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Chapter 1

Introduction

1.1 Smog

The word smog is a combination of smoke and fog and was originally used
to describe city fogs containing large amounts of air toxics [14]. The classic
example of this kind of air pollution is the notorious London smog episode
of December 1952, causing 4000 excess deaths. In contrast to the 1950s and
1960s, smog problems nowadays are not restricted to large cities with heavy
traffic (like Los Angeles) but has become a wide spread phenomenon. The
word smog now stands for increased concentrations of certain health dam-
aging pollutants. In The Netherlands, a distinction is made between winter
smog episodes, characterized by high levels of sulphur dioxide concentrations
(S0O;) and dust, and summer smog episodes, characterized by high levels of
ozone concentrations (O3). Despite world-wide concern about ozone gaps in
the atmosphere, high ozone concentrations at ground level are harmful not
only for human beings but also for animals and vegetation. With respect to
human health, exposure to high ozone concentrations may cause breath prob-
lems and even lung diseases. The same holds for exposure to SO;. Unlike
S04, ozone is not emitted by any source, neither anthropogenic nor natu-
ral. As we will see in Chapter 2, Section 2.3, where the chemical model is
described, ozone is formed by reaction chains starting with a reaction of an
organic compound with the OH radical. Therefore, these organic compounds
are called precursors. They are emitted by anthropogenic as well as natural
sources, like isoprene that is emitted by forests.

1.2 Predicting smog

One of the tasks of the Dutch National Institute of Public Health and Envi-
ronmental Protection (RIVM) is to provide the local authorities with expected
forecasts for levels of air pollution. In case smog is expected, measurements
can be taken and the public can be informed. To produce such a forecast, a
smog prediction model is necessary. Presently (1996) an Eulerian grid model,
EUROS, is used for winter smog episodes. The model runs on a workstation.
In the winter, it is started every morning automatically and is supposed to
deliver its output within a few hours. Because in EUROS only 5 species are
taken into account and the chemical interaction between the species is slow,
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an Eulerian grid model can perform the task of predicting SO, concentra-
tions within an acceptable amount of CPU time on a workstation. For summer
smog a Lagrangian type of model is used which is also used on a routine daily
basis. Until now, different types of models are applied because summer smog
forecasting requires a detailed atmospheric chemistry leading to ozone forma-
tion, involving many species. Not considering chemistry, the total amount of
CPU time for a model run is linear in the number of species. This makes an
Eulerian summer smog model already a number of times more expensive than
a winter smog model. Apart from that, the system of ordinary differential
equations (ODEs) arising from summer smog chemistry is stiff, in contrast to
winter smog chemistry, which only involves a (slow) transformation of SO,
into SO4. Because of the stiffness of the summer chemistry, its numerical
evaluation is a time-consuming process.

The purpose of the project EUSMOG is the development of an Eulerian
grid model for summer smog prediction, that is also capable of producing its
forecasts within a few hours. The major result of this project is the research
and the summer smog model implementation reported in this thesis.

1.3 The project EUSMOG

In 1993 the department of numerical mathematics at CWI and the Air Labora-
tory of the National Institute of Public Health and Environmental Protection
(RIVM) started their cooperation within the project EUSMOG. For CWI the
purpose of this project was the development of new numerical techniques for
implementation in the successor of EUROS, which got the temporary name
CWIROS. During the course of the project, however, the name CWIROS has
not been changed. CWIROS should be able to perform the same tasks as EU-
ROS, but now for both winter and summer smog prediction using one and
the same Eulerian grid model. The reason to aim at this goal, which seemed
unachievable before, is that nowadays computers have become much faster
and an Eulerian grid model for summer smog has come in reach of a work-
station, provided that the numerics are handled as efficiently as possible and
the chemical reaction mechanism does not require the modeling of too many
species. From the description of the chemical mechanism in Section 2.3 it
can be concluded that a mechanism has been formulated that meets the lat-
ter requirement. Only 17 reactions between 15 species are involved and the
chemical mechanism is only moderately stiff. Reducing chains of reactions
into one reaction is the reason for the limited number of species. Because
of this reduction, intermediate radicals are not present, which explains the
moderate stiffness. Yet, the essential characteristics of ozone formation seem
to be retained if we look at the model results presented in Chapter 7. Of
course, modeling the complex atmospheric chemistry in such a compact way
introduces modeling errors, which are probably sometimes large in parts of
the model domain. However, a compromise must be made between detailed
modeling and restricting the operational computation time of the resulting
model. Not only for the chemistry a compromise had to be made, but for
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other physical processes as well. For example, the vertical stratification is
modeled by only four layers and the vertical diffusion has been parametrized
(see Chapter 2).

All physical and chemical modeling aspects have been the responsibility
of the RIvM. The model description (see Chapter 2) is the starting point for
the research carried out at CwI. During the course of the project no essential
changes in the modeling have been carried through. Only minor adjustments
in parametrizations etc. have been done, sometimes on CWI’s proposal.

1.4 This work

The task of CWI in the project EUSMOG consisted of the development and
implementation of new and existing numerical methods for CWIROS. Because
application of grid refinement (see below) was one of the numerical techniques
to be implemented in CWIROS, the decision was made not to update EUROS,
because the datastructure, required for the grid refinement, would not easily
fit in the existing code. Hence, CWIROS has been built up from scratch using
building blocks from EUROS. Implementing CWIROS was also the task of cwI
within the project. Both CWI tasks have been carried out by the author of this
thesis. The model implementation was the author’s own responsibility, the
research reported here is partly based on joint work with various colleagues
at cwl. Key issues of the research were

e Grid refinement: a local uniform grid refinement method has been de-

veloped, based on earlier work at cw1 [63, 7, 6], for application to
the model. The technique has been adapted for finite volume grids in
spherical coordinates. The original technique uses the grid point ap-
proach. The latter is a disadvantage because it does not preserve mass
in a natural way. Since mass conservation is important for the present
application, the finite volume approach has been followed. Also the
original datastructure has been adapted.
The grid refinement technique offers the possibility to refine the grid
dynamically in areas with large solution gradients. A priori chosen au-
tomatic refinement in areas of user interest is also possible. The results
of the model runs clearly show that higher resolution is needed for sum-
mer smog prediction. The refinement technique offers higher resolution
where necessary. Where no refinement is needed, only computations
on the coarse base grid are done. In this way a considerable amount of
CPU time is saved compared to the situation in which the whole model
domain is covered with a fine grid.

e Advection schemes: numerical algorithms for advection have been stud-
ied. The second-moment method which was implemented in EUROS,
has some disadvantages that made it impossible to use this scheme in
CWIROS. One is the large storage requirement. Another drawback is
that it is unclear how to combine this advection scheme with the other
processes in the model, in particular chemistry. We also note that
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the second-moment method does not prevent under- and overshoots al-
though the numerical solutions are guaranteed to be positive. Finally,
the scheme is not easily applicable to the sequence of the grid structures
produced by the refinement technique.

e Solution methods for chemical kinetics problems: numerical treatment
of chemical kinetics is the computationally most intensive part of the
model. Therefore, considerable research effort has been put into fast
and efficient methods for solving ODEs arising from chemical kinetics.
State-of-the-art methods as well as special purpose solvers are consid-
ered for application in the model. In particular, we have tried to find
ways to accelerate existing state-of-the-art and special purpose solvers.

1.5 Mathematical framework

In atmospheric models, it is usual to apply operator splitting or the method
of fractional steps. This approach was also followed in EUROS. A detailed
description including analysis can be found in [46]. Since we apply it also in
CWIROS, we describe it here shortly.

The full atmospheric model equation in spherical coordinates can be writ- .
ten as

ac(¢7 07 z? t)
ot

where ¢ denotes the concentration vector, ¢, § and 2 the spatial coordinates
and t the time. The functions F;, ¢ = 1,... N, represent the physical and
chemical processes that are modeled. The full equation of the model de-
scribed in this thesis (see Section 2.2.2) clearly is of the form (1.1). Instead
of integrating equation (1.1) at once, in the operator splitting approach the
integration is done for each process separately. In the present way of applica-
tion, this means that the following sequence of differential equations is solved
over the time interval [to, ¢1]

= Fi(c,$,6,2,t) + ... + Fn(c,¢,0,2,1), (1.1)

aci(¢707zvt) e F(C ¢ 6. 2 t)

ci(¢,0,2,t0) = ci1(4,0,2,t1),

with co(6,0,2,t1) = c(¢,6,2,t9). As solution of (1.1) at time ¢;, the result
of the last step in (1.2) is taken, i.e. ¢(¢,0,2,t1) = cn(9,6,2,t1). Applied
in this way, the error made in the approximation c(@, 6, z,t;) is first order in
time. If we, however, in the next step from ¢; to t2, reverse the order of the
processes, the error in the solution at t; is second order in time. This way
of splitting, which is called Strang splitting [59, 40], is applied in EUROS and
CcWIROS. The integration interval for all processes in (1.2) is equal to half an
hour.

The advantage of the operator splitting is clear: since each process is
treated separately, for each of the differential equations in (1.2) the most

fori=1,...,N, (1.2)
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efficient numerical integration technique can be chosen. For example, in
order to solve the chemical equations with sufficient accuracy, a number of
time steps with an implicit or semi-implicit solver is required (see Chapter 5
and 6). The advection, however, can be performed using explicit integration
techniques with time steps of half an hour. Hence, if advection and chemistry
are solved without operator splitting, a (semi-) implicit method would be
needed to solve these processes in a coupled way because of the chemistry.
This coupling results in large systems of nonlinear equations to be solved,
which is computationally very expensive and hence unattractive. Apart from
that, in the coupled approach more time steps are taken than necessary
for advection alone. Hence, operator splitting is a means to limit the total
computation time.

The drawback of operator splitting, however, is the splitting error. It is
beyond the scope of this thesis to discuss this issue, but it may very well
be that this error is large. In atmospheric models only modest accuracy is
required which justifies the application of operator splitting. This thesis,
however, focuses on numerical techniques for some of the physical and chem-
ical processes to be applied within the operator splitting context. No further
attention is paid to splittings and the associated errors.

1.6 Outline of the thesis

Chapter 2 gives a description of the physical and chemical model. In this
chapter all relevant parameters are defined and given a value.

Chapter 3 describes the grid refinement technique. It is argued why finite
volumes should be used in CWIROS and a finite volume version of the tech-
nique of Trompert and Verwer [63] is presented. Also the application of this
technique to the smog model is described.

Chapter 4 describes a few finite volume advection schemes. The emphasis
is on positivity (preventing under- and overshoot) and on mass conservation,
because these aspects are considered to be important for atmospheric appli-
cations. Results of numerical experiments for these schemes are presented.

Chapter 5 discusses special purpose solvers for systems of stiff ODEs arising
from chemical kinetics. The emphasis is on efficiency for a modest accuracy
requirement. Also attention is paid to mass conservation. In Chapter 6 some
of the special purpose solvers are tested together with a state-of-the art solver
in a box model test.

Chapter 7 provides a comparison between model results and measure-
ments for a winter and summer smog episode. The comparisons show a good
qualitative behavior, but not all details are resolved in the model results.

In the final Chapter 8, conclusions are drawn and recommendations for
future research are done.



Chapter 2

Model Description

This chapter gives a description of the model. In earlier stages, model de-
scriptions have been written [17, 39, 47, 48, 49]. In [42] an attempt has been
made to write a model description starting from [17, 39, 47, 48, 49], the source
code of EUROS and the proposed changes for CWIROS. During the course of
the project EUSMOG various changes in the model have been carried through.
The present model description therefore is different from the one in [42].

2.1 The model domain

For a medium range smog forecast, a geographical model area of the size of
Europe is necessary. The model area is plotted in Fig. 2.1. As can be seen
from Fig. 2.1, we do not work with the usual latitude-longitude coordinates.
Instead we use a shifted pole coordinate system, i.e. the real North pole is at
30° Northern latitude in the new coordinate system. In other words, the equa-
tor has been shifted to 60° Northern latitude in the usual latitude-longitude
coordinates. A more detailed description can be found in Appendix A. In
shifted pole coordinates the model domain is [—8.25°,20.35°] x [—23.1°,7.15°].
Through this choice the smallest mesh widths (expressed in meters) are larger
than in the usual coordinate system, when using a uniform grid in latitude-
longitude coordinates. In general, this will lead to smaller maximum Courant
numbers and thus a less severe restriction on the time step size. The base
grid, covering the model area, consists of 52x55 grid cells each representing
an area of .55°x .55°. This grid system is in agreement with the system
used in HIRLAM, a meteorological model developed by various meteorological
institutes including the Royal Netherlands Meteorological Institute (KNMI).
This model is not operational yet at RIVM, but it is expected to become op-
erational in the future. Its model output then can directly be used as input
for CWIROS.

2.1.1 Vertical stratification

The vertical stratification is modeled by 4 layers. In each layer, the con-
centration is taken vertically homogeneous. The height of the layers varies
during the day due to meteorological processes, see Fig. 2.2.
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The model domain 7
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Figure 2.1: The model area

e Surface layer: from z = zg to z = H,. H, is taken equal to 50m, 2 is

the roughness length, depending on the surface roughness and meteoro-
logical parameters (see [75]). In this layer, emissions by traffic and space
heating take place. At the surface of the earth, removal of pollutants
by dry deposition takes place. Following [48, 49], horizontal advection
is neglected in the surface layer. There is only transport of pollutants
in vertical direction by vertical (turbulent) diffusion. Whether this as-
sumption is still valid in case of grid refinement, has to be investigated.

o Mizing layer: the layer between the top of the surface layer and inver-

sion height z;. The depth H,, of this layer is constant during the night,
grows during morning hours after sunrise and in the late afternoon the
nocturnal mixing height is established again very quickly due to sunset.
When the mixing height is growing, pollutants from the reservoir layer
are injected into the mixing layer. When the mixing height is decreas-
ing, the reverse process takes place. This process is called fumigation.
A vertically homogeneous concentration is assumed in this layer due to
the strong mixing.

e Reservoir layer: the layer above the mixing layer with depth H,. The

top of this layer is determined by the effective height of the sources: pol-
lutants emitted above the mixing layer at night are injected in the reser-
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voir layer. During the next day, these emissions may be re-entrained
into the mixing layer as the mixing height rises. Exchange between
the mixing layer and the reservoir layer only occurs by changes of the
mixing height. In the afternoon, the reservoir layer may vanish if the
mixing height exceeds the top of the reservoir layer.

e Upper layer: this layer with depth H, serves as a ’semi-permanent’
reservoir for pollutants released directly from the mixing layer during
the afternoon when the reservoir layer has vanished. The height of the
top of the upper layer has at least to be equal to the maximum possible
mixing height. In the model the top of the upper layer is at z = 3000m.

upper layer

reservoir layer

mixing layer

surface layer

0 2 4 6 8 10 12 14 16 18 20 22 24

time —>

Figure 2.2: The four layers

In the present model the heights of the layers only vary in time but are
taken constant over the whole model area. For several reasons this can be
somewhat unrealistic. First of all, the height of the mixing layer depends on
a lot of meteorological parameters. These parameters cannot be considered
to be uniform over the whole model area. Also, the size of the model area is
such that there is a time difference of a few hours between sunrise and sunset
in the western part and the eastern part of the model area. Furthermore,
there will be abrupt changes in the mixing height at land-sea boundaries
[49]. However, in smog forecasting for the Netherlands, this is considered
not to be very important, because in the Netherlands episodes are generally
characterized by continental flows. Improvement could possibly be achieved
by using the local mixing height, but in the present model this is not done.
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2.2 The physical model
2.2.1 The modeled species

In the model 15 species are taken into account. They are listed below. The
numbering corresponds with the numbering used in CWIROS.

1. SO, Sulphur dioxide 2. SO, Sulphate aerosol
3. NO Nitrogen oxide 4. NO, Nitrogen dioxide
5. Os Ozone 6. OH Hydroxyl radical
7. NOj3 Nitrate aerosol 8. CyHg Ethane

9. C4H, Butane 10. C.Hy Ethene

11. Cs3Hg Propene 12. XYL Xylene

13. ISO Isoprene 14. CO Carbon monoxide

15. HNOs; Nitric acid

Methane (CHy) has also been included, because it is important for ozone
formation. Its value has been fixed to 1700 particles per billion (ppb), since
for the duration of smog forecasts its reaction time is considered to be too
small for a notable change in concentration. Note that the superscript a in
NO$% means aerosol, which should not be confused with the NOj3 radical. The
species 8-14 and methane are called Volatile Organic Compounds (VOCS).
These species are essential in ozone formation (the precursors), but do not
play any significant role in winter smog prediction.

2.2.2 The model equation

In spherical coordinates, the full model equation can be written as

dc 1 O(uc)  d(vccosh) .
8t ~ rcosf [ 0¢ + o0 advection
Kdif f 1 6_20- @ % . . -
sl [cos 5952 + 3 0( 38 °°° 0) horizontal diffusion
0 dc . I
+ rp (K ,(z)a) vertical diffusion
+ Sa(c) dry deposition
+ Sw(c) wet deposition
+ F(c) fumigation
+Q emission
+ R(c). chemical reactions

The ordering in which the processes are treated in the operator splitting, is
equal to the order listed above. Dry deposition is included in the vertical
diffusion and the emissions are included in the chemical reactions. Note that
the vertical diffusion is parametrized in the four layer model, see Section
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2.2.5. Since we only have four layers in vertical direction, we work with
averaged concentrations in each layer. The concentration in a layer in each
horizontal grid cell can be interpreted as an averaged value over this layer
in vertical direction. In the remainder of this paper, averaged values will
be denoted by a capital C, otherwise a small c¢ is used. For the averaged
concentrations and the depths of the layers the subscripts s m,ru OF 1,2,3,4 Will
be used denoting the surface layer, the mixing layer, the reservoir layer and
the upper layer, respectively. If there is no danger for confusion, subscripts
are omitted. It should also be noted that, strictly speaking, ¢ and C are
concentration vectors of length 15. However, apart from chemical reactions,
there is no interaction between the components. Therefore, in the description
of the various atmospheric processes below, ¢ and C' may be interpreted as
scalars, unless stated otherwise. In the following a detailed description of the
subprocesses in the model equation is given.

2.2.3 Advection

In each of the four layers we have advection. Only for the surface layer, it
is not clear yet whether advection can be neglected or not. Advection on a
spherical surface can be described by the following equation (see [29, 71])

dc 1 d(uc) n d(vccos )

ot + rcosf | O¢ a0 0, 2:1)

with r the radius of the earth in meters and (¢,8) the coordinates in lon-
gitude and latitude direction, respectively. The wind components (in m/s)
in longitude and latitude direction are specified by u and v. Note that (2.1)
is applied to averaged concentrations C. This can be done if the horizontal
wind field is constant in vertical direction within each layer.

As wind fields the 6 or 12-hourly 1000 mbar and 850 mbar wind fields
from the European Centre for Medium range Weather Forecasting (ECMWF)
in Reading (UK) are available. These wind fields correspond with a certain
height depending on the air pressure at ground level. The 1000 mbar field is
used for transport in the mixing layer. It is also used for evaluation of the
vertical wind profile in the surface layer. Because the ECMWF fields are given
on a different grid, spatial interpolation has to be performed. To obtain a
wind field at a desired hour, time interpolation will be necessary in general.

To make the wind fields divergence free a routine is included, based on [18].
The main reason to make the wind field divergence free (i.e. the maximum
divergence is less than some parameter €) is the fact that the wind component
in z direction is omitted. This causes unnatural compression and dilution. In
nature wind fields are almost divergence free. In Section 4.5, the procedure
for making wind fields divergence free is described in more detail.

2.2.4 Horizontal diffusion

The horizontal diffusion (i.e. in ¢ and 6 direction) is given by
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Oc _ Kaifs 1 0% dc ,dc -
8t~ r2cosf |cosf 042 T 60( cosf)| (2.2)

where k4ify is the diffusion coefficient. Its value is set equal to 10*m?2 s~1 on

the base grid. On the finer grids (see Chapter 3) kq4iss decreases proportional
to the square root of the mesh width. The diffusion equation has to be applied
for each layer and each component.

2.2.5 Vertical diffusion and dry deposition

The main vertical transport process in the atmosphere can be modeled by
the (turbulent) diffusion equation

be . 2 (mm%) , (2.3)

where K, is a parametrized diffusion coefficient. This turbulent diffusion
process only takes place in the surface and mixing layer. No diffusion occurs
in the upper two layers. The same is supposed to be true for dry deposition.
However, (2.3) cannot be used directly to describe vertical diffusion in the
model, since we only have four layers in the vertical direction. Instead we
use (see [39]) the following system of ODEs to describe dry deposition and the
exchange between the mixing layer and the surface layer:

CmHm B 1 _yg(s)
Lot — —po,(H)Cm ~ (c,,. : (H..)C")’ (2.42)
oC,H, _ dCmH,py,
ot = —vy(s)Cs — ot (2.4b)
where
B = Huf(Hn+ 2P g

vg(3)

s = 3 H,, 74(2) the aerodynamic resistance and vy(z) the deposition velocity.
In [37] this modeling is discussed in more detail and numerical results for
(2.3) and (2.4a,b) are given to support the choice for (2.4a,b). Note that the
system (2.4a,b) can be solved exactly.

2.2.6 Wet deposition

Wet deposition is caused by precipitation scavenging. In the upper layer, wet
deposition is modeled by (see [19, 39, 49])

6, _ _WI
8t =~ H,

where W is the wash-out coefficient and I the precipitation intensity (m/s).
In the layers below the upper layer only partly wash-out takes place. In [39]
it is supposed that the wash-out is proportional to the difference between
the concentration in the layer itself and the layer above. Also the wash-out
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process is assumed to be irreversible, i.e. there is no diffusion of pollutants
from the droplets to the air. These assumptions lead to the following equation
for the concentrations in the layers below the upper layer,

wWI

aC; _ - (C, - C,'+1) if C;— C,'+1 >0

ot "o if Ci—Cip1 <0

i=1,2,3 (2.5)

where the subscript 7 denotes the layer number. The wash-out coefficient W
depends on the chemical species and meteorological and physical parameters
(19, 39]. Values for W are specified in Table 2.1.

The wash-out ratio for SO, is dependent on temperature T' and pH values.

species W (m/s)
summer 5% 10*
winter 6 * 10*

S04 5 x 1031 -0-36
NOy 5% 1071036

Table 2.1: Values of W for some species

For lower temperatures or higher pH values the wash-out ratio of SO; is
higher. For this reason a higher wash-out coefficient for SO, is taken in
winter. Wet deposition for components not listed in Table 2.1 is neglected.

Although the model includes wet deposition, predicted rain fields are not
on-line available at RIVM, so only in scenario runs wet deposition can be
taken into account. Fortunately, for smog episodes wet deposition plays no
significant role.

2.2.7 Fumigation

Fumigation occurs if the mixing height changes. In that case pollutants from
the reservoir layer are absorbed by the mixing layer or vice versa. In case the
reservoir layer does not exist, exchange of pollutants takes place between the
mixing layer and the upper layer. It is easily seen that this process in case
of growing mixing height is modeled by

0H,Crp  OHpm
5 = 5 Cru- (2.6a)

The concentration C; , denotes the (averaged) concentration in the reservoir
layer if this layer exists. Otherwise it denotes the (averaged) concentration in
the upper layer. The same holds for H, ,, denoting the depth of the reservoir
layer H, or the upper layer H,. The derivative letm is assumed to have a
constant value ( specified by the meteorological input for the model. In that
case (2.6a) can be solved exactly
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Hum(?) CAt o J(8).  (2.6b)

Cm(t+At) = mcm(t) + Hoa(t) + CALC™

In the equations (2.6a) and (2.6b) it is assumed that it does not occur that
the reservoir layer vanishes and the depth of the upper layer changes due to
increasing mixing height in the same time step. If this does occur, it is easily
seen that (2.6b) has to be replaced by

H(t)C(t) + Ho(t)Cr(t) + (CAt — H,(2))Cu(2)

In the afternoon the mixing height drops to its nocturnal value within one
time step. In case the reservoir layer does not exist the change in the (aver-
aged) concentrations is given by

C.(t+At) = Cn(t), (2.7a)
_ Hu(t)Cu(t) | Hu(t+ At) — Hy(?)
Cu(t+At) = Hu(t 1 A2) + Holt + B0) Cm(2), (2.7b)

where H,(t + At) is a model parameter. In case the reservoir layer already

exists, only the concentration in the reservoir layer changes
H.(t) H,(t+ At) — H,(2)

H.(t + At) H,(t + At)

C.(t+ At) = Cr(t) + Cn(t).

It is also possible that no reservoir layer arises. In that case only (2.7b) has
to applied.

2.2.8 Emission

Emission is not treated as a separate process in the operator splitting, but it is
included in the chemistry. Only yearly averaged emission data are available.
From these data, hourly emissions are derived. The way this is done for each
layer and each grid cell is outlined below.

Emission categories
Emissions are divided into 6 subcategories:
1. combustion
2. space heating
3. refinery
4. chemical processes
5. solvents

6. traffic
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For each of these subcategories yearly averaged emission data specified per
source are available. The influence of the month, the day in the week and
the hour of day is simulated by 3 parameters,

Ym,it for monthly variation,
v4,i¢ for daily variation,
Yh,i¢ for hourly variation,

where the subscript 7 denotes the source category. In the following this
subscript is omitted. To obtain the emission at a specific date and hour from
a yearly averaged emission @ (in ppb/h), we divide Q by the number of hours
in a year and multiply this by Ym7Yays. Values for ¥m, 74 and v, can be
found in Appendix B. Note that for each source category the relation

(12x7x24)7" > Ymyamn = 1
m,d,h

must be satisfied. From the values in Appendix B, it can be seen that this
relation holds (& S vm =1, 1Y va=1, 3 % =1).

Emitted species
Emission data are available for SO, (the sum of SO, and SO4), NO; (the
sum of NO and NO;) and the total VOC. From these data, emissions of SO3,
S04, NO, NO; can be derived. It is assumed that 3% of the SO, emission
contributes to the concentration of SO4 while the remaining 97% contributes
to the concentration of SO;. The NO, emission directly contributes to the
NO concentration. Apart from that, 5% of it contributes to the NO2 con-
centration. In case the temperature is below 5°C this percentage is assumed
to be 15% in the surface layer due to ”cold cars”.

The VOC emissions in the database are not specified per component.
Therefore a distribution of the VOC emisision over the species is made. The
fractions are specified in Table 2.2. The sum of the fractions in Table 2.2 does

CyHg 0.0768 | C3Hg 0.0383
Cy4Hyp 0.4144 | XYL  0.2454
C,Hy  0.0364

Table 2.2: Fractions of the total VOC emission specified per component

not add up to 1. This is because about 20% of the VOC emission is supposed
to be in form of species that are not of importance for the smog model and
hence not included. Isoprene is emitted by forests. Its emission is dependent
on the type of forest (needle or leaves). The fractions for deciduous forest fq
and needle forest f, is estimated by the formula

fa = 2.2-0.0320,
fe = 1- fd!
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where 0 is the latitude in degrees. The emission factor E4 and E, for both
types of forests are estimated by

E; = 242¢%%T  ug/m3/h,
E. = 69e"%T q/m3/h.

where T, denotes the temperature in degrees Celcius.

Vertical distribution

SO, and NO, sources are supposed to emit into the surface layer or into
the mixing layer. Within each layer, a homogeneous vertical distribution is
assumed. The distribution of the SO, and NO, sources between the surface
layer and the mixing layer is specified in Table 2.3. Organic components are
supposed to be emitted only in the surface layer. The fraction emitted into

source S0, NO,
category

1 0.23 0.23

2 0 0

3 0 0

4 1 1

5 1 1

6 1 1

Table 2.3: Fraction of the emission emitted into the surface layer

the mixing layer partially penetrates into the reservoir layer. This process
is investigated and described by Manins [44]. To model this (partial) pene-
tration, two parameters are introduced (see [44]): the fraction f indicating
the fraction remaining in the mixing layer, and the penetration parameter P.
The fraction f can be expressed in terms of P

[ max{0,F(P)} if P > 0.08
f= { 1 if P <0.08 (2:82)
with
F(P) = 0.08P~' — (P —0.08). (2.8b)

As f is a fraction, its value can never become less than zero or greater than
1. From (2.8a,b) it is easily seen that for all possible values of P we have
0 < f < 1. For large values of P, F(P) may become greater than 1, which
means total penetration, and in that case f is set equal to zero. If P is less
than 0.08, there is no penetration at all, and f is set equal to 1. P is esti-
mated in the following way (see e.g. [44] and [39]):
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p= F  28Q
T abdz? T ATadz?’
where

F buoyance flux of the chimney

Q = heatin MW
b = inversion strength

AT = temperature jump at inversion

dz = distance between stack height and inversion
4 = wind velocity at source height

The wind velocity is evaluated using the power law exponent according to
(2.10). Based on statistics on sources in the Ruhr area, a homogeneous
distribution of the sources is assumed between 25 and 150m. Further, it is
assumed that the heat of the sources is a function of the height h defined by

Q = consth®, const = 1.6107° MW/m3.
The temperature jump AT is specified as a function of gmin and gmaz by

(gmaz - gmin) ftim
ter — taf

AT = 9maz —

b )

where fiim is the time passed since the start of the fumigation. If however
ftim > tsr — tsg OF frim <0, fiim is put to zero. So AT is supposed to be a
(piecewise) linear function in time. To calculate the total emission into the
mixing layer and the reservoir layer, we have to integrate f(z)Q(z) over the
mixing layer
H,+Hpm
@n = [ 1@0E)H: (29)
Hl
Because a vertically homogeneous distribution of the emission is assumed,
Q(z) in (2.9) may be replaced by Q/Hpm, yielding
Hy+Hm

f(2)d=.

H,

-9
Om = 7

2.3 The chemical model

The chemistry in the model consists of an ozone model, proposed to us by F.
de Leeuw [38]. This model has been derived from the EMEP MSC-West model
[57) and is highly parametrized. The EMEP model consists of about 140
reactions between ca. 70 species. However, as the model has to be applicable
to a large model area and all meteorological conditions, an attempt is made
to retain the essential characteristics of photochemical ozone formation. The
photochemical generated ozone is calculated according (see Stedman and
Williams [58] and references cited therein):
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%‘ﬂ =Y a;ki[OH][VOC],

where VOC; is an organic compound, k; is the reaction constant for the ini-
tial reaction of VOC; with the OH radical. Further, a; is the stoichiometry
factor for VOC;, that is the total number of ozone molecules generated by
complete degradation of one VOC molecule. Although a; depends on a num-
ber of factors, here only a dependence on NO, concentrations is assumed,
that limits the ozone production at low NO, concentrations. The following
reactions with their reaction constants k; are taken into account (see [57, 73])

1. NO + Os — NO; ki = 1.0 107? exp(—1400/T%)
2. NO; + hv — NO + O3 ks = 1.45 10" 2exp(—0.4/ cos~)
3. NO; + OH — HNO3 ks = 1.68 ;o712 exp(560/T%)

4. 2NO; + O3 — 2NOj3 ks = see below

5. O3 + hv — b OH + 5,03 ks = 2.0 10 *exp(—1.4/ cos7)
6. CyHe¢ + OH — a103 ke = 8.7 10-12 exp(—1070/T;.)
7. C4Hyo + OH — a20; k7 = 1.4 107" exp(—559/T%)
8. C;Hs + OH — a303 ks = 1.66 10_12 exp(474/Tk)

9. C3H¢ + OH — a403 ke = 4.1 102 exp(545/T%)
10. XYL+ OH — as0;3 kio = 14107

11. ISO + OH —  ag0s ki1 = 2.55 107! exp(410/T%)
12. CO + OH — a703 ki = 24 10_13
13. CHy + OH — ag0s kiz = 2.9 102 exp(—1820/T%)
14. SO, + OH — SO kis = 2.32 1070 exp(—457/T%)
15. SO; — SO, kis = 1.39 10_6
= 4.17 10~° in upper layer

16. HNOs3 — NO;+ OH kie = 3.0 10 %exp(—1.25/ cosv)
17. HNO; — NOj3 kiz = 5107°

e The concentrations are specified in number of molecules (mlc) per cu-
bic centimeter, mlc/cm3. An often used unit of measure for concentra-
tions is ppb (particles per billion). If we assume that 1 mol (= 6.022
102 molecules) has a volume of 24.4 liter, 1 ppb corresponds with
2.46 10'° mlic/cm?®.

e The parameters b; and by are given by

" 2k 4 [H;0)
. ka[H20] + kg
ka = 23 10_10
kg = 4.9310% exp(—100/T})
b
by = 1-51

where T} denotes the temperature in degrees Kelvin.

e The water concentration in the air is dependent on meteo conditions
and is calculated according to [45]. The water concentration [H20] (in



18

Model Description

mlc/cm?) is supposed to be given by

4.357521 1019 rh ”
T

1 1
exp (-(753.0 — 0.57T%)(= ———)18/1.986) ,

[H20] =

T, 273.16

where rh is the relative humidity (0 < rh <1).

The parameters a; are functions of the NO, concentration (the sum of
NO and NO,) according to

;i = Qimaz e_b"/[NOI] + @imin (with [NO;] in ppb).

The following (preliminary) values are used for the a; maz and ai,min:

Qi mazx Ai,min bi
7.0 3.0 0.35
0.0 0.1 0.35
0.9 0.0 0.25
4.0 0.0 0.25

Ai maz Qi min bi

44 1.7 0.35
5.8 2.2 0.35
5.5 2.2 5107
7.0 0.4 5107

00 g O Ut .

W N e,

Reaction 4 is a net reaction obtained by lumping of reactions with the
NOj3 radical (which should not be confused with its aerosol NO3) and
N205:

a. NO; + O3 — NO3 ke = 12 10_13 exp(—2450/Tk)
b. NO3; + NO — 2NO; ks = 1.510 ' exp(170/T%)

cl. NO3 + hv — NO: ke1 = 0.192 exp(—0.059/ cosvy)
2. NO3 + hv — NO ke2 = 0.0243 exp(—0.081/ cos )
d. NO3 + NO, —  N70s kg = 147 10_12 exp(—GO/Tk)
e. NyOs — NO3;+NO3 k. = 8.5 10" exp(—11080/T%)
f. NOs + H,O — 2HNO; kf = 133072

g. HNOs — NOj3 kg fast

Neglecting the intermediate product HNOs, reaction f and g can be
rewritten into a single reaction f':

fl. NyOs + HLO —> 2N0§ kfr = kf

The concentrations of NO3; and N,Os are assumed to be in steady
state, i.e.

0
E[N205] =0

and
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1o}
E[NO;;] = 0
This leads to
kq[N O3] [NOs)
N- = -
IN20s] = 277 k;[H;0]
and
ko[NO,][O
[NO3] - [ 2][ 3]

ks[NO] + k. + (kaks[NO2][H20])/(he + ks[H20])’

with k. = ke1 + kcz. The concentrations of NO3 and N3Os are thus
supposed to be functions of other concentrations and reaction rates.
To obtain the net reaction 4, consider f'. For the production of NO3,
N,O5 is needed. This is formed by reaction d which in return needs
NOs, produced by reaction a. Combining a and d gives

2NO, + 03 — 2NO§.

The loss of of N3Os, and thus of NO2 and Og, is described by reaction
f'. So the effective reaction constant ks of reaction 4 can be expressed

in terms of ks, N2Os and H,0:
kv = K [N20s] [H20]
eff ;i [N02]2 [03] .

e The reaction constants of some of the reactions depend on temperature
and solar angle. The solar angle v is dependent on the time of the year,
the time of day ¢ (in hours) and the longitude and latitude coordinates
(¢, 8) of the point considered. The cosine of the solar angle is given by

cosy = sinAsinf + cosAcosﬁcos(%(t —12.67)),

where
A = 0.006918 — 0.399912 cosd + 0.070257 sind —
0.006758 cos(2d) + 0.000907 sin(2d) —
0.002697 cos(3d) + 0.00148 sin(3d)
with
J= 2nd

T 365
and d the day in the year (1 < d < 365).

e All reaction constants depending on cos<y are multiplied by a factor
depending on the cloud coverage parameter N

1 — 0.75N34,
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2.4 Meteorological parameters

2.4.1 Input parameters

As CWIROS has to be an operational code, its input has to be easily avail-
able, without carrying out special measurements. The input parameters for
CWIROS are listed in Table 2.4. In case no input parameters are available,
the code uses default values, also listed in Table 2.4. Other parameters are

para- unit default
meter wint. | summ. | meaning
u, v m/s - - | wind fields in coordinate directions (¢, 8)
Oh/ot | m/h 50 75 | growth of mixing height during fumigation
mlayer m 300 300 | mixing height during the night
tsf h 9.00 8.00 | starting time of fumigation
tes h 12.00 11.00 | time at which reservoir layer vanishes
ter h 17.00 18.00 | time of afternoon stratification
N - 5 0.01 | cloud coverage fraction
T °C 12 20 | temperature in degrees Celsius
albedo - 0.2 0.2 | fraction of directly reflected solar radiation
a 0.95 0.95 | modified Priestly-Taylor parameter

Table 2.4: Meteorological input parameters

given a constant value within the code:
20: 0.25m roughness length (over land)

107*m  roughness length (over sea)

Zyal 10m height at which the deposition velocities are evaluated
rnins 1 minimum temperature gradient
Omaz: 10 maximum temperature gradient

From these parameters other parameters are derived.

2.4.2 Stability and deposition parameters

In Table 2.5 stability and depostion parameters are listed which depend on
the input parameters. In this section we will describe their derivation. The
power law exponent p > 0 is used to evaluate the vertical wind profile in the
surface layer, which is supposed to be given by

z

i(z) = a(z,ef)[ ]p, Zres = 250m. (2.10)

Zref
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parameter | unit | meaning
P - power law exponent for wind profile
L m Monin-Obukhov length (stability parameter)
Us m/s | friction velocity
K.(z) m?/s | vertical diffusion coefficient
Ta(2) s/m | aerodynamic resistance
Ts s/m | laminair boundary layer resistance

Table 2.5: Parameters depending on meteorological input

where i denotes the wind velocity (i.e. vu? +v2). The wind velocity at
2 = z,¢f is supposed to be known and specified by the 1000 mbar wind field.
This corresponds with an air pressure of about 1033 mbar at sea level, which
is a realistic value for smog episodes. The power law exponent is taken equal
to

0.10 if + < —0.55,
0.16 if —0.55 < 1 < 0.17, (2.11)

P
030 if £ > 0.17.

Another representation of the vertical wind profile is given by [39]

- Uy z z

i(z) = [ln (%) — (E)} , (2.12)
where k is the Von Karmann constant (= 0.40) and % the stability function.
For neutral and unstable conditions (L < 0), v is specified by

z 1+« 1+ 2 T
) (z) = 2In 5 + In 5 ~ 2arctanz + 7 (2.13)
withz = (1 - 16%)%, and for stable conditions (L > 0) by
z z
v(z) = 2
The Monin-Obukhov length L is defined by
_ _P Cp Tk “3
L = “koHy (2.14)

where p = 1.2754, the density of air in kg/m3, C, = 1.005, the specific
heat, T the temperature in degrees Kelvin, and g the gravity constant (=
9.8m/s?). Hy is the sensible heat flux (kW/m?). For its parameterization
and the way p, u, and L are calculated using the relations given by (2.10)-
(2.14), we refer to [3, 13]. Over sea we always assume L > 0. In that case
we have p = 0.16 and 9(£) = 0. Combining (2.10) and (2.12) evaluated in
z = zpq then gives
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Uy =

(2res) [ ]‘“ﬁ_

In(2rs) —In(2ref) | 2res

From these parameters, the vertical diffusion coefficient K,(z), the aero-
dynamic and boundary layer resistances, r, and r,, can be determined. K,(z)
is supposed to be approximated by (see [37])

K,(2) = —k;;z, (2.15)

with @, the stability correction function given by

4
0.74,/(1 — 9— if L <0,
o - 9%)

0.74 + 4.7% ifL>0.

The aerodynamic resistance r, is defined as

ra(2) = /z[K(Z)]_1 dz,

which yields, using (2.15),

0.74 z
) = 32 (1n(2) + xta) - x(2),
—6.4= if L>0
x(z) = L ' ’ (2.16)
2In(y(z) + 1) if L <0,
z
y(z) = 4/1- QE.
Species r. sea | 7. land
summer 10 70
SO, winter 10 100
snow covered/frozen underground 10 500
NOz (o o] 200
NO 00 600
O3 00 100
HNO3 10-5 10~°

Table 2.6: Values for the surface resistance r. (s/m)

If a different approximation is used for K, then the aerodynamic resistance
will be different. However, r, needs only to be evaluated at relatively low
heights (2 < z;, with z; the mixing height) where (2.15) is a good approxi-
mation for K,. The boundary layer resistance is modeled as
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2.6
ku,

The total resistance is given by the sum of the three resistances 74 + 75 + 7c.
The deposition velocity is the reciprocal of the total resistance

vg(z) = [Ta(z)+7'a+7'c]—l . (2.18)

Values for r, are given in Table 2.4.2. Species not listed in Table 2.4.2 are
assumed to have 7, = oo both over land and over sea. Note that r. = oo
implies that no deposition takes place.

(2.17)

T, =



Chapter 3

Local Uniform Grid Refinement

3.1 Introduction

In Chapter 2 the physical aspects of the Dutch Smog Prediction Model,
including the choice of the base grid, have been described. As base grid we
have a uniform grid with mesh widths of .55° in both horizontal directions.
This means that the physical grid distances are about 61 km in North-South
direction, and vary between 56 km and 61 km in East-West direction. This
grid is too coarse to represent local phenomena well enough. For example, the
enhancement in concentrations in urban areas, resulting from local emissions,
will not be resolved in the present grid. In general, point source emissions
will directly be smeared out over a single grid cell, introducing an unnatural
amount of diffusion into the model. To represent such local phenomena, a
much finer grid is necessary. However, a uniform grid with mesh widths of,
say, 10 km would already require more than 30 times as much grid cells as we
have presently on the base grid and the computation time would increase with
approximately the same factor. For routine smog predictions, this would be
too expensive in terms of computation time, as the model calculations have
to be done within a few hours on a workstation. Yet we need more resolution
to represent local phenomena more precisely. This leads us to the concept of
local grid refinement. The basic idea behind this technique is that a higher
resolution is only needed in certain areas of the model domain, for example
near (point) sources and strong gradients in the concentration field. In these
areas the grid is refined and a more accurate solution is obtained. In other
parts of the model domain the solution on the base grid will be good enough
and no refinement is necessary there. By refining the grid only in areas
where it seems necessary, much less grid cells are needed to obtain a solution
comparable to the solution obtained by using the fine grid on the whole model
domain. This requires that the areas in the model domain where the grid will
be refined can be determined in a dynamic way. In other words, it should
be possible to create a new refined grid every time step again. The reason
for this is that the need for more resolution is not restricted to the direct
surroundings of the location of the sources. Generally speaking, refinement
will be necessary in areas with large solution gradients. Large gradients are
likely to occur not only in areas with strong emissions but also (under certain
circumstances) in other areas downwind from sources. This will certainly be
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the case during smog episodes.

The aim of this chapter is to describe the grid refinement technique and
its application to the Dutch Smog Prediction Model. First, the choice for a
specific method is described. Next, a general description of the refinement
technique is given, followed by the actual application to the four layer model.

3.2 Choice of method

When choosing a grid refinement method one should take into account the
specific application the method will be used for. In the smog model processes
are present that satisfy mass conservation relations, for example, horizontal
advection and diffusion and also emission. For these processes numerical
schemes are selected that conserve mass as well. Therefore, it is natural to
require that the grid refinement technique does not disturb the conservation
of any conservative integration scheme, or disturbs it only to a very limited
extent. A grid point approach does not satisfy this requirement, as we will
show later, and therefore we choose the finite-volume approach. This choice
is in accordance with the physical model which is explicitly in terms of verti-
cally averaged concentrations, but also in horizontal direction due to the way
emissions have to be modeled.

Because the smog model is a four layer model in which vertical processes
are parametrized, grid refinement in vertical direction makes no sense. For
this reason only grid refinement in horizontal direction is applied. Moreover,
in each layer the same grid structure will be used, thus avoiding complicated
(and therefore expensive) treatment of vertical processes due to different grid
structures. In the description of the grid refinement technique it therefore
suffices to consider two-dimensional problems with one component only. Ex-
tension to four layers with a number of components is straightforward and
will only briefly be discussed.

As we chose the finite-volume approach, the grid refinement techniques
developed by Trompert & Verwer [63, 64], Arney and Flaherty [1], Berger
and Oliger [5], Gropp [21, 22, 23] in their present form are not suited for
our purpose. Yet, these methods are of interest because they can easily be
adapted for the finite-volume context. We will not discuss the differences be-
tween the various methods as, in our opinion, these methods are comparable
and mainly differ in the way the datastructure is built up and consequently
how grid structures may look like. A finite-volume grid refinement algorithm
is presented by Berger and Colella [4]. The basic idea of this method is the
same as of the others, only their choice of datastructure is heavily dominated
by practical considerations and the actual application. As a consequence,
each grid level consists of a set of rectangular subgrids, possibly overlapping.
The reason to require (sub)grids to be rectangular is to avoid (user) imple-
mentation of complicated numerical algorithms for a specific grid structure
and loss of computational efficiency, because otherwise the algorithms have
to be applied on irregular meshes. The consequence of this requirement is
an increased overhead, due to the complicated way the grid structures are
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created and, in addition, extra computations in overlapping grid cells. We do
not follow this approach for two reasons. First of all, a number of processes
in the smog model [42] has no horizontal coupling and just a simple loop
over all grid cells is sufficient. Secondly, even if there is horizontal coupling
(e.g. in advection and diffusion) it depends on the specific datastructure and
numerical scheme whether or not loss of computational efficiency will occur.
In view of our experience with the method of Trompert & Verwer [63, 64],
we do not, generally speaking, expect a significant loss of computational ef-
ficiency. We therefore adopted their basic ideas and used them to construct
our own finite-volume grid refinement algorithm. The datastructure however
has been adapted for specific use in the smog model. Also a few changes had
to made because of the formulation in spherical instead of Cartesian coor-
dinates. The actual implementation of the datastructure is based on a code
written by Blom, described in [6], in which the changes in the datastructure
are carried through.

3.3 Local Uniform Grid Refinement

In this section the local uniform grid refinement technique will be described.
First a global outline is given and next each step of the refinement procedure
will be discussed in more detail. The datastructure will not be discussed
here. The interested reader is referred to Appendix C where a description of
the datastructure is given.

3.3.1 Algorithmic Outline

The first step of the algorithm is integration from time level T to T + AT
on the base grid. Next, the algorithm checks whether grid refinement is
necessary. If so, a new, fine grid is created and the integration from T' to
T + AT is redone on this grid, if necessary in more than one time step.
Missing initial values on the fine grid are obtained by interpolation. After
integration on the fine grid, the algorithm checks whether further refinement
is necessary and if so, a second level of refinement is created which is treated
in the same way as the first level. This process of creating even finer grids
is continued until the solution on a certain level becomes acceptable or until
a prescribed maximum number of levels is reached. At this point the time
integration step is finished. Now the solution on each grid level is injected
into the solution on the next lower grid level. This means that the solution
values in grid cells of the fine grid are used to obtain solution values in the
grid cells of the underlying coarse grid. This has to be done in a top down
manner, of course, because the solution at the finest grid is expected to be
the most accurate solution. One step of the time integration consists of the
following steps:

1. integrate on base grid
2. check if and where refinement is necessary
3. if no (further) refinement is necessary: goto 9
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create datastructure of new grid
determine initial values on new grid
determine boundary conditions
integrate on new grid

if #level < max_level goto 2

inject solution

O 00 ~NO O P

3.3.2 How to refine?

Suppose we have integrated on the base grid from 7' to T+ AT Using some
criterion (to be specified later), the algorithm decides in which grid cells the
solution is not good enough. If according to the criterion a certain cell needs
to be refined, the eight cells directly surrounding this cell will also be refined.
In this way a safety buffer is created that will prove useful later on. Boundary
cells may not have eight such cells. In that case only the existing ones are
refined. A cell is refined by bisecting all sides, see Fig. 3.1. This refinement
procedure implies that one flagged cell already results into at least a 4 x 4
grid on the next grid level in case of a boundary cell, and into a 6 x 6 grid in
case of an interior cell. This implies that numerical methods with stencils of
four or less points (cells) in one direction can be applied in a consistent way.
Note that this procedure allows the refined grid to consist of several disjunct

o @
refinement
O
o [ J
O coarse grid cell ® newly created grid cells

Figure 3.1: Refinement of a grid cell

subgrids, see for example Fig. 3.2.

3.3.3 Where to refine?

Suppose we have integrated on a certain grid level [ and we have obtained a
solution ¢! on this level. To determine where refinement is necessary, some
error estimate is needed. We use the curvature of the solution as error in-
dicator, similar as in [63], based upon the second order derivatives of the
solution. Since we only need an expression for the curvature of the solution
with respect to the coordinate system, or rather the computational grid, we
simply use the expression

(Ag)%|chyl + (A8)%|chyl, (3.1)
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Figure 3.2: Example of grid refinement with two grid levels

which is approximated by standard second order central finite differences in
internal grid cells and by uncentered first order differences in boundary cells.
The longitude and latitude coordinates are denoted by ¢ and 6 respectively.
A grid cell is flagged if in this cell

(Ad)[cpgl + (A8)%|chy| > tol min(c™*, cpn,), (3.2)

where tol is a tolerance value specified by the user, cl,,, is the maximum
value of ¢! at time T+ AT, and ¢™?* > 0 is a user defined value. The factor
min(c™% ¢l ) in the right hand side of (3.2) is added in order to make the
refinement criterion independent of the scaling of the problem. The reason
why the minimum of the maximum value of the solution and the parameter
¢™9* is taken, is that due to emissions c!,,, may become so excessively high,
especially when | > 1, that refinement outside the emission area(s) would not
occur otherwise. This consideration suggests a value for ¢™** in the order of
magnitude of the natural background value for species c.

In addition to the refinement criterion (3.2), the user has the possibility
to enforce refinement in certain areas. To achieve this, the code not only
flags cells satisfying (3.2) but also flags cells indicated by the user. These
cells may correspond to certain longitude-latitude coordinates, specifying an
area of special interest, for example the Netherlands, or to certain emission
areas if not already flagged due to (3.2). In the same way the user might
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unflag cells in areas in which he does not want the code to create refined
grids, albeit that this has to be done very carefully and with good knowledge
of the physical model.

Recall that this section describes the grid refinement procedure as if there
exists only one layer and one component. In Section 3.4 the application of
the grid refinement to the four layer model with 15 components. In Section
3.4.3 the equivalent of criterion (3.2) will be specified for the full model.

3.3.4 Interpolation of initial values

If a fine grid level [ has been created, initial values are needed for the start
of the integration. Three different situations are distinguished:

e If it is the initial time step, the initial values on each grid level are
supposed to be specified by initial conditions. A subroutine is available
that assigns initial values to grid cells.

o If level [ also existed in the previous time step, values in coinciding cells
are copied.

e For all other cells interpolation has to be carried out.

If interpolation has to be carried out, we require that the interpolation pro-
cedure is mass conserving, i.e. the sum of the mass in the four fine grid
cells should be equal to the mass in the underlying coarse grid cell. This
is evidently the case when using constant interpolation. For higher order
interpolation methods, it is more complicated to achieve conservation of
mass. Suppose a coarse grid cell with value ¢y is refined and the values
in the fine grid cells need to be obtained from interpolation. Let us de-
note them by c;,cz,c3,c4. The coordinates of the cell centers are given by
(¢i,6:), with i = 0,...,4. In spherical coordinates, the mass in a grid cell
[6i — 1A¢, ¢: + AP] x [6; — 36,6, + 3 A6 is given by (taking c; constant or
as averaged concentration over the cell) ¢;S; where S; is the surface integral
over the cell defined by

¢i+3A060:+3A06

Si(Ag, AG) = / / cos8ddd = AGAB cosb; 1( 0)

2

(3.3)

$:i—1Ap6,-1n8
From expression (3.3) it can be seen that the surface integral is not only pro-
portional to APAl, as would be expected from the corresponding expression
in Cartesian coordinates, but depends also on the latitude and the actual

mesh size in latitude direction. Imposing a mass balance for the coarse grid
cell gives the condition for mass conserving interpolation

i Si2ag, 1ag) = is-(lAqs 1p0) (3.4
i=1C112 19 —COi=1 il ' P )

which can be simplified to

S
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4 ;
Z(c,- —cp)cosf; = 0. (3.5)

=1

The condition for mass conserving interpolation (3.5) suggests interpolation
of the function ¢(6) cos# in order to obtain values ¢;, i = 1,...,4. Condition
(3.5) is equivalent with

4
1
Z cicosf; = 4cqcosbp cos( ZAQ). (3.6)

i=1

If the function é=ccos@ is used in the following way to obtain interpolated
values c;

cicos®; = cocosby + Co(6; —0p) + E4(¢hi — Po) + h.o.t. (3.7

with és and & approximations for the derivatives of the function ¢ in (¢o, 60),
we obtain

4
Z c;cosf; = dcgcosby. (3.8)
=1

Hence, the conservation condition (3.6) is slightly violated. Exact conser-
vation can be imposed by multiplying the interpolated values c; by a factor
cos(3A8). For the base grid, this factor is already larger than 0.99999 so
that omitting this factor will hardly be felt.

In the model however, we simply use constant interpolation. In prac-
tise, interpolation of initial values will only be necessary near the boundaries
of newly created grid levels where the solution is to be expected relatively
smooth. Recall that the refinement procedure causes a safety buffer to be cre-
ated by refining cells that need not to be refined based on the error estimate
only.

3.3.5 Injection of solution values

When the time integration step is finished, either because the algorithm de-
cided that no further refinement is necessary, or because a prescribed maxi-
mum number of grid levels has been reached, the solution values of the fine
grid cells have to be injected into the solution values of the underlying coarse
grid cells. Again the requirement is that this has to be done in a mass con-
serving way. The obvious way to perform the injection is to sum up the mass
for each set of four fine grid cells that form one coarse grid cell and assign
this mass to the coarse grid cell. In terms of average concentrations over a
grid cell, mass conserving injection of four fine grid values to one coarse grid
value, using the notation of the previous subsection, can be written as

_ _1_24: cosb; (3.9)
T4 < cos f cos( A0) ’
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Again we note that omitting the factor cos( %AB) will hardly be felt. However,
this factor has to be computed only once per injection step, so it does not
require much extra computation time to take this factor into account. The
same holds for cos#;, i = 0,...,4, since an array containing the cosines of
all cell center coordinates is stored if a new grid is created, because they are
also needed in other parts of the model computation. Therefore, there is no
reason to apply a different formula than (3.9).

It is the injection step in which a grid point approach fails to be conser-
vative. In such an approach, a quarter (ignoring boundaries) of the fine grid
point coincides with coarse grid points. Injection of solution values then is
straightforward. Values in fine grid points coinciding with coarse grid points
are copied, other values in fine grid points do not influence the solution on
the coarse grid. Though formally we cannot speak about mass on a grid in
the grid point approach, we define the mass on a grid with mesh widths (for
simplicity in Cartesian coordinates) Az and Ay as the sum of all solution
values times AzAy, being a second order approximation of the integral of the
concentration function over the domain. It is now easy to see that a different
mass is injected from the fine grid than the mass present on the fine grid.
The mass on the fine grid M is given by the sum of the concentration values
times %Asz. The injected mass M, however, is equal to the sum of the
concentration values in grid points coinciding with coarse grid points times
AzAy. In general, these two sums are not equal. A simple example clearly
shows the inconsistency of the grid point approach at this point. Consider a
point source on the fine grid. The only possible way to treat a point source is
to assign the emitted mass Mg to the nearest grid point. If this grid point is
not coinciding with a coarse grid point, the mass Mg is not injected into the
coarse grid solution and the emission is lost on the coarse grid. On the other
hand, if this grid point does coincide with a coarse grid point, the solution
value is copied. In that case the increase of mass due to the emission of Mg
is equal to 4Mg, because the grid point on the coarse grid represents a four
times larger area.

The above considerations show that a grid point approach is not suited
for this application. The present finite-volume approach deals with mass
conservation in a quite natural and consistent way, and in our opinion this
approach is to be preferred in atmospheric models.

3.3.6 Boundary conditions

Assuming boundary conditions are prescribed for cells that abut the physical
boundary, no problems arise when integrating on the base grid. At this grid
level we only have physical boundaries. When integrating on grid level I > 1,
not all boundary cells will abut the physical boundary (see Fig. 3.2). Those
cells that do not abut the physical boundary are called internal boundary cells
and for these cells additional boundary conditions have to be specified. Fol-
lowing Trompert and Verwer [63, 64] we prescribe, when necessary, Dirichlet
boundary conditions for these cells which can be derived from the solutions
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at time T and time T + AT at the underlying coarser grid level [ — 1 by first
applying spatial interpolation followed by temporal (linear) interpolation.

In case of advection it seems natural to have flux conditions at physical
inflow boundaries. However, no information is available about these fluxes.
We observed, for example, that assuming inflow of ”clean” air may lead to
unnecessary grid refinement in case the concentrations in grid cells next to
boundary cells are higher than the computed concentrations in the boundary
cells. For this reason, values in cells that abut the physical boundary are
computed by extrapolation in case of inflow. We use constant extrapolation
to prevent new extrema in the solution due to the extrapolation.

3.3.7 Mass conservation

We have seen that the grid refinement technique will disturb the mass con-
servation to a very limited extent. In general, this happens when the mass
on the grid changes during the integration step due to in- and outflow. The
change in mass is equal to the integral of the fluxes over the boundary of the
computational grid.

To illustrate how mass conservation may be slightly disturbed, consider
an integration step on a domain 2 using a coarse grid. On the subdomain
Q' C 9 the coarse grid is refined. The exact change in mass AM on the
subdomain is given by the integral of the fluxes over the boundary o9 . On
both the coarse and the fine grid this integral is approximated numerically in
different ways, so in general, the approximations of AM will not be the same
for both grids. Since the mass of the fine grid is injected into the coarse grid
solution, the mass on the coarse grid will change with AMr — AM¢c where
AMp and AM¢ denote the change in mass on o using the fine grid and
using the coarse grid, respectively.

Of course, it is possible to enforce exact mass conservation by imposing
a suited flux condition at 89 for the integration on the fine grid. This
condition may be derived from the fluxes over 80 during the coarse grid
computation. However, this leads to a lot of extra overhead. In addition,
negative values or undershoot may occur in advection computations. Further,
the underlying coarse grid cells of the boundary cells of the fine grids have
not been flagged by the space monitor, so strong gradients are not expected
at fine grid boundaries. At this point the usefulness of the safety buffer,
described in Section 3.3.2, becomes clear. Because we suppose the numerical
solutions to be smooth at the fine grid boundaries no significant gain or loss
of mass is expected due to the boundary treatment.

3.3.8 Time stepping

The model takes fixed overall time steps of half an hour (see Chapter 2). As
operator splitting is applied, each subprocess is integrated separately. For
each subprocess as many time steps can be taken as necessary to integrate
from time level T to T'+ AT. The number of time steps can also vary per
grid level, as the integration on a fine grid is independent of integration on
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the underlying coarse grid. For example, in case of advection, the time step
on the base grid may be the overall time step, whereas on the finer grids two
or more time steps are necessary in order to satisfy the Courant condition on
these levels.

3.3.9 The datastructure

The datastructure is based upon the one described in [6] and is closely related
to the one in [63]. Some modifications were necessary. The solution on each
grid level (including the base grid) is stored row-wise in a one-dimensional
array. Information about the structure of each grid level is also stored in a
one-dimensional integer array. This array consists of several (sub)arrays that
actually describe the grid:

e an array containing the number of rows in the grid and pointers to the
start of each row,

e an array containing for each row the row number corresponding to its
#-coordinate,

e an array specifying for each grid cell its column number in a virtual
rectangle, corresponding to its ¢-coordinate,

e an array containing the number of physical and interior boundary cells
and pointers to these cells,

e an array with for each grid cell a pointer to the underlying coarse grid
cell it is part of,

e an array with for each grid cell a pointer to the cell directly above it,
e an array with for each grid cell a pointer to the cell directly below it,

e an array with for each grid cell a pointer to the lower left cell of the
four cells on the next finer grid that form the present coarse grid cell.

In case cells, as indicated in the three last descriptions, do not exist, the corre-
sponding pointers are set to zero. With the aid of the arrays listed above the
implementation of numerical algorithms becomes only slightly more difficult
in comparison to using just a uniform grid. Creating the fine grid structure
is, in our opinion, not a very complicated task and, in our experience, only
requires a few percent of the total computation time, including the construc-
tion of initial values and the injection procedure. The latter two processes
can be implemented in a straightforward manner because of the pointers to
underlying coarse grid cells and to finer cells on the next grid level. These
pointers were not present in the datastructure of Trompert & Verwer [63, 64]
and therefore they had to implement the interpolation of initial values and
the injection procedure in a more complicated and time consuming way. For
our application it is worthwhile to have these pointers, because we will have
to perform injection relatively often due to the operator splitting approach.
For a more detailed description of the datastructure, see Appendix A.
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3.4 Application to the four-layer model

In the previous section a description was given of the grid refinement algo-
rithm for a two dimensional problem in space with only one solution compo-
nent. The purpose of this section is to explain how we applied this technique
within our smog prediction model with four layers in vertical direction and
15 species, described in Section 2.3. Recall that the model is not really a 3D
model. The physical description is in terms of vertically averaged concen-
trations and therefore it makes no sense to refine in vertical direction. This
explains why we restrict ourselves to a 2D refinement technique.

3.4.1 The grid

Each layer is numerically represented by a two-dimensional grid. Because of
the several exchange processes between the layers (vertical diffusion, deposi-
tion, fumigation), it would be very inconvenient if in different layers different
grids were created. An additional interpolation procedure would be neces-
sary to interpolate the concentration function in the layer above and the layer
below. Therefore, we work with the same grids in all layers. An additional
advantage is that only one grid structure has to be created for all layers and
components, thus reducing overhead and saving memory space.

3.4.2 When to refine?

As already mentioned, the numerical integration is performed in an operator
splitting setting. In the odd integration steps we perform the subprocesses in
the order: advection, diffusion, emission, deposition, fumigation and chem-
istry. In the even integration steps we perform them in reversed order, after
an update of the model parameters. All processes are integrated on all grid
levels. The remaining question is: should regridding take place in all pro-
cesses or just in one of them? And, if we choose the latter, in which one?
First of all, it is clear that avoiding regridding in each substep saves com-
putation time. So it is worthwhile to look at each of the processes listed
above and check whether they require regridding or not. Observing that all
processes except advection and emission do not introduce (new) sharp gradi-
ents or move existing sharp gradients, we conclude that only advection and
emission are candidates for regridding. As we can combine both by steering
the grid refinement within the advection step, this step is the obvious choice.
As mentioned earlier, refinement can be imposed not only according to cri-
terion (3.2) but also to other, problem dependent criteria. If we also refine
based on emission data, introduction of sharp gradients due to emission can
be anticipated within the advection step. For another reason it also natu-
ral to have the refinement taking place in the advection step. In this step
peaks in the solution are moved to other locations in the model area and the
only possibility to follow this with grid refinement is by letting the advection
determine the refinement.
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3.4.3 The refinement criterion

The extension of criterion (3.1) and (3.2) to a four-layer model with 15 species
is straightforward. First, we calculate the space monitor spcmon(i, j ) for each
component i and each layer j according to (3.1). Then we calculate the total
space monitor SPC

SPC = qu{“"”f*s”,ﬁﬁ""(“)}, (3.10)
1,] Ci,j

where the w; ; are weight factors corresponding to component 1 and layer 7,
with 0 < w; ; < 1; ¢["* is the maximum value of component ¢ in layer j on
the grid level considered. Finally, the refinement criterion reads

SPC > tol, (3.11)

where tol is a tolerance value to be defined by the user.

3.4.4 Computational efficiency

In case a new grid level is created in the advection step, a complete integration
step including all subprocesses will be done on this new grid. In case of
horizontal coupling between the grid cells the solution values in all grid cells
on all grid levels are updated. In principle this is not necessary. In fact, only
values in grid cells which are not further refined really need to be updated. All
other values are obtained by injection from the next finer grid. However, for
processes with horizontal coupling a complicated (and unphysical) procedure
for the boundary conditions would be necessary since boundary conditions
can no longer be derived from the just finished update on the next lower
grid. Therefore, only in subprocesses with vertical coupling or no coupling
at all between the grid cells, this (computational) advantage will be used.
Its implementation is quite easy due to the pointer array pointing to cells on
the next finer grid in case of further refinement, and to zero otherwise, see
Section 3.3.9.

3.5 Numerical illustration

To show the effect of grid refinement, we consider scalar advection with the
rotational wind field that will also be used in Section 4.6. After one rotation,
the initial solution should be recovered. The wind components u and v are
given by formula (4.56). One rotation is performed with a monotone advec-
tion scheme, i.e. a scheme that does not produce under- and overshoots in
the solution. Hence, it makes sense to relate the accuracy to the maximum
value on the grid. The related quantity is EMAX, defined by

max(C?) — max(C})
max(C?) — min(CY?)’

EMAX =
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where the superscript indicates the number of rotations. The subscript 4
refers to cell 7. Recall that due to the datastructure for the refined grids
a single index is used to identify grid cells. The maximum value for the
solution after one rotation is the maximum value over the solutions at all
grids. Since grid refinement may disturb the mass balance on the base grid
to some extent, we also consider the quantity ERR1

>, Clcosb;

Bkl = >, COcosb;

which is only computed on the base grid.
As initial profile solution a Gaussian profile is considered, given by the
function

«(6,0) = 1+ep{-3((6- &) + O], (3.12)

with ¢ and 6 in degrees (shifted pole coordinates). The center of the Gaussian
profile (¢, 6) is chosen such that its maximum coincides with a cell center on
the base grid. The coordinates of this cell center are (6.325,-1.925). In Table
3.1 the results for this test are summarized. Since the spatial discretization in

av. #cells used on level
MAXLEV 1 2 3 4 use EMAX ERRI

1 2860 - - - | 100 5.82e-1 9.66e-6
2 2860 519 - - | 30 2.6le-1 1.28e-4
3 2860 457 987 - 9 9.21e-2 8.36e-4
4 2860 663 1392 3218 4 4.52e-2 2.04e-3

Table 3.1: Results for the rotation test with the Gaussian profile

only first order at extrema in the solution, the value for EMAX is expected to
decrease proportional to the mesh width, which is confirmed by the values in
Table 3.1. The values of EMAX are almost equal for the same test performed
on a uniform fine grid over the whole domain. The values for ERR1 then
are of the order 107%. The column ”use” indicates the percentage of cells
actually used compared to the situation that the whole domain is covered by
the finest grid. It shows that for this specific example grid refinement is very
efficient. With respect to the mass balance, the table shows that this balance
is disturbed indeed, but only to a very limited extent.

The same test is also performed for a block profile. The size of this block
profile is chosen to be 2 x 2 grid cells on the base grid on exactly the same
location as the profile used in the experiments in Section 4.6. The results for
the block profile are listed in Table 3.2. This table shows again that the grid
refinement procedure is very effective. For example, for MAXLEV=3,4 only
a very small percentage of the total number of cells of a uniform fine grid is
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av. #cells used on level
MAXLEV 1 2 3 4 use EMAX ERRI
1 2860 - - - | 100 8.39e-1 7.51e-6
2 2860 345 - - | 28 6.03e-1 1.22e-4
3 2860 288 636 - 8 2.46e-1 2.44e-4
4 2860 273 547 1383 3 4.20e-2 8.87e-4

Table 3.2: Results for the rotation test with the block profile

used, 8 and 3%, respectively. The mass balance is disturbed, but again to a

very limited extent.

In conclusion, the present illustration clearly shows the effectiveness of the
grid refinement procedure. The numerical solution indeed becomes more ac-
curate if grid refinement is applied, whereas the mass balance is only slightly

disturbed.



Chapter 4

Finite-Volume Numerical
Advection Schemes

4.1 Preliminaries

Horizontal advection is an important process in many atmospheric models. In
this chapter we will focus on numerical advection algorithms, keeping in mind
the application to our smog prediction model. Specific for this application is
the regional scale of the model and the use of a grid refinement technique, see
Chapter 3. The regional scale of the model makes it unnecessary to construct
schemes that handle the singularity of the coordinate transformation at the
poles. Therefore, the numerical algorithms in this chapter are formulated
in usual Cartesian coordinates. They can easily be adopted for spherical
coordinates. Only when necessary, it is indicated what should be done for
application in spherical coordinates.

In [71] Williamson lists some desirable properties for advection schemes
for use in global atmospheric models. From this list we consider relevant for
our application:

e Positivity: Negative solution values may lead to instabilities when deal-
ing with chemical equations. Therefore we require the scheme to be
positive. It will turn out that for some numerical schemes the positiv-
ity property is closely related to the prevention of undershoot and often
also overshoot. Although some undershoot (as long as the solutions re-
main nonnegative) or overshoot will not lead to chemical instabilities,
it may generate errors which will act as perturbations for the initial val-
ues for the chemical integration. This obviously may disturb chemical
equilibria and will make the solution of the chemical equations more dif-
ficult. However, we do not consider this to be very serious because the
initial values for the chemistry will be out of equilibrium anyway due to
the operator splitting and the update of parameters at the beginning
of each integration interval.

e Mass conservation: Especially for long range transport it is important
that mass is not (systematically) added to or deleted from the system,
since then the dynamical behavior of the system can be disturbed to a
large extent. For a smog model, predicting only a few days, this consid-
eration is less relevant. Instead we could require that the mass balance
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is not violated too much. However, for a scheme that is not strictly
mass conserving there is no guarantee of a small conservation error, in
particular when nearly discontinuous profiles have to be transported.
The latter is the case in our model, due to emissions, so we prefer to
stay on the safe side and restrict ourselves to mass conserving transport
algorithms.
Since we already made the choice for finite-volume grid refinement, we con-
fine ourselves to finite-volume schemes, for which the conservation property
follows quite easily as we will see. Moreover, in this chapter we restrict our-
selves to schemes derived along the method-of-lines (MoL). The algorithms
described are the donor cell algorithm, a third-order upwind biased scheme
with flux-limiting and flux corrected transport (FCT).

4.1.1 The advection equation
Cartesian coordinates

Horizontal dispersion of a pollutant in Cartesian coordinates is described by
the following partial differential equation

dc O(uc)  O(vc)]
E + [ oz +_01}_J = 0, (4.1)

where ¢ denotes the concentration (field) of the pollutant and » and v wind
velocities. The form (4.1) is sometimes called the conservative form of the
advection equation. If the wind field is divergence-free, i.e.

B_U ov

oz + ?3_11 =0, (4.2)

equation (4.1) may be rewritten as

dc c dc

% 4 ugs togs = 0, (43)
which is sometimes called the advective form. Some advection schemes start
from the advective form, for example semi-Lagrangian schemes [41]. Note
that in nature wind fields are divergence free, so one may use relation (4.2)
even when starting from the conservative form. In practice we are only given
values of u and v at certain points (e.g. cell centers), so we will assume a
numerical equivalent of (4.2) to hold. The input wind fields of the model will
not satisfy this numerical equivalent, however. Hence, a procedure is included
to make the input fields numerically divergence free, see Section 4.5.

Spherical coordinates
In spherical coordinates, the advection equation takes the following form

dc 1 O(uc) N O(vccosh)

ot + rcosf | O0¢ o0 =0 ()
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with ¢ and @ the longitude and latitude coordinate and 7 the radius of the
earth. The expression for the divergence of the wind field now takes a slightly
different form. The equivalent of (4.2) in spherical coordinates is

1 Ou % (v cosb)
rcosf | O¢ o0

The procedure used to make a wind field divergence free in Cartesian coor-
dinates can be applied in spherical coordinates if we apply this procedure
to (i, 9)=(u/r,vcosf/r). The factor cos™! 6 in (4.5) can be omitted since it
only scales the actual divergences. In our application this term is not harmful
because cosf never comes close to zero. If the wind field satisfies (4.5), the
conservative form (4.4) may be rewritten as

bo , u o o
ot rcosf 8¢ r 00

Hence schemes that use the advective form need as velocities at the cell
boundaries (i, #)=(u/(r cos@),v/r). The cosine term in % represents that
the physical mesh width in longitude direction decreases for an equidistant
grid in spherical coordinates when approaching the poles.

= 0. (4.5)

= 0. (4.6)

4.1.2 Derivation of semi-discrete equations

The method-of-lines consists of two steps. In the first step, the spatial op-
erator is discretized, resulting into a semi-discrete system because it is now
discrete in space but still continuous in time. In the second step, the semi-
discrete system is integrated in time with a suitable time integrator, resulting
into a fully discrete system. In this section only the first step is discussed.

Cartesian coordinates

For the derivation of finite-volume schemes, we consider the conservative form
of the advection equation. For ease of presentation we assume a rectangular
spatial domain which we divide into rectangular cells Q;; = [z;_1,z; +%] X
[yj_%,yﬁ%], with cell centers (z;, ;).

In each cell Q;; we consider the average concentration Cjj,

Cij(t) = S_l/ c(z,y,t)dedy, S = AzAy. (4.7)
We will compute the time evolution of C;;(t) by means of a semi-discrete

differential equation, which we derive from the conservative form of the ad-
vection equation by integration over (;;

dc duc dve
S-l/ = = -57! — - 5! . .
Qij 6t Q-‘j 82? Qij By (4 8)

Interchanging integration and differentiation for the left-hand-side of (4.8)
we arrive at
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d
Ezct](t) = Fi—J,“,j_Fi+]2~,j + Gi,j—-% _Gi,j+%’ (49)
where
1 Yi+1/2
Figp; = 57 / (uc)(zit1/2,Y)dy (4.10)
Yi—-1/2
and
1 Tit1/2
Gijxy = S (ve) (@, yje1/2)dz. (4.11)

Ti-1/2

Usually, the integrals in (4.10) and (4.11) are approximated by the midpoint
rule. We then obtain the approximations

By = (Az) 7 (ue)(Tiz1/2,¥5)s

Gijxy = (By)7H(v0)(i,Yja1/2)- (4.12)

The above approximations are second order accurate, provided that the val-
ues for uc and ve at the middle of the cell boundaries are approximated with
at least second order accuracy. Higher order approximation is possible. For
example, it can be verified that fourth order accuracy is obtained if we, after
computing the fluxes in the above manner, simply put

Fipyj1+22F4y ;+ Fiyy jn
24

and for G; j11/2 likewise, of course provided that uc and vc are approximated
accurately enough. However, the schemes described in this chapter simply
use (4.12). Note that for the evaluation of the F's and G's point values of the
concentration function c are needed. They have to be approximated by the
C;; since these are the only quantities in the finite-volume context.

Fiﬂ:%,]’ — (4.13)

Spherical coordinates

In spherical coordinates, the surface S of a grid cell is also dependent on the
latitude and is given by

S = r2A¢Af cosb;é,
with
_ sin(3A9)

1

A
We note that often the factor 6 is omitted. This is reasonable, if Af is
small enough, because then & is very close to 1. See Section 3.3.4 for a
similar discussion. On the base grid, § = 0.999996... We therefore neglect
this factor in all computations. Integrating the differential equation (4.4) and

dividing by S results into the same semi-discrete system (4.9) as for Cartesian
coordinates, but now with
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05+1/2 _
Fiayy = 7‘5—1/ (uc)(@it1/2,0)d0 (4.14)
0;_1/2
and
A bit1/2
Gijxr =75 C°S9ji1/2/ (ve)(,0;+1/2)dd. (4.15)
i—1/2

Applying the midpoint rule for the integrals in (4.14) and (4.15) results into
the flux expressions

(uc)(@it1/2,6;)
; = T I 4.16
Fixy,; rA¢cosf (4.16)
and
_ (ve)(¢i,0j+1/2) cosbx1)2
Gijey = rA0 cos 6 ’ (4.17)

4.2 The donor cell algorithm

The donor cell scheme is a combination of the first order upwind discretization
for the advection operator and Forward Euler time integration. The scheme
is described here for two reasons. The first reason is to illustrate the principle
of positive discretizations and positivity of the fully discrete solution. The
second reason is that this scheme will serves as a basic scheme for the FCT
procedure described later on in this chapter.

Upwind and upwind biased schemes approximate uc and vc dependent
from the direction of v and v. The donor cell algorithm approximates the
fluxes according to

U;y 1
—E;_Cij if Uiyl >0,
F'+=},j = (4.18)

l b o, i
Az i+1,5 1 ’LLH_% < 0.

The velocities u;, 1 at the cell boundaries are defined by 1 (u; ; +uit1,;). The
Gij +1 are defined in a similar fashion. We now show that the discretization

(4.18) is positive, i.e.
d
dt

and all other values of C' are nonnegative. From (4.18) we see that all negative

contributions to dCj;/dt are due to outflow from cell €2;;. On the outflow
boundaries, the concentrations are approximated by Cj; itself, so the total
outflow is zero. Only inflow in Q;; takes place, which is positive per definition.

The above condition is a necessary but not a sufficient condition for posi-

tivity in case of exact time integration. Since for application of Runge-Kutta
methods to discretizations satisfying (4.19), conditions on the time step size

Cij >0 ifCyj = 0 ' (4.19)
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can be given for which the fully discrete solutions remain nonnegative, (4.19)
is considered to be a sufficient condition for the space discretization through-
out this chapter.

Positivity implies for the present discretization that the derivative dC;; /dt
will also be positive in case of a local minimum and negative in case of a local
maximum. To show this, consider the transformation W = aC + 3. Since
the discretization (4.18) is linear, we get

%W," = a%Ci' = ,BD,'J', (4.20)
where D;; is a numerical approximation of the divergence of the wind field,
given by

Uity " Yi-45 | Vi) T it
: 4.21
Az + Ay ( )

D,’j =

We will assume that D;; is always zero. In practice, wind fields are made
divergence free in such a way that this is true, see Section 4.5. With D;; =0,
relation (4.20) states that positivity is equivalent with absence of undershoot,
since Cj; is zero corresponds with a local minimum for W;; (a > 0,8 # 0).
It also shows that absence of undershoot is equivalent with the absence of
overshoot, because for negative c, the time derivative of W;; is zero in case
of a local minimum in Cjj, i.e. a local maximum in W;;. In conclusion,
positivity implies the absence of under- and overshoot if the semi-discrete
system is integrated in time exactly.

Unfortunately, the semi-discrete system cannot be integrated in time ex-
actly. A numerical method has to be used to perform the time-integration.
Positivity (in the wider sense of absence of under- and overshoot) of the dis-
cretization then turns out to be a necessary but not sufficient condition. In
general the maximum step size will be restricted depending on the discretiza-
tion and the specific time integration method.

This can be made clear by a simple calculation. Assume that » and v
are constant in space and positive and suppose we integrate in time with the
Forward Euler method. We then get the following scheme

Citl = C™ + va(CLy; — CFj) + w(Chiq — Ciy)s (4.22)
where the one-dimensional Courant numbers v, and v, are defined as
TU TV
Ve = 5 Wy = A_y

with 7 the time step size. The scheme (4.22) can be rewritten as
C?J-H = (1—ve —1y)Cf; + vzClLy; + 1Ciy,

which is a linear combination of the values of C with positive weights, so the
scheme is free of under- and overshoot, provided that 1 — v, — vy, > 0. This
is true if the two-dimensional Courant number v satisfies



44 Finite-Volume Numerical Advection Schemes

v=uv, +1y, <L (4.23)

The result is in accordance with the result we found in [29], Section 3 with
6§ = 0 and in Section 4.3.3 of this thesis. There we will also derive bounds on
the Courant numbers for some Runge-Kutta methods for a class of discretiza-
tions of the advection operator with spatially varying velocity fields satisfying
D;;=0. In [29] only results have been derived for constant velocities. For the
present discretization, however, it is not difficult to derive conditions for pos-
itivity in case of non-constant velocities. Observe that, due to D;;=0, we
have at least one and at most three outflow boundaries. The same holds of
course for inflow boundaries. We derive conditions for positivity by simply
examining all possibilities.

Suppose we have one outflow boundary. The three inflow boundaries give
a positive contribution to Ci"j“, so our only concern is the outflow, given by
vCl; where v is the 1D Courant number at this boundary. Since the total
outflow must be restricted by C7; it follows that the Courant condition for
this case is vz,v, < 1.

Now suppose we have three outflow boundaries. The scheme can then be
written as

Citt = Ch(1—71Dij —v) + vCfy,

where v represents the 1D Courant number at the only inflow boundary and
the indices k! are different from ¢j. Since we assume D;; to be zero, we again
find v;,v, <1 as condition for positivity.

The only case left is the situation of two inflow and two outflow bound-
aries. The scheme then reads

Citl = Ch(1—wn —v2) + nCh, + nCh,,

and it follows that all 1D Courant numbers must be smaller than % Closer

inspection reveals that this condition may be relaxed somewhat. If we as-
sume that in both directions there is one outflow boundary, then a sufficient
Courant number is v, +v, < 1, where both Courant numbers are taken at the
outflow boundaries. If the two outflow boundaries are both in z-direction,
the sum of both Courant numbers at the corresponding boundaries should be
bounded by one. Since this implies a change of sign in » within cell Q;;, we
may suppose that the velocities at the cell boundaries are so small that this
condition is always met. The same holds if both outflow boundaries are in
y-direction. Therefore we use as result for this case the condition v; +v, < 1.

Summarizing, we arrive at the following Courant condition for the first
order upwind discretization with Forward Euler time integration

v; + vy < L

The first order upwind discretization combined with Forward Euler time
integration is often called the donor cell algorithm. This algorithm (as well
as the first-order upwind discretization together with high-order time inte-
gration) is not considered for application in the smog model, because it has
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low accuracy and introduces an unacceptable amount of numerical diffusion.
Yet it is relevant, because it is free of under- and overshoot. Therefore, it
serves as a basis for the development of higher order flux-limited schemes.

4.3 The k-discretizations

Since the first-order upwind discretization leads to a very diffusive scheme,
we need a higher order approximation of the fluxes to obtain the desired ac-
curacy. In this section we consider the family of x-discretizations, introduced
by Van Leer for application to the nonlinear Euler equations (see [36] and the
references therein). The schemes are built from their one-space-dimensional
forms. Therefore, for most of the discussion it suffices to consider the constant
coefficient 1D problem. In the following subsection we will therefore describe
the 1D case including the limiting procedure. Next the 2D discretization
will be described and finally attention is paid to time integration aspects of
the semi-discrete system. Most of what follows in this section comes from
(28, 29].

4.3.1 1D formulation

We consider the 1D advection equation
¢t + (uc); = 0, (4.24)

where for the moment we assume u to be constant and positive. The fluxes
are defined as

F. s

i+ T A G+D (4.25)

where ¢, 1 denotes the concentrations at the cell boundaries. They are
approximated by

14
" BB ~ OO, (4.26)

1-&
CH_% = C; + ——4 (Ci - C,-_l) -+
The values k = 1,—1 and % correspond with the second-order central, the
second-order upwind and the third-order upwind biased discretization, re-
spectively. With this discretization we would get the following semi-discrete
system
d k—1 3k—5 3(k—1) k+1

EC,' = u TC,'_z— 1 Ci—1 + 1 C; — 7 Cin1 .(4.27)

It can easily be verified that no value for x exists for which all weights in the
stencil (4.27) are positive. Hence in this form the discretization is not positive
and will give rise to under- and overshoots. To get a positive discretization,
a limiting procedure must be developed. The first step in the procedure is to
rewrite (4.26) as

ci+i = Cj + ®(r;11)(C; — Cj), (4.28)
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where @ is the limiter function. Its argument ;. 1 denotes the upwind ratio
of consecutive solution gradients, defined as

Cjt1—C;j
s o LT (4.29)
* Ci=Cja

Ti+
If, for example, ®(r) is taken equal to K(r) = & + ir, the unlimited x= }-
discretization is recovered. However, ®(r) is supposed to work as an intelli-
gent switch that defines the high order scheme as often as possible and only
”limits” the high order flux if necessary to keep the discretization positive.
Note that for ®(r) = 0 the first order upwind discretization is obtained. Since
this discretization is positive we know that it is possible to obtain a positive
discretization using the form (4.28). The term ‘P(Tj+%)(Cj — Cj_1) can be
viewed as a high-order correction term.
We now derive sufficient conditions for positivity. Using (4.28) the scheme
reads

do. = 2 la+e %4l e, —c 4.30
Ei‘ﬂ(*‘#%)“n_% (1—1— 1)- ()

For positivity we require the bracketed term in (4.30) to be positive. In case
C; is a local minimum, the time derivative then becomes negative and in
case Cj; is a local maximum, the time derivative becomes positive. So here
already we see the equivalence between positivity and the absence of over-
and undershoot. We a priori assume ®(r) > 0 and ®(r) =0 for r < 0. If
r;,_1 <0 the discretization is positive because then ®, 1 = 0. For r,_1 >0
the limiter values ®; 1 and @, should satisfy ’ !

-1 <1 (4.31)

This leads to the restriction
®(r) < r

Further, we require ®(r) to be smaller than a constant p > 0. At this stage,
p is still arbitrary, but later on we will support the choice p = 1 because of
the time integration. Summarizing, we impose the following constraint on ®

0 < ®(r) < min(r, p). (4.32)

For the choice p = 1 the region (4.32) defines the total variation diminishing
(TVD) region given in Fig. 1a of Sweby [61]. Note that the condition ®(r) <r
implies positivity of the approximations c; +1 in (4.28) thus ensuring that the
flux Fj+,21 is of the same sign as Ujyy-

The limiter function ®(r) should yield the unlimited, higher-order -
discretization as often as possible, and therefore we define, following Koren

[34],
®(r) = max(0, min(K(r),r, un)), (4.33)
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where

1-« 1+«
4 + 4
represents the original k-discretization. In [28] we showed experimentally
that the choices kK = —1 and & = 1 lead to too diffusive results. As in [29, 28]
we therefore only consider the choice k = %

The above analysis goes in exactly the same way for constant u < 0,
leading to a similar result for the limiter function ®. For completeness we

give the flux expression

K(r) =

U 1
Fiyy = 5 (Cin+ q’(@)(cm = Ciy2)). (4.34)

The definition of the limiter function then remains unchanged.

4.3.2 2D formulation

The 1D schemes are easily extended to the multi-dimensional case. The
fluxes in each coordinate direction are approximated according to their 1D
definition. In 2D this leads to the semi-discrete system (4.9) that is positive.
For constant u and v this follows directly from the 1D definition of the fluxes.
In 2D, however, we have to deal with spatially varying velocities, including
the possibility of a change of sign in u or v within one grid cell. In each
direction there are now four possible situations within a grid cell. Therefore,
we consider again the 1D problem but now with non-constant » = u(z) and
examine the four situations on positivity.

Suppose C; is zero and both the left and right cell boundary of (2; are
outflow boundaries. Then both fluxes will be zero, either because the solution
ratios are negative or because the solution in neighboring cells is zero as well.
If both boundaries are inflow boundaries, the incoming fluxes are nonnegative
by definition and thus dC;;/dt > 0. Remains the case that both velocities
have the same sign. Suppose they are positive. Because ®; 5= 0, we then
obtain

dC’ Uil 1 ‘I’i-§
at "t Az | g

Ci_1.

We see that the condition 0 < &(r) < r forr > 0 and &(r) =0 forr <0
is sufficient for positivity. If both velocities are negative, the same result
is obtained. The conclusion is that the 2D discretization for spatially vary-
ing velocities is positive, since the individual 1D contributions to the time
derivative are positive.

To prove the equivalence between positivity and the absence of under- and
overshoot, we apply the transformation (4.20) to the semi-discrete system.
The solution ratios are invariant under the transformation. We therefore get,
similar as for the upwind discretization,
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d d

Et'Wij = aEC,-- - ﬂD,’j. (4.35)
Since we assumed D;; to be zero, the above expression implies the equiva-
lence.

4.3.3 Time integration aspects
Preliminaries

In this section we shall discuss which explicit Runge-Kutta (RK) method can
be used efficiently for the semi-discrete system (4.9) with the fluxes defined
in Section 4.3.1.

The main criteria for the selection of a time integration method are ac-
curacy and positivity: for reasonable Courant numbers the temporal error
should not influence the total error too much and the solutions should remain
nonnegative. Note that positivity together with mass conservation implies
stability of the time integration, so stability need not explicitly be discussed.
Unfortunately, numerical time integration may lead to negative solution val-
ues. Therefore conditions will be given under which the time integration
together with the spatial discretization remains nonnegative. First we intro-
duce some notation. The semi-discrete system is written as

206) = ot,C)

where C (without subscripts) denotes the vector of concentrations on the grid.
The function g is vector valued. Consecutive approximations C™ =~ C(t,) at
time levels t, = tg + n7, n = 1,2, - are found by computing in each step
internal vectors Y; and their function values G; = g(t, + 77:,Y;) according
to

i—1
;=C"+71Y a;Gj, i=12,..,s, (4.36)
§=1
followed by
crtl=Cr+71y biGi. (4.37)

i=1

The method is thus determined by the real coefficients a;j,b;,7; and the
number of stages s. It can be compactly represented by the array

n| A
bT

with lower triangular matrix A = (a;j) and with b = (b;), n = (1;). In this
section, we consider the following methods, represented below in Table 4.1
by their arrays. All methods in Table 4.1 have order p=s. The two 2-stage
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0 0
1/2 | 1/2 1|1
0 1 1/2 1/2
RK2a RK2b
0 0
1/31/3 1 1
2/3| 0 2/3 1/2|1/4 1/4
|1/4 0 3/4 | 1/6 1/6 2/3
RK3a RK3b
0
1/2 | 1/2
1/2| 0 1/2

10 o0 1
[1/6 1/3 1/3 1/6

RK4

Table 4.1: Arrays of the Runge-Kutta methods considered in this section.

methods are identical for linear problems. The same holds for the two 3-
stage methods. Differences in the results are therefore caused by nonlinear
phenomena. Note that the semi-discrete system obtained with limiting is
highly nonlinear.

Experimental stability bounds

We find experimentally that for the unlimited fluzes, for which the semi-
discrete system is linear, we have stability in 1D for Courant numbers

v < 0.87 for RK2a,b, v <1.62 for RK3a,b, v < 1.74 for RK4.
For the limited flures the stability bounds are found to be approximately
v <1 for RK2a,b, v <1.25 for RK3a,b, v < 1.4 for RK4.

The values for the limited scheme are only approximately correct since the
limited schemes show no very clear-cut transition from small errors to over-
flow. For the limited fluxes the experimental stability bounds must be greater
than or at least equal to the bounds for positivity, since positivity together
with mass conservation (which can be shown to be the case for the present
discretizations and Runge-Kutta time integration methods considered here,)
implies boundedness of the solution.
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Theoretical bounds for positivity

We will now discuss some linear and nonlinear theoretical results on positivity.
First we consider constant velocities and then generalize to spatially varying
velocities. These results will be compared with experimental results.

For constant velocities, it suffices to consider the 1D problem with u > 0.
The result in 2D then easily follows. In 1D the semi-discrete system can be
written as

d
ECI' = ’)’,‘(C)(C,'_l —C,') (4.38)
with
Q) = —(1+8 2i-y 4.39
WO = g1+ 2y~ D) (439)

It is easily verified that the condition (4.33) implies
u
Az
Applying the Forward Euler method (RK1) to the system (4.38) gives

0 < %(C) £ —(1+n). (4.40)

crtl = CP +Tu(CM)(CE, - CF)

and from (4.40) it follows directly that positivity is guaranteed under the
condition

<y = ! 4.41

vEm=1 . (4.41)
Here the parameter p comes into play: even though the semi-discrete system
is positive independent of the value of > 0, the positivity condition for the
fully discrete system depends on p. The larger we choose p, the more severe
the restriction on the Courant number for RK1. This will also prove to hold
for the other RK methods in Table 4.1. For these methods theoretical bounds
that guarantee positivity can be obtained by following the approach of Shu
and Osher [54, 55] on diminution of total variation (TVD). In this approach
all stages of the Runge-Kutta method are written as convex combinations of
Forward Euler type steps. Introducing

1—1
ai; 20, Y aiy=1, fori=2,..,s+1, (4.42)
i=1

the method can be written as

i—1
=3 oyt +T%Gj), 1=2,3,..,5+1, (4.43)
1

i=1

with Y7 = C™, C™*1 =Y,,; and the coefficients
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i—-1 .
Bij = aij — Z QikQkj, Qsi1,j i= bj. (4.44)
k=j+1

If all B;; > 0, it can be shown, just as for Euler’s method, that we have
positivity for Courant numbers

< ; ;18

VM giden @i/ Pj

Here vy is the threshold value for Euler’s method, and a;;/8;; = +0oc in case
Bij = 0. The result easily follows if we require all Forward Euler steps in
(4.43) to be positive. The step sizes are equal to 7/3;;/c;; and each step is
positive if v < vga;;/Bij. The minimum value of aij/Bij thus determines
the maximum allowable Courant number for positivity. Examining the RK-
methods in Table 4.1 leads to the following Courant restrictions

1
. m for RK1, RK2b, RK3b, (4.45)

0 for RK2a, RK3a, RK4.

The above result on "nonlinear positivity” is based on worst-case assump-
tions for all stages. If we assume that ;(C) in (4.38) remains almost the same
over the stages, the situation will probably be described more accurately by
a linear theory. Therefore, consider the system with ”frozen coefficients”

d u

7Ci=%(Cia-C), 0<%< 7 (1+n), (4.46)
where v; = 7i(C(ty)) for t, <t < tn41. On this system we can apply the
linear theory of Bolley and Crouzeix [8]. From their Theorem 2 it can be
deduced that we will have positivity for (4.46) under the condition v < v/
where v is the threshold for Euler’s method and £ is the largest nonnegative
number such that the stability function and all its derivatives are nonnegative
on the interval [—£,0]. In [35], Theorem 2.2, it was shown that { = 1 for any
method having order p = s. Hence for all methods considered in this section
we get the same condition for ”linear positivity”, namely

v < L for all methods in Table 4.1. (4.47)
1+p
The nonlinear results for RK2b, RK3b are thus optimal.
For 2D problems theoretical bounds for constant velocities can be ob-
tained in a similar way. If u,v > 0, for example, the semi-discrete system
can be written as

d
EECij = 743;(C)(Ci-1,; — Cij) + 8:;(C)(Ci, j-1 — Cij), (4.48)

and the same conditions (4.45) and (4.47) as in 1D are obtained if we define

v=r(H+ 1), (4.49)
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Bounds for non-constant velocities

So far, we obtained theoretical bounds for constant velocities. We now gen-
eralize the result to non-constant velocities. Since the results on nonlinear
positivity directly follow from positivity of RK1, we only need to examine
RK1 on positivity. Again we only consider the 1D situation

CrM! = CF + 7(Fi_y — Fiy1) (4.50)

First we consider the situation that no change of sign in u occurs within §2;;.
Suppose u > 0 in ;;. Recall that TFJ-+% is then given by

TFyy = v (O] + i3 (€1 - CF).

After some manipulations we obtain

crt! = (1-TDF)Cr + Vigr @iy +vi 1 (1- Tt—,) (Ci—1 — C3),
i—&
’ (4.51)
where
ui+1 — 'U.,i_]._
DF = —t2 73
: Az

The term D? is just a discretization of the derivative of v with respect to z
in the cell center. If we assume that we get the derivative of v with respect
to y from the fluxes in y direction, the sum of both is equal to D;;, which we
assumed to be zero. Therefore we act as if D? is not present and concentrate
on the bracketed term in (4.51). For positive weights of C;_; and C; we
must have that this term is nonnegative and bounded by 1. Nonnegativity
follows directly from ®(r) > 0 and 0 < &(r)/r < 1. Since also ®(r) < u the
bracketed term is bounded by Vit + vt Requiring this bound to be at
most one, we arrive at

1

Vixp < iTh

For negative velocities a similar result is obtained leading to the same condi-
tion on v. Now we consider the case of outflow over the two cell boundaries.
It turns out that CP'*' is an average of C*, CI, and C},. The coeffi-
cients for the latter two are positive. The coefficient for C* is given by
1= V,-_%Qi_% - Vi+%(bi+% which is positive if

1
Vi:l: % S '2"11
This result seems somewhat strange, because the upper bound goes to infinity
as pu approaches zero. Recall that for u=0 we recover the first order upwind

discretization. However, the result is partly due to explicit use of the fact
that D;;=0. It is therefore impossible that all four boundaries are outflow
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boundaries and the Courant restriction in this case will come from the fluxes
in y-direction.

The last situation we have to deal with is inflow over both cell boundaries.
Since both fluxes give a positive contribution to the time derivative, we would
expect no restriction on the Courant number from this case. This is not true,
because we explicitly subtract 7D¥ when considering (4.50). The expression
then becomes

2

crtl = CF + vy

[——q""*(”“) - 1] (€r -0

2 rl’——%
-1
Qi_%(ri+g‘) (i n
+ Vg1 'T—l (C} —CLy).
i+3

Since 0 < ®(r)/r < 1, the weights for C}* | and C7,, are nonnegative. The
weight for C7* is at least equal to 1 —v;_1 — ;1 so the resulting restriction
is

Vigy S 5

It might be that this last result is somewhat unrealistic. This is however not
important if we take p > 1 since then the other restrictions are more severe
than the present one. All conditions are equivalent if we take pu = 1.

Experimental bounds on positivity

Experimental results in 1D and 2D in [29, 28] give the experimental bounds
for positivity as summarized in Table 4.2. The experiments confirm the

RK2a RK2b RK3a RK3b RK4
1D 1 1 0.79 0.79 137
2D 0.66 0.67 0.86 0.78 <0.1

Table 4.2: Experimental v-values for positivity with p=1.

theoretical results in the sense that all experimental bounds are larger than
the corresponding theoretical ones. It is interesting to see that the nonlinear
theory is too pessimistic for RK2a and RK3a since this theory predicted
zero bounds for these methods. The same holds for RK4, but much too our
surprise this method failed to be positive in 2D, although the minima were
small in absolute value.

4.3.4 Discussion of the x-limiter

The limiting procedure as applied in the x-schemes is, in our opinion, not
optimal. In the first place because it is a one-dimensional limiter. All coordi-
nate directions are discretized independently which may cause 'more limiting’
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than really necessary. In the second place, even in one space dimension the
limiter starts from worst-case assumptions. To make this point clear, con-
sider the 1D discretization (4.30) with » > 0. Still assuming ®(r) > 0, the
bracketed term in (4.30) is positive if

B0 < I+l (4.52)

2
Hence ®; 1 and @, 1 are coupled. In the derivation of the limiter, however,
we took the worst-case for @, 1 (which decouples both ®s) to arrive at
®(r) < r. This shows why the limiter is not optimal. The values of ® can
sometimes be chosen larger than the ones used by the present limiter. For
the present 1D problem it is very simple to improve the limiting procedure
by iteration on @ using the relation (4.52). Numerical experiments show
that this may lead to significant improvement of the solution. Note that this
modification has no consequences for the positivity bounds since positivity
results have been derived using 0 < ®(r) < p which is still valid. However, we
do not propose a modification of the limiter along the lines described above
because it becomes much more complex for 2D application. In that case we
have variable velocities in the 1D discretizations with possibly different sign at
two neighboring cell interfaces, so we then have to take too many possibilities
into account. Moreover, the scheme would become more expensive due to
the iteration on the ®s. Instead, we will consider a more general limiting
procedure, Fluz Corrected Transport, as described in the next section. This
procedure is multi-dimensional and applicable to arbitrary flux expressions.
The latter is an advantage over the x-schemes, since we can easily include
higher-order spatial discretizations.

4.4 Flux Corrected Transport

Flux corrected transport (FCT) is not so much an advection scheme as a
limiting procedure. It has originally been developed by Boris and Book [10,
9, 11] and has been put in a generalized format by Zalesak [74]. The principle
of FCT is very simple and it can be applied to arbitrary flux approximations.
In the remainder of this section the FCT procedure will be explained in 1D.
The procedure in multi-D then follows in a straightforward manner.

4.4.1 FCT in 1D

The basic assumption of the FCT procedure is the existence of low order
fluxes Ff; , such that the time-advanced solution C’i"Jrl with these fluxes
2

Ci*l = CF + 7(FLy - Fiy)

is positive, i.e. exhibits no under- and overshoot. From the previous subsec-
tions we know that such schemes exist. The fluxes F'Z need not really be of
low order, but usually low order fluxes are taken, e.g. defined by the donor
cell algorithm, because their computation is cheap.
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Suppose that we also have computed high-order flux approximations Fi’i "

with the associated scheme
Ml = CF & #(F, —F y)

that is not positive. In order to make the scheme positive, FCT applies the
following steps:

1. Define the so-called anti-diffusive fluz

A"_*_é_ = T( F|,+ 1)
2. Introduce the parameter 7; w3 and assume that the flux to be applied
is given by

— L
TE+12. = TFH'% + "}’,;_'_%AH_.L

with 0 <, TR 1. In this way the flux will be a positive combination of
a low-order approxxmatnon and a high-order approximation. The ideal
situation is ; +%_1 because then the high order scheme is applied. So
the procedure aims at choosing 7;, 1 as close as possible to 1.

3. Consider the total inflow in cell 7 caused by A given by the quantity
P;* and the maximum allowable inflow given by Qt
PF = max(0, A;_1) — min(0,4;,1),

1

QF = or*=-G;

Here, C™®* represents the maximum value for Ci"H. Because for phys-
ical reasons the solution is supposed to be free of overshoot, C"** may
be defined as the maximum over some solution values close to cell <.
For 1D problems one may for example define

mazx __ n n+1
Ci = max(C{,,C ¢+1,C )-

1 ’

The low order time-advanced solution C'"+ is present because, depend-
ing on the definition of the low order ﬂuxes C’"+1 may be larger than
the other three values. Including C"+1 guarantees positive Q+ and R}.

The ratio R;-" between the quantities Qj’ and Pi+ gives the maximum
allowable inflow from A

R} = min(1,

4. Consider in the same way the total outflow from cell 7 due to A, resulting
into the quantities C™", P, Q; and R; .
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5. Realizing that outflow from cell ¢ is inflow in cell ¢ + 1 and vice versa,
we can define the values of 7. It is easy to see that the choice

. mm(R:_l,R,_) A,’+% >0,
Yt min(R},R,) Ay <0,

leads to positive approximations C?‘H if we finally put
1 An
ot = Ooft 4 Yiez A — Tir1 i

The above procedure is not optimal: it is possible that some values of ~
could have been taken larger. This is because the total outflow from a cell
is considered separately from the inflow. In order to achieve higher values of
7, the FCT procedure may be repeated a few times. This can be done by
replacing the last step by

~ An+1

ettt = ot + Vit Ai 3 — Yz Airl
and by redefining A according to

Ay = (T=-7ip1)Ai -

After some iterations C’Z’H is accepted as the final solution and copied into
optt,

4.4.2 FCT in 2D

Extension of the FCT procedure as described above to 2D (and multi-D) is
straightforward. For the computation of PJ and P;; (now all parameters
involved get a double index) four values of A are considered instead of only
two. For each flux, either in z-direction or in y-direction, a parameter 7y is

necessary, so we now have values =, 1 and v, ;4 1

4.4.3 Application to MoL-schemes

In [74] a leapfrog scheme is used to integrate the semi-discrete system in time.
For integration from ¢, to t,4+; = t, + 7 this scheme requires the solution
at t, and t,_; = t, — 7. Apart from the fact that this is only second-order
accurate in time, the solution at t,_; is not always available in practical
applications. In the smog model, operator splitting is applied and therefore
methods must be used that only need the initial values at the start of the
integration interval, i.e. at time t,. Since for advection on the base grid
only one time step equal to the overall time step of the operator splitting
is necessary, we concentrate on time integration with Runge-Kutta methods.
Suppose we have a high order spatial discretization and we integrate with one
of the RK methods from Section (4.3.3), we have to derive one flux expression
from the final result. This turns out to be very easy. For ease of presentation,
we consider once more the 1D case and we observe that for RK methods the
final approximation is written as
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s
+1 _ k k
Crtt = € + Ty bu(FEy — Fhy)
k=1
where the upper index k of the fluxes F' corresponds to the flux approximation
used in the k-th stage. From this expression it follows that the flux over the
cell boundaries are in fact approximated by

which is the desired flux approximation for the FCT procedure. In contrast
to the application of RK methods for the limited k-discretizations, all RK
methods lead to positive schemes when FCT is applied. The procedure has
only to be applied once per time step whereas the limiting procedure in the
k-scheme has to be done in each stage.

4.4.4 Application in spherical coordinates

The procedure is easily modified for application in spherical coordinates. We
just compute the fluxes and the anti-diffusive fluxes as if the factor cosé in

(4.4) is not present. The ratios R;rj and R;; are then computed according to

R;H ~ = min(1,
The desired result now follows immediately.

4.4.5 Discussion of FCT

The FCT algorithm is a very flexible one, because it can be applied to any
flux expression. Especially for MoL-schemes this seems to be attractive, since
limiting procedures for such schemes are usually dependent on the discretiza-
tion. Another advantage of FCT over e.g. the x-limiter is its multi-D nature.
Only inflow and outflow are decoupled. The coupling may be restored by a
simple iteration procedure. In Section 4.6 results of a numerical comparison
is presented between schemes with flux-limiting and schemes using FCT.

4.5 Making wind fields divergence-free

4.5.1 Preliminaries

In this section we describe how in the model wind fields are made divergence-
free. This is achieved by following the procedure proposed in [18]. We de-
scribe here the procedure in Cartesian coordinates, but - as pointed out in
Section 4.1.1 - the same procedure can be applied for spherical coordinates
without modification, provided that the model domain does not contain a
pole and the cosine of the latitude does not become too small. Due to in-
troduction of the shifted pole coordinates, the cosine of the latitude on our
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domain has a smallest value of approximately 0.92 at the most Southern edge

of the domain, i.e. at —23.1°.
In nature wind fields are divergence free. Recall that divergence-freeness

of a wind field (u,v) implies

Ou v

oz + oy
If a wind field satisfies the above condition, the exact solution of the advection
equation exhibits no under- and overshoots. For several numerical advection
schemes it can be proved that the numerical solutions do not exhibit under-
and/or overshoot, provided that a numerical equivalent of (4.53) holds. In
this section we consider as numerical equivalent for (4.53) the divergence D;;
in grid cell Q;;

= 0. (4.53)

Uitl,j — Ui-1,j Vij+1 — Vij—1

2Azx + 2Ay ’ (4.54)
assuming that we are given values of (u,v) in the cell centers. For ease of
presentation, the procedure is explained on a rectangular base grid. The
procedure can be straightforwardly implemented on grid structures as cre-
ated by the refinement algorithm from Chapter 3. In the description of the
numerical advection schemes in this chapter, it has been shown if and when
this numerical equivalent prevents under- and overshoots.

4.5.2 Necessity of the procedure

The wind fields in the model generally do not satisfy D;; = 0. Even worse,
this relation is often so heavily violated that the result of an advection step
is very inaccurate. This is illustrated by Figure 4.1 where a solution plot is
given after an integration step of half an hour using the wind field of 19 July
1989, 12:00 GMT, starting with a uniform concentration distribution. The
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Figure 4.1: Result of one advection step of half an hour with the divergent
input wind field for 19 July 12:00 GMT.

deviation of the uniform concentration is between -10% and 10% and it is
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clear that the resulting solution has no physical meaning. This is not due to
the advection scheme used, but due to the wind fields themselves. We cannot
explain the strange wave pattern in Figure 4.1. Maybe this pattern is due
to the fact that the ECMWF model is a spectral model. We suggest further
investigation on deriving wind fields for the smog model, based on knowledge
of the underlying ECMWF wind fields, because wind fields are one of the most
important input data for the smog model. In Chapter 7 where model results
will be compared with measurements, good wind data will prove to be of
great importance.

The wind fields used in the model are derived from ECMWF wind fields by
spatial bi-linear interpolation. The resolution of the ECMWF field is only 3° x
3° in standard lat-lon coordinates, which is much coarser than the resolution
used in our model. Apart from the fact that the original ECMWF fields do
not satisfy (4.54) to be zero, the interpolation procedure may cause even a
more severe violation of D;j = 0.

4.5.3 The procedure of Endlich

The first part of the procedure of Endlich [18] consists of iterative application
of the following two steps

1. Compute D;j fori=1,...,N,j=1,...,M.

2. Compute fori =1,...,N, j =1,..., M the "new” values of the wind

Uit1,5 = Uit1,5 — z A.’L‘D,‘j
Ui—1,; = Ui 1,'+—1A$D"
'U,',"+1 = 'U,"]'.}.l - TAyD,']'
Vi j—1 = V51 +_1AyDi'

If step 1 and 2 are applied for a single cell only, the numerical divergence
(4.54) would become zero. However, in general each value of u and v is mod-
ified more than once when looping over all grid cells, so iterative application
of step 1 and 2 is applied to reduce the divergence. The iteration is stopped
if the maximum value of D on the grid is smaller than some parameter €. In
the model we take € in the range [10~7,1076].

If the iterative part is terminated, all velocities (i.e. vu? + v?) are scaled
such that the average velocity of the original field is retained. This only
affects the maximum of D;; to a limited extent.

To see what happens if we apply the procedure to a given wind field, in
Fig. 4.2 a wind field together with the resulting divergence free wind field
is plotted. No structural changes are visible. It took 491 iterations with
e = 1077. The average difference between the individual wind velocities
was about 12% and the angle between the wind vectors before and after
application of the procedure was about 25.3° on average. We consider these
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Figure 4.2: Wind field of 19 July 1989, 12:00 GMT. Left: wind field de-
rived from ECMWF field by interpolation. Right: the same wind field made
divergence-free.

numbers to be (too) large, but it seems that making wind fields divergence-
free according to methods like the one described here, is the only choice. This
stresses the necessity of further investigation.

4.5.4 Connection with advection schemes

In the description of the advection schemes we required a different approxi-
mation for the divergence to be zero (i.e. < ¢) than the approximation (4.54)
from this section. For advection schemes we used

Uipd,j — Ui-1,5 Vij+i —Vij-1
+ ) 4.55
Az Ay ( )

It therefore depends on the definition of the velocities at the cell boundaries
whether (4.55) is small. In practice, linear interpolation is used to obtain
values for the wind velocities at the cell boundaries

D,'J' =

Uipyy = 5(Uits + i),
1
Vijry = (g +vig).

Substituting this choice into (4.55) we reobtain expression (4.54).

4.6 Numerical experiments

In this section a numerical comparison is given for the MoL scheme from
this chapter with flux limiting and FCT to prevent under- and overshoot.
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Also the direct scheme from [31, 30] is considered. The methods are tested
in the same way as they would be applied in the smog model. Hence we
present results for advection in spherical coordinates, on the model domain
described in Chapter 2 and use the same base grid. Hence, we have a N x M
grid, with N = 52 and M = 55. For this purpose, two model problems
have been designed. For both problems, as initial solution block profiles are
taken. Profile 1 consists of 2 x 2 grid cells, profile 2 of 4 x 4 grid cells and
profile 4 of 8 x 8 grid cells with height 1, relative to a background value of
1. They are always located such that, with exact advection, the (possibly
deformed) profiles stay within the domain. The fluxes at inflow boundaries
are then simply given by the velocity normal to the cell boundary times the
background concentration.

Problem I: Molenkamp test
In spherical coordinates the rotational wind field is given by (see e.g. [72])

u = U(cosBcos@ + sinfBsinfcos¢),

v = —U(sinfBsin @),
where S is the angle between the polar axis and the axis of the rotation. U
is a scaling factor. For U = 1 the period of one rotation is 277 seconds, 7
being the radius of the earth in meters. For testing purposes this wind field
has the advantage over its Cartesian twin that u and v are not constant in ¢-
resp. f-direction. In order to enable a rotation within the model domain, 3
in (4.56) is taken approximately 82°. To get the center of the rotation in the
middle of the domain, » and v are evaluated in (¢'>, 0) with é = ¢—6.05°. The
2 x 2 block profile is obtained by assigning the value 2 to the concentration in
the cells ;;, i = 25,..,28 and j = 42, ..,45. The larger block profiles have the
same center as the 2 x 2 profile. The time step is taken such that 1 rotation
takes 500 time steps.

Problem II: Wind field from database

Since we have to select one or more possible schemes for application in the
model, we also perform some tests with wind fields from the database that is
used by the model. Wind fields from the July 1989 and November/December
1989 episodes will be used (see Chapter 7). Instead of updating the wind
fields each hour, we just take a wind field and keep it constant during the
test. The following wind fields have been selected. The wind field selected is
the 1000mbar field from 22-07-1989, 12:00 GMT. A vector plot of this wind
field is given in Figure 4.2. For this problem we only considered the 8 x8 block
profile, which has been placed approximately in the middle of the domain.
The value 2 is assigned to the concentrations in the cells Q;;, i = 25, ..,28 and
j =24,..,31, and 1 to all other cells. The time step is taken half an hour, as
in the smog model and 192 time steps are taken, so that the total integration
interval is 4 days. Of course, in reality the wind field changes with time (in
the model it is updated each hour and then kept constant for an hour), but
for this test we kept the wind field constant during the two days. Then we
reverse all velocities and integrate for another 2 days, so that at the end of
the four days interval the initial profile should be restored.

(4.56)
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The methods considered and their application to the test problems are
listed below

1. The limited xk = % discretization described in Section 4.3. For the time
integration RK3b from Section 4.3.3 is taken.

2. The unlimited k = % discretization, also with RK3b time integration.
FCT is applied to prevent under- and overshoots.

3. The spatial discretization is the fourth-order central discretization.
Hence, the fluxes F; 1,; are approximated by

15 - 7(Ci,j + Cit1,5) — Ci—1,5 — Cita,5
i+l = UYitlj 12A4 )

and similarly for G, ;, 1 Again with RK3b time integration and FCT
to prevent under- and overshoot.

4. The limited dimensional split scheme described in [31, 30]. The so-
called Strang splitting [59, 40] is used. First a half time step is per-
formed in ¢-direction, then a full time step in 6-direction and finally
again a half time step in ¢-direction. This leads to second order accu-
racy in time, provided that the time steps in in ¢- and 6-direction are
also with at least second order accuracy in time. This is achieved by
the application of modified velocities at the cell boundaries, see [31, 30].

5. The same scheme as in 4, but with unlimited fluxes. FCT is used to
prevent under- and overshoot.

For the schemes that use FCT, the low order fluxes are defined by the donor
cell algorithm. The number of FCT iterations is taken equal to one. We note
that the split scheme can be applied in a more efficient way. The velocities
can be modified such that performing a full time step in both coordinate
direction already results into second-order accuracy in time. We do not apply
the scheme in this way because it is a complex modification on refined grids
and it involves extra storage of modified wind fields. Since an advection step
in ¢-direction is cheaper than an advection step in 6-direction, the present
way of application of the split scheme is less than 1.5 times more expensive
than in case of the more efficient way of application.

To measure errors and accuracy, the following quantities are considered,
similar as in [29)].
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max(CF) — max(CY;)

max(CY;) — min(CY;)
min(C}) — min(CY;)
HA S max(CY;) — min(CY;)’
ERRO 20 — Cs)
" N x M(max(CY;) — min(C}))’
— >_i; CF; cosb;

1

= —7 L
>_i; Cij cosb;

The supersripts 0 and n refer to the initial and final solution. Hence, a
negative value for EMAX means that the maximum value on the grid has de-
creased during the advection. If EMIN is negative, the scheme has produced
negative values. ERRO is the scaled L; error. The error in the total mass
is measured by ERRI1 (recall that the surface of a grid cell is proportional
to cos@;). Since all methods considered should be mass conserving, ERR1
can only be different from zero due to in/outflow. The tests are chosen such
that for the exact solution outflow and inflow are equal. Mass difference can
therefore only be caused by numerical diffusion over the domain boundary.
We assume small values of ERR1 (< 107!2) to be caused by rounding errors
and its value will be reprented by zero. To measure efficiency, CPU times
for all experiments are specified. These timings only serve as an indication
of the efficiency, because they are machine dependent. They have, however,
been carried out on a SGI workstation. The codes have been compiled with
the -O option.

4.6.1 Results for Problem I

In Table 4.3, the results for Problem I on the base grid are summarized. From
the CPU times we conclude that FCT is a relatively expensive procedure,
compared to flux limiting. This becomes clearest if we look at the results for
method 4 and 5. The difference in CPU time is about 7 seconds, whereas
the only difference is that method 4 uses the limited fluxes (and hence no
FCT) and method 5 the unlimited fluxes and applies FCT. Hence, the flux
computations in method 5 are somewhat cheaper than in method 4. The fact
that method 5 takes more CPU time is thus caused by the FCT procedure
including the additional first order upwind fluxes as basic scheme for the FCT.
The same observation can be made for method 1 compared with method 2
and 3. The difference in CPU time is not as large as the difference between
method 4 and 5 because the flux computations for method 1, 2 and 3 are
more expensive. Instead of two flux evalutions in ¢-direction and one in 6-
direction, in these methods 3 flux evaluations in both coordinate directions
are needed because of the RK3b time integration. Computing the unlimited
fluxes for method 2 and 3 thus saves more CPU time compared to the limited
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profile method EMAX EMIN ERRO ERR1 CPU

1 1 -0.92 0 6.60e-4 -7.22e-12 14.0

2 -0.89 0 3.43e-4 -8.21e-09 183

3 -0.83 0 6.4le-4 -6.60e-08 16.3

4 -0.89 -6.27e-4 6.47e-4  4.32e-04 9.0

5 -0.88 0 6.40e-4 -4.60e-07 16.9

2 1 -0.69 0 1.09e-3 -6.93e-11 14.0

2 -0.58 0 9.97e-4 -3.50e-09 18.3

3 -0.37 0 8.28¢e-4 -2.10e-07 16.3

4 -0.60 -6.27e-4 1.02e-3  4.30e-04 9.0

5 -0.56 0 9.84e-4 -4.81e-07 169

3 1 -0.14 0 1.32e-3 -1.07e-8 14.0

2 -0.01 0 1.26e-3 -1.33e-7 183

3 -0.03 0 1.07e-3 -1.43e-6 16.3

4 -0.02 -6.27e-4 1.26e-3 4.23e-4 9.0

5 -0.005 0 1.25e-3 1.39e-7 16.9

Table 4.3: Results for problem I on the base grid

method 1 2 3 4 5
fluxes 13.0 (88%) 5.9 (32%) 4.4 (25%) 8.5 (92%) 4.4 (25%)
FCT - 10.6 (57%) 10.6 (61%) - 12.0 (70%)

Table 4.4: CPU times for the flux computations and the FCT procedure for
the 5 schemes.

fluxes than for method 5. Since FCT is applied only once for method 2, 3 and
5, the increase in CPU time will therefore be smaller for method 2 and 3. This
is also illustrated by Table 4.4 where results of timings for the 5 methods are
summarized. For all methods the time needed for the flux computations have
been measured as well as the time needed for the FCT procedure, including
the computation of the first order upwind fluxes, is specified.

Applying FCT to the MoL scheme with unlimited 3rd order upwind fluxes
(method 2) gives smaller values for EMAX and ERRO than the MoL scheme
with 3rd order limited fluxes (method 1). Only ERRI1 is somewhat larger,
but still acceptable. Using fourth order central flux approximations and
FCT (method 3) instead of 3rd order, gives some improvement, only ERR1
becomes somewhat larger. Surprisingly, the CPU time for method 3 is lower
than for method 2. The only difference between these methods is the flux
computation. For the third-order discretizations, the direction of the wind
needs to be checked. This is implemented using an 'IF’-construction, which
is apparently responsible for the difference in CPU time.

Although the split scheme with limited fluxes (method 4) is the cheapest
method per time step, it produces small undershoots. Thus, if strict positivity
(i.e. prevention of under- and overshoots) is necessary, this method cannot
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be used. Also ERRI is a number of orders of magnitude larger than for
the other methods, but still acceptable. Applying the unlimited fluxes with
FCT (method 4) satisfies the positivity requirement, EMAX and ERRO are
comparable, but ERR1 has become much smaller. However, the CPU time
almost doubles and method 5 is now even more expensive than method 1 and
3.

To see the effect of grid refinement, we simply doubled the number of grid
cells in ¢- and #-direction. The surface of the block profiles have the same
size as for the tests on the base grid, and are located at the same place within
domain. Hence, the 2 x 2 profile on the base grid is identical to a 4 x 4 profile
on the refined grid etc. The time step has been halved for all methods so
that the local Courant number are the same as in the tests on the base grid.
The results for the refined grid are summarized in Table 4.5.

profile method EMAX EMIN ERRO ERR1 CPU
1 1 -0.72 0 3.76e-4 0 1113
2 -0.61 0 3.84e-4 8.07e-06 159.7

3 -0.43 0 4.0le-4 8.08e-08 143.3

4 -0.64 -1.56e-4 3.83e-4 2.94e-04 T1.1

5 -0.61 0 3.85e-4 8.07e-06 144.5

2 1 -0.19 0 9.09e-2 0 111.3
2 -0.04 0 9.26e-2 3.21e-5 159.7

3 -0.03 0 9.50e-2 3.21le-5 143.3

4 -0.06 -1.56e-4 9.23e-2 2.93e-4 71.1

5 -0.04 0 9.27e-2 3.2le-5 1445

3 1 -7.47e-5 0 1.95e-1 0 111.3
2 -1.22e-9 0 1.96e-1 1.26e-4 159.7

3 -5.03e-5 0 1.99%-1 1.26e-4 143.3

4 6.66e-4 -1.56e-4 1.96e-1 2.88e-4  T1.1

5 -6.10e-10 0 197e-1 1.26e-4 144.5

Table 4.5: Results for problem I with double resolution

Most of the conclusions for the the results on the base grid are still valid.
For profile 2 and 3, the values for EMAX become neglectable for all methods.
Also the values for ERRO are of comparable size for all methods. The same
holds for ERR1, except for method 1 which has a smaller value than the
other methods. This could already be concluded from Table 4.3.

4.6.2 Results for Problem I1

The results of the experiments for problem II are given by Table 4.6. The
results confirm the findings in the previous subsection for Problem I. Note
that the absolute values for EMIN for the methods is much larger. This
is because the numerical divergence, which is about 1073 for Problem I,
now is in the order of 10~8. For example, the undershoot of the donor cell
algorithm (the basic scheme for method 2, 3 and 5) that can be made in
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method EMAX EMIN ERRO ERR1 CPU

1 -0.27  -3.82e-5 1.57e-3  1.08e-05 5.3
-0.16  -6.03e-4 1.40e-3  9.55e-06 7.0
-0.06  -4.89e-4 1.15e-3  7.84e-06 6.2
-0.19  -1.50e-2 1.46e-3 -2.06e-04 3.5
-0.16  -6.03e-4 1.39e-3 -1.03e-05 6.4

UL W N

Table 4.6: Results for problem II

one step, is the numerical divergence times the time step size multiplied by
the concentration. The time step is 1800 seconds and the concentrations
are O(1), so the undershoot due to one time step can be of the order 107°.
The number of time steps is equal to 192. The undershoot can therefore be
in the order of 1073. Of course, the latter result is based on a worst case
assumption, that will probably not occur in practice. The values in Table
4.6 are of order 10~4, which is quite reasonable. Only the value of EMIN
for method 4 is two orders of magnitude larger. Since this number is already
1.5% of the background concentration and no bounds for the under- and
overshoots can be given for this method, we do not consider method 4 to be
suited for application in the smog model.

4.6.3 Conclusions
From the experiments reported above, the following conclusions are drawn

1. The split scheme described in [31, 30], is the most efficient method of
the methods considered. However, because it may produce substantial
undershoots (although positivity of the solutions is guaranteed) this
method is not suited for application in the smog model.

2. From the remaining methods, method 1 is the cheapest method, but
not the most accurate one. Method 3 seems the most accurate one and
is about 15% more expensive than method 1.

3. If grid refinement is applied, the differences in the results of the methods
are expected to become smaller. Since FCT is a relatively expensive
procedure, that is expected to become even more expensive if it is
implemented on refined structures, we chose to implement method 1 in
the smog model.



Chapter 5

Chemical Solution Methods

5.1 Introduction

Atmospheric models are computationally very expensive. Usually the com-
putational work is dominated by the numerical treatment of the systems of
ordinary differential equations (ODEs) describing the chemical transforma-
tions. In large scale models sometimes 80% or more of the total computation
time is spent on solving these ODEs. One reason for this is that these sys-
tems are stiff due to the simultaneous presence of slow and very fast reacting
species. Another reason is that, in every time step, the solution of the chem-
ical equations is required at all grid cells. This explains the need for fast
and efficient special purpose solvers. Fortunately, the accuracy level is quite
modest, say at most 1%. In atmospheric models a higher accuracy is consid-
ered to be redundant because of various other uncertainties about physical
parameters and input data. Therefore it suffices to solve the chemistry at a
low accuracy only. In this chapter some special purpose solvers are described
and examined for use in our smog prediction model. Also a comparison is
provided between these special purpose solvers and the state-of-the-art code
VODE from the numerical stiff ODE field. It will be shown that the special
purpose solvers do outperform VODE for the present application. Hence, the
emphasis is on special purpose solvers which satisfy the accuracy requirement
of 1% and are very fast as well. Such methods exploit the special form of the
chemical kinetics system

¥(t) = f(t,y) = P(t,y(t)) — L(t,y(1)y(?), (5.1)

with given initial vector y(0). P is a k-vector specifying the production terms
(possibly including source terms) and L a k x k diagonal matrix defining the
loss rates (possibly including sink terms), k being the number of species in
the system. By definition P and L are nonnegative for all ¢ and nonnegative
y. In the remainder of this chapter we will often use the autonomous form
for the functions P, L, f etc. and omit time as argument.

In this chapter we will consider two special purpose solvers, including some
possible variants. The first solver is TWOSTEP, developed by Verwer [65, 70].
The second solver is based on the Quasi Steady State Approximation (QSSA)
approach. Both solvers will be compared to the state-of-the-art solver VODE
[12, 16]. We exploited the sparsity of the Jacobian within VODE by replacing
its linear algebra routines by appropriate sparse matrix routines.
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5.1.1 Mass conservation, positivity and stability

In the description and discussion of the solvers attention will be paid to
the (lack of) positivity and conservation of mass. As we will see, there is a
relation between the latter two and stability.

Positivity of the solution components is natural from the chemical point of
view and desirable for numerical reasons. Especially special purpose solvers
use the nonnegativity of L and negative components of L may cause stability
problems.

Especially for long range transport models it is of importance that mass is
not systematically added to or deleted from the system. However, in our short
term prediction model some gain or loss of mass due to numerical integration
may be of less importance. In case the exact solution of system (5.1) is mass
conserving in the sense that one or more relations of the kind

wTy(t) = constant (5.2)

hold, with w a k-vector with constant weights, we would like the numerical
method to satisfy this relation as well. In case of constant emission terms
represented by the vector @, the equivalent of (5.2) is

wTy(t) = constant + wTQ -t, (5.3)

which should be satisfied by the numerical scheme as well. The special pur-
pose solvers do not generally satisfy the conservation conditions exactly. As
there exists a relationship between accuracy and conservation of mass, in
Section 5.5.1 a technique will be described that improves the mass conser-
vation and at the same time improves the accuracy. A simple example may
illustrate this relationship. Consider the simple chemical reaction system

k
A -5 B
’ 54
B £ 4, 54)
with the corresponding differential equations
0A
E - —klA + k2B, (5'5)
dB
-a—t = +kiA—keB, (56)

where A and B now denote the concentrations. A conservation relation holds
for the system: A(t)+ B(t) is constant. This is obvious from the reaction set
(5.4) and is mathematically reflected by the fact that

0A " 0B 0
ot at
For t — oo the solutions of A and B approach an equilibrium

MM:MHB@[M ul y

ki + ko’ ki + ko
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where Ay and By are the initial values for A and B, respectively. Clearly,
the equilibrium solution is directly dependent on the mass M in the system
defined by M=A + B. If, for example, a numerical scheme systematically
adds mass to the system, the exact equilibrium values for A and B will never
be reached. They will converge to a different steady state. It is clear that in
this example a close relationship exists between accuracy and conservation
of mass. Though the present example is very simple, it may be considered to
some extent representative for some reactions in ozone chemistry, see Section
2.3. The example makes clear why it may be worthwhile to pay special
attention to mass conservation. Moreover, mass conservation together with
positivity gives, for a large class of chemical kinetics problems, stability of
the numerical scheme. Consider the mass relation

wly(t+7) < wly(t). (5.7)

Often numerical methods that satisfy exact conservations relations (an ”="

instead of a ”<” in (5.7)) also satisfy the more general relation (5.7). In that
case, positivity of the solution vector implies boundedness of the numerical
solutions.

5.2 TWOSTEP

Recently, a special purpose solver has been developed by Verwer [65, 70].
Its description in this section is mainly based on [65, 70]. The solver is
called TWOSTEP because it is based on the two step second order Backward
Differentiation Formula (BDF). The general form of a BDF formula is given
by

yn+l = Y"+'y'rf(y"+1), T = tn+l "tn (58)

where Y™ is an history vector, depending on the solutions from previous
time steps and 7 is a scalar variable. The step size is denoted by 7. In case
variable step sizes are applied, Y™ and v also depend on previous step sizes.
In general purpose solvers like VODE the implicit relation defined by (5.8) is
usually solved by using the (modified) Newton method. TWOSTEP however
exploits the special form (5.1) of the chemical equations to rewrite (5.8) as

y"tt = F@y"t) = (I + ’y‘rL""’l)‘1 (Y" + 'y'rP"'H) ; (5.9)

to which Gauss-Seidel iteration is applied. Let y() denote the I-th iterate
vector for y™t!. Write the fixed-point form y = F(y) in the componentwise
form

Yi = E-(yl,...,y,-_l,y,',...,yk), Z=1,,k (510)
Given an initial vector y(%), we compute for [ = 0,1,...,k

ng'l) = F,-(ng'l), . .,yy_ﬁl),yf’), e ,yg)), t=1;..:. k. (5.11)
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The iteration process (5.11) is explicit since L is a diagonal matrix. Replacing
ysl) by yElH) in (5.11), would render the computation scalarly implicit. The
two forms are identical if the P; and L; are independent from y; for i =
1,...,k. In general this is not true. In the reaction mechanism used in the
model presented in this thesis, only one of the L; depends on y;.

Of course also Picard iteration may be applied, i.e.
y) = FyWY),

but numerical experiments have shown that Gauss-Seidel iteration is prefer-
able in all test cases, see also [65]. For that reason we only consider Gauss-
Seidel iteration in the numerical comparisons.

TWOSTEP applies the second-order BDF formula with variable step sizes
which means that the history vector Y™ depends on the solution vectors y™~!
and y™ and on the step size ratio ¢ = (tn, — tn—1)/(tn+1 — tn) according to

1
YY" = ——— [(c+ )%y —y"']. 5.12
<o (e 0=y (5.12)
For the second order formula, the parameter v is also depending on ¢ and is
given by

c+1

T= 515 (5.13)
From the definition of the history vector Y™ it is seen that positivity of the
solution values is not guaranteed. In fact all BDF methods with order higher
than one may produce negative values. Only the first order BDF method,
i.e. the Backward Euler method, guarantees nonnegative solution values.
Negative values may give rise to instabilities in the integration process, so
they have to be prevented. If during the Gauss-Seidel iteration a negative
solution value is encountered, this value is cut off to zero. As starting vector
y(o) for the iteration process we use the extrapolation

1
O =y + - (-, (5.14)

Negative components of the initial vector are set to zero. The choice (5.14)
ensures second order consistency, even if only one iteration is performed.

5.2.1 Conservation of mass
Suppose the exact solution of (5.1) satisfies

wly(t+7) = M, M constant.

It is then quite easy to prove that BDF methods are mass conserving, i.e.
wTy™*t! = M. To see this we write the general rth order BDF formula (5.8)
in the from

> Bnpr—iy™ T = rf(y"). (5.15)

=0
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Imposing the conservation relation yields, using wT f(y) = 0 for all y,
> Bapr—wTy™H T = 0. (5.16)
=0

If we suppose that all past solution vectors y"+!~% satisfy wTy"+!~* = M,
it follows from ), 3; = 0 that

wly™t! = M. (5.17)

Rosenbaum [50] proves that mass conservation not only holds for the exact
solution y™t! but also for the approximate solution obtained by any finite
number of (modified) Newton iterations, provided that the analytical Ja-
cobian is used. Under certain conditions this also holds if the Jacobian is
approximated (see appendix D). However, when applying functional itera-
tion according to (5.9)-(5.11), the approximate solution for y"*! no longer
satisfies the conservation relation. Only if the iteration process is continued
until convergence, conservation of mass is achieved.

Now suppose there is a constant emission vector @ and the exact solution
of (5.1) satisfies

wlyit+71) = wly™ + 7Q.

Conservation for the rth order BDF formula can then be proved in a similar
way as above. We then have w” f(y) = wTQ. Let the exact mass at time
tn4+1 be denoted by M™*!. Again we assume that the previous time steps
were mass conserving, i.e.

wly™1 = M™! — (tay) —tpp1—)wTQ, i=1,.... (5.18)
Imposing the conservation relation yields
T
IBn+1,wTyn+1 — _Zﬂn+l—szyn+1—i +'erQ,
=1
which can be rewritten as
,B""‘ley"“ - ﬁn+1 M+l +
T
—i 5.19
+ (Zﬂ"“ Htntr — tnp1-i) + T) wTQ (519}
i=1

using (5.16) and (5.18). The bracketed term in (5.19) is zero by definition.

This can be seen from the order conditions. The relation (5.19) now reduces

to
,wTyn+1 — Mn+l,

which completes the proof.
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5.2.2 The time stepping mechanism
In case variable step sizes are applied a time stepping mechanism is needed.
For the selection of the step size the local error indicator E™*1 is used,

2
c+1

En+1 — (cyn+1 o (1 + c)y" + yn—l) , (5'20)
which yields 72y"(t,) + O(7®) upon substitution of the exact solution. The
local error of the second order scheme is O(73) so the present error indicator
estimates the last Taylor term taken into account. Now consider the weighted
error norm

1Bl = max(BF /W), 5=1,.k, (5.21)

where W* = ATOL; + RTOL;y7 and ATOL; and RTOL; the absolute and rel-
ative error tolerance for component j. An integration step is accepted if
|IE"*!||lw < 1 and rejected otherwise. In both cases the new step size Tnew is

estimated by the common formula

Toew = max(0.5,min(2.0,—-9.8f))7'-
VIE™w

The choice of the minimum growth factor of 0.5 in (5.22) is somewhat arbi-
trary, whereas the maximum growth factor of 2.0 is somewhat smaller than
theoretically allowed. Stability results from [20] lead to

(5.22)

0 < 2% 2 1442 (5.23)

T

IA

The time step can further be restricted by a prescribed minimum and max-
imum value. In case of two successive rejections the integration process is
simply restarted at ¢, with initial value y™.

5.2.3 The first steps

To apply the second order BDF formula, two values from previous time steps
are needed. At the start of the integration only one is available, namely the
initial value. Therefore the first step of the solver is carried out by a one-step
formula. TWOSTEP performs a Backward Euler step (i.e. Y™ = yo and y=1
in (5.9)) to start the integration process. Also the initial step size cannot be
based on (5.22). Instead it is defined such that the first Taylor series term
7 f(yo) satisfies the accuracy requirement, according to

. i=1,...,k (5.24)
= 1n ey — cen . .
If](yo)l ) ] b )

After the initial time step the two-step scheme is applied. The first step with
the two-step scheme is performed with the same time step as the initial step.
After that the time stepping mechanism is activated.
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5.2.4 Variants

Following the same approach as in TWOSTEP, one may construct solvers based
on higher order BDF formulae. To see whether this could be advantageous, we
constructed 3STEP, based on the third order BDF formula. From the general
form of the BDF methods (5.8) it can be seen that increasing the order to
three only results in some extra overhead and bookkeeping. Evaluation of the
history vector Y™ then is somewhat more expensive, since it now consists of a
linear combination of three instead of two solution vectors from previous time
steps. Also extra storage of one solution vector is required. In case of variable
step sizes, the corresponding coefficients (including v) depend on two time
step ratios instead of one. This extra overhead has to be compensated for by
the higher order resulting in taking larger time steps than TWOSTEP. In case
of variable time steps, there is however a restriction that may restrain 3sTEP
from taking large time steps. The minimum and maximum growth factor
for the time step are less favorable than for TWOSTEP, although theoretical
bounds are not easily obtained. The higher the order r of the BDF method,
the more step size ratios are involved in the stability analysis. Theoretical
bounds for BDF methods with order » > 3 that ensure stability have been
found by Grigorieff [20]. For BDF3 these bounds are

0.836 < ¥ < 1.127. (5.25)
T

For order r > 3 these bounds are even less favorable. Fortunately, these
bounds are unrealistic since they include all possible step size variations.
Considering a constant step size ratio allows ratios between zero and 1.618,
see [20]. In our implementation we allow ratios between 0.5 and 1.6, similar
as for TWoSTEP. We did, however, apply a different way of computing the
error estimate. The error is taken to be the difference between the BDF3
solution and the ”virtual” BDF2 solution. This virtual solution is obtained by
substituting the right hand side function at the advanced time level obtained
by the BDF3 method into the BDF2 formula. This results into the expression

n+1

_ yn YBDF2 ;, n+1 n+1
YBDF2 — YBDF2 ( )

y —
YBDF3 BDF3 BDF3

Hence the error estimate is

E™! = yphks ~ YBbF2s
which is O(7®). The definition of the weighted error norm is identical to
(5.21). To obtain a new value for 7 we also apply (5.22) but instead of taking
the square root we now take the cube root of the weighted error norm.

The advantage of BDF methods over Runge-Kutta methods in general is
that only one nonlinear system has to be solved per time step. A Singly
Diagonally Implicit Runge-Kutta method of order 2 (SDIRK2) has already
to solve two nonlinear systems per time step. Hence, the computational
cost per time step for SDIRK2 is twice as much as for BDF2. An advantage of
Runge-Kutta methods in general is that they may increase and decrease their
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step size with an arbitrary factor. This property has to compensate the extra
computational cost per time step. To see whether this could be advantageous
we constructed an L-stable SDIRK2 method given by the following formulae

Y=yt A+ 10f(t +67,("),

yn+1 (1+\/§)<n+1 - \/Eyn + 7'9f(t,,+1,y"+1),

where 0=1— %\/5 Both stages can be solved using the Gauss-Seidel technique
in exactly the same way as for TWOSTEP. The number of iterations may
vary per stage. Some numerical experiments, however, revealed that a more
efficient method than TWOSTEP is not obtained this way.

5.3 QSSA methods

A very popular method to solve (5.1) is the class of the so-called QSSA (quasi
steady state approximation) methods, introduced by Hesstvedt, Hgv and
Isaksen in 1978, see [26, 27]. Although various variants exist, the underlying
formula is the same for all variants. If the P; and L; in (5.1) are constant,
this equation can be solved exactly,

yi(t + T) = e_.TLiy,'(t) + (I - C_TLi)LI-_IP,'. (526)
This suggests the associated integration scheme
gt = e hOyr 4 (1 - e THD) LI () Pi(G). (5.27)

where the argument 7 is still undefined. The argument is present because the
P; and L; are not really constant but solution dependent. Note that the QSsA
scheme is positive no matter how L(g) is evaluated as long as its argument
is nonnegative.

5.3.1 First-order QSSA methods

The classical QSSA method

The classical, first order QSSA method is obtained if we select §=y™ in (5.27),
ie.

gt = e TN yn (1 — e BN LI () Pi(y™). (5.28)

The method is fully explicit and that is what makes QSSA methods so at-
tractive. The first order result follows from a Taylor expansion of (5.28).
Substitution of the exact solution value y(t,) for y™ results into

n . . ef—z2—1
Y= y(tn) + i) +TT(-TL)i(), T(:)= 2. (5.29)
From the Taylor expansion (5.29) we see that first-order consistency only
holds for the non-stiff components for which 7 <« L' due to the fact that
T(2)=0(z) for z — 0. For the stiff components however we have T'(z) ~ 1,
so for these components a zero-order consistency holds. This provides an
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example of local order reduction, see [15], Chapter 4. "Of course, close to
an equilibrium this reduction may not be felt. However, if a component is
not close to equilibrium and yet 7 > L1, the QSSA scheme may introduce
the steady state too quickly. This indicates that the accuracy can be low
and unpredictable, to some extent, for large complicated chemical kinetics
problems containing widely different time scales.

It can easily be shown that the scheme is not mass conserving. Rewriting
(5.28) gives

I i ) A P V)
Imposing mass conservation yields
wT(I—e_TL(y"))L_l(y") = rwT,

which is not fulfilled in general. In fact, mass conservation is only satisfied
if the exponential e* is approximated by 1+ z. Substitution of this approxi-
mation results into the Forward Euler method, an inappropriate method to
solve stiff systems because of its severe stability restriction.

In the original paper by Hesstvedt [26] the integration formula (5.28)
is not used for all species. A simple Forward Euler step is performed by
replacing the exponential by 1 — 7L; if 7L; < 0.01 and formula (5.27) is
applied if 0.01 < 7L; < 10. If 7L; > 10 the exponential is replaced by zero
and the species is assumed to be in quasi steady-state, i.e.

Y: L
We note that these replacements of the exponential function are not essential.
They are just used for efficiency reasons. However, in our experience using
the exact exponential or the very accurate approximation (5.35) gives more
accuracy.

The implicit counterpart of the classical QSSA scheme is obtained by using
y=y™*!. Functional iteration is applied to approximate y™t1 starting with
the initial iterate y™. This solver is used in the EMEP model [57, 56], where the
following classification is made: for 7L < 0.01 the Forward Euler method is
applied and for 7L > 10 the exponential formula is replaced by zero, resulting
in the steady-state formula evaluated in y™. For all other components the
implicit formula is really used and some iterations are performed to obtain
the corresponding solution values. In [70] this scheme is tested against the
two-stage scheme proposed in [69]. The two-stage scheme is clearly superior
to the EMEP scheme, so the EMEP scheme is not considered further. The two-
stage scheme from [69] may be considered as a special case of the midpoint
QSSA scheme that will be described in Section 5.3.2.

nt1 _ D

5.3.2 Second-order QSSA methods

A midpoint scheme
If we choose ,1]=%(y" +y™*1) in (5.27), the method is implicit and of second
order. The solution of the implicit equation is then obtained iteratively. A
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straightforward Taylor expansion results into

T2
Y= ylta) + 1Y) + Sy (t) + TT(-TDf@),  (530)

where T'(z) is given by

2(1—e*)+ 2(1+€%)
z2(1+e?) )

From the definition of T'(z) we see that for small values of 7L we have

7T (—7L) is O(73) as it should. Unfortunately, similar as for the first-order

scheme from Section 5.3.1, for the stiff components order reduction occurs

due to the fact that then T'(z) ~ 1.

Second order may also be obtained by replacing P and L in (5.27) by P
and L defined by

T(z) = — (5.31)

P = LIPGM+ P (5.32)

~ 1
L = SIL™)+ L") (5.33)
Since no significant differences were observed, we only proceed with the sec-
ond order version of (5.27) with g]=%('y" + y™*1). Rewriting the scheme
(dropping the argument ) in the form

yn+] = yn + 2(I+ e—fL)—l(I _ e_TL)L—lf,
and imposing conservation of mass results into the condition
2wl (I +e ")y Y —e LT = 1wl

Again we see that the conservation condition is violated. The only approxi-
mation R(z) for e* that makes the second order scheme conservative is

24z
2—2z
The approximation (5.34) is recognized as the second order diagonal Padé
approximation which yields upon substitution the implicit midpoint rule.
Unfortunately, this approximation may give negative solutions for 7L > 2,
though the resulting scheme is A-stable. Using this approximation would
therefore be very inefficient.

Instead of the exact exponential a very accurate approximation R(z) may
be used for efficiency reasons only:

R(z) = (5.34)

_ 1, 1 6 -
R(z) = |1—z+ 5% et 0 ° . (5.35)
No significant differences were observed using this approximation instead of
the exact exponential, whereas using the approximation, when implemented
efficiently, saves approximately 20% computation time. Note that this ap-
proximation maintains the positivity of the solution.
The scheme with § = 3(y™ + y™*!) can be written in the efficient form
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§ = (U +eTHO)m 4 o1 - )L G)P(). (5.36)

This form (5.36) is completely in terms of § which is convenient for coding
the iteration process. As no significant differences were observed with Picard
iteration, we use Gauss-Seidel iteration to approximate §, similar as in TWO-
STEP (see below). The starting vector for the iteration process is obtained
by extrapolation using y"~! and y". Also the time stepping mechanism is
the same as for TWOSTEP.

The method of Young and Boris

The hybrid method of Young and Boris is a predictor-corrector algorithm
that also uses a classification of the species based on their loss rates and the
time step. If 7L; < 1 the following predictor-corrector pair is used

=yt 4 ), (5.37)
N (ORS ((Sa) P (5.38)

where ("1 denotes the predictor and y™*1! the corrector which is taken as the
final approximation. If 7L; > 1 the predictor ¢™*! is obtained by applying
(5.27) with §=y™ and the second order diagonal Padé approximation (5.34)
for the exponential. The corrector is obtained in the same way but with P
replaced by P according to (5.32) with ("*! instead of y™*!, and L replaced
by L defined as

i = % [L—l(yn) + L—I(Cn+1)] —1’ (539)
and not by (5.33). The different definition of L is not essential. Numerical
tests have shown quite similar results for (5.33) and (5.39).

Again we note that there is no need to make distinction between different
values of 7L; for other reasons than computational efficiency. If no distinction
is made for different values of 7L; and all components are integrated as if
7L; > 1, the scheme of Young and Boris is quite similar to the QSSA scheme
proposed by Verwer & Van Loon [69] in a comparative study of different QssA
schemes and some state-of-the-art solvers from the stiff ODE field. Apart
from a different definition of L, the only difference then is the choice of the
approximation of the exponential. Whereas Young and Boris use the second
order diagonal Padé approximation, in [69] the second order subdiagonal
approximation

R(z) = [1 +z+ %zz] - (5.40)

is used. This choice is preferred because it nicely mimics the damping for e™*

for z — oo and also guarantees nonnegativity. The second order diagonal ap-
proximation lacks these nice properties. Verwer & Van Loon [69] found that
the predictor-corrector scheme using (5.40) performs notably better than the
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scheme using (5.34). Note that the scheme defined by (5.36) becomes almost
identical to the predictor-corrector scheme if only two Picard iterations are
performed with y™ as starting vector for . The only difference is the def-
inition of P and L. As already mentioned, no significant differences were
observed due to the slightly different definitions of P and L.

Extrapolated QSSA
Several attempts have been made to improve the accuracy of QSSA methods
by extrapolation techniques. In [33] the classical first order scheme (5.28) is
extrapolated by Richardson extrapolation. To integrate from ¢, to t, + 7 a
full classical QSSA step with step size 7 is performed, resulting into the ap-
proximation y™*! and two steps are performed with halved step size resulting
into the approximation y"+1 As final approximation for y(t,+1) is taken
yn+1 — 2y121+1 y;1+1 (541)

Although three solution vectors have to be constructed, the production and
loss terms have only to be computed twice, since the initial values for the first
full and the first half step are the same. The same holds for the evaluation of
the exponential, since exp(—7L;) = [exp(—37L;)]?. Note that in the present
scheme no iteration is necessary, in contrast to the previously described sec-
ond order QSSA scheme. Extrapolated QSSA, however, may produce negative
values whereas the other QSSA methods are positive. Negative values are
simply put to zero, similar as in TWOSTEP.

The implementation of this method is based on a code written by A.

Sandu [51]. As local error indicator E™*! the difference between y"+1 and
yr*1 is used
EnHl — y:+1 yntl (5.42)
The weighted error norm is defined by
n+1 1y ErH! 2
1E™ = k ; ATOL; + RTOL,y"+1 ()

If || E"*1|y is larger than one and the time step was larger than the minimum
step size, the step is rejected, otherwise the step is accepted. The new step
size is computed according to

, 0.9]|E™||%:2
Trsi = max(O.lZS,mm(fac,H-E—'"I_'T”—'(lgg)), (5.44)

where fac = 1 if the previous step has been rejected, and fac = 8 otherwise.
The powers 0.2 and 0.35 are suggested by Gustafsson, see [24], pp. 32-35 and
the references cited therein.
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5.4 Other solvers

As a result of the current interest in atmospheric problems, a lot of effort
is put into developing fast and efficient special purpose solvers. Most of
these solvers are just variants on known principles. It is beyond the scope
of this work to discuss all these variants. An interesting possibility, worth
mentioning here, is perhaps the implicit-explicit solver presented in [60]. Like
in many QSSA methods, the solver in [60] uses the fact that not all species
are stiff. The species are divided into two groups: a group of slow species
and a group of fast species. The slow species are integrated using the second
order explicit Adams-Bashforth formula whereas the fast (stiff) species are
integrated with a fully implicit method. We think that this approach also
combines very well with TWOSTEP, because the BDF formula requires the
solution of the species at the advanced time level. The solution of the slow
species is explicit and hence directly available in the iteration process for
the fast species. However, for the present application we do not expect this
approach to result into a large gain in efficiency.

5.5 Improving the iteration process

For the implicit solvers, described in this chapter, some form of functional
iteration is applied to solve the resulting nonlinear system. It turns out that
the iteration process can sometimes be improved drastically by exploiting
special problem characteristics.

5.5.1 Lumping

In the chemistry literature, a popular approach is lumping [26, 27]. The
basic idea of lumping is to define a 'new’ species, being a linear combination
of two or more species from the system, that is easier to integrate than the
individual species it consists of (i.e. the values of P and L for this new
species are much smaller and there is a weaker dependence on the other
species). Each integration step the 'new’ species is integrated together with
all other species. At the end of the integration step, the 'new’ species is used
to re-evaluate one of its components. For our chemical model, specified in
Section 2.3, two such new, lumped species are considered: NO;=NO+NO,
and O,=NO3+03. This lumping of NO; and NO into NO, etc. underlies
the assumption that the first two reactions from the chemical mechanism are
in some sense dominant in the whole set of chemical transformations, because
if we only consider reaction 1 and 2, we have

d
N0 =0, 20, =0, (5.45)

dt
showing that for these two reactions NO, and O, are conserved. Conse-
quently, if the first two reactions are truly dominant in the whole system,
NO, and O, are expected to vary relatively slowly. This, in turn, implies
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that the integration of these quantities can be done accurately, so that cor-
recting one of the grouped species will make sense.

For both lumped species a differential equation can be specified in the
canonical form, i.e. with positive P and L. For NO, we get

d
aNoz = —k3-NOy-OH —2ky - (NO3)?- 03 + ki1 HNO3
= —k3-(NO, — NO)-OH — 2k4-NO;-0O3-(NO, — NO)

+ ke HNO3

= Pno, — Lno,NOxz,

where
Pyo, =k3-NO-OH + 2k4NO,-03-NO + kig- HNOs,

(5.46)
Lyo, =k3-OH + 2k4-NO2-03.

In the same way, a differential equation for O, can be derived. We then
arrive at the following production and loss terms:

Po, = Y aikitsVOC;-OH + k3-OH 03
+ 3ky - (NO2)® + ks(1—b2)NOy + kigHNOs,  (5.47)
Lo, = k3-OH + 3ky-NO3)? + ks(1—bo).

Emission terms can simply be added to the production terms, if necessary. In
case deposition is included in the chemistry, rewriting these terms will result
into a production term and a loss term. For example, if we have a deposition
velocity d for NOs, causing an extra term —d-N O in the differential equation
for NO,, we rewrite this as d(NO — NO,) and the production and loss terms
for NO, are adjusted according to

Pyo, = Pno, + d-NO, Lyo, = Lno, + d. (5.48)

In TWOSTEP and the QSSA schemes these species are computed at the
end of each iteration (or at the end of one time step for schemes that do not
use iteration), with P and L evaluated at the solution generated by the most
recent solution values and are then used to re-evaluate the largest component
in each lumped species. Hence, if NO; > NO, then NO; is recomputed from
NO,, by simply putting NO; = NO, — NO, otherwise NO is recomputed.
In the same way O3 or NO; is recalculated from O,.

For TWOSTEP the lumping is meant to improve the convergence of the
iteration process. In a box model test (Chapter 6) we will see that the
lumpings introduced here indeed improve the iteration process in such a way
that the true BDF solution is ’almost’ recovered. For implicit QSSA schemes,
the situation is entirely different. The lumping will not help the iteration
process converge. This is due to the fact that the underlying formula, in
contrast to the BDF methods, is not mass conserving. If the nonlinear system
is solved exactly, the lumping relation will not hold and vice versa. Yet, it
may be expected that lumping also improves the QSSA solution, because the
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order reduction becomes visible for large values of L. The lumping decreases
the maximum values of L in some sense.

For implicit methods based on mass conserving formulae which solve the
nonlinear system exactly (i.e. very accurately), the lumping ’trick’ is redun-
dant.

5.5.2 The EBI method

In [25] the Euler Backward Iterative method (EBI) is introduced. Like in
TWOSTEP an iterative procedure is applied to solve the nonlinear system.
To accelerate the convergence of the iterative process, explicit solutions are
applied for groups of species. A similar procedure is followed in [62] where
the approach is called Remote Coupling Algorithm (RCA). An advantage
of this procedure is that schemes can be constructed such that some of the
conservation relations are satisfied. For example, if in our chemical model
the nonlinear equations for NO, NO,;, NO3 and HNOj3 are solved keeping
the other species fixed, conservation for nitrogen is achieved. We have exam-
ined whether this approach could be useful for application in TWOSTEP and
3STEP, but some experiments showed that lumping is more effective. Both
approaches may be combined, but application of lumping after solving part
of the nonlinear equations did not result into better results than obtained
with lumping alone.

5.6 Linear analysis for TWOSTEP

From the descriptions of the solvers in this chapter we know that the two spe-
cial purpose solvers, TWOSTEP and QSSA, are not mass conserving in general.
For TWOSTEP this is due to the fact that only a few Gauss-Seidel iterations
are performed. If the iteration process is continued until convergence, the so-
lutions will be mass conserving. For schemes based on the QSSA formula this
is not true. In this section some analysis for linear chemistry is presented for
BDF methods with Gauss-Seidel iteration for solving the nonlinear equations.
We thus consider linear systems of the form

y(t) = Ay(t) + Q, A€ R, (5.49)

where Q € R¥ specifies the emissions. By definition, the matrix A has the
following property

Ai; 20, t#7,

Ay <0, i=j (5:50)

We suppose that one or more mass conservation relations hold of the form
wly(t) = wly(te) + (t—to)wTQ with wTA=0.

The BDF solution for linear chemistry is given by the matrix-vector equation

(I-~y1Ay™! = Y™ + v71Q (5.51)
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with formal solution

y"t = (I—y1A)7H(Y™ +97Q). (5.52)
From wT A = 0 it follows that

wl (I —y74)7! = wT. (5.53)

This result will be useful in the analysis. Only one general result will be
derived. Most of the analysis is restricted to the following linear reaction
system

B —/ Y2
Y2 L, Y1 (5.54)
k3

Y — Y3
with a constant source vector Q=[Q1, @2,0]7. The matrix A is given by

—(k1+k3) k2 O
4 = ki k0 |. (5.55)
ks 00

The k; may take arbitrary nonnegative values but here we assume k;, ko >
k3. This assumption seems reasonable because it corresponds to situations
which often occur in practical applications, although then the equations are
nonlinear. We can think of system (5.54) as a linearized NO, chemistry with,
for example y; = NOs, y2 = NO and y3 = NOj3. For this system we have
the following conservation relation

3 3
S owit+r) = Y wilt) + 7(Q1+Q2) (5.56)
i=1 t=1

Instead of computing the solution of (5.51) by inverting the matrix M =
I — y7A, Gauss-Seidel iteration is applied to approximately solve the linear
equation (5.51). In the linear case, the Gauss-Seidel iteration involves split-
ting the matrix M into M = M; — M,, with M; the lower triangular part
of M (including the diagonal). Let ¢() denote the I-th iterate for y™*+!. The
iteration scheme for y"*! then reads

M) = Y™ 4 4rQ + MY,
or
¢CHD = (M) Y™ 4 47Q) + (M) Mu¢O. (5.57)

Let the amplification matrix (M;)~! M, be denoted by G; and (M;)~! by
G4. The solution of the recurrence relation can then be written as

(W = (I-G) ™Y (I -GG (Y™ +77Q) + GL¢O. (5.58)
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Letting | — oo should result into the exact solution of the linear system. The
exact solution is independent of the start vector ¢ (9) for the iteration process,
and thus G} should go to zero for I — oo. Supposing this is true, we find
that

(M) = (I-G1)7'Ga. (5.59)

The expressions (5.58) and (5.59) can be used to consider different properties
of the iteration process. In order to do this, we evaluate several situations.
Most of the analysis is restricted to one time step. We also restrict ourselves to
considering conservation errors. Instead of for BDF2 we will sometimes give
results for the Backward Euler method (BDF1). First, we derive a general
result for convergence of linear systems.

5.6.1 Convergence of the iteration process

For linear chemical systems, defined by (5.49) where the matrix A satisfies
(5.50), convergence can be proved. This result is based on Theorem 6.16 in
[2] on convergence for nonnegative matrix splittings, see (2] and the references
cited therein. The splitting M = M; — M, is nonnegative if (M)~ ! exists and
G1 = (M;)~' M, is nonnegative. According to its definition, M; is a lower
triangular matrix with strictly positive diagonal entries and nonpositive off-
diagonal entries. Such a matrix is always invertible and its inverse is known
to be nonnegative. Since M is an upper triangular matrix with nonnegative
entries, the nonnegativity of G; follows directly. Hence, the matrix splitting
is nonnegative. Theorem 6.16 from [2] states that a nonnegative splitting is
convergent if M is nonsingular and M~ M, is nonnegative. Assuming that
M is nonsingular for 7 € [0, Timaz], it suffices to prove that M=1=(I-y71A)™!
is nonnegative. This is true for all 7 in [0, Tmaz]. The proof follows from a
result in [68].

Proof: Take a vector z > 0 arbitrary and let
2(r) = (I —~y7A)7 'z

We know that z(7) > 0 for 7 sufficiently small. Now suppose this is not true
for all 7 € [0, Tmaz] and let 79 be the first value for which one (or more) of
the components of z(7) becomes zero. Let this be the i-th component. Then
2i(10)=0 and zj(7o) > 0 for all j # i. This gives the contradiction

k

0 = zi(n) = i + ’YTZAiij(To) >0,
Jj=1

since z; > 0 and the off-diagonal entries of A are nonnegative. Hence such a
70 does not exist.O]

The conclusion thus is that Gauss-Seidel iteration applied to (5.51) is con-
vergent for all 7 € [0, Tmaz)- If all eigenvalues of A are located in the left
half-plane, the matrix M is nonsingular for all 7 > 0 and we then have

Tmaez = 00. In real chemistry problems, the eigenvalues seem always to be
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real and usually negative. Only a few very small positive eigenvalues can be
present (see e.g. [52]). Hence we may conclude that 7y, is relatively large
and that for practical step sizes the Gauss-Seidel iteration is convergent.

5.6.2 Effect of not continuing the iteration process

To illustrate what happens to the mass balance if we do not continue the
iteration until convergence, consider the linear system (5.49) and one BDF1
step with one iteration (i.e. Y"=y" and y=1). We take Q=0 and y™ as the
initial iterate for y"*!. The scheme can then be written as

Mly"+1 = (Ml + T7A)Yy", Vn > 0.
Multiplying both sides with w” gives
w' My (y™H —y") = 0,

since wT A = 0. This result reveals that a ”disturbed” conservation relation
holds

w y" = u"zTyo, o7 = wT M.
From the definition of M; it easily follows that w7 is a vector with positive
weights. To see the effect of this disturbed mass relation, consider y; and
y2 and reaction 1 and 2 of the example problem with @Q; = @2 = 0. The
corresponding matrix A takes the form

_ [ k1 ke
4= ( b —k )
It is clear that the sum of y; and y; is constant for this example problem, so
wT = [1,1]. However, wT = [1,1+ 7ky] for Gauss-Seidel iteration. The exact
solution goes to an equilibrium for ¢ — oo such that kjy;(00) = kay2(00).

Suppose that the numerical solution also goes to an equilibrium with the
same ratio between y{° and y3°. The conservation error is then given by

T(, 00 0\ _ Tk ks ﬁo_o
w (y*-y) = PR [k1y2 |- (5.60)
The absolute value of the conservation error is thus determined by the extent
to which the initial solution is out of equilibrium and the size of the factor
in front of the bracketed term in (5.60). This error may be quite large since
the ratio k2/k; may be large.

5.6.3 Evaluation of the example problem
situation la: equilibrium; one time step

In this example we only consider y; and y, (i.e. k3=0) and do not take
emission into account (i.e. @1=Q2=0). The iteration process (5.57) to obtain
y™*! now reduces to
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¢+ = Gy + G, (5.61)

The exact solutions for y; and yz converge monotonely to their equilibrium
values which satisfy k1y; = kays as t — oo. In case of Gauss Seidel iteration,
the matrices G; and G are given by

Y7k
1 + ’)’Tkl
0 (y7)2k1 k2
i (1 4+ 47k )(1 + y7k2)
[ 1
1+~7k 0
_ YTR1
Gz = ks ; : (5.63)
| (1+77k)(L 4+ vy7k2) 14797k

0

G = (5.62)

From the definition of G; we see that G} — 0 for | — oo independent from
the values of 7, k; and ky. This is due to the fact that the matrix A has
nonpositive eigenvalues, 0 and —(k; +k2), hence (I—7A) ™" exist for all 7 > 0.
Thus the iteration process converges for all nonnegative 7. Suppose we apply
BDF1 with start vector ((©) = y™. Then we can express the conservation
error E; in y™t! after [ iterations in terms of the last iterate ¢ and the
mass conserving solution ( {os)

() = (I - G1)'Gay™

The conservation error E; can then be written as

E = ol (c(°°> - c') = oT [(I-G1)"'GiGy - G] . (5.64)
After some tedious manipulation this can be rewritten as
l
T2k1 k2 kz
— —=y2 —yr ). .65
= [(1+Tk1)(1+rk2)] (k1y2 yl) (5.65)

The above expression shows that always a conservation error is made. Only
in case the y™ is already the equilibrium solution, no conservation error is
made. The expression also shows that the conservation error decreases for
every iteration, but the convergence is slow for large values of 7k;. In practical
applications Tk; may indeed be relatively large for stiff components, especially
when large time steps are taken. In such situations it seems preferable to
perform a few extra iterations. From (5.65) it can be seen that the order of
the components is of importance. If y, is treated first, E; would have been
given by

o ks N
LT O R+ R \RT TR
which is a factor k; /ky larger than (5.65). Hence, if k; > k, it is better to

first treat y;. In general, this suggests that the stiff components should be
the first ones, especially in case only a few iterations are performed.
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situation 1b: equilibrium; infinite time steps

If we assume that the numerical solution also converges monotonely to an
equilibrium, then (5.65) suggests accumulation of mass errors: either the
sum of y; and yy grows or decreases monotonely and the solution converges
to an equilibrium with a different mass. Numerical results for this example
support this suggestion. We still consider BDF1 and the solution of the last
time step as the starting vector for the Gauss-Seidel iteration. Applying only
1 iteration and an infinite number of time steps results into expression (5.60).
It can be shown that the error E; for [ Gauss-Seidel iterations and an infinite
number of time steps can be written as

alkl k2 0 0
E = — = [Z2,0 _ . i
1 k1 + ks Tk [hyz 1 (5 66)

No general formula was found for the o;. From (5.60) it can be seen that
a; = T7ky. Evaluating ay and a3 gives

o . Tsklkg

27 1+ 71(ky + ko) + 272k by
51.21.3

by = T°kik;

1+ 2T(k1 + kz) + 72(ky + k2)2 + v
which suggests that the a; are positive and of order T2’_1ki_1ké. In that case

the conservation error satisfies

7.2!—1 (klkz)l
ki + k2

1‘7_2_0_0

Ky Y2 - (5.67)

|Ei| <

Numerical experiments confirm the expressions for a;,as,a3 and indicate
that (5.67) holds indeed.

situation 2: emission

We still consider only y; and y; but now a constant emission vector @ =
[Q1,Q2]7 is taken into account. The contribution of one time step with BDF1
to the mass of system should be equal to 7w” Q. From expression (5.58) we
see that this contribution after [ iterations is given by

rwT (I - G1) (I - GY)G2Q (5.68)

and since wT (I — G1)7'G2 = w7 the error Eg made in the contribution of
the source term can be written as

Eq = mwT(I-G1)"'GG2Q. (5.69)

Evaluating this term results into

T2k ko =l 72k2Qo 3k1k2Q1
EQ = : (5.70)
(1+ 7k1)(1 + Tk2) 1+ 7k (14 7k1)(1 + Tk2)
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As expected, Eg goes to zero for | — oo. More important, however, is the
fact that if only a few iterations are taken, every time step again the same
mass error will be made. If only one iteration is performed the front term
in brackets in (5.70) vanishes. In that case the error associated with Q
approaches 7Qq if Tkz becomes large. The error term associated with Q1
only becomes large if both 7k; and Tk become large, due to the order in
which the components are treated in the Gauss-Seidel process. This suggests
that components for which source terms are specified should be the first ones.
This suggestion, however, may be in conflict with the earlier observation that
it seems better to first treat the stiff components. From this point of view it
seems advisable not only to take at least more than one iteration per time
step especially in case large time steps are possible, but also to introduce
a mechanism to reduce this systematic error. The lumping procedure, de-
scribed in Section 5.5.1, is such a mechanism. For the present and previous
situation, lumping is trivial, since the exact mass y; + y2 is known. It is then
very simple to correct either y; or y2. For the next example this is less trivial
and there we will show the effect of lumping.

situation 3: equilibrium with sources

We now consider the full reaction system (5.54), including source terms. In
this situation an equilibrium solution for y; and y; exists independent of the
initial values for y; and y2. This equilibrium solution is given by

yi! = ki (Q1+ Q2),

ki +k
eq __ 1 1 3
v’ = koks @i+ kak3

The conservation error E; after [ iterations and one time step can be written
as

(5.71)
Q2.

E, = Eip + Eiq, (5.72)

where Ej o denotes the error term associated with the source term Q and Ej o
denotes the error term associated with the initial concentrations. Evaluating
these error terms gives similar expressions as (5.70) and (5.65).

T2k1k2 =1
Eq = x
(14 7ky + 7k3)(1 + Tk2)
2k 3k k
(T 2Q2 + T K1 2Q1 )’ (5'73)
1+ 7ky (1+T’C1 +7’k3)(1+7’k2)
l
Tzklkz k2(1 +Tk3)
Eo = 0_ 2" 300 G5
1.0 [(1 + Tkl + Tk3)(1 + Tkg)] (yl kl yz) (5 74)

As expected, both errors go to zero for | — oo. If y; and y; are in the
equilibrium (5.71), the conservation error is zero. In that case, substitution
of the equilibrium solution in (5.74) results into Ej o = —Ej g.
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Now suppose we apply lumping to this system by considering the species
z = y; +y2. Since y; and y, do not depend on y3, we evaluate = after y; and
y2 and then compute the new approximation for y3. From the approximation
of z we recompute y; by putting y; = « — y2. After some tedious algebra we
arrive at the following matrices G; and G2

[ o Tko
1+Tk3
G =1|0 atk; 01 (5.75)
T2k2k3 0
L al+7’k3
( l—-«a k3 7
1+ 7k (1+Tk2)(1+7’k3)
1
G2 = a 1+Tk2 0 , (576)
2
Tk3 (1—(1) T kzka 1
| 1+T’C3 (1+T’C2)(1+Tk3) J
where
Tkl
a =

(1 + ’Tk1 + Tk3)(1 + Tkz) '

Since wT G, = 0 and wT G5 = w” all iterates are mass conserving, indepen-
dent of the start vector. This is easily verified by multiplying both sides in
(5.57) by wT. If yo is recomputed from = we no longer have exact conser-
vation, not even if we first update y» and then y3 in the iteration process,
though also in that case the mass error is reduced substantially. Reducing
the mass error does not necessarily mean that the solution with lumping is
more accurate than without lumping, but intuitively one expects this to be
the case. Numerical experiments with real chemical systems have to confirm
this expectation. In the next chapter, the effect of lumping will be shown for
the chemical model presented in Section 2.3.

Although the above result with lumping has been obtained using a simple
linear model, it is of interest for the nonlinear chemical model, presented in
Section 2.3, as well. As mentioned earlier, we can think of the present 3 x 3
system as linearized NO, chemistry. If we exclude reaction 16 and 17 from
the system and only consider reaction 1-4, we in fact recover the present
linear example problem. If the concentrations of O3 and OH and reaction
rate k4 are kept constant when updating NOz, NO, NO§ and HNOs, the
system becomes linear for these species.

5.7 Linear analysis for QSSA

In this section partly the same analysis as in the previous section is done for
a few QSSA schemes: the first-order classical QSSA scheme, the second order
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midpoint scheme and the second order extrapolated QSSA scheme. First a
result on stability for the first two QSSA schemes is derived. Next, situation
1 from the previous section is evaluated for the three schemes.

5.7.1 Stability for QSSA schemes
The classical QSSA scheme from Section 5.3.1 reads

o1 = e 7Y + (1-e"TH)LTIP, (5.77)
with P and L evaluated in y™. This can be rewritten as
y"t =y + T (5.78)
where the diagonal matrix I' is given by
1-e L
P = d' i)y g =
iag(vi), 7 L

For linear systems, (5.78) reduces to
y"t = y" + TAY". (5.79)

Supposing that for the exact solution of the linear system one or more con-
servation relations of the form

wTyn+l S ,wTyn
hold, it can be shown that for the classical QSSA scheme a disturbed conser-
vation relation

holds. This vector @ follows from multiplication of both sides in (5.79) by
wT. Since wT A=0, the disturbed conservation relation holds if wTT=wT.
Since all ; > 0, w” is a vector with nonnegative weights. The stability in
the sense of the inequality wTy"t! < wTy™ follows from the positivity of the
solution vectors. If the exponential is replaced by some approximation, the
result is still valid if the resulting vector I" has positive entries for all 7L; > 0
and the solutions generated by the scheme are nonnegative.

In the same way as for the classical QSSA scheme, the stability result for
the midpoint QSSA scheme from Section 5.3.2 follows. The definition of the
~; is different:

2(1 — e~ L)
TL;(1+ e 7Ls)

Since the 4; are positive, stability follows from the positivity of the solutions.

For the extrapolated QSSA scheme a similar result can not be derived. The
solutions may become negative and moreover the ; found for this scheme
may not all have the same sign. In the evaluation of situation 1 of the example
problem, it will be shown that the scheme is not stable for all possible values
of 7L;.

¥ o=
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5.7.2 Example problem: Classical QSSA

Since the classical QSSA scheme is fully explicit, it can be written as
y"tt o= Gy

In the linear case, the amplification matrix G does not depend on y™.

situation la: equilibrium; one time step
For the present example, G is given by

k2
l-a —a
by k1 , (5.80)
'k—ﬂ 1-p
2

where = 1 — e~ "% and B =1 — e~ "%2. The eigenvalues of this matrix are
1 and 1 — a— 3. The modulus of the latter eigenvalue is bounded by 1. This
is in accordance with the stability result in Section 5.7.1. One step with this
scheme results into the conservation error £

ke ][k
E = [ﬁ - k—fa} (k—;yi‘ ~ yé‘) ; (5.81)

The conservation error is only zero if e™# is approximated by 1 — z. This is,
however, undesirable since the resulting scheme is the Forward Euler method.
For small values of 7k; the error E can be approximated by

1 k

E ~ >7%ka(ky —ka) [ 9} — v ). (5.82)
2 ko

The second order behavior of the conservation error is in accordance with

the fact that the classical QSSA scheme is first-order. For large values of 7k;

a very different result is obtained. We then arrive at

k2\ (k1 o .
E = (1 - E) (Eyl —y2) . (5.83)

This expression shows that for large values of 7k; a large conservation error
is made and the solution will be very inaccurate. This implies that, in order
to get reasonable accuracies with QSSA schemes, the time step cannot be too
large. It also suggests that lumping may improve the conservation, since a
lumped species is often defined such that it has a smaller loss rate than the
loss rates of the species it consists of.

situation 1b: equilibrium; infinite time steps
If an infinite number of time steps is performed, we arrive at the conservation
error

k1B — ke (k1 o)
E = BBk (ko o)
kl(a +,B) <k2 n Ya

This error is a factor a4+ 3 smaller than the error made in one time step (cf.
expression (5.81)).
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5.7.3 Example problem: The midpoint QSSA scheme

We consider the midpoint QSSA scheme from Section 5.3.2. The scheme is
given by (5.77) with P and L evaluated in 3" +3"). One time step with
one Gauss-Seidel iteration (with start vector y™) results into the following
expression for the conservation error E;

k
B = [Ba- -] (R -u), (5.8)
where @ = 1 — e~ "% and 8 = 1 — e~"*2. For small values of 7k; (5.84) we
have that

1 k
By & (k) (k—‘y;*—yg). (5.85)
2

The conservation error for one iteration is O(72) for 7 — 0. This is not
surprising, since with start vector y™ the value y{'“ is updated with the first-
order classical QssA method. Hence, the conservation error for one iteration
should be O(7P) with p > 2. Note that if we use Picard iteration with start
vector y™, the result of the first iteration is identical to the classical explicit
QssA method. The situation is completely different if we let the number of
iterations go to infinity. Instead of a zero conservation error, we find

A
k] (4 it aﬁ)
This expression is only zero if e* is approximated by the second order diagonal

Padé approximation (2 + z)/(2 — z). However, using the exact exponential,
evaluation of the above expression for small values of 7k; yields

(ks — k1)) + 2(k1 8 — ko) (’“—‘y? - y;’) . (5.86)

Bo =
k2

1 k
B = —=7oka(k2 —k3) | =93 —v3 ) - (5.87)
12 ko

The above result shows that the conservation error for QSSA will not go to zero
in general, but is of order 73. Note that the scheme itself is second order,
so that the order of the conservation error should indeed be 3 or higher.
Even stronger, the above result suggests that under certain conditions the
conservation error may grow with an increasing number of iterations. The
results for the conservation error derived here are based on approximations
of the exponential and hence not valid in general. Numerical experiments for
the present example, however, supported this suggestion.

For large values of 7k; we clearly see the order reduction of the present
QSsA scheme. Letting 7k; — oo in (5.86) results into

2 _kz k1 o 0
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5.7.4 Example problem: Extrapolated QSSA

The underlying scheme for the extrapolated QSSA scheme from Section 5.3.2
is the first order classical QSSA scheme. For the extrapolated QSSA, one time
step is given by

"t = Geo(T)y", (5.89)

where the amplification matrix G, is expressed in terms of the amplification
matrix G for the classical QSSA scheme

Gez(T) = 2G2%(7/2) — G(7).

The absolute eigenvalues of the amplification matrix G, are now no longer
bounded by 1. The eigenvalue A different from one is given by A= 3—5z+2z2,
where z:exp(—%rk1)+exp(—%7‘k2). Hence, z € [0,2]. For z € [0,%), we
have A > 1. Thus for relatively large values of 7k; the extrapolated QSSA
scheme is unstable.

Evaluation of E; for small values of Tk; results into

B~ gk - k) (-5 (5.90)

Again we see that the error for small values of Tk; is not zero, but of O(73).
Expression (5.90) is exactly a factor of 2 smaller than the corresponding error
for the midpoint QSSA scheme (5.87).

For large values of 7k; the situation is again entirely different. Letting
Tk; — oo gives the conservation error E;

k2\ (k1 n  »
E, = (1—k1> <k2y1 Z‘/z)-

This error is 1.5 times larger than the corresponding error for the midpoint
QsSA scheme and identical to the corresponding result obtained for the clas-
sical QSSA scheme.



Chapter 6

A Comparison for chemical
solution methods

6.1 Introduction

Although the numerical stiff ODE field is well developed and an interesting
variety of efficient and quite reliable stiff ODE solvers is available [24], the
general experience is that for three-space dimensional transport-chemistry
problems, where stiff ODE integrations are carried out at thousands of grid
cells, still faster tailor-made solvers are needed. In Chapter 5 a number
of such solvers has been described. In this chapter we compare TWOSTEP,
3sTEP and extrapolated QSSA from the previous chapter with the state-of-
the-art solver VODE from the numerical stiff ODE field. The main purpose
of this comparison is to find out which method is best for application in the
smog model. More precisely, we wish to find out whether explicit codes can
be more efficient when applied in the smog model than the state-of-the-art
solver VODE if we largely economize on the numerical algebra overhead of the
modified Newton process by exploiting the sparsity of the Jacobian matrix.
Since (large) fixed step sizes are attractive, the solvers are also tested with
fixed step sizes. If it is possible to apply fixed step sizes in the real model,
we have control over the total CPU time which we do not have otherwise.

To find an answer to this question, a box model test is presented. Natu-
rally, this box model test has to simulate the real application of the solvers
in the model as much as possible. Extensive comparisons for other box mod-
els and a wider variety of solvers can be found in [67] and in [52]. One of
the conclusions in these publications is that there exists no ’best method’.
Which method is most suited is highly problem-dependent. Roughly speak-
ing, standard implicit solvers are more efficient if high precision is desired.
High precision, however, is not required for the present application. In gen-
eral, standard implicit solvers tend to become more efficient for large prob-
lems, provided that the numerical algebra overhead is kept at a minimum by
exploiting the sparsity of the Jacobian matrix. For small problems (which
may also be less stiff) probably tailor-made solvers are more efficient. Some-
where there is a break-even point, and in this chapter we will try to find its
position for our chemical model.
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6.2 Test methodology
6.2.1 The box model

The chemical model is identical to the one described in Section 2.3. This
system is integrated over a period of 5 days, starting at 0:00h at day 1 and
ending at 0:00h at day 5. Because we deal with ozone chemistry, we choose
the meteorological conditions to be the conditions on a warm summer day.
The daily variation of the temperature in Kelvin T} and relative humidity rh
are modeled as

™ s
4 =101 sdin [ =tod) — 2. T d)
T 293.1 191*51n(12t0d) 278*cos(12o ,

rh

™ ™
6+0. i | . L.t d)
06+00764*sm(12tod)+0114*cos(12to ,

where tod denotes the time-of-day in hours. The solar angle is computed
according to the formulae in Section 2.3 with latitude #=52°. In order to
get realistic concentration profiles, emission and deposition terms have to be
specified. In Table 6.1 these quantities are specified together with the initial
values for the concentrations.

Name Species | emission | deposition | concentration
1 | Sulphur dioxide SO, 1-10° 3-10°° 0.0
2 | Sulphate aerosol | SO4 0.0 0.0 0.0
3 | Nitrogen dioxide | NO; 0.0 2107 4.92 - 101!
4 | Nitrogen oxide NO 1.25-10° | 0.0 0.0
5 | Ozone O3 0.0 5.10° 4.92- 1011
6 | Hydroxyl radical | OH 0.0 0.0 0.0
7 | Nitrate aerosol NOg 0.0 0.0 2.46 - 101!
8 | Ethane C4Hg 3.7-105 | 0.0 2.46 - 101!
9 | Butane CsHyp | 1-108 0.0 2.46 - 101!
10 | Ethene Cy4H, 2.9-10° | 0.0 2.46 - 1010
11 | Propene C3Hg | 1.3-10° | 0.0 2.46 - 1010
12 | Xylene XYL 3.3-10° | 0.0 2.46 - 1010
13 | Isoprene 1SO 1-10° 0.0 2.46 - 1010
14 | Carbon monoxide | CO 2.5-107 | 0.0 3.69 - 102
15 | Nitric acid HNO; | 0.0 1-1073 0.0

Table 6.1: Emission and deposition values in [mlc/cm?®/s] and initial concen-
trations in [mlc/cm3| for the box model.

6.2.2 Set up of experiments

The solvers are tested as if they were used in an operator splitting approach.
This corresponds with the application in the smog model where the chemistry
routine is called once per hour for all grid cells. We therefore split up the total
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integration interval in 120 subintervals of 1 hour. For each subinterval we then
restart the integration of the solvers. The total time interval is sufficiently
long to include a number of diurnal cycles for the important photochemical
transformations and to include a large set of different initial conditions due
to the restarts. Frequently restarting a solver is not attractive since this
involves an unusual amount of small steps in the start phase. In particular,
this enlarges the overhead in the numerical linear algebra in stiff solvers that
use the modified Newton process to solve nonlinear systems.

Our measure of accuracy is based on a modified relative root mean square
error RRM S; for each species %, taken over the endpoints of all 1-hour inter-
vals over the 120 hours. Hence,

3 (y — Uiltn )) , (6.1)

neJ;

RRMS; =
|$|

where J; = {0 <n < N : |yi(tn)| > ATOL}, N = 120, t,, = 3600n sec. and
yi(tn) represents a sufficiently accurate reference solution. The modification
consists of the use of 7; and |J;| in (6.1) in order to exclude solution values
below ATOL from the norm computations. We then calculate the number of
significant digits for the average of RRM S; over the k species, defined by

k

SDA = —logy, (% )3 RRMS,') . (6.2)
i=1

Our comparison focuses on modest accuracy, that is relative accuracies near

1%, since higher accuracy levels are redundant for the actual practice of three-

dimensional air pollution modeling. The following set of error tolerances for

the variable step size control will be used for all species

ATOL =1, RrOL=10"' 1=1,2,3,4,5. (6.3)

Since the unit of concentration is number of molecules per cm?®, we therefore

effectively invoke a relative error control. For some species (radicals) the
concentration can be smaller than 1, but these values are insignificant for
the overall solution and require no local error control. Since the four solvers
use quite different solution techniques, and are therefore difficult to compare,
efficiency is measured by CcPU time (SGI-Indy workstation, f77 -O option,
double precision).

6.3 Application of the solvers

All solvers use the ordering of the species as listed in Table 6.1, except of
course for the version of VODE in which we reorder the species to reduce the
number of fill-in elements in the LU decomposition of the Jacobian.

In case of variable step sizes, we prescribe a minimal and maximal step
size for all solvers. Only VODE is also tested without bounds for the step
sizes. These are, in seconds,
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Tonin =1, Twmas= 900. (6.4)

Step sizes below 1 sec. are redundant in this application. The minimal time
constant values of importance for the actual practice are about 1 min. in
size and species with a time constant smaller than 1 sec. almost instanta-
neously get in their (solution dependent) steady state when they are per-
turbed. Hence the choice of 1 sec. is reasonable and safe compared to 1 min.
Note that without the lower bound of 1 sec. extremely small steps could be
taken since atmospheric chemistry problems containing photochemical reac-
tions can possess time constants as small as 1079 sec, although the present
box model is not that stiff. For VODE, the lower bound of 1 sec. thus serves to
reduce the numerical algebra overhead stemming from the frequent restarts
(matrix factorizations caused by step size changes). Finally, the maximal
step size of 900 secs. is also quite reasonable on chemical grounds, although
the solvers perform equally satisfactorily without this constraint.

6.3.1 TWOSTEP and 3STEP

The solver TWOSTEP, as described in [70] and in Chapter 5, has been applied
in two different ways, in the remainder of this chapter indicated by TWOSTEP1
and TWOSTEP2. By TWOSTEP1 we mean the standard use, where at any time
step two Gauss-Seidel iterations are used and the step sizes are constrained by
(6.4) in case of variable step sizes. It should be emphasized that two iterations
are by far not enough to let the Gauss-Seidel iteration fully converge. Our
experience is that the overall accuracy of the code improves with the number
of iterations, but the efficiency generally not. We therefore prefer a small
number of iterations, which is attractive anyhow after a restart with a small
step size. TWOSTEP2 refers to the same way of application, but in addition
lumping is used to exploit special problem properties in order to obtain a
more efficient numerical solution process. The lumping has been described
before in Section 5.5.1.

The solver 3STEP, described in Section 5.2.4, is applied in the same way
as TWOSTEP, denoted by 3STEP1 and 3STEP2. When applied with large,
fixed time steps, TWOSTEP and 3STEP will also be applied with more than 2
Gauss-Seidel iterations.

6.3.2 QSSA

The QSSA solvers used in the experiments in this chapter are based on the
extrapolated QSSA method based on [52], described in Section 5.3.2. In [43] we
already compared the ”mid-point QSSA” solver from Section 5.3.2 for almost
the same box model test. We then concluded that TWOSTEP was superior.
The solver from [52] is applied in two different ways, in the remainder of this
chapter indicated by QssAl and QsSA2. As for TWOSTEP, QSSA1 refers to the
standard use without any ’trick’, whereas QSSA2 refers to the scheme to which
in addition NO, and O, lumping is applied. The lumping is applied in the
same way as in TWOSTEP. First all species are updated, next the production
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and loss terms for the ’lumped species’ are computed using the updated
concentrations and the concentrations of the ’lumped species’ are computed
using the QssA formula. Finally, the values of NO/NO; are updated using
NO. and NO2/Oj3 using O;.

6.3.3 VODE

The solver VODE [12] has also been used in three different ways, indicated by
voDE1, VODE2 and VODE3. To enable the step size restriction (6.4) we had
to overrule the rejection strategy. Without this overruling the code returns
with an error message due to the constraint 7mi» = 1 and interrupts the
integration. In general this is perfectly all-right, of course, and VODE should
not be blamed for it.

VODE] is the standard black box use, i.e., no optional input is used and
the method parameters ITASK (not essential for our comparison) and MF
are set to 4 and 22, respectively. The choice MF=22 implies that the code
generates the Jacobian automatically by numerical differencing, while the
standard full matrix linear algebra routines DGEFA (factoring) and DGESL
(backsolves) from LINPACK are used. It also implies extra storage because
both the Jacobian and its LU-decomposed form are stored. This saves Ja-
cobian updates, on the other hand additional storage may be a disadvantage
for higher-space dimensional problems. Because no optional input is used,
there is no constraint on the step size selection.

VODE2 denotes the solver as it is, but with the step size restriction (6.4)
and provided with the analytical Jacobian (MF=21) instead of the numerical
one. Like MF=22, the choice MF=21 means extra storage, since the Jacobian
matrix is saved together with its LU decomposition. Usually, the Jacobian is
overwritten with its LU decomposition. With the extra storage, the Jacobian
may be kept constant during a number of time steps even if the time step
changes significantly. In that case only a new LU decomposition needs to be
formed.

VODE3 is completely identical to VODE2, except that now the sparsity of
the Jacobian is exploited to reduce the costs of solving the linear systems in
the modified Newton iteration. We emphasize that this can be very profitable
for large systems, but less profitable for small systems like the present one.
To keep the fill-in of the LU-factorization small, the components in the ODE
system should be reordered. A natural way to try to achieve this is to reorder
the species according to the number of nonzero elements in the corresponding
row of the Jacobian. The species with the largest number of nonzero entries
is put last and so on. Following this rule-of-thumb and manipulating a little,
we succeeded in finding a reordering of the species for our chemical model
that results in only one fill-in element in the LU decomposition. The ordering
of the species used in VODE3 is: the VOCs, SO; and SO4, NO, Oj, NO-,
HNO3, NO$ and OH. We note in passing that one and the same sparsity
structure is used for the whole time interval. At night, when photochemical
reactions are switched off, the sparsity is somewhat larger, but for simplicity
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we have not used this (small) advantage. For the given sparsity structure,
the linear systems can be solved quite efficiently with the ILU (Incomplete
LU) routines DSILUS (factorization) and DSLUI2 (backsolves) from the Sparse
Linear Algebra Package (SLAP). SLAP is a public domain code written by
Greenbaum and Seager (with contributions of several other authors) that is
available from Netlib [16]. We should remark, however, that we have slightly
modified the original SLAP versions to increase their efficiency. We specified
the sparsity structures of the Newton matrix, L and U so that the SLAP
routines do not need to compute these structures every time. The SLAP
routines replace the LINPACK routines DGEFA and DGESL, respectively. Like
the LINPACK routines, they factorize and backsolve, but omit all redundant
calculations in which a zero occurs. It should be remarked, though, that now
no longer pivoting occurs in the matrix factorization. This could give rise to
errors in the linear system solution which otherwise would have been avoided.
We have not experienced problems of this sort. Of course, if the factorization
fails, then the step size control of VODE will detect this and a change in the
step size will improve matters. It seems that for solving stiff ODEs pivoting
is only rarely required (cf. [32, 53]). VODE3 thus has been prepared to solve
the atmospheric chemistry problems with higher efficiency than VODE1 and
VODE2.

6.4 Results for the box model test: variable
step sizes

Figure 6.1 shows all accuracy-efficiency plots for the box model test. The
marks on the plots correspond with the five different values for RTOL. For
QSSA2 only the three smallest values for RTOL are visible in the plot. For
RTOL=10"1,10"2 the average number of significant digits were -2.37 and
-0.93, respectively.

Recall that only modest accuracy (1%) is required. This corresponds with
SDA=2 in the work-precision diagram. Hence, the lower left part of Figure
6.1 is the part of main interest.

6.4.1 Results for the special purpose solvers

As expected from earlier experiences (see [43, 67]), Figure 6.1 shows that
lumping improves the accuracy of the solution considerably, both for the
BDF solvers and QSSA. The BDF solvers are, however, clearly superior.

Experimentally we found that the TWOSTEP2 solution is in fact very close
to the true BDF2 solution. The same holds for 3STEP2. Recall that only 2
Gauss-Seidel iterations have been carried out. So in this case the effect of
lumping is considerable. Since the additional costs are relatively small, it is
very attractive to use.

For large tolerances the CPU times for QSSA and the BDF solvers are com-
parable but the accuracy of QSSA is much lower. For smaller tolerances,
the situation is even less favorable for QSSA: the accuracies are still lower
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SDA values

CPU times

Figure 6.1: Work-precision diagram for the box model test: TWOSTEP1
(x,solid), TWOSTEP2 (x,dashed), 3STEP1 (+,solid), 3STEP2 (+,dashed),
QssAl (*solid) QssA2 (*,dashed), VODE1(o,dotted), VODE2 (o,s0lid), VODE3
(o,dashed).

but the CPU times for QSSA are much larger. The latter is also illustrated
by Table 6.2, where some integration statistics are given. The table shows
that the number of steps taken by QSSA increases dramatically for decreasing
tolerances. For the large tolerance values TWOSTEP2 and 3STEP2 perform
comparably, but for smaller tolerances the higher order of 3STEP clearly pays
off. Table 6.2 confirms this conclusion: the number of steps taken by 3STEP
is much smaller than for TWOSTEP. This is also nicely illustrated by Figure
6.2. The line for 3STEP (not plotted) practically coincides with the line for
vODE. This figure also shows the same behavior for all three solvers. Two
peaks in the number of steps occur per day. The first peak occurs in the
interval between 10:00h and 11:00h for all three solvers and the second in the
interval between 19:00h and 20:00h for TWOSTEP2 and QSSA2 and sometimes
one hour later for VODE2. At these peak hours TWOSTEP and QSSA take much
more time steps than VODE and 3STEP. Especially QSSA takes a lot of time
steps during these hours.

The peaks in the number of time steps per hour may be related to the
change in the loss rates of the species. In Figure 6.3 the absolute change in
loss rates per one-hour interval of NO, and NO is plotted. The numbers
have been obtained by computing the absolute difference between Lyo, and
Lno at the beginning and the end of the one-hour intervals. The observed
peak in the number of time steps in the morning coincides with a strong
change in the loss rate for NO and the peak in the afternoon coincides with
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Figure 6.2: Number of steps per hour taken by the solvers for RToL=10"3:
TWOSTEP2 (dash-dot), QssA2 (dotted) and VODE2 (solid)
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Figure 6.3: Absolute change in loss rate during the one-hour intervals for
NO; (solid) and for NO (dotted).
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a strong change in NO,. This explains the increased number of steps taken
by the solvers and especially why QSSA needs much more time steps than
TWOSTEP in these interval, whereas both solvers are second-order accurate.
If the loss rates vary relatively quickly within one time step, the Qssa scheme
makes large errors, because the scheme underlies the assumption that the L;
(and in fact also the P;) vary slowly within a time step. In such situations,
the time stepping mechanism will prevent QSSA from taking large time steps.

The number of time steps taken by the codes is related to the relative
error in some of the species. In the Figures 6.4 and 6.5 the relative errors
in NO and O3 are plotted together with the number of time steps taken by
TwOSTEP1/2. The relative error for species 7 at time t = t,, is computed by

Y — ¥i(tn)

yi(tn) .
The behavior of the relative errors for NO and Oj3 is quite similar for TWO-
sTEP1 and TWOSTEP2. The latter seems to give almost always smaller rel-
ative errors. This indicates a proper working of the lumping technique. As
expected, the peaks in the number of time steps correspond with peaks in
the relative errors for NO. This relation is not observed for the relative er-
ror in O3 which has a different pattern from the relative error in N O. The
errors in O3 seem to behave more smoothly in time and the increases in the
error do not seem to coincide with increases in the number of time steps. In
the experiments with TWOSTEP1, the largest of the error estimates for the
species was never the one for O3. For RTOL=10""! and 102 the largest error
occurs for NO in 25-37% of the time steps and for OH in 30-36% of the time
steps. In 8-10% of the time steps SO causes the largest errors. For smaller
tolerances, the percentages for NO and OH decrease. The errors in other
species then also come into play. For example, for RTOL=10"° the VOCs
are for about 40% responsible for the largest errors. SO, then causes about
16% of the largest errors. The lumping in TWOSTEP2 hardly changes these
percentages. The relatively large percentage for SO, cannot be prevented by
lumping of SO, and SO, into SO,. This is probably caused by the strong
coupling between OH and SO,. This coupling is stronger than the coupling
between OH and the VOCs since the corresponding reaction rates are one
order lower than reaction rate k14 (see Section 2.3).

6.4.2 Results for VODE

The restriction Tyin = 1 improves the efficiency of VODE for the accuracy
range considered. Implementing sparse matrix routines in VODE results in
only a small gain in efficiency. The CPU times measured for VODE3 are about
25% less than for VODE2.

As expected, VODE2/3 outperforms VODEL. We found that this is due to
the step size restriction (6.4) and not a result of using the exact Jacobian
instead of a numerical approximation. For the present model, with only 15
components, the overhead of this numerical approximation is too small to
become visible in the results.



102

A Comparison for chemical solution methods

10

10°

10°

107

10°

10

1 1 1 1 1 1

0 12

24

1
48 60 72 84 96 108
hour

120

Figure 6.4: Relative error in NO for TWOSTEP1 (solid), TWOSTEP2 (dotted)
with RTOL=10"2 and number of time steps per hour divided by 1000 (dashed)
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Figure 6.5: Relative error in O3 for TWOSTEP1 (solid), TWOSTEP2 (dotted)
with RTOL=10"2 and number of time steps per hour divided by 1000 (dashed)
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RTOL

method 1071 1072 1073 1074 107°
vodel | 1889 (34) 3007 (15) 4656 (61) 7318 (207) 9491 (297)
vode2 | 1752 (20) 2688 (7) 4201 (44) 6120 (69) 9869 (133)
vode3 | 1750 (19) 2688 (7) 4201 (45) 6113 (70) 9855 (134)
3stepl | 1975 (10) 2910 (13) 4453 (30) 7320 (19) 12978 (28)
3step2 | 1975 (9) 2910 (14) 4453 (30) 7321 (19) 12977 (28)
twostepl | 2112 (0) 4257 (5) 10100 (5) 24504 (0) 59644 (1)
twostep2 | 2116 (0) 4252 (5) 10101 (5) 24503 (0) 59644 (1)
gssal 2007 (133) 3607 (40) 10393 (1) 44081 (4) 138150 (3)
gssa2 1773 (11) 3248 (0) 10411 (1) 44095 (4) 137832 (3)

Table 6.2: Number of steps taken for the box model test with the number of
rejected steps in brackets

Restriction (6.4) prevents VODE2 from taking very large step sizes which
will reduce the accuracy at the end of the 1-hour intervals, but also prevents
VODE2 from taking very small step sizes lower than 1 sec. in the initial phase.
As noted before, these small step sizes are of no relevance for the accuracies
we measure.

VODE2 spends only about 30% of the CPU time in routines that handle
the LU decomposition and the backsolves, which of course is too small to get
much gain in CPU by replacing VODE2 by VODE3. The latter needs approxi-
mately 20% less CPU time than VODE2. These numbers reveal that by using
the sparse matrix routines, the linear algebra costs have been reduced by a
factor 3.

Finally, when we compare with the most efficient VODE version, which is
VODE3, we can conclude that TWOSTEP2 outperforms VODE3 convincingly.
Also TWOSTEP1 is faster in the 1% error range.

6.5 Results for the box model test: fixed step
sizes

If it is possible to use (large) fixed time steps, it would be very attractive to do
so because one then has more control over the CPU time used for the chemistry
in the true model calculations. In particular, if we can take large, fixed time
steps of, say, a few hundred seconds, we fix the CPU time for the chemistry
beforehand. Probably, the CPU time is also significantly smaller than in case
of variable time steps with a minimum step size of one second. Keeping the
amount of CPU time for the chemistry at a minimum is desirable, because
the chemistry requires a relatively large amount of the total CPU time. The
purpose of this section therefore is to find out whether large time steps are
feasible for our chemical model and, if so, whether using large time steps is
more efficient.
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Several results indicate that taking large time steps may indeed be possi-
ble. In [70] it is shown that fixed time steps up to 900 seconds are possible for
a much more complex chemical mechanism than ours. In [43] we showed that
this is also possible for a slightly different box model test than the present
one. The methods considered are only TWOSTEP2 and 3STEP2, because from
the results for variable step sizes it is already clear that they are superior to
QSSA. In [43] QSSA was also considered and it was found that the performance
of TWOSTEP was much better. VODE is not included because this integrator
was, in its present form, unable to integrate with large step sizes over the
whole integration interval.

TWOSTEP2 3STEP2

T 2 3 4 5 100 2 3 4 5 100
100 | 3.29 | 3.25 | 3.24 | 3.24 | 3.23 | 3.60 | 3.63 | 3.63 | 3.62 | 3.61
200 | 2.60 | 2.63 | 2.61 | 2.62 | 2.60 | 2.85 | 3.02 | 3.06 | 3.05 | 3.00
300 | 2.14 | 2.24 | 2.25 | 2.25 | 2.23 | 2.36 | 2.55 | 2.64 | 2.66 | 2.61
400 | 1.80 [ 1.95 | 1.95 | 1.99 | 1.97 | 1.97 | 2.18 | 2.24 | 2.27 | 2.26
450 | 1.69 | 1.83 | 1.88 | 1.89 | 1.87 | 1.69 | 2.01 | 2.07 | 2.09 | 2.09
600 | 1.41 | 1.57 | 1.65 | 1.67 | 1.63 | 1.27 | 1.51 | 1.66 | 1.72 | 1.71
900 | 0.74 | 1.08 | 1.26 | 1.33 | 1.35 | 1.10 | 1.29 | 1.31 | 1.32 | 1.37

Table 6.3: SDA for fixed step sizes with 2,3,4,5 and 100 iterations

The results of the experiments are summarized in Table 6.3. Also results
for 100 Gauss-Seidel iterations are listed because they are supposed to rep-
resent the accuracies of the true BDF solutions. The results clearly show that
it is possible to use large time steps with only a few Gauss-Seidel iterations.
To our surprise, the solutions are more than 1% accurate for time steps up
to about 400 seconds. In the Figures 6.6 and 6.7 the relative errors in NO
and NO; are plotted. The behavior of the 3 step sizes chosen is quite simi-
lar. The peaks in the error profiles occur at the same time as in Figure 6.4
for variable step sizes. Hence, the integration with fixed step sizes shows a
‘normal’ behavior. Again we conclude that taking fixed large time steps is
possible for the present chemical model. From the Figures 6.6 and 6.7 we
conclude that the error behavior for fixed time steps of 450 seconds is still ac-
ceptable, whereas in our opinion the errors for fixed time steps of 900 seconds
become too large. The results with 5 iterations are more or less identical to
the results with 100 iterations, indicating that 5 iterations are sufficient if
we apply fixed time steps in the smog model. Note that the larger the time
step, the smaller the differences between the results for TWOSTEP and 3STEP.
Recall that the integration interval is split up into one-hour intervals, so that
for example in case of fixed time steps of 900 seconds only 4 time steps are
necessary per one-hour interval. Only two of them can be real BDF3 steps,
since the first two steps are a BDF1 step followed by a BDF2 step.

In Table 6.4 the average time steps for the experiments with variable time
steps together with the SDA values are given. The accuracies in this table
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Figure 6.6: Relative error in NO for TWOSTEP2 with 3 iterations and fixed
step sizes: 100 sec. (solid), 450 sec. (dotted) and 900 sec. (dashed)
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Figure 6.7: Relative error in NO; for TWOSTEP2 with 3 iterations and fixed
step sizes: 100 sec. (solid), 450 sec. (dotted) and 900 sec. (dashed)
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TWOSTEP2 3STEP2

RTOL 7 | SDA 7 | SDA
10°T [ 204 | 2.59 | 219 | 2.53
1072 | 102 | 3.17 | 148 | 3.22
10—3 43 | 412 | 97 | 4.18

Table 6.4: Average time steps 7 and SDA for the results with variable time
steps from this section.

are quite comparable to the accuracies in Table 6.3 for about the same step
size.

6.6 Further testing: general results

More experiments have been carried out. In [67) VODE and TWOSTEP are
compared in the same way for two other chemical models with a slightly
different measure for accuracy. In [52] more solvers and more test problems
have been considered. In this section we give a few results from [67, 52] to
illustrate the performance of explicit solvers against implicit solvers for other
chemical models and/or other problems dimensions.

6.6.1 The methane CIRK chemistry

This chemical model was used in our comparison study [67]. For details we
refer to [67] and the references cited therein. The model is used in long term,
global studies and describes a methane oxidation cycle. It consists of 46
reactions between 19 species. Thirteen reactions depend on the solar zenith
angle which is taken continuous and hence calculated in each time step. The
problem is very stiff. Eigenvalues of the Jacobian lie between —10° sec™!
and —10~2% sec™!, approximately. There are two extremely large eigenvalues
which originate from the free radicals O'D and O3P. These species and
hence these eigenvalues are absent in the chemical model presented in this
thesis (Section 2.3), which explains the modest stiffness of that problem. The
reordering of the species used by sparse VODE resulted in 12 fill-in elements in
the LU decomposition. Thus the total number of nonzeroes after reordering
is 111 + 12 = 123.

Figure 6.8 shows all results obtained for the methane chemistry. First we
notice that also for this problem the simple lumping trick improves the TWO-
STEP accuracy considerably and for minor costs. The VODE results compare
well with those for the chemical model used in the box model tests in this
chapter. Supplying VODE with an analytical Jacobian and a minimal and
maximal step size improves the performance significantly (VODE2). However,
here also the gain in CPU from using the sparsity of the Jacobian is low, only
10%, similar as for the box model test presented in Section 6.4. In the accu-
racy region of greatest practical interest, both solvers perform well although
TWOSTEP is the most efficient one.
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Figure 6.8: Results for the methane CIRK chemistry: TWOSTEPI (*,
solid), TWOSTEP2(*,dashed) VODE1 (x, dotted), VODE2 (x, solid), VODE3
(x, dashed).

6.6.2 The EMEP chemistry

In [67) also the EMEP chemistry has been considered. This chemical model is
state-of-the-art in the field of regional air pollution modeling. The stiffness
of the model is comparable to the stiffness of the CIRK model. However, the
model is much larger. It consists of about 140 reactions between 66 species.
For a detailed description of the model we refer to [57, 56].

The way of lumping applied in TWOSTEP2 now differs from the way of
lumping described in Section 5.5.1. For TWOSTEP2 also two GS-iterations
were used, but within each such iteration five group iterations on the N O, +
Os group are added (cf. [70]). The species in this group are strongly coupled,
so it makes sense to perform this group iteration. We emphasize that this
group iteration involves a minor change in the code and hence is very simply
applicable. Because the group consists of only 7 species, the additional work
is minor and it obviously improves the Gauss-Seidel iteration, as can be
concluded from Figure 6.9 where the results for this box model tests are
plotted.

The TWOSTEP2 result should be compared with the best result obtained
for VODE, which clearly is the VODE3 case. We see that for the accuracy range
of greatest practical interest, TWOSTEP2 and VODE3 are comparable. For
higher accuracies the variable order VODE3 is more efficient because it then
uses the higher order BDF formulas. The figure also nicely illustrates that
by an intelligent use, standard stiff ODE codes like VODE can be improved
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Figure 6.9: Results for the EMEP chemistry: TWOSTEP1 (*, solid), TWOSTEP2
(*, dashed), VODEL1 (x, dotted), VODE2 (x, solid), VODE3 (x, dashed).

dramatically. In the low accuracy range VODE3 is about six times more
efficient than VODE1. We emphasize that the difference between VODE2 and
VODES3 is only due to the use of the sparse matrix techniques, which works out
very well for this test problem due to its large number of components. The
difference between VODE1 and VODE2 is due to using the analytical sparse
Jacobian and the step size constraints (6.4). Both reduce part of the cpu
time needed by the black box version VODEI.

6.6.3 Benchmarking Stiff ODE solvers

In [52] we considered a much wider variety of solvers and test problems.
However, the special purpose solvers have been tested without any form of
lumping. Since the performance of these solvers can sometimes be signifi-
cantly improved by problem dependent modifications like lumping and group
iteration, it is not quite fair to select a solver for a specific problem without
considering a special purpose solver with one of such modifications.

Of interest in [52] is the conclusion that TWOSTEP is by far the best of
the explicit solvers. Application of Gauss-Seidel iteration is in general more
efficient than Jacobi iteration. The implicit solvers tested in [52], RODAS,
SDIRK4 and VODE, have comparable performances, although their ranking
relative to each other differs per problem. RODAS is the fastest in the 1%
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error region for most problems. The implicit solvers tested in [52] have all
been provided with sparse matrix routines. Since most of the test problems
are large, this improves the performance of the solvers considerably.

For one test problem Gauss-Seidel and Jacobi iteration for solving the
nonlinear system in TWOSTEP does not work for practical values for the time
step. This test problem concerns a model that includes both gas-phase and
liquid-phase chemistry, whereas in all other test problems only gas-phase
chemistry is involved. For this test problem large eigenvalues \; of the Ja-
cobian exist that do not correspond with the loss term L;. For all other
test problems the relation A; & L; does hold for the large eigenvalues. This
should explain why for models including liquid-phase chemistry Gauss-Seidel
iteration or Jacobi iteration does not work. We think however that by some
form of lumping this problem can be overcome.

6.7 Concluding remarks

Considering our own box model tests and the results taken from [52, 67] we
arrive at the following general conclusions.

e TWOSTEP is the most efficient (explicit) special purpose solver com-
pared to the QssA solvers tested here. In general there seems to be room
for TWOSTEP as well as standard implicit solvers provided with sparse
matrix routines. In the low accuracy region TWOSTEP always seems
to be somewhat faster. Obviously, the (problem dependent) lumping
technique and/or the group iteration are recommendable for TWOSTEP
when only a few Gauss-Seidel iterations are used.

e An advantage of Gauss-Seidel iteration is that it works matrix free
and hence the memory demand is low, which is of interest when grid
vectorization is employed. As shown in [66], Gauss-Seidel iteration
can be nearly optimally vectorized over the grid, in a similar way as
modified Newton combined with sparse solution techniques in the code
SMVGEAR [32].

A further attractive feature of Gauss-Seidel iteration is that it can be
efficiently extended to solve chemistry and vertical turbulent diffusion
in a coupled way [66]. This is not true for the modified Newton process
as regards the exploitation of sparsity. If diffusion is coupled with chem-
istry, then the sparsity of the chemistry Jacobian is almost completely
lost in the factorization of the banded linear system.

e The sparse matrix technique based on the ILU routines from the SLAP
library handles the solution of the linear systems well. We have encoun-
tered no difficulties in using VODE3, which solves the linear systems
without pivoting. Similar experiences were reported by [32] and [53].
Other sparse matrix techniques may be more efficient, because the rou-
tines we used here and in [67] use indirect addressing.
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e For large problems from atmospheric chemistry, like the EMEP model,
the sparse matrix technique can lead to significant savings in CPU time
for codes like VODE. This experience corresponds with the results re-
ported by [32]. For atmospheric chemistry models of a more moderate
size, the gain by exploiting sparsity hardly pays. For such models, with
about 20 species say, the solution costs of the linear systems in VODE
are simply too low compared to the costs of all other calculations.

Based on our own box model test presented in this chapter, the following
more specific conclusions are drawn and recommendations are done.

e Explicit special purpose solvers provided with lumping seem to be the
best choice. The results clearly show that TWOSTEP and 3STEP are the
most efficient solvers for the present application and the accuracy range
of interest.

e Lumping of NO2 and NO into NO, and of NO; and O3 into O,
improves the iterative process substantially, so that only a few iterations
have to be taken to arrive at an acceptable performance, with respect
to efficiency, accuracy and conservation. For variable step sizes, 2 or 3
iterations are sufficient. For fixed, large step sizes, 3 to 5 iterations are
sufficient.

e Implementing 3STEP2 with variable step sizes instead of TWOSTEP2 is
expected to be somewhat more efficient (see Figure 6.1). Only one extra
solution vector need to be stored. In the present implementation, this is
an insignificant amount of memory. If the code is vectorized by looping
over the grid cells within the chemistry routine, then an extra solution
vector for each cell is necessary. The same holds for the reaction rates
and the stoichiometry factors. Since the code of the model has not
been written for vector machines, this argument plays no role. From
this point of view, there is no reason not to implement 3STEP.

e It is possible to use TWOSTEP and 3STEP with large, fixed time steps.
Up to time steps of about 450 seconds, the accuracies are acceptable.
For TWOSTEP applied with 3 iterations and a step size of 450 seconds,
the accuracy is 1%, approximately. From the figures with relative errors
for NO and NO; we know that the relative errors in these species are
most of the time smaller than the required 1%. Only for a few hours
the relative error is larger than 1%, which has, by definition, a relative
large influence on the SDA value. The same observation can be made
for 3sTEP.

e For fixed step sizes, 3STEP is a little more expensive than TWOSTEP.
If we, however, consider the work precision diagram for both solvers,
applied with fixed step sizes, the conclusion is that 3STEP is somewhat
more efficient.
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e In summary, our conclusion is that for the present application large,
fixed steps should be taken. Experiments showed that this is possible
from the accuracy point of view and it saves a considerable amount of
CPU time compared to variable step sizes. This is important because
the CPU time for the total model calculation should be restricted to
a few hours. Since 3STEP seems to be more efficient than TWOSTEPZ,
we decided to implement 3STEP with fixed time steps of 450 seconds
and 3 Gauss-Seidel iterations. Only for the first step, five iterations are
performed.



Chapter 7

Model comparisons

In this chapter, results of model runs using meteorological data from both a
winter smog and a summer smog episode will be presented. First we present
results of model runs for the winter episode of November/December 1989.
Next we present results for the summer smog episode of July 1989. For both
episodes hourly measurements of relevant species in a number of stations
in the Netherlands are available. Also measurements in EMEP stations are
available, but only on daily averaged basis. Figure 7.1 shows the distribution

Figure 7.1: Stations in the Netherlands (1) and EMEP stations (r)

of the stations of the Dutch National Air Quality monitoring Network and the
distribution of the EMEP stations over Europe. Unfortunately, for a large
number of the EMEP stations no measurements are available or cannot be
used because the altitude of the stations is too far above sea level. From the
few remaining measurements a concentration distribution over Europe has
to be derived. This will be a very crude estimation of the real distribution
and comparison of the model output with measurements on a European scale
will therefore only be indicative. For that reason we will restrict ourselves to
comparisons with measurements of the Dutch monitoring network. Another
reason to do so is that the model has been developed to give predictions for
the Netherlands.
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7.1 The November/December 1989 episode

In this section, results of experiments will be presented. First, a comparison
is made between the results of model runs with the original model EUROS and
CWIROS, in order to check whether CWIROS produces comparable results as
EUROS. Next, the virtue of grid refinement is illustrated by comparing results
obtained by using a number of refined grids to results obtained without using
grid refinement. Finally a comparison will be made with measurements.

7.1.1 Comparison between EUROS and CWIROS

As the original model EUROS is a model for winter smog, both models are com-
pared using data from the November/December 1989 smog episode. When
running CWIROS without grid refinement, the differences between EUROS and
CWIROS are:

o different advection schemes are used,

e CWIROS uses a much more complicated chemical model and conse-
quently solves the resulting chemical kinetics problem in a different
way,

e CWIROS uses other emission data than EUROS,
e CWIROS applies different deposition parameters for land and sea.

With respect to the chemical model, it should be noted that the more com-
plicated chemical model in CWIROS reduces to a very simple model in wintry
conditions when only considering SO, and SO4 and involves the same re-
actions as the simpler chemical model in EUROS. Therefore, both chemical
models are considered to be comparable when modeling SOz and SO4 in
winter. For this comparison however, we modeled the OH concentration in
CWIROS in the same way as it is done in EUROS, where the OH concentration
is prescribed as a function of time. This approach decouples SO and SO4
from the other species and thus simplifies the chemistry if only results for
SO, and SOy are desired (see [42]).

The operational code EUROS is run every day simulating a period of 5
days (or 120 hours). Therefore we chose a five days period from the se-
lected episode, from 27 November 1989 12:00 GMT till 1 December 12:00
GMT (for initialization purposes, the model starts one day earlier than the
specified time). In Figure 7.2 solution plots of both model runs at 1 Decem-
ber 12:00 GMT are given. Apart from differences which are probably caused
by the above mentioned reasons, both plots are in good agreement with each
other. Both plots show an increased SO, level mainly in or close to the
North-Eastern part of the Netherlands. This is in accordance with actual
measurements, as we will see later on.
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Figure 7.2: Solution plots for EUROS (1) and CWIROS (r) without grid refine-
ment, SO, in pgm ™3 for 1 December 1989, 12:00 GMT.

7.1.2 Grid refinement

The model runs have also been performed using 2, 3 and 4 grid levels. On grid
level 2 and 3 we always refined a rectangular area containing the Netherlands.
Further, grid refinement is enforced around all sources with the restriction
that grid refinement is never applied outside the region defined by [0°,15°] x
[-15°,0°] to prevent unnecessary and time consuming grid refinement. In
the solution plot the area in which refinement is allowed, is indicated by a
rectangle. In Figure 7.3 the solutions of two model runs are plotted. Both
solution plots are in good qualitative agreement with each other, indicating
a proper functioning of the grid refinement. The plots also show that grid
refinement results into a (slightly) different solution, as was to be expected.
Furthermore, as in Figure 7.2, the solution plots show a cloud with polluted
air over central and north-west Europe that just passes through the north-
eastern part of the Netherlands. The latter observation is in accordance
with Dutch measurements, as we will show in Section 7.1.3. Table 7.1 gives
some statistical information about the four model runs. The numbers in
the last column may serve as a measure for the efficiency of the refinement
procedure. The numbers specify the percentage of grid cells used in the
model runs relative to the number of cell necessary in case of a uniform
fine grid on the maximum grid level used. In the model runs, refining only
the Netherlands results into 196 cells on level 2, 616 cells on level 3. These
numbers are relatively small compared to the average number of cells used
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grid level
MAXLEV | TOL 1 2 3 4 total | uniform | %
1 - 2860 - - - 2860 - -
2 0.5 | 2860 | 2084 - - 4944 11440 43.2
3 0.5 | 2860 | 2054 | 4189 - 9103 45760 19.9
4 0.75 | 2860 | 1909 | 3323 | 7242 | 15334 | 183040 8.4

Table 7.1: Average number of cells for the model runs

on these grid levels, according to Table 7.1. If the Netherlands are further
refined on level 4, it would take 1824 extra cells. However, we do not refine
the Netherlands on level 4 automatically. If the Netherlands need further
refiment the space monitor is supposed to take care of that. This prevents
unnecessary refinement in (parts of) the Netherlands, and thus saves some

computation time.
\/E)o
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Figure 7.3: Solution plots for CWIROS using 2 grid levels (left) and 4 levels
(right). SO in pgm =3 at 1 December 1989, 13:00 MET.

7.1.3 Comparison with Dutch measurements

Comparing model results with observed concentrations is difficult. Not only
model errors are present, but we also have to deal with uncertainties in the
input parameters. An important parameter in the present experiment is
the 7. value (the surface resistance) of SO2. This parameter influences the
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dry deposition: the higher the surface resistance, the lower the deposition
velocity. As SO, is not very reactive (it is only slowly transformed into
SOy in our chemical model), dry deposition may cause significant removal
of SO;. However, the surface resistance of SO, is strongly dependent of
the soil condition. In case of a frozen soil and snow this value is about five
times higher than the default value 100 s/m. Because we do not have detailed
information about the surface conditions in the selected period, an estimation
for the surface resistance for SO5 had to be made. Fortunately, temperature
fields are available. We therefore estimated the surface resistance of SO,
based on the local temperature. If the temperature is lower than —1°C we
take r. = 540, if the temperature is higher than 1°C we take r. = 100 and
between —1°C and +1°C the surface resistance varies linearly between 540
and 100.

In Figure 7.4 measurements for the Netherlands are plotted. As can be
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Figure 7.4: SO, measurements in ugm =3 for 1-12-1989

seen from Figure 7.4, the highest concentrations are observed in the North-
Eastern part of the Netherlands. From Figure 7.4 it can also be seen that
a relatively large concentration gradient is present in the Netherlands, com-
pared to the spatial resolution on the base grid. Model calculations on the
base grid only will therefore not be able to reproduce this concentration gradi-
ent. However, we may expect that using a number of fine grid level improves
the results especially near the gradient. Figure 7.5 shows the computed dis-
tributions above the Netherlands using no grid refinement and using four
grid levels. Clearly the grid refinement delivers a much more realistic solu-
tion plot. It also nicely shows local sources that are invisible on the coarse
grid solution. However, comparing Figure 7.5 with Figure 7.4 reveals that
the computed concentration cloud in the northern part of the Netherlands
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Figure 7.5: Solution plots for SO in pgm~3 at 1 December 1989, 13:00
MET. Left: 1 grid level; Right: 4 grid levels

has a somewhat different position than the observed cloud. This also seems
to be the case with the small cloud in the south-west. Computed and ob-
served concentrations in a measurement station will therefore not match, just
because the computed concentration cloud may miss the station whereas in
reality it just passes the station. In particular, this will happen for stations
at the edge of the cloud.

The following will show that grid refinement sometimes gives less good
agreement with observations. Possible explanations will be given. These ex-
planations will reveal that in order to exploit the virtue of a higher numerical
resolution, the model input and model coefficients become more critical. Our
first comparison concerns three measurement stations from the Dutch Asir
Quality Monitoring Network, the stations 1-3 specified in Table 7.2. These
three stations are located in the same grid cell on the base grid. Moreover,
the three stations are very close to the observed concentration gradient. As
can be seen from Table 7.2, station 3 is the closest one. Also in station 3 the
highest SO, concentration is observed. Figure 7.6 shows the measured con-
centrations in the three stations. Figure 7.6a shows a peak in the observed
concentrations on 1 December at 12:00 for station 3 and at 13:00 for the other
two stations. Although the three stations are located in a small geographical
area, the observed peak values are quite different. On the other hand, the
time behavior for the three stations is comparable, so that one may expect a
similar time behavior for the model calculations in the coarse grid cell. From
Figure 7.6b it is seen that this is indeed the case and also that the model
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Figure 7.6: SO, measurements in ugm =3 for 30-11 and 1-12 1989. Left:
station 1 (dotted), 2 (dashed) and 3 (solid); right: averaged measured con-
centrations over the 3 stations (solid) and modeled concentration in the coarse
grid cell using 4 grid levels (dashed). The horizontal axis represents time in
hours, 30-11-1989 0:00 GMT = 72.

predicts the peak at the right time, though the modeled peak value is lower
than actually observed. After reaching the peak values, the observed con-
centrations decrease rapidly, whereas the modeled concentrations only slowly
decrease. The reason for this is not clear. Wind directions may have changed
very quickly. The model applies time interpolation between two 6-hour wind
fields and wind variations in the model are therefore always smooth. An-
other explanation could be the occurrence of precipitation. According to the
available precipitation fields derived from synoptic measurements, there was
no rain in the area of interest in the selected period. If there has been signif-
icant local rainfall, that has not been resolved by the measurements, upwind
of (or at) the stations, efficient wash-out would have taken place causing a
drop in concentrations as observed, which then would have become visible
in the model results, since wet deposition is included in the model. Another
possible explanation is a change in mixing height. If the mixing height in-

number | location 0 o}
1 Sappemeer 53.14 | 6.80
Hoogersmilde | 52.90 | 6.40
Wijerswold 52.66 | 6.81
Kloosterburen | 53.40 | 6.41
Cornjum 53.24 | 5.61

G W N

Table 7.2: Some measurements stations and their coordinates in degrees
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creases due to a change in weather conditions, the pollutants will be diluted
and their concentrations will decrease. The model, however, will not follow
such a change in mixing height, since the mixing height has a predescribed
profile and is taken constant in space.

On higher grid levels, the three stations are located in different grid cells.
Figure 7.7 contains the modeled concentrations plots for station 1 and 3
for two different grid levels. The prediction for station 1 shows no visible
improvement, whereas for station 3 shows less good agreement when using
more grid levels. A similar result is obtained for station 2 (not plotted). A
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Figure 7.7: Observed (dotted) and modeled SO; concentrations in the sta-
tions 1,2,3 and 5 using 1 grid level (solid) and 4 grid levels (dashed) in pug m~3
for 30-11 and 1-12 1989

possible explanation is the presence of a local source upwind from station 3,
that has not been resolved in the emission inventory of the model. In that
case the model can be expected to predict lower values when refining the grid.
Another explanation could be the fact that station 3 lies relatively close to
the concentration gradient that is present above the Netherlands, as can be
seen from the concentration plots in the Figures 7.2-7.5. If the wind fields
used in the model are slightly more in northern direction than was actually
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the case, large differences like we encounter now may readily occur. Recall
that the wind fields have to be obtained by time and spatial interpolation
from other wind fields in a different coordinate system, and then have to
be made divergence free. The latter process does not only affect the wind
speeds, but also (slightly) changes the wind directions. In our experiments,
we observed that the wind speeds at the cell centers (of the base grid) are
changed by about 10% on average.

Two other station were considered for comparing observations with model
predictions. It concerns the stations 4 and 5, also specified in Table 7.2. The
observed and modeled concentration profiles can also be found in Figure
7.7. Again we see that the peak values seem to be modeled at the right
time. For station 4 the grid refinement does not result into any improvement
of the modeled concentration profile. For station 5 however the result of
grid refinement is even more disappointing: instead of a closer resemblance
with the observed concentrations, the prediction becomes worse, similar as
was seen with the modeled concentrations for station 3. The same possible
explanations for the differences between modeled and observed concentrations
are valid as before.

7.2 The July 1989 episode

For summer smog, no comparison can be made between EUROS and CWIROS.
It would make no sense to let EUROS perform ozone calculations as the mod-
eled species in EUROS do not even include the VOCs which are essential in
ozone formation. In this section, we present results of model runs for a smog
episode from July 1989. The selected period is from 19 July until 24 July, a
time interval of 144 hours.

An interesting numerical observation has been made during the experi-
ments. The chemistry has to be solved such that the NO, balance in each
single cell is not disturbed (too much). If one does not take care of this, very
different model results are obtained. As the nonlinear system in the chemical
kinetics equations, arising from the BDF2 formula, is solved by Gauss-Seidel
iteration, see [65, 70], this observation provides a possible stopping criterion
for the iteration. In some cells probably the NO, balance is not disturbed
much and two iterations suffice, whereas in other cells 4 or 5 iterations are
necessary. In the present experiments the number of iterations was taken
equal to 5 in all grid cells. By specifying a stopping criterion, the algorithm
may be made more efficient.

7.2.1 Grid refinement

Apart from runs on the base grid, runs with 2, 3 and 4 grid levels have
been performed. Table 7.3 gives some information about the number of cells
used by the algorithm for the model computations. A comparison with the
corresponding Table 7.1 for the winter episode shows that in the present com-
putations more grid cells have been used, especially on the grid levels 3 and 4.
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grid level
MAXLEV | TOL 1 2 3 4 total | uniform | %
1 - 2860 - - - 2860 - -
2 0.5 | 2860 | 2232 - - 5092 11440 | 44.7
3 0.5 | 2860 | 2291 | 6597 - 11747 | 45760 25.7
4 0.75 | 2860 | 2276 | 6557 | 12207 | 23900 | 183040 | 13.1

Table 7.3: Average number of cells for the model runs

Both tables show that the grid refinement becomes more efficient for MAXLEV
larger than two. However, on our fastest workstation, the computations for
MAXLEV>2 took much more computing time than the allowed 3 or 4 hours.
This means that the restriction on the area in which the algorithm is allowed
to refine the grid, is necessary and even then we have to further restrict the
number of cells in order to meet the restriction on the computation time. Of
course it is possible to increase the tolerance on the higher grid levels, but
for the present experiments this has not been done in order to be sure of the
quality of the fine grid solutions.

Figure 7.8 shows the computed concentration distributions over Europe
according to a coarse and fine grid computation. Figure 7.8 clearly shows

< 50 <100 <120 >120

Figure 7.8: Computed O3 distribution in ug m~3 over Europe for 24-7-1989,
14:00 MET. For the coarse grid (1) and for 4 levels (r).

that grid refinement results into higher ozone concentrations in Europe, es-
pecially in the Netherlands and in Great Britain. From the comparisons in
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number | location 0 1)
6 Braakman 51.30 | 3.75
7 Wijnandsrade | 50.90 | 5.88
8 Houtakker 51.52 | 5.15
9 Hellendoorn 52.39 | 6.40

Table 7.4: Some measurements stations and their coordinates in degrees

Section 7.2.2 we will see that this means a better agreement with observed
concentrations.

7.2.2 Comparison with Dutch measurements

While the winter smog episode was mainly restricted to the North-Eastern
part of the Netherlands, in the present summer episode increased ozone con-
centrations are observed in the whole country. The highest concentrations
occur in the South. Therefore we took measurements from three stations in
the South together with one station in the North for comparisons with model
calculations. The stations are listed in Table 7.4. Figure 7.9 shows the con-
centrations in the stations 6-9. Note that the measurements series for station
6 is incomplete, unfortunately. Figure 7.9 clearly shows that grid refinement
improves the model predictions. Especially the peak values on the last day of
the simulations are much better represented in the 4-level computation than
in the coarse grid computation. We also see that the observed high values on
the third day of the simulation are not predicted by the model and that grid
refinement does not show improvement for that particular day. The nightly
minimum values for station 9 (the Northern station) seem to be systemati-
cally too high. This gives rise to some questions concerning some modeling
aspects and not concerning the grid refinement. In general we consider the
model results in this comparison to be quite good.

7.2.3 Timings

On the fastest workstation available at CWI, the model runs using up to three
grid levels could be done within four hours. Table 7.3 shows that the total
(average) number of cells doubles when increasing MAXLEV by one. Hence,
roughly speaking, the total CPU time also doubles. The run with MAXLEV=4
took about nine hours of computation time, the run with MAXLEV=3 only
four. For on-line application of the model MAXLEV should not be taken larger
than three.

7.3 Summary and conclusions

From the experiments described in this chapter the following conclusions are
drawn:
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Figure 7.9: Observed (dotted) and modeled concentrations using 1 grid level
(solid) and 4 grid levels (dashed) pg m=3

CWIROS is in accordance with EUROS in a qualitative way. Differences
are observed but seem to be caused by different (meteorological) input
and not due to (errors in) the computational process.

The time behavior of the model seems in order. The experiments in
Section 7.1 show that the model is able to predict concentration peaks
at the right time. This indicates that the emission inventory as well
as the advection and emission/deposition routines in the model are
correct.

The grid refinement technique works properly, but a better agreement
with observed concentrations has not been obtained by applying this
technique in the winter smog episode from November/December 1989.
In the July 1989 summer smog episode, the refinement does produce
concentration profiles that are in significantly better agreement with
measurements.

Restriction on the number of grid cells of the fine grids may be necessary
for summer smog computations due to operational constraints. The
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present approach of restricting the area in which the algorithm may
refine the grid is probably not sufficient.

The model seems to be sensitive for meteorological input. Because
of uncertainty about the wind fields (and how they are used in the
model) combined with uncertainty in other meteorological parameters,
the comparisons of modeled concentrations with observed concentra-
tions in Section 7.1 are only indicative. The same uncertainty holds for
the summer smog episode, see Section 7.2, even though in that case the
model computations are in good agreement with the measurements.

It has been shown that grid refinement did not result in a (significant)
better agreement between observed and modeled concentrations in all
cases. A reason for this might be that the improved spatial resolution
has not been used in an optimal way. More attention should be paid to
bringing the spatial resolution in the description of other (atmospheric)
processes in line with the spatial resolution of the fine grids. For exam-
ple, by using emission inventories with the same resolution as the finest
grid (7.5%x7.5 km.).



Chapter 8

Summary and conclusions

The project EUSMOG, of which this thesis is one of the scientific results, had
a twofold purpose.

The first purpose was the extension of the existing winter smog model
EUROS to a summer smog model. This summer smog model got the prelimi-
nary name CWIROS, which has, however, not been changed any more during
the course of the project. The modeling aspects of this extension were the
responsibility of the Dutch National Institute of Public Health and Environ-
mental Protection (RIvM). The RIVM was also the sponsor of the project
EUSMOG. Implementation was CWI’s responsibility. Most important aspects
of the model extension consist of the increased number of modeled species
(from 5 to 15) and the much more complex chemical mechanism. In addi-
tion, new emission data were used, that also contain point source information.
The consequence of these adjustments is that the computation time for one
model run drastically increases. In view of the on-line application, the total
computation time on a workstation needs to be restricted to 3 or 4 hours.

This lead to the second goal: the development of fast and efficient numeri-
cal methods for application in the smog model, as well as the implementation
of a local grid refinement technique. Because operator splitting is applied, it
is possible to choose a suitable numerical technique for each physical process
separately. In the research, attention is paid to

e local uniform grid refinement,
e numerical methods for advection and
e fast and efficient solvers for the chemical equations.

The latter is of great importance, because standard use of stiff ODE solvers
would lead to an unproportional amount of computation time for the chemi-
cal equations. Because of the restriction to the total computation time, it is
impossible to apply standard solvers. However, owing to the relatively low ac-
curacy requirement it is possible to use special purpose solvers. These solvers
can be more efficient than standard solvers for relatively low accuracies.

The results and conclusions of the research described in this thesis, can
be summarized as follows:

e The development of a compact Eulerian summer smog model has proved
to be possible. Its numerical implementation can be run on a worksta-
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tion and a model run can be performed within the allowed computation
time.

The grid refinement technique has to be based upon the finite vol-
ume approach. This prevents inconsistencies when dealing with (point)
sources. The technique presented in this work has been derived from
the one by Trompert & Verwer [63, 64]. Since the latter technique is
based upon the grid point approach, it has been adapted for finite vol-
umes. Because of the specific application, the datastructure has been
extended with a few pointers. Also, the procedures for interpolation of
values from a coarse to a fine grid and vice versa have been made mass
conserving.

The method of lines approach has been chosen for the treatment of
the advection. In the model, the limited third order xk = % space dis-
cretization with a third order Runge-Kutta time integrator has been
implemented. Apart from theoretical investigations on this space dis-
cretization and various time integration methods, a comparison is made
between the method chosen and other methods. We have investigated
whether flux corrected transport could be an alternative for making
solutions monotone in case the space discretization is not limited. The
(unlimited) third order and fourth order central discretization were con-
sidered. However, it turned out that flux corrected transport is com-
putationally expensive, although the accuracies are comparable. More-
over, implementation of flux corrected transport on irregular, refined
grids would be even more expensive.

For the numerical treatment of the chemical equations, a variant on
the method TWOSTEP has been chosen. The latter is based on the
BDF2 method. The system of nonlinear equations is not approximated
in the usual way, by application of Newton’s method, but a number
of Gauss-Seidel iterations is used instead. For gas-phase atmospheric
chemical systems this appears to work well. The iterative process can be
improved considerably by means of lumping. For the chemical model,
as described in this thesis, lumping of NO3 and NO into NO, and NO-
and Oj into O, turns out to be very effective. Instead of TWOSTEP, the
variant 3STEP, based on the BDF3 method, is recommended with fixed
step sizes of 450 seconds.

From box experiments with various special purpose solvers, it can be
concluded that TWOSTEP and 3STEP are much more efficient than meth-
ods based on the QSSA approach. The latter class of methods is widely
used in atmospheric models. Also a comparison is made with the state
of the art solver VODE, provided with sparse matrix routines to econ-
omize on the linear algebra. For relatively small chemical systems,
TWOSTEP and 3STEP appeared to be more efficient in the accuracy
range of interest. For larger systems (or larger accuracy) VODE often
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turns out to be more efficient, provided that the linear algebra has been
optimized.

e Compared to measurements, the model results are reasonable or good,
in particular for the summer smog episode considered. In most cases,
application of grid refinement results into a better agreement between
computed and measured concentrations. However, also situations oc-
cur in which model computations do not lead to good agreement with
measurements. In some cases, application of grid refinement leads to
less good agreement between modeled and measured concentrations. In
particular, this is the case for the winter smog episode considered. The
reason for that can be of a various nature. The modeling of some of
the physical processes need to be (re)examined critically.
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Samenvatting

Het project EUSMOG, waarvan dit proefschrift één van de wetenschappelijke
resultaten is, had een tweeledig doel.

Het eerste doel is het uitbreiden van het bestaande wintersmog model
EUROS naar een zomersmog model. Dit zomersmog model heeft in eerste in-
stantie de naam CWIROS gekregen. Gedurende het project is deze naam echter
niet meer gewijzigd. Voor deze modeluitbreiding was het Rijksinstituut voor
Volksgezondheid en Mileuhygiéne (RIVM), tevens opdrachtgever van het pro-
ject EUSMOG, de eerstverantwoordelijke. De implementatie kwam echter voor
rekening van het cwi. Belangrijkste aspecten van de bedoelde modeluitbrei-
ding waren het grotere aantal gemodelleerde chemische componenten (van
5 naar 15) en een veel ingewikkelder chemisch reactiemechanisme. Tevens
werden nieuwe emissiebestanden gebruikt die ook puntbroninformatie bevat-
ten. Het gevolg van deze aanpassingen was dat de benodigde rekentijd op
een workstation drastisch zou toenemen. Echter, de rekentijd diende beperkt
te blijven tot 3 a 4 uur vanwege de praktische toepassing.

Dit leidde tot het tweede doel: het ontwikkelen van snelle en efficiénte
numeriek-wiskundige methoden voor toepassing in het smog model, alsmede
de implementatie van een locale roosterverfijningstechniek. Omdat in het
model operator splitting wordt toegepast, is het mogelijk voor ieder fysisch
proces afzonderlijk een geschikte numerieke techniek te kiezen. In het onder-
zoek is met name aandacht gegeven aan numerieke methoden voor advectie,
daarbij rekening houdend met de gekozen gridverfijningstechniek, en snelle
en efficiénte solvers voor chemische vergelijkingen. Dit laatste is van groot
belang omdat bij standaard gebruik van stijve ODE solvers een onevenredig
groot deel van de rekentijd zou gaan zitten in het oplossen van chemische
vergelijkingen. Gezien de gestelde restrictie aan de totale rekentijd van het
model, is het onmogelijk standaard methoden toe te passen. Vanwege de
relatief lage nauwkeurigheidseis is het mogelijk special-purpose solvers te ge-
bruiken. Deze kunnen efficiénter zijn dan standaard solvers voor relatief lage
nauwkeurigheden.

De resultaten en conclusies van het onderzoek gerapporteerd in dit proef-
schrift kunnen als volgt worden samengevat:

e Het is mogelijk gebleken een compact Euleriaans zomersmog model
te ontwikkelen. De numerieke implementatie ervan kan draaien op een
workstation en een modelrun kan worden uitgevoerd binnen de gestelde
rekentijd.

e De gridverfijningstechniek dient gebaseerd te zijn op de eindige vo-
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lume aanpak. Dit voorkomt inconsistenties bij de behandeling van
(punt)bronnen. De gekozen aanpak is gebaseerd op de methode ontwik-
keld door Trompert & Verwer [63, 64]. Deze aanpak is echter gebaseerd
op een grid punt interpretatie en is daarom aangepast voor de eindige
volume benadering. Vanwege de toepassing is tevens de datastructuur
uitgebreid met een aantal pointers. Tevens zijn de procedures voor het
interpoleren van oplossingen van een grof naar een fijn grid en omge-
keerd massabehoudend gemaakt.

Voor de behandeling van de advectie is gekozen voor de methode der
lijnen benadering. In het model is de gelimite k = % plaatsdiscretisa-
tie met een derde orde Runge-Kutta tijdsintegrator geimplementeerd.
Naast theoretisch onderzoek naar deze discretisatie en verschillende
tijdsintegratie methoden, is een vergelijking gemaakt tussen de gekozen
methode en andere methodes. Daarbij is onderzocht of flux corrected
transport een alternatief kan zijn voor het monotoon maken van de op-
lossing in geval de plaatsdiscretisatie niet gelimit wordt. Naast de niet
gelimite derde orde plaatsdiscretisatie is ook de vierde orde centrale
discretisatie beschouwd. Het bleek echter dat flux corrected transport
weliswaar vergelijkbaar nauwkeurig is, maar ook duur. Implementatie
ervan op verfijnde roosters zou bovendien nog duurder uitpakken dan
op een regelmatig rooster.

Voor de numerieke behandeling van de chemische vergelijkingen is geko-
zen voor een variant op de methode TWOSTEP. Deze laatste methode is
gebaseerd op de BDF2 methode. Het stelsel niet-lineaire vergelijkingen
wordt echter niet met behulp van de methode van Newton opgelost (be-
naderd), maar door een aantal Gauss-Seidel iteraties. Dit blijkt goed te
werken voor gas-fase atmosferische chemische systemen. Het iteratieve
proces kan worden verbeterd door middel van lumping. Voor het che-
mische model, zoals beschreven in dit proefschrift, blijkt lumping van
NOz en NO in NO; en van NO; en O3 in O, zeer effectief. In plaats
van TWOSTEP wordt de variant 3STEP, gebaseerd op de BDF3 methode,
aanbevolen met gebruik van vaste tijdstappen van 450 seconden.

Uit box experimenten met verschillende special-purpose solvers bleek
dat TWOSTEP en 3STEP veel efficiénter zijn dan methoden gebaseerd
op de QSSA benadering. Deze laatste klasse van methoden wordt veel
gebruikt in atmosferische modellen. Tevens is een vergelijking gemaakt
met de state-of-the-art solver VODE, voorzien van ijle matrix routines
om de lineaire algebra efficiénter te maken. Voor relatief kleine che-
mische modellen bleken TWOSTEP en 3STEP efficiénter in het gewenste
nauwkeurigheidsgebied. Voor grotere systemen (dan wel voor hogere
nauwkeurigheid) blijkt VODE vaak efficiénter te kunnen zijn, mits de
lineaire algebra geoptimaliseerd is.

In vergelijking met meetresultaten zijn de modeluitkomsten redelijk
tot goed te noemen, met name voor de beschouwde zomersmog epi-
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sode. Toepassing van gridverfijning resulteert in een aantal gevallen
tot een betere overeenkomst tussen berekende en gemeten concentra-
ties. Er zijn echter ook situaties waarin de modelberekeningen geen
goede overeenkomst vertonen met metingen. In een enkel geval leidt
gridverfijning tot een minder goede overeenstemming tussen gemodel-
leerde en gemeten concentraties. Dit is met name het geval voor de
beschouwde winterepisode. De oorzaken hiervan kunnen van diverse
aard zijn. Er zal nog kritisch gekeken moeten worden naar de modelle-
ring van verschillende processen.

De indeling van dit proefschrift is als volgt:

Na het inleidende Hoofdstuk 1 wordt in Hoofdstuk 2 het fysische en che-
mische model beschreven.

Hoofdstuk 3 beschrijft de gridverfijningstechniek. Tevens wordt in dit
hoofdstuk een numerieke illustratie gegeven.

Hoofdstuk 4 behandelt numerieke advectie schema’s volgens de eindige
volume benadering. Uitgangspunt daarbij is massabehoud en het voorkomen
van under- en overshoot. De nadruk in dit hoofdstuk ligt op de gelimite x = 31;—
plaatsdiscretisatie gecombineerd met Runge-Kutta tijdsintegratie. Deze com-
binatie levert een massabehoudend schema op. Condities voor de tijdstap
worden afgeleid waarbij de numerieke oplossing vrij blijft van under- en over-
shoot. Daarnaast wordt ook Flux Corrected Transport (FCT) besproken als
mogelijkheid om het laatste te bereiken. Het hoofdstuk besluit met numerieke
experimenten met een aantal geselecteerde advectie schema’s.

Hoofdstuk 5 beschrijft special-purpose solvers voor het oplossen van che-
mische vergelijkingen. Deze methoden zijn vaak niet massabehoudend of zijn
dat alleen wanneer men een iteratief proces laat convergeren. In dit hoofdstuk
wordt daarom ook aandacht gegeven aan technieken om de massabalans te
verbeteren. Voor TWOSTEP en QSSA methoden wordt enige analyse gegeven
voor lineaire chemie, zowel met betrekking tot convergentie als massabehoud.

Hoofdstuk 6 bevat een numerieke vergelijking tussen verschillende chemi-
sche solvers door middel van een box model test. Deze test is zo opgezet
dat zoveel mogelijk recht wordt gedaan aan de praktische toepassing van de
solvers in het volledige model.

Hoofdstuk 7 laat resultaten zien van modelberekeningen, gedaan met ver-
schillende roosterniveau’s, en legt deze naast waarnemingen. Experimenten
voor een wintersmog en een zomersmog periode worden gepresenteerd.

Hoofdstuk 8, tenslotte, geeft een samenvatting van dit proefschrift en
bevat tevens de conclusies uit het onderzoek in het kader van het project
EUSMOG.






Appendix A

Shifted pole coordinates

A.1 Transforming 6§ and ¢

On the globe we define spherical coordinates. They are given by

z = rcosfcosd
y = rcosfsing (A1)
z = rsinf

where ¢ and 6 are the longitude and latitude in radians, respectively. The
(constant) radius of the earth is denoted by r. So the equator lies in the
plane z = 0 and the meridian through Greenwich in the plane y = 0. We will
describe the coordinate system resulting from a shift of the pole, or rather
the equator. This shift can be seen as rotation of the zy-plane around the y-
axis under an angle a, 0 < @ < 7, yielding a new coordinate system (Z, 7, )
which corresponds with (6, ¢) similar as in (A.1). It can be seen that

z

Figure A.1: Schematic representation of the transformation

r = ZTcosa — Zsina
y = 7 (A.2)
z = ZIsina + Zcosa

Combining (A.1) and (A.2) gives

zsina + xcosa (A.3)
= zcosa — zwsina ’

w8
|
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which, after substitution, results into

6 = arcsin{sinfcosa — cosf cos¢sina}
- sin @ sin a + cos 6 cos ¢ cos a (A4)
¢ = arccos =

cosf

It can be seen by substitution of ¢ = 0 that indeed § = § — a which in return
gives ¢ = arccos(1) = 0. The inverse transformation can easily be made by
interchanging (8, ¢) and (6, ¢) and substituting —c for « in (A.4). Note that
for the implementation of (A.4) one needs to make sure that the arguments
of the arcsin and arccos are in the interval [-1,1]. It was found that otherwise
problems may arise due to rounding errors.

A.2 Transforming u and v

In a similar way we derive the velocities %@ and @ in 0 in ¢ direction, respecti-
vely. Given the wind field (u, v) we decompose the wind field into components
Wz, Wy, 2y in ,y and z direction

w, = using — vsinfcos¢
wy = ucos¢ — vsinfsing (A.5)
w, = wvcosb

These components are used to obtain the components in Z, 7 and Z direction.

wz = wvcosfsina + (using — vsinfcos@)cosa
wy = wy (A.6)
w; = wcosfcosa — (usin¢ — vsinfcos¢)sina

Using w; = ¥ cosf we obtain

_— {vcos@cosa - (usinq&_—vsinﬂcosqﬁ)sina}‘ (A7)
cosf
The corresponding relation for wy yields
. {ucosqS—vsinOsin_¢+1')sin0—sinq_5} ' (A.8)
cos ¢

Another way to describe the transformation of the wind vector is to consider
the rotation of the coordinate axis. For a certain point (¢, ) on the globe,
the coordinate axis of the shifted pole coordinates are obtained by rotating
the coordinate axis of the usual spherical coordinates over an angle 3. This
angle 3 is different for each point. The velocities % and ¥ are then given by

42 = wucosf — wvsinp,
9 = wusinf + vcosp.
From (A.7) it follows that

sin ¢

sin = — ~,
s cos@



Appendix B

Time factors for emissions

source jan feb mar apr may june
category 1 2 3 4 5 6
1 1.07 1.07 1.07 093 093 0.93
1.55 1.55 155 0.45 045 0.45
1.20 1.20 1.20 0.80 0.80 0.80
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00

UL W N

source | juli aug sept oct mov dec
category 7 8 9 10 11 12
1 0.93 093 093 1.07 1.07 1.07
0.45 0.45 045 155 155 1.55
0.80 0.80 0.80 1.20 1.20 1.20
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00

DU W N

Table B.1: v, values per source category

source mon tue wed thu fri sat  sun
category 1 2 3 4 5 6 7

1 1.07 1.07 1.07 1.07 1.07 0.83 0.83
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.06 106 106 106 106 0.85 0.85
1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.26 126 126 1.26 1.26 035 0.35
1.00 1.00 100 100 100 1.00 1.00

DD UL W N

Table B.2: 74 values per source category
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source hour
category 1 2 3 4 5 6
1 0.83 0.83 0.83 0.83 0.83 0.83
2 0.50 0.50 0.50 0.50 0.50 0.50
3 0.70 0.70 0.70 0.70 0.70 0.70
4 1.00 1.00 1.00 1.00 1.00 1.00
5 0.10 0.10 0.10 0.10 0.10 0.10
6 0.20 0.20 0.20 0.20 0.20 0.20
source hour
category 7 8 9 10 11 12
1 0.83 1.17 1.17 1.17 117 1.17
2 0.50 1.50 1.50 1.50 1.50 1.50
3 0.70 130 1.30 1.30 1.30 1.30
4 1.00 1.00 1.00 1.00 1.00 1.00
5 0.10 1.90 190 1.90 1.90 1.90
6 0.20 1.80 1.80 1.80 1.80 1.80
source hour
category | 13 14 15 16 17 18
1 1.17 1.17 117 1.17 117 1.17
2 1.50 1.50 1.50 1.50 1.50 1.50
3 1.30 1.30 1.30 1.30 1.30 1.30
4 1.00 1.00 1.00 1.00 1.00 1.00
5 190 190 190 190 1.90 1.90
6 1.80 1.80 1.80 1.80 1.80 1.80
source hour
category | 19 20 21 22 23 24
1 1.17 083 0.83 0.83 0.83 0.83
2 1.50 0.50 0.50 0.50 0.50 0.50
3 1.30 0.70 0.70 0.70 0.70 0.70
4 1.00 1.00 1.00 1.00 1.00 1.00
5 1.90 0.10 0.10 0.10 0.10 0.10
6 1.80 0.20 0.20 0.20 0.20 0.20

Table B.3: ~, values per source category



Appendix C

Datastructure for grid
refinement

C.1 Approach

The way we look at a grid at a certain level is in fact not different from
the way we treat a standard rectangular uniform M x N grid where each
cell is identified by its row- and column number. Although the grid cells are
numbered from 1 to M x N instead of using a double index, information about
the row- and column number of each cell is available. The row- and column
number of a certain fine grid cell are equal to the row- and column number
the same cell would have if it was part of a uniform fine Myine X Nyine grid
over the whole model domain, where rows and columns are numbered from 0
to Mgine — 1 and Nyine — 1, respectively. In Figure C.1 an example is given
of a rectangular 6 x 6 base grid (dashed lines) with one level of refinement,
consisting of 40 cells. The bold numbers indicate the cell numbers in the fine
grid, the other numbers are coarse grid cell numbers. The idea is to store the
solution values row-wise. For each grid level the number of really existing
rows is specified (6 for the fine grid in Figure C.1) and indicate for each row
where it starts. In addition, for each cell the indices of the cells directly
above and below are specified. Also for each grid cell its column number
has to be specified. With all this information, discretisations of differential
equations on the fine grid can be implemented in quite a simple way. Below,
a specification of all (integer) arrays used to describe the grid structure, is
given.

C.2 Integer array(s)

The gridstructure for each grid level is contained in one large integer array
ISTRUC consisting of the following arrays:

e LROW(0:LROW(0)+1)
LROW(0): the number of rows in the grid
LROW(1:NROWS): pointers to the start of each row in the grid
LROW(NROWS+1): NPTS + 1, the total number of grid cells + 1
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§a1§sz§aa§34§asgssi
r _________ w| 0| oo .| :
] 29 . 30
; 20| 30 | 31| 32| 33| 3 : :
i 19 20 : 21 é 22 é 23 é 24 é
r _________ r _________ P ey ey e D
; 13 14 B
. i 17 18 19 20 21 22 ]
r _________ 9 [ 10| 11| 12| 1314 | 15| 16
i 7 2o
1 2 3 | a 5 |6 |7 | 8 '
Figure C.1: Example of a two level grid structure
e IROW(NROWS): the row number of each row in a virtual rectangle,
corresponding to its f-coordinate,
e ICOL(NPTS): the column number of a grid cell in the virtual rectangle,
corresponding to its ¢-coordinate
e IPREV(NPTS): pointers to the underlying coarse grid cells; filled with
zeros for the base grid,
e LBND(0:LBND(0)+LBND(1)+1)
LBND(0): NFBPTS, the total number of physical boundary cells in
the actual grid level
LBND(1): NIBPTS, the total number of internal boundary cells in the
actual grid level
LBND(2:NFBPTS+1): pointers to the physical boundary cells in the
grid
LBND(NFBPTS+2:NFBPTS+NIBPTS):
pointers to the internal boundary cells in the grid,
e LABOVE(0:NPTS): pointers to the node directly above each grid cell,

zero otherwise.
LABOVE(0) is zero, which makes recursive use of LABOVE possible,
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e LBELOW/(0:NPTS): identical to LABOVE but pointing to the cell di-
rectly below,

e INEXT(NPTS): if a cell is refined the corresponding entry of INEXT
points to the lower left of the four created fine grid cell on the next
level. Otherwise the pointer is set to zero. The pointers are only set
when actually creating a next finer grid level, so they are unknown
when integrating on the present grid level.

For each of the arrays listed above, we will give (some) values for the fine
grid in Figure C.1

« LROW[0] = 6; LROW([1..6] = [1,9,17,23,29,35,41]

o IROW[1..6] = [2,3,4,5,8,9]

o ICOL[1..8] = [2,3,4,5,6,7,8,9]

o IPREV([1] = 8; IPREV[39]=28

o LBND[0,1] = [0,30]; LBND[i+1] = i, i = 1...10

e LABOVE(0] = 0; LABOVE[i] = i + 8, i = 1...8; LABOVE[9]=0
e LBELOW/0..8] = 0; LBELOW[i] =i —8, i =9...16

o INEXT[i] =0, i=1...40
N.B. for the base grid we have INEXT[7..12] = [0,1,3,4,7,0]



Appendix D

Mass conservation for implicit

BDF methods

Consider the nonlinear ODE

y = f(y), yeR* (D.1)
and the general BDF formula

y*th = Y™ 4 (") (D.2)

to approximately solve this ODE. Suppose that one or more vectors w exist
for which w” f(y) = 0 for all vectors y, where w is a k-vector with constant,
nonnegative weights. If w” f(y) = 0, then the exact solution of (D.1) satisfies
a mass conservation relation of the form

wTy(t) = M, M constant. (D.3)

In Section 5.2.1 it was already shown that the exact solution of the BDF
formula (D.2) also satisfies the relation (D.3). We now show, along the lines
of Rosenbaum [50], that mass is also preserved if the solution for y™*! of
(D.2) is approximated by any finite number of modified Newton iterations.
Let y() denote the I-th iterate for y™*!. The modified Newton process to
obtain the (! + 1)-th iterate can be written as

(I = yrI@) D —y®) = Y™ + y7f(EY) - O, (D.4)

where J denotes the Jacobian matrix of f. Its argument § is arbitrary and
need not be equal to y(°), since implicit solvers usually keep the Jacobian
fixed during a number of time steps. Because w” f(y) = 0 for arbitrary y,
wT J(y) is zero as well for arbitrary y. Multiplication of (D.4) by w” gives

W) - y0) = WT(¥" - y®) = o,

since wTY™ = M because Y™ is a linear combination of mass conserving
solutions at previous time levels and the sum of the weights is one. Hence, the
approximate solution for y™*! of (D.2), obtained by any number of modified
Newton iterations, is mass conserving. This is even true if the start vector
y(® is not mass conserving. Multiplication of (D.4) by wT for I = 0 then
gives
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wT(y(l) _ y(O)) = M- wTy(O)’
or, equivalently,
wly® = M.

In other words, modified Newton iteration is mass conserving for any number
of iterations, independent of the start vector. In a similar way, it can be shown
that mass is also preserved in case of a constant source vector.

If wTf(y) <0, i.e. wly(t) decreases with time, it follows from (D.2)
that wTy"*+! < wTy", provided that wTY™ < wTy™. In that case, for the
modified Newton iterates the relation

wTy® < Ty, 1>1, (D.5)

holds, even if (D.5) does not hold for the start vector y(®). This can be seen
from (D.4) using the assumption wTY™ < wTy™. This assumption need not
be valid for general BDF methods. For BDF1 it is valid because then Y™ = y™.
For BDF2 it is also valid. The history vector for variable step sizes can be
written as Y™ = y™ + a(y™ — y™!), with a > 0. If we assume that the
solution y™ of the last time step satisfies the condition wT(y® —y™ 1) <0,
it follows that the assumption is valid. For BDF3 the assumption is not valid
in general.

In the above proof, the Jacobian matrix J plays a crucial role. The only
condition that needs to be satisfied is wT J(y) = 0 for all y. If the Jacobian
is obtained by numerical differencing, this relation may not hold. Of course,
also the linear system (D.4) needs to be solved exactly.



Appendix E
Coefficients for 3SSTEP

We write the third order BDF formula in the form
Y"1 = By 4 L1yt + Ba2y™ 4+ 7S

The parameters §; and v depend on two step size ratios

n — tn—l tn—l _ tn—2

co = —/ -, € =

tnt+l tn’ tntl _ ¢n .

Solving the order conditions gives

(1 + C())2
Bnsoa =—F———a
acy(co + ¢1)
3 B —(1+4co+c1)?
n (a+1)cocr
,Bn =1- ,Bn—l - ﬂn—2,
a = 2¢; +cocy + 4co + 2 + 3,

and the parameter v is given by

¥ = Bn+ (1 +co)Bn-1+(1+co+c1)Bn-2.



