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Introduction

1 Monotonicity for Runge-Kutta methods

The growth in power and availability of digital computers during the last half cen-
tury has led to an increasing use of sophisticated mathematical models in science,
engineering and economics. Systems of ordinary differential equations (ODEs ) fre-
quently occur in such models as they naturally arise when modelling processes that
evolve in time. A system of ODEs, for example, often models the time evolution
of chemical or biological species. Many other interesting examples can be found
in, e.g., Arrowsmith & Place (1982) and Strogatz (1994).

Usually, the state of the process is known at a particular (initial) moment
whereas its evolution has to be determined. One then arrives at an initial value
problem (IVP) for a system of ODEs.

In this thesis we consider IVPs for systems of ODEs that can be written in the
form

(1.1) —U)=FU®) (t=0), U(0)=u.

Here ug is a given vector in a real vector space V and F stands for a given function
from V into itself. The problem is then to find U(t) € V for ¢ > 0.

In most problems of this form that arise in practise, an analytical expression for
the solution cannot be obtained whereas often precise data are desired. Therefore,
it is common to seek approximate solutions of (1.1) by means of numerical methods.

There exists an extensive literature on numerical methods to approximate the
solution of IVP (1.1), see, e.g., Butcher (2003), Hairer, Norsett & Wanner (1993),
Hairer & Wanner (1996). In this thesis we consider the important class of Runge-
Kutta methods.

Runge-Kutta methods constitute a canonical class of so-called step-by-step
methods. In these methods, each step starts from a given approximation u,,_; of
U(t) at a point ¢t = t,_; > 0. A stepsize At > 0 is selected and t, is set equal
to t,—1 + At. An approximation u, of U(t,) is then computed from u,,_;. The
result of this step, w,, is then the starting value for the next step.

In particular, when a general Runge-Kutta method is applied to problem (1.1),
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the approximations wu,, of U(t,), can be defined in terms of u,_1 by the relations

Yi = Up—1 + Atzf’vijF(yj) (l<iL£s+1),
j=1

(1.2)

Up = Ys+1,

cf. e.g. Butcher (2003), Dekker & Verwer (1984), Hairer, Norsett & Wanner
(1993), Hundsdorfer & Verwer (2003).

Here k;; are real parameters, specifying the Runge-Kutta method, and y; (1 <
i < s) are intermediate approximations needed for computing u, = Ys+1 from
un_1. For the sake of simplicity, and to avoid unnecessary heavy notation later
on, we define the (s + 1) x s matrix K by K = (i;). Then we can identify the
Runge-Kutta method with the coefficient matrix K. If x;; =0 (for1<i<j<s)
then the intermediate approximations y; can be computed directly from ;1 and
the already known y; (j < i); otherwise a system of (nonlinear) equations has to
be solved to obtain y;. Accordingly, we call the Runge-Kutta method K explicit
in the first case, implicit otherwise.

In the literature, much attention has been paid to solving (1.1) by processes
(1.2) having a property which is called monotonicity (or strong stability). There
are a number of closely related monotonicity concepts; see e.g. Hundsdorfer &
Ruuth (2003), Hundsdorfer & Verwer (2003), Gottlieb, Shu & Tadmor (2001),
Shu (2002), Shu & Osher (1988), Spiteri & Ruuth (2002). In this thesis we shall
deal with a quite general monotonicity concept, and we shall study the problem of
finding Runge-Kutta methods which have optimal properties regarding this kind
of monotonicity.

We will deal with processes (1.2) which are monotonic in the sense that the
vectors u, € V computed from u,_; € V, via (1.2), satisfy

(1.3) tnll < [lun—all

~ here we assume ||.| to be a seminorm on the real vector space V (i.e. [lu+v[| <
||| + |jv]| and ||Av]| < |A[f|v]| for all A € R and u,v € V).

Although there are other situations where (1.3) is a desirable property or a
natural demand — see Harten (1983), Laney (1998), LeVeque (2002), Hundsdorfer
& Ruuth (2003), Hundsdorfer & Verwer (2003) — Runge-Kutta methods with the
property (1.3) have been designed specifically for solving IVPs, of form (1.1),
coming from a (method of lines) semi-discretization of time dependent partial
differential equations (PDEs), especially of conservation laws of the type

0 0
(1.4) Eu(m,t) + %(I)(u(z, t)) =0.
In order to illustrate why property (1.3) plays a key role when solving IVPs,
of form (1.1), arising from the application of the method of lines (MOL) to the
solution of time dependent PDEs, we shall elaborate, in the next section, a simple
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example based on a test PDE of the form (1.4). We will start with briefly explaining
the MOL. Then we will apply it when solving a Cauchy problem for the Burgers
equation. With such an example, we hope to clarify the importance of property
(1.3) in the context described above.

2 A numerical illustration

The application of the method of lines to a Cauchy problem for equation (1.4)
consists of two steps.

First a space-discretization (based, e.g., on finite-difference, finite-element or
finite-volume methods) is applied to (1.4). This will yield an IVP of the form
(1.1) with ¢ as continuous variable - the so-called semi-discrete system. In
this situation, the function F occurring in (1.1) depends on the given ® as
well as on the process of semi-discretization being used, and u¢ depends on
the initial data of the original Cauchy problem.

Secondly, a time-integration (e.g. a Runge-Kutta method or a multistep
method) is applied to the so-obtained IVP (1.1) to derive a fully-discrete
numerical process.

In order to clarify the approach described above, consider the Cauchy (Riemann)
problem for the test scalar Burgers equation (of the form (1.4))

0 (1

(2.1.a) gu(a:,t) + (% <§u2(x,t)> =0 t>0, —00 <z < 00,
1 forx <0,

(2.1.b) u(z,0) = { 0 forz>0

The function

( 1 forx<it)2
(2.2) u(z,t) = { 0 forz>t/2

is the exact (weak) solution of problem (2.1).

Clearly, there is no need to seek an approximate solution to problem (2.1), but
for illustration purpose only, we will apply the MOL. The solution of (2.1) will be
approximated by combining a space-discretization, based on the finite-difference
method, and a Runge-Kutta method as time integrator. Since the exact (weak)
solution is known, it can be compared to the numerical approximation and it
becomes easy to see whether the numerical solution is a reliable approximation or
not.

Given the mesh-width Az = 1, consider the point-grid in space G = {z; 2y =
JAxm, j = 0,£1,42,...}. The solution to (2.1) will be approximated at points
(z,t) and we will denote by U;(t) these approximations. To that end, the quantity
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53,; (3u*(z;,t)) is replaced by a (comservative) difference  quotient
e [% (UJ-(t))2 - 32U (t))z} . Then we obtain the following semi-discrete system
d 1 |1 g 1 2
Uit =—%- {Q(Uj(t)) — 5 (U;-1(®)

Using the vector notation U(t) = (...,U_1(t),Uo(t),Ui(t),...) € R>, we arrive at
the IVP (1.1), where V = R,

Since (1.1) now stands for a semi-discrete version of the conservation law (1.4),
it is important that the fully discrete process (consisting of an application of (1.2)

to (1.1)) is monotonic in the sense of (1.3) where [.|| denotes the total-variation
seminorm
+oo
(2.3) lyllrv = Z In; —mnj—1| (for y € R* with components 7;).
Jj=—00

With this seminorm, the monotonicity property (1.3) reduces to the so-called total-
variation-diminishing (TVD) property — see, e.g., Harten (1983), Laney (1998),
Toro (1999), LeVeque (2002), and Hundsdorfer & Verwer (2003).

We will now see why guaranteeing monotonicity (TVD property) in the nu-
merical approximation is important. To that end we solve (1.1) by applying two
different explicit Runge-Kutta methods. The first method is defined by the rela-
tions

Y1 = Un—1,
Y2 = Un—1 + AtF(y1),

(2.4) 1 1
Y3 = Up—1 + At(EF(Z/l) + §F(7/2))
Unp = Y3,

and the second by
Y1 = Unp—1,

s Yo = Up—1 — 20AtF (y1),

5 41 1

Yz = Up—1 + At(4_UF(y1) - 4_0F(U2))’

Un = Y3

— these two methods are taken from Gottlieb & Shu (1998).

It is easy to verify that the two methods coincide if F' is linear. However,
since the function F under consideration is not linear, we may and do observe
different results when the two methods are applied. We use the same fixed time
step At = 0.75 in both methods. In Figure 1, top and bottom, we show the results
of the first and the second method, respectively, after 53 time steps — so that the
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Figure 1: Top: solution with process (2.4). Bottom: solution with process (2.5).

profile of the true solution has moved over about 20 grid points. We clearly see
that the second result is oscillatory while the first one is not. Clearly the solution
on top approximates the true solution (2.2) well, while the solution on the bottom
does not. This is strongly connected to the fact that the Runge-Kutta method
(2.4) has property (1.3) (with ||.|| = ||.|[rv) while method (2.5) does not.

We finally note that demanding the TVD property (monotonicity) from the
numerical solution is a natural request. In fact, if we denote the restriction of the
solution (2.2) on the point-grid G by u(t) = (...,u(x_1,t),u(xo,t), u(xy,1),...), we
clearly have

lu(t)llrv < fut2)lrv

for every t; > to.

By the above, one is left with two questions: “How can we guarantee the
Runge-Kutta method (1.2) to have property (1.3)?” Whether a given Runge-
Kutta method (1.2) has property (1.3) or not depends (among other things) on
the stepsize. Accordingly, the second question is “How should one select a good
stepsize?” The answers to these questions are (essentially) the subject of this
thesis.
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3 Guaranteeing the monotonicity property: reviewing
some literature

By Shu & Osher (1988) (see also Shu (1988)) a clever representation of explicit
Runge-Kutta methods was introduced which facilitates the proof of property (1.3)
in the situation where, for some 79 > 0,

(3.1) lv+ 70 F(v)] < |jv|| (for all v e V).

Clearly, in case (1.1) stands for a semi-discrete version of (1.4), then (3.1) can be
interpreted as requiring that the semi-discretization has been performed in such
a manner that the simple forward Euler method, applied to problem (1.1), is
monotonic with stepsize 7.

In order to describe the representation introduced in Shu & Osher (1988),
suppose an arbitrary explicit Runge-Kutta methods (1.2) is given with coefficient
matrix K = (ki) -

We assume that \;; (1 < j <i < s+ 1) are any real parameters with

(3.2) Xt + A2+t X1 =1 (2<i<s+1),

and we define corresponding coeflicients j1;; by

i—1
(33) Mij = Kij — Z /\illﬂj (1 L<j<i<s+ 1)
I=j+1

(where the last sum should be interpreted as 0, when j =i — 1).
Statement (i) of Theorem 3.1, to be given below, tells us that the relations
(1.2) can be rewritten in the form

Y1 = Un-1,
i—1
(3.4) yi= > gy + At piFy;)] 2<i<s+1)
j=1
Up = Ys+1-

We shall refer to (3.4) as a Shu-Osher representation of the explicit Runge-Kutta
method (1.2).
Statement (ii) of Theorem 3.1 also specifies a stepsize restriction, of the form

(3.5) 0< At<c-,

under which the monotonicity property (1.3) is valid, when u,, is computed from
Un—1 according to (3.4). In the theorem, we shall consider the situation where

(3.6) X 20, py 20 (A<Lj<iss+1)
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Furthermore under condition (3.6), we shall deal with a coefficient ¢ defined by
(3.7) c=min{N;/pi; 11 £ j<i<s+1},
where we use the convention A/ = oo for A >0, p = 0.

Theorem 3.1 (Shu and Osher).
Let K = (kqj) specify an explicit Runge-Kutta method and assume \ij, pi; are as
in (3.2), (3.3). Then the following conclusions (i) and (i) are valid.

(i) The Runge-Kutta relations (1.2) are equivalent to (3.4).

(ii) Assume additionally (3.6) holds, and that the coefficient ¢ is defined by (3.7).
Let F be a function from V to V, satisfying (3.1). Then, under the stepsize
restriction (3.5), process (3.4) is monotonic; i.e. (1.3) holds whenever w,, is
computed from u,_1 according to (3.4).

The above theorem is essentially due to Shu & Osher (1988). The proof of
the above statement (i) is straightforward. Furthermore, the proof of (ii) relies on
noting that, for 2 < i < s+ 1, the vector y; in (3.4) can be rewritten as a convex
combination of the vectors [y; + At - (pi5/Ni;j)F(y;)] with 1 < j <i—1 and on
applying (essentially) (3.1) (with v = y;).

4 The limitation of the approach in the literature

4.1 Stepsize restrictions guaranteeing monotonicity for general
Runge-Kutta methods

It is evident that a combination of Statements (i) and (ii), of Theorem 3.1, imme-
diately leads to a conclusion which is highly relevant to the original Runge-Kutta
method K. We emphasize such a result in the following corollary.

Corollary 4.1.

Let K = (kij) specify an explicit Runge-Kutta method and assume \;;, pi; are as
in (3.2), (3.3) (3.6). Let ¢ be defined by (3.7). Then the conditions (3.1), (3.5)
guarantee the monotonicity property (1.3) for w, computed from u,_; by (1.2).

Clearly, it would be awkward if the factor ¢, defined in (3.7), were zero, or
positive and so small that (3.5) reduces to a stepsize restriction which is too severe
for any practical purposes — in fact, the less restrictions on At, the better. One
might thus be tempted to take the magnitude of ¢ into account when comparing
the effectiveness of different Runge-Kutta methods K. However, it is evident that
such a use of the coefficient ¢ defined by (3.7), could be quite misleading if, for a
given Runge-Kutta (1.2), the conclusion in Corollary 4.1 were also valid with some
factor ¢ which is (much) larger than the ¢ defined by (3.7).

For any given Runge-Kutta method K, the question thus arises what is the
largest factor €' (K), not necessarily defined via (3.7), such that the conclusion in
Corollary 4.1 is still valid.
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4.2 Optimal Shu-Osher representations

Consider once more Corollary 4.1. It is important to note that the coefficient
¢, given by (3.7), not only depends on the underlying Runge-Kutta method K =
(kij), but also on the parameters \;; actually chosen — the coefficients j1;; are fixed
by (3.3). Denoting by L the (s+1)xs matrix defined by L = (A;;), 1 < j <i < s+1
and 0 otherwise, we then indicate with ¢(K, L) the coefficient ¢ define by (3.7).

Suppose L = (5\”) are parameters which are best possible, in the sense that the
corresponding coefficient ¢(K, L), obtained via (3.7), satisfies ¢(K, L) > ¢(K, L),
for any other Shu-Osher representation of the given method K in question. Then
¢(K, L) depends only on the coefficient scheme K so that we can write c¢(K, L) =
¢(K). Then, a second question is: how can we determine (in a transparent and
simple way) parameters L = (5\”) leading to the coefficient ¢(K')?

A third natural question, related to Section 4.1, then arises: can € (K) be
larger than ¢(K)?

A fourth question is of whether the Shu-Osher Theorem 3.1 can be generalized
so as to become also relevant to Runge-Kutta methods which are not necessarily
explicit.

4.3 Computing optimal monotonic Runge-Kutta methods

In the following we denote by E , the class of all explicit s-stage Runge-Kutta
methods with (classical) order of accuracy at least p.

The questions formulated in the previous two sections are strongly related to
the problem of determining a method K, belonging to £, which is optimal with
regard to the size of its coefficient 4 (K). In spite of the (possible) limitations of
the coefficient ¢(K) for guaranteeing monotonicity of Runge-Kutta methods K,
much attention has been paid in the literature to optimizing ¢(K) — usually with
a terminology and notation somewhat different from the above - see e.g. Gerisch
& Weiner (2003), Gottlieb & Shu (1998), Ruuth & Spiteri (2002), Shu (2002), Shu
& Osher (1988), Spiteri & Ruuth (2002).

In fact, for various values of s and p, optimal methods K, w.r.t. ¢(K), were
determined within the class of E;, — see, e.g., Shu & Osher (1988), Gottlieb &
Shu (1998), Ruuth & Spiteri (2004), Spiteri & Ruuth (2003), Ruuth (2004).

For given s and p, the numerical searches carried out in the last three papers, are
essentially based on the following optimization problem (4.1), in which A, p;, v
are the independent variables and f(\;;, ptij,y) = 7 is the objective function.

(4.1) Maximize v, subject to the following constraints:
)\ij—’yu?;jZO (1§]<Z§S+1)
)‘ija Hij S&tiSfy (32), (33) (36)

the coefficients k;;, satisfying (3.3), specify a Runge-Kutta
method (1.2) belonging to class E .
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Clearly, the variable v in (4.1) corresponds to ¢ in (3.7), and parameters A;j, fu;;, ¥
solving the optimization problem (4.1) yield a Shu-Osher process in Ej, which is
optimal in the sense of ¢, (3.7).

It should be evident how the answers to the questions mentioned in the previous
two sections could strongly influence the relevance of Ruuth & Spiteri’s approach
(4.1). In particular, it would be of great interest to know whether their approach
can be improved and/or generalized so as to guarantee optimality w.r.t. ¢ (K).
Moreover, it would be of much interest if optimizations, with regard to € (K),
could also be carried out within classes of methods K which are not necessarily
explicit.

4.4 Boundedness for general Runge-Kutta methods

In the Shu-Osher Theorem 3.1 (and Corollary 4.1), conditions on the stepsize were
established which guarantee monotonicity property (1.3). These conditions were
derived under the assumption that the simple Euler method, applied to problem
(1.1), is monotonic, for the stepsize 75 — i.e., (3.1) holds.

However, important semi-discrete versions (1.1) of (1.4), cannot be modelled
suitably via condition (3.1), see, e.g., Shu (1987), Cockburn & Shu (1989). Clearly,
in such cases the stepsize restrictions which are relevant to the situation (3.1), do
not allow us to conclude any longer that a Runge-Kutta procedure is monotonic.

Although for these semi-discretizations condition (3.1) does not apply, the fol-
lowing weaker condition provides an appropriate model:

(4.2) lv 4+ 1F (V)| < (14 aom)|v]l + Boro  (for all v € V).

Here 7 is again positive, and ag, 3y are nonnegative constants. Condition (4.2) can
be interpreted, analogously to (3.1), as a bound on the increase of the seminorm,
when the explicit Euler time stepping is applied to (1.1) with time step 7.

In the situation where property (4.2) is present, it is natural to look for an
analogous property in the general Runge-Kutta process (1.2), namely

(4.3) lunll < (1 + aAt)]jun—i ]| + BA.

Here «, (3 denote nonnegative constants.

Suppose (4.3) would hold under a stepsize restriction of the form 0 < At < At,,.
By applying (4.3) recursively and noting that (1 + «At)™ < exp(anAt), we then
obtain

g

lun |l < €T |juol| + a(e“T —1) (for 0 < At < Atgand 0 < nAt < T)

— here g(eaT — 1) stands for 3T, in the special case where a = 0. Hence, property
(4.3) (for 0 < At < Atg) amounts to boundedness, in that

lun]| < B (for 0 < At < Aty and 0 < nAt <T)



10 Chapter I. Introduction

with B = e ||uo|| + £(e°T - 1).

Since (4.2) and (4.3) reduce to (3.1) and (1.3), respectively, when ap = 3y =
o = 3 =0, it is natural to look for extensions, to the boundedness context, of the
results in the literature pertinent to the monotonicity property. More specifically,
the natural question arises of whether stepsize restrictions of the form (3.5) can
be established which guarantee property (4.3) when condition (4.2) is fulfilled.

5 Scope of this thesis

In this thesis we propose a theory by means of which, among other things, the
open questions posed in Section 4 can be settled.

Chapter I is essentially addressed to the question raised in Section 4.1. First we
review the crucial quantity R(K) introduced by Kraaijevanger (1991). Then we
solve the question by proving that the factor ¢ (K') equals R(K') — such a conclusion
is given for arbitrary Runge-Kutta methods, either explicit or not. The contents of
this chapter are equal to FERRACINA L., SPIJKER M.N. (2004): Stepsize restric-
tions for the total-variation-diminishing property in general Runge-Kutta methods,
SIAM J. Numer. Anal. 42, 1073-1093.

In Chapter II we answer the questions of Sections 4.2. We give generalizations
of the Shu-Osher representation (3.4) and of the Shu-Osher Theorem 3.1; our gen-
eralizations are relevant to arbitrary Runge-Kutta methods K — either explicit or
not. With the help of such generalizations we are able to give, in a simple way,
special parameters L = (5\2]) leading to the coefficient ¢(K'). Moreover, we prove
that % (K) is never larger than ¢(K, L) = ¢(K). The contents of this chapter are
equal to FERRACINA L., SPUKER M.N. (2005): An extension and analysis of the
Shu-Osher representation of Runge-Kutta methods, Math. Comp. 249, 201-219.

In Chapter III we solve the questions of Section 4.3. We continue the analy-
sis of Shu-Osher representations so as to arrive naturally at a generalization and
improved version of Ruuth & Spiteri’s approach (4.1). Our procedure guarantees
optimality with respect to € (K). Moreover it is, unlike (4.1), also relevant to
Runge-Kutta methods which are implicit. The contents of this chapter are equal
to FERRACINA L., SPUKER M.N. (2005): Computing optimal monotonicity-
preserving Runge-Kutta methods, submitted for publication, report Mathematical
Institute MI 2005-07.

In Chapter IV we settle the question raised at the end of Section 4.4. We
propose a general theory yielding stepsize restrictions which cover a larger class
of semidiscrete approximations than covered so far in the literature. In particular
our theory gives stepsize restrictions, of the form (3.5), which guarantee, for gen-
eral Runge-Kutta methods (1.2), property (4.3) when condition (4.2) is fulfilled.
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The contents of this chapter are equal to FERRACINA L., SPIIKER M.N. (2005):
Stepsize restrictions for total-variation-boundedness in general Runge-Kutta pro-
cedures, Appl. Numer. Math. 53, 265-279.

For a more detailed introduction to the topics of this thesis, and for related

literature, we refer to the beginning of each chapter.
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CuaprTER 1

Stepsize restrictions for the
total-variation-dimishing
property in general
Runge-Kutta methods

The contents of this chapter are equal to: FERRACINA L., SPIUKER M.N. (2004):
Stepsize restrictions for the total-variation-diminishing property in general Runge-
Kutta methods, SIAM J. Numer. Anal. 42, 1073-1093.

Abstract

Much attention has been paid in the literature to total-variation-diminishing (TVD)
numerical processes in the solution of nonlinear hyperbolic differential equations.
For special Runge-Kutta methods, conditions on the stepsize were derived that
are sufficient for the TVD property, see e.g. Shu & Osher (1988), Gottlieb & Shu
(1998). Various basic questions are still open regarding the following issues: 1. the
extension of the above conditions to more general Runge-Kutta methods; 2. sim-
ple restrictions on the stepsize which are not only sufficient but at the same time
necessary for the TVD property; 3. the determination of optimal Runge-Kutta
methods with the TVD property.

In this paper we propose a theory by means of which we are able to clarify the
above questions. Moreover, by applying our theory, we settle analogous questions
regarding the related strong-stability-preserving (SSP) property (see e.g. Gottlieb,
Shu & Tadmor (2001), Shu (2002)). Our theory can be viewed as a variant to a
theory of Kraaijevanger (1991) on contractivity of Runge-Kutta methods.
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1 Introduction

1.1 The purpose of the paper

In this paper we shall address some natural questions arising in the numerical
solution of certain partial differential equations (PDEs). In order to formulate
these questions, we consider an initial value problem for a system of ordinary
differential equations (ODEs) of the form

d
(1.1) aU(t):F(U(t)) (t>0), U(0) = up.
We assume that (1.1) results from an application of the method of lines to a Cauchy

problem for a PDE of the form

%u(w,t) - O%f(u(zt)) =0 (t>0, —00o<z<00).
Here f stands for a given (possibly nonlinear) scalar function, so that the PDE is a
simple instance of a conservation law; cf., e.g., Kroner (1997) and LeVeque (2002).

The solution U(t) to (1.1) stands for a (time dependent) vector in R* =
{y :y = (-yn-1,M0,M,...) with n; € R for j = 0,%1,42,...}. The components
U;(t) of U(t) are to approximate the desired true solution values u(jAz,t) (or
cell averages thereof); here Ax denotes a (positive) mesh-width. Furthermore, F
stands for a function from R into R*°; it depends on the given function f as well
as on the process of semidiscretization being used. Finally, ug € R* depends on
the initial data of the original Cauchy problem.

Any Runge-Kutta method, when applied to problem (1.1), yields approxima-
tions u, to U(nAt), where At > 0 denotes the time step and n = 1,2,3,.... Since
4y(t) = F(U(t)) stands for a semidiscrete version of a conservation law, it is
desirable that the (fully discrete) process be total-variation-diminishing (TVD) in
the sense that

(1.2) lunllry < llun-1llrv;

here the function ||.||7v is defined by

+oo
lyllry = Z Inj —nj—1| (for y € R> with components 7;).

j=—o0

For an explanation of the importance of the TVD property, particularly in the
numerical solution of nonlinear conservation laws, see, e.g., Harten (1983), Laney
(1998), Toro (1999), LeVeque (2002), and Hundsdorfer & Verwer (2003).

By Shu & Osher (1988) (see also, e.g., Gottlieb, Shu & Tadmor (2001) and Shu
(2002)) a simple but very useful approach was described for obtaining (high or-
der) Runge-Kutta methods leading to TVD numerical processes. They considered
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explicit m-stage Runge-Kutta methods, written in the special form

Yy = Up—1,
1—1
(1.3) yi = Z[)\ij yi AL i Fy;)] 2<i<m+1),
j=1
Un = Ym+1-

Here A;j, j1;; are real coefficients specifying the Runge-Kutta method, and y; are
intermediate vectors in R*°, depending on wu,_;, used for computing u, (for
n=1,2,3,...). The following Theorem 1.1 states one of the conclusions formulated
in the three papers just mentioned. It applies to the situation where the semidis-
cretization of the conservation law has been carried out in such a manner that the
forward Euler method, applied to £U(t) = F(U(t)), yields a fully discrete process
which is TVD, when the stepsize At is suitably restricted, i.e.,

(1.4) lv+ At F(v)||lrv < ||v|lrv  (whenever 0 < At < 7y and v € R™).
Furthermore, in the theorem it is assumed that

(1.5.b) Aij 20, pi; >0 (1<j<i<m+1),

and the following notation is used:

(1.6.a) cij = Nij/mij (for pi; #0), ¢ =00 (for pi; = 0),

(1.6.b) c= l;i{ijllcij.

Theorem 1.1 (Shu and Osher).
Assume (1.5), and let ¢ be defined by (1.6). Suppose (1.4) holds, and

(1.7) 0<At<c- .
Then process (1.3) is TVD; i.e., (1.2) holds whenever u,, is computed from wu,_;
according to (1.3).

It was remarked, notably in Shu & Osher (1988) and Gottlieb, Shu & Tad-
mor (2001), that, under the assumptions (1.5), (1.6), the above theorem can be
generalized. Let V be an arbitrary linear subspace of R™ and let ||.|| denote any
corresponding seminorm (i.e., |[u + v|| < ||u]| + |Jv|| and [|Av| = [A| - |Jv|| for all
A€ R and u,v € V). A straightforward generalized version of Theorem 1.1 says
that if ': V — V and

(1.8) lv+ AtF(v)|| < |lv]| (whenever 0 < At < 79 and v € V),
then (1.7) still implies that

(1.9) [unl < flun-1l,
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when wu,, is computed from u, 1 € V according to (1.3). In the last mentioned
paper, time discretization methods for which a positive constant ¢ exists such
that (1.7), (1.8) always imply (1.9) were called strong-stability-preserving (SSP).
Property (1.9) is important, also with seminorms different from |[|.[[7y, and also
when solving certain differential equations different from conservation laws — see,
e.g., Dekker & Verwer (1984), LeVeque (2002), Hundsdorfer & Verwer (2003).

Clearly, it would be awkward if the factor ¢, defined in (1.6), would be so
small that (1.7) would reduce to a stepsize restriction which is too severe for any
practical purposes — in fact, the less restrictions on At, the better. One might
thus be tempted to take the magnitude of ¢ into account when comparing the
effectiveness of different Runge-Kutta processes (1.3), (1.5) to each other. However,
it is evident that such a use of ¢, defined by (1.6), could be quite misleading if,
for a given process (1.3), (1.5), the conclusion in Theorem 1.1 would also be valid
with some factor ¢ which is (much) larger than the one given by (1.6).

For any given method (1.3) satisfying (1.5), the question thus arises what is
the largest factor ¢, not necessarily defined via (1.6), such that the conclusion in
Theorem 1.1 is still valid. Moreover, a second question is of whether there exists a
positive constant ¢ such that (1.4), (1.7) imply (1.2), also for methods (1.3) satisfy-
ing (1.5.a) but violating (1.5.b). Two analogous questions arise in connection with
the generalized version of Theorem 1.1, related to the SSP property, mentioned
above.

The purpose of this paper is to propose a general theory which allows us to
answer the above questions, as well as related ones.

1.2 Outline of the rest of the paper

In Section 2 we present our general theory, just mentioned at the end of Section
1.1. Section 2.1 contains notations and definitions which are basic for the rest
of our paper. We review here the concept of monotonicity, which generalizes the
TVD-property (1.2) in the context of arbitrary vector spaces V, with seminorms
]I, and of general Runge-Kutta schemes (A,b). Furthermore, we introduce the
notion of a stepsize-coefficient for monotonicity, which formalizes and generalizes
the property of the coefficient ¢ as stated in Theorem 1.1. In Section 2.2 we recall
the concept of irreducibility for general Runge-Kutta schemes (A, b), and we review
the crucial quantity R(A,b), introduced by Kraaijevanger (1991). In Section 2.3
we present (without proof) our main result, Theorem 2.5. This theorem can be
regarded as a variant to a theorem, on contractivity of Runge-Kutta methods,
of Kraaijevanger (1991). Theorem 2.5 is relevant to arbitrary irreducible Runge-
Kutta schemes (A, b); it tell us that, in the important situations specified by (2.9),
(2.10), (2.11), respectively, the largest stepsize-coefficient for monotonicity is equal
to R(A,D).

In Section 3 we apply Theorem 2.5 to a generalized version of process (1.3).
After the introductory Section 3.1, we clarify in the Sections 3.2 and 3.3, respec-
tively, the questions raised at the end of Section 1.1 regarding the TVD and SSP
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properties of process (1.3). Section 3.4 gives two examples illustrating the superi-
ority of the quantity R(A,b) (to the factor ¢, given by (1.6)) as a guide to stepsize
restrictions for the TVD and SSP properties.

Section 4 is mainly devoted to explicit Runge-Kutta schemes which are optimal,
in the sense of their stepsize-coefficients for monotonicity. After the introductory
Section 4.1 we review, in Section 4.2, conclusions of Kraaijevanger (1991) regarding
the optimization of R(A,b), in various classes of explicit Runge-Kutta schemes
(A,b). Combining these conclusions and our Theorem 2.5, we are able to extend
and shed new light on (recent) results in the literature about the optimization of
¢ defined by (1.6). In Section 4.3 we describe an algorithm for computing R(A, b),
which may be useful in determining further optimal Runge-Kutta methods. Section
4.4 contains a brief discussion of a few important related issues.

In order to look at our main result in the right theoretical perspective, we give
in the final section, Section 5, not only the formal proof of Theorem 2.5, but we
present a short account of related material from Kraaijevanger (1991) as well. In
Section 5.1 we review Kraaijevanger’s theorem mentioned above, and we compare
it with our Theorem 2.5. In Section 5.2 we give the proof of our main result.

We have framed our paper purposefully in the way just described: the reader
who is primarily interested in our Theorem 2.5 and its applications (rather than
in the underlying theory) will not be hampered by unnecessary digressions when
reading Sections 2, 3 and 4.

2 A general theory for monotonic Runge-Kutta processes

2.1 Stepsize-coefficients for monotonicity in a general context

We want to study properties like (1.2) and (1.9) in a general setting. For that
reason, we assume that V is an arbitrary real vector space, and that F(v) is a
given function, defined for all v € V., with values in V. We consider a formal
generalization of (1.1),

(2.1) —U)=FU(t) (t=0), U0 = u,

where uy and U(t) stand for vectors in V.

The general Runge-Kutta method with m stages, (formally) applied to the
abstract problem (2.1), provides us with vectors uy, ug, us, ... in V (see, e.g., Dekker
& Verwer (1984), Butcher (1987), and Hairer & Wanner (1996)). Here u,, is related
to u,—1 by the formula

(2.2.a) Un = Un_1 + ALY biF(y;),

=1
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where the vectors y; in V satisfy

(22b) Yi = Up—1 + Atz aijF(yj) (1 S 1 S TT?/).

j=1

In these formulas, At > 0 denotes the stepsize and b, a;; are real parameters,
specifying the Runge-Kutta method. We always assume that by + bz + ...+ by, = 1.
Ifa;; = 0 (for j > i), the Runge-Kutta method is called explicit. Defining the mxm
matrix A by A = (a;;) and the column vector b € R™ by b= (b1,b2. b3, ..., b)T,
we can identify the Runge-Kutta method with the coefficient scheme (A, D).

Let ||.|| denote an arbitrary seminorm on V (i.e., [lu + v|| < [[ull + [lv|| and
| Av|| = |A| - |Jv]| for all real A and u,v € V). The following inequality generalizes
(1.2) and (1.9):

(2.3) l[nl < [lun—ll

We shall say that the Runge-Kutta method is monotonic (for the stepsize At,
function F, and seminorm |.||) if (2.3) holds whenever the vectors u,—1 and uy,
in V are related to each other as in (2.2). Our use of the term 'monotonic’ is
nicely in agreement with earlier use of this term, e.g., by Burrage & Butcher
(1980), Dekker & Verwer (1984, p.263), Spijker (1986), Butcher (1987, p.392),
Hundsdorfer, Ruuth & Spiteri (2003). Property (2.3) is related to what sometimes
is called practical stability or strong stability; see, e.g., Morton (1980) and Gottlieb,
Shu & Tadmor (2001).

In order to study stepsize restrictions for monotonicity, we start from a given
stepsize 19 € (0,00). We shall deal with the situation where I is a function from
V into V, satisfying

(2.4) lv+7moF(v)|| < |lv]| (for all v € V).

The last inequality implies, for 0 < At < 7o, that ||v+ AtF(v)| = ||(1 = At/70)v +
(At/70)(v + ToF(v))|| < |Jv]|. Consequently, (2.4) is equivalent to the following
generalized version of (1.4) and (1.8):

v+ AtF(v)|| < |lv|l (whenever 0 < At < 79 and v € V).

Let a Runge-Kutta method (A,b) be given. We shall study monotonicity of
the method under arbitrary stepsize restrictions of the form

(2.5) 0< At <c-1p.

Definition 2.1 (Stepsize-coefficient for monotonicity).

A walue ¢ € (0,00] is called a stepsize-coefficient for monotonicity (with respect
to V and |.||) if the Runge-Kutta method is monotonic, in the sense of (2.3),
whenever F is a function from V to V satisfying (2.4) and At is a (finite) stepsize
satisfying (2.5).
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It is easily verified that this definition is independent of the above value 7y: if
¢ is a stepsize-coefficient for monotonicity, with respect to V and |.||, using one
particular value 79 > 0, then ¢ will have the same property when using any other
value, say 74, > 0.

The concept of a stepsize-coefficient as introduced in the above definition, cor-
responds to what is sometimes called a CFL coefficient in the context of discretiza-
tions for hyperbolic problems; see, e.g., Gottlieb & Shu (1998) and Shu (2002).

In Subsection 2.3 we shall give maximal stepsize-coefficients for monotonicity
with respect to various spaces V and seminorms ||.||.

2.2 TIrreducible Runge-Kutta schemes and the quantity R(A, b)

In this subsection we give some definitions which will be needed when we formulate
our results, in Subsection 2.3, about maximal stepsize-coefficients ¢. We start with
the fundamental concepts of reducibility and irreducibility.

Definition 2.2 (Reducibility and irreducibility).
An m-stage Runge-Kutta scheme (A,b) is called reducible if (at least) one of the
following two statements (i), (ii) is true; it is called irreducible if neither (i) nor
(ii) s true.
(i) There exist nonempty, disjoint index sets M, N with M UN = {1,2,...,m}
such that b; =0 (for j € N) and a;; =0 (fori € M, j € N);

(ii) there exist nonempty, pairewise disjoint index sets My, My, ..., M,, with
1<r<mand My UM, U ...UM, ={1,2,...,m}, such that Zkqu aip =
Zk:e]\/fq ajr, whenever 1 <p<r,1<q<r, andi,je€ M,.

In case the above statement (i) is true, the vectors y; in (2.2) with j € N
have no influence on u,, and the Runge-Kutta method is equivalent to a method
with less than m stages. Also in case of (ii), the Runge-Kutta method essentially
reduces to a method with less then m stages; see, e.g., Dekker & Verwer (1984)
or Hairer & Wanner (1996). Clearly, for all practical purposes, it is enough to
consider only Runge-Kutta schemes which are irreducible.

Next, we turn to a very useful characteristic quantity for Runge-Kutta schemes
introduced by Kraaijevanger (1991). Following this author, we shall denote his
quantity by R(A,b), and in defining it, we shall use, for real £, the notations:

AE) = AT - €4)7, b(&) = (I —€A)™ ™,
e(€) = (I - €A) e, p(€) = 1+ &7 (I - £A) e

Here 7 stands for transposition after inversion, I denotes the identity matrix
of order m, and e stands for the column vector in R™, all of whose components
are equal to 1. We shall focus on values £ < 0 for which

(2.6) I—&§A isinvertible, A(§) >0, b(&) >0, e(€) >0, and (&) >0.
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The first inequality in (2.6) should be interpreted entrywise, the second and the
third ones componentwise. Similarly, all inequalities for matrices and vectors oc-
curring below are to be interpreted entrywise and componentwise, respectively.

Definition 2.3 (The quantity R(A,b)).
Let (A,b) be a given coefficient scheme. In case A >0 andb >0, we define

R(A,b) =sup{r: 7 >0 and (2.6) holds for all { with —r <§ < 0}.

In case (at least) one of the inequalities A > 0,b = 0 is violated, we define
R(A,b) =0

Definition 2.3 suggests that it may be difficult to determine R(A,Db) for given
coefficient schemes (A,b). However, in Section 4 we shall see that (for explicit
Runge-Kutta methods) a simple algorithm exists for computing R(A,b). Moreover,
Kraaijevanger (1991; p.497) gave the following simple criterion (2.7) for determin-
ing whether R(A,b) =0 or R(A,b) > 0. For any given k x | matrix B = (b ), we
define the corresponding k x [ incidence matriz by

IHC(B) = (Cij)-, with Cij = 1 (lf bij # 0) and Cij = 0 (lf bl] = 0)

Theorem 2.4 (About positivity of R(A,b)).
Let (A, b) be a given irreducible coefficient scheme. Then R(A,b) > 0 if and only if

(2.7) A>0, b>0 and Inc(A%) < Inc(A).

Proof. For ¢ sufficiently close to zero, the matrix [ —£A is invertible and e(&) > 0,
©(&) > 0. Therefore, it is sufficient to analyse the inequalities A(§) > 0 and
b(€) > 0. With no loss of generality, we assume A>0,b>0.

For £ close to zero, we have

A(€) = (A+€4%) (€A% and b(E)" = (b7 + €7 A) )> (€A
k=0 k=0

From these two expressions, one easily sees that there exists a positive r, with
A(€) >0 and b(¢)" >0 (for —r<€<0)

if and only if Inc(42) < Inc(A) and Inc(b”A) < Inc(b”). Since statement (i) in
Definition 2.2 is not true, we conclude that the last inequality is equivalent to
b>0. O

We note that, in Kraaijevanger (1991), one can find various other interesting
properties related to R(A,b), among them characterizations different from Defini-
tion 2.3.
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2.3 Formulation of our main theorem

In this subsection we shall determine maximal stepsize-coefficients (Definition 2.1)
with respect to general spaces V and seminorms ||.||. Moreover, we shall pay special
attention to the particular (semi)norms

oo
oyl ="l ly
-0

for y = (...,n-1,70,7m1,...) € R>®. Furthermore, for integers s > 1 and vectors
y € R® with components 7; (1 < j < s), we shall focus on the (semi)norms

oo

v =>Inj—mnjl

— 00

[lloo = sup |n;
oco<j<oo

S S
ylloo = e Inils Iyl = z; nils  llyllrv = z; Im5 — mj—-1l
j= j=

(where ijg [nj—nj—1] = 0for s = 1). In our Theorem 2.5, the following inequality
will play a prominent part:

(2.8) ¢ < R(A,b).

Here is our main theorem, about stepsize-coefficients of irreducible Runge-
Kutta schemes (Definitions 2.1 and 2.2).

Theorem 2.5 (Relating monotonicity to R(A,b)).

Consider an arbitrary irreducible Runge-Kutta scheme (A, b). Let ¢ be a given value
with 0 < ¢ < oo. Choose one of the three (semi)norms |||, |-/, or|.||rv, and
denote it by |.|. Then each of the following statements (2.9), (2.10) and (2.11) is
equivalent to (2.8).

(2.9) ¢ is a stepsize-coefficient for monotonicity, with respect to all vector
spaces V and seminorms ||.|| on V;

(2.10) ¢ is a stepsize-coefficient for monotonicity, with respect to the special
space V={y: y € R™ and |y|< oo} and seminorm ||.| =|.];

(2.11) c is a stepsize-coefficient for monotonicity, with respect to the finite
dimensional space V. =R* and seminorm ||.| =|.| for s=1,2,3, ...

Clearly, (2.9) is a priori a stronger statement than (2.10) or (2.11). Accord-
ingly, the essence of Theorem 2.5 is that the (algebraic) property (2.8) implies the
(strong) statement (2.9), whereas already either of the (weaker) statements (2.10)
or (2.11) implies (2.8).

The above theorem highlights the importance of Kraaijevanger’s quantity
R(A,b). Theorem 2.5 shows that, with respect to each of the three situations spec-
ified in (2.9), (2.10) and (2.11), the mazimal stepsize-coefficient for monotonicity
is equal to R(A,D).
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The above theorem will be compared with a theorem on nonlinear contractivity
of Kraaijevanger (1991) in Section 5.1, and it will be proved in Section 5.2.

3 The application of our main theorem to the questions
raised in Subsection 1.1

3.1 The equivalence of (a generalized version of) process (1.3) to
method (2.2)

In this Section 3 we study time stepping processes producing numerical approxi-
mations u, € R® to U(nAt) (for n > 1), where U(t) € R™ satisfies (1.1). We
focus on processes of the form

(3.1.a) Y1 = Up—1,

(3.1.b) yi = Z[/\zzj?/j + At F(y;)] (2<i<m),
j=1

(31L) Up = Z[/\""“in + Af $ ,u7rL+l,jF(yj)]'
j=1

Here \;j, pqi; are arbitrary real coefficients with

(3.2.a) M+ Xzt o+ Aim=1 (2<i<m+1).

Clearly, if \;; = p;; = 0 (for j > i), the above process reduces to algorithm
(1.3). Moreover, process (3.1) is sufficiently general to also cover other algorithms,
such as the one in Gottlieb, Shu & Tadmor (2001, p.109), which was considered
recently for solving (1.1).

In order to relate (3.1) to a Runge-Kutta method in the standard form (2.2), we
define \;; = p;; =0 (for i = 1 and 1 < j < m), and we introduce the (m +1) x m
matrices L = (\;;), M = (pi;). The m x m submatrices composed of the first
m rows of L and M, respectively, will be denoted by Ly and M. Furthermore,
the last rows of L and M — that is (Apm41.1, - Amt1,m) and (m+1,15 - hm+1,m)s
respectively — will be denoted by L; and M, so that

[ Lo ( o My
(3.2.b) L= < L, > and M = < M, >

We assume that

(3.2.¢) the m x m matrix I — Ly is invertible.
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We shall now show that the relations (3.1) imply (2.2), with matrix A = (a;;)
and column vector b = (b;) specified by

(3.3) A=(I—-Ly)*My and b" =M; + LA

We denote the entries of the matrix (I — Ly)~! by 7ij» and note that the
relations (3.1.a), (3.1.b) can be rewritten as

m m

(3.4) Z((Sjk: — Xjr)yk = §,1Un—1 + Zuijk (for 1 < j < m),
k=1 =1

where d;; is the Kronecker index and Fy = At - F(y;). Multiplying (3.4) by
7i; and summing over j = 1,2,...,m, we obtain, for 1 < ¢ < m, the equality
Y = (E;”:l Yi505,1)Un—1 + ZZ;I(Z;":I Yijthjk)Fr. In view of (3.2.a), the first sum
in the right-hand member of the last equality is equal to 1; hence (2.2.b) holds with
(aij) = (I — Lo)~*My. Furthermore, in view of (3.1.c), we easily arrive at (2.2.a)
with (bl, bg, ,bm) = Afl + LlA

Similarly to the above, the relations (2.2), (3.3) can be proved to imply (3.1),
so that the following conclusion is valid.

Lemma 3.1.
Let \ij and p;; be given coefficients satisfying (3.2.a), (3.2.b), (3.2.c). Define the
Runge-Kutta scheme (A, b) by (3.3). Then the relations (3.1) are equivalent to (2.2).

In the following subsections, we shall use this lemma for relating the monotonic-
ity properties of process (3.1) to those of the corresponding Runge-Kutta scheme
(A,b) given by (3.3).

3.2 The total-variation-diminishing property of process (3.1)

Our following Theorem 3.2 gives a stepsize restriction guaranteeing the TVD-
property for the general process (3.1). Since (3.1) is more general than process
(1.3), our theorem is highly relevant to (1.3). In the theorem, we shall use the
notation

R7v ={y: y € R® with ||yllrv < oo},

where ||.][7y has the same meaning as in Subsection 1.1. We shall deal with
functions F' from RF, into R7Y,, satisfying

(3.5) lv+ 70 F (0)||lry < |lvllrv  (whenever v € RF,),
and with stepsize restrictions of the form
(3.6) 0 <At < R(AD) -1

(see Definition 2.3).
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Theorem 3.2 (Optimal stepsize restriction for the TVD-property in process (3.1)).
Let \ij and p;j be given coefficients satisfying (3.2.a),(3.2.b),(3.2.c). Define the
matriz A and the vector b by (3.3), and suppose that the coefficient scheme (A, D)
is irreducible (Definition 2.2). Let F be a function from R, into RT, satisfying
(3.5), and let At be a (finite) stepsize satisfying (3.6).

Then, process (3.1) is TVD; i.e., the inequality (1.2) holds whenever u,—1,
u, € RS, are related to each other as in (3.1).

Proof. We apply Lemma 3.1, and consider the Runge-Kutta scheme (A, b) specified
by the lemma. Next, we apply Theorem 2.5: choosing ¢ = R(A,b), we have (2.8),
so that (2.10) must be fulfilled with |.| = ||.||7v. An application of Definition 2.1
completes the proof of the theorem. O

Remark 3.3. The above theorem has a wider scope than Theorem 1.1. The class
of numerical methods (3.1) satisfying (3.2.a), (3.2.b), (3.2.c) encompasses all pro-
cesses (1.3) satisfying (1.5.a), as well as other (implicit) procedures. Specifically,
unlike Theorem 1.1, the above Theorem 3.2 is relevant to processes (1.3) sat-
isfying (1.5.a) but violating (1.5.b) — see Example 3.7 in Subsection 3.4 for an
illustration. &

Remark 3.4. The above theorem, when applied to any process (1.3) satisfying
(1.5.a), (1.5.b), gives a stronger conclusion than Theorem 1.1. By Theorem 2.5,
property (2.10) with |.| = ||.][7v implies inequality (2.8). Therefore the coefficient
¢, given by Theorem 1.1, satisfies ¢ < R(A, b); this means that the stepsize restric-
tion (3.6) of Theorem 3.2 is, in general, less severe than the restriction (1.7) of
Theorem 1.1 — see Example 3.8 in Subsection 3.4 for an illustration. e

Remark 3.5. Theorem 3.2 gives a stepsize restriction which is optimal, in that the
conclusion of the theorem would no longer be valid if the factor R(A,b) in (3.6)
would be replaced by any factor ¢ > R(A,b). This follows again from Theorem
2.5. &>

3.3 The strong-stability-preserving property of process (3.1)

Let V be an arbitrary linear subspace of R>, and let ||.|| denote any seminorm on
V. For functions F' : V — V satisfying

(3.7) lv+10F (v)|| <|lv]| (whenever v e V),
we shall consider process (3.1) under a stepsize restriction of the form
(3.8) 0<At<ce-T9.

Following the terminology of Gottlieb, Shu & Tadmor (2001), already reviewed in
Subsection 1.1, we shall say that process (3.1) is strong-stability-preserving (SSP)
if a positive constant ¢ exists (only depending on A;; and 4,;) such that (1.9) holds
whenever (3.1), (3.7), (3.8) are fulfilled.
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Theorem 3.6 (Criterion for the SSP property of process (3.1)).

Let \i;j and p;; be given coefficients satisfying (3.2.a), (3.2.b), (3.2.c). Define the
matriz A and vector b by (3.3), and suppose that the coefficient scheme (A, b) is
irreducible (Definition 2.2). Then process (3.1) is SSP if and only if (2.7) holds.

Proof. By Lemma 3.1 and Theorem 2.5, process (3.1) is SSP if and only if R(A, b) >
0. According to Theorem 2.4, the last inequality is equivalent to (2.7). O

It is clear that the above Theorem 3.6, similarly as Theorem 3.2, is highly relevant
to all numerical processes (1.3) satisfying (1.5.a); see Examples 3.7 and 3.8 below
for illustrations.

3.4 Illustrations to the Theorems 3.2 and 3.6

We give two examples illustrating the Theorems 3.2 and 3.6.

Example 3.7. Consider process (1.3), with m = 3 and coeflicients \;;, p;; given
by the relations

A21 1 H21 } :
A3l Az2 = 11 % s H31 32 =172 1
Aa1 Aaz Aaz 100 Ha1 Ha2 fla3 + 12

Since p31 < 0, condition (1.5.b) is violated; therefore Theorem 1.1 does not apply.

For the corresponding matrix A = (a;;) and vector b = (b;) (see (3.3)). we
have a;; =0 (j > %), ag1 =1, az1 = azp = 1/4 and by = by = 1/6, b3 = 2/3,
respectively. It is very easy to see that (2.7) holds; by virtue of Theorem 3.6
the numerical process is thus SSP. Moreover, according to Kraaijevanger (1991;
Theorem 9.4), for this process we have R(A,b) = 1. By Theorem 3.2 we conclude
that the process is TVD, under the assumption (3.5), if 0 < At < 79. We note
that essentially the same numerical process was presented earlier by Shu & Osher
(1988); we shall come back to it in Section 4.2 (Remark 4.4; m = p = 3). &

Example 3.8. Consider process (1.3), with m = 2 and

(2 )=o) (i )-(35 1)

The conditions (1.5.a), (1.5.b) are neatly fulfilled, but the coefficient ¢, defined by
(1.6), is equal to 0.

For the corresponding Runge-Kutta scheme (A,b), defined by (3.3), we have
a;; =0 (j>1), agy =1/2 and by = by = 1/2. Clearly, (2.7) is fulfilled, guaran-
teeing the SSP property (see Theorem 3.6). Moreover, according to Kraaijevanger
(1991, Theorem 9.2), we have R(A,b) = 2. Therefore, by Theorem 3.2, the nu-
merical process is TVD, under assumption (3.5), if 0 < At < 2-75. We note that
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the same method was presented by Spiteri & Ruuth (2002); we shall come back to
it in Section 4.2 (Remark 4.4; m =2, p=1). <&

4 Optimal Runge-Kutta methods

4.1 Preliminaries

For integer values m > 1 and p > 1, we shall denote by E,,, the class of all
explicit m-stage Runge-Kutta methods (A,b) with (classical) order of accuracy
at least p. Considerable attention has been paid, in the literature, to identifying
methods of class E,,, of the special form (1.3), (1.5) which are optimal in the
sense of the coefficient ¢ given by (1.6); see notably Shu & Osher (1988), Gottlieb
& Shu (1998), Ruuth & Spiteri (2002), Shu (2002), and Spiteri & Ruuth (2002).
Independently of this work, Kraaijevanger (1991) dealt with the optimization, in
the full class E,, ,, of his quantity R(A,b). Our theory (Section 2) can be used to
relate his conclusions to the work just mentioned about optimization of ¢ defined
in (1.6).

In Section 4.2 we shall briefly review some of Kraaijevanger’s conclusions so
as to arrive at extensions and completions of the material, referred to above, on
optimality in the sense of ¢, (1.6). Furthermore, we shall consider scaled stepsize-
coefficients which reflect the efficiency of the methods better than the unscaled
coefficients; in Table I.1 we shall display optimal scaled stepsize-coefficients. Next,
in Section 4.3, we shall focus on an algorithm for computing R(A,b); the authors
feel that it can be useful in (future) calculations for determining, numerically, opti-
mal Runge-Kutta methods. Finally, in Section 4.4 we touch upon a few important
related issues.

4.2 Optimal methods in the class E,, ,

We start with the following fundamental lemma, which gives a simple upper bound
for R(A,b) in the class E,, ;.

Lemma 4.1 (Kraaijevanger (1991; p. 517)).
Let 1 < p < m, and consider an arbitrary Runge-Kutta method (A,b) of class
By e Then R(A,b) < m—p+1.

Remark 4.2. Ruuth & Spiteri (2002; Theorem 3.1) showed that, for Runge-Kutta
methods in class E,, , of the special form (1.3), (1.5), the coefficient ¢ defined by
(1.6) satisfies ¢ < m —p+ 1. Clearly, a combination of the above lemma and
our theory (Section 2) yields an extension and improvement over the last bound
on ¢ : for any Runge-Kutta method of class E,, ,, any stepsize-coeflicient for
monotonicity, say ¢/, and any of the situations covered by (2.9), (2.10) or (2.11),
we have ¢ <m —p+ L. O
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The following theorem specifies methods (A,b) for which the upper bound
R(A,b) <m —p+ 1 of Lemma 4.1 becomes an equality.

Theorem 4.3 (Kraaijevanger (1991; pp. 518-520)).

(a) Let p =1 < m. Then there is a unique method (A,b) of class E, , with
R(A,b) = m; it is given by a;; = 1/m (1 < j < i < m) and b; = 1/m
(1 <i<m).

(b) Let p = 2 < m. Then there is a unique method (A,b) of class E,, , with
R(A,;b) = m — 1; it is given by a;; = 1/(m —1) (1 < j < i < m) and
bi=1/m (1<i<m).

(c) Let p=3, m = 3. Then there is a unique method (A,b) of class E,, , with
R(A,b) = 1; it is given by as; = 1, as; = aga = 1/4, by = by = 1/6, and
by = 2/3,

(d) Let p =3, m = 4. Then there is a unique method (A,b) of class Ey, , with
R(A,b) = 2; it is given by as; = az1 = aza = by = 1/2 and ag; = b; = 1/6
(1<i<3).

Remark 4.4. Essentially the same methods as specified in the above theorem,
for m = p = 2 and m = p = 3, were already found by Shu & Osher (1988) in
a search for methods in E,, ,, of the special type (1.3), (1.5), with maximal ¢
(defined in (1.6)); Gottlieb & Shu (1998) proved optimality for these two methods
with respect to ¢, (1.6). In an analogous search, Spiteri & Ruuth (2002) arrived
at all other methods specified by the theorem, and proved optimality in the sense
of ¢, (1.6). Similarly as in Remark 4.2, our theory (Section 2) can be used here
to conclude that all methods given in Theorem 4.3 are optimal (with respect to
their stepsize-coefficients for monotonicity) in a stronger sense, and over a larger
class of Runge-Kutta methods, than can be concluded from the three papers just
mentioned. <&

Kraaijevanger (1991) did not specify analytically any methods (A,b) in Ey, ),
with maximal R(A,b), for pairs p, m different from those in Theorem 4.3. However,
he arrived at interesting (negative) conclusions: if method (A, b) is of class Ey,
and p = 3, m > 5, then R(A,b) < m —p+ 1; and if (A,b) belongs to E,, , with
p=m =4orp>5, then R(A,b) = 0. Moreover, by combining Kraaijevanger
(1986, Theorem 5.1), Spijker (1983) and our Theorem 2.5, one can conclude that
R(A,b) < m—p+1 also for all (4,b) in E,, , with p =4, m > 6. A combination of
these conclusions and our theory (Section 2) amounts to a far-reaching extension
of related results obtained in Ruuth & Spiteri (2002).

Kraaijevanger (1991, pp.522-523) constructed numerically an explicit 5-stage
method (A,b) of order 4, with R(A,b) ~ 1.508. It is interesting to note that the
same method was found by Spiteri & Ruuth (2002) in a numerical search within
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the class of methods (1.3) satisfying (1.5). By a similar search, the last authors
also found a 5-stage method of order 3 with ¢ & 2.651 (given by (1.6)). In view of
Kraaijevanger (1986, Theorem 5.3), Spijker (1983) and our Theorem 2.5, we can
conclude that this method has a value R(A,b) ~ 2.651, and is optimal in a stronger
sense and over a larger class of methods than follows from Spiteri & Ruuth (2002).

Clearly, when comparing two explicit Runge-Kutta methods to each other, one
cannot simply say that the one with the largest value R(A,b) is the most efficient
one. However, assuming that the stepsize At, used for solving (1.1) over some
interval [0, 77, is governed by monotonicity (TVD) demands, it seems reasonable
to use the quantity m - T/R(A,b) as a measure of the amount of computational
labor of a Runge-Kutta method (A, b) with m stages — cf. Jeltsch & Nevanlinna
(1981), Kraaijevanger (1986), Spiteri & Ruuth (2002) for related considerations.
In line with the terminology in the first two of these papers, we shall refer to the
ratio R(A,b)/m as a scaled stepsize-coefficient. The above mentioned measure, of
the amount of computational labor, is inversely proportional to R(A,b)/m, so that
the scaled stepsize-coefficient is a more realistic guide than R(A,b) for comparing
the efficiency of different methods to each other.

In Table I.1 we display scaled stepsize-coefficients of Runge-Kutta methods
(A, b), which were reviewed above and are optimal in E,, , with respect to R(A,b).

m=1|m=2|m=3|m=4|m=5
p=1 1 1 1 1 1
p=2 0.500 | 0.667 | 0.750 | 0.800
p=3 0.333 | 0.500 | 0.530
p=4 0.302

Table I.1: Scaled stepsize-coefficients R(A,b)/m for optimal Runge-Kutta methods
in K, p.

From the above table one may conclude that, for given p, it is advantageous
to use optimal methods with relatively large m. Clearly, this conclusion is (only)
justifiable under the above assumption about At being determined by monotonicity
demands. For related numerical experiments, see, e.g., Gottlieb & Shu (1998) and
Spiteri & Ruuth (2002).

4.3 Analgorithm for computing R(A, b), for methods of class E,,, ,

Below we will describe a simple algorithm for computing R(A,b) whenever (A, b)
is an irreducible Runge-Kutta scheme of class E,, ,. The following lemma plays a
fundamental role in the algorithm.
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Lemma 4.5 (Kraaijevanger (1991; pp. 497-498)).
Let (A, b) be an irreducible coefficient scheme and v a positive real number. Then
R(A,b) > r if and only if A >0 and the conditions (2.6) are fulfilled at & = —r.

It was noted by Kraaijevanger (1991) that the above lemma simplifies calcu-
lating R(A,b) if A > 0: for checking the conditions (2.6) on whole of an interval
[—7, 0], it is sufficient to consider only the left endpoint §{ = —r.

Let Testl and Test2(x) be boolean functions defined by

true if (2.7) holds,
false otherwise;

true if (2.6) holds at £ = x,

Testl = { false otherwise.

Test2(x) = {

From Lemma 4.1 we know that if (A,b) is a coefficient scheme of class E,, ,,
then R(A,b) < m —p+ 1. In view of the last inequality, Theorem 2.4 and Lemma
4.5 we can calculate R(A,b) with the wanted precision Tol, by using the above
boolean functions as well as two pointers LeftExtr and RightExtr. The following
algorithm finds R(A,b) with error < Tol.
x=0
if Testl

LeftExtr=-(m-p+1), RightExtr=0, x=LeftExtr

while (RightExtr-LeftExtr > 2-Tol)

if Test2(x)
RightExtr=x, x=(LeftExtr+RightExtr)/2
else
LeftExtr=x,  x=(LeftExtr+RightExtr)/2
end
end
end
R(A,b)=-x.

4.4 Final remarks

For completeness, we note that Gottlieb & Shu (1998), Shu (2002), Spiteri & Ru-
uth (2002) gave useful results regarding the optimization of ¢, (1.6), over classes
of low-storage schemes of the (special) form (1.3), (1.5). Furthermore, Kennedy,
Carpenter & Lewis (2000) obtained interesting related results regarding the opti-
mization of R(A,b) over general classes of low-storage schemes (A, b). Clearly, our
theory (Section 2) is fit to put also this work in a wider perspective.

Above, in Section 4, we dealt exclusively with explicit Runge-Kutta schemes.
However, in Kraaijevanger (1991) also (a few) results were obtained, regarding the
size of R(A,b), relevant to implicit schemes — see below. A combination of these
results with our Theorem 2.5 immediately leads to interesting conclusions about
stepsize-coefficients for monotonicity.
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For arbitrary (possibly implicit) schemes (A,b) of order p, the following gen-
eral results were obtained in Kraaijevanger (1991; pp. 514, 516): if p > 2, then
R(A,b) < oo; and if p > 7, then R(A,b) = 0. Moreover (on p.516 of that article),
a notable implicit method (A,b) was given, with a value R(A,b) exceeding the
upper bound of Lemma 4.1: the method with m = 2, a;1 = a12 = 0, a1 =
azo = 3/8, by = 1/3, by = 2/3 is of order p = 2 and has a value R(A,b) = 8/3.
The last value is considerably larger than the optimal value m —p+1 = 1, which
can be achieved in Eo o (cf. Section 4.2); but this advantage should of course be
balanced against the additional amount of work per step due to the implicitness
of the method.

We think that it would be very useful to perform a systematic search for implicit
methods which are optimal, for given m and p, in the sense of R(A,b). Because
such a search is beyond the scope of our present work, we do not go further into
this matter here.

Finally, we note that our algorithm in Section 4.3 can easily be adapted so as
to compute R(A,b) also for methods (A, b), of order at least 2, which are implicit:
we still base the algorithm on Lemma 4.5, and (instead of using Lemma 4.1) we
start with LeftExtr = £, where £ is a negative value at which (2.6) is violated; in
view of the bound R(A,b) < oo, such a £ can be found, e.g., by a simple doubling
process.

5 Kraaijevanger’s theory and our proof of Theorem 2.5

5.1 A theorem of Kraaijevanger on contractivity

Kraaijevanger (1991) presented an interesting theory, relevant to method (2.2) in
the situation where £ is a function from R into R®, and ||.|| is a norm on R®. The
focus in his paper is on numerical processes which, for given F, |||/, and At, are
contractive in the sense that

(51) H{Ln - ’U,nH < Han—l - un—lH

whenever both the vectors wu,,_1, u, and the vectors u,,_1, u, are related to each
other as in (2.2). Kraaijevanger studied property (5.1) for functions F' satisfying

(5.2) |F(2) — F(v) + p(0 —0)|| <p|lo—wv] (forallv,oeR®).

Here p is a positive constant; in the literature on numerical ODEs one often refers
to (5.2) as a circle condition (with radius p) on the function F' — cf. Kraaijevanger
(1991).

In order to be able to reformulate one of Kraaijevanger’s main results in such
a way that it can easily be compared to our Theorem 2.5, we consider stepsize-
restrictions of the form

(5.3) 0 <At <c¢/p.
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Furthermore, adapting our Definition 2.1 to the situation at hand, we arrive at the
following definition.

Definition 5.1 (Stepsize-coefficient for contractivity).

A wvalue ¢ € (0,00] is a stepsize-coefficient for contractivity (with respect to R®
and ||.||) if the Runge-Kutta method is contractive, in the sense of (5.1), whenever
F:R* — R® satisfies (5.2) and At is a (finite) stepsize satisfying (5.3)

The subsequent theorem is an easy consequence of Kraaijevanger (1991; The-
orem 5.4); it relates stepsize-coefficients for contractivity to the inequality

(5.4) c < R(A,D).

Theorem 5.2 (Relating contractivity to R(A, b)).
Consider an arbitrary irreducible Runge-Kutta scheme (A,b). Let ¢ be a given value
with 0 < ¢ < oo. Then both of the following statements are equivalent to (5.4).

(5:5) c is a stepsize-coefficient for contractivity, with respect to R® and
|l.Il, for each s > 1 and each norm ||.|| on R*;
(5.6) c is a stepsize-coefficient for contractivity, with respect to R® and

the special norm ||.||s, for each s > 1.

Since condition (5.2) is equivalent to requiring that the forward Euler method
with stepsize 7y = 1/p is contractive, there is a close resemblance between (5.2)
and (2.4) (with V = R"). Accordingly, one might think that (part of) our Theorem
2.5 is a simple consequence of Theorem 5.2. However, the following three remarks
indicate that the relation between the two theorems is far from being that simple.

Remark 5.3. Let ¢ be as in statement (2.11), with seminorm |.|| = ||.|[1 or ||.|| =
[|l./[7v. Theorem 2.5 claims that this coefficient ¢ must satisfy ¢ < R(A,b). This
claim cannot be expected to follow from the above Theorem 5.2; at best, it might
follow from a version of that theorem in which the norm |||~ (in (5.6)) would
simply be replaced by |.|[1 or |.[[zv. However, it is not known whether such
a version is actually valid - Kraaijevanger’s proof, underlying Theorem 5.2 as
formulated above, makes an essential use of a specific (geometric) property of the
norm ||.|loc which is not valid for [|.|[; or ||.|[7v; cf. Kraaijevanger (1991; p.505)
and Schonbeck (1967; Theorem 2.4) for more details. &

Remark 5.4. Let ¢ be as in (2.11), with ||.|| = ||.|[~. Even in this more convenient
situation, it is not evident how the inequality ¢ < R(A, b), claimed by Theorem 2.5,
could follow from Theorem 5.2. The fact is that (2.11) (with ||.|| = ||.||s) does not
imply (5.6), because, in general, monotonicity does not imply contractivity. &
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Remark 5.5. Suppose ¢ < R(A,b). Then Theorem 2.5 claims that (2.9) is valid
so that ¢ would certainly be a stepsize-coefficient for monotonicity, with respect
to R* and any norm on R®. Even this last property of ¢ does not follow from a
simple application of Theorem 5.2, because it is no obvious consequence of (5.5)

note that (2.4) (with V.= R®) does not imply (5.2) (with p = 1/79). <&

The above three remarks make clear that our Theorem 2.5 can be viewed as a
variant of Theorem 5.2 covering essentially new situations.

5.2 The proof of Theorem 2.5

5.2.1 Preliminaries

Throughout this Section 5.2 we assume, unless specified otherwise, that (A,b),
¢, and || are as explained at the beginning of Theorem 2.5. With no loss of
generality, we assume that ¢ is finite. Below we shall prove the theorem by showing
that the following five implications are valid: ~ (2.8) = (2.9), (2.9) = (2.10),
(2.10) = (2.11), [(2.11) with |.] = |./lrv] = [(2.11) with |.| = [|.]l}], and
finally [(2.11) with|.| = ||.|l1 or ||.]lec] = (2.8).

The first implication will be proved in Section 5.2.2, using arguments which
are analogous to arguments for proving that (5.4) implies (5.5) (see Kraaijevanger
(1991; pp. 502-504)).

The second implication is trivial, whereas the third and fourth implication will
be proved in Section 5.2.3. The proofs, in this section, are not related to arguments
used in Kraaijevanger (1991), but are based on Lemma 5.6. This lemma gives
a general framework in which the property of ¢ being a stepsize-coefficient for
monotonicity can be carried over from a space Y with seminorm |||y to another
space X with seminorm ||.[|x.

The proof of the fifth implication will be given in Section 5.2.4.

In that section we shall first deal with a linear variant of process (2.2). Lemma
5.7 tells us that a monotonicity property of that variant implies (2.8); the lemma
is relevant to the norms ||.||,, with p = 1 and p = oo. This lemma, with value
p = 00, was used implicitly by Kraaijevanger (1991; pp. 507-508) in a proof related
to the implication (5.6) = (5.4) (cf. Theorem 5.2).

Next, we shall give Lemma 5.8, which states that property (2.11), with
|-l =, and p = 1 or p = oo, implies the monotonicity property of the linear
variant considered in Lemma 5.7. A combination of Lemmas 5.7 and 5.8 proves
the fifth implication. Our proof of Lemma 5.8 has no relation to arguments in
Kraaijevanger (1991); it makes use, among other things, of arguments employed
earlier in Spijker (1986).

For completeness we mention that no counterpart of Lemma 5.8 is known to
the authors which is relevant to contractivity with respect to R® and |[|.|[; — cf.
Remark 5.3 and Kraaijevanger (1991; p. 505).
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5.2.2 Statement (2.8) = statement (2.9)

We start this subsection by introducing some notation relevant to the vector space
V. For any vectors vy, vs,...,0,, in V, we shall denote the vector in V" with
components v; by

vy

v=[y] = cevm.
/U7”,

Furthermore, for any (real) I xm matrix B = (b;;), we define a corresponding linear
operator By, from V™ to V!, by By(v) = w, for v = [v;] € V™, where w = [w;] € V!
with w; = Z;":] bijv; (1 <i<l). Clearly, if B and C are [ xm matrices and D is an
m x k matrix, then (B+C)y = By +Cy, (AB)y = A- By, (BD)y = By - Dy. Here,
the addition and multiplications occurring in the last three left-hand members
stand for the usual algebraic operations for matrices, whereas the addition and
multiplications in the right-hand members apply to linear operators. The last
three equalities will underlie part of our subsequent calculations.

Assume (2.8), and let F' be a function from V to V satisfying (2.4). We have to
prove that c is a stepsize-coefficient for monotonicity, i.e., 0 < At < ¢- 79 implies
lun|| < ||un—1]|| whenever u,, and u,_; are related to each other by (2.2).

Assuming (2.2), with 0 < At < ¢- 79, we obtain

m
(5.7.a) Up = Up—_1+ ij'wj,
j=1
m
(5.7.b) Yi = Up_1+ Zaijwj (1 <i<m),
j=1

where w; = AtF(y;). Putting v = At/79, we have |lw; + cyi| = ~|(¢/7)y: +
0F (ya)ll <v{(c¢/v = Dllyll + llyi + 70F (yi)||}. Therefore, in view of (2.4),

(5-8) lwi + eyill < ellgll-

Defining y = [y;] € V", w = [w;] € V™, and e = (1,...,1)7 € R™, we can rewrite
(5.7) as

(5.9.a) Uy, = Up—1+ bTw,

(5.9.b) y = eu,_1+ Aw,

where b7 = (bT)y, e= (e)y, and A = Ay. Denoting the identity in V™ by I, we
see from (5.9.b) that (I+ cA)y = eu,_1 + Aw + cAy = eu,,_1 + A(w + cy). From

Lemma 4.5, we conclude that (2.6) holds with £ = —c and that A > 0. Therefore,
I+ cA is invertible and

(5.10) y=(I+cA) teu, 1 + AT+ cA) "} (w + cy).
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Since (I +cA)~'e = e(—c) > 0 and A(I + cA)~! = A(—c¢) > 0 we arrive at the
inequality [[|yi]]] < lun—1[/(I +cA)~te+ A +cA)~ |lw; + cyill]. In view of (5.8),
there follows [[|yill] < l[un—1]/(I +cA)~re+ cA(I + cA)~ {||y:]l], which is the same
as (I 4+ cA) " )will] < llun—1]/(I + cA)~te. Multiplying the last inequality by the
matrix I + cA > 0, we can conclude that

(5.11) Iyl < llup—all (1 <i<m).
Using (5.9.a), (5.10) we obtain

Up = Up1+blw=1tp_q — chy + bT(w + cy)
= Uy — b {(I+cA) reu, 1 + AT+ cA) (w+cy)} + b” (w + cy)
= {1-cb"(I+cA)e}uy_1 + b (14 cA) " (w + cy).
Since ¢(—c) > 0, b(—c) > 0, and (5.8), (5.11) are valid, we see from the last
expression for u,, that
lunll < {1 =eb"( +cA) " eHlun—all + b7 (I + cA) ™ llwi + cyil]
< {1—eb"(I +cA) T e}lun1ll + (b (I + cA) " e)lun-a]l = un-]-

This completes the proof of (2.9).

5.2.3 Statement (2.10) = statement (2.11); and
statement (2.11) with |.| = ||.||rv = statement (2.11) with |.| = ||.|l1

We start this subsection by giving Lemma 5.6. The lemma deals with a general
situation where

5.12.a) X and Y are vector spaces, with seminorms |.[|x and ||.|ly, respectively,
)

(
(5.12.b
(
(

S : X — Y is a linear operator,
5.12.c) Sz =0 only for z =0,
5.12.d) ||lz||x = ||Sz|ly (for all z € X).

Lemma 5.6. Assume (5.12) and let ¢ be a stepsize-coefficient for monotonicity,
with respect to Y and ||.||y. Then c is also a stepsize-coefficient for monotonicity,
with respect to X and ||.||x.

Proof. Let At be a stepsize with 0 < At < c¢- 79, and let F': X — X with
(5.13.0) e + oF(@)lx < lzlx (on X).

Suppose the relations (2.2) are fulfilled. We have to prove that

(5.13.b) llunllx < |ltwn—1lx-

We define the subspace Yo = {y : y = Sz for some z € X} and we introduce
a linear transformation 7', from Yo onto X, by Ty = x (for y = Sx € Y).
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In view of (2.2), the vector v, = Su, is generated from v,_; = Su,—1 by
applying the Runge-Kutta method to the function Gy : Yo — Yy, defined by
Go(y) = SFT(y) (for y € Yy). Using (5.12.d) and (5.13.a), one easily sees that
ly + 70Go(y)lly < [lylly (for all y € Yo).

We define G : Y — Y by G(y) = Go(y) (for y € Yy) and G(y) = 0 (for
y € Y\ Yy). Clearly |ly + 70G(y)|ly < |lylly (for all y € Y). Moreover, the vector
v, can be viewed as being generated from v, _; by applying the Runge-Kutta
method, with stepsize At, to the function G. Consequently, ||v,|ly < [[vn—1]v.
Combining this inequality and (5.12.d), we arrive at (5.13.b). O

Now assume (2.10). We shall prove (2.11) by applying Lemma 5.6.

We define X = R*, Y = {y : y € R® and |y| < o}, and |z[|x = |z
lylly = |y] (for 2 € X and y € Y, respectively). Furthermore, we introduce the
operator S by

gp = d (50.0,21,22,.,24,0,0...) if |.]= 1l or |-]I1,
{0 BTaals B s Bpss; BgsBlss Dgmws) 1L Il: IRIER%

for x = (z1,x9,...,75) € X.

With these definitions, the conditions (5.12) are fulfilled. In view of (2.10), we
can apply Lemma 5.6 so as to conclude that (2.11) holds.

Finally assume (2.11) with |.| = ||.|7v. Let s > 1 and X = R®, ||lz|x = ||=|
(for z € X). We want to prove that ¢ is a stepsize-coefficient for monotonicity with
respect to X and ||.||x.

In order to be able to apply Lemma 5.6 to the situation at hand, we define
Y = Rt lylly = lyllrv (for y € Y). Furthermore, for z = (21,2, ...,75) € X
we define Sx = (y1,...,ys11) with 4 = 0 and y; = 21 + 22 + ... + ;1 (for
2<i<s+1).

One easily sees that, with the above definitions, all assumptions of Lemma 5.6
are fulfilled. Hence, ¢ has the required property.

5.2.4 (2.11) with |.| = ||.|l1 or [|.|loc => (2.8)

Throughout this subsection we shall use, for p = 1,00 and s x s matrices GG, the
notation [|G||, = max ||Gv||,/||v||,, where the maximum is over all nonzero vectors
v in R?. Furthermore, we shall denote the s x s identity matrix by [.

Let G1,Gs,...,G,, be given s x s matrices. We consider a linear variant of
(2.2) (with n = 1, up € V = R®) in which all vectors F(y,) are replaced by
G, y;. Furthermore, we consider the following linear variant of condition (2.4):

Choose At = c1y and write Z; = AtG;. Then the above linear variants of (2.2)



38 Chapter I.  TVD Runge-Kutta methods

and (2.4), respectively can be written in the form

(514&) Uy = up + ijijj,
=1

(514b) Y = U + ZCLIJZLUJ (1 < ) & 77L),
j=1

and

(5.15) lel + Zillp, <¢ (1 <i<m).

In the following we shall focus on ordered m-tuples Z = (Zy, Zs, ..., Zm ), where the
Z; are s X s matrices, such that (5.15) holds and the system of equations (5.14.b)
has a unique solution yi, ¥, ..., Ym. The set consisting of all of these Z will be
denoted by Z,(c, s).

For any Z in %,(c, s), the vector u; in (5.14) depends uniquely and linearly on
up; we denote the s x s matrix transforming ug into u; by K(Z). We thus have

(5.16) u; = K(Z)up whenever Z € Z,(c,s) and ug,u; € R® satisty (5.14).
The inequality
(5.17) |IK(Z)||, <1 (for all Z € Zy(c,s) and s > 1)

amounts to a monotonicity condition on process (5.14). It will be related to (2.8)
and to (2.11) in the subsequent Lemmas 5.7 and 5.8, respectively.

Lemma 5.7.
Consider an arbitrary irreducible Runge-Kutta scheme (A,b), and letp =1 orp =
0. Let0 < ¢ < o0, and assume condition (5.17) is fulfilled. Then c satisfies (2.8).

Proof. In Kraaijevanger (1991) this lemma was proved (implicitly) for p = oo.
The proof in that paper is long and technical, but it is presented in a very clear
way. Therefore, we do not repeat it here, but note that the actual proof (given
on pp.507-508 of the paper) consists in a combination of conclusions regarding
absolute monotonicity (on pp.485-496) with Lemma 5.10 (on p.505). The conclu-
sions stated on pp.485-496 are independent of the norm in R®, whereas Lemma
5.10 is tuned to the special norm |[|.||. It is not difficult to adapt the proof of
the last mentioned lemma to the norm ||.||; so as to conclude that Lemma 5.10 is
verbatim valid for ||.||; as well. As a result, the arguments in Kraaijevanger (1991;
pp. 507-508) prove our Lemma 5.7 also for p = 1. O

A combination of the following lemma and Lemma 5.7 immediately leads to
the desired implication [(2.11) with |.| = [|.][i or ||.|s] = (2.8).
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Lemma 5.8.

Consider an arbitrary irreducible Runge-Kutta schema (A,b), and let p = 1 or
p=o0. Let 0 < ¢ < o0, and assume (2.11) with|.| = ||.||,- Then condition (5.17)
is fulfilled.

Proof. The proof will be given in three steps.
Step 1. Let

(5.18) s>1, up €R®, Z=(Z1,..2Zm) € Dplc,s),

and assume that the corresponding vectors y;, defined by (5.14.b), satisfy
(5.19) yi #y; (fori#j).

We shall prove that

(5.20) IK(Z)uollp < [[uollp-

Choose any 79 > 0, and define F : R® — R® by F(v) = (cro) ™' Ziy; (for
v = y;) and F(v) = 0 (for all other v € R®). In view of (5.15), the function
F satisfies (2.4) with V. = R®, ||| = |.||[,. Furthermore, we see from (5.14),
(5.16) that the vector K(Z)uo is generated from ug by applying the Runge-Kutta
method with stepsize At = c7y to the function F. By virtue of (2.11) (with
|.1=1Ill,), we conclude that (5.20) holds.

Step 2. Due to the restriction (5.19) in Step 1, the proof of (5.17) is not yet
complete. Below, in Step 3, we shall get rid of this restriction by using (real)
values v;,1; (for 1 < i < m) with the following properties:

(5.21.a) O<vi<ec (1<i<m);

(5.21.b) the m x m matrix I + A - diag(y;) is invertible;
m

(5:21.¢) n=1- Zaij'yjnj (1 <i<m);
j=1

(5.21.d) n; #n; (whenever i # j).

In this (second) step we shall prove the existence of ;,n; satisfying (5.21).
Since (A, b) is irreducible, statement (ii) (of Definition 2.2 is not true. It follows

that the polynomials p;(t) = 37", a;;t) are different from each other. Therefore,

there is a positive to with p;(to) # p;(to) (for all i # j). Writing t; = (to)*, we
thus have

m

m
Z ajrty # Zajktk (whenever i # j).
k=1

k=1
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Let v; = Mt;, with A > 0. We choose ) sufficiently small to guarantee (5.21.a) and
(5.21.b). The corresponding values 7; = 1;()), solving (5.21.c), satisfy

m(A) =1-X3 auty + O(\?) (for A | 0).
k=1

Choosing A sufficiently small, we conclude that ~;, n; exist satisfying (5.21).
Step 3. Assume (5.18). We shall prove (5.20).

Let y; satisfy (5.14.b), and choose any v;, 7; as in (5.21). We choose € > 0,
and define

a(2) w(55) w(8)

Since Z € Z,(c,s) and (5.21.a), (5.21.b) hold, the m-tuple Z* = (27, Z3, ..., Z;;,)
belongs to Z,(c, s + 1). Furthermore, y;j = ug + Z;'L:l aijZ3y; (1 <i<m)and
y; # y; (for @ # j). Consequently, the conclusion of the above Step 1 can be
applied (to uy € R*T! and Z* € Z,(c, s+ 1)) so as to obtain [|[K(Z")ugl|, < [lugllp-

Since |K(Z)uoll, < [|K(Z*)ufllp and ||ugllp < [Juollp + €, we arrive at (5.20) by
letting € — 0. O
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Craprter 11

An extension and analysis of the
Shu-Osher representation of
Runge-Kutta methods

The contents of this chapter are equal to: FERRACINA L., SPIIKER M.N. (2005):
An extension and analysis of the Shu-Osher representation of Runge-Kutta methods,
Math. Comp. 249, 201-219.

Abstract

In the context of solving nonlinear partial differential equations, Shu & Osher
(1988) introduced representations, of explicit Runge-Kutta methods, which lead to
stepsize conditions under which the numerical process is total-variation-diminishing
(TVD). Much attention has been paid to these representations in the literature,
see e.g. Gerisch & Weiner (2003), Gottlieb & Shu (1998), Gottlieb, Shu & Tadmor
(2001), Ruuth & Spiteri (2002), Shu (2002), Spiteri & Ruuth (2002).

In general, a Shu-Osher representation of a given Runge-Kutta method, is not
unique. Therefore, of special importance are representations of a given method
which are best possible with regard to the stepsize condition that can be derived
from them.

Several basic questions are still open, notably regarding the following issues:
1. the formulation of a simple and general strategy for finding a best possible
Shu-Osher representation for any given Runge-Kutta method; 2. the question of
whether the TVD property, of a given Runge-Kutta method, can still be guar-
anteed when the stepsize condition, corresponding to a best possible Shu-Osher
representation of the method, is violated; 3. the generalization of the Shu-Osher
approach to general (possibly implicit) Runge-Kutta methods.

In this paper we give an extension and analysis of the original Shu-Osher rep-
resentation, by means of which the above questions can be settled. Moreover,
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we clarify analogous questions regarding properties which are referred to, in the
literature, by the terms monotonicity and strong-stability-preserving (SSP).

1 Introduction

1.1 The purpose of the paper

In this paper we deal with the numerical solution of initial value problems, for
systems of ordinary differential equations, which can be written in the form

d

(1.1) p

Ut)=FU(®) (t=0), U(O)=uo.

The general Runge-Kutta method, applied to problem (1.1), provides us with
numerical approximations u,, to U(nAt), where At denotes a positive time step
and n = 1,2,3,...; cf. e.g. Butcher (1987), Dekker & Verwer (1984), Hairer,
Norsett & Wanner (1993), Hairer & Wanner (1996). The approximations w,, are
defined in terms of u,,_1 by the relations

m

(1.2.a) yi = upo1 +AtY aiF(y) (1<i<m),
j=1
m

(1.2.b) Un = Up_y + ALY biF(y;).
j=1

Here a;; and b; are real parameters, specifying the Runge-Kutta method, and y;
are intermediate approximations needed for computing u,, from w,_;. As usual,
we assume that by + by + ... +b,, = 1, and we call the Runge-Kutta method explicit
if a;; = 0 (for j > i). We define the m x m matrix A by A = (a;;) and the column
vector b € R™ by b = (b1, ba, bs, ..., by )T, so that we can identify the Runge-Kutta
method with its coefficient scheme (A, b).

In order to introduce the questions to be studied in this paper, we assume that
(1.1) results from applying the method of lines (MOL) to a Cauchy problem for a
scalar conservation law of the form

(1.3) %u(ft) + %f(u(m,t)) =0 (t>0, —o0<z<00).

In this situation, the function F occurring in (1.1) can be regarded as a function
from

R = {y:y=(..,n-1,M0,M,...) with n; € R for j =0,+1,£2,...}

into itself, see e.g. Laney (1998), LeVeque (2002), Toro (1999). The actual function
values F'(y) depend on the given f as well as on the MOL semi-discretization being
used. In the literature — see e.g. Gottlieb, Shu & Tadmor (2001), Shu (2002), Shu
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& Osher (1988), Spiteri & Ruuth (2002) - much attention has been paid to solving
the semi-discrete problem (1.1) by Runge-Kutta processes (1.2) which are total-
variation-diminishing (TVD) in the sense that

(1.4) lunllTy < lun—1llzv;

here the function |[|.||7y is defined by

+o0
lyllrv = Z In; —nj—1| (for y € R> with components ;).

j=—00

For an explanation of the relevance of the TVD property in the numerical solution
of (1.3), see e.g. Harten (1983), Kréner (1997). Laney (1998), LeVeque (2002),
Toro (1999).

By Shu & Osher (1988) (see also Shu (1988)) a clever representation of explicit
Runge-Kutta methods was introduced which facilitates the proof of property (1.4)
in the situation where, for some 75 > 0,

(1.5) |lv+7F@)|lrv < |[v|lrv  (whenever 0 < 7 < 79 and v € R™).

Clearly, (1.5) amounts to assuming that the semidiscretization of equation (1.3) has
been performed in such a manner that the simple forward Euler method, applied
to problem (1.1), is TVD when the stepsize 7 is suitably restricted.

In order to describe the representation, given by Shu & Osher (1988), we
consider an arbitrary explicit coefficient scheme (A,b). We assume that \;; (for
2<i<m+1and1<j<i— 1) are any real parameters with

(16) /\il+/\i2+-~-+)\i,i71 =1 (2§l §m+1),

and we define corresponding values ji;; (for 2 <i<m+1and1<j<i—1) by

i—1
(1.7.a) Hij = Qij — Z Aikak; (2<i<m, 1<j<i-1),
k=3+1
m
(1.7.1)) Hm+1,5 = bj — Z /\m+l,k A4 (1 S ] < m)
k=j+1

(where the sums occurring in the above expressions defining z4;; and fi,,41,; should
be interpreted as 0, when j =i — 1 and j = m, respectively).

Theorem 1.1, to be given below, tells us that the relations (1.2) can be rewritten
in the form

Yy = Un-1,
i—1

(1.8) yi = 3 iy At pFy;)] 2<i<m+1),
j=1

Up = Ym+1-
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We shall refer to (1.8) as a Shu-Osher representation of the explicit Runge-Kutta
method (1.2).
The following Theorem 1.1 also specifies a stepsize restriction, of the form

(1.9) 0<At<c- .

under which the TVD property (1.4) is valid, when w,, is computed from wu,
according to (1.8). In the theorem, we shall consider the situation where

(1.10) Aij 20 1<j<i<m+1).
Further, we shall deal with a coeflicient ¢ defined by

Aijfpig i pag >0,
(1.11) e=min{eg;:1<j<i<m+1}, where ¢; =4 ©0 if pz = 0,
0 if Wij < 0.

Theorem 1.1 (Shu and Osher).
Let (A,b) specify an explicit Runge-Kutta method and assume Nij, pi; are as in
(1.6), (1.7). Then the following conclusions (i) and (ii) are valid.

(i) The Runge-Kutta relations (1.2) are equivalent to (1.8).

(i1) Assume additionally that (1.10) holds, and that the coefficient ¢ is defined by
(1.11). Let F be a function from R> to R, satisfying (1.5). Then, under
the stepsize restriction (1.9), process (1.8) is TVD; i.e. (1.4) holds whenever
Uy, s computed from u,_1 according to (1.8).

The above theorem is essentially due to Shu & Osher (1988). The proof of the
above statement (i) is straightforward. Further, the proof of (ii) relies on noting
that, for 2 < 7 < m + 1, the vector y; in (1.8) can be rewritten as a convex
combination of the vectors [y; + At - (p13;/Xi;j)F(y;)] with 1 < j <i—1 and on
applying (1.5) (with v = y;).

It is evident that a combination of the above statements (i) and (ii) immediately
leads to a conclusion which is highly relevant to the original Runge-Kutta method
(A, b): if (1.6), (1.7), (1.10) (1.11) are fulfilled, then the conditions (1.5), (1.9)
guarantee the TVD property (1.4) for u, computed from u,—1 by (1.2).

But, this conclusion regarding the Runge-Kutta method (1.2) would be of no,
or little, value if the coefficient ¢ given by (1.11) would be zero, or positive and so
small that the stepsize restriction (1.9) is too severe for any practical purposes — in
fact, the less restrictions on At, the better. Therefore, it is important to note that
the coefficient ¢, given by (1.11), not only depends on the underlying Runge-Kutta
method (A, b), but also on the parameters \;; actually chosen. Suppose 5\1] are
parameters which are best possible, in the sense that the corresponding coefficient
¢, obtained via (1.11), satisfies ¢ > ¢, for any other coefficient ¢ obtainable by
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applying Theorem 1.1 to the method (A,b) in question. Then ¢ depends only on
the coefficient scheme (A,b) so that we can write ¢ = ¢(A4,b), and the following
natural question arises: how can we determine (in a transparent and simple way)
parameters S\ij leading to the maximal coefficient c¢(A4,b)?

Another — and second — natural question is related to the circumstance that
one may be tempted to take the magnitude of the coefficient ¢(A,b) into account,
when assessing the qualities of a given explicit Runge-Kutta method (A,b). It is
evident that such a use of ¢(A,b) could be quite misleading if, for the Runge-Kutta
method (A,b) in question, there would exist a coefficient ¢ (not obtainable from
Theorem 1.1) which is (much) larger than ¢(A,b) and for which the conditions
(1.5), (1.9) still guarantee the TVD property (1.4) for process (1.2). Accordingly,
we arrive at the fundamental question of whether such coefficients ¢ do exist.

The above two questions are strongly related to the problem of determining a
method (A, b), belonging to a given class of explicit Runge-Kutta methods, which
is optimal in the sense of its coefficient ¢(A,b). Much attention has been paid to
this problem in the literature — usually with a terminology and notation somewhat
different from the above — see e.g. Gerisch & Weiner (2003), Gottlieb & Shu (1998),
Ruuth & Spiteri (2002), Shu (2002), Shu & Osher (1988), Spiteri & Ruuth (2002).
In fact, for various values of m and p, optimal methods (A,b) were determined
within the class of explicit m-stage Runge-Kutta methods with order of accuracy
p — either by clever ad hoc arguments or by numerical computations based on
optimization with respect to the parameters \;;, p;; — but, neither of the above
two questions were resolved (in general).

A third natural question is of whether the Shu-Osher Theorem 1.1 can be
generalized so as to become also relevant to Runge-Kutta methods which are not
explicit. Partial results related to this question, but no complete answers, were
obtained by Gottlieb, Shu & Tadmor (2001, Section 6.2) and Hundsdorfer & Verwer
(2003).

The purpose of this paper is to give a generalization and analysis of the Shu-
Osher representation (1.8) by means of which the above three natural questions,
as well as related ones, can be settled.

1.2 Outline of the rest of the paper

In Section 2 we shall give generalizations of the Shu-Osher representation (1.8) and
of the above Shu-Osher Theorem 1.1; our generalizations are relevant to arbitrary
Runge-Kutta methods (A, b) — either explicit or not.

It was noted — see e.g. Gottlieb, Shu & Tadmor (2001), Shu & Osher (1988) —
that the convexity arguments, used in proving conclusion (ii) of Theorem 1.1, also
show that ||lyi|l7v < ||[un—1llrv (2 <4 < m) and also apply in the more general
setting of arbitrary Banach spaces V and nonnegative convex functions ||.|| (rather
than R> and ||.||rv). Therefore, a useful version of Theorem 1.1 is valid in that
context as well. Accordingly, we shall present our material in Section 2 using a
similar general framework.
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In Section 2.1 we shall introduce concepts and notations which are basic for the
rest of our paper. A generalization will be given of the Shu-Osher process (1.8) and
of the properties (1.4) and (1.5). In Section 2.2 we shall present Theorem 2.2, which
constitutes the first of the two main theorems of our paper. This theorem settles
completely the question, about the generalization of Theorem 1.1, raised above at
the end of Section 1.1. Conclusion (I) of Theorem 2.2 generalizes conclusion (i)
of Theorem 1.1. For any given Runge-Kutta method (A, b), it gives a generalized
Shu-Osher representation which is specified by an (m + 1) x m parameter matrix
L = (\i;); the corresponding numerical process can thus be identified with a
coefficient scheme (A, b, L). Conclusion (IT) of Theorem 2.2 generalizes conclusion
(ii) of Theorem 1.1; it provides us with a coefficient ¢ = ¢(A, b, L) having properties
generalizing those of ¢ (see (1.11)) mentioned in conclusion (ii) of Theorem 1.1. In
Section 2.3 we shall give the proof of Theorem 2.2.

In Section 3 we shall study, for given Runge-Kutta schemes (A, b), the maximum
of ¢(A,b, L) over all relevant parameter matrices L = (\;;). In preparation to
the actual study of this maximum, we shall recall in Section 3.1 the concept of
irreducibility for general Runge-Kutta methods, and we shall review the important
quantity R(A,b), introduced by Kraaijevanger (1991). In Section 3.2 we shall
present (without proof) the second of our two main theorems, Theorem 3.4. This
theorem is relevant to arbitrary irreducible Runge-Kutta schemes (A, b); it gives
a special parameter matrix L* = (A};) such that c(A,b, L") = mLaxc(A,b.,L).
Moreover, the theorem brings to light that there exists no coefficient ¢ that is
larger than ¢(A,b, L*) and which shares with ¢(A, b, L*) properties analogous to
those of ¢ mentioned in Part (ii) of Theorem 1.1. Finally, the theorem relates the
optimal coefficient ¢(A, b, L*) to Kraaijevanger’'s quantity R(A,b). The proof of
Theorem 3.4 will be given in Section 3.3, making use of Lemma 3.5.

For completeness we mention that also in Ferracina & Spijker (2004) and
Higueras (2004) the quantity R(A,b) was related to the TVD properties of method
(1.2). In fact, Lemma 3.5 is an immediate consequence of a theorem in the first of
these papers. But, apart from this lemma, the material in Section 3 is essentially
different from and no consequence of those papers.

In Section 4 we shall present some applications and illustrations to the theorems
derived in the Sections 2 and 3.

In Section 4.1 we shall apply the Theorems 2.2 and 3.4 to general Runge-
Kutta methods so as to arrive at the Corollaries 4.1 and 4.2. The former of these
corollaries says that ¢(A, b, L) is finite, for every scheme (A, b) which is more than
first order, whereas the latter corollary amounts to an extension of a monotonicity
result in Ferracina & Spijker (2004).

In Section 4.2, the two questions will be answered which were raised above in
Section 1.1, in connection to the coefficient ¢(A,b). For any given explicit method
(A,b), Theorem 4.3 gives special parametes \;; = ;\ZJ and ;5 = [i;5, satisfying
(1.6), (1.7), (1.10) such that the corresponding coefficient ¢ = ¢, obtained from
(1.11), is the largest one obtainable with any parameters \;;, p;; satistfying (1.6),
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(1.7), (1.10) (i.e. ¢ = ¢(A,b)). Moreover, Theorem 4.3 says that ¢ = ¢(A,b) is
equal to the largest coefficient ¢ for which the conditions (1.5), (1.9) guarantee
(1.4). This result is relevant to justifying the practice of considering ¢(A,b) when
assessing the qualities of a given Runge-Kutta method (A, b). At the end of Section
4.2, we apply Theorem 4.3 so as to relate results, obtained in the literature on
optimization of ¢(A4,b), to material of Kraaijevanger (1991).

In Section 4.3 we shall shortly illustrate our theory by applying it in the analysis
of (generalized) Shu-Osher representations for two given Runge-Kutta schemes.

2 An extension, of the Shu-Osher approach, to arbitrary
Runge-Kutta methods

2.1 A generalization of the Shu-Osher process (1.8)

We want to consider generalized versions of the Shu-Osher process (1.8) in a versa-
tile framework. For that reason we assume in all of the following (unless specified
otherwise) that V is an arbitrary real vector space, and that F(v) is a given func-
tion, defined for all v € V, with values in V. Our generalization of the Shu-Osher
process (1.8) is as follows:

(2.1.a) y; = (1 — Z)\ij)un_l — Z Aijy; + At i F(y;)] (1 <i<m),
j=1 j=1

(2.1.b)  w, = (1 — Z /\,,,1+1,J-)un,1 + Z [Am+1,5 Y5 + At - pmy1 ;F(y5)].
j=1 j=1

Here \;; and p;; are real coefficients specifying the numerical process (2.1), and
At denotes again a positive stepsize. Further, y; are intermediate vectors in V
needed for computing wu,, in V from a given vector u, 1 € V. We shall write

I )‘11 e )\1771
(22‘(1) L= <L?> ) LO = : L] = ()\7n+1,]7 ---7)\nz,+1,m)
Aml o /\mm
and
]\[ MH11 .- ,ulm
(22b) M= (M?) , Mo = : : s My = (Bm41,15 o Bmt1,m)-
Hm1 - Hmm

Clearly, if the above parameters A;j, j;; satisfy Aj; = p;; =0 (for 1 <i <5 <
m) and Y77, N = 1 (for 2 < i < m + 1), then process (2.1) neatly reduces to
an algorithm of the form (1.8). Therefore, the above process (2.1), with arbitrary
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matrices L and M, amounts to a generalization of the original Shu-Osher process
(1.8).

In all of the following (unless specified otherwise) we shall denote by |[.| an
arbitrary real convex function on V| i.e.: |[v]] € R and [|Av + (1 — Nw|| < Mv|| +
(1 = N)|lw]| for all v,w € Vand 0 <A < 1.

We shall be interested in situations where — for given F, At and convex function

(2.3.2) lgill < Munall (1 <7 <m),
(2.3.b) lunll < [lun—1ll;

when wu,_1, u, and y; € V are related to each other as in (2.1). Clearly, prop-
erty (2.3) extends and generalizes the TVD property (1.4); it is important, also
with ||| different from ||.||7y, and also when solving differential equations differ-
ent from conservation laws — see e.g. Dekker & Verwer (1984), Hundsdorfer &
Verwer (2003), LeVeque (2002). Property (2.3.b), with [|.|| not necessarily equal
to ||.|[7v, has been studied extensively in the literature and corresponds to what is
often called monotonicity, practical stability or strong stability — see e.g. Butcher
(1987, p.392), Dekker & Verwer (1984, p.263), Gottlieb, Shu & Tadmor (2001),
Hundsdorfer, Ruuth & Spiteri (2003), Morton (1980).

In the next subsection we shall study property (2.3) in the situation where, for
some 19 > 0, the function F': V — V satisfies

(2.4) v+ 70F (v)|| < |lv]] (whenever v € V).

Clearly, this condition is more general than (1.5) — in case V. = R> and |.| =
I.ll7v, assumption (1.5) implies (2.4).

In Theorem 2.2, to be presented below, we shall give conditions under which
(2.1) is equivalent to (1.2). Moreover, we shall give restrictions on the stepsize At
guaranteeing (2.3) for functions F : V — V satisfying (2.4).

2.2 A generalization of the Shu-Osher Theorem 1.1

Let an arbitrary Runge-Kutta method (A, b) be given. In order to represent it in
the form (2.1), we assume that L = ()\;;) is a given matrix of type (2.2.a). We
define a corresponding matrix M = (y;;) of type (2.2.b) by

(2.5) My=A—-LyA, M, =b" — LA

The way of defining My and M in (2.5) can be viewed as a generalization of the
definition of y;; in (1.7).

The coefficients p;;, corresponding to My, M; as in (2.5), depend only on the
given Runge-Kutta scheme (A, b) and on the choice of the (m + 1) x m parameter
matrix L = (A;;). This justifies the following definition.
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Definition 2.1.
Process (2.1) is said to be generated by the coefficient scheme (A, b, L) if the coef-
ficients pi;; occurring in (2.1) are chosen according to (2.2), (2.5).

Theorem 2.2 below gives a condition on L under which the original Runge-
Kutta process (1.2) is equivalent to the process (2.1) generated by (A,b, L). The
theorem also specifies a stepsize restriction, of the form

(2.6) 0< At <c-mp,

under which (2.3) is valid for w, 1, u,, y; satisfying (2.1).
Below we shall deal with matrices L = (\;;) of the form (2.2.a) which are such
that

(2.7) I — Ly is invertible.

Here, as well in the following, we denote by I the m x m identity matrix. In
Theorem 2.2 we shall pay special attention to the situation where the matrix
L = ()\i;) has been chosen in such a way that, in addition to (2.7),

m

2.8 Aii >0 and Nip < 1 forl<i<m+1, 1<j5<m).
J = =t = =J =
k=1

This condition, on the parameters \;;, can be viewed as a generalization of the
requirement that (1.6), (1.10) hold.
Further, for given coefficient schemes (A, b, L), we shall use the notation

(2.9) c(A,b,L) = min{c¢;;: 1<i<m+1, 1<j<m} where

)\ij/liij if Mij > 0 and ¢ # 7
00 if ;5 > 0 and 7 = j,
o0 if Hij = 0,
0 if 1, <0,

and the values \;j, p;; are defined by (2.2), (2.5).

This notation can be regarded as a generalization of (1.11), (1.7). We note that
there are two distinct situations in which the above values ¢;; vanish: we have
¢;j = 0 if either p;; <0 or Ay =0, pi; > 0,0 # j.

The following theorem amounts to a generalization of Theorem 1.1, relevant
to arbitrary Runge-Kutta methods (1.2). It constitutes the first of the two main
theorems of our paper.

Theorem 2.2 (Generalization of the Shu-Osher theorem).

Let (A,b) specify an arbitrary Runge-Kutta method (1.2). Let L = (X\i;) be any
parameter matriz satisfying (2.2.a), (2.7) and consider the corresponding process
(2.1) generated by (A,b,L) (cf. Definition 2.1). Then the following conclusions
(I) and (I1) are valid.
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(I) The Runge-Kutta relations (1.2) are equivalent to (2.1).

(1) Assume additionally that (2.8) holds and the coefficient c is equal to ¢(A, b, L)
(see (2.9)). Let F be a function from V to V, satisfying (2.4). Then, un-
der the stepsize restriction (2.6), process (2.1) has property (2.3) — i.e. the
inequalities (2.3) are fulfilled whenever w,_1., u,, and y; are related to each
other as in (2.1).

The above theorem will be proved in Section 2.3. Obviously, a combination of
the above statements (I) and (IT) immediately leads to a conclusion which is highly
relevant to the original Runge-Kutta method (A,b): if L = (X\i;) is any matriz
satisfying (2.2.a), (2.7), (2.8) and ¢ = ¢(A,b,L) (see (2.9)), then the conditions
(2.4), (2.6) guarantee the monotonicity properties (2.3) whenever w,_1, Un, Yi
satisfy (1.2).

Let the Runge-Kutta method (A, b) be explicit. Choose any (m+1) x m matrix
L = (\;;) such that its m x m submatrix Lo (cf. (2.2.a)) is strictly lower triangular
and Z;n:l ANij =1 (for 2 < i < m +1). One easily sees that the corresponding
process (2.1), generated by the coefficient scheme (A, b, L), coincides with the orig-
inal Shu-Osher representation (1.8). Since Ly is strictly lower triangular, condition
(2.7) is fulfilled, and Theorem 2.2 can thus be applied so as to arrive easily at the
statements (i) and (ii) of Theorem 1.1. This shows that Theorem 2.2 can be viewed
as a neat generalization of Theorem 1.1.

We note that the special implicit Runge-Kutta processes, analysed by Gottlieb,
Shu & Tadmor (2001, Section 6.2), are covered by our general formulation (2.1).
In the analysis, in the paper just mentioned, it was assumed that the first order im-
plicit Euler discretization is unconditionally monotonic, i.e. ||v|| < |[v—7F(v)| (for
all v € V and all positive stepsizes 7). This assumption is not required (explicitly)
in our Theorem 2.2 — we require instead condition (2.4) to be fulfilled. (Note that
(2.4) implies [Jo]] = (1-+7/70) [0]|—(r/mo)l[o]l < (1++/70)l[oll—(r/70) [o+moF )] <
(1 +7/70)v—(7/70) (v + 10 F (v))| = ||[v—TF(v)]|; consequently, (2.4) implies that
the above assumption about the implicit Euler discretization is automatically ful-

filled.)

2.3 Proving Theorem 2.2

Before giving the actual proof of Theorem 2.2, we introduce some notations which
will be used below.
For any vectors vy, va, ..., vy in V, we shall denote the vector in V" with com-

ponents v; by
V1
o= [oy] = evm,
Um

Let B = (b;;) denote any (real) [ x m matrix. We define a corresponding linear
operator By (from V™ to V') by By (v) = w, for v = [v;] € V™ where w = [w;] € V!
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with w; = Z;"’:l bijvj (for 1 <i <1). Clearly, if B and C are | x m matrices and
D is an m x k matrix, then (B + C)y = By + Cy, (AB)y = A By, (BD)y =
By - Dy. Here the addition and multiplications, occurring in the last three left-
hand members, stand for the usual algebraic operations for matrices, whereas the
addition and multiplications in the right-hand members apply to linear operators.

For clarity, we will also use the following simplified notations: b = (bT)y,
A =Ay, My = (My)y, My = (M;)y, Ly = (Lo)v and Ly = (L1)v. Further, we
define I = (I)y and e = (e)y, where I is the m x m identity matrix and e is the
column vector in R™ all of whose components are equal to 1.

The actual proof of Theorem 2.2.
1. For proving conclusion (I), we have to show that the relations (2.1) are equiva-
lent to (1.2). Using (2.5), (2.7), one easily sees that

(2.1.a) <= (I—Lo)[yi] = (I — Lo)eu,—1 + AtMo[F(y;)]
= [yi] = eun_1 + At(I — Lo) 'Mo[F(y:)] < (1.2.a),

so that (2.1.a) and (1.2.a) are equivalent. Therefore, assuming (2.1.a) or (1.2.a),
we also have

(le) < Up = (1 - Lle)un_l + Ll[ljl} + AfMl[F(yz)}
= u, = (1 — Lie)up_1 + Li{eun—1 + AtA[F(y;)]} + AtM [F(ys)]
= WUy = Up—1+ Af(LlA ~+ Ml)[F(’ljl)} < (121’))

This completes the proof of the equivalence of (2.1) and (1.2).
2. If ¢(A,b, L) = 0, then conclusion (II) is trivially fulfilled. Therefore, in the
following proof of (IT), we assume ¢(A, b, L) > 0. This implies that, for all i, j,

0<ci; <oo and 0< py; <oc.

We have to show (2.3) under the assumptions stated in Theorem 2.2. To this end,
we put
zi =10F(ys), a;=pilt/To and  Bi; = At(rocy;) ",

where 3;; stands for zero in case ¢;; = oo. With these notations we obtain from
(2.1.a), by using the convexity of the function ||,

m

(210)  lys — aswall < (1= Mipllun—all + Niillwall + D Aesllys + Bz,
j=1 j#i

for 1 < i < m. From (2.4) we have ||y;+x;]| < ||y;||. Therefore, by using the relation
(14 ay)ys = (i — caws) + i(yi + x;), we obtain [|y;]| < 0lly; — czasl| + (1 = 0)]|wsll,
with # = (1 + o;)~'. Hence

(2.11) lyi — cizill = lyill-
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Similarly, by using the relation y; + 8;;x; = (1 — Bi;)y; + B (y; +x;), we see that
(212) ly; + Bijasll < Nyl

Combining the inequalities (2.10), (2.11) and (2.12), we obtain a bound for ||y;| (1 <
i < m) which can be written compactly in the form

(2.13) (I = Lo) lllysll < llun—all(I = Lo)e.

This inequality, between two vectors in R™, should be interpreted component-wise.

From (2.13) we easily obtain (2.3.a), provided the entries 7;; of the matrix
R = (rij) = (I = Ly)~" are nonnegative. In view of (2.7) and (2.8), we see that
the matrix K (t) = (I —tLo)~* (for 0 <t < 1) exists and depends continuously on
t. For 0 <t <1 we have K(t) = I +tLo+ (tLg)? + ... so that the entries of K(t)
are nonnegative. Therefore, the entries r;; of R = K (1) must be nonnegative as
well, which thus proves (2.3.a).

In order to prove (2.3.b), we note that (2.1.b) implies

m

lunll < Ollun—| + Z)‘nz+1,j||yj + Bm+1,3 %51,
=1

where 0 =1 — Z;n:] Amii e HeETCE,

m m
lunll < Bllun—1ll + Y Amrrg lysll < 0+ Ansr)lwn-all = funall. ®

J=1 Jj=1

3 Maximizing the coefficient ¢(A, b, L)
3.1 Irreducible Runge-Kutta schemes and the quantity R(A,b)

In this subsection we give some definitions which will be needed when we formulate
our results, in Subsection 3.2, about the maximum value of the important coeffi-
cient ¢(A, b, L) (see (2.9)). We start with the fundamental concepts of reducibility
and irreducibility.

Definition 3.1 (Reducibility and irreducibility).

An m—stage Runge-Kutta scheme (A,b) is called reducible if (at least) one of the
following two statements (a), (b) is true; it is called irreducible if neither (a) nor
(b) is true.

(a) There exist nonempty, disjoint index sets M, N with M UN = {1,2,...,m}
such that b; =0 (for j € N) and a;; =0 (forie M, j€ N);

(b) There exist nonempty, pairwise disjoint index sets My, Mo, ...M,, with 1 <
r < m and M, UMy U ...UM, = {1,2,...,m}, such that Zkqu aip =
Zkqu ajr whenever 1 <p<r,1<q<r andi,jc M,.
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In case the above statement (a) is true, the vectors y; in (1.2) with j € N have
no influence on u,, so that the Runge-Kutta method is equivalent to a method
with less than m stages. Also in case of (b), the Runge-Kutta method essentially
reduces to a method with less then m stages, see e.g. Dekker & Verwer (1984) or
Hairer & Wanner (1996). Clearly, from a practical point of view, it is enough to
consider only Runge-Kutta schemes which are irreducible.

Next, we turn to an important characteristic quantity for Runge-Kutta
schemes introduced by Kraaijevanger (1991). Following this author, we shall
denote his quantity by R(A,b), and in defining it, we shall use, for real &, the
notations:

A©) = AT —€A)™ , b(&) = —€4)Th,
€)= (I—EA) e | @) =1+&T(I-€4)"e.

Here ~7T stands for transposition after inversion, I denotes the identity matrix
of order m, and e stands for the column vector in R all of whose components are
equal to 1. We shall focus on values £ < 0 for which

(3.1) I —¢Ais invertible, A(§) >0, b() >0, e(&) >0, and ¢(§) =0.

The first inequality in (3.1) should be interpreted entry-wise; the second and the
third ones component-wise. Similarly, all inequalities for matrices and vectors
occurring below are to be interpreted entry-wise and component-wise, respectively.

Definition 3.2 (The quantity R(A,b)).
Let (A,b) be a given coefficient scheme. In case A >0 and b > 0, we define

R(A,b) =sup{r: r >0 and (3.1) holds for all £ with —r <& < 0}.

In case (at least) one of the inequalities A > 0, b > 0 is violated, we define
R(A,b) = 0.

Definition 3.2 may suggest that it is difficult to determine the quantity R(A,b)
for a given coefficient scheme (A,b). But, Parts (i) and (iii) of the following
Theorem 3.3 show that it is relatively easy to decide whether R(A.b) = 0 or
R(A,b) = co. Moreover, Part (ii) of the theorem can be exploited for simplifying
the (numerical) computation of R(A,b), if 0 < R(A,b) < oo; cf. Ferracina &
Spijker (2004; Section 4.3), Kraaijevanger (1991, p.498).

In order to formulate Part (i) of Theorem 3.3 concisely, we define, for any given
m x m matrix B = (b;;), the corresponding m x m incidence matriz by

IHC(B) = (Cij)u with Cij = 1 (lf b” 7é 0) and Cij = 0 (lf bij = 0)

Theorem 3.3 (Kraaijevanger).
Let (A, b) be an irreducible coefficient scheme. Then

(i) R(A,b) >0 if and only if : A >0, b >0 and Inc(A?) < Inc(A).



56 Chapter II.  An analysis of the Shu-Osher representation of RK methods

(i) Let 0 <r < oo. Then R(A,b) > r if and only if : A > 0 and the conditions
(3.1) hold at £ = —r.

(ii1) R(A,b) = o0 if and only if :
o A is invertible and all off-diagonal entries of A~' are nonpositive,
e A>0 and A e >0,
e VTA >0 and bTAte < 1.

The Parts (i), (#i), (i7i) of the above theorem have been taken almost literally
from Kraaijevanger (1991; Theorem 4.2, Lemma 4.4 and Theorem 4.7, respec-
tively).

We shall make use of the quantity R(A,b) in formulating our results below

in Section 3.2, whereas Theorem 3.3 will be essential for proving our results, in
Section 3.3.

3.2 The special parameter matrix L*

The following Theorem 3.4 constitutes the second of the two main theorems of our
paper. It resolves the problem of finding a parameter matrix L = (\;;) such that
the crucial coefficient ¢(A, b, L) (see (2.9)) attains its maximal value and it gives
also interesting properties of this maximal value.
In the theorem, the focus will be on the following matrix L*:
L Al - AT,
(32&) L™= (L(T)) ) L(*) = : ’ LI = (/\:(njtl,h "'1/\:n+1ym)v

Al o Al
with

(32b) Ly =AU +7A)", Li=w"(I+74)"", 7v=R(A")
(if 0< R(A,b) < ),

(3.2c) Li=1-~P, L} =b"P, = (maxp;)~', where P = (p;;) = A~!
(if R(A,b) =00).

The above matrix L* seems to appear out of the blue. But, the authors were led
to introduce this matrix by analysing calculations of Kraaijevanger (1991; Sections
5.3 and 6). For more details, we refer the interested reader to that important paper.

Theorem 3.4 (The largest coefficient c(A, b, L)).
Let the Runge-Kutta method (1.2) be specified by an arbitrary irreducible coefficient
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scheme (A,b). Then the inverses occurring in (3.2.b), (3.2.c) do exist, so that we
can define the matriz L* = (X\j;) by (3.2). Further, the matric L = L* satisfies
(2.2.a), (2.7), (2.8), and the corresponding coefficient c(A,b,L*) (see (2.9)) has
the following properties:

(1) e(A,b, L") = max c(A, b, L), where the mazimum is over all matrices L = (X;;)
satisfying (2.2.a), (2.7), (2.8).

(I) ¢(A,b, L*) is equal to the mazimal coefficient ¢ for which the conditions (1.5),
(1.9) imply the TVD property (1.4) whenever un—1, un, yi € R> satisfy
(1.2).

(IIT) ¢(A,b,L*) = R(A,b) (see Definition 3.2).

The above theorem will be proved in Section 3.3. Clearly, the above property
(I) shows how to maximize the coefficient ¢(A,b, L) over all relevant matrices L,
whereas property (IT) brings to light that the coefficient c(A, b, L*) is optimal - not
only in the context of maximizing ¢(A, b, L) but also — in the important context of
optimizing arbitrary stepsize restrictions (of type (1.9)) which guarantee the TVD
property (1.4) for process (1.2). Finally, property (III) gives a neat expression
for the maximal coefficient c(A,b, L*). We shall come back to the relevance of
Theorem 3.4 in Section 4.

3.3 Proving Theorem 3.4
3.3.1 The proof that L* satisfies (2.7), (2.8) and (III)

1. Assume 0 < R(A,b) < 0.
One easily sees, from Theorem 3.3, that the inverse occurring in (3.2.b) exists.
We consider the (m + 1) x m matrix L* = ()};) defined by (3.2.a), (3.2.b). From
(3.2.b) we see that [ — Lj = (I +yA)~" so that Lo = Lg satisfies (2.7).

Using Theorem 3.3 we easily arrive at the inequalities L > 0 and (I—-L§e=
(I +~yA)~te > 0. Consequently, \;; = Aj; satisty the requirements occurring in
(2.8) for 1 < i < m. Similarly, using Theorem 3.3 once more, we see that L7 > 0
and 1 — Lte =1 — b7 (I +vA)"'e > 0 so that \j; = Aj; satisfy the requirements
in condition (2.8) also for i =m + 1.

In order to prove (I11), we consider the (m+1)xm matrix M* = (u;;) defined by
M* — ( ]]5(% >, where Mg, M7 are given by (2.5) (with Lo, L1, Mo, M replaced
by L§, LY, M}, M{, respectively). Clearly,

(3.3) Ly=~Mg, Li=1M;.

In view of (2.5), (3.3) and Theorem 3.3, we have b = M} + LTA = My (I + vA)
with (I +~A) > 0. Since >_b; = 1, it follows that there is an index k with:

(3.4) 1<k<m and fig, x> 0.
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If all pj; > 0, then we see from (2.9), (3.3), (3.4) that c(A,b,L*) = v, i.e. (III).
On the other hand, if there is a p; < 0, then we conclude from (2.9), (3.3) that
¢(A,b,L*) =0 and v = 0, i.e. again (IIT).

2. Assume R(A,b) = oc.
One easily sees, from Theorem 3.3, that the inverse A~! occurring in (3.2.c) exists.
Since py;a;; = I—Zk#pikaki, we can also conclude from Theorem 3.3 that p;; > 0,
so that v in (3.2.¢) is well defined, with 0 < v < oc.

M

Defining L* by (3.2.a), (3.2.¢c), and M* = ( M ) again by (2.5) (with
1
Lo, Ly, My, My replaced by Lg, L7, M, M, respectively), one has

M =~I, M;=0.

Consequently, c(A,b, L") (see (2.9)) satisfies (III).
From (3.2.c) it follows that I — L = yA™! so that Lo = L} satisfies (2.7).
Using Theorem 3.3 and the definition of ~, it is easy to prove L§ > 0, L} > 0,
(I-Lie=~vA"'e>0and 1 — Lie =1—bT A7 e > 0. The last four inequalities
imply that the matrix L = L* satisfies (2.8).

3.3.2 The proof of (I) and (II)

In proving the remaining properties (I), (II), we shall make use of the following
lemma, which immediately follows from Ferracina & Spijker (2004; Theorem 2.5).

Lemma 3.5.

Consider an arbitrary irreducible Runge-Kutta scheme (A,b). Let ¢ be any value,
with 0 < ¢ < oo, such that the conditions (1.5), (1.9) imply the TVD property
(1.4) whenever u,—1, u,, y; € R® satisfy (1.2). Then ¢ < R(A,Db).

From Theorem 2.2 we see that, given any matrix L satisfying (2.2.a), (2.7),
(2.8), the coefficient ¢ = ¢(A, b, L), defined via (2.9), is such that the conditions
(1.5), (1.9) imply the TVD property (1.4) whenever u, 1, u,, y; € R> satisfy
(1.2). Hence, by Lemma 3.5,

¢(A,b,L) < R(A,b) (whenever L satisfies (2.2.a), (2.7), (2.8)).

This shows that property (I) follows from property (III). Moreover, by using
Lemma 3.5 once more and applying Theorem 2.2 with matrix L*, we see that also
property (II) follows from (III). ]



4. Applications and illustrations of the Theorems 2.2 and 3.4 59

4 Applications and illustrations of the Theorems 2.2 and 3.4

4.1 Applications to general Runge-Kutta methods

In Kraaijevanger (1991), interesting relations were revealed between the order of
accuracy p, of m-stage Runge-Kutta schemes (A, b), and the size of R(A,b) (Defi-
nition 3.2) — in Ferracina & Spijker (2004, Section 4) a review of these results was
presented. Combining Kraaijevanger’s findings with our Theorem 3.4, one easily
obtains interesting relations between the order p and the size of ¢(A,b, L). As an
important illustration, we give the following corollary to Theorem 3.4 - for the
concept of irreducibility, occurring in the corollary, see Definition 3.1.

Corollary 4.1.

Let the Runge-Kutta method (1.2) be specified by an arbitrary irreducible coefficient
scheme (A,b). Assume the method has an order of accuracy greater than one.
Then, for any matriz L = (\;;), satisfying (2.2.a), (2.7), (2.8), the corresponding
coefficient ¢(A, b, L) (see (2.9)) is finite.

Proof.

In Kraaijevanger (1991; p. 514), it was shown that R(A,b) < oo if the order of
the method is greater than one. An application of Theorem 3.4 (Parts (I), (III))
completes the proof. B

Next, we turn to a corollary obtainable by combining Theorems 2.2 and 3.4.

Corollary 4.2.
For any given irreducible Runge-Kutta scheme (A, b) the following two statements
are valid.

(I) Let ¢ = R(A,b). Then, for all vector spaces V and convex functions ||.|| on
V, the conditions (2.4), (2.6) guarantee the monotonicity properties (2.3),
whenever , 1, un, y; satisfy (1.2).

(IT) The value ¢ = R(A,b) in the above statement (I) is optimal in that, for any
value ¢ > R(A,b), the general conclusion as given in statement (I) is no
longer true.

Proof.

In order to prove (I), we note that by Theorem 3.4 the coefficient ¢ = R(A,b) is
equal to ¢(A,b, L*), where L = L* satisfies (2.2.a), (2.7), (2.8). An application of
parts (1), (IT) of Theorem 2.2, with L = L*, thus shows that the conditions (2.4),
(2.6) imply (2.3) for u,—1., wu,, y; satistying (1.2).

In order to prove statement (II) of the corollary, suppose that the general con-
clusion as given in statement (I) of the corollary would be true for some ¢ > R(A, b).
Then, with this ¢, the conditions (1.5), (1.9) would imply (1.4) for w, 1, u,, y; sat-
isfying (1.2). Lemma 3.5 shows that ¢ < R(A,b), which yields a contradiction. W
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The above corollary can be viewed as a variant to one of the results given in
Ferracina & Spijker (2004; Theorem 2.5). The conclusion, given above in statement
(1), is stronger than an analogous monotonicity result in the paper just mentioned

because (I) deals with arbitrary convex functions (rather than seminorms) and
property (2.3) gives not only a bound for ||u, || but also for |jy,||.

We finally note that the relevance of Theorem 3.4 is not restricted to the
properties (1.4) and (2.3). The theorem may be applied as well in the analysis of
other interesting (stability and boundedness) properties studied in the literature,
cf. e.g. Dekker & Verwer (1984, pp. 38,39), Gottlieb, Shu & Tadmor (2001, p.92).

4.2 Applications to explicit Runge-Kutta methods

In this section, we shall make use of Theorem 3.4 in resolving, for explicit Runge-
Kutta methods (A, b), the two questions related to the coefficient ¢(A,b) as raised
at the end of Section 1.1. Due to the restriction 3, A;; = 1 (cf. (1.6)), which occurs
in the original Shu-Osher representation but not in our generalized representation
(cf. Sections 2, 3), Theorem 3.4 will have to be applied with some care.

Our following Theorem 4.3 answers the two questions just mentioned. Property
(I), in the theorem, makes clear how to choose parameters \;; = S\ij satisfying (1.6),
(1.10) such that the corresponding coefficient ¢ (see (1.11), (1.7)) is maximal, i.e.
¢ = c(A,b). In addition, Property (II), in the theorem, shows that no coefficient ¢
greater than ¢ = c¢(A, b) exists for which the conditions (1.5), (1.9) still guarantee
the TVD property (1.4) for process (1.2). Finally, Property (III), in the theorem,
relates the maximal coefficient ¢ = ¢(A,b) to Kraaijevanger’s quantity R(A,b).
The proof of Theorem 4.3 will be based on Theorem 3.4.

The concept of irreducibility and the quantity R(A,b), which occur in Theorem
4.3, are defined above in Section 3.1.

Theorem 4.3 (The largest coefficient ¢ of the form (1.11)).

Consider an arbitrary irreducible explicit Runge-Kutta method (A,b). Then 0 <
R(A,b) < 00, and the inverse occurring in (3.2.b) exists so that we can define the
matriz L* = (\};) by (3.2.a), (3.2.b). Let parameters A;; be defined by

(4.1.a) Aij = 1=) Ay (for2<i<m+1, andj=1),
k=2
(4.1.b) Nij = A (for2<i<m+1, and2<j<i-1),
and corresponding values fi;; via (1.7). Then the parameters \;; = S\ij satisfy (1.6),
(1.10), and the corresponding coefficient ¢ = ¢ (defined by (1.11) with \;j = X

and ju;; = fi;;) has the following properties:

(I) ¢ is the largest coefficient, obtainable from (1.11) with any parameters \;;,
wij satisfying (1.6), (1.7), (1.10).
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(IT) ¢ is equal to the largest coefficient ¢ for which the conditions (1.5), (1.9)
imply the TVD property (1.4) whenever w,_1, un, y; € R satisfy (1.2).

(II) ¢ = R(A,b).

Proof.
Since A is strictly lower triangular, one easily sees from Theorem 3.3 that
R(A,b) < oo and the inverse occurring in (3.2.b) exists.

Clearly, the parameters \;; = ;\ij satisfy condition (1.6).

From Theorem 3.4 we know that L = L* satisfies (2.8), so that the parameters
/\ij = ;\ij also satisfy (110)

Define (m + 1) x m matrices, with a structure as in (2.2), by L = (\j),
M = (fi;;), where S\ij, fui; (for j < i) satisfy (4.1) and (1.7), and 5\” ftij (for
j > i) are defined to be zero. One easily sees that L = L and M = M satisfy
(2.5), (2.7), (2.8), and that

¢ =c(A,b, f/)

In order to be able to apply Theorem 3.4 to the situation at hand, we shall
now relate ¢(A,b, L) to the coefficient ¢(A,b, L*).

From (3.2.b) we see that Lj is strictly lower triangular. This implies, in view
of (4.1), that L and L* differ only in their first column and that L > L*. Denoting
by M* the matrix which is related to L* as in (2.5), it follows that M- M* =
(L* — L)A = 0. Consequently, M = M* so that c(A,b, L) > ¢(A,b,L*). In view
of Theorem 3.4, we thus have

c(A,b,L) = ¢(A,b, L*).

We conclude that ¢ = ¢(A, b, L*), which in combination with Theorem 3.4 eas-
ily leads to the properties (I), (II), (III) of Theorem 4.3. &

Let E,,, denote the class of all explicit m-stage Runge-Kutta methods with
(classical) order of accuracy at least p. As mentioned in Section 1.1, much attention
has been paid in the literature to finding methods (A,b) of class E), , which are
optimal in E,, , with respect to the coefficient ¢(A,b) (introduced in Section 1.1);
see e.g. Gottlieb & Shu (1998), Ruuth & Spiteri (2002), Shu (2002), Shu & Osher
(1988), Spiteri & Ruuth (2002). Independently of this work, in Kraaijevanger
(1991), methods (A,b) were identified that are optimal in FE,, , with respect to
R(A,b). In Ferracina & Spijker (2004; Section 4), the remarkable fact was noted
(but not explained!) that the methods identified in Kraaijevanger (1991) coincide
with methods (A, b) obtained in the above literature on optimization with respect
to c¢(A,b) — cf. also Example 4.4 in Section 4.3 below. Theorem 4.3 allows us to
fully understand this fact: by definition, ¢(4, b) is equal to ¢ in Property (I) of the
theorem, so that, in view of Property (III),

(4.2) c(A,b) = R(A,b).
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This equality makes clear that any method which is optimal in the sense of ¢(A, b)
is also optimal with respect to R(A,b).

Relation (4.2) is also relevant e.g. to the non-existence of methods (A, b) with
¢(A,b) > 0in Eq4 and in E,, 5 — as proved in Gottlieb & Shu (1998), Ruuth &
Spiteri (2002), respectively. According to Kraaijevanger (1991, pp. 516, 521), for
any method (A,b) of class Fy4 or E,, 5, we have R(A,b) = 0, which via (4.2)
immediately leads to ¢(A,b) = 0.

4.3 Illustrations to the Theorems 3.4 and 4.3

We give two examples illustrating the Theorems 3.4 and 4.3 in the construction of
(generalized) Shu-Osher representations with maximal coefficients ¢(A, b, L).

Example 4.4 (Illustration to Theorem 4.3).
Consider the explicit Runge-Kutta method (1.2), with m = 4 and

0 0 0 0
(43) A= i;g 1(/)2 00| v =ass 16, 176, 1/2).
1/6 1/6 1/6 0

Kraaijevanger (1991; Theorem 9.5) proved that this method is of third order and
R(A,b) = 2, whereas there exists no other explicit third order method with m = 4
and R(A,b) > 2.

Define parameters S\ij, fti; as in Theorem 4.3. It is easy to see that the coeffi-
cients \;; = :\ij, fij = fii; in the corresponding process (1.8) are as follows:

Ao 1 21 z

Az1 Az2 {01 fi31 132 R

Aa1 Aaz A3 “| 201 ’ fla1 flaz fla3 S loo0 ¢
As1 As2 As3 Asg 0001 fis1 fis2 fi53 54 000 3

We see that, as predicted by Theorem 4.3, the coefficient ¢, defined by (1.11) (with
)\ij = )\ij7 Hij = ,llij). satisfies

&E=2.
Moreover, applying Theorem 4.3 once more, we immediately arrive at the following
two interesting conclusions.

1. For any explicit third order method with four stages, different from (4.3),
there exist no parameters \;;, p,;, satisfying (1.6), (1.7), (1.10), such that
the corresponding coefficient ¢ (see (1.11)) satisfies ¢ > 2.

2. For any explicit third order method with four stages, different from (4.3),
there exists no coefficient ¢ > 2 such that the conditions (1.5), (1.9) guarantee
(1.4) (whenever wu,_1, uy, y; satisfy (1.2)).
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It is interesting to note that the numerical process (1.8) with the above parame-
ter values \;; = S\ij, pij = fui; was also recently found by numerical computations
based on optimization of ¢, (1.11), with respect to the parameters A;;, p;j, see
Spiteri and Ruuth (2002). However, the last mentioned paper gives no proof of
our two conclusions stated above.

Example 4.5 (Illustration to Theorem 3.4).
Consider the singly diagonally implicit Runge-Kutta (SDIRK) method (1.2), with
m = 2 and

(4.4) A= ( }?;‘ 1(/)4 ) b7 = (1/2, 1/2).

This method is algebraically stable and of second order, see Burrage (1982). A
simple calculation shows that R(A,b) = 4. Moreover, it can be seen, by straight-
forward calculations using Theorem 3.3, that method (4.4) is optimal in that there
exists no other second order SDIRK method with m = 2 and R(A,b) > 4.

We define matrices L = L* = ()\};) and M = M* = (u;;), corresponding to
(4.4), by (2.2), (2.5), (3.2). These matrices are as follows:

1 Al /2 0 i1 M2 /8 0
51 Ak = 1/2 1/2 ) M1 a2 = /8 1/8
A31 Az 0 1 M3 M52 0 1/4

We see that, as predicted by Theorem 3.4, the coefficient ¢(A,b, L*), computed
from (2.9) (with L = L*), satisfies

c(A, b, L7) = 4.

Moreover, applying Theorem 3.4 once more, we obtain the following two interesting
conclusions.

1. For any second order SDIRK method with two stages, different form (4.4),
there exists no matrix L = ();;) satisfying (2.2.a), (2.7), (2.8), such that the
corresponding coefficient ¢(A, b, L) (see (2.9)) satisfies ¢(A,b, L) > 4.

2. For any second order SDIRK method with two stages, different form (4.4),
there exists no coefficient ¢ > 4 such that the conditions (1.5), (1.9) guarantee
(1.4) (whenever u,_1, uy, y; satisfy (1.2)).
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Cuaprter 111

Computing optimal
monotonicity-preserving
Runge-Kutta methods

The contents of this chapter are equal to: FERRACINA L., SPUKER M.N. (2005):
Computing optimal monotonicity-preserving Runge-Kutta methods, submitted for
publication, report Mathematical Institute, Leiden University, MI 2005-07.

Abstract

This paper deals with the numerical solution of initial value problems, for
systems of ordinary differential equations, by Runge-Kutta methods which are
monotonicity preserving - also called strong stability preserving (SSP). In the con-
text of solving partial differential equations by the method of lines, Shu & Osher
(1988) introduced representations of explicit Runge-Kutta methods which lead to
stepsize conditions under which monotonicity is preserved. Recently, a numerical
procedure, based on such representations, was employed for finding explicit Runge-
Kutta methods which are optimal with respect to the above stepsize conditions;
see Spiteri & Ruuth (2002, 2003), Ruuth & Spiteri (2004), Ruuth (2004).

In the present paper we continue the analysis, of Shu-Osher representations,
given earlier in Higueras (2003, 2004), Ferracina & Spijker (2005). In this way
we arrive naturally at a generalized and improved version of the numerical pro-
cedure mentioned above. Our procedure is, unlike the earlier one, also relevant
to Runge-Kutta methods which are implicit. We illustrate our procedure in a
numerical search for some optimal methods within the class of singly-diagonally-
implicit Runge-Kutta methods, and we exemplify the monotonicity properties of
these optimal methods in the solution of the Buckley-Leverett equation. Finally,
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we formulate some open questions and conjectures.

1 Introduction

1.1 Monotonic Runge-Kutta processes

In this paper we deal with the numerical solution of initial value problems, for
systems of ordinary differential equations, which can be written in the form

(1.1) %U(t):F(U(t)) t>0),  U(0)=up.

The general Runge-Kutta method, applied to problem (1.1), provides us with
numerical approximations u, of U(nAt), where At denotes a positive time step
and n = 1,2,3,...; cf. eg. Butcher (1987), Hairer, Norsett & Wanner (1993),
Hundsdorfer & Verwer (2003). The approximations u,, can be defined in terms of
Un_1 by the relations

S
(1.2.a) i =tun_1+AtY kyF(y) (1<i<s+1),
=1

(12b) Up = Ys+1-

Here k;; are real parameters, specifying the Runge-Kutta method, and y; (1 <i <
s) are intermediate approximations needed for computing u, = ys41 from wu,_;.
As usual, we call the Runge-Kutta method explicit if k;; =0 (for 1 <i < j <'s),
and implicit otherwise.

In the literature, much attention has been paid to solving (1.1) by processes
(1.2) having a property which is called monotonicity, or strong stability. There
are a number of closely related monotonicity concepts; see e.g. Hundsdorfer &
Ruuth (2003), Hundsdorfer & Verwer (2003), Gottlieb, Shu & Tadmor (2001), Shu
(2002), Shu & Osher (1988), Spiteri & Ruuth (2002).

In this paper we shall deal with a quite general monotonicity concept, and
we shall study the problem of finding Runge-Kutta methods which have optimal
properties regarding this kind of monotonicity. As we want to address this problem
in a general setting, we assume F to be a mapping from an arbitrary real vector
space V into itself and ||.|| to be a real convex function on V (i.e. [Jv]] € R and
Mo+ (1= Nw|| < Aof| + (1 = A)[Jw]| for all v,w € Vand 0 < A < 1). We will
deal with processes (1.2) which are monotonic in the sense that the vectors u, € V
computed from u,,_; € V, via (1.2), satisfy

(1.3) lanll < el

In order to illustrate the general property (1.3), we consider the numerical
solution of a Cauchy problem for the hyperbolic partial differential equation,

(1.4) gzu(zt) + C,%@(u(:v.,t)) =0,
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where t > 0, —oo < 2 < oo. Here ® stands for a given (possibly nonlinear) scalar
function, so that (1.4) is a simple instance of a conservation law, cf., e.g., Laney
(1998), LeVeque (2002). Suppose (1.1) originates from a (method of lines) semi-
discretization of (1.4). In this situation, the function F' occurring in (1.1) can be
regarded as a function from R* = {y : y = (...,n—1,70,11,...) with n; € R for
j=0,+1,4+2, ...} into itself; the actual function values F(y) depend on the given
® as well as on the process of semi-discretization being used - see loc. cit.. Since
C‘l—itU (t) = F(U(t)) now stands for a semi-discrete version of the conservation law
(1.4), it is desirable that the fully discrete process (consisting of an application
.|| denotes the total-

of (1.2) to (1.1)) be monotonic in the sense of (1.3), where
variation seminorm

~+o00
(1.5) lyllry = Z In; —nj—1| (for y € R* with components 7;).

j=—o0

With this seminorm, the monotonicity property (1.3) reduces to the so-called total-
variation-diminishing (TVD) property. For an explanation of the importance of
the last property, as well as for further examples, where (1.3) is a desirable property
or a natural demand, we refer to Harten (1983), Laney (1998), LeVeque (2002),
Hundsdorfer & Ruuth (2003), Hundsdorfer & Verwer (2003).

In order to place the study, to be carried out in the present paper, in the right
context, we shall first review, in Section 1.2, an approach of Shu & Osher (1988)
to proving the general property (1.3) for certain explicit Runge-Kutta methods.
Next, in Section 1.3, we shall briefly review a numerical procedure used in Spiteri
& Ruuth (2002, 2003), Ruuth & Spiteri (2004), Ruuth (2004) for finding explicit
Runge-Kutta methods which are optimal with respect to stepsize conditions guar-
anteeing (1.3). Finally, in Section 1.4, we shall outline the study to be presented
in the rest of our paper.

1.2 The Shu-Osher representation

By Shu & Osher (1988) (see also Shu (1988)) a representation of explicit Runge-
Kutta methods (1.2) was introduced which is very useful for proving property
(1.3). In order to describe this representation, we consider an arbitrary explicit
Runge-Kutta method (1.2) specified by coefficients ;;. We assume that \;; (for
1 <j<i<s+1)are any real parameters with

(1.6) Aij 20, Mt thig+ o+ i1 =1 1<j<i<s+1),
and we define corresponding coefficients p1;; by
i—1
(1.7) iy = Kig — Z Xiki; (1<j<i<s+1)
I=j+1

(where the last sum should be interpreted as 0, when j =i — 1).
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Statement (i) of Theorem 1.1, to be given below, tells us that the relations
(1.2) can be rewritten in the form

Y1 = Up-1,
i1
(1.8) yi = [y + At pyF(y)] 2<i<s+1),
j=1
Up = Ys+1-

We shall refer to (1.8) as a Shu-Osher representation of the explicit Runge-Kutta
method (1.2).
The representation (1.8) is very relevant in the situation where, for some 79 > 0,

(1.9) lv+ 70 F(v)] < ||v]] (for all v € V).

Clearly, in case (1.1) results from applying the method of lines to a given partial
differential equation, (1.9) amounts to a condition on the actual manner in which
the semi-discretization has been performed. In general, (1.9) can be interpreted as
monotonicity of the forward Euler process with stepsize 79, cf. e.g. Hundsdorfer
& Verwer (2003). We also note that, for 0 < 7 < 79, condition (1.9) implies
lv+7F@)| < |[(7/70)(v 4+ 10F(v)) + (1 — 7/70)v|| < ||v|| - i.e. the Euler process
is still monotonic with any stepsize 7 € [0, 7).

Assume (1.9). Then, for 2 <i < s+ 1, the vectors y; in (1.8) can be rewritten
as convex combinations of Euler steps with stepsizes 7 = At(y;;/A;j). From this
observation, it follows easily that (1.3) is now valid, under a stepsize restriction of
the form

(1.10) 0< At <c- 71,

where ¢ = ming; v;5, with v;; = Xij/pi; (f pi; > 0), vi; = 0 (if ps; < 0) — here, as
well as below, we use the convention \/pu = oo for A > 0, = 0.

Clearly, in order that ¢ > 0, it is necessary that all ;; are nonnegative. Using
an idea of Shu (1988), Shu & Osher (1988), one can avoid this condition on j;; in
certain cases. Suppose, for instance, that %U(t) = F(U(t)) approximates (1.4);
then, for p;; < 0, the quantity p;; F'(y;) in (1.8) should be replaced by ,uijﬁ(yj),
where F approximates 7%@) to the same order of accuracy as F', but satisfies
(instead of (1.9))

(1.11) v — 70 F(v)|| < ||v]| (for all v € V).

E.g., if %‘I’(U(%t)) = Lu(z,t), Fi(y) = i-1 — m)/Az, ||| = ||.|l7v and 79 =

ox

1/Az, then Fj(y) = (i — niy1)/Ax would do. Clearly, after such a (partial)

replacement of ' by F, property (1.3) is still valid under a stepsize condition of
the form (1.10), with

Ao
(1.12) ¢ = min —.
i |y
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If every coefficient p;; is nonnegative, then the number of function evaluations,
in process (1.8), is equal to the number of stages, s. However, if both F(y;) and
F (y;) were required for some j, then the number of function evaluations, needed
for computing w, from wu,_1, would be greater than s. Therefore, in order to
avoid this unfavourable situation, it is natural to demand that, for each given j,
all non-zero coefficients ;; (with j < i < s+ 1) have the same sign; cf. e.g. Ruuth
& Spiteri (2004). Accordingly, we assume that, for 1 < j < s, sign indicators
oj = £1 can be associated to the coefficients j1;; such that

(1.13) pij > 0 (whenever o; = 1), and p;; < 0 (whenever o; = —1).

For completeness we note that one can rewrite any process (1.8), for which no
o; exist satisfying (1.13), in the form of a different Shu-Osher process, with more
stages, satisfying (1.13).

The following theorem summarizes our above discussion of the Shu-Osher pro-
cess (1.8).

Theorem 1.1 (Shu and Osher).

(i) Consider an explicit Runge-Kutta method (1.2) specified by coefficients rj,
and assume (1.6) and (1.7). Then processes (1.2) and (1.8) are equivalent.

(ii) Assume (1.6), (1.13) and let ¢ be defined by (1.12). Consider any vector
space V and convex function |.|| on V; assume (1.9), (1.11). Then stepsize
condition (1.10) guarantees property (1.3), for process (1.8) where F(y;) is
replaced throughout by F(y;) when o = —1.

The above propositions (i) and (ii) are essentially due to Shu & Osher (1988)
- in that paper the starting-point was just a slightly stronger assumption, than
above, regarding |||, F and F; see loc. cit.

Clearly, if for a given Runge-Kutta method a representation (1.8) exists such
that the assumptions of Theorem 1.1 are fulfilled with ¢ > 0, then the Runge-
Kutta process maintains monotonicity of the Euler processes in (1.9), (1.11), under
the stepsize restriction (1.10). For that reason, Runge-Kutta methods for which
such a positive ¢ exists, may be called monotonicity-preserving or strong-stabulity-
preserving — cf. Gottlieb, Shu & Tadmor (2001), Ferracina & Spijker (2004).

For future reference, we note that the implementation of process (1.8) involving
F and F, as discussed above, can be written in the form

Y = Un-1,
i1
(1.14) i = Z Nijyj + At piifi(y;)] (2<i<s+1),
j=1
Unp = Ys+1,
where fj(y;) = F(y;) for o; = 1, and f;(y;) = ﬁ’(yj) for 0; = —1. In view of

(1.9), (1.11), these functions f; satisfy
(1.15) lo+moo;fiI < o A<ji<s, veV).
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1.3 A numerical procedure used by Ruuth & Spiteri

Below we denote by Ej, the class of all explicit s-stage Runge-Kutta methods
with (classical) order of accuracy at least p.

Clearly, it would be awkward if the coefficient ¢, occurring in Theorem 1.1
(ii), were zero or so small that (1.10) reduces to a stepsize restriction which is to
severe for any practical purposes — in fact, the less restrictions on At the better.
Accordingly, for given s and p, much attention has been paid in the literature
to determining Shu-Osher processes (1.8), (1.13) in £, which are optimal with
regard to the size of c. Extensive numerical searches in Ej ,, for optimal Shu-Osher
processes (1.8), (1.13), were recently carried out in Ruuth & Spiteri (2004), Spiteri
& Ruuth (2003), Ruuth (2004).

For given s and p, the numerical searches carried out in the last three papers, are
essentially based on the following optimization problem (1.16), in which A;;, pi5. ¥
are the independent variables and f(\;;, pti;,y) = 7 is the objective function.

(1.16.a) maximize v, subject to the following constraints:
(1.16.c)  \;j satisfy (1.6), and there are o; = %1 such that (1.13) holds;

the coefficients k;;, satisfying (1.7), specify a Runge-Kutta

(1.16.d) method (1.2) belonging to class Fj .

Clearly, the variable v in (1.16) corresponds to ¢ in (1.12), and parameters A;j, f;j, ¥
solving the optimization problem (1.16) yield a Shu-Osher process in Fj, which
is optimal in the sense of ¢, (1.12).

For completeness we note that, also for the special case where all o; in (1.13)
are required to satisfy o; = 1, optimal Shu-Osher processes (1.8) were determined
in B, — either by clever ad hoc arguments, or by numerical computations based
on an earlier version of (1.16); see Shu & Osher (1988), Spiteri & Ruuth (2002).

Problem (1.16), as well as the earlier version just mentioned, were solved nu-
merically by Ruuth and Spiteri — initially using Matlab’s Optimization Toolbox,
subsequently with the optimization software package BARON; see Ruuth & Spiteri
(2004), Spiteri & Ruuth (2002, 2003), Ruuth (2004) and references therein. In this
way optimal methods were found in Ej ,, for 1 <5 <10, 1 <p <5.

1.4 Outline of the rest of the paper

Various generalizations and refinements of Theorem 1.1 were given recently, no-
tably in Higueras (2003, 2004), Ferracina & Spijker (2004, 2005). In Section 2 we
shall give a concise review, and an extension, of some of these results.

In Section 3, we shall use the material of Section 2 so as to arrive at a generalized
and improved version of Ruuth & Spiteri’s approach (1.16) to finding optimal
methods.
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Our approach is, unlike (1.16), not restricted to explicit methods. Accordingly,
in Section 4, we shall illustrate our new version of (1.16) in a numerical search
for some optimal methods within the important class of singly-diagonally-implicit
Runge-Kutta (SDIRK) methods. In this way we shall arrive at optimal s-stage
methods of orders 2, and 3.

In Section 5, we shall exemplify the preceding material with a simple numeri-
cal experiment in which various optimal SDIRK methods are applied to a scalar
conservation law, the 1-dimensional Buckley-Leverett equation.

The material of Sections 4 and 5 leads to some conjectures and open questions
which will be formulated in our last section, Section 6.

2 An extension and analysis of the Shu-Osher represen-
tation

2.1 A generalization of Theorem 1.1

As in the previous section, V denotes an arbitrary real vector space. Furthermore,
f;(v) denote given functions, defined for all v € V, with values in V. We shall deal
with the following general process:

(2.1.a) yi = (1 - Z)\ij>un—1 + Z Nijyj + At pifi(y)] (1<i<s+1),

g=1 j=1

(2.1.b) uy = Yst1-

Here \;j, p1;; denote arbitrary real coefficients. Clearly, this general process reduces
to (1.14) in case p;; = A;jj =0 (for 1 <i < j < s), Z;:l Aij =1 (for2 < i< s+1).
Along with (2.1), we consider the following generalization of (1.2):

(2.2.a) Yi = un—1+ Ay kifi(y) (1<i<s+1),
j=1

(2.2.b) Ui, = Yu i
We define the (s + 1) x s coefficient matrices K, L, M as
(2.3) K = (kiz), L=\j), M= (uij),
so that the numerical methods (2.1) and (2.2), respectively, can be identified with

the pair (L, M) and the matrix K.
Below we shall relate (2.1) to (2.2). We shall denote the s x s identity matrix
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by I, and we shall use the following definitions and assumptions:

K11 ... Kis ALl - Ars Hi1 - H1s
(24) Ky = , Lg= , My= R
Ks1 - .- )‘ss )\51 e /\53 ,Ufsl . ,uss
(2.5) M =K — LK,,
(2.6) I — Ly is invertible.
Clearly, (2.5) is a straightforward generalization of (1.7); and (2.6) is automat-
ically fulfilled if (2.1) stands for (1.14).

We shall deal with monotonicity of process (2.1), under the following general-
ized version of condition (1.6):

(2.7) L>0, Les<esy.

Here, and in the following, e, stands for the column vector in R™ with all com-
ponents equal to 1 (for m = s, s + 1). Furthermore, the first inequality in (2.7)
should be interpreted entry-wise, whereas the second inequality is to be interpreted
component-wise. All inequalities between matrices or vectors, to be stated below,
should be interpreted in the same way.

In addition to (2.7), we shall assume that sign indicators o; = £1 can be
adjoined to the columns of M, such that

(2.8) ni; >0 (1<i<s+lando;=1), p; <0 (1<i<s+1ando; =-1).
For arbitrary (s 4 1) x s matrices L = (\;;), M = (u;;), we define

)\”//L” if Wij > 0,

(2.9) c(L,M)=min{y;; : 1 <i<s+1,1<j<s}, v =4 © if i =0,

0 if Hij < 0,

and we put
(2.10) [ M| = (|as1)-

The following theorem can be viewed as an extension, of the original Shu-Osher
Theorem 1.1, to the general processes (2.1), (2.2).

Theorem 2.1.
With the notations (2.3), (2.4), the following statements are valid.

(I) Assume (2.5), (2.6). Then the general processes (2.1) and (2.2) are equiva-

lent.
(II) Assume (2.6), (2.7), (2.8). Let ¢ = c(L,|M]|) ~ see (2.9), (2.10). Then,
for any wvector space V and convex function |.|| on V, conditions (1.10),

(1.15) guarantee the monotonicity property (1.3), whenever w, 1, Uy, y; sat-
isfy (2.1).
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In view of Theorems 1.1, 2.1, we shall call any process (2.1), satisfying (2.5),
(2.6), (2.7), a generalized Shu-Osher representation of the Runge-Kutta process
(2.2). From Theorem 2.1, we immediately obtain the following corollary relevant
to the Runge-Kutta process (2.2):

Corollary 2.2. Assume (2.5), (2.6), (2.7), (2.8), and let ¢ = ¢(L,|M|). Then for
any vector space V and convez function ||| on'V, conditions (1.10), (1.15) guaran-
tee the monotonicity property (1.3), whenever u,—1, ty, y; satisfy the Runge-Kutta
relations (2.2).

Remark 2.3.

(a) Assume (2.5), (2.6), (2.7), (2.8). Let F, F be as in (1.9), (1.11) and consider
the Runge-Kutta process (2.2) with f; = F (if o; = 1), f; = F (if oj = —1). From
Corollary 2.2 we easily conclude that the stepsize condition 0 < At < ¢(L,|M|) 7o
guarantees property (1.3), whenever u,,_1, u,, y; satisfy (2.2).

(b) Runge-Kutta procedures of the form (2.2) occur also very naturally in the
solution of nonautonomous equations U'(t) = F(t,U(t)); notably with f;(v) =
F(1;,v), 15 =[(n—1+7;)]At, ~; = ;_, Kk —see e.g. Butcher (1987), Hairer,
Norset & Wanner (1993), Hundsdorfer & Verwer (2003). Accordingly, the above
corollary (with all o; = 1) is highly relevant to establishing monotonicity for such
Runge-Kutta procedures: assuming that |[v + 79 F/(7;,v)|| < [[v]| (for 1 < j <'s
and v € V), one arrives at monotonicity of the Runge-Kutta process, under the
stepsize condition 0 < At < ¢(L, M) - 9.

(c) Consider a Runge-Kutta method of the form (1.2), and assume that matrices
L, M, satisfying (2.5) — (2.8) exist, with ¢(L, |M]) > 0. Then, in view of Remark
2.3 (a), and in line with the terminology in Section 1.2, we will say that the Runge-
Kutta method under consideration is monotonicity-preserving.

We note that Theorem 2.1 can be viewed as an extension of conclusions, re-
garding process (2.1), formulated in the recent literature. The equivalence of (2.1)
and (2.2), in the special situation where f; = F (1 < j < s), as well as the
monotonicity of (2.1) when f; = F (for 0; = 1), f; = F (for o; = —1), were
treated earlier — cf. Higueras (2003, 2004), Ferracina & Spijker (2005). Although
Theorem 2.1 covers situations which were not considered in the above papers, its
proof can easily be given by arguments which are almost literally the same as in
these papers. Therefore, we refer the reader for the proof of Theorem 2.1 to loc.
cit.

2.2 The maximal size of ¢(L, |M])

Let a Runge-Kutta method, with coefficient matrix K, be given. For any matrices
L, M as in Corollary 2.2, the coefficient ¢ = ¢(L,|M]|) yields a stepsize condi-
tion (1.10) which can guarantee monotonicity for the Runge-Kutta process — cf.
Corollary 2.2, Remark 2.3 (a). Consequently, the larger ¢(L, |M|) the better. The
natural question thus arises, for the given matrix K, what is the maximal size
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of ¢(L,|M|). Theorem 2.6, below, will specify this maximal size in terms of the
Runge-Kutta matrix K.

In Theorem 2.6, a coefficient introduced by Kraaijevanger (1991) will play a
prominent part. In defining this coefficient, we deal with K, K, as in (2.3), (2.4)
and we consider, for real 7, the following conditions:

(2.11) (I +~Ky) is invertible, YK(I+~Ky) >0, yK(I +vKp)les < esq1-

Definition 2.4 (Kraaijevanger’s coefficient).
For arbitrary (s + 1) x s matrices K, we define

R(K)=sup{y : v>0and (2.11) holds}.

For completeness, we note that the original definition, given by Kraaijevanger
(1991), is slightly more complicated and essentially amounts to

R(K) =sup{r : r € R and (2.11) holds for all v € [0,7]}.

(Moreover, Kraaijevanger (1991) used the notation R(A,b), instead of R(K), but
this difference is immaterial for our discussion.) The following theorem implies
that the above two definitions of R(K') are equivalent:

Theorem 2.5.
Let K be given and let v be any finite value with 0 < v < R(K) (Definition (2.4)).
Then 7 satisfies (2.11).

Theorem 2.5 can be viewed as a (somewhat stronger) version of earlier results in
the literature — for related material, see Kraaijevanger (1991, Lemma 4.4), Higueras
(2004, Proposition 2.11), Horvath (1998, Theorem 4).

In Section 2.3, we shall give an integrated proof of Theorem 2.5 and Theorem
2.6; the former theorem will be used in our proof of the latter.

In Theorem 2.6 we shall deal with coefficient matrices K = (k;;) satisfying

(212) k;; 20 (1<i<s+lando;j=1), ;<0 (1<i<s+1lando;=-1).

Theorem 2.6.

Let K = (kij) and 05 = 1 (1 < j < s) be given. Then there exist L, M satisfying
(2.5) ~ (2.8) if and only if K satisfies (2.12). Furthermore, if (2.12) is fulfilled,
the following three statements are valid.

(a) We have sup c(L,|M|) = R(|K|), where the supremum is over all pairs
(L, M) satisfying (2.5) — (2.8).

(b) We also have sup c(L,|M|) = R(|K|), where the supremum is only over all
pairs (L, M) satisfying (2.5) — (2.8), with L =~ |M|, v > 0.

(¢) If R(|K]) < oo, then the suprema in Statements (a), (b) are mazima.

Theorem 2.6 combines and extends various results given earlier in the literature,
see Higueras (2003, 2004), Ferracina & Spijker (2005).
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2.3 Proof of Theorems 2.5, 2.6

Our proof below, of Theorems 2.5, 2.6, will be based on the following lemma, which
can be viewed as an extension of related results in the literature; see Higueras (2003,

2004), Ferracina & Spijker (2005).

Lemma 2.7. Let K be a given (s + 1) x s matriz and v > 0. Then Statements (a),
(b) are valid.

(a) Suppose L, M are (s + 1) x s matrices, with L > yM > 0, satisfying (2.5),
(2.6), (2.7). Then K and v satisfy (2.11).

(b) Suppose, conversely, that (2.11) is fulfilled. Then there exist matrices L, M,
with L = yM > 0, satisfying (2.5), (2.6), (2.7).

Proof. 1. Before going into the actual proof, we assume (2.6), (2.7) and consider
an arbitrary s x s matrix Ey, with

(2.13) 0< E < L.
We shall prove that
(2.14) I — Ey is invertible, with (I — Eg)~! > I.

From (2.13) we conclude that the spectral radius of Ey does not exceed the
spectral radius, say r, of Lo; see, e.g., Horn & Johson (1985, Section 8.1). From
Lo > 0, Lyes < e, we see that r < 1. Since I — Ly is invertible, it follows -
e.g. from a well known corollary to Perron’s theorem, see Horn & Johson (1985,
Section 8.3) — that r < 1. Consequently, the spectral radius of Ep is less than 1.
Hence, I — Ej is invertible, with (I — Eo)~! = I+ Eg + (Eo)* + ... > I, i.e. (2.14).

2. Assume (2.5), (2.6), (2.7) and L > yM > 0. In order to prove (2.11), we
define E = L — yM, Ey = Lo — 7My. Note that, with this definition, (2.13) is
fulfilled, so that (2.14) is valid as well.

From (2.5) we obtain Ko = (I — Lo)~*(vMo) = (I — Lo)~'(Lo — Eyp), and
therefore vKog = —I + (I — Lo) (I — Ey). Hence

(2.15.a) I +~Kj is invertible and (I + vKy) ™' = (I — Eo) "' (I — Lo).
Since YK = yM+L(yKy) = (L—FE)+L(vKy), we find, by using our last expression
for Ky, that K = —E + L(I — Ly)~'({ — Ep). Combining this equality with
(2.15.a), there follows
(2.15.b) YK(I +~Ko) ' =L~ E( - Eo)"*(I - Lo).

The right-hand member of (2.15.b) is easily seen to be equal to (L —E)+ E(I —

FEo)~'(Lo— Ep) > 0. This implies the first inequality in (2.11). Furthermore, when
we premultiply the vector e, by the right-hand member of (2.15.b), we obtain the
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vector Les — E(I — Ey) " Y(I — Lo)es < Les < esy1. Consequently, the second
inequality in (2.11) is fulfilled as well — which completes the proof of Part (a) of
the lemma.

3. In order to prove Part (b) of the lemma, we assume (2.11) and we define
M = K(I +~vKy)~ ', L = yM. Clearly, (2.7) is fulfilled. Moreover I — Ly =
(I + vKy)~!, which proves (2.6). Finally, a short calculation shows that (2.5) is
fulfilled as well. &

Proof of Theorem 2.5.

First suppose 0 < v < R(K). Choose v’ > 7 such that 4/ satisfies (2.11). Applying
Lemma 2.7 (b) to 7/, it follows that L, M exist satisfying (2.5), (2.6), (2.7) with
L =~'M > ~M > 0. An application of Lemma 2.7 (a) proves that ~ satisfies
(2.11).

Next, suppose 0 < v = R(K) < oo, and (2.11) is violated. Using continuity
arguments one sees that, in order to complete the proof of Theorem 2.5, it is
enough to show that (I 4+ vKj) is invertible.

Let € € (0,1) be such that v = ~/(1 + ¢) satisfies (2.11). Then the matrix
Py = ' Ko(I +~'Ky)~! has a spectral radius not exceeding 1. We have I +~vKy =
(I +~"Ko)(I+ePy), so that I +~Kj equals the product of two invertible matrices.
Hence I + vK is invertible. |

Proof of Theorem 2.6.
First, suppose K satisfies (2.12). Then the matrices L = 0, M = K satisfy (2.5) —
(2.8).

Next, suppose L, M satisfy (2.5) — (2.8). We shall denote by |Mj| and K| the
sx s matrices with entries |p;;| and |k, respectively. Defining D = diag(o1, ..., 05),
we have |]V[0| — ]V[()D = (Ko—L()K())D = (I*LO)KOD, i.e. KQD = (I—LU)AIU\/I()L
In the first part of the proof of Lemma 2.7, we showed that (2.13) implies (2.14).
Using this implication, with Ey = Lo, we obtain (I — Lg)~! > I, so that KoD >
|[My| > 0. Consequently, KoD = |Ky| and therefore KD = (M + LK,)D =
|M| + L|Ky|. Tt follows that KD > 0, which proves (2.12).

Finally, assume again (2.12) and, without loss of generality, that K # 0. One
easily sees that, in order to establish (a), (b), (¢), it is enough to prove the following
two implications:

(i) If L, M satisty (2.5) — (2.8), then ¢(L, |M]) < R(|K|).

(i) If v is a finite value with 0 < v < R(|K|), then L, M exist satisfying (2.5) -
(2.8) with L = ~|M]|.

In order to prove (i), we assume (2.5) — (2.8). Using (2.9), (2.10) and our assump-
tion K # 0, there follows

M| = |K|—- L|Ko|, L>v|M|>0 with~y=c(L,|M|)< occ.
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Applying Lemma 2.7 (a) to the pair (L, |M

), we arrive at the inequality in (i).
In order to prove (ii), we consider a finite v € (0, R(|K)]. Applying Theorem
2.5 and Lemma 2.7 (b) to the matrix |K|, we see that matrices L, M exist with
L=~M >0, M = |K| - L|Ky|, satisfying (2.6), (2.7). A multiplication of the last
equality by D = diag(oy, ...,05), vields MD = K — LKy; so that (2.5) is fulfilled
with M = MD. Since M > 0, we have M = |M|. Therefore L, M are as required
in (ii). B

3 Generalizing and improving Ruuth & Spiteri’s
procedure

In this section we shall give three General Procedures I, II and III, which can be
viewed as variants to Ruuth & Spiteri’s procedure (1.16). We think that our third
procedure is the most attractive one; we present the other two mainly in order to
put the third one in the right perspective and to compare it more easily with the
approach (1.16).

Our procedures are relevant to arbitrary Runge-Kutta methods (not necessarily
explicit). In line with Corollary 2.2 and Remark 2.3 (a), the procedures focus on
optimizing ¢(L,|M|) — which generalizes the optimization of (1.12), as in Ruuth &
Spiteri’s approach. We shall deal with maximization of ¢(L, |M|), over all gener-
alized Shu-Osher representations (L, M) of Runge-Kutta methods with coefficient
matrices K = (k;;) belonging to a given class %. We assume all K € ¢ to have
the same number of columns, s, and for each individual K € ¢ we assume that
sign indicators o; = £1 (1 < j < s) exist, with property (2.12).

We denote by % the set of all Shu-Osher pairs (L, M) satisfying (2.5) — (2.8),
where K is any matrix of class ¢’ with sign indicators o;.

Below we give our three general procedures. We will use the notation (2.3),
and with 7, K;j, Aij, pi; we denote independent variables.

GPI:  General Procedure I
(3.1.a) maximize v, subject to the constraints:

(31b) /\z’j_7|ﬂij' >0 (i:1,2,...,8—|—1, jZLQ,...,S);
(3.1.c) (L,M)€%.

GPII: General Procedure I

(3.2.a) maximize v, subject to the constraints:
(32b) Aij — 7yl =0 (i=1,2,..,5+1, j=1,2,..,38);
(3.2.¢) (L,M)c¢¥.
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GPIII: General Procedure III

(3.3.a) maximize 7, subject to the constraints:
(3.3.b) ~ satisfies (2.11), with Ky, K replaced by |Kol|, |K]|;
(33(3) K= (KJU) €C.

The variable 7, in the above three procedures, corresponds to ¢(L, |[M|). Fur-
thermore, parameters \;;, fij, 7, solving the optimization problems (3.1) or (3.2),
yield a Shu-Osher pair (L, M) in ¢ which is optimal with respect to ¢(L, |M|);
similarly, parameters k;;, v, solving (3.3), yield an optimal Runge-Kutta matrix

K in €. The following theorem relates the optimal value of ¢(L, |M]) formally to
the maximum of v in the General Procedures I, II, III.

Theorem 3.1. Let € be a given class of (s + 1) x s coefficient matrices K such
that, for each individual K = (k;j), sign indicators o; = £1(1 < j < s) ewist
satisfying (2.12). Let € be the set of all Shu-Osher pairs (L, M) satisfying (2.5)
~ (2.8), where K is any matriz of class € with sign indicators o;. Assume that
¢* = max{c(L,|M|) : (L,M) € €} exists and is finite. Then the mazimum of
~, under the constraints as specified in any of the General Procedures 1, 11 or 111,
exists and equals c*.

Proof.
1. Clearly, under the assumptions of the theorem, we have, for all (L, M) € €,
the equality

(3.4) e(L,|M|) =max {y: Aijj —|pij| =0 (for all 4,5)}.

This proves that the maximum of ~, specified in GPI, does exist and is equal to ¢*.

2. Let (L*, M*) € € be an optimal pair, i.e., ¢(L*,|M*|) = ¢* < oo; and let
K* € ¢ be such that (L*, M*) satisfies (2.5) — (2.8) for K = K*. By applying
Theorem 2.6, Part (a), one can conclude that

(3.5) c* =c(L*,|M*]) = maxc(L, |M|) = R(|K*|) = mélXR(lKD < o0.
2 :

From Theorem 2.5, we see that, for each K € ¢, the value R(|K]|) equals the
maximum over all v satisfying (2.11) with Ky, K replaced by |Kol|, |K|. In view
of (3.5), we thus see that GPIII yields the value ¢*.

3. By virtue of Theorem 2.6, we have ¢* = max¢(L, |M|) where the maximum
is over all (L, M) € €, with L = v|M]|, v € R. For any pair (L, M) of this type,
we see from (3.4) that ¢(L, |[M|) = ~. Consequently, also GPII yields the value ¢*.l

Clearly, General Procedure I can be viewed as a direct generalization of Ruuth
& Spiteri’s procedure (1.16) for Ej ;. to arbitrary classes ¢ of general Runge-Kutta
methods.
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General Procedure I can be regarded as an improvement over GPI, because
the number of independent variables has essentially been reduced by (almost) 50%.
Clearly, GPII can be expected to be considerably more efficient than GPI.

Finally, although (3.3.b) is usually more complicated than (3.2.b), we still think
that General Procedure IIT constitutes a (further) improvement over GPII (and
a-fortiori over GPI). The fact is that condition (3.3.c) is simpler to handle than
(3.2.c). To see this, suppose we want to search for optimal methods in ¢ = F ,
using GPII. Then the pairs (L, M) of class 4 must be specified by using the
algebraic conditions for the order p. Similarly as in the original procedure (1.16),
the order conditions, known in terms of K, would have to be rewritten in terms
of L and M via complicated (and time consuming) routines; see, e.g., Spiteri &
Ruuth (2002), Ruuth (2004) and references therein. Similar reformulations would
have to be performed in case we were interested in methods with special structures
of the matrix K, e.g., low-storage schemes or singly-diagonally-implicit schemes.
When seen in this light, GPIII has an advantage over GPII because, in the former
procedure, the order conditions (and special structures) can easily and directly be
implemented in terms of K.

For completeness, we note that the above General Procedures I, I, 11T are also
highly relevant to the important search for methods K € % which are optimal with
respect to ¢(L, M) and R(K) (rather than ¢(L,|M|) and R(|K|). When looking
for such methods, one can simply apply the general procedures, with ¢ replaced
by ¢, = {K : K € ¢ and K > 0}; because for any K = (x;;), with a negative
entry ;j, we have R(K) = ¢(L, M) = 0 (see Theorem 2.5 and (2.11), (2.9)).

4 TIllustrating our General Procedure III in a search for
some optimal singly-diagonally-implicit Runge-Kutta
methods

In the literature, much attention has been paid to a special class of implicit Runge-
Kutta methods, the so-called singly-diagonally-implicit Runge-Kutta (SDIRK)
methods, i.e. methods K = (k;;) with k;; =0 (j > 1) and k11 # 0, ki = k11 (2 <
i < s). For a discussion of SDIRK methods, and their computational advantages
over other (fully) implicit Runge-Kutta methods, see, e.g., Butcher (1987), Hairer,
Norsett & Wanner (1993), Hairer & Wanner (1996), Kvaerng, Norsett & Owren
(1996) and the references therein.

In the present section, we shall illustrate our General Procedure I1I in a search
for some optimal SDIRK methods. We shall denote by S, the class of all singly-
diagonally-implicit s-stage Runge-Kutta methods K = (k;;) with order of accuracy
at least p, such that x; > 0 and sign indicators o; = +1 exist satisfying (2.12).
Clearly, for any K € S, all o; must be equal to 1. Consequently, in line with
Remark 2.3 (a) and Theorem 2.6, only the function F' itself (and no additional F as
in (1.11)) would be needed when a method of class S, is applied in the situation
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(1.1), (1.9). Clearly, for all K € S, ,, and (L, M) € Ss,, we have K > 0, M > 0,
so that R(|K|) = R(K), ¢(L,|M|) = ¢(L, M).

It is well known that the implicit Euler method K = (k;;), with s =1, k11 =
k21 = 1, has an order p = 1 and the (optimal) value R(K) = oo; see, e.g.,
Kraaijevanger (1991, Lemma 4.5). Consequently, any search for optimal methods
in S, with p = 1 is superfluous. Below we shall focus on computing optimal
methods K in S, with p = 2, 3.

We applied GPIII to ¢ = S, , for s = 1,...,10 and p = 2, 3, and we implemented
it by using Matlab’s Optimization Toolbox. In Table III.1 we have collected the
maximal coefficients ¢, = max{c(L,M) : (L,M) € Ss,} = max{R(K) : K €
Ssp}. which we obtained with this implementation of PGIII.

s=1ls=2|s=3|s=4|s=5|s=6|s=7|s=8|s=9 |5s=10
2 4 6 8 10 12 14 16 18 20
- 12.7321]4.8284(6.8730(8.8990(10.9161{12.9282(14.9373|16.9443|18.9499

p=2
p=3

Table III.1: The maximal coefficients ¢, = ¢(L, M) = R(K) for generalized Shu-
Osher representations (L, M) (in S, ;) and SDIRK methods K (in S, ;).

The table clearly shows that, for given p, the stepsize coefficients c; p, cor-
responding to the optimal methods in Ss,, become larger when s increases. A
larger value of ¢, , means that monotonicity preservation can be guaranteed under
a milder stepsize restriction (1.10) (with ¢ = ¢4 ,), but this does not automati-
cally imply a better overall efficiency — because, e.g., also the computational labor
per step should be taken into account — cf. Spiteri and Ruuth (2002, Section 3),
Ferracina & Spijker (2004, Section 4.2) for related considerations.

By trial and error, we found explicit formulae for the optimal methods K, and
corresponding values R(K'), which coincide, up to all computed decimal digits, to
the values which we obtained numerically using GPIII. For the optimal methods
K = (kij), in Ss 2, we found the following explicit formulae:

= fi=5 1451 s
(4.1) R(K)=cs2=2s, and k=41 ifl<j<i<s+1,
0

otherwise.

For the optimal methods K = (k;;), in Sy 3, we found

-y ifi=41<i<s,

e
(4.2) R(K) = cs3 = s—14+1/82 — 1, k=4 Vo°— fl<j<iss,
if i = s+1, 1<j<s,

|

otherwise.
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In the following, we shall refer to the SDIRK methods (4.1) and (4.2) as
SDIRK (s, 2) and SDIRK(s, 3), respectively.

5 A numerical illustration

In this section, we shall give a simple numerical illustration to the material pre-
sented above. We shall focus on the TVD properties of the methods SDIRK(s, p)
fors=p—1,p,p+ 1

We will apply the methods in the numerical solution of the 1-dimensional
Buckley-Leverett equation, defined by (1.4) with ®(v) = %.—2%; see, e.g.,
LeVeque (2002). We consider this equation for 0 < 2 < 1, 0 < t < 1/8, with
(periodic) boundary condition u(0,t) = u(1,t) and initial condition

o J 0 for0<z<y,
u(m,())—{% fOY%<.’L‘§1.

We semi-discretize this Buckley-Leverett problem using a uniform grid with
mesh-points z; = jAz, where j =1,..., N, Az = 1/N and N = 100. The partial
differential equation is replaced by the system of ordinary differential equations

1 .

Ui0) = 1= (W4 (1) = 2(U;44 (1) (=12, N),
where U;(t) is to approximate u(x;,t). Following Hundsdorfer & Verwer (2003,
II1, Section 1), we define

1

where ¢(0) is a (limiter) function due to Koren - see, loc. cit. — defined by

2 1
©(#) = max (0, min(2, 3 + 59, 20)),

and
_ Ui —Uja

0, .
T Ui U

In line with the periodicity of the boundary condition, we use the convention
U, = U, if p=q mod N. We thus arrive at a system of N = 100 ordinary
differential equations that can be written in the form £U(t) = F(U(t)).

We define ug to be the vector in RY, N = 100, with components ug; = 0
(for 1 < j < 50), up; = 1/2 (for 51 < j < 100). The resulting initial value
problem, of the form (1.1), was integrated by the forward Euler method and by
the SDIRK(s, p) methods mentioned above.
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Figure IT1.1: The ratio (5.1) vs. the stepsize At.

In Figure IIL.1, the maximal ratio of the TV-seminorm |ly||7v = Zjvzl |n; —
nj—1| (where y = (n1,...,nn), 1m0 = nn) of two consecutive numerical approxima-
tions, in the time interval [0, %], is plotted as a function of the stepsize; i.e, the
quantity

T ; 1
(5.1) r(At) = max Munfiry :n > 1 with nAt < -
un-1llTv 8

is plotted as a function of At. We note that in Figure IIL.1, the value r(At) =1
corresponds to the monotonicity-preserving situation where |u,||7v < [[un—1]7v
for all m > 1, nAt < 1/8.

We found that the Euler method is monotonic (TVD) for 0 < At < 7 =
0.0025, and the SDIRK(s, p) methods for 0 < At < At ,, where Aty 2 ~ 0.0050,
Atgﬁz ~ 00102, At3’2 ~ 00152, At2‘3 ~ 00092 At373 ~ 0.0136, At4,3 ~ 0.0184.
Clearly, these numerically observed thresholds At,, are amply larger than the
threshold 7 for the Euler method and, for given p, they increase when s increases.
This can be viewed as a numerical reflection (and confirmation) of Remark 2.3 (a)
(with all o; = 1) and of the fact that, in Table III.1, the coefficients c; ) satisfy:
1< Cs,p < Cs41,p-

For p = 2, we see from the above that At, ,/7 = ¢, = 2s. In this connection,
it is interesting to note that the relation Aty o > s Aty o follows directly from our
formula (4.1) for SDIRK(s, 2). In fact, from (4.1) we see that SDIRK(s, 2) amounts
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to applying SDIRK(1,2) s times in succession, with At replaced by At/s.

6 Conjectures, open questions and final remarks

The optimal methods (4.1), (4.2) were obtained via a numerical search based on
our General Procedure I11. Clearly, this does not provide us with a formal proof
of the optimality of these methods. Since the matrices K which we found numer-
ically, correspond to (4.1), (4.2) up to all computed digits, we are naturally led to
the following

Conjecture 6.1.

(a) Let p =2 and s > 1. Then there is a unique method K = (k;;) in S, , which
is optimal with respect to R(K), and this optimal method satisfies (4.1).

(b) Let p =3 and s > 2. Then there is a unique method K = (x;;) in Ss , which
is optimal with respect to R(K), and this optimal method satisfies (4.2).

We can prove the conjecture in a straightforward way (only) for the special cases
(s,2) = (1,2), (2,2) and (s,p) = (2,3).

In fact, one easily sees that there is a unique SDIRK method K = (k;;) with
s =1 and p = 2, viz. the implicit midpoint rule, for which r11 = 1/2, ko = 1,
R(K) = 2. This proves Conjecture 6.1 (a) for the special case where s = 1. For
the case (s,p) = (2,2), a proof was given in Ferracina & Spijker (2005, Section
4.3).

Furthermore, there exist two different SDIRK methods K = (k;;) with s = 2
and p = 3, and explicit expressions for the coefficients x;; are available — see, e.g.,
Kveaerng, Nersett & Owren (1996, Tablel). From these expressions, one easily sees
that just one of the two methods belongs to Sz 3, and that it satisfies (4.2) with
s = 2. This proves Conjecture 6.1 (b) for the special case where s = 2.

Let ¢ denote the class of all SDIRK methods K, with s stages and order at
least p. Clearly, the class ¢, = {K : K € ¢ and K > 0} equals S, ;. In line with
the last paragraph of Section 3, and under the assumption that Conjecture 6.1 is
true, we thus can conclude that the methods SDIRK(s, p) with p = 2, 3 —i.e (4.1),
(4.2), respectively — are optimal (with respect to R(K)) not only in S 5, but even
in the wider class €.

The numerical experiments in Section 5 support the idea that the (optimal)
methods (4.1), (4.2) allow a stepsize At which is large, compared to 79, while
maintaining monotonicity, notably the TVD property. Because we want to keep
the present work sufficiently concise, we have not entered into the (related) ques-
tion when, and in how far, these methods are actually more efficient than other
(explicit) Runge-Kutta methods. Likewise, we have not discussed the application
of GPIII to other classes than S and Ss 3 — e.g. (for given s, p) the class of all
Runge-Kutta methods K = (k;;), with s stages and order at least p, satisfying
(2.12). We hope to come back to these interesting questions in future work.
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CuaprTER 1V

Stepsize restrictions for
total-variation-boundedness in
general Runge-Kutta
procedures

The contents of this chapter are equal to: FERRACINA L., SPLUKER M.N. (2005):
Stepsize restrictions for total-variation-boundedness in general Runge-Kutta proce-
dures, Appl. Numer. Math. 53, 265-279.

Abstract

In the literature, on the numerical solution of nonlinear time dependent partial
differential equations, much attention has been paid to numerical processes which
have the favourable property of being total variation bounded (TVB). A popular
approach to guaranteeing the TVB property consists in demanding that the process
has the stronger property of being total variation diminishing (TVD).

For Runge-Kutta methods - applied to semi-discrete approximations of partial
differential equations - conditions on the time step were established which guar-
antee the TVD property; see e.g. Shu & Osher (1988), Gottlieb & Shu (1998),
Gottlieb, Shu & Tadmor (2001), Ferracina & Spijker (2004), Higueras (2004), Spi-
teri & Ruuth (2002). These conditions were derived under the assumption that
the simple explicit Euler time stepping process is TVD.

However, for various important semi-discrete approximations, the Euler process
is TVB but not TVD - see e.g. Shu (1987), Cockburn & Shu (1989). Accordingly,
the above stepsize conditions for Runge-Kutta methods are not directly relevant
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to such approximations, and there is a need for stepsize restrictions with a wider
range of applications.

In this paper, we propose a general theory yielding stepsize restrictions which
cover a larger class of semi-discrete approximations than covered thus far in the
literature. In particular, our theory gives stepsize restrictions, for general Runge-
Kutta methods, which guarantee total-variation-boundedness in situations where
the Euler process is TVB but not TVD.

1 Introduction

1.1 The purpose of the paper

In this paper we deal with the numerical solution of initial value problems (IVPs),
for systems of ordinary differential equations (ODEs), which can be written in the
form

(1.1)

The general Runge-Kutta method, applied to problem (1.1), provides us with
numerical approximations wu, to U(nAt), where At denotes a positive time step
and n = 1,2,3,...; see e.g. Hairer, Norsett & Wanner (1993), Hairer & Wanner
(1996), Butcher (2003), Hundsdorfer & Verwer (2003). The approximations u,, are
defined in terms of u,,_ by the relations

d

LU =FUW) (20, U0)=u.

m

(1.2.a) Yi = Up_1+ AtZaijF(yj) (1<i<m),
j=1

(1.2.b) Up = Up—1+ AthjF(yj).
j=1

Here a;; and b; are real parameters, specifying the Runge-Kutta method, and y;
are intermediate approximations needed for computing w,, from u,_;. As usual,
we assume that by +bs + ... + b, = 1, and we call the Runge-Kutta method explicit
if a;j = 0 (for j > 7). We define the m x m matrix A by A = (a,;) and the column
vector b € R™ by b = (b1, ba, b3, ...,b,,)T, so that we can identify the Runge-Kutta
method with its coefficient scheme (A,b).

In order to introduce the questions to be studied in this paper, we assume that
(1.1) results from applying the method of lines (MOL) to a Cauchy problem for a
partial differential equation (PDE) of the form

(1.3) %u(w,t) “+ %f(u(w,t)) =0 (t>0, —oc0o<zx<o0).

Here f stands for a given (possibly nonlinear) scalar function, so that the PDE is
a simple instance of a conservation law. In this situation, the function F' occurring
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in (1.1) can be regarded as a function from
R®={y:y=(.,n-1,M0,M,...) with n; € R for j =0,+1,+2,...}

into itself; it depends on the given function f as well as on the process of semi-
discretization being used. Further, uy € R* depends on the initial data of the
original Cauchy problem. The solution U(t) to (1.1) now stands for a (time depen-
dent) vector in R* with components U;(t) which are to approximate the desired
true solution values u(x;,t) (or cell averages thereof) corresponding to grid points
xz; (j = 0,£1,42,...). For detailed explanations of the MOL, see e.g. Laney
(1998), Toro (1999), LeVeque (2002), Hundsdorfer & Verwer (2003).

In the situation just specified, where (1.1) stands for a semi-discrete version of a
conservation law, it is desirable that the corresponding (fully discrete) process (1.2)
has a property which is referred to in the literature as total variation boundedness
(TVB). In discussing this property, we shall use below the total variation seminorm
[|l.|[7v and the vector space R , which are defined as follows:

+oo
yllry = Z [nj —nj—1| (for y € R™ with components 7;),
j=—o00
R> = {y: yeR*and |y|lrv < oo}.

Total variation boundedness of process (1.2) means that, for initial vector ug €
R2% and T' > 0, there is a positive constant B and value Aty > 0 such that

(14) HU'IL”TV <B (0 < At < Atg, 0<nAt < T)

For more details and an explanation of the importance of the TVB property in the
numerical solution of nonlinear conservation laws, in particular in the context of
convergence proofs, see e.g. Harten (1984), Shu (1987), Cockburn & Shu (1989),
Kroner (1997), Laney (1998), LeVeque (2002).

A popular approach to guaranteeing the TVB property, consists in demanding
that the total variation be non-increasing as time evolves, so that, at any positive
time level, the total variation of the approximate solution u, is bounded by the
total variation of the initial vector ug. Following the terminology in the literature,
we will say that process (1.2) is total variation diminishing (TVD) if

(1.5) lunllry < Jtun—1ll7v, for u, and u,_; satisfying (1.2).
In the literature, crucial stepsize restrictions of the form
(1.6) 0 < At < Aty

were given ensuring the TVD property (1.5); see e.g. Shu (1988), Shu & Osher
(1988), Gottlieb & Shu (1998), Gottlieb, Shu & Tadmor (2001), Ferracina & Spijker
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(2004), Higueras (2004), Spiteri & Ruuth (2002) and Section 2.2 below. These
stepsize restrictions were derived under the assumption that, for some positive 7o,

(1.7) F: RY —RX satisfies [v+7F(v)|rv < [vllrv (v €RY).

Clearly, (1.7) amounts to assuming that the semi-discretization of equation (1.3)
has been performed in such a manner that the simple forward Euler method,
applied to problem (1.1), is TVD for some suitably chosen stepsize 7.

Unfortunately, for important semi-discrete versions (1.1) of (1.3), condition
(1.7) is not fulfilled see e.g. Shu (1987), Cockburn & Shu (1989). Clearly, in such
cases the above stepsize restrictions (1.6), which are relevant to the situation (1.7),
do not allow us to conclude that a Runge-Kutta procedure is TVD (and therefore
TVB).

We note that a notorious weakness, of most TVD schemes, is that their accuracy
degenerates to first order at smooth extrema of the solution - see e.g. Osher &
Chakravarthy (1984). The semi-discretizations just mentioned, proposed by Shu
(1987), Cockburn & Shu (1989) and others, were introduced to overcome this
weakness. Although, for these semi-discretizations, condition (1.7) is violated, the
following weaker condition is fulfilled:

(1.8) F:RY,, — RY satisfies

TV

lv+70F (v)|lrv < (1+aomo0)||v||rv +Bom0 (vERT,).

Here 7y is again positive, and «g, 3o are nonnegative constants. Condition (1.8)
can be interpreted, analogously to (1.7), as a bound on the increase of the total
variation, when the explicit Euler time stepping is applied to (1.1) with time
step 1.

In the situation where property (1.8) is present, it is natural to look for an
analogous property in the general Runge-Kutta process (1.2), namely

(1.9) N|unllrv < (14 aAt)||up—1|l7v + BAE, for u, and u,_; satisfying (1.2).

Here «, § denote nonnegative constants.

Suppose (1.9) would hold under a stepsize restriction of the form (1.6). By
applying (1.9) recursively and noting that (1 + aAt)" < exp(anAt), we then
would obtain

b
(1.10) “unHTV < GQTH’U,[)HTV + i;((}(yT — 1) (0 < At < Afo, 0 < nAt < T)

Hence, property (1.9) (for 0 < At < Aty) amounts to total variation boundedness,
in that (1.4), is fulfilled with B = e®T|jug||rv + g(eO‘T —1). The last expression
stands for ||up|ryv + T, in the special case where a = 0.

Since (1.8) and (1.9) reduce to (1.7) and (1.5), respectively, when oy = By =
o = 3 =0, it is natural to look for extensions, to the TVB context, of the results
in the literature pertinent to the TVD property. More specifically, the natural
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question arises of whether stepsize restrictions of the form (1.6) can be established
which guarantee property (1.9) when condition (1.8) is fulfilled.

Partial results related to the last question, but no complete answers, were
indicated, for special explicit Runge-Kutta methods, by Gottlieb, Shu & Tadmor
(2001, Section 2.1), Shu (2002, Section 2).

The purpose of this paper is to propose a general theory by means of which
the above question, as well as related ones, can completely be clarified.

1.2 Outline of the rest of the paper

In Section 2, we recall some concepts which are basic for the rest of the paper, and
we give a short review of relevant results from the literature.

Section 2.1 deals with the concept of irreducibility of Runge-Kutta methods
(A,b) and with Kraaijevanger’s coefficient R(A,b). Theorem 2.3 gives a condition
which is necessary and sufficient in order that R(A,b) is positive. This theorem
will be used later in the Sections 3, 4 and 5.

Theorem 2.4, in Section 2.2, gives a stepsize condition of the form (1.6) which is
known to be necessary and sufficient for the TVD property (1.5) under assumption
(1.7). This condition is also known to be relevant to versions of properties (1.5),
(1.7) which are more general, than the original properties, in that they involve an
arbitrary vector space V with seminorm |||, rather than R and |[|.|[7y. Theorem
2.4 serves as a preparation and motivation for the material in Section 3.

In Section 3, we propose an extension of the theory reviewed in Section 2.2. Our
extension is applicable in the situation where (a generalized version of) condition
(1.8) is fulfilled.

In Section 3.1, we consider versions of (1.8), (1.9) in the context of arbitrary
vector spaces V with seminorm ||.||. Further, we introduce, for arbitrary Runge-
Kutta methods (A,b), an important characteristic quantity, which we denote by
S(A,b). This quantity will play, together with R(A,b), a prominent part in Section
3.2,

The latter section contains our main result, Theorem 3.2. This theorem is
relevant to arbitrary Runge-Kutta methods (not necessarily explicit). It can be
viewed as a convenient variant of Theorem 2.4 adapted to the situation where (1.5)
and (1.7) are replaced by (1.9) and (1.8), respectively. Theorem 3.2 amply answers
the question mentioned above at the end of Section 1.1. The proof of the theorem
requires arguments different from those underlying Theorem 2.4. In fact, our proof
of Theorem 3.2 relies substantially on the use of Lemma 3.6. This lemma, which is
of independent interest, gives general upper bounds for the seminorms of vectors
Uy, ¥; satisfying (1.2). In order not to interrupt the presentation of our results, we
have postponed the proof of the lemma to the last section of the paper.

In Section 4 we shortly present some applications and illustrations of Theorem
3.2 and Lemma 3.6.

In Section 5 we prove Lemma 3.6. Our proof is based on a convenient represen-
tation of general Runge-Kutta methods, which is of a similar type as considered
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recently in Ferracina & Spijker (2005), Higueras (2003).

2 Kraaijevanger’s coefficient and the TVD property

2.1 Irreducible Runge-Kutta methods and the coefficient R(A, b)

The following definition is of fundamental importance in the rest of our paper.

Definition 2.1 (Reducibility and irreducibility).

An m—stage Runge-Kutta scheme (A, b) is called reducible if (at least) one of the
following two statements (i), (i) is true; it is called irreducible if neither (i) nor
(1) is true.

(i) There exist nonempty, disjoint index sets M, N with M UN = {1,2,...,m}
such that b; =0 (for j € N) and a;; =0 (forie M, j € N);

(ii) there exist nonempty, pairwise disjoint index sets My, Mo, ..., M,, with 1 <
r < m and My UMy, U ...UM, = {1,2,....,m}, such that Zkqu Qip =
Y kem, 4k whenever 1 <p<r, 1 <q<r andi,j € M,.

In case the above statement (i) is true, the vectors y; in (1.2) with j € N
have no influence on u,,, and the Runge-Kutta method is equivalent to a method
with less than m stages. Also in case of (i7), the Runge-Kutta method essentially
reduces to a method with less then m stages, see e.g. Dekker & Verwer (1984)
or Hairer & Wanner (1996). Clearly, for all practical purposes, it is enough to
consider only Runge-Kutta schemes which are irreducible.

Next, we turn to a very useful coefficient for arbitrary Runge-Kutta schemes
(A,b) introduced by Kraaijevanger (1991). Following this author, we shall denote
his coefficient by R(A,b), and in defining it, we shall use, for real &, the following
notations:

AT =€A)™Y b)) =T - AT,

A(E) =
(2.1) §=(T—€eA) e,  p(€)=1+EbT(I—EA) .

e
Here ~7 stands for transposition after inversion, I denotes the identity matrix of

order m, and e stands for the column vector in R all of whose components are
equal to 1. We shall focus on values £ < 0 for which

(2.2) I — €A is invertible, A(&) >0, b(&) >0, e(§) > 0, and p(§) > 0.

The first inequality in (2.2) should be interpreted entry-wise; the second and the
third ones component-wise. Similarly, all inequalities for matrices and vectors
occurring below are to be interpreted entry-wise and component-wise, respectively.



2. Kraaijevanger’s coefficient and the TVD property 95

Definition 2.2 (The coefficient R(A, b)).
Let (A, b) be a given Runge-Kutta scheme. In case A >0 and b > 0, we define

R(A,b) = sup{r :r >0 and (2.2) holds for all § € [—r,0]}.

In case (at least) one of the inequalities A > 0, b > 0 is violated, we define
R(A,b) = 0.

Definition 2.2 may suggest that it is difficult to determine R(A,b) for given
Runge-Kutta schemes (A, b). But, Kraaijevanger (1991) showed that it is relatively
simple to decide whether R(A,b) = 0 or R(A,b) = oo and to compute numerically
the value of R(A,b) in the intermediate cases - see also Ferracina & Spijker (2004,
2005).

We give below a criterion for positivity of R(A,b) due to Kraaijevanger (1991;
Theorem 4.2). The criterion will be used later in proving Theorem 3.2, Lemma
3.6 and Theorem 4.1. In order to formulate the criterion concisely, we define for
any m x m matrix B = (b;;), the corresponding m x m incidence matriz by

IIIC(B) = (C’ij)7 with Cij = 1 (lf bij 7é 0) and Cij = 0 (lf bij = 0)

Theorem 2.3 (Kraaijevanger’s criterion for positivity of R(A,b)).
Let (A, b) be a given irreducible coefficient scheme. Then R(A,b) > 0 if and only if

(2.3) A>0, b>0 and Inc(A?) < Inc(A).

2.2 Stepsize restrictions from the literature for the TVD property

In this subsection, we will review a known stepsize restriction, for property (1.5)
and for a generalized version thereof.

In order to formulate this generalized version, we consider an arbitrary real
vector space V with seminorm ||.|| (i.e. [lu+v| < |ul| + ||v]| and [[Av]| = [A] - |||
for all real A and u,v € V). In this general setting, the following property (2.4)
replaces (1.5):

(2.4) lunll < ||up-1]l, for u, and w,_; satisfying (1.2).

The above property (2.4) is important, also with seminorms ||.|| different from
l.ll7v, and also when solving certain differential equations different from conser-
vation laws. In the recent literature, property (2.4) was studied extensively and
referred to as strong stability or monotonicity, see e.g. Gottlieb, Shu & Tadmor
(2001), Spiteri & Ruuth (2002), Ferracina & Spijker (2004), Hundsdorfer, Ruuth
& Spiteri (2003), Hundsdorfer & Verwer (2003).

The following theorem gives a stepsize condition guaranteeing (1.5) under the
assumption (1.7), as well as a stepsize condition for property (2.4) under the as-
sumption that, for 7o > 0,

(2.5) F: V—YV satisfies |Jv+7F@)| < ||v]] (veV).
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The theorem deals with stepsize restrictions of the form
(2.6) 0< At <p-19,

where p denotes a positive factor. The following condition will play a prominent
part:

(2.7) p < R(A,D).

Theorem 2.4.

Consider an arbitrary irreducible Runge-Kutta method (A, b), and let p be any given
positive factor. Then each of the following statements (i) and (ii) is equivalent
to (2.7).

(i) The stepsize restriction (2.6) implies property (2.4), whenever V is real vector
space, with seminorm ||.||, and F satisfies (2.5).

(ii) The stepsize restriction (2.6) implies the TVD property (1.5) whenever F
satisfies (1.7).

The above theorem is an immediate consequence of Ferracina & Spijker (2004,
Theorem 2.5).

Clearly, (i) is a-priori a stronger statement that (ii). Accordingly, the essence of
Theorem 2.4 is that the (algebraic) property (2.7) implies the (strong) statement
(i), whereas already the (weaker) statement (ii) implies (2.7).

3 TVB Runge-Kutta processes

3.1 Preliminaries

In the present Section 3 we shall focus on stepsize conditions for property (1.9)
and for a generalized version thereof.

In formulating this generalized version, we deal, similarly as in Section 2.2, with
an arbitrary real vector space V with seminorm ||.||. In this setting, the following
property (3.1) corresponds to the TVB property (1.9):

(3.1) llunll < (1 + aAt)||up—1|| + BAt  for u, and u,_; satisfying (1.2).

Here v and 3 denote again nonnegative constants.
The following condition (3.2) amounts to a natural generalization of (1.8) to
the situation at hand:

(3.2) F:V—V satisfies |v+7F ()] <1+ aom)l|v|]+ B0 (veV).

Here 1y is again positive, and ag, By are nonnegative constants. This condition
was also considered recently in Hundsdorfer & Ruuth (2004), in connection to
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boundedness properties of linear multistep methods. Clearly, (3.1) and (3.2) reduce
to (2.4) and (2.5), respectively, in case a = = ag = Fy = 0.

The above Theorem 2.4 shows that, in the situations (i) and (ii) of the theorem,
the crucial stepsize restriction is of the form (2.6), with p satisfying (2.7). In the
situation, where (3.2) or (1.8) is in force, the crucial stepsize restriction for property
(3.1) or (1.9), respectively, will turn out to be less simple. In fact, not only the
coefficient R(A,b) will play a role, but also the quantity S(A,b) defined below.

Definition 3.1 (The coefficient S(A, b)).
Let (A,b) be a given Runge-Kutta scheme. Then

S(A,b) =sup{r : r >0 and I —EA is invertible for all £ € [0,7]}.

We note that the quantity S(A,b) allows of a simple interpretation by looking at
the special function F(v) = agv, with ag > 0: for this function, the system (1.2.a)
has a proper solution, when 0 < At < Aty, if and only if the product agAtg is
smaller than the above value S(A,b).

3.2 Formulation and proof of the main result

The following Theorem 3.2 constitutes the main result of this paper. It can be
viewed as a convenient variant of Theorem 2.4 which is applicable in the situa-
tions (1.8), (3.2), which were not yet covered by the latter theorem. Theorem
3.2 gives stepsize restrictions guaranteeing (1.9) and (3.1), respectively, under the
assumptions (1.8) and (3.2). These restrictions are of the form

(3.3) 0 < At <min{p- 719, 0/ap},

where p and o are positive factors and 7y, aq are as in (1.8), (3.2). Note that, in
case o = 0, condition (3.3) neatly reduces to (2.6). The following conditions on
p and o will play a crucial role:

(3.4) p<R(A,b) and o < S(AD).

Theorem 3.2 (Main Theorem).

Consider an arbitrary irreducible Runge-Kutta method (A,b), and let p, o be any
given positive values. Then each of the following statements (1) and (11) is equiv-
alent to (3.4).

(I) There exists a finite v such that the stepsize restriction (3.3) implies prop-
erty (3.1) with « = vy, B = vPo, whenever V is a real vector space with
seminorm ||.|| and F satisfies (3.2).

(IT) There exists a finite v such that the stepsize restriction (3.3) implies the TVB
property (1.9) with a = vy, 5= 75, whenever F satisfies (1.8).
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The proof of Theorem 3.2 will be given at the end of this section, by using the
important Lemma 3.6 to be formulated below.

Remark 3.3. Clearly, (I) is a-priori a stronger statement than (II). The essence of
Theorem 3.2 thus lies in the fact that the (algebraic) property (3.4) implies the
(strong) statement (1), whereas already the (weaker) statement (II) implies (3.4).
The fact that (3.4) implies (II) answers the natural question that was considered
at the end of Section 1.1: we see that condition (1.6) with Aty = min{R(A,D) -
10, 0/ag}, 0 < o < S(A,b), guarantees property (1.9) whenever condition (1.8) is
fulfilled. &

Remark 3.4. The coefficient v in (I) and (IT), whose existence under condition (3.4)
is insured by Theorem 3.2, can be chosen independently of p. In fact, an explicit
value for « is given in the proof of the theorem; see (3.7). This value depends only
on the Runge-Kutta method (A,b) and on o. &

Remark 3.5. Consider an arbitrary irreducible Runge-Kutta method (A, b) that is
explicit. We then have S(A,b) = oo, so that (3.4) is equivalent to (2.7). Condition
(3.3), with p = R(A,b) and o/ag > p - 79, reduces to

(3.5) 0 < At < R(A,b) - 7o.

~

According to Theorem 3.2, condition (3.5) guarantees the TVB property (1.9
with o = yag, 8 = 7o, for F satisfying (1.8). Moreover, it can be seen (fror
Theorem 2.4) that (3.5) is an optimal stepsize restriction in that property (1
can no longer be guaranteed, in the same fashion, if the factor R(A,b) in (3.
would be replaced by any factor p > R(A,b).

=

CTE

The following lemma gives upper bounds for ||y;|| and |lu,|, in the situation
where the basic assumptions (3.2), (3.3), (3.4), occurring in Theorem 3.2, are
fulfilled. In order not to interrupt our presentation, we postpone the proof of the
lemma to Section 5.

Lemma 3.6.
Consider an arbitrary irreducible Runge-Kutta method (A, b) and let p, o € (0, 4+00)
satisfy (3.4). Then, for any vector space V with seminorm ||.||, the conditions (3.2),
(3.3) imply

(3.6.a) Nlull < elaolAt)|Jun—1]l + BoAt(I — agAtA)~" Ae,
B6D) S (oAt + iy KOS

whenever u,_1, u, and y; are related to each other as in (1.2). Here [||ly;]|] =
Uyl lyzll, - llyml)T belongs to R™, and e(€), ¢(€) are defined in (2.1). Further,
the right-hand member of (3.6.b) stands for ||u,—1]| + BoAt in case ag = 0.
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Remark 3.7. Consider the linear scalar function F(v) = agv+ fy (for v € R), with
ag > 0, By > 0. Clearly, this function satisfies (3.2) with V.= R and |.|| = |.|.
Further, it is easy to verify that, for this simple F', the upper bounds (3.6) of
Lemma 3.6 are sharp, in that the vectors e(agAt), BoAt(I — agAtA)~! Ae and the
scalars p(agAt), Bo —“% in (3.6) cannot be replaced by any smaller quantities.
Lemma 3.6 tells us that - in the situation (3.3), (3.4) - the upper bounds which
are best possible for the above simple F', are also literally valid for any nonlinear
vector-valued F satisfying (3.2).

We note that upper bounds, closely related to (3.6.b), were given earlier in
Spijker (1983; Theorem 3.3) for the special case where F' is a linear operator from
V to V (satisfying (3.2) with 5y = 0). &

Proof of Theorem 3.2.
The proof will be given by showing that the following three implications are valid:
(3.4) = (I); (I) = (II) and (II) = (3.4). The first implication will be proved in

step 1; the second implication is trivial; the third one will be proved in step 2.

Step 1. Assume (3.4). For proving statement (I), it is (in view of Lemma 3.6)
sufficient to specify a suitable factor « such that

p(apAt) <1+ yapAt (for all At satisfying (3.3)).
We define

r)—1
(3.7) v = sup f—(L—
0<z<o €T
Since () is a differentiable for 0 < z < o with ¢'(0) = p(0) = 1, we see that
v € [1,00) is as required. This proves (I).

Step 2. Assume (II); we shall prove (3.4).

In order to obtain the inequality p < R(A,b), we consider an arbitrary function
F satisfying (1.7), i.e. (1.8) with ag = Gy = 0. From (II) it follows that, for
0 < At < p- 19, property (1.9) is present with a = # = 0, which is the same
as (1.5). An application of Theorem 2.4 (statement (ii) implies (2.7)) shows that
p < R(Ab).

The second inequality in (3.4) will be proved by reductio ad absurdum. With
no loss of generality, we assume S(A.,b) < oo, 0 < p < R(A,b) and we suppose
o> S(A)D).

In proving that this supposition leads to a contradiction, we will make use of
a vector x = (&1,&2,....&m)T € R™ satisfying

(3.8.a) (I —o0pA)x =0, with o9 = S(A,b) >0,
(3.8.b) b1&1 + b2éa + ... + b€y > 0.

In order to prove the existence of such an x, we note that \g = 1/0¢ is a eigenvalue
of A and, by definition of S(A,b), there is no real eigenvalue A > \g. Theorem
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2.3 shows that A > 0 and b > 0. From the Perron-Frobenius theory (see e.g.
Lancaster & Tismenetsky (1985), p.543), it thus follows that there exists a vector
x € R™, with (Aol — A)z = 0, x > 0, z # 0. Consequently, (3.8.a) holds, and
because all b; > 0, we also have (3.8.b)

Let oy > 0 be given, and let the linear function F, from RY into itself,
be defined by F(v) = agv. It satisfies condition (1.8) with fy = 0 and any
positive 7. We choose 79 = a¢/(ap), so that the stepsize At = 0g/aq satisfies
condition (3.3). Let w € R , with [|w[|7y > 0. From (3.8), it follows immediately
that, for the above F' and At, the Runge-Kutta relations (1.2) are fulfilled, with
Up—1 =0, y; = &w and u, = oo(bT2)w, so that

H’UlanHTV ={J, HUnHTV = O'QbT.”L'H’w”TV > 0.

Statement (II) implies that there exists a finite v such that [ju,|rv <
(1 + voo)||un—1llTv + vo0B0/0. Since ||up—1|lrv = Bo = 0, it follows that
[ter || 7y = 0, which is impossible. H

4 Applications and illustrations of Theorem 3.2 and
Lemma 3.6

4.1 TVB preserving Runge-Kutta methods

Consider an arbitrary Runge-Kutta method (A,b). If there exist positive factors
p, o for which Statement (IT) (of Theorem 3.2) is valid, the Runge-Kutta method
will be said to be TVDB preserving. Clearly, in this situation the TVB property of
the explicit Euler method, (1.8), is carried over to the Runge-Kutta method (see
(1.9)) for At > 0 sufficiently small. The following theorem gives a characterization
of TVB preserving Runge-Kutta methods.

Theorem 4.1 (Criterion for TVB preserving Runge-Kutta methods).
Let (A,b) specify an arbitrary irreducible Runge-Kutta method. Then the method
is TVB preserving if and only if (2.3) holds.

Proof of Theorem 4.1.
From Theorem 3.2 we see that the method (A,b) is TVB preserving if and only
if R(A,b) > 0 and S(A,b) > 0. In view of Definition 3.1, we have S(A,b) > 0.
Moreover, by Theorem 2.3 the inequality R(A,b) > 0 is equivalent to (2.3). B
We note that a characterization related to the one in Theorem 4.1 was given in
Ferracina & Spijker (2004, Theorem 3.6). In that paper the same class of Runge-
Kutta methods satisfying (2.3) was found in a search for so-called strong stability
preserving Runge-Kutta methods.



4. Applications and illustrations of Theorem 3.2 and Lemma 3.6 101

4.2 Two examples

In the following we will give two simple examples, illustrating the theory of Section
3.2 with an implicit and an explicit Runge-Kutta method, respectively.

Example 4.2 (An implicit Runge-Kutta method).

Consider the 1-stage second order Runge-Kutta method given by A = (1/2) and
b = (1) (implicit midpoint rule). A simple calculation shows that R(A,b) =
S(A,b) =2.

Let 0 < 0 < 2. Then, according to Theorem 3.2 and Remark 3.4, there is a
factor v such that (1.9) holds with & = yag, 5 = 75, whenever F satisfies (1.8)
and 0 < At < min{27y, o/ag}. Using formula (3.7), we arrive at the following
actual value for v:

2
2-o)

Example 4.3 (An explicit Runge-Kutta method).

’)/:

Consider the explicit Runge-Kutta method, with 3 stages. specified by

0 0 0
A=[1 0 0 and b7 =(1/6,1/6,2/3).
1/4 1/4 0

This method was studied earlier, notably in Shu & Osher (1988), Kraaijevanger
(1991), Gottlieb & Shu (1998), Gottlieb, Shu & Tadmor (2001), Spiteri & Ruuth
(2002), Ferracina & Spijker (2004). In Kraaijevanger (1991, Theorem 9.4) it was
proved that this method is of third order, with R(A,b) = 1, whereas there exists
no other explicit third order method with m = 3 and R(A,b) > 1. Obviously, for
the above method, S(A,b) = .

Choosing p = R(A,b) =1 and 0 < 0 < S(A,b) = oo, condition (3.4) is fulfilled,
and the stepsize restriction (3.3) reduces to

(4.1) 0 < At < min{r, o/ag}.

According to Theorem 3.2, there is a factor v such that (1.8), (4.1) imply (1.9)
with a = vag, = v00. In view of Remark 3.4, we can apply (3.7) so as to arrive
at the value
o o

(4.2) 7=lbg o

Moreover, using Lemma 3.6 directly, we can get a bound on ||u,|ry which
is more complicated than (1.9) but more refined. For the Runge-Kutta method
under consideration, relation (3.6.b), with ||.|| = ||.|[7v, reduces to

1 il .
(4.3) lunllry < [14+ apAt + 5((10At)2 + E(QoAt)3]||Un||TV +

1 1
+[1+ §aoAt + é(aoAt)z]ﬁOAt
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From Lemma 3.6 it can be seen that (4.3) is valid, whenever F satisfies (1.8)
and 0 < At < 7p.

4.3 A special semi-discretization given by Shu (1987)

Applying the special semi-discretization devised by Shu (1987) to equation (1.3),
we obtain a semi-discrete system of equations which can be modeled as %U (t) =
F(U(t)) where

(4.4) F: RX — RX satisfies [[v+70F(v)|rv < [ollry +Boro (v €RY,).

Here 79 > 0 and 3y > 0. The basic assumption (1.7) of the TVD theory, reviewed
in Section 2.2, is not fulfilled here. On the other hand, the above situation (4.4) is
nicely covered by Theorem 3.2 and Lemma 3.6 (with ag = 0).

We consider the application of an arbitrary irreducible Runge-Kutta method
(A,b), in the situation (4.4), with a stepsize At satisfying

(4.5) 0 <At < R(A,b) -9

Using Theorem 3.2 or Lemma 3.6 (with ag = 0), one sees that (4.4), (4.5) imply
(4.6) lunllry < |un—1llrv + BoAt, for u, and u,_; satisfying (1.2).
Hence, in the situation (4.4), the Runge-Kutta approximations wu,, satisfy (1.4),
with B = ||ug|lry + BoT and Aty = R(A,b) - 1.

It is worthwhile to note that the last value At is positive if and only if the
Runge-Kutta method (A, b) satisfies (2.3) - this is evident from Theorem 2.3.

5 The proof of Lemma 3.6

In our following proof of Lemma 3.6, we shall make use of the subsequent Lemmas
5.1 and 5.2.
Lemma 5.1 deals with the situation where

(5.1.a) B >0,
(5.1.b) I —tB s invertible for to <t < tq,
(5.1.c) (I —teB)~' >0.

Here B stands for an m x m matrix and I denotes the m x m identity matrix.

Lemma 5.1.
The assumptions (5.1) imply that

(5.2) (I-tB)™'>0 for toy<t<t.
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Proof of Lemma 5.1.

Assume (5.1) and suppose (5.2) is not true. Let T" be the greatest lower bound of
the values t € [to, ;] where the inequality (I —¢B)~! > 0 is violated. One easily
sees (by continuity arguments) that (I — TB)™" > 0 and to < T < t;. For all
sufficient small £ > 0, we have

I—-(T+e) B=I-TB-e¢B=(I—-TB)(I-(—-TB) 'eB),

so that
I =T +&)B] ™" = {Z[E(I — TB)‘lB]’“} (T -8B " 20.
k=0
This contradicts the definition of T. Hence (5.2) must be true. =

In the actual proof of Lemma 3.6, the Runge-Kutta process (1.2) will be rep-
resented in the following form:

(53&) Yi = 1-— Z /\ij Up—1 + Z [)\ij Yy + At - ‘LLijF(y]’)] (1 < 1 S m),

=1 =il

m

(53b) Up = 1-— Z )\m+1,j Up—1 + Z [)‘m+l,j yj + At J ﬂm—l»l,jF(yj)]-

j=i j=1

Here )\;; and j;; denote real parameters. We define corresponding matrices L, M
by:

I /\11 )\lm

(5.4-&) L= (L(l)> ’ Lo = ; L, = (/\m+1,17 ---a)‘m+1,m)v
)\ml v /\mm
Hi1 - Him

(5.4b) M = Mo\ = : M =

9.4, ) - y ) 0 — 3 Ll == (/‘LTIL-‘,-l.lv ~-~7/1m+1,7n)‘

M,

Hm1 - -+ Hmm

Lemma 5.2, to be given below, gives a condition under which the processes
(1.2) and (5.3) are equivalent.
In the lemma the following relation will play a crucial role:

(5.5) My=A—-LyA, M, =b" - L,A.
Further, the following hypothesis will be used:

(5.6) I — Lg is invertible.
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Lemma 5.2.

Let (A,b) specify an arbitrary Runge-Kutta method (1.2). Let L = (\;;) be any
parameter matric satisfying (5.4.a) and (5.6). Consider the corresponding matriz
M defined by (5.4.b), (5.5). Then the Runge-Kutta relations (1.2) are equivalent
to (5.3).

This lemma was proved in Ferracina & Spijker (2005, Theorem 2.2), Higueras
(2003, Section 2). The proof is easy and involves only simple algebraic manipula-
tions. Therefore, we do not repeat it here but refer to the papers just mentioned
for details.

For matrices L and M of the form (5.4), we define the coefficient ¢(L, M) by:

(5.7) e(L,M) = min{¢;;: 1<i<m+1, 1<j<m},

Aij/pig  if pi; > 0 and i # j,
if p; > 0 and 7 = j,
if pi; =0,
if Hij < 0;

Cij =

=8 8

The actual proof of Lemma 3.6, to be given below, consists of two parts. In
the first part we shall consider the situation where

(5.8) Aij >0 and Z)‘““ <1 (for1<i<m+1,1<j<m),
k=1

and
(5.9) 0 <At <c(L,M)-my.
It will be shown that (3.2), (5.3), (5.8), (5.9) imply

(5.10.a) (I — Lo — aoAtMo) [[lyill] < llun—1[( — Lo)e + BoAtMye,
(5.10.b) lunll < (1 — Lie)|Jun—1|| + (L1 + ao AtMy)[||ly: ] + BoAtMe.

The above relation (5.10.a) stands for an inequality between two vectors in R™,
which should be interpreted component-wise. Further, we denote again by e the
vector in R™ all of whose components are equal to 1.

In the second part of the actual proof, we shall choose a special parameter
matrix L and define M by (5.4.b), (5.5). It will be seen that I — L is invertible so
that, by Lemma 5.2, the process (5.3) under consideration is equivalent to (1.2).
Moreover, the conditions (5.8) are fulfilled and ¢(L, M) = R(A,b). The proof of
Lemma 3.6 will be completed by showing that, in the situation (5.5), (3.3), (3.4),
the inequalities (5.10) imply (3.6).

The actual proof of Lemma 3.6.
Part 1. Assume (3.2), (5.3), (5.8), (5.9). We sall prove (5.10).
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Condition (5.9) implies that, for all 7, j,
0<c¢j<oo and 0<p; <oc.

From (5.3.a), we obtain for 1 <i <m

(5.11) lys — At F)ll < (1 =Y Aig)llun—r [l + Niillyill +
1

=
+3 Nijllys + Ate F(yy)ll,
J#i
where c;jl stands for 0 in case ¢;; = oo.

Using the relation (144, At/70)y: = (yi—Atpii F(yi))+ (i At/ 70) (yi+70F (y:))
we obtain (1+[l,”At/T0) Hyl H S ‘1’(/, —At/l,”F(Zh) || +{(1+00T0) ||yz || +ﬁ07’0}u”At/T0
Hence
(5.12) (1 — piscoAt)||ys || = Bopis At < |lyi — AtpsiF(ys)|-

Similarly, by using the relation

y; + Ate Fy;) = (1 — At(rociy) ™y, + At(roci) ™ (yj + 10F (35)),
we see that
(5.13) lys + At Pyl < {1+ aodtes; Higs | + BoAtes .

Combining the inequalities (5.11), (5.12) and (5.13), we obtain a bound for ||y, || (1 <
i < m) which can be written compactly in the form (5.10.a).
In order to prove (5.10.b), we note that (5.3.b) implies

Junll < | 1 - Z)‘m+l..i lun—1ll + Z Amt1,5lly; + At C;n:-UF(!/J)”
j=1 j=1

Applying (5.13) with i = m + 1, we obtain (5.10.b).

Part 2. Assume (3.2), (1.2), (3.3), (3.4). We shall prove (3.6).

In case 0 < R(A,b) < oo, we know from Kraaijevanger (1991, Lemma 4.4) that
the matrix (I+nA), with n = R(A,b), is invertible. Moreover, in case R(A,b) = oo,
it follows from Kraaijevanger (1991, Theorem 4.7) that the inverse A~ exists, and
that the diagonal elements of this inverse are positive. Therefore, we can define a
matrix L of the form (5.4.a) in the following way:

(5.14.a) Lo =nA(I +nA)~', Ly =nb"(I+nA)~", wheren= R(A,b)
(if 0 < R(Ab) < o0),

(5.14.b) Lo=1—nP, L =b"P, n= (maxp;) ', where P = (p;;) = At
(if R(A,b) = 0).
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Similar matrices were introduced and analysed earlier in Ferracina & Spijker
(2005), Higueras (2003). One easily sees that condition (5.6) is fulfilled. We
define M by (5.4.b), (5.5), so that, according to Lemma 5.2, the relations (1.2)
imply (5.3).

For the matrices L, M under consideration, it is known that (5.8) holds and
that ¢(L, M) = R(A,b) - see Ferracina & Spijker (2005, Theorem 3.4), Higueras
(2003, Section 2). Therefore, our assumptions (3.3), (3.4) imply (5.9) and, accord-
ing to the above Part 1, we can conclude that (5.10) holds. Below, we shall prove
(3.6) by using (5.10), (5.5), (3.3), (3.4).

Using the equality I — Ly — agAtM = (I — Lo)(I — apAtA), one sees that
(5.10.a) implies (3.6.a), provided the inverses (I — Lo) ™', (I —apAtA)~! exist and
have only nonnegative entries. The existence of (I — Ly)~! was proved above, and
its nonnegativity follows from an application of Lemma 5.1, with B = Lg, ty = 0,
t1 = 1 (note that, in view of (5.8), the eigenvalues of I — tL are different from
zero, for 0 < t < 1). The existence of (I — agAtA)~! is a consequence of (3.3),
(3.4), and its nonnegativity follows by applying Theorem 2.3 and Lemma 5.1, with
B =A, t) =0, t; = apAt. Finally, (3.6.b) follows by straightforward calculations
using (3.6.a), (5.5). 5
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Samenvatting

Dit proefschrift handelt over de numerieke oplossing van beginwaardeproblemen
voor gewone differentiaalvergelijkingen.

Er is voornamelijk gekeken naar Runga-Kutta methoden die monotoon zijn.
Dit betekent dat de seminorm van de numerieke benaderingen niet toeneemt in
de tijd. Deze eigenschap is zeer belangrijk wanneer men gewone differentiaal-
vergelijkingen oplost die afkomstig zijn van een toepassing van de zogenaamde
lijnenmethode op tijdsafhankelijke partiéle differentiaalvergelijkingen.

In de literatuur zijn representaties voor speciale Runge-Kutta methoden gein-
troduceerd, waarmee het bewijzen van de monotoniciteitseigenschap, in de situatie
waarin de Euler-methode zelf monotoon is, wordt vergemakkelijkt. Deze repre-
sentaties leiden tot voorwaarden voor de stapgrootte die voldoende zijn voor de
monotoniciteitseigenschap.

Dit proefschrift bevat een inleiding en vier in wetenschappelijke tijdschriften
gepubliceerde of nog te publiceren artikelen.

De inleiding is geschreven met de bedoeling ook begrijpelijk te zijn voor lezers
die niet gespecialiseerd zijn in het betreffende vakgebied.

In het eerste artikel wordt een theorie omtrent algemene Runge-Kutta me-
thoden voorgesteld die leidt tot voorwaarden voor de stapgrootte die niet alleen
voldoende maar ook noodzakelijk zijn voor de monotoniciteitseigenschap.

In het tweede artikel wordt een simpele en algemene manier van aanpak gegeven
waarmee voor elke gegeven Runge-Kutta methode een best mogelijke representatie
gevonden kan worden met betrekking tot de stapgroottevoorwaarden die daaruit
afgeleid kunnen worden.

In het derde artikel wordt een numerieke procedure geintroduceerd voor het
vinden van optimale Runge-Kutta methoden (met betrekking tot de stapgroot-
tevoorwaarden voor monotoniciteit).

Het vierde artikel bevat een algemene theorie, omtrent de voorwaarden voor
de stapgrootte, die een grotere klasse van semidiscrete benaderingen omvat dan
tot dusver beschouwd in de literatuur. Deze theorie geeft stapgroottevoorwaarden
die in het bijzonder een begrensdheidseigenschap impliceren voor algemene Runge-
Kutta methoden.
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In the following propositions we deal with the numerical solution of initial value problems
for sytems of ordinary differential equations that can be written in the form

1) %U(t) —FU®) (t>0), U0)=u.

We focus on the (irreducible) Runge-Kutta method (2) where, given an approximation u,_;
of U(t,_1), a new approximation u, of U(t,—1 + At) is computed by the relations

2) yi:""fl*”At;wF(yj) (1<i<s+1),

Un = Ys+1-

We identify the Runge-Kutta method with the (s + 1) x s matrix K = (k;;) and we denote
with Kj the s X s submatrix Ky = (ki), 1 <4 < j < s. We are interested in coefficients ¢
such that

o+ F@) < ol (VoeV)

<
(3) 0<At<c-m } = unll < llun-ll-

Let L = ();;) be any (s + 1) X s matrix with submatrix Ly = (A;;), 1 <@ < j < s such
that L > 0, Les < es+1 and I — Lo is invertible — here, and in the following, I denotes the
s X s identity matrix and e,, € R™ stands for the column vector with all components equal
to 1 (for m = s, s + 1). Define the (s + 1) x s matrix M = (u;;) by M = K — LK, and
consider the process

s s
) ¥ = (1 = ZM) Uno1+ 3 iy + At piFy)] (1<i<s+1),
=1 =1

Un = Ys+1-

We identify the above process with the pair (L, M). In view of Statement 1, to be given
below, we will refer to process (4) as an (L, M) representation of method K.



We define the following coefficient
i/ iz if pig >0,

o(L,M) =min{y;; : 1<i<s4+1,1<j<s}, 7y =4 00 if py; =0,

1. Process (4) is a useful representation of process (2).
The following two statements are valid.
(i) Method (2) and process (4) are equivalent.

(ii) Let ¢ be equal to c(L, M) defined above. Then implication (3) holds whenever V is a
real vector space with seminorm |||, and w,, u,—1 are related to each other as in (4).

See Chapters I and II of this thesis.

Given a Runge-Kutta method K, consider, for real v, the following conditions:
(5) (I +vK,) is invertible, YK (I +~vKo)™' >0, ~vK(I+7Ko) 'es < esp1.
We define the following coefficient

R(K) =sup{y : 7> 0and (5) holds}.

2. The largest c guaranteeing (3) for methods (2).
Let ¢ be given with 0 < ¢ < oo. Then (I) and (IT) are equivalent:

(I) ¢ < R(K),

(1) implication (3) holds whenever V is a real vector space with seminorm ||.|[, and un,
u,_; are related to each other as in (2).

See Chapters I and II of this thesis.

3. Optimal (L, M) representations.
For any Runge-Kutta method K there exist an (L, M) representation with ¢(L, M) = R(K).
See Chapter II of this thesis.

4. The optimal (L, M) representation is not unique.
The (L, M) representation mentioned in Statement 3 is in general not unique.



5. Optimal Runge -Kutta methods.

Let € be a given class of Runge-Kutta methods K such that ¢* = max{R(K) : K € ¢}
exists and is finite. We denote by € the set of all (L, M) representaions of methods K € €.
Then the following two statements are valid.

(i) The maximum of v, specified in the following two procedures, exists and equals c*.

(i) The first procedure is, from a practical point of view, to be preferred over the second
one.

Procedure 1 maximize vy, subject to: 7 satisfies (5) and K € %.
Procedure 2 maximize 7, subject to: L —yM >0 and (L, M) € €.

See Chapter III of this thesis.

6. Completing results in the literature.

In the literature, optimal (w.r.t. R(K)) explicit Runge-Kutta methods, with s stages and
order of accuracy at least p, are available with 1 < p < 4 and p < s < 9, except the case
(s,p) = (9,4). It can be shown that the missing optimal method K has R(K) = 4.9142
(rounded to 5 decimal digits).

7. Boundedness.
Statement 2 can be generalized so as to become valid also when (3) is replaced by the
following implication

lv+ 70 F(v)|| <1+ agm)llv]l+ Bomo

Vv eV)
0<At<c m = |unll < (1+ alt)||un,—1|| + BAL.

See Chapter IV of this thesis.

8. TVD does not avoid oscillations.
When dealing with numerical solutions of IVPs for ODEs (and PDEs), one should keep in
mind the following remark.

“(...) some people belicve that the TVD property (i.e. ||uy|lrv < ||un—1llry with ||.||7v total
variation seminorm) completely eliminates all spurious oscillations for all (Ax and) At. It
does not. In fact, the TVD condition may allow large spurious oscillations (...)”

See C.B. LANEY (1998), Computational Gasdynamics, Chapter 16.



In the following two statements we denote by S, the class of all singly-diagonally-implicit
s-stage Runge-Kutta methods K = (k;;), with order of accuracy at least p and with
all Kij 2 0, Kii > 0.

9. Upper bound for the order of accuracy.
There are no methods, with R(K) > 0, in S, ,, if p > 4.

10. Optimal method in Sj 4.
Consider the following Runge-Kutta method

T
—¢HE LI
== 2 = i =T i 18
Ko 14t 1o %{ with € \/§COS(18)'
1 1
A
1+¢
Then K4 € Ss4, and for any other K € S 4 we have R(K) < R(K3z4) = 2 B—f—=1

11. A model for studying the dispersion in the Venice Lagoon
This is a mesh with 1967 nodes and 3423 triangular ele-
ments modelling the Venice Lagoon. Discretizing in space
the advection-diffusion equation

u
~ +v-Vu=V- (K -Vu)+s
ot
with the finite element method (linear triangular elements),
one obtains a semi-discrete system of ordinary differential
equations that can be written as

M%U(t) +NOU(t) +1(t) = 0.

Consider the simple time-discretization (fully-discrete system)

MW + Nptin + 0 Nps 1t — Natt] + b + 0(lnsr — 1) = 0.

We then obtain a linear system (in R™, m = 1967), of the form
A’U,n+1 = b7

that has to be solved at each time level. Because of the special structure of the above matrix
A (and because of the limited memory space needed for storing it), the above system can be
solved (repeatedly) 720 times, on a IBM RISC 6000 workstation, in less than 200 seconds.



