).-,,:h%{ ] oS =x0) @+ Db

i+4%,j
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= [ Gaf—x48) (g~ H)hm)dn
9Q

i~ )

+ [ (g—ye) @G +Dh))dé
Y}

— [ (eg—yeh) @EG—Dh)E (2.5.2.10)
3,y

where 99}, etc, denote the boundaries of the control volume @, defined
by 89:’]+%:Q;’jng:+1d etc. -
For analytical purposes, we introduce the operator Fj,: XY, defined by

(Faq)i :%{ Onon = %010, 8) Qit5,) =W X0, 8) Gi—,7)

+(x¢,., 8 Ve, ) @ij+u) —(xe, 8 Ve, ) @,;—%)} (2:5211)

where

Viisng Z%_(yi+‘é,j+% __yi+46,j—’/§) > Xthirny =_I]l—(xi+%’j+% _-xi+%,j——%)

XEyen :—:,_(xi+%,j+% “Xi—thj+4) > Ve uu =%(Yi+'/§,j+% ~Yi-t4j+%) (25.2.12)
and

Grrny =7 [ 9(G+%hnyn. (2.5.2.13)
Thus ¢4y, is the mean value of g(§n) at the control volume boundary
0927 +y,;. In a similar way g;_y ;,g; j+4 and g; ;—y are defined.
Assuming a sufficiently smooth mapping it can be shown by elementary inter-
polation theory that

(Fuq)ij— (RyFq), ;= O(h?) (2.5.2.18)

for all sufficiently smooth g€ X.

Even when x(§7)=§, y(§,m)=n the righthandside of (2.5.2.14) is not zero.
This is due to the fact that at a cell boundary the mean flux differs from the
flux computed in the mean state. But for one-dimensional problems we have
Fh :RhF e

We only consider discretizations in which states are interpolated (see 2.5.1.2,3).
From (2.5.2.14) we conclude that the order of accuracy of such discretizations
is at most two. (For 1D problems the order of accuracy can be higher than
two.)

From (2.5.2.14) we see that if F}:X,~Y,, p=1, 2 is such that
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(FRRyq)ij— (Faq), i=0(h?) (2.5.2.15)
then also
(FRyq)i;— (RyFq);,j= O(RP) . (2.5.2.16)

This means that we may approximate F, instead of R,F. Therefore, let us
look more carefully at F,. Define /1y, /;j+4 by

livuj=hGd,, +x3 Y, Ljru=hGE,, +)4,.,) (2.5.2.17)
and ¢; 44, $ij+% by

lityjCOSbivssj = hyy,, > livy;sindiry;=—hx,

lij+ucosdij+yu=—hyg ., lij+using;jru= hxg (2.5.2.18)
then using the rotational invariance (1.3.2.4,5) we see from (2.5.2.11) that

(th)l] {Iz+'/$jT+%jf(Tt+%qu+%j) k- %,j ¥ jexk %_/f(Tz %,jqu %_,)

+Itj+%Tl]+%f(T|]+%qtj+%) Ilj 46 %f(sz %ql_] %)}(25219)

where T4 45, =T(i+4,) etc.

Notice that /,; is the length of the boundary 9%;.,; and
(COSP; 1 15,j, Sing; 14 ;) is the outward unit normal on 0%, 4y, directed from &; ;
to ©; 1 ; (under the assumption that the Jacobian of the mapping J>0),

We deﬁne B: X2 Y? as follows

(ngh)i,jzilz—{ Giwsj Tid iR (Tiv )9 1.0 Tie s 1)
~bimy T2 i (T @i s Tz iR
+hjan T ufR (T jauqhivu Tijru)ahi+o

Ix] % PifR(TU %qu Y% u] %qxj %)} (252.20)

where q,m s qru; j etc. are obtained by interpolation of the states {g; ;} =g
and f is an approximate Riemann solver.
Now we can establish the following theorem:

THEOREM (2.5.2a).
Let g€ X be sufficiently smooth. Define g, € X, by g, =R,q and

9 =(Rog)i ;= [ [ midédn . (2.5.2.21)
Q)
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Define the mean values of q at the control volume boundaries by

G+ni=7 [ q+%hm)dn (2.5.2.22)

i+ %,j

and a similar formula Jor G j+y.
Define the states qFy y, j» Gi+u, etc. by interpolation of the states {q; ;} such that

qRs ;=R s =Givn— G-y TOMP )

q,-L+ %,j —q.-L— %) =i+ ) —Gi—u,; Tt OR’ 9]

qf 4,j —Gi+u,j = O(hP)

G sy —Gis 1y = OP) (2.5.2.23)
with p=1 or p=2, and let similar formula hold for the j-direction. Then Fj
defined by (2.5.2.20) is a pth-order accurate discretization.

PROOF.
From (2.5.2.14,15,16,19,20) is easily seen that it suffices to show that

Ii+%,jTi-l-l’/ﬁ,j{fR(n+’/$,jqu+%,j, Ti+'/$,jq?+’é,j)_f(Ti+%,jqi+'/$,j)} (2.5.2.24)
- i—%,jTi_—l%,j{fR(Ti—’A,jqu—%,j’ Ti—%,jqu—’/S,j)_f(Ti—'A,j-q_i—’/ﬁ,j)}:O(hp+2)-
With the notation

0 0
agR |1+%1 gR (T1+%jqx+%], T1+%]ql+’/$_/)
0 0
agR |l+9§] fR (T1+‘qul+%]’ Tl+%th+’/zj)

and assuming that the approxunate Riemann solver fx is sufficiently smooth, it
follows by Taylor expansion that

SR(Ti+ 1,954 1 Ti+'/s,jqﬁl/s,j):fR(Ti+%,ﬁi+%,j, Ti+5j9i+4,)t
0fr
990
0(|q:l“+%,j—§i+%,j| s |qi+‘/§,j_-q—i+%,jl ):f(Ti+'/§,jqi+‘/$,j)+

) )
a£R |1+'/$_[ 1+'/$j(q1+%1 q1+’/éj)+ f |t+'/$] ;+'/§j((11+%1 qx+%;)+0(h2’°)

|i+%,j :+%_/(q1+’/$j q1+%j)+ q |t+%j 1+%j(q1+’/$j q1+’/§j)+

(2.5.2.25)
where we have used the consistency of fz:fz(¢,9)=f(q) (see (2.2.2.23)).
With the notation
dfr
Xivu; =Ty, 8{; |+ 155 T vm 5

. R

Yi+’/§,j 1+'/§] aq |1+%,jTi+%,j
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we find
b Tidu j UR(Ti 41,904 1,5 T; 415,40 )~ f(Ti+ 15,59+ ,))
= 1i+'/z,in+9s,j(q{“+%,j—§i+%,j)+li+%,jYi+%,j(q:R+%,j—§i+%,j)+0(h2p+l)
=(l—ps; +OM?) (Xi—yj+Oh)) (@ 15; —Gi—1s; T ORP 1))+
(-, + O(R?)) (Y;-y,;+O(h)) (qR ;= Gi—s; T O T+ OB )
= i—'/&,in—%,j(quL—%,j_qi—%,j)"'li—’é,jYi—%,j(qu—‘/i,j—qi-—‘/z,j)+0(hp+2)+0(h2p+1)
= i—%,jTi_—'%,j{fR(ﬂ—%,jq{“—%,j,Ti—%,jqf—%,j)—f(ﬂ—%ﬂi—Vz,j)}+0(hp+2)
(2.5.2.26)

where we used /;_y ;= O(h), see (2.5.2.17). From (2.5.2.26), eq. (2.5.2.24) fol-
lows directly. [

We consider two interpolations
(a1: qzl‘+%,j"—‘4i,j ; qf+% =qi+1j 5
(12) th+%,j:qi,j (ql+l_, q1])+ (qxj qi - l_]) ’

q:+%_1 q1+l] (qu q.+11)+ (qx+1, q1+2])

We shall show that interpolation (/ 1) is first-order accurate (p =1) and inter-
polation (I2) is second-order accurate (p =2). For these interpolations we
only show that

qFv v = qr 1, =i+ —Gi—n,; T OWP 1
gk uj—Gi+uj=OhP) , (2.5.2.27)

the other relations in (2.5.2.23) are derived in a similar way. To verify
(2.5.2.27), assume that the midpoint of Q;; is (0,0) and

qEm=q0tq:1¢+qam+q:8 +qaén
+qsm?+q68 +q:8n+qsén’ +qon’ +O(RY). (2.5.2.28)
Then it is easily seen that

bk
2 2
Gy=- [ [ a@nidgdn=qo+qs " +g5%+ 0"
h _h
"2 2
3hoh
1 2 2
Gy = [ [ q@ndsdn=qo+qih+qsrh? +4s+ g6 Th+as s+ oY)
h h
772
h h
i 2 2
Go1y=2 [ [ a@mdin=qo—qih+qs 2k +q5 2 —gegh’ — st +O(h*)
3
2 2
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|
|w
>

I3
2 2
Gi2j= [ [ a@mdtdn=go—2qih+qsE2h +q5 2 —qe i h* —ge ke + 0%
— h
zh——z—
h
| 2
Gitnj= 7[‘1 < mdn= (Io+q1 +q3 g5t 5 +qc—+¢18—+0(h4)
h
2
I3
| 2
qi—%,jzij( z,ﬂ)d"l 90— q15 +Q3—+qs 5 —qs——Q8—+0(h4)
h
2
Girn)j—Gi-u;= q1h+q6 +q8—+0(h4) (2.5.2.29)

For interpolation 71 we find that

GHeni =g 5= = Gi -1, =01h — g3k + O ) =Gy ;= G-+ O(h?)
THen;—Grn;=—q %4- O(h*)=0(h). (2.5.2.30)

Thus the interpolation /1 leads to a first-order accurate scheme.
For interpolation I2 we find that

qrvu;—qr-u;= (¢1:+1, gi)t(1— )(qu gi-1/)— (= 7 Gi-1;=gi-2))
—q1h+q6——(6x—1)+q3 ~ +0(h%)
=§i+%,—2j,-_%,+qﬁ—(3x— )+ 0% (2.5.2.31)
qrru; =gt (qx+1, qu)+( ) Gi-1,;—qi-1,))
—‘10+‘11 +¢13 (1+6K)+115 —+0(h?)
=i+ 1, +q3?-(3x— 1)+O0(h3) (2.5.2.32)
Hence, we have found the following result.

THEOREM (2.5.2b).
Scheme (2.5.2.20) is first-order accurate for interpolation 11 and segond-order
accurate for interpolation 12. Furthermore, interpolation 12 with k=~ yields a

third-order accurate scheme in 1D.
Schemes using interpolation /2 will be called k-schemes.
2.5.3. MONOTONICITY AND SECOND-ORDER ACCURACY.

Solutions of the aforementioned second-order acccurate k-schemes suffer from
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spurious oscillations (wiggles) in the neighbourhood of discontinuities (shock
waves, contact discontinuities). The purpose of this section is to study
second-order schemes which do not exhibit spurious oscillations. Such a
scheme is called monotone.

Several monotonicity concepts occur in the literature. They are all based on
the following scalar conservation law:

du d .
o T o W=l

u(x, 0)=ug(x) (25.3.1)
which is assumed to be discretized in conservation form as follows:
U?“ =U!—ANhj+y—hi— ) =HWU -1, U141, - - -, Ulem) 2532
A

where A= A and

hivy=h(Ul-1415 - - - s Ul4m) (25.3.3)
is the so-called numerical flux function, satisfying the consistency condition

h(U, U,...,U)=fU). (2.5.3.49)

The main reason for considering the scalar conservation law (2.5.3.1) is the fol-

lowing monotonicity property:

For any weak solution of (2.5.3.1) (see Lax [14], Harten [6]), we have

(M1)  No new local maximum or minimum can appear for ¢>0.

(M2)  The value of a local maximum is nonincreasing, that of a local
minimum is nondecreasing.

and therefore

(M3)  The total variation

TVIu(1)]:=sup X | u(x; +1,1)—u(x;,1)|

is a nonincreasing function of time 7.
The common, well known definition of a monotone scheme is due to Harten,
Hyman and Lax [5]. They call the finite difference scheme (2.5.3.2) monotone
if the function H is a monotone nondecreasing function of its (/+m+1) argu-
ments.
They were able to prove the following theorem:

THEOREM (2.5.3a) (cf. [5]).

Assume that the finite difference scheme (2.5.3.2) is monotone in the sense of
Harten, Hyman and Lax. Assume that, as At and Ax tend to zero,
A=At/Ax= const., U converges boundedly almost everywhere to some function
u(x,t). Then according to the theorem of Lax and Wendroff [15] u(x,t) is a
weak solution of (2.5.3.1), moreover an entropy condition is satisfied for all
discontinuites of u, i.e. u(x,t) is the unique physicaly significant solution.
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For a review of several, more or less equivalent entropy conditions for (2.5.3.1)
we refer to [14].

Unfortunately, a scheme which is monotone in the sense of Harten, Hyman
and Lax is only first-order accurate [5]. To allow higher order of accuracy,
Harten [6] introduced a weaker concept of monotonicity: scheme (2.5.3.2) is
called TVD (Total Variation Diminishing) when

TV(U"tH<TV(U™) (2.5.35)
where
0
TV(UNY=TV{U'Hh= > |Ur-Ur-|. (2.5.3.6)
A grid function U is called monotone if for all i
min(U; -y, U+ 1)<U<max(U; -, Ui+1). (25.3.7)

Following Harten [6], scheme (2.5.3.2) is called monotonicity preserving if
monotonicity of U"*! follows from monotonicity of U".

The relation between the above three properties is given by the following
theorem.

THEOREM (2.5.3b) (cf. Harten [6]).

(i) A scheme which is monotone in the sense of Harten, Hyman and Lax is
TVD.

(ii) A TVD scheme is monotonicity preserving.

It is well known (see [3,6]) that a linear scheme
Urtl= 3 aUlw
k=—m
is monotonicity preserving if and only if

=0 —m<k<m

(PROOF.
(a) If ¢=0 for every k and U7 — U?_, =0 for all i, then

m m
+1 +1_
Uurt'=urti= Y alUlvw— X2 aUl-1+

k=—m k=—m
m
= X Uk —Ul4x-1)=0.
k=—m

The case of nonincreasing U” is handled similarly.
(b) Conversely, supposing that ¢, <0, then for the particular function

1 izkg
U'=10 i<k,
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we obtain
m
BH-U'= 3 U= Ui-1)=c, (U, = Uf,-1)=6, <0
k=—m

and monotonicity is not preserved).
Hence, any /inear monotonicity-preserving scheme is monotone in the sense of
Harten, Hyman and Lax and consequently first-order accurate. By theorem
(2.5.3b), any linear TVD scheme will also be first-order accurate.

Hence, only nonlinear schemes can be second-order and TVD. For the con-
struction of such schemes, Harten’s lemma [6] plays a fundamental role.

LeEMMA (2.5.3c) (cf. Harten [6]).
Consider a discretization of (2.5.3.1) given by

Ur ' =Ur + M4 (Ul — UDHABI_ 4 (U —UD) (2.5.3.8)
where A=At/Ax and

Alvy =A(.., Ul—y, U7, Uly,.)

Bi_y =B(.., Ul-1, U/, Ul+1,-) . (2.5.3.9)
If the coefficients A}y, Bl y satisfy
A?+” ?0, B?.}.% 20, 1— ?+% —AB7+% ?0 (25310)

then scheme (2.5.3.8) is TVD.

PROOF.
By rewriting (2.5.3.8) with i replaced by i —1 and subtracting from (2.5.3.8)
one easily obtains

|Ur ' = U | < (1-ABl s =M ) | Ul — Ul |
+Adlyy | Ul — UV +AB_32 | Ul — Ul |
so that
®
TV(Un+1): 2 |U?+1_U;|;0-11|

i=—o00

o0
< > (I-ABl_,—M]_y) - |UI—Ur—, |

i=—o0

o0 o0
+ 3 M, |UI=Ul- |+ X AB, | U =Ul- |

i=—o0 i=—o
0
= 3 |UI—U-, | =TV(U") a

The usefulness of this lemma for the construction of higher order TVD
schemes is shown in [23].
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Recently, however, Goodman and Le Veque have obtained the following nega-
tive result: every conservative TVD scheme for scalar hyperbolic conservation
laws in two space dimensions, is at most first-order accurate [4].

This result forces us to use a monotonicity concept weaker than TVD.
Consider the following nonlinear scalar conservation law in two space dimen-
sions:

Q0 pytr )=
5 T 0T, 80=0 (25.3.11)

Assume that (2.5.3.11) is discretized on an equidistant mesh with mesh size A.
Consider a discretization of (2.5.3.11) given by

Ut =Ug i+ M7y j(Ul 4 — UL HABY 4+ 4 (UL 41 — UL)

FACT- 4 j(Ur-1,;— UL)) +AD} 4 (U -1 — Ui)) (25.3.12)
where A=At/h and

Al+y;j=A (U1 UL Uiy jooe)

Bz"fjws =B (s Ulj-1UL Ui 152)

1y =C (U1, Ul U1 5m)

DZj_th (""U;:j—l’U;:j’l']l',j+l"")' (25.3.13)
We introduce the following monotonicity concept:
DEFINITION (2.5.3a).
Scheme (2.5.3.12) is called monotone if

A;’+%,j>0 5 Bl]+% /O C, %1/0 D,] % =0 (253143)

and if A4y j, Blj+y, Cl-y, Dij—y are uniformly bounded, i.e. there exists a
B >0 such that for all (i,j)

A}y <B ; BY4y<B; Cl_y;<B;D}_y<B (2.5.3.14b)

This monotonicity concept is not to be confused with what we called mono-
tonicity in the sense of Harten, Hyman and Lax. Monotonicity is weaker than
TVD in more than one space dimension. In two dimensions we define the total
variation of U as

TV(U)=3(| Uyy—Ui-1] + | U= Usj1|) (25.3.15)
L]

and U is called monotone if for all (i,j)
min(U; —yj, Ui +15, Uij-1, Uij+1)<Uy<max(Ui-1;, U415, Upj—1, Uyj+1)
(2.5.3.16)
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THEOREM (2.5.3d).
(i) A monotone scheme is TVD in one space dimension.
(i) A monotone scheme is not necessarily TVD in two space dimensions.

PRrOOF.
(i) For scheme (2.5.3.8) we have
O<A7+%’1<B y 0<B;‘+IAJ<B "
For A sufficiently small ()\SEIE) it is easily seen that (2.5.3.10) is fulfilled.

Hence, (2.5.3.8) is TVD.
(i) Consider the following grid function

B {1 for (i,j)=(1,0)
5710 for (i,j)#(1,0)
and let in (2.5.3.12)
Alyy;j=Blj+s =Cl-y;=Dij—4 =0 V¥(,j)#0,0)
Ayo=1;A404=0; C_y0=0;Dg_-5=0.
Then
Uit =U1 VG, j)70,0)
VRS =A.

Hence, TV(U")=4, TV(U"*')=4+2\. Because A>0 we find
TV(U"*")>TV(U"). Thus we have found a monotone scheme which is
not TVD. O

Nevertheless, the monotonicity concept of definition (2.5.3a) has some use, as
shown by the following theorem.

THEOREM (2.5.3¢).
If scheme (2.5.3.12) is monotone then a steady state solution of (2.5.3.12) is
monotone.

PROOF.
From (2.5.3.12) we see that for a steady state solution {U; ;} we have

U .= AivyjUiv1,jtBij+yUij+1+CiyjUi—1;+Dij— Ui j
~ AivyjtBijrytCiy;+Djy

which, due to the positivity of the coefficients, proves this theorem immedi-
ately. O

Thus a monotone scheme guarantees that in a steady solution spurious oscilla-
tions do not occur. There is no contradiction between monotonicity and
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second-order accuracy (neither in one nor in more dimensions). This will be
shown by constructing a second-order monotone scheme. Consider (2.5.3.11)
and suppose that the flux functions f(«) and g(u) can be split in a forward and
a backward flux (see (2.2.1.5)):

S@=f"@+fW);

= 2.5.3.17
gu)=g* (W)+g~ (@) e
where
4+ w)=0; L1 u)<0; VueR
du " du ’
d d (2.5.3.17b)
gu—g’L(u)ZO g Eg‘(u)so ; VueR .
A finite volume discretization is given by
U=y [{f+(UL M (UR M = (Ul )+~ (URs; M)
+7[{g+(Ufj—%")+g_( ) e Tl U T R S (/T )}
(2.5.3.18)
where
Uk, "= U7+ Ya(R? )(U,",,-—U,"-l,,-)
Ul Y%, —U" +/7‘K )(Un U"+1])
Uij+%"=U""+l/2‘l’(S' ~)(U,'-:j—U2j_1)
UR 4" =Uy +/2\[4( )(U" Ulj+1) (2.5.3.19)
and
71— UL 1= Ul
rr=iey = Uy o Ui — UL (2.5.3.20)

b = 3 O
Uij—Ui-1, Uij—Urij-

and Y:R-R is a continuous function called the limiter. The value Uj; is a
numerical approx1mat10n of the mean value of u in cell (i,j) at time t=nAt,
the values Uk " s UR.u g are approximations of

a7 )h)hu((H-’/z)h nnhi)dn at the left and right side of the cell wall
(i +7%,j). See figure 2.5.3a.
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Uij+1

R
Uij+4

L

Uii+4
L R L R

Ui-1; Ui-uj | Ui-nj Ui Uivyj | Uivnj U

R
Uij-»

L
Uij-u

Uij—1

FIGURE 2.5.3a. Location of the various variables in the space discretization.

The limiter ¢ =y(R) is introduced in the discretization in order to construct a
monotone, spatially second-order scheme. The limiter is a function of the con-
secutive gradients, a common practice in this field [23,25]. Notice that y=0
corresponds to the first-order upwind scheme, while y=I1 yields the fully one-
sided second-order upwind scheme (k= —1 : see (2.5.1.3)). We already know
that Y(R) has to be a nonlinear function.

We wish to show under what conditions scheme (2.5.3.18) is monotone. It can
be easily seen that scheme (2.5.3.18) can be written as (2.5.3.12) by taking

n __r(U1R+%,j")—f_(UIR—'A,j") ) e
5=

Uy y" — Ul Ul — Ui
C;,_%,j:+f+(U{“2%,j")—f1(U{“—%,j") ] Uky " — Ul— 3"
Ui+%,j"_Ui—'/z,j" Uﬁj_Ur"'—l,j
. g (UR Mg (UR—y")  Ujes" — UG y"
e URivu" —Ufj—y" Uij+1~Uj;
Dﬁj_%=+g+(U{:£+%")_g:(U{:j—%") . Ufj+%n—U{:j"/5" (25.321)
Uij+u" —Uij-u" Ulj—Ulj—1

To obtain positivity of the coefficients A7+ ;, Bi;+ 4 etc, it is sufficient (by the
Mean Value theorem) that
UR " —UR )" o Ukyy" — Ul )"
Ur1,;— Ul CUL UL,

=0;
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R —JJR L —7J/L
URsu" —UR " . Ubps" = Ul
’
Ulj+1—Uij Uli—Uij—1

The coefficients A4, B};+y4 etc, are uniformly bounded by assuming uni-
form boundedness of the derivatives of f*(u), f~ (), g* (u), and g~ (u), and
taking care that the left handsides of inequalities (2.5.3.22) are also uniformly
bounded.
By substitution of (2.5.3.19) in (2.5.3.22) it is easily seen that (2.5.3.22) is
fulfilled if

>0. (2.5.3.22)

1+ R)—4(S) - +=>0 VR.SeR. (2.5.3.23)

Furthermore, uniform boundedness of the left-handside of the inequalities in
(2.5.3.22) is obtained by requiring

UR)—WUS) - %<2M, VR,SeR, Me(0,00). (2.5.3.24)
So, (2.5.3.18) is a monotone scheme if the limiter ¢ =y(R) satisfies
—2<YR)—¥US) - %<2M, VR,S€R . (2.5.3.25)
This inequality is satisfied if
a<y(R)<M, VReR (2.5.3.26a)
and
—M<ﬂ1§l<2+a, VReR . (2.5.3.26b)

The monotonicity region given by (2.5.3.26) is depicted in figure (2.5.3b). We

assume ae[—2,0].
\ ﬁ 17 /¢ = (2+a)R

v=M

/N

FIGURE (2.5.3b). Monotonicity region.
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So, we have found the following theorem.

THEOREM (2.5.3f).
If the limiter y=y(R) has the properties that there exist constants

Me(0,00),ae[—2,0] such that a<W(R)<M, —Msﬂli—‘lszw,wz €R, then

(2.5.3.18) is a monotone scheme.

The requirements for this theorem imply that ¢(0)=0. Notice that =0, which
corresponds with the first-order upwind scheme, result in a monotone scheme,
as is to be expected.

Now, we investigate under which conditions scheme (2.5.3.18) is second-order
accurate with respect to the space discretization. Define

l~/f+44,j= U,j+%U;j—Ui-1,)
U:L+%,j: Ui,j+ '/?‘P(Ri,j) (Ui,j— Ui—l,j)
U?—%,j: Ui,j + ’/Z(Ui,j - Ui+1,j)
_ 1
Uk ny = Uiy 13, ) (Ui = Uic)) (2.53.27)
and similar formulae for Uy )% and UAR ;.

Notice that U corresponds with y=I1, the fully one-sided second-order upwind
scheme (k= —1).

THEOREM (2.5.3g).

If the limiter y=y(R) is constructed such that
UR = UR = Ules = Ui+ OP*Y) (2.5.3.280)
Uky g = Uk 13y = Ui = Ui+ O *) (2.5.3.286)
UR, ;= Uss ;= O(hP) (2.5.3.28¢)
Uk~ Uiy = O(hP) (2.5.3.28d)

with p=1 or p=2, and where UR,,, ;, Uty ;, ff,ﬁw, i],(},/,,j etc, are given by
(2.5.3.27), then scheme (2.5.3.18) is p-order accurate with respect to the space
discretization.

PROOF.
This theorem is a direct consequence of theorems (2.5.2a,b). [

From (2.5.3.27) we see that

Uk 4,5 = Ui+ R )= 1) (U= Ui-1) - (253.29)
Because

WR;)— 1= = 1+HY (R, — D)+ (oi R, — 1)
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with ¢/ =dy/dR,y’=d*y/dR* and p;; between 1 and R;; and

Ri;j—1) (Uij—Ui-1,)= Ui +1,j = 2U;j T Ui-y
we find that the assumption

y1)=1 (2.5.3.30)
leads to

Ukt sy = Uk s+ 0V (NUs 41, =203+ Ui -1)

+ '/ﬂP"(Pi,j)(Ri,j —1D(Ui+, =20+ Ui- 1,jX2-5-3-31)

Assume that |¢/| is uniformly bounded, then

U{‘+'A,j_l}iL+%,j:0(h2)

Uk — Ul y ;= i/iL+%,j - i]iL—%,j +0(h?).

(Similar relations can be derived for UR,  ; — i wj» Urnj— i %))
Hence, scheme (2.5.3.18) is first-order accurate with respect to the space
discretization.

Furthermore, by assuming that g—z;éO, we see that

R;j—1=0(h).
Then, assuming |¢/’| is uniformly bounded, (2.5.3.31) leads to
Ubij = Urvn; = Oh?)
Uy~ Uf—%,j = i']f+’/.v,j - iIiL—%,j +0(h%)
and we see that the scheme is even second-order accurate in space.
Because in general the set

SZ—{(x,y)]ax 0 or ay 0}

has measure 0, we have the following theorem.

THEOREM (2.5.3h).

(@) If W1)=1 and |{'| is uniformly bounded, then scheme (2.5.3.18) is first-
order accurate in space.

(b) Assume furthermore that || is uniformly bounded. Away from points

u u . o e .
where — =0 or m =0 the space discretization is second-order accurate (in

0x

the sense of definition 2.5.2a). Moreover,
Sh? | FyRyu—R,Fu|;;=O(h?) (2.5.3.32)
ij

where Fy, is the space discretization according to (2.5.3.18).

Notice that scheme (2.5.3.18) is linear when f(u) and g(u) are linear and
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WR)=a+bR, a, beR. Note that y{R)=a+bR does not satisfy the require-
ments of theorems (2.5.3f,h), as we should expect.

Examples of limiters combining the property of second-order accuracy and
monotonicity are:

EXAMPLE 1: The VAN LEER limiter [23,25,26].
_R+|R]|
By taking M =2 and a=0 it is easily seen that this limiter satisfies the mono-

tonicity restriction (2.5.3.26). Because Yy, (1)=1 second-order accuracy is
obtained.

(2.5.3.33)

EXAMPLE 2: The VAN ALBADA limiter [24].
R>+R
R*+1
By taking M =2 and a= —/ it is easily seen that this limiter combines mono-

tonicity with second-order accuracy. Notice that Yy, € C*(R). Another advan-
tage of this limiter is that X '+ Yy4(R)=1. This implies that at discontinuities
o0

i

Yra(R)= (2.5.3.34)

the scheme renders the fully one-sided upwind scheme (x= —1), which is a
natural scheme at discontinuites.

For a review of other limiters see [23]. But notice that a limiter ¢(r) of [23] is
related to y(R) by R=1/r, {R)=R¢(r). A limiter ¢(r) of [23] is only algebrai-
cally identical with Y(R) if y{R)/R =y(1/R).

REMARK (2.5.3a).
It has been observed [26] that second-order accuracy can be achieved by
assuming a linear distribution, rather than the uniform distribution, associated
with first-order schemes. In a cell, a linear distribution in the x direction is
achieved if
U1L+%,j - Ui,j = Ui,j - Uf-\%,j >
and similarly in the y-direction. Using (2.5.3.27), this means
1
\P(Ri,jxlfi,j —-U;- l,j):‘l’(_RT;)(Ui +1,j U,)
or, equivalently
1 ‘I’(Ri,[)
UR D)= -
i,j i,j
So, if a limiter satisfies

1 _¥R)
URg)="p VRER (2.5.3.35)
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we can speak of linear distributions in each cell. It can be verified that both
Yy and yy, possess this property. This is no coincidence: they were designed
that way.

If a limiter satisfies (2.5.3.35) we have the following theorem:

THEOREM (2.5.3i).
If a limiter y=y(R) has the property \K%)= -'l%)- and if Ymax — Ymin <2, where

Vmax =DaX(UR)), Yinin =MIn(UR)),
then scheme (2.5.3.18) is monotone.

PROOF.
Because the limiter satisfies (2.5.3.35), the monotonicity conditions (2.5.3.26)
are equivalent with

a<yYR)<M ; —M<{{R)<2+a; VR. (2.5.3.36)
Put
a=¢m, M=2.

Formula (2.5.3.35) implies y{0)=0, hence a<<0 and Y, =>0.
Hence

Vo <2+a<2=M = a<{(R)<M VR
and
Vmin SV¥max — 2= —2=—M = —M<{(R)<2+a VR.

O
REMARK (2.5.3b).
The k-schemes (2.5.1.3) can be written as (2.5.3.19) by taking
WR)=- £+ “2”‘ R. (2.5337)

As expected, the k-schemes correspond with a linear limiter and are therefore
not monotone. A class of limiters which combines monotonicity and second-
order accuracy is derived from the k-schemes by

WR)=(E+TER) - (R) (25338)
where
__2R
HR)= R+l (2.5.3.39)

Notice that ¢(1)=1, ¢’(1)=0 and therefore the y, limiters resemble the k-
schemes in the smooth part of the flow field where R~ 1. Concerning accuracy,
the y,,3 limiter is the best. Notice that y,(R) is the Van Albada limiter.
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The 4, limiters are depicted in figure (2.5.3c) for k=—1,—%,—%,0,%,%,1.
Not all y,(R) limiters lie in the monotonicity region depicted in fig (2.5.3b).
Notice that {/,(0)=1—«. Thus y_;(R) does not satisfy the monotonicity con-
ditions (2.5.3.26) because y/_(0)=2 and y_;(—1)=—1. From figure (2.5.3c)
it is easily seen that y,(R), k€[— %, 1] satisfies the monotonicity conditions for
a=—%, M=2.

x = K=1/3
0 = K=2/3
v = K=1

FIGURE (2.5.3c). The y,(R) limiters for k= —1,— %, — 4,0, %,%, 1.

A disadvantage of the y;(R) limiter is that Rlim \[%(R):%. An improvement
»*o0
of the yy,(R) limiter is

W(R)=(3 + > R)WHR) (2.5.3.400)
with

~ . 3R®*-2R?+3R

¢(R)——2(R4 ) (2.5.3.40b)

Notice that :1;(1)= 1 J)’(l)=0 and J:(R)~% for R»>=*o00. Thus \ZJ./,(R) resem-
bles the k=15 scheme and » im Y, (R)=1.
+o0

The Jzy,(R) limiter is depicted in figure (2.5.3d). It is easily seen that J/y,(R)
satisfies the monotonicity conditions for a= —%, M =2.
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0.5
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-0.5
|
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-2 -1.5 =1 -0.5 0 0.5 1 1.5 2
R

FIGURE (2.5.3d). The special limiter (R).

The use of the yy(R) or \IJ%(R) limiter instead of the yo(R) limiter is especially
important for the computation of boundary layer flow modelled by the
Navier-Stokes equations, see [2].

REMARK (2.5.3¢).
The use of a limiter in the interpolation is in fact equivalent with a nonlinear
monotone interpolation. This becomes clear in the following example where a
limiter is constructed by the interpolation of three states by an exponential.
Consider three states U_;, Uy, U; which are the Ieay values of a function
u(x) on the intervals (—5h,—5h), (—7h7h), (7h,5h) respectively. Sup-
pose

u(x)=A+Be™ . (2.5.341)

The unknowns A,B and a are derived from

1 (k+4%)h B ,
Uk:_ f A+ Be™ dx:A+—e“hk ebah_e—%ah k=—1,0,1 .

(k—%)h ah
Define
U,—Up
R=————=¢".
Ug=U—
We require
Uo+ %UR) (Ug— U_,)=u(¥sh)=A + Be"** (2.5.3.42)

It can be easily seen that (2.5.3.42) implies
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2R
UR)= R—17
By defining y(1)=1 it is easily seen that y€C*(0,00) and 4/(1):%—. Thus, this
limiter corresponds with the k= scheme. Because 1}1&1 Y/ (R)=2 we have to
take a=0 and M = + oo. By defining Y(R)=0, R<<0 it is easily seen that this
limiter lies in the monotonicity region depicted in figure (2.5.3b) for a=0 and

M =+ co. This means that steady state solutions obtained with this limiter are
monotone.

{1—R+RIogR} . (2.5.3.43)

The use of limiters in the second-order space discretization of the steady Euler
equations is straightforward. Let gy, ; ® and gf,,; ®) be the k-th com-
ponent (k=1,2,3,4) of gF; and gF ; (see (2.5.1.2)). Then we take

ghen; © =g + 5 (RE) (@) — 41

1
@hen; O =g+ ) (@~ a2, @534
where
k) . — gk
Rgl;):iliw_‘lu_ (2.5.3.45)

g% — 4",

Thus the limiter y,(R) is applied on each component c,u,v or z of the states
{g:;} separately.

In case {; J is a boundary volume, so that, for example 0%; ;4 ; is part of the
domain boundary, no limiter can be used to compute gF ; ; and R4 ;. In this
case we use a simple linear interpolation, i.e.

qh %,j = 4i,j + I/Z(qi,j —qi— l,j)
gt i =i~ Yqij—qi-1,) - (2.5.3.46)

The boundary conditions, together with the state i ;, are used to compute
the boundary state gf; ; ;, by considering the Riemann boundary problem. The
flux ﬁ+%’j at BQH%J is computed by (2512)

REFERENCES.

1. S.R. CHAKRAVARTHY and S. OsHER (1985). Computing with High-
Resolution Upwind Schemes for Hyperbolic Equations. In: Lectures in
Applied Mathematics, (B. ENGQuist, S. OSHER, R. SOMERVILLE eds.),
Volume 22, Part I, 57-86, AMS, Providence, R.I.

2.  S.R. CHAKRAVARTHY, K. SzEMA, U.C. GOLDBERG, J.J. GORSKI S. OSHER
(1985). Application of a New Class of High Accuracy TVD Schemes to the
Navier-Stokes Equations. AIAA-85-0165. AIAA-23r Aerospace Sciences
Meeting, Reno/Nevada.

3. SK. GobunNov (1959). Finite Difference Method for Numerical



94

10.

11.

12.

13.

14.

15.

16.

17.

18.

Computation of Discontinuous Solutions of the Equations of Fluid Dynamics.
Math. Sbornik 47, 271-306. Also: Cornell Aeronautical Lab. (Calspan
Translation).

J.B. GoopMaN and R.J. LE VEGUE (1985). On the Accuracy of Stable
Schemes for 2D Scalar Conservation Laws. Math. Comp. 45, 156-21.

A. HARTEN, J.M. HYMAN, P.D. LAx (1976). On Finite-Difference Approxi-
mations and Entropy Conditions for Shocks. Comm. Pure Appl. Math. 29,
297-322.

A. HARTEN (1983). High Resolution Schemes for Hyperbolic Conservation
Laws. J. Comp. Phys. 49, 357-393.

P.W. HEMKER, S.P. SPEKREUSE (1985). Multigrid Solutions of the Steady
Euler Equations. In: Advances in Multi-Grid Methods Proceedings of the
Conference held in Oberwolfach, December 8-13-1984. (D. BRAEss, W.
HackBUsH, U. TROTTENBERG eds.). Notes on Numerical Fluid Mechanics,
Volume 11, 33-44. Vieweg, Braunschweig.

P.W. HEMKER, S.P. SPEKREUSE (1986). Multiple Grid and Osher’s Scheme
for the Efficient Solution of the Steady Euler Equations. Appl. Num.
Math.2, 475-493.

A. JaMEsON, W. SceMipT and E. TURKEL (1981). Numerical Solutions of
the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-
Stepping Schemes. AIAA-81-1259 AIAA-14th Fluid and Plasma Dynam-
ics Conference, Palo Alto, California.

A. JAMESON (1983). Solution of the Euler equations for Two-Dimensional
Flow by a Multigrid Method. Appl. Math. Comput 13, 327-355.

A. JaMEsON and D. MAvVripLIS (1985). Finite Volume Solution of the
Two-Dimensional Euler Equations on a Regular Triangular Mesh. AIAA-
85-0435. AIAA-23rd Aerospace Sciences Meeting, Reno, Nevada.

B. KOREN (1986). Euler Flow Solutions for a Transonic Windtunnel Sec-
tion. Report NM-R8601, Centre for Mathematics and Computer Science,
Amsterdam.

B. KOREN (1986). Evaluation of Second-Order Schemes and Defect Correc-
tion for the Multigrid Computation of Airfoil Flows with the Steady Euler
Equations. Report NM-R8616, Centre for Mathematics and Computer
Science, Amsterdam. To appear in J. Comput. Phys.

P.D. Lax (1973). Hyperbolic Systems of Conservation Laws and the
Mathematical Theory of Shock Waves. Regional Conference Series in
Appl. Math. 11, Siam, Philadelphia.

P.D. Lax and B. WENDROFF (1960). Systems of Conservation Laws.
Comm. Pure Appl. Math., Volume 13, 217-237.

S. OsuER and F. SOLOMON (1982). Upwind Difference Schemes for Hyper-
bolic Systems of Conservation Laws. Math. Comp. 38, 339-374.

S. OsHER and S. CHAKRAVARTHY (1983). Upwind Schemes and Boundary
Conditions with Applications to Euler Equations in General Geometries. J.
Comp. Phys., 50, 447-481.

P.L. RoOE (1981). Approximate Riemann Solvers, Parameter Vectors and
Difference Schemes. J. Comp. Phys. 43, 357-372.



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

95

J. SMOLLER (1983). Shock Waves and Reaction-Diffusion Equations.
Grundlehren der Mathematischen Wissenschaften 258. Springer Verlag,
Berlin.

S.P. SPEKREUSE (1986). Second-Order Accurate Upwind Solutions of the 2D
Steady Euler Equations by the Use of a Defect Correction Method. In:
Proceedings of the 2nd European Conference on Multigrid Methods,
Cologne, October 1-4-1985. (W. HACKBUSH, U. TROTTENBERG eds.), Lec-
ture Notes in Mathematics 1228, 285-300, Springer Verlag, Berlin.

S.P. SPEKREUSE (1987). Multigrid Solution of Monotone Second-Order
Discretizations of Hyperbolic Conservation Laws. Math. Comp. 49, 135-
155,

J.L. STEGER, R.F. WARMING (1981). Flux Vector Splitting of the Inviscid
Gas Dynamics Equations with Applications to Finite Difference Methods. J.
Comp. Phys. 40, 263-293.

P.K. SweBY (1984). High Resolution Schemes Using Flux Limiters for
Hyperbolic Conservation Laws. Siam J. Num. Anal. 21, 995-1011.

G.D. VAN ALBADA, B. VAN LEER and W.W. ROBERTS (1982). A4 Com-
parative Study of Computational Methods in Cosmic Gas Dynamics.
Astron. Astrophys. 108, 76-84.

B. VAN LEER (1974). Towards the Ultimate Conservative Difference Scheme
II.  Monotonicity and Conservation Combined in a Second-Order
Scheme. J. Comp. Phys. 14, 361-370.

B. VAN LEER (1977). Towards the Ultimate Conservative Difference Scheme
IV. A New Approach to Numerical Convection. J. Comp. Phys. 23, 276-
299.

B. VAN LEER (1982). Flux-Vector Splitting for the Euler Equations. In:
Procs. 8th Intern. Conf. on Numerical Methods in Fluid Dynamics, (E.
KRAUSE ed.), Aachen 1982. Lecture Notes in Physics 170, 507-512,
Springer Verlag, Berlin.

B. VAN LEER (1984). On the Relation Between the Upwind-Differencing
Schemes of Godunov, Engquist-Osher and Roe. Siam J. Sci. Stat. Comput
5, 1-20.

B. VAN LEER (1985). Upwind-Difference Methods for Aerodynamic Prob-
lems Governed by the Euler Equations. In: Lectures in Applied Mathemat-
ics, (B. ENGQUIST, S. OSHER, R. SOMERVILLE eds.), Volume 22, Part II,
327-336, AMS, Providence, R.I.






97

Chapter 111
Multigrid Solution of the First-Order Discretization

3.1. INTRODUCTION

The multigrid method has become a well-established technique for the
acceleration of relaxation-iterations to solve the sparse systems that arise from
discretization of elliptic partial differential equations. The advantage of mul-
tigrid over other acceleration techniques is the fact that - under suitable, but
quite general circumstances - the rate of convergence is independent of the size
of the system to be solved. For other methods the rate slows down rapidly for
finer discretizations when the systems get larger. This makes the multiple grid
method superior to other methods - at least for very large elliptic systems. For
readers unfamiliar with multigrid techniques we refer to [1,2].

The multigrid technique has also been applied with success to other types of
equations, such as parabolic partial differential equations and integral equa-
tions. Based on the pioneering work of Brandt [1] it is expected that with the
multigrid method, for many equations, a sufficiently accurate approximate
solution can be computed in an amount of work that is equivalent to a small
number of evaluations of the (nonlinear) operator.

Also for the steady solution of hyperbolic equations, such as the Euler equa-
tions, the multigrid technique has been used for the acceleration of the solution
process. For a survey of multigrid approaches to the Euler equations, see [3]-

In this chapter, we study a multigrid method for the solution of first-order
discretizations only. As noted before, first-order accuracy is too low for practi-
cal problems. Therefore, the ultimate goal is an efficient and robust solution
method for systems obtained by second-order discretization. Such a method,
based on the defect correction principle, is developed in chapter IV. The basic
tool of this method is the multigrid solver for first-order discretization which is
the topic of this chapter. '

3.2. NESTED ITERATION AND NONLINEAR MULTIGRID

Let

Fi(gn)=1n (3.2.1)

be the first-order accurate discretization of the 2D steady Euler equations with
source term r. Hence, (see (2.1.15))



98

(Fhgn)ij=fivnjthijen—fi-unj—fij-u (322
with

Sionj=hivn TidujfR(Ti+ 1,jGhi s Tiv 1,j9n,i +1,)) 38

fij+5=bjenTij s ufR(Tij+ 1 qnijs Tij+ i +1) (3-23)
where l,'+l/z, J is the length of 39,-+./,, J» T,'+1/2, J - T(¢i+’/$, j) and
(cOSP; 1 4,j, Sing; 154 ;) is the unit normal on 0%, 4 ; directed from &; ; to &4
(see fig. 2.1.b). Simularly, /; ;4 is the length of 9%; ;4 4, Tjj+,=T(¢;, j+%) and
(cosey j+ 4, Sing; j1) is the unit normal on 9%; ;4 directed from 2 to
;. ;+1. The subscript & denotes the meshwidth and fg is Osher’s approximate
Riemann-solver. Although in general r=0, we prefer to describe the solution
method for first-order systems with an arbitrary (but small) right-hand side.
We will develop an efficient multigrid solution method for (3.2.1). A nested
sequence of finite volume grids is constructed, such that each finite volume in a
given grid is the union of four finite volumes in the next finer grid, as indi-
cated in fig. 3.2a. The grids are denoted by Q%, k=1, ... ,/; their mesh-size is
hy>h,> - - - >h=h. Hence, Q! is the coarsest grid, ' the finest grid.

The solution method consists of two successive stages: nested iteration (or full
multigrid: FMG) and nonlinear multigrid (NMG) (or full approximation
scheme: FAS).

Stage I: Nested iteration
Let

Fi(g)=rr (3.2.4)

be the first-order discretization on @, k=1, ...,L Denote with g; the solu-
tion (3.2.4), k=1, ...,L Nested iteration starts with some initial estimate of
g} and proceeds recursively. Given an approximation of gj, an approximation
of gi +1 is obtained as follows. The approximation of g is improved by a sin-
gle NMG-iteration (see sta§e II) and this improved approximation is interpo-
lated to the finer grid @ *'. These steps are repeated until an approximation
of g; has been obtained.

The interpolation used to obtain the approximation on a finer grid is a
piecewise constant interpolation (assi;n the coarse volume value (gx);; to the
corresponding 4 finer volumes of Q% *7).

Stage 11: The nonlinear multigrid (NMG) method

To converge rapidly to the solution of (3.2.1), NMGe-iterations are applied on
the finest grid £'. One NMGe-iteration on a general grid QF is defined recur-
sively by the following steps:

(0) Start with an approximation g of gj.

(1) Improve g by application of p (pre-)relaxation iterations to F, g =r.
(2) Compute the defect (or residual) dy: =r, — Fk(qk).
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Find an approximation g —; of g -, on the next coarser grid 2 ~'. One
possibility is to take the last obtained approximatiog t0 gk —1. Another

possibility, to be used here, is g —1:=1; gx Where I],:-l is a restriction
operator.
Compute 7 —1:=F} _1(qx—1)+1% "'d; where If ' is another restriction
operator.

Approximate the solution of Fk_1(gx—1)=rx—1 by o NMGe-iterations on
Q%=1 The result is called g —;. (6=1 results in a so-called V-cycle, 6=2
in a W-cycle).

Correct the current approximation by gx:=gx + 1% 1 (g —1 — gk —1), Where
I¥ ) is a prolongation operator.

Improve g, by application of ¢ (post-)relaxation iterations to F, g )=rs.

The steps (2)-(6) are called the coarse-grid correction. These steps are skipped
on the coarsest grid.

In order to complete the description of I\{ll\'iG we have to discuss: (i) the choice
of the transfer operators I§ _;, If ', I, (ii) the relaxation method, and (iii)
the multigrid schedule i.e. the numbers p,q and o.

(i) Choice of the transfer operators
The coarse grid cell (¢7'),; is the union of the fine grid cells

(@25 @ 12 @ D3y 1 (B 121 (see fig. 3.22).

FIGURE 3.2a. The subdivision of a coarse grid cell in four fine grid cells.

-r e -
The restriction operators Il,: and I¥ ! are defined by:

G-y =k gy
: :%{(qk)ﬁ, 2 (@i )i —1,2) T ()i 25 —1 T (G -1, -1}
(3.2.5)
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(A1) =UE " d)
1= (di ), 25 (i — 1,25 (@i 21 H (ki —12-1 - (3:2.6)

Notice that a state g is represented as g =(c,u,v,z) (see section 2.2.2).
The prolongation operator If _; is piecewise constant interpolation defined by

(1’15—1CIk—1)2.',21':(1’15—|¢Ik—1)2i—1,2j:(1£-lqk—l)zi,zj—l
=(I§ ~1qk—1i-12—1:= (G —1)ij - (3.2.7)
By defining the transfer operators in this way, we have the following theorem.

THEOREM (3.2a).
The first-order coarse grid discretizations of the steady Euler equations are Galer-
kin approximations of the fine grid discretization i.e.

Fl_ =K 'FiI_, k=1l,...,2. (3.2.8)

PROOF.
From the definitions of the transfer operators I¥ ~!,I¥ _ it follows that

IEVFIE vqi—2)ij = (Fhgii, 2+ (Figii -1
+(Fhqii, 2 —1 + (Fhqii 1,21 (3.2.9)

— Tk
where qk _Ik—lqk—l-
Because

()i, 2= (@i 1,2 = (@i, 25 -1 = (@i 1,2 -1 = Gk —1)ij

it is easily seen that the righthandside of (3.2.9) equals (F,‘(_lqk_l),-,j.
a

From (3.2.8) it follows that we have a nested sequence of discretizations, i.e.
the following scheme (fig. 3.2b) of operators and spaces commutes (X is the
vector space of states {gy} at 2%, Y, is the vector space of total fluxes at Q).
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FIGURE 3.2b. The nested sequence of discretizations.
Another property which follows directly from the definitions (3.2.5)-(3.2.7) is
'k =1, (3.2.10)

~

where I; _, is the identity operator on Xj ;.

The effect of the Galerkin approximation (3.2.8) on the FAS-iteration pro-
cess is the following. Let g, be an approximation of g; and g, the improve-
ment of g, after a coarse grid correction which is assumed to be solved exactly
for the moment. Thus

s . k-1
‘Ik:qk‘*'li—l(‘Ik—l_IlI: k) (3.2.11)
where g — is the exact solution of
i~ ~k—1 _
Flo1@e-D=Fk1 (i g)+1E 7 (e~ Fhg) - (32.12)

From (3.2.10,11) it follows that
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0 %=1 . (32.13)
Using the relations (3.2.8, 10, 11, 12, 13) we find that
K\~ FE 5 3
:I£_lrk—Fll<—l}:-l‘}k
=If ' —F} _1qx—
=1 'n—Fh I o= I o — Flgo)
=1, 'Flg— I Ry 0 g
=1 (Flag—FLIE 10k ' g0). (3.2.14)
For the restriction of the residual we obtain
It V(e — Figi)
=B\ —Fy o0k G+ FLIE 0k G- Flgo)
=I5 (Fhg—FUE 1T g} — (Fha—FUE 1T @) (32.15)

In two particular cases the restriction of the residual vanishes for a Galerkin
approximation. First, suppose g; € Range (I%_;). From (3.2.11) it follows that
g« €Range (I% 1) and using (3.2.10) we see from (3.2.15) that

It~ (re— F1ge)=0.
That is, after coarse grid correction the residual belongs to Ker (1§ ~1).

When F} is linear, this remains true when ¢, &Range (1§ _,). This is a well
known result. It follows from (3.2.15) in the following way:

IF Y e —Flqu)
B - .
=IVFL-FUEC T ) (-3
v p gk Nk (T e =0
=L (Fx—Felg I ) (Ie g —qr-1)
B k=1
=1 EME o —FLE ) 0k ge—3e-1)=0.

In the neighbourhood of a solution, the difference between g, —g; will be
small and F} will approximately behave as a linear operator: the restriction of
its residual will be very small viz. O(| | —gx | |?).

Since If ™! corresponds to taking local averages with positive weights, grid
functions in Ker(/f ') have many sign-changes and hence are non-smooth.
Local relaxation methods exist that reduce non-smooth residuals efficiently.

(ii) The relaxation method

We use Collective Symmetric Gauss-Seidel (CSGS-) relaxation. This means
that, at a particular level, all cells are scanned one by one in some prescribed
order and at each volume visited, the 4 unknowns (c,u,v,z) are changed simul-
taneously (‘Collectively’) by solving the 4 nonlinear equations by Newton’s
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method (local linearization).
One Newton iteration applied to the equation

(Fr(qi)i,;j = ()i (3.2.16)
is defined by

0
(FGO)i,j - Ogi)ij= )i — (Fi(gi))ij (3.2.17a)

a(qk)i,j

(@) =(@)?% +(Oqi)i - (3.2.17b)
The computation of the term 3 (qa) (Fi(qu)): ; 1s described in section 2.4. The

k)i, j

solution of the linear 4 X 4 system (3.2.17a) is obtained by Gauss-elimination
with column pivoting. One or more steps of Newton-iteration are used until
the local residual is reduced below a specified magnitude. It appeared most
efficient to take this tolerance so crude that no more than one iteration step
per cell is performed.

Several relaxations, all being of the Collective Gauss-Seidel type, were con-
sidered in [4,5]. It appeared that the following choice is very robust and
efficient [4,5]: use CSGS from North-West to South-East and vice versa for the
pré-relaxation, use CSGS from North-East to South-West and vice versa for
the post-relaxation. For all computations presented in this work we use this
particular relaxation method.

For an analysis of relaxations of Collective Gauss-Seidel type for the Euler
equations and related model equations see [6].

(iii) The multigrid schedule

A multigrid schedule is a rule for the order in which the grids are visited. We
use a fixed schedule for all computations presented in the next section. We
take =1 and p=¢=1, i.e. we use V-cycles with one pré- and one post relaxa-
tion, both in the nested iteration and the NMG-stage. Experiments show that
different (p,g, o)-strategies are not much different in efficiency [4,5]. Usually a
smaller convergence factor is compensated by a corresponding amount of addi-
tional work.

Figure 3.2c gives an illustration of the multigrid schedule. Suppose there are 5
nested grids (/=5). Between two succeeding points 4,B we have one NMG-
iteration (V-cycle). Between two succeeding points B,4 we have a piecewise
constant interpolation in the nested iteration stage.

L__ Nested iteration - NMG-stage 4

o: relaxation
FIGURE 3.2c.  Schematic representation of the multigrid schedule (5 levels).
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3.3. NUMERICAL RESULTS

In this section numerical results are presented for four testproblems. The first
two testproblems concern the computation of channel flows. Testproblem
three concerns the resolution of a contact discontinuity and in testproblem
four we consider a cylinder in a supersonic free stream. For each testproblem
we give the convergence history of the multigrid method described in the previ-
ous section. The first-order solutions obtained are presented graphically in
order to compare their quality with the second-order accurate solutions
presented in chapter IV.

PROBLEM 1. Flow in channel over a circular arc bump with thickness 4.2%.
The geometry of the channel is given by the following mapping from the (£,7)-
computational space to the (x,y)-physical space.

-2 <¢<-2 = £=(T7£+90)/32

< B £=(14¢—5)/40 (3.3.12)
L << 3 = £=(133¢—255)/48
. o BETD
-2 <é(< —0625 = x=—-2+1375" —ewg_—l
—0.625 <f< 0625 = x=¢ ) (3.3.1b)
i eﬁz(f—3) .|
0.625 <é< 3 = x=3—-2.375 m
B
~ e —1
7=2 33.1¢
|x|< 0.5 =>y=;,+(1—-’21)(\/9—x2 —2.958)
|x|> 05 = y=7 (3.3.1d)

with B, =226, ,=1.39, B3=1.25.7

At level [, 1=1,2,3,4,5 the vertices of the quadrilateral volumes &;; in the
(x,y)-s?ace correspond to a regular square mesh consisting of
520~V x 220~ yolumes covering [—2,3]X[0,2] in the (¢,7)-plane.

The nested sequence of grids is given in fig. 3.3.1.
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FIGURE 3.3.1. The nested sequence of grids for testproblem 1.

We consider the convergence history of the NMGe-iteration proces for three
different parallel flows given by the following boundary conditions

Problem 1la: Subsonic flow: M s =0.3, pintet =P outlet-

Problem 1b: Transonic flow: My =0.85, piniet =P outlet-

Problem 1c: Supersonic flow: My =3.0.
M, is the entrance Mach number at x=—2. We take piniet =Poutler; this
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makes the numerical solution essentially independent of the value of
Pinlet =P outlet-

The solid boundaries are treated as described in section 2.3.2. For problem
la,b at the outflow boundary (x=3), poue is prescribed and the boundary
condition is treated as described in example (2.3.2a). At the inflow boudary
(x=—2) we prescribe v=0, c=1, =My and, in case of problem lab, z
such that pinier =pouter (Overspecification), in case of problem Ic, z=1.

In fig. 3.3.2 we present the convergence history of the NMGe-iteration process
at different grids for the subsonic testproblem la. At the ordinate the loga-
rithm (base 10) of a norm of the residual is depicted. The norm used is the
sum of the four L;-norms of the components in the residual, i.e.

4

|IFh@gn)l =3

k=1

> | (Fh(gn))¥; ] (3.3.2)
@))

In fig. 3.3.3,4 we present the convergence history at different grids for the tran-
sonic testproblem 1b. In fig. 3.3.3 we have used the P-variant of the Osher-
scheme, in fig. 3.3.4 the O-variant has been used. No difference is observed.
The P-variant of the Osher scheme is always used unless mentioned otherwise.
In fig. 3.3.5 we present the convergence history at different levels for the super-
sonic testproblem 1b.

° LEGEND 7 LEGEND
0 - GRID 10%4 O - GRID 10%4
0 - GRID 20%8 0 - GRID 20%8
- A - GRID 40x16 - a - GRID 40%16
: + = GRID 8Ox32 + = GRID 8Ox32

10LOG (RESIDUAL)
10LOG (RESIDUAL)
-5 -5 -4

-7
i

—® . : )
20 5 20 5

l'O 15
ITERATION NUMBER

10 15
ITERATION NUMBER

FIGURE 3.3.2. Convergence history FIGURE 3.3.3. As figure 3.3.2 but
of the NMGe-iteration process at for testproblem Ib.
different grids for testproblem la.
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°
1 LEGEND ° LEGEND
0 - GRID 104 0 - GRID 104
O = GRID 20»8 . 0 = GRID 208
- 4 - GRID 4016 g A - GRID 40%16
+ = GRID 80%32 ! + = GRID BO»32

-4
1

10L0G (RESIDUAL)
10LOG (RESIDUAL)
-5

vy
h

L 3
L

=10

L 1 1
2 = B3

10 l'S
ITERATION NUMBER

FIGURE 3.34. As figure 3.3.3 but FIGURE 3.3.5. As figure 3.3.2 but
with the O-variant. for testproblem Ic.

10 15
ITERATION NUMBER

From the experiments we conclude that for supersonic and transonic flow the
rate of convergence of the NMGe-iteration process is (for practical purposes,
where one only wants to get below truncation error) independent of the
meshwidth. Nested iteration alone already brings us close to truncation error.
Convergence is slower and dependent on the meshwidth for small Mach
numbers.

The transonic testproblem 1b is a standard problem, used to compare many
different methods [9]. For this problem only we give results of the first-order
solution obtained. The results are presented in fig. 3.3.6-12 and are obtained
at the 40 X 16 grid. In fig. 3.3.6,7 we give the Mach number distribution. Fig.
3.3.6 is obtained with the P-variant, fig. 3.3.7 is obtained with the O-variant.
Again, no difference between the P- and O-variant is observed. In fig. 3.3.8 we
give the ¢, distribution. The pressure coefficient is defined as

PP

T 333
P il P
where the values at infinity are obtained by averaging the outflow values. In
fig. 3.3.9 we give the entropy distribution of the flow field. The entropy is

presented as (s —5_ o, )/5 o With s=pp~7.
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FIGURE 3.3.6. Iso-Mach lines for testproblem 1b (40 X 16 grid).
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FIGURE 3.3.7. As figure 3.3.6 but the solution is obtained with the O-variant.
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FIGURE 3.3.8. Pressure contours for testproblem 1b (40 X 16 grid).
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FIGURE 3.3.9. Entropy contours for testproblem 1b (40 X 16 grid).

In fig. 3.3.10-12 we give the Mach number, —¢, and entropy distribution along
the lower surface of the channel. The shock is well captured but notice the
spurious entropy generation at both corners of the circular bump.

8

0.50

T T T T T T T T T 1
-2.0 -1.5 -1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

X
FIGURE 3.3.10. Mach number distribution along the lower surface of the channel
for testproblem 1b (40 X 16 grid).
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FIGURE 3.3.11. Pressure distribution along the lower surface of the channel for
testproblem 1b (40 X 16 grid).
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FIGURE 3.3.12. Entropy distribution along the lower surface of the channel for
testproblem 1b (40 X 16 grid).

PROBLEM 2. Supersonic flow in a channel with a 4% thick circular arc bump.
This is a standard test problem, considered in [7,10].

The geometry of the channel is given by the following mapping from the (§,7)-
computational space to the (x,y)-physical space with (§,7)e[—1,2]X[0,1]. The
mapping is given by

—1 <t<—7 = E=(@4+1)/3
. i
—7 SIS 2 S E=@E+1)/6
3o<t< 2 =>§=4-2)/3 (3.3.4a)
; o BGEH)
-1 <¢< 0 =>x=—l+—Fp—
e M"—1

0 <§< 1 = x=¢

; PP
| <f< 2=>x=2-%— (3.3.4b)
e i —1
B
e —1
334c
- ( )
0<x<l = y=i+(1—iX \/9.89105—(x—%)2 —3.105)
x<0or x>1=y=9 (3.3.4d)

with B; =1.26 and 8, =1.01.

At level [, 1=1,2,3,4,5 the vertices of the quadrilateral volumes &;; in the
(x,y)-space correspond to a regular square mesh over 6.2' ! X2.2'~! volumes
on [—1,2]X[0,1] in the ({,7m)-plane.

The nested sequence of grids that was employed is given in fig. 3.3.13.
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FIGURE 3.3.13. The nested sequence of grids for testproblem 2.

At the inflow boundary (x=—1) we prescribe My, =14. We take
Uiniet = Miniet, Vintet =0, Cintet =1, Zinter = —¥In(y)-

In fig. 3.3.14,15, we present the convergence histories of the NMG-iteration
process on grid 48X 16 and grid 96X 32, respectively. As expected, the conver-
gence rate is excellent. For later comparison (see chapter IV), the first-order
solutions on grids 48X 16 and 96 <32 are presented.
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FIGURE 3.3.14. Convergence history FIGURE 3.3.15. As figure 3.3.14 but
of the NMGe-iteration process for on grid 96 X 32.
testproblem 2 (48 X 16 grid).

In fig. 3.3.16,17 the Mach number distributions obtained are shown. Two
oblique shocks are formed at both corners of the bump. Due to discretization
errors, the shocks loose sharpness as one moves out from the lower wall; the
reflection of the leading-edge shock by the upper wall is hardly visible (cf. the
second-order solutions presented in chapter IV). The leading-edge shock is
spread numerically over 6 volumes halfway the channel (y =0.5).

FIGURE 3.3.16. Iso-Mach lines for testproblem 2 (48 X 16 grid).
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FIGURE 3.3.17.
In fig. 3.3.18-2

As figure 3.3.16 but on grid 96 X 32.
1 we give the Mach number and the entropy distributions along

the lower surface of the channel.

MACH

FIGURE 3.3.18.

MACH

FIGURE 3.3.19.

T T T T T 1
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X

Mach number distribution along the lower surface of the channel
for testproblem 2 (48 X 16 grid).

As figure 3.3.18 but on grid 96 X 32.
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FIGURE 3.3.20. Entropy distribution along the lower surface of the channel for
testproblem 2 (48 X 16 grid).
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FIGURE 3.3.21. As figure 3.3.20 but on grid 96 X 32.

PROBLEM 3. Resolution of contact discontinuities.

Here the physical and computational domain are the same, i.e. the mapping is
the identity: x=¢, y=n. We take 2=[0,1]X]0,1], the coarsest grid is 2X2
volumes, the finest grid is 32X 32 volumes (level 5).

Two problems are considered:

PROBLEM 3a. Contact discontinuity aligned to the grid.
The boundary conditions are (s =p/p", z=In(s)).

x=0, 0<y<0.5: u=0.25, v=0, s=0.5
x=0, 0.5<y<1:u=0.75v=0, s=1
other boundaries : p=1.

(see fig. 3.3.22).

At the north, east and south boundary of the domain {2, the boundary condi-
tion is treated as described in example 2.3.2a (subsonic outflow). At the west
boundary, the boundary condition treatment is as described in example 2.3.2b.
The exact solution of this problem has a contact discontinuity at y=0.5. In
both parts of the domain the solution has a uniform state: for y <0.5 we have
u=025, v=0, s=0.5, p=1; for y>0.5 we have u=0.75, v=0, s=1, p=1.
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FIGURE 3.3.22. The domain © with boundary conditions corresponding to test-
problem 3a.

Because the contact discontinuity coincides with a grid line there is no discreti-
zation error, and the numerical solution should be exact. The convergence his-
tory of the NMGriteration process is shown in fig. 3.3.23 and the entropy dis-
tribution along the line x=0.5 is shown in fig. 3.3.24. From this last figure we
see that the solution obtained is indeed exact.

1

4

10LOG (RESIDUAL )

e

l'ﬂ 15 2‘5
ITERATION NUMBER

FIGURE 3.3.23. Convergence history of the NMGe-iteration process of testproblem
3a (32 X 32 grid).
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FIGURE 3.3.24. The entropy distribution along the line x =0.5 for testproblem 3a
(32 X 32 grid).

PrROBLEM 3b. Oblique contact discontinuity.
The boundary conditions are

West boundary x=0: u=V2/8, v=—V2/8, s=1/2.
North boundary y=1: u=3V2/8, v=—3V2/8, s=1.
East boundary x=1:p=1.
South boundary y=0:p=1.

The exact solution of this problem has a contact discontinuity at x +y=1. In
both parts of the domain the solution is uniform. For x+y<1 we have
u=V2/8, v=— \/2_/8, s=1/2, p=1; for x+y>1 we have u=3\/5/8,
v=—3\/-2L/8, s=1,p=1L

The outflow boundaries (p=1) are treated as in example 2.3.2a, the inflow
boundaries are treated as in example 2.3.2b.

Yy
A
u=3V2/8,v=-3V2/8, s=1
1
N
w E
u:\/E/S
v=—V2/8 S p=1
s=0.5
0
» x
0 pP=1 1

FIGURE 3.3.25. The domain @ with boundary conditions for testproblem 3b.
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In fig. 3.3.26 we present the convergence history of the NMGe-iteration process.
In fig. 3.3.27 we present the entropy distribution along the line x=0.5 and
entropy contours are shown in fig. 3.3.28. We observe considerable smearing
out of the discontinuity.
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FIGURE 3.3.26. Convergence history of the NMG-iteration process for testprob-
lem 3b (32X 32 grid).
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FIGURE 3.3.27. The entropy distribution along the line x =0.5 for testproblem 3b
(32X 32 grid).
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FIGURE 3.3.28. Entropy contours for testproblem 3b (32X32 grid).

PROBLEM 4. Cylinder in a supersonic flow

The grids used for the multigrid computation are shown in fig. 3.3.29. The
mapping from the (§,n)-computational space to the (x,y)-physical space with
&m)e[1,6]X[n/2,m] is

x =§cosn, y =§siny . (3.3.5)

At level I, I=1,2,3,4 the computational space is subdivided in 5.2' !X 4.2/~
rectangular volumes.
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FIGURE 3.3.29. The nested sequence of grids for testproblem 4.

The free-stream Mach number is M;, =2.0. At inflow the supersonic boundary
condition is used (#in, Vin, Cin » Zin are prescribed), at outflow the supersonic
outflow boundary condition is used (no boundary values are prescribed) and
the other two boundaries are treated as a solid wall (see section 2.3.2).

The standard multigrid solution method starts, in the nested iteration stage
with a uniform constant flow field given by u;,, vin, Cin and z;, on the coarsest
mesh. Unfortunately, divergence was observed for the local Newton iteration
process in the CSGS-relaxation method on the coarsest grid. A simple remedy
for this problem is the following continuation method. At the coarsest grid, we
start with M;; =0.1 and with a corresponding uniform flow field. Then 2
CSGS-relaxations are performed to improve the solution. After the improve-
ment, the inflow boundary condition is changed such that ME™ :=Mg? +AM
and 2 CSGS-ralaxations are performed with this new inflow boundary condi-
tion. We take AM =0.1. This process is repeated until M;, =2.0. This inexpen-
sive continuation process results in a good initial approximation on the coar-
sest mesh. The standard multigrid method starts, in the nested iteration stage,
with this initial approximation and no further problems were encountered.

In figure 3.3.30, the convergence history of the NMGe-iteration process is
shown.
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FIGURE 3.3.30. Convergence history of the NMGe-iteration process for testprob-
lem 4 (40 X 32 grid).

In fig. 3.3.31,32 the Mach number and pressure destributions are shown.
The bow shock is clearly visible. The bow shock starts at x=—2.5 and this
result agrees well with the first-order results published in [8]. In fig. 3.3.33 the
surface pressure distribution along the cylinder is shown.
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FIGURE 3.3.31. Iso-Mach lines for testproblem 4 (4032 grid).
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FIGURE 3.3.32. Contour plot of the pressure (p/p — ) for testproblem 4 (40 X 32
grid).
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FIGURE 3.3.33. Pressure (p/p_,,) distribution along the surface of the cylinder
for testproblem 4 (40 X 32 grid).

For these four testproblems we can conclude that the multigrid method has the
following features:

- Robustness. All problems are solved with a fixed multigrid schedule.
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- Efficiency. The convergence histories are excellent. For practical

purposes, where one only wants to get below truncation
error, after a start with nested iterations, a few (two or
three) NMG-iterations are sufficient. This means that
first-order solutions are obtained }n an amount of work
that is equivalent with about 3X 3 X2 CSGS-relaxation

on the finest grid.

- Grid independence of This is observed for the transonic and supersonic test-
the convergence rate. problems la,b. However, for flows with smaller Mach

numbers the convergence rate slightly decreases (see
testproblem Ic).

However, the quality of the solutions obtained is not satisfactory. Especially
oblique discontinuities are captured badly. The accuracy of the solutions can
be improved. This becomes clear by comparing the first-order solutions with
the second-order solutions presented in chapter IV.
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Chapter IV
Defect Correction for Second-Order Accuracy

4.1. INTRODUCTION

In chapter II we have derived a first-order and a monotone second-order
upwind scheme for the steady Euler equations. Both discretizations are conser-
vative and can be written as

Fy(gn)=rn 4.1.1)

where

Fi(qn)ij=fi+njtfij+n—fi-unj—fij-u 4.12)
and

Sivnj=hirn i TidnifeTivnjhivnjs TivnjGhi+n)

fij+u=hj+uTiufo(Tijsughij+u Tij+ndhij+n) 4.13)
(see 2.1.15, 2.5.1.1,2). The discretization (4.1.1) is first-order accurate with
(omitting the subscript k)

‘Izl'“+%,j=‘1i,j ; qtR+%,j:qi+l,j 4.14)

and analogous expressions for gi;% 4.

Then F,,(q,,)=F,’,(q,,), the first-order space discretization operator. The discreti-
zation (4.1.1) is monotone and second-order accurate with (again omitting the
subscript A, and denoting the kth component (k =1,2,3,4) with superscript k)

1
gD =49 + T RE) (@9~ 1)

1 1
q?+nff)=qf'521,j+7¢o(w) (@*1,,—4"2,)) 4.1.5)
1+1,j
where
k) — (k)
RW= =g (4.1.6)

K) —gk). .~
qt,_] l]: =1,j
and where y : R-R is the Van Albada limiter defined as

R2+R
R)=
WR)= "

@.1.7)
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(see 2.5.3.44,45). Then F,(qy)=F%(qs), the monotone second-order space
discretization operator.

In chapter III we have developed a robust and efficient nonlinear multigrid
method for solving

Fi(gn)=r - (4.1.8)

We have already mentioned that first-order accuracy is too low for practical
problems. Therefore, the accuracy has to be improved. There are roughly two
ways to improve the accuracy. A first possibility is to construct an efficient and
robust multigrid solver for

Fi(gn)=r . (4.1.9)

Unfortunately, for this system of equations there are no relaxation methods
available with good smoothing properties for damping short wavelength error
components. The smoothing properties of point-relaxations are insufficient [6].
A good alternative seems the block relaxation method proposed in [12]. But
experiments with a multigrid method which uses this block relaxation as a
smoothing operator show a rather disappointing convergence behaviour in case
of solutions with shocks [unpublished results].
A second possilibity is to solve (4.1.9) in an indirect way, making use of the
excellent multigrid solver for (4.1.8). This can be done by the following Defect
Correction (DeC-) iteration process:

Fu(gn)=rn

Flgh™)=Fhgh+ (s~ Fh(gh)) i=12.... GLED
It is clear that the fixed point of this iteration process is the solution of (4.1.9).
But what is the convergence rate of this DeC-iteration process? In section 4.3,
numerical results show that the convergence rate is in general rather slow.
Therefore, the DeC-iteration process is not an efficient process to obtain the
exact solution of (4.1.9). Fortunately, to obtain second-order accurate solutions
it is not necessary at all to iterate until convergence. For problems with
smooth solutions, a single DeC-iteration is sufficient to obtain second-order
accuracy [4]. In case of the Euler equations, where solutions are in general
discontinuous, experiments show that a few (5-10) DeC-iterations significantly
improve the accuracy of the solution [7]. From these considerations it follows
that (4.1.10) must be taken as a finite process (i.e. a small number of iterations
a{e performed) only used to improve the accuracy of the first-order solution
Gh-
In section 4.2 we derive some general theoretical results for the DeC-iteration
process. A description is given of the complete solution process to obtain
second-order accurate solutions of the steady Euler equations.
In section 4.3 numerical results are given for the testproblems of section 3.3. It
is shown that the first-order solutions presented in section 3.3 are improved
considerably by a few DeC-iterations.
Finally, in section 4.4 we consider the special and interesting case of the steady
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Euler equations with a source term. In that case, second-order accurate solu-
tions are obtained again very easily by the defect correction method.

4.2. THE DEFECT CORRECTION METHOD

In this section, the defect correction method is considered in a general context.
The main result is theorem 4.2b. From this theorem it follows that a small
number of DeC-iterations is sufficient to improve the accuracy. An alternative
proof is also given. Finally, the results of the analysis are used to develop a
complete solution process for obtaining second-order accurate solutions of the
steady Euler equations. A large part of this section has been published else-
where [1, 2, 3, 11].

Consider the problem
Fg=r" 4.2.1)

where F : X»Y and r* €Y are given and X and Y are normed vector spaces.
We may think of X and Y as being infinite dimensional function spaces. A
discretization of (4.2.1) is an associated problem

Fugn=rh 4.22)
where F, : X;»Y, and r,€Y, is given and X, and Y, are normed vector
spaces. The relation between the problem and its discretization is obtained by
introducing surjections Ry, : X>Xj, R, : YY), The relation between the vari-

ous spaces and mappings in the discretization is summarized in the following
diagram (see also subsection 2.5.2):

F

X — Y

R

Y —t o T,

By assuming he(0,H), H>0, a sequence of discretizations of (4.2.1) is
obtained.
Suppose

ry=R,r* (4.2.3)

and let ¢* denote the solution of (4.2.1) and gj the solution of (4.2.2). The
truncation error 7} is defined as

mh=ri—FyRiq" =(RiF — FyRy)q" @24

and the sequence of discretizations (4.2.2) with h€(0,H) is called consistent (of
order p) with the problem (4.2.1) if
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7kl 1y, =O(hP). 4.2.5)
Define the truncation error operator 7, : XY} by
w=RyF—F,R; . (4.2.6)

DEFINITION 4.2a. (Consistency).
The sequence of discretizations is consistent of order p if

l7a(g)| 1y, <C\(g)h? VgqeX, he(0,H). 42.7)

The discretization error €, € X, is defined as
i =Rig" —gi=(Ry—F; 'Ry F)g" (4238

where we have assumed that Fj, is a bijection. The sequence of discretizations
(4.2.2) with he(0,H) is called discrete convergent (of order p) to the solution of
4.2.1) if

lehl1x, =O(hP). 429
Define the discretization error operator ¢, : XXj by
&, =R,—F;'R,F . (4.2.10)

DEFINITION 4.2b. (Convergence).
The sequence of discretizations is convergent of order p if

I len(@)] | x, <Ca(g)h? VqeX, he(0,H). (4.2.11)
Another important concept is the stability of the discretizations:

DEFINITION 4.2c. (Stability).
The sequence of discretizations is stable if there exist a C3>0 (independent of
h) such that

[ Fy'r—Fi ‘2l lx, <Cs | lmy—Fylly, Vry, €Yy, he(O,H). (42.12)

The following well known theorem is proved easily.

THEOREM 4.2a. (Equivalence theorem).
If a sequence of discretizations is stable and consistent of order p then it is con-
vergent of order p.

PROOF.

lew(@)! lx, = | |Rig—Fr 'Ry Fql Iy,
=||Fy ' FyRoqg—Fy 'Ry Fql ,
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<C;||FRuq—RyFql Iy,
SC:;C](q) - h? O

We will now formulate the main theorem about the defect correction method.
Consider two different discretizations Fj, Fj : XpY,. Assume that F, is
stable and consistent of order p, F}, is consistent of order p>p. Consider the
DeC-iteration process:

Fugh=ri

; T (42.13)
F;,q;,+'=F,,q,,+(r,,—F,,qh) l=1,2,...

First we need the concept of relative consistency.

DEFINITION 4.2d. (Relative consistency)._
Two sequences of discretizations Fj, F, are relatively consistent of order p if
there exist a C4>>0 such that

| |(Fh'“f"h)qh"(Fh—;'h)<}h| ly, <Csh”|1gs—Gnllx, Vqn, gu€Xn, h€(O,H).
(4.2.18)

THEOREM 4.2b. (DeC-iteration).

Let F,, F,, : X,Y), be two different discretizations. Assume:

- F,, is stable and consistent of order p.
- F, is consistent of order p>p.
- F, and F,, are relatively consistent of order p.

Then the i* iterate g}, of the DeC-iteration process (4.2.13) satisfies
|1 gh—Ryg" | |y, <Ch™n 6.9 (4.2.15)

PROOF.
The theorem is proven by induction; (4.2.15) is true for i=1. Assume that
(4.2.15) is true for i. Then

gt —Rug* | 1x, = | | Fi '(Fagh +7i— Fagh)—Ruq" | 1,
<C;||Fagy +RyFg" —Fagh— FuRaq" + FaReq" —FaRyq’ | Iy,

<C3{| |(RyF — FyRi)q" | ly, + 1 |(Fh—1~’h)qf| —(Fy—F)Rag" | IY,}

<C3 {Cl(q.)hi +C4hp| qu,—th' I IY,,}
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<ChP+C - h? - h™in 6. )

< Ch™in ¢, G +1p) m]

REMARK (4.2a).

In general, the relative consnstency of the discretizations F, and F,, can be
established only for g, =R,q, g, =R,q where ¢, geX are sufficiently smooth.
Therefore theorem 4.2b is only applicable to problems with sufficiently smooth
solutions.

In case of the Euler equatlons we have Fj, =F} (the first-order space discretia-
tion operator) and F,= F,, (the monotone second-order space discretization
operator). So p=1 and p=2 and it follows from theorem 4.2b that a single
DeC-iteration is sufficient to obtain second-order accuracy, at least for smooth
problems. This has been confirmed by expenments [4].

An alternative proof of theorem 4.2a can be given when F, F, and F, are
linear scalar differential operators with constant coefficients. Then the symbols
F(w), Fy(w) and Fj(w) of respectively F, F, and F), are defined as

F(e"*)=F(w)e™*; Fy(e'*)=Fy(w)e™*; Fy(e"*)=Fy(w)e'* (4.2.16)
and the consistency of Fj, and F} can be expressed as
F(w)— Fy(w)=0(h?)

= . 4.2.17)
F(w)— Fy(w)=0(h?)
with w fixed.
EXAMPLE 4.2a.
Suppose
F=agq,+bgy, a, b>0 (4.2.18a)
Faq)ij="2qi;—qi 1 ,-)+£(q,- J=9i-1) (4.2.18b)
(i‘hq)i,j :%{qi,j (q. +1,j ql_[)+ (q:, qi- l_,)

—qi-1,j (qu qi- l]) (q: 1,j —94i- 2])}
T3 {qu+ =] (qu+l qu)+ (qtj qxj l)
“Gij-1— (q., gij-1)— (q,, 17Gij-2)}  (4.2.18¢)

Notice that Fj is the first-order upwind discretization of F, f), is the second-
order k-scheme (see 2.5.1.3).
It is easily verified that
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F(w)=i(wja+wyb) (4.2.192)
Fh(w)=%(l—e_i”'h)+%(l—e_i“”h) (4.2.19b)
i.h(w):%(l_e—iw.h) -5+ l-:xeiw,h_ 1;xe—m.h)
+2a—eT M -5+ Lte glosh Lke ot (4.2.19¢)
and
F(w)— Fy(w)= — 3 (aw} +bw})h + O(h?) (4.2.20a)
F(w)—Fy(w)= 3L i(awi +bwilh? +O(h’). (4.2.20b)

Consider the DeC-iteration process (4.2.13) and assume that F, Fj and l:",, are
linear scalar operators satisfying (4.2.17). Suppose that the ith iterand of the
DeC-iteration process satisfies the linear equation

Aigh=r} (4.2.21)

and denote with Aj(w) the symbol of the linear operator A4}. Notice that
A} =F,, A}(w)=F(w). Because

Fugh* ' =Fugh+4igh— Fugh (42.22)
we find

Ay +Fi—F) ' Fught' =g =) 'ri. (4.2.23)
Hence,

A =4} 44+ F—F)"'F, (4.2.24)
and

A (@)= Aj(w)Fp(w) (4.2.25)

Aj(@)+ Fy@)—Fyw)

It is easily seen that

FXF(@)~ Fo(@) ~ (F@) ~ AL @XF@) ~ Fi(@)
A (@) + Fy(w)— Fy(w)

F(w)—Aj (@)= (4.2.26)

Assume
F(0)— A}(w)= O(h™n¢-?)) (4.2.27)
then it follows from (4.2.26) that
F(w)— Al ()= O(hP)+ O(h™0-?)) - O(hP)
= O(h™0G-G +1p)y (4.2.28)

Because (4.2.27) is true for i=1, it follows by induction that (4.2.28) is
satisfied for all i. Hence, the ith iterand of the DeC-iteration satisfies (4.2.21)
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where A}, is a consistent discretization of order min(p,ip).

In case of the Euler equations, we see from (4.2.13) that for each DeC-iteration
we have to solve a first-order system with an appropriate right-hand side. It
was found that it is inefficient to solve this system very accurately. Application
of a single NMGe-iteration to approximate g in (4.2.13) usually is the most
efficient strategy [7). We have to solve the first-order system Fj(g})=r} with
;=0 to obtain the first iterand ¢} of the DeC-iteration process. It is also
inefficient to solve this system very accurately. Therefore g} is obtained by the
nested iteration-NMG method with only a single NMGe-iteration (see chapter
III). So, the complete multigrid solution process to obtain second-order accu-
rate solutions consists of three successive parts: nested iteration, the NMG-
stage and the DeC-stage. In fig. 4.2a we give an illustration of the complete
process. Suppose there are 5 nested grids. Between two succeeding points A, B
we have one NMGe-iteration (V-cycle). Between two succeeding points B, A we
have piecewise constant interpolation in the nested iteration stage, and an
appropriate right-hand side computation in the DeC-stage.

'——— Nested iteration ———————1

FIGURE 4.2a. Schematic representation of the complete multigrid process to
obtain second-order accurate solutions.

4.3. NUMERICAL RESULTS

In this section numerical results are presented for the same testproblems as in
section 3.3. For each testproblem we consider the convergence history of the
DeC-iteration process, i.e. after each DeC-iteration we compute the L;-norm
of the residual

4

NIHIED

k=1

> |(Figh)® ] 4.3.1)
@)

where gj, is the current approximate solution. A fixed number (25) of DeC-
iterations is performed for each testproblem. This rather large number (10
DeC-iterations would be sufficient) is only chosen to give a good impression of
the convergence behaviour of the DeC-iteration process.

The improvement of the solutions obtained can be seen by comparison with
the first-order solutions presented in section 3.3.
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PROBLEM 1. Transonic flow in a channel with a 4.2% circular bump.

The geometry of the channel and the grids have been given in section 3.3,
problem 1. The transonic testproblem is specified by My, =0.85,
Pinlet =Poutlet; (see section 3.3, problem 1b). The result has been obtained on
the 40X 16 grid. In fig. 4.3.1 we show the convergence history of the DeC-
iteration process. Although the convergence is rather slow we may expect that
it is possible to drive the residual to machine-zero.

Fig. 4.3.2-4 show respectively the iso-Mach lines, pressure contours and
entropy contours of the second-order solution obtained after 25 DeC-
iterations. The pressure coefficient ¢, is defined in (3.3.3) and the entropy is
defined as (s —5_o)/5—o With s=pp~". The improved capturing and sharp-
ness of the shock is clearly observed (compare with fig. 3.3.6, 8, 9).

In fig. 4.3.5-7 we give the Mach number, —¢, and entropy distribution along
the lower surface of the channel. Especially the entropy distribution shows a
clear improvement (compare with fig. 3.3.12). The spurious entropy generation
at both corners of the bump is reduced and the spurious entropy rise along the
entire bump has disappeared completely. For reference results we refer to [10].
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10LOG (RESIDUAL)
* T . F

-9
hy

=10

T T 1
H 20 k-3

10 15
ITERATION NUMBER

FIGURE 4.3.1. Convergence history of the DeC-iteration process for test-
problem 1 (40 X 16 grid).
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FIGURE 4.3.2. Iso-Mach lines for testproblem 1 (40 X 16 grid).
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FIGURE 4.3.3. Pressure contours for testproblem 1 (40 X 16 grid).
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FIGURE 4.3.4. Entropy contours for testproblem 1 (40 X 16 grid).
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FIGURE 4.3.5. Mach number distribution along the lower channel wall for
testproblem 1 (40 X 16 grid).
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FIGURE 4.3.6. Pressure distribution along the lower channel wall for test-
problem 1 (40 X 16 grid).
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FIGURE 4.3.7. Entropy distribution along the lower channel wall for test-
problem 1 (40 X 16 grid).

PROBLEM 2. Supersonic flow in a channel with a 4% thick circular arc bump.

The geometry of the channel and the grids have been given in section 3.3,
problem 2. At the inflow boundary (x=—1) the Mach number is prescribed:
M et =1.4. We compare the second-order solutions obtained on two different
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grids (viz. grid 48X 16 and grid 96X 32). In section 3.3, first-order solutions are
presented on these grids. Therefore, a good comparison between first- and
second-order solutions obtained on different grids is possible.
In fig. 4.3.8, 9, we show the convergence history of the DeC-iteration process
on grid 48X16 and grid 96X32, respectively. A very slow convergence
behaviour is observed for both cases and we may not expect that it is possible
to drive the residual to machine-zero. In fig. 4.3.10, 11 we show the conver-
gence history of the w-DeC-iteration process on grid 48X 16 and grid 96X 32,
Fi(gh)=r
Fl(@h*)=Fhgh)+ (s~ Fi@h) =12, "
where we[0,1]. We take w=0.5. By taking w=0.5 instead of w=1 (which
corresponds to the standard DeC-iteration method), damping (under-
relaxation) is introduced. In general, we may expect that the w-DeC-iteration
process with w=0.5 is more robust than with w=1 (see also problem 4 in this
section). Here, we see that the convergence histories, are similar for w=1 and
©=0.5. But we may expect that with w=0.5 it is possible to drive the residual
to machine-zero. A disadvantage of the w-DeC-iteration process with w<1 is
that long wavelength error components (which determine the accuracy) are
damped with a factor 1 —w in each iteration. Therefore, even for very smooth
problems, a single w-DeC-iteration with w=0.5 is not sufficient to obtain
second-order accuracy. On the other hand, 10 w-DeC-iterations with w=0.5
reduce the long wavelength error components with a factor 0.001, which is
sufficient in practice.
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FIGURE 4.3.8. Convergence history FIGURE 4.3.9. As figure 4.3.8 but on
of the DeC-iteration process on grid  grid 96 32.
48X16 for testproblem 2.
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FIGURE 4.3.10. Convergence history ~ FIGURE 4.3.11. As figure 4.3.10 but

of the w-DeC-iteration process on

gird 48X16 for testproblem 2.

on grid 96X 32.

As mentioned before, the DeC-iteration process (w=1) is not used to obtain
the exact solution of (4.1.9) but to improve the accuracy of the first-order solu-
tions. The following figures, obtained by 25 DeC-iterations, show clearly that
the solutions obtained after 25 DeC-iterations are much more accurate than
the first-order solutions presented in section 3.3, problem 2. Fig. 4.3.12, 13
show the iso-Mach lines of the second-order solutions. The figures show very
sharp shocks. The reflection of the leading edge shock at the upper wall, its
intersection with the trailing edge shock, its further reflection at the lower wall
and finally its merging with the trailing edge shock are all clearly visible. The
leading-edge oblique shock is spread numerically over 2-3 volumes halfway the
channel (y =0.5).

0.0

-1.0

e

(S~

2.0

FIGURE 4.3.12. Iso-Mach lines of the second-order solution obtained on

the 48X 16 grid for testproblem 2.
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FIGURE 4.3.13. As figure 4.3.12 but on grid 96X 32.

In fig. 4.3.14-17 we give the Mach number and the entropy distributions along
the lower surface of the channel. Downstream of the bump, a large qualitative
difference between the first- and second-order solutions is observed once more.
The first-order solutions show spurious entropy generation along the entire
bump (see fig. 3.3.20, 21). The second-order solution has no such entropy gen-
eration, but shows some spurious non-monotonicity. The latter is caused by
the fact that no limiter can be used near boundaries (see 2.5.3.46).

T

T T T T 1
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X

FIGURE 4.3.14. Mach number distribution along the lower surface of the
channel for testproblem 2 (48X16 grid).
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FIGURE 4.3.15. As figure 4.3.14 but on grid 96X 32.
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FIGURE 4.3.16. Entropy distribution along the lower surface of the channel
for testproblem 2 (4816 grid).
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FIGURE 4.3.17. As figure 4.3.16 but on grid 96X 32.

PROBLEM 3. Resolution of contact discontinuities

PROBLEM 3a. Contact discontinuity aligned to the grid

For a description of this problem see section 3.3, problem 3a. The first-order
solution is exact and cannot be improved. Therefore, the solution obtained
with the DeC-iteration process should be the same as the first-order solution
presented in section 3.3, problem 3a.

The convergence history of the DeC-iteration process is shown in fig. 4.3.18
and the obtained entropy (s=pp~Y) distribution along the line x=0.5 is
shown in fig. 4.3.19. The entropy distribution is exact and the same as in fig.
3.3.24. The convergence history of the DeC-iteration process is rapid and
similar to the convergence history of the NMGe-iteration process (see fig.
3.3.23).
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FIGURE 4.3.18. Convergence history of the DeC-iteration process for test-
problem 3a (32 X 32 grid).
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FIGURE 4.3.19. Entropy distribution along the line x =0.5 for test-
problem 3a (32 X 32 grid).

PROBLEM 3b. Oblique contact discontinuity

For a description of this problem, see section 3.3, problem 3b. In fig. 4.3.20
we show the convergence history of the DeC-iteration process. The process
converges but not very rapidly. In fig. 4.3.21 we show the entropy distribution
along the line x =0.5 and entropy contours are shown in fig 4.3.22. In com-
parison with the first-order solution, the spreading of the contact discontinuity
is reduced significantly. But it is clear that an oblique contact discontinuity is
captured not so well as an oblique shock (the width of oblique shock and con-
tact discontinuity is about 3 and 6 volumes, respectively).
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ITER‘F':TION NU:‘:BER = =
FIGURE 4.3.20. Convergence history of the DeC-iteration process for test-
problem 3b (32 X 32 grid).

FIGURE 4.3.21.

The entropy distribution along the line x=0.5 for
testproblem 3b (32 X 32 grid).
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FIGURE 4.3.22. Entropy contours of the second-order solutions for
testproblem 3b (32 X 32 grid).

PROBLEM 4. Cylinder in a supersonic free-stream

We refer to section 3.3, problem 4, for a description of this problem and the
grids used.

For this problem the standard DeC-iteration process (4.1.10) does not work.
The first iterand in the standard DeC-iteration process is an approximate first-
order solution. Then, the second iterand is computed by solving a first-order
system with an appropriate right-hand side. Unfortunately, in the solution
process for the second-iterand, divergence was observed for the local Newton
iteration process in the CSGS relaxation on the finest grid. Therefore, for this
problem some damping is necessary in the DeC-iteration process. Damping is
achieved by the w-DeC-iteration process which is defined by (4.3.2). Again we
take w=0.5. The convergence history of the w-DeC-iteration process is shown
in fig. 4.3.23.

The pressure in the stagnation point in front of the cylinder can be computed
analytically because of the fact that locally the shock is normal to the x-axis.
Denote with g, the state ahead of the shock, with g, the state behind the
shock and with g, the state in the stagnation point. The relation between ¢,
and g, is given by

4 1= Goonthal 4323
- Ut = _ (isenthalpy) (4.3.3)
p1P1 Y=pap2 Y (isentropy) (4.3.4)

from which it is easily derived that
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P2 _ 4 Xzl ppyvT 4
PL—+ 27 M (435)

where M, is the Mach number of ¢;.
Using the normal shock relations (1.2.27, 28) it can be derived that

1+ J;—I-M%
Mi=—=t— 4.3.6)
Y M% _ 1_2'_1

where M is the Mach number of go.
Using (1.2.30) we also have

Py 14 Y a2

r =1+ T+ (M§—1). 43.7)
Because M, =2 we find the pressure ratio p,/po =5.64. The first-order solution
gives a pressure ratio p,/po=5.92 (see fig. 3.3.33). The second-order solution
(obtained after 25 w-DeC-iteratios) gives a much better ratio: P2/po=5.65. In
fig. 4.3.24 we show the pressure ratio of the solutions obtained after each w-
DeC-iteration step. Fig. 4.3.25 shows the surface pressure distribution of the
second-order solution along the surface of the cylinder. Finally, fig. 4.3.26, 27
show iso-Mach lines and pressure contours of the second-order solution
obtained after 25 w-DeC-iterations. There is a small change in the shock posi-
tion: the bow shock starts in x = —2.375 while the bow shock position accord-
ing to the first-order solution is x =—2.5. These results agree well with the
results published in [9].

10LOG (RESIDUAL)

10 15 2 =
ITERATION NUMBER

FIGURE 4.3.23. Convergence history of the w-DeC-iteration process for
testproblem 4 (40 X 32 grid).
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FIGURE 4.3.24. The stagnation pressure after each w-DeC-iteration step for
testproblem 4 (40 X 32 grid).

10
DEGREES

FIGURE 4.3.25. Pressure (p/p _,,) distribution along the surface of
the cylinder for testproblem 4 (40 X 32 grid).
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FIGURE 4.3.27. Pressure contours for testproblem 4 (40 X 32 grid).

For these four testproblems we can conclude that the DeC-iteration method is
an effective way to improve the accuracy of the first-order solutions. In gen-
eral, about 10 DeC-iterations are sufficient. Therefore, the amou{‘lt of work to
obtain second-order accuracy is equivalent with about 10X3 X2 CSGS-

relaxations on the finest grid.
Finally, we refer to the work of B. Koren showing the feasibility of the method
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for airfoil flow computations [5,7).
4.4. SOLUTION OF THE STEADY EULER EQUATIONS WITH A SOURCE TERM

Consider the Euler equations with a source term:
0 0 )
o T oD 5@ =) (44.)

where g, f(q), g(q) are defined by (2.1.1b) and r(q) is the source term. On a
finite volume grid {€; ;} the discretization of the steady Euler equations with
source term r(q) is given by

(Fh(qh»i,j =fi+ Y,j +ﬁ,j +4%—fi- %,j ‘ﬁ,j %= (rh(qh))i,j (44.2)
where
(ra(gn));, j=r((gn);, Vi g (443)

with V; ; the area of §; ;.

The operator Fj(gy) is first-order accurate when f;4 4, f;;+y are defined by
(4.1.3,4), then we write Fj(gy)=F}(gs). The operator Fy(q,) is second-order
accurate when f;1y ;, f; i+ are defined by (4.1.3) and (4.1.5-7), then we write

Fu(gn)=Fh(qn)-
The defect correction method

Fi(gh)=0 »
Flgh*")Y=F)(qh) +(ra(gh)—F(gh) i=1,2,.. (4.4.4)

is a simple method to obtain a second-order accurate solution of the steady
Euler equations with a source term.

A source term appears in the Euler equations when a body force F=(F,,F,)T
is present. Then the Euler equations become (see section 1.1):  ~

Conservation of mass:
di [odv="—[p(n . v)do (44.5)
a I
Conservation of momentum:
difpvdv= —fpv(n . v)do—fpndo+deo (4.4.6)
g - L o Q-
Conservation of energy:
difEdv= — [E(n . v)do— [p(n . v)do+ [F . vdo . 44.7)
'a ® - - @ -~ a4 -~

From these equations we obtain (4.4.1) with
r=(0,F,,Fy,uF,+vF,)T . (4.4.8)
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Note that F is a force per unit of volume.

A special case of the presence of a body force is the actuator disk where Fis a
line distribution along a line segment / such that for an arbitrary control
volume § we have

[ [Fav= [ Fdo. (4.4.9)
g ani
Then F is a force per unit of length. For an actuator disk the force F is per-
pendicular to / and acts in such a way that there is a prescribed pressure jump
at the disk. Assume that / coincides with the y-axis and let g, and gz be the
left and right state at the disk in a steady flow.
First, we show that the normal velocity is discontinuous at the disk. Suppose
there is no velocity jump. By taking a control volume with infinitesimal width
but finite length across / (see fig. 1.2a) we find that

(pu)r —(pu).=0

(pu? +p)r—(pu* +p)L=F)

(puwv)r —(puv)L =0

((E+p)u)r —((E +p)u)L=Fu (4.4.10)
where u=u; =ugp>0.

From the first and second equations it follows that Fy =pg —pr. On the other
hand, from the fourth equation we find that

F\=(E+p)x—(E+p).=p(Hr—HL)
=Bk —ch="170rp0)

and we have a contradiction. Hence, there must be a velocity and density jump
at the disk. Thus, the normal velocity at the disk is not defined and it is not
clear how to compute F . v at the disk.

A way to model the actuator disk is the following. Denote with &, and 04 the
x-momentum and energy source imposed by the actuator disk.

Thus

(pu)r —(pu)L =0

(pu? +p)r —(pu* +p)L =8,

(puv)r —(pwv)L =0

(E+p)u)r—((E +p)u)L =84 (44.11)

The sources 8, and 8, are computed by assuming that the prescribed pressure
jump is isentropic. The assumption that the flow is isentropic is based on the
fact that the material derivative of the entropy is zero for a smooth flow, even
when body forces are present. This result is derived in the following way (see
also section 1.2, formulae 1.2.9-19).

When body forces are present, we have
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P 2= —VptF (4.4.12)
and
D 1 .
pE(e+7(3 SV)=—div(pyv)+F.v. (4.4.13)
Combining the last two equations we find
2. Py
D 3 div v (44.14)

which is the same expression as in (1.2.12). Following the derivation (1.2.13-
19) we find again
Ds
Dt

Assume that ¥>0 and pg =ap, with a>1. Then a force is acting on the disk
in the negative x-direction. From the isentropy it follows that

=0, (4.4.15)

PRPRY=pLPL” (4.4.16)
Using (4.4.11), pr =ap; and (4.4.16) we find

PR = Qpr, VR = VL
Pr = a’pp

up = a Yy
i

CR =cLa ¥
2
- R 1.5 4
Hp = = +5 (ur+vk)
8 = pruktpr—pLui—pL
84 = pLug(Hp—Hy) (4.4.17)

Hence, given a state q;, from (4.4.17) the state gz and the sources 8, and 0,
can be computed for a given pressure jump.

To compute a flow with an actuator disk, the disk is modelled in the following
way. Assume that 9%, , ; coincides with / (see fig. 4.4.1)
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FIGURE 4.4.1. Modelling of an actuator disk.

Then we take

(rn(gn))i +1,; =li+1,j(0,(82)i > 0,(84);,/)" (4.4.18)

where /; ;4 ; is the length of 09,4, and (8,), (84);,j are computed by 44.17)
Wlth qL :q," J*

We present two flow computations with an actuator disk. See [8] for an airfoil
computation with an actuator disk.

PROBLEM 1. Actuator disk in a channel flow

The first example is a channel flow with an actuator disk extending from the
lower to the upper wall. The channel is straight. The physical and computa-
tional domain are the same (the mapping between the computational and phy-
sical domain is the identity: x =§, y =n). We take 2=[0,5]X[0,1], the coarsest
grid consists of 5 X 1 volumes, the finest grid consists of 20 X 4 volumes. At
inflow u,v,z are prescribed: u=0,5, v=0, z= —vIny, at outflow the pressure is
prescribed: p = 1. The other two boundaries are solid walls.

The actuator disk is located at x=2.5 and the prescribed pressure jump is
a=12. Hence, for the exact solution we have an upstream pressure

pupsmz—l%zo.&?; and a downstream pressure pgownstream = 1.0. The

entropy s =y~ Y~0.6243 is uniformly constant.

The numerical solution has been obtained by the defect correction iteration
process (4.4.4) with r,(gs) defined by (4.4.18). The iteration process has an
average reduction factor 0.63. The pressure and entropy distribution obtained
along the line y=0.5 are given in fig. 4.4.2,3. We see that the flow is indeed
isentropic and the right pressure jump is obtained.
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FIGURE 4.4.3. Entropy distribution along the line y =0.5. Isentropy

is observed.

PROBLEM 2. Actuator disk in a subsonic free stream

An adaptive mesh has been used. The mapping from the computational space

&me[—5,51X[—5,5] to the physical domain (x,y) is given by

—50 <t< —25 =t = (8+15)/5
—25 << +25 =& = 2%/5
425 <¢< +50 = ¢ = (8¢—15)/5
¢ =@, 1] (4.4.19)
e ) —1
—50 <é{< —-10 =x = —5+4 g
e -1
—10 <¢< +10 =>x = ¢
re+ﬁ(2-5)_1‘
+10 << +50 =x = +5-4|E——
e -1

J

with #=0.585 and y depends on 7 in exactly the same way as x depends on §.
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The finest grid has 32 X 32 volumes, the coarsest 2 X 2 volumes. Figure 4.4.4
shows the finest grid. The actuator disk is located at x =0, y €[—0.5,0.5]. The
prescribed isentropic pressure jump is again a=1.2.

o
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T
-5.0 »1‘.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0 5.0

0.0
X - AXIS

FIGURE 4.4.4. Finest grid (32 X 32) for problem 2.

Two cases are considered:

PROBLEM 2a. Actuator disk perpendicular to the free stream flow direction.
The boundary conditions are as follows:

x=-5, ye[—5,5] : subsonic inflow: u=0.5, v=0, z= —ylny
other three boundaries : subsonic outflow: p =1.0.

The solution has been obtained by a w-DeC-iteration process with ©=0.5, i.e.
Fi(gh)=0 1420
Fi@ ) =Fiagh) + e(ruieh) — @y i=12.. @40

where 7;(gs) is computed by (4.4.18) (with w=1 similar difficulties occur as in

case of problem 4, section 4.3). The w-DeC-iteration process has an average
reduction factor 0.8. Fig. 4.4.5,6 give a qualitative impression of the obtained

Mach number and pressure distribution after 25 iterations. The largest

observed entropy variation r?a)x| (Sij—S5x)/Sc | is less than 1%.

L
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"0

FIGURE 4.4.5. Mach number distri-
bution for problem 2a.

PROBLEM 2b. Inclined
The angle of inclination is 45°.
The boundary conditions are:

x=-5, ye[—5,5]
y=-35, xe€[—5,5]
other two boundaries

: subsonic inflow:
: subsonic inflow:
: subsonic outflow: p=1.

FIGURE 4.4.6. Pressure distribution
for problem 2a.

u= \/2_/4, v= \/5/4, z=—ylny
=V2/4,v=V2/4, z=—vylny

The solution has been obtained by a w-DeC-iteration process with w=0.5. The
iteration process has an average reduction factor 0.85. The largest observed
entropy variaton max|(s,] —S5w)/Scx | is less than 1.5%. Fig 4.4.7,8 give a qual-

itative impression of the Mach number and pressure distribution obtained after

25 iterations.

FIGURE 4.4.7. Mach number distri-
bution for problem 2b.

—
2.
x

FIGURE 4.4.8. Pressure distribution
for problem 2b.
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Another example where source terms appear in 2 natural way is in case of axi-
ally symmetrical flow. In cylindrical polar co-ordinates R,z,0 (where 0 is the
azimuthal angle about the axis R=0) and suppressing all components and
derivatives in the §-direction, the Euler equations are

p pu pu pu
o |ev| 3 pu’+p +’a_ puv 1 pu’
ar |pv| AR |PW az |2 +p | R puv
E (E +pu (E +py (E +p

where u,v are the velocity components in the R-and z-direction respectively.
Hence, Euler flow computations for steady axial Symmetrical flow can be per-
formed by merely adding source terms in ant existing code for steady 2D
planar flow computations.
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SUMMARY

Discretizations of the steady Euler equations are studied and robust and
efficient solution methods are developed to solve the resulting highly nonlinear
algebraic systems of equations.

The discretizations used are based on cell centered finite volume schemes,
i.e. the physical domain, where the solution of the steady Euler equations is
sought, is subdivided into a finite number of disjunct finite volumes (or cells)
and the numerical approximations are stored inside the cells. The discretization
is determined completely by the way in which the flux computations are per-
formed at the cell boundaries. A flux at a cell boundary is the amount of mass,
momentum and energy transported per unit of time across the cell boundary.
The equations are obtained by demanding that the total flux is zero for each
volume.

At each cell boundary, a flux is computed by solving approximately a local
one dimensional Riemann problem. As a consequence, the schemes are conser-
vative and characteristic-based or upwind. The approximate Riemann solver is
the one proposed by Osher but the constituent parts of the integration path in
the state space used in the Riemann solver are taken in an order opposite to
that as originally proposed by Osher. In this way the implementation of
Osher’s scheme becomes rather simple, provided that the proper dependent
variables are used.

In the first-order discretization, the numerical approximations are assumed
to be uniformly constant in each volume. Second-order accuracy is obtained
by using piecewise linear interpolation in each volume. In this approach the
slopes are limited to prevent spurious oscillations in the neighbourhood of
shocks or contact discontinuities. The limiting procedure must be nonlinear
even when applied to linear problems. A novel, very simple and clear descrip-
tion of the limiting procedure is given for a general nonlinear scalar hyperbolic
conservation law by considering the limiting procedure as a modification of the
fully one-sided upwind scheme. It appears that limiting and flux-splitting are
closely related. It is also shown that monotonicity and second-order accuracy
can be achieved simultaneously, even in more than one dimension.

The second-part of this thesis (chapters III and IV) concerns the solutions of
the first- and second-order discretizations. Due to the favorable properties of
the first-order discretization (S-point stencil structure, upwind character,
differentiability, consistency of flux computations at interior cell boundaries
and at cell boundaries which are part of the boundary of the physical domain)
a straightforward nonlinear multigrid solution method can be developed. In
the multigrid method used, the coarse grid discretizations are Galerkin approx-
imations of the fine grid discretization and a simple Collective Symmetric
Gauss-Sidel (CSGS) relaxation method appears to be an excellent smoothing
procedure. The numerical examples, covering channel flows, resolution of con-
tact discontinuities and a blunt body in a supersonic flow, show that a degree
of efficiency and robustness characteristic for successful multigrid methods is
obtained. For practical purposes, where one only wants to get below
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truncation error, a few (two or three) nonlinear multigrid iterations are
sufficient. This means that ﬁrst-“order solutions are obtained in an amount of
work equivalent with about 3 X3 X2 CSGS-relaxations on the finest grid.

A Defect Correction (DeC) iteration method is used to improve the accuracy
of the first-order solutions. The DeC-iteration method makes effective use of
the excellent multigrid solver for the first-order discretization. It is well known
that for smooth problems only one DeC-iteration is sufficient to obtain a
second-order accurate solution. For non-smooth problems, it appears that
more (about 10) DeC-iterations are necessary. Because 10 DfC-iterations
correspond with an amount of work equivalent with about 10X 3 X2 CSGS-

relaxations on the finest grid, the method is still an efficient procedure to
improve the accuracy. For the aforementioned numerical testproblems, the
results obtained with the DeC-iteration method show an impressive improve-
ment in accuracy compared with the first-order solutions. It should be men-
tioned that it is sometimes necessary (for flows where strong shocks are
present) to use some damping in the DeC-iteration method.
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SAMENVATTING

In dit proefschrift worden discretisaties van de stationaire Euler vergelijkingen
bestudeerd en worden efficiente en robuuste oplossingsmethoden ontwikkeld
voor de resulterende stelsels niet lineaire algebraische vergelijkingen.

De gebruikte discretisaties zijn gebaseerd op cel gecentreerde eindige volume
schema’s, d.w.z. het fysische gebied waar de oplossing van de stationaire Euler
vergelijkingen wordt gezocht wordt opgedeeld in een eindig aantal disjuncte
volumes (cellen) van eindige afmeting en de numerieke benaderingen worden
gelocaliseerd in de volumes. De discretisatie wordt dan volledig bepaald door
de wijze waarop de flux door de celwandjes wordt berekend. Een flux door een
celwandje is de hoeveelheid massa, impuls en energie die het celwandje per
tijdseenheid passeert. De vergelijkingen worden verkregen door te eisen dat
voor ieder volume de netto flux gelijk is aan nul.

Een flux wordt berekend door locaal een één-dimensionaal Riemann prob-
leem benaderend op te lossen. Een gevolg hiervan is dat de schema’s conserva-
tief zijn en gebaseerd zijn op de karakteristicken theorie, m.a.w. een upwind
karakter hebben. De wijze waarop het Riemann probleem benaderend wordt
opgelost is in essentie zoals voorgesteld door Osher. Echter, het integratie pad
in de toestandsruimte, nodig bij het oplossingsprocédé van het Riemann prob-
leem, heeft een volgorde omgekeerd aan die zoals oorspronkelijk door Osher is
voorgesteld. Op deze wijze wordt het oplossingsprocédé voor het Riemann pro-
bleem aanzienlijk eenvoudiger (minder operaties), vooropgesteld dat de juiste
afhankelijke variabelen worden gekozen.

De eerste-orde discretisatie wordt verkregen door aan te nemen dat de
numericke benaderingen uniform constant zijn in iedere cel afzonderlijk.
Tweede-orde nauwkeurigheid wordt verkregen d.m.v. interpolatie zodanig dat
de benaderende oplossing een lineaire verdeling heeft in iedere cel afzonderlijk.
De hellingen van de lineaire verdelingen moeten op een bepaalde manier
begrensd blijven om te voorkomen dat oneigenlijke oscillaties optreden in de
oplossing nabij schokken of contact discontinuiteiten. De manier waarop de
hellingen van de lineaire verdelingen begrensd moeten worden, wordt op een
nieuwe, eenvoudige en duidelijke manier gepresenteerd voor een algemene niet
lineaire scalaire hyperbolische behoudswet. De beschrijving is eenvoudig door-
dat is uitgegaan van het eenzijdig tweede-orde upwind schema. Aangetoond is
dat een bepaalde zwakke vorm van monotoniciteit gelijktijdig gecombineerd
kan worden met tweede-orde nauwkeurigheid. Dit geldt zowel in één dimensie
als in meerdere dimensies.

In het tweede deel van dit proefschrift (hoofdstukken III en IV) worden
oplossingsmethoden ontwikkeld voor de eerste- en tweede-orde discretisaties.
Ten gevolge van de gunstige eigenschappen van de eerste-orde discretisatie (5-
punts stencil struktuur, upwind karakter, differentieerbaarheid, consistentie van
de berekening van de flux door inwendige celwandjes en door celwandjes die
deel uit maken van de rand van het fysisch domein) kan een ongekunstelde
niet lineaire multigrid oplossingsmethode ontwikkeld worden. In de toegepaste
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multigrid methode zijn de grof net discretisaties Galerkin approximaties van de
fijn net discretisatic en is een eenvoudige Collectieve Symmetrische Gauss-
Seidel (CSGS) relaxatic methode een uitstekende smoothing procedure. De
numerieke testproblemen hebben betrekking op kanaal stromingen, resolutie
van contact discontinuiteiten en een stomp lichaam in een supersone stroming.
De resultaten van de testproblemen tonen aan dat een mate van efficientie en
robuustheid wordt verkregen welke karakteristiek is voor een goed werkende
multigrid methode. Voor berekeningen aan praktische problemen, waarbij het
alleen maar zin heeft te convergeren tot aan afbreekfout nauwkeurigheid, zijn
slechts een paar (twee of drie) niet lineaire multigrid iteraties voldoende. Dit
betekent dat eerste-orde oplogsingen worden verkregen in een hoeveelheid werk
equivalent met ongeveer 3X 3 X2 CSGS-relaxaties op het fijnste grid.

Een Defect Correctie (DeC) iteratic methode wordt gebruikt om de
nauwkeurigheid van de eerste-orde oplossingen te verbeteren. De DeC-iteratie
methode maakt op een effectieve manier gebruik van de multigrid methode
voor het oplossen van de eerste-orde discretisaties. Het is bekend dat voor
gladde problemen slechts één DeC-iteratie voldoende is om tweede-orde
nauwkeurigheid te verkrijgen. Voor niet gladde problemen blijkt dat ongeveer
10 DeC-iteraties noodzakelijk zijn. Omdat 10 DeC-iteraties corresponderen
met een hoeveelheid werk equivalent met ongeveer 10X 3 X2 CSGS-relaxaties

op het fijnste net, mogen we concluderen dat de methode een redelijk efficiente
manier is om de nauwkeurigheid van de oplossing te verbeteren. Voor de
eerder genoemde testproblemen blijkt dat de resultaten verkregen na toepass-
ing van de DeC-iteratic methode aanzienlijk nauwkeuriger zijn dan de eerste-
orde oplossingen verkregen met de multigrid methode. Tenslotte merken we
nog op dat het soms noodzakelijk is (voor stromingen waarin zeer sterke
schokken aanwezig zijn) om enige demping in het DeC-iteratie proces toe te
passen.
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STELLINGEN

1.

Beschouw het Riemann probleem voor de I-dimensionale Euler
vergelijkingen met een willekeurige linker en rechter toestand. Dan geldt
dat de exakte oplossing bestaat d.e.s.d.a. de benaderende oplossing bestaat
volgens de P-variant van het Osher schema. Dit is niet het geval voor de
oorspronkelijke O-variant.

De in [1] gestelde bewering dat de in dit proefschrift toegepaste P-variant
van het Osher schema leidt tot overshoot bij het benaderen van een
stationaire schok is onjuist.

[1] S. OsHer and F. SoLoMON (1982). Upwind Difference Schemes for
Hyperbolic Systems of Conservation Laws. Math. Comp. 38, 339-374.

De in dit proefschrift ontwikkelde discretisatie en oplossingsmethode voor
de stationaire Euler vergelijkingen vereist bij benadering het volgende aan-
tal elementaire operaties ( +, —, X, <) per grid punt:

eerste-orde residu berekening: 200 el. op. per grid punt;
tweede-orde residu berekening: 350 el. op. per grid punt;
Gauss-Seidel relaxatie: 1000 el. op. per grid punt.

De oplossingsmethode vereist per FAS-V-cycle bij benadering 6000 el. op.
per grid punt.

De in dit proefschrift ontwikkelde methode is niet geschikt voor simulatie
van subsone stromingen met een uniform laag Mach getal.

Beschouw een eerste- en tweede-orde plaatsdiscretisatie van een scalaire
hyperbolische behoudswet op een equidistant grid gebaseerd op cel
gecentreerde eindige volumes en een flux splitting methode. Neem aan dat
in de tweede-orde discretisatic gebruik gemaakt wordt van een limiter
zoals beschreven in [2].

Dan geldt voor een stuksgewijs constante prolongatie en restrictie dat een
Galerkin approximatie van de tweede-orde discretisatie op een fijn grid
identiek is aan de eerste-orde discretisatie op het grovere grid. Dit is
onafhankelijk van de keuze van de limiter.

[2] S.P. SPEKREUSE (1987). Multigrid Solution of Monotone Second-Order
Discretizations of Hyperbolic Conservation Laws. Math. Comp. 49,
135-155.



6. Zij gegeven een zekere norm || || op R™. Laat A een re€le m X m matrix
zijn met de eigenschap dat

A" |l <c¢ Vn.

Beschouw de recursie

X0=Xo
Xp=Ax,_1+y n=12,..
met xg, y €R™ willekeurig.
Dan geldt
sup [l x, || < o0 < y € Range (I—A4).

7. Algol 68 is een ideale programmeertaal indien men programmatuur wil
ontwikkelen welke niet overdraagbaar is.

8.  Bij bezuinigingen op kunst is het consequent om takken van wetenschap
met een sterk “Part pour I'art” beginsel niet te ontzien.

9. Faculteiten voor toegepast technisch wetenschappelijk onderzoek dienen
bij het aanstellen van docenten een voorkeur te hebben voor wetenschap-
pers met industriéle werk-ervaring.

10. Ter bevordering van het gebruik van de fiets in woon-werk verkeer ver-

dient het aanbeveling dat in iedere werkomgeving douche gelegenheid
aanwezig is.

S.P. Spekreijse Delft, 5 november 1987.



