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1. Introduction

1.1 Semiconductors, numerical mathematics and society.

The role of the semiconductor device in modern society is fundamental.
This view is supported by the following quote from the proceedings of the
IEEE, “These products [semiconductor devices], by leveraging man’s mental
capabilities, have the potential for causing an impact on society exceeding that
of the Industrial Revolution, which leveraged man’s physical capabilities.” [1]
This view was expressed somewhat mcre prosaically by Steve Jobs, one of the
founders of Apple Computer Inc., who, after reading an article in the Scientific
American that showed how the bicycle gave man the most energy efficient
mode of transportation in the animal kingdom [2], likened computers to ”bicy-
cles for the mind.” [3] It is of course natural that man wants bigger ”levers”
and faster ”bicycles”. To achieve this it is necessary to improve not only our
understanding of semiconductors, but also to predict the behaviour of sem-
iconductor devices not yet built. For this we need a model of a semiconductor
and a method to obtain predictions of semiconductor behaviour from this
model. Numerical approximation techniques are a way to obtain such a
method. The simplest semiconductor model is the stationary drift diffusion
model. This thesis deals with the search for a-posteriori error estimates for
discrete equations contained in a numerical approximation to this model. It is
our intention in this first chapter to place in perspective the problem of obtain-
ing a-priori and a-posteriori error estimates for the equations found in the
drift-diffusion model. Section 1.2 gives a brief history of the development of
semiconductor devices. In Section 1.3 and 1.4 we discuss the importance of
numerical modelling and the influence of semiconductor devices, as building
blocks for computers, on numerical mathematics. Section 1.5 is the only part
of this thesis where physical aspects of semiconductor devices appear. It is
included to give the reader an impression of the phenomena the mathematical
model attempts to describe. In section 1.6 we describe the drift-diffusion model
and discuss how these equations may be scaled. Section 1.6 also includes
several choices for variable transformations that result in different forms for
the model equations. Finally this section describes the one-dimensional
Scharfetter-Gummel discretisation for the continuity equation. Section 1.7
gives a motivation for the research in this thesis and an outline of its contents.
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1. INTRODUCTION

1.2 A short history of semiconductor devices.

The development of semiconductor devices can be divided into three
periods. In the first period researchers discovered the special properties of sem-
iconductors and primitive applications appear. The second period starts with
the creation of the first transistor and sees rapid development and commercial
application of new devices, each equivalent to one circuit element and
separately packaged. The third period - in which we are now - is the period of
the integrated circuit. The devices developed earlier and new devices
specifically developed for the IC environment are now constructed and linked
together in one piece of silicon called a chip. According to J. M. Early [4], the
first period of semiconductor development lies between 1800 and 1947. As a
first consumer application from that era Petritz[3] mentions the crystal
rectifier. He describes this as an arrangement of a piece of semiconductor crys-
tal clamped or soldered in a receptacle and a flexible wire, a ”cat’s whisker”,
held in light contact with the crystal. This was used as the detector in early
radio receivers. According to the 1962 paper by J. M. Early, the second period
starts with the discovery of the transistor in 1947. The 1980 paper by S. M.
Sze [6] places the start of the integrated circuit era in the year 1959. However,
the cautious statement on integrated circuits at the end of the 1962 paper by
Petritz [5], “The last category [i.e. the full development of the integrated circuit
concept] will place the most stringent demands of all upon the materials tech-
nologist” suggests that in 1962 the concept of integrated circuits was still new
and experimental.

The era of the integrated circuit deserves a closer examination. The
paper by Sze gives graphs of technological development that show exponential
decrease of the size of device components and exponential increase of the
number of components per chip in the years between 1960 and 1980. He
predicts a slowdown for size decrease and component number increase but
expects the feature size to drop below one micrometer and the number of com-
ponents per chip to exceed one million by 1990. These predictions are
confirmed by the 1986 paper by Meyers et al. [7] and the 1990 paper by
Fair [8]. The commercial effects of this growth are discussed by Jones et al.
[1] This last paper shows the enormous increase in computational power avail-
able for a given price.

1.3 The importance of semiconductor modelling.

As shown in section 1.2, the use of semiconductors such as (doped) sili-
con for the construction of electronic devices is a fairly recent development
and saw rapid evolution from single transistors through the first integrated cir-
cuits containing a few devices to the Very Large Scale Integrated circuits in
use today. The development is rapid, a chip that is a masterpiece of chip tech-
nology today may seem commonplace in four or five years time. Modern Com-
puter Aided Design and Manufacturing systems built from VLSI-components
play an important role in this development. More and more the capacity for
computation that VLSI-chips give to modern CAD-CAM systems acts as a
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1. INTRODUCTION

catalyst for the further development of these chips. Due to the expense in both
time and money of the fabrication of a prototype circuit, fast and accurate
models of semiconductor devices are essential. Moreover very large scale
integration makes two-dimensional models essential and three-dimensional
models highly desirable. Designers of numerical simulations face the following
difficult problem. From certain aspects of the devices, e.g. the presence of
extremely sharp transitions in impurity concentrations, it follows that, at least
locally, a very fine mesh may be needed to achieve any accuracy at all. Faced
with these demands, numerical analysts have two tasks. On the one hand they
have to create algorithms that solve the model equations supplied by the physi-
cist as efficiently as possible, e.g. by local mesh refinement, and on the other
hand to give a measure for the accuracy of the solution obtained by such an
algorithm, either by a-priori bounds or by a-posteriori bounds. Good control
on the accuracy is essential not only because the nature of the equations makes
the accuracy extremely dependent on the method of discretisation but also
because good control on accuracy helps us to avoid unnecessary computations.
In this thesis we restrict ourselves to the study of one of these two aspects,
namely error estimation. For more information on the fascinating field of sem-
iconductor physics and engineering, I refer to the books and papers mentioned
below.

Good references for semiconductor and device physics are the books by
Blakemore [9], Ashcroft and Mermin [10], and Wang[11]. For information on
the mathematical modelling of semiconductors, one may consult the books by
Markowich [12] and Selberherr [13]. Review papers on mathematical model-
ling of semiconductors can be separated into physically oriented, e.g. Engl et
al. [14] and Polak et al. [15] and more mathematically oriented papers such as
the papers by Bank et al. [16,17]. There are many research papers dealing
with this subject [18-30]. The general trend for such papers is to attempt to
give a useful mathematical derivation for the Scharfetter-Gummel discretisa-
tion in two or three dimensions. The derivations use almost all possible tech-
niques from finite volumes to hybrid mixed finite element schemes.

1.4 The special importance of semiconductors for numerical mathematics.

We have already mentioned the need for practical numerical mathemat-
ics in the semiconductor industry. At this point it is educational to look at the
inverse relationship. The explosive growth of both computer memory and com-
putational power available for a given price make possible the utilisation of
algorithms that seemed otherwise doomed to an existence as mathematical
curiosities. The semiconductor industry gave numerical mathematicians new
and hitherto undreamed of tools for research. However, the development is not
all positive. There is a tendency to use simple algorithms and make up for
their deficiencies by the use of large amounts of computing power. In principle
there is nothing wrong with taking the simplest possible approach and letting
the computer do the hard work. But in practice the need to run more and
more complicated simulations inevitably outstrips the increases in speed
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1. INTRODUCTION

provided by hard and software development. So the availability of relatively
cheap computing resources may slow down the development of efficient algo-
rithms needed for more complicated models and may result in a waste of com-
puting resources.

1.5 A short introduction to semiconductors.

First, we give a description of homogeneous undoped and doped sem-
iconductors, then of a junction diode and a junction transistor, and finally of a
MOSFET, a Metal Oxide Semiconductor Field Effect Transistor. We start by
explaining the name semiconductor. With regard to conduction of electrical
current, a substance that forms an ordered crystal lattice can fall into two
obvious categories. Either it conducts or it does not conduct electrical current.
In the first case we call it a metal and in the second case an insulator. How-
ever, when we perform experiments, it turns out that instead of just these two
categories, there exists a whole spectrum of substances with different conduc-
tivity behaviour. We are concerned with the substances whose behaviour
carned them the name semiconductors. At low temperature, they are fairly
good insulators, but as the temperature increases, their conductivity improves.
Note that the boundary between the categories is not very sharply defined.
This section gives a - much simplified - version of the explanations given in the
books by Blakemore [9], Ashcroft and Mermin [10], and Wang[11]. All errors
or omissions are my own.

Homogeneous material.

In this section we give a sketch of the band model for solids. A model of
a physical system is judged by its capability to correctly predict the qualitative
and quantitative behaviour of the system it models. It can never be proved to
be correct in the sense that a mathematical theorem can be proved to hold.
Please keep this in mind when reading this section. The above mentioned band
model is very successful in explaining the behaviour of metals and crystalline
semiconductors and insulators. The model is based on the Pauli exclusion prin-
ciple and the structure of the energy spectrum of the Schrodinger operator for
a periodic potential. We discuss this below.

As electrons are fermions, i.e. particles with quantum-mechanical spin /2,
they are subject to the Pauli exclusion principle, i.e. no two otherwise indistin-
guishable electrons may be in the same quantum state. This principle is
equivalent to the rule that exchanging two fermions in a system should change
the phase of the wave function of the system by 7. Moreover, for the
Schrédinger wave equation in a finite volume with periodic potential and
boundary conditions, the set of real, positive (i.e. physically possible) energy
eigenvalues is discrete and displays a band structure, between bands of closely
spaced allowed energy levels there may be intervals without allowed energies,
these forbidden zones are called bandgaps. From quantum mechanics it fol-
lows that for each energy level in the spectrum, there is a finite number of
eigensolutions, i.e. electron quantum states, of the Schiodinger wave equation.
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1. INTRODUCTION

The exclusion principle implies that the electrons cannot all be in the same
quantum state. The three above cases can now be described as follows. If we
are at an absolute temperature of zero degrees Kelvin and fill the states associ-
ated with the energy levels from the lowest level upwards, as indicated by
minimisation of total energy, we find a highest occupied level and an associ-
ated energy. We call this the Fermi-energy.

If the Fermi-energy does not correspond with the start of a band gap, then the
substance in question is a metal. If the Fermi-energy does correspond with the
start of a band gap, then the substance in question is a semiconductor or an
insulator. In that case, we call the the highest filled band the valence band and
the next empty band the conduction band. We see that in a metal relatively
small changes in velocity, hence energy, are possible, because there are empty
energy levels close to the Fermi-energy. These changes make electrical conduc-
tion possible. Note that exchanging two electrons in a filled band does not
lead to conduction because the new state differs from the old only in phase. In
an insulator or a semiconductor the valence band and the conduction band are
separated by a gap of forbidden energies. To conduct electricity, we need elec-
trons in the conduction band. Thermal excitation can supply such electrons,
but the availability depends exponentially on the ratio between the available
thermal energy k7T and the width of the band gap. Note that kj is the
Boltzmann energy and T is the absolute temperature in Kelvin. So the larger
the bandgap in relation to the thermal energy kT the better the material insu-
lates. In a semiconductor the gap is of the order of 10kzT to 100k, T, this
allows the material to be a - very bad - conductor in stead of an insulator. In a
semiconductor the thermal excitations that displace some electrons to the con-
duction band where they can take part in electrical conduction create free
states in the valence band that behave as particles with positive charge - called
holes - that can also take part in conduction.

The conductivity can be changed by the addition of donor or acceptor
centres. Donor centres are sites in the crystal where there is an extra energy
level in the forbidden gap close to the conduction band that in the case of
electrical neutrality contains an electron. Due to its closeness to the conduction
band the electron can easily enter that band, i.e. the donor site can ”donate”
that electron to the conduction band. So, in a piece of material with added
donors, there will be more electrons than holes available for conduction.
Acceptor centres are sites in the crystal where there is an extra energy level in
the intrinsic gap close to the valence band that is vacant when the site is
electrically neutral. Due to its closeness to the valence band an electron can
easily enter the site, i.e. the donor site can ”accept” that electron from the
valence band and so create a hole that can take part in conduction. So, in a
piece of material with added acceptors, there will be more holes than electrons
available for conduction. The dominant charge carrier in a material is called
the majority carrier.
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1. INTRODUCTION

One junction: the diode.

To create the simplest silicon semiconductor device, a diode, which
allows significant current flow in one direction only, we use a junction between
a region of silicon with an additive that acts to provide acceptors (p-type) and
a region with an additive that acts to provide donors (n-type). A crude descrip-
tion of its mode of operation is the following. If we connect the diode to a vol-
tage source and we apply the higher voltage to the (n-type) material - this is
called reverse bias - then this depletes the region around the junction, i.e. it
pulls all free charge carriers away from the junction and so turns the region
around the junction into an insulator, only a very small constant leakage
current flows through the device. Note that beyond a certain voltage this no
longer holds and electrical breakdown may occur. If we reverse the connec-
tions we get a forward bias, the behaviour is now more complicated, it turns
out that the current increases exponentially with increasing voltage. Again
above a certain level this no longer holds and damage to the device may occur
because of internal heating.

Two junctions: the transistor.

The next simplest device is the transistor, which can act as a switch or as
an amplifier. The simplest way to construct one is to use a succession of two
junctions between different dopants, n-p-n or p-n-p. Here we take an (n-type)-
(p-type) junction followed closely by a (p-type)-(n-type) junction, i.e. an n-p-n
transistor. Such a transistor resembles two diodes in series with opposite
reverse bias directions. The strong point of the transistor is that a very small
current applied to the (p-type) material can switch a large current between the
(n-type) regions on and off. We make three connections to this structure, one
to each of the n-regions and one to the p-region. The p-region is called the
base. The names of the n-regions are based on the intended direction of the
current flow in normal operation. The direction of the flow of current deter-
mines the direction of flow of majority carriers in the n-regions - i.e. electrons
-, the n-regions are named in such a way that this carrier flow goes from the
emitter to the collector. Usually there is an asymmetry in the doping profile
corresponding to the intended direction of current flow.

We give a crude description of its operation in its normal mode, i.e. the
range of base, emitter and collector voltages where the collector voltage is
larger than the emitter voltage and at least one of the two diodes is reverse
biased. As long as we apply a voltage to the base, that is lower than either one
of the voltages applied to the collector and emitter, we have two diodes in
reverse bias with opposite bias directions, so hardly any current can flow
between collector and emitter. If we increase the base voltage until it is just
above the emitter voltage, we get two current flows, a base current from base
to emitter and a much larger flow from collector to emitter. Both currents
depend exponentially on the voltage difference between base and emitter. For
more details I refer to part 6 of the paper by W. Shockley [31] or Section 1 of
Chapter 9 of the book by Wang [11].

- 16~



1. INTRODUCTION

The role of silicon oxide: the MOSFET.

Of course the method used in the n-p-n junction transistor is not the
only way to create a transistor. When we think of capacitors another way to
create a switch comes to mind, namely the method used in the MOSFET, the
Metal Oxide Semiconductor Field Effect Transistor. The MOSFET is espe-
cially useful in integrated circuits. It consists of a block of n-type material with
two separate, embedded regions of p-type material adjacent to a surface. On
the surface between the p-type areas, we create a layer of an insulator, for sili-
con this is often silicon oxide. On the two p-regions, the oxide layer and the
opposite surface of the n-type block, we make metal contacts. The connection
on the isolating layer is called the gate, the connection on the n-type material
supplies the bulk bias and the connectors on the p-type material are called
source and drain. Holes flow from source to drain in normal operation. When
the gate is at zero volt there are too few holes to allow an appreciable current
flow from source to drain. If we apply a suitable negative voltage to the gate a
layer of holes is pulled to the surface. This improves the conductivity of the
channel - ie. the region beneath the gate - and the source-drain current
increases. For a description of a MOSFET I refer to section 10 of chapter 9 of
the book by Wang. [11]

1.6 Description of the semiconductor model used.

A derivation of the drift-diffusion model is given by e.g. Selberherr [13].
We discuss possible choices of variables and give a scaling. A more elaborate
derivation of alternative forms for the model equations can be found in e.g.
Polak, den Heijer, Schilders and Markowich [15]. We use the term doping to
indicate donor or acceptor centres in the material. The distribution of these
impurities is given by position-dependent functions N, for the donor impuri-
ties and N, for acceptor impurities. The value of the function gives the density
of the impurities. In addition to the charge carriers introduced by the doping,
there are the conduction electron-hole pairs already present in the undoped
material. The density »; of these pairs in the undoped material is called the
intrinsic density. Even in a device made of just one material, the intrinsic den-
sity is position-dependent, because it depends on the temperature. An impor-
tant aspect of semiconductor devices, the creation and recombination of
electron-hole pairs, has not yet been mentioned explicitly. The model
represents generation and recombination by a position-dependent term R. We
use the following version of the semiconductor device equations: equations (1)
and (2) give the standard relations between the potential y, the electric field E
and the total charge density. The total charge density is made up of the hole
density p, the electron density n and the charges captured by the impurities
when fully ionised,

div(e E) = gp—n+N,;—N,), (1.1)
E = —grady , (1.2)

equations (3) and (5), the so-called continuity equations, indicate charge

=TT =
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conservation. Equations (4) and (6), the carrier transport equations, relate the
current densities J to the charge carrier densities p and n.

q dp/ot = —divJ,—gR, (1.3)
J, = —qu, I;—:gradp—p[E+ Urgradlog n,-]] , (1.4)
g on/dt = divJ,—¢qR , (L.5)
J, = qpn [ u: gradn +n[E — Ur gradlog n,-]] . (1.6)

where D, and D, are diffusion constants, p, and p, are mobilities, € is the
permittivity and ¢ is the absolute value of the charge of an electron. From this
point on, we assume that the Einstein relations hold for the electron and hole
diffusion coefficients, i.e. D, = Urp, and D, = Urp,. The thermal voltage
Uy, used above, is defined as,

Ur = . (1.7)
We can further simplify the equations by only considering the stationary case.

Scaling the equations.

We go from the physical equations to a mathematical model. We scale
the equations to make all relevant quantities dimensionless. This can be done
in various ways [12,13,15]. We shall use the same symbols for the scaled and
unscaled quantities with the exception of the permittivity, where we replace €
by A2 All references give the same general approach to scaling. The
differences in the scalings are caused by different choices of values for the scal-
ing parameters. We start by scaling all densities by a chosen reference density.
We then make the resulting quantities dimensionless by scaling with an
appropriate combination of a reference length /, a reference mobility p, the ele-
mentary charge ¢ and the thermal voltage Ur. Note that this still leaves open
the choice of the scaling factors /, N and p. The permittivity is replaced by a
quantity A%, where A is defined as

N=Ap/l (1.8)
with
N L4 (19)
gN

where Aj is a Debye length of the device. By choosing appropriate N, p and /,
we can emphasise different aspects of the problem. We should rewrite the
boundary conditions in terms of the scaled variables.
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Two types of scaling are in general use, N = n; and N = max(N,,N,),
in both cases / is taken to be of the order of the device length and  is taken to
be of the order of , and p,.

The choice of variables.

The scaled equations can be expressed in several different sets of vari-
ables[12,13,15]. All sets of variables contain Jy.Jn, E and ¢, but they differ in
the choice of variable for the scaled version of the equations (4) and (6). We
find the following scaled equations for y, E, J, and J,,

divA*’E =n — p — N;+N, , (1.10)
is the scaled version of (1) and
E = grady , (1.11)
is the scaled version of (2). Instead of (3) and (5), we use
divJ, = —%%—R , (1.12)
divJ, = %JrR . (1.13)

As we consider only the stationary case, we may ignore the time derivatives. If
we use
pi=L n=2 1.14
PES S a = (1.14)
as variables associated with the densities, we find the following scaled versions
for (4) and (6),

J, = —pn(gradp+p grady) , (1.15)
J, = p,n;(gradn +n grady) . (1.16)

This set of variables has the disadvantage that the range of magnitudes for n
and p is large. Moreover grady may be very large around junctions, leading to
a locally singularly perturbed problem. An advantage of this form is the linear-
ity in the densities. The quasi Fermi potentials ¢,,¢, have a more favourable
range and avoid convection terms, but the equations are strongly nonlinear.
The variables are defined by,

@p = In(p)+y, @,:=¢y—In(n). (1.17)

The equations (4) and (6) take the form,
Jp = _Mp"iexp(%“ﬁb)v% > (1.18)
I = XY — @)V, . (1.19)

Finally we mention the Slotboom variables ®,,®, [32,33], they give us a for-
mulation that is well suited for theoretical study, but the range of the  is very
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large, so these variables are not really suited for numerical work. The variables
are defined as follows.

q)p = exp(q)p) » Dy = exp(_(Pn) . (1.20)

For the Slotboom variables equations (4) and (6) have the form,
I = —ypn,-exp(—\lx)gradd) , (1.21)
J, = pynexp(y)grad®, . (1.22)

We now have several mathematical models in the form of sets of equations in
dimensionless parameters and variables.

The Scharfetter-Gummel discretisation.

None of the sets of model equations derived above are integrable for
arbitrary doping and recombination terms. So, if we want an approximation of
the solution, we need to use numerical analysis. The most popular method is
an exponentially fitted difference scheme, called the Scharfetter-Gummel
scheme. It was first formulated for the one-dimensional case. It can be found
e.g. in a paper on the Read diode by Scharfetter and Gummel [34]. As equa-
tions to be discretised they take the set corresponding to the variables p and n
and a constant intrinsic density. Note that they do not use a scaling that
renders the equations dimensionless. They start of with the following set of
equations,

P _ g 1 1
ot g ox ~ (1.23)
an 1 aJn
2L - _R+— 1.24
ot g 0x ~ (1.24)
E _ g, 7
T = Lp—n+N—N,), (1.25)
9
Jy = qupE—kaTiy2E . (1.26)
- on
J, = quunE+kgTp,—— . (1.27)
0x

They discretise this as follows. The device is partitioned into mesh cells. The
variables p and n are determined on cell edges and the variables J,, J, and E
are determined in cell centres. The equation for E and the continuity equations
are replaced by the obvious finite difference equivalents. The carrier transport
equations are treated differently. There they proceed as follows. They assume
that E, Iy, > By and p, are constant between mesh points. They then solve
the resulting ordinary differential equations for p and n. This results in a local
version of the I'in scheme[35]. As we do not consider the time-dependent
problem in this thesis, we do not give their time discretisation.
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1.7 Contents of this thesis.

When consulting the literature on numerical semiconductor device
modelling, it is surprising that whereas so many papers use a finite volume,
box or Mixed Finite Element Method for the semiconductor equations, papers
that discuss a-priori error estimates for box or finite volume methods such
as [36, 37] are rare. Articles on a-posteriori error estimates for MFEM methods
are available only in fluid dynamics, e.g. the paper on a-posteriori error esti-
mates for a mixed finite element discretisation for the Navier-Stokes equations
by Verfirth [38]. The fundamental differences between the MFEM for
Navier-Stokes and MFEM for our problem preclude the use of that method
here. Even for the simple case of mixed finite elements for the Poisson equa-
tion we did not find any papers. This curious lack of information, combined
with the ongoing research on the use of local refinement in multi-grid methods
for the semiconductor problem at the institute [39], was the stimulus to write
this thesis. Chapters 2, 4 and 5 deal with the search for a-posteriori error esti-
mates for discretisations of the equations for the electric potential and charge
transport that make up the stationary drift-diffusion model.

To discuss the contents of the remaining chapters it is necessary to keep
in mind the general structure of the mixed finite element method. We recall the
form of the mixed finite element method for a simple problem with constant
coefficients,

div [%[gradu%—ﬁu] = f on Q, (1.28)

u =g on 0. (1.29)

The mixed finite element method is a discretised version of a variational for-
mulation in terms of the solution of (28) with boundary conditions (29) and
flux o, given by (30),

o= 1[gradu-FBu] on . (1.30)

a
It is easily seen, that any solution of (28), (29) and (30) satisfies,
(ao,7) — (divr,u) + (uB,7) = —[(divr,u) + (7,gradu)] = (1.31a)
— < gmmyg >V o1 e Hdiv;) ,
(dive,t) = (f,;t) V t € L2(Q) . (1.31b)

A general Petrov-Galerkin discretisation now looks for a solution (y,u,) in a
trial space V), X W},, for the variational problem,

(aop, 1) — (divr,,u,) + (wB7,) = < gmmgg > V1, EX,,
(divey,t) = (i) ¥V 4, €Y,

where X, XY, is a test space. We use a projection operator I, XP, [40,41],
where P, is self-adjoint in the Hilbert space L*(2) and div oII, = P, ° div,
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to define the discretisation error. We use a theorem proved first by Brezzi[42]
and generalised by Nicolaides [43] to obtain estimates of the global discretisa-
tion error from the local discretisation error. The local discretisation error
(G,F) € X;, X Y}, has the form G(r,) = (a(06—1II,0),7,) and F=0, where we
used the properties of the projection operator. If we use a quadrature rule to
evaluate (aoy,7,) and we denote the bilinear form that takes into account the
quadrature by a,(ey,7;), then G changes to G(t,) = (ao,7;) — a,(I1,0,7,).
We note that to minimise the local discretisation error, we need weights in the
quadrature rule that minimise this G for all relevant e.

Here, we introduce the point of view that forms the basis for the
research contained in this thesis. The point of view is the following. If all ele-
ments of the flux space V are smoother than the elements of V), then minimis-
ing G for o €V is not equivalent to minimising (aey,7,) — ay(ey,7;) for
0, € V. In Chapter two we use this viewpoint to find two alternatives to stan-
dard mixed finite elements for a symmetric second order elliptic operator. We
use the lowest order Raviart-Thomas [41] space as test and trial spaces. Two
quadrature rules are considered, a one-point rule and a three-point rule. We
compare the results with exact quadrature of (aey,,7,). The one-point rule gives
the known lumped scheme. The scheme obtained by using the three-point rule
is new. We show that the one-point rule is the most efficient. We also show
that solving with the three-point rule gives us a more accurate solution than
the one-point rule or even exact quadrature of (aoy,7;). If the local discretisa-
tion error for the one-point rule is of order k in the mesh-width, then it is of
order k +2 for the three-point rule. We give numerical results to illustrate the
behaviour of the discretisations based on the one-point and the three-point
rule. Other papers use the properties of II, to determine an estimate for the
global error [44-46], but they do not consider lumping or other quadrature
rules.

An important problem in numerical simulation of semiconductors is the
existence of locally large electric fields around junctions between differently
doped materials. We look for discretisation schemes whose accuracy outside
areas of large electric field does not depend on the electric field in those areas.
In chapter three we consider Galerkin mixed finite elements for the sym-
metrised continuity equation in one dimension. We use an abstract discrete
space V), X W, as test and trial space and an abstract projection II, X P, with
the properties mentioned earlier. We rederive the scheme as a Petrov-Galerkin
mixed finite element method for the original continuity equation. We assume
that the original equation has the form

=t a(x)—d—u(x)+b(x)u(x) = f(x) on
dx dx ’
and that we have homogeneous boundary conditions. We also assume that 1/a
and b are integrable and of fixed sign. We show that the abstract discretisa-
tions have the desired property by giving new error estimates for these discreti-
sations. We find a uniform L®() error for the flux. The error is completely
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determined by the accuracy with which the right hand side f is approximated
by P,f. For the charge density, we obtain a cell-wise upper bound on a prob-
lem dependent discretisation error. The coefficient in the estimate depends only
on the existence of a positive lower bound on the absolute value of the convec-
tion. The discretisation error is close to the L*(Q) discretisation error for cells
with normal convection terms. We see that the discretisation error caused by
small areas with large convection-diffusion ratios is restricted to those areas.

Chapter four deals with the two-dimensional Scharfetter-Gummel discre-
tisation as described by Bank et al. [17]. We use a special a, to write this
finite volume scheme in the mixed finite element form given earlier. We then
formulate an expression for the local discretisation error and use the theorem
by Nicolaides to get a global error estimate on sufficiently fine meshes. We use
the expression for the local discretisation error to determine the effects of
non-uniform meshes and large electric fields on the accuracy of this discretisa-
tion. Moreover, we use the local discretisation error to construct a deferred
correction process. We prove that the deferred correction process increases the
accuracy of our solution. We show numerical results for the deferred correction
process.

In Chapter five we discuss a new Petrov-Galerkin mixed finite element
discretisation. We use the techniques of chapter two, i.e. we introduce a one-
point and a three-point quadrature rule. The scheme that uses the one-point
rule is stable and consistent. Moreover, if the local discretisation error for the
one-point rule is of order k in the mesh-width, then it is of order k +2 for the
three-point rule. Unlike the discretisation for the symmetrised equation, this
discretisation can deal with convection terms that are not generated by a gra-
dient, so it is applicable to more general convection-diffusion problems. Our
error estimate for the discretisation based on the one-point rule takes into
account the use of cell-wise averages for the coefficients. This error estimate
degenerates for singular perturbed problems. However, we can show that the
coefficients of the scheme approach a two-dimensional upwind scheme in the
limit of vanishing diffusion. Moreover, if the convection term is the gradient of
a linear function v, the solution exp(—4v) is recovered exactly, just as in the
finite difference scheme by II'in [35].

Finally, it is necessary to explain why this thesis seemingly ignores the
projection error. This can be explained as follows. The main reason is that the
projections used give average densities over cells and average flux densities
through cell edges. In most cases these are the quantities of interest. Moreover,
if more information is needed, the assumption that the quantities of interest
are differentiable makes an analysis of the order behaviour of the projection
error almost trivial. An a-posteriori estimate of the projection error is easily
obtained in the case where we we have second order behaviour of our global
discretisation error, because that implies we can approximate first order deriva-
tives of the unknowns by first order divided differences of the discrete solution.
A variation on this idea is the basis for the deferred correction scheme in
chapter 4, we refer to that chapter for additional information on the
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approximation of derivatives mentioned above.
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2. An Improved Accuracy Version of the Mixed Finite Element
Method for a Second Order Elliptic Equation

2.1 Introduction.

In this chapter, we describe a modification of the mixed finite element
method for a second order elliptic equation. The modified method is based on
standard mixed finite elements with lowest order Raviart-Thomas elements on
rectangles [1]. To give a brief description of our method, we recall, that a
mixed finite element formulation of

— divagradu+cu = f on @,
ulag = g,
can be written as
(op,7h/a)—(divr,u) = — < gmmg > V 7, €V,
( div o4,8,) +(cup,ty) = (fty) V 4, €Wy,

where u, is a discrete approximation of u and o, is a discrete approximation of
—a grad u. In this chapter, we show that, if we use a special quadrature rule
for the inner product (o,,7,/a) and if the coefficient a is piecewise constant,
then the difference between a suitable projection of the continuous solution
and the discrete approximation is of order O(h*). We give numerical evidence
that confirms the theoretical result for smooth o. In section 2.2, we formulate
the boundary value problem to which we apply the modified mixed finite ele-
ment method. Section 2.3 describes our mixed finite element discretisation and
the quadrature rule for the inner product. There we also give a motivation for
the use of the special quadrature rule. We give two other choices for the qua-
drature rule in section 2.4. One choice results in the usual scheme for lowest
order Raviart-Thomas elements, the other choice corresponds to the use of the
trapezoidal rule. We derive an error estimate for the modified version in sec-
tion 2.5. A different but related approach to such error estimates can be found
in [2-4]. In section 2.6, we use a one dimensional example to illustrate the
importance of the ratio ch?/a for the usual scheme and our modified scheme.
For these methods, the value of this ratio determines whether or not u,
satisfies a local maximum principle (cf. Polak, Schilders and Couperus [5] ) For
the scheme based on the trapezoidal rule, u; satisfies a local maximum princi-
ple for all ¢ = 0. In Section 2.7, we show numerical results. Section 2.8 gives
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an a-posteriori error estimator for the method based on the trapezoidal rule. In
the last section, we summarise our results.

2.2 The equation.

We consider a second order elliptic equation with Dirichlet boundary
conditions, as given in equation (1),

—divagradu + cu = f on Q, (2.1a)
u =g on 08. (2.1b)

on a rectangle & = ]0,L,[X]0,L,[. We introduce a special notation for —a
grad u,

o:= —agradu . (2.1c)

We assume, that there is a finite set of rectangles, the union of which covers €,
such that a , ¢ are constant on each separate rectangle. We assume that a > 0
and ¢ = 0. We also assume, that a , ¢, f and g are such, that (1) has a
unique solution u € C(2), with a o that is sufficiently smooth for our purposes.

2.3 The discretisation.

In this section, we give a description of our discretisation. We divide
into rectangular subdomains @, j+1%» We introduce some notation and we
define our test function spaces ¥, and W),. We then introduce two projections
P, and II,. Such projections were suggested by Fortin[6] and are used by
Raviart and Thomas[l] and Douglas and Roberts[7]. Next, we give the
discretisation and discuss the special quadrature rule.

2.3.1. The partitioning of the domain.

We restrict ourselves to subdivisions of the rectangle Q, that can be gen-
erated by the Cartesian product of subdivisions of its sides. Let

DIZ{O:xl.O<xl.l<...<x1_N]:L]}
and
Dy = {0=1x30 < x31 < -+ < x5, =L}

be partitions such, that a and ¢ are constant on the interior of each separate
rectangle of the subdivision D XD, of Q. We set

hiivn = X141 — X145 (2.2a)
h2,j+’/z = Xoj4+1 T Xg (2.2b)

and
Qivnjrn = {xLx) | x1; < % < Xpit1,X2; < X3 < Xp;41 }A2.3)

Fijrn = { Grix) | X1 = X0, X0 < X3 < X541 ), (2.42)
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Fivnj = { (x1,x2) | X1 < X1 < Xpi41,%2 = X35 } - (2.4b)

2.3.2. The approximation spaces.

We define our approximation spaces for ¢ and u, by giving a basis for
each space. We then introduce two projections onto the discrete spaces.

For each cell, ;. ;+, we use the characteristic function x; + 4+ 1,
Xit+nj+n = Oubu on Qepyivy, (2.5)

as an element in the set of basis functions for W,. For V}, we introduce the
basis functions ; ;1 and ;4 ;, where ; ;4 1, is linear in x, and constant in
x5, on each cell with

Nij+n = Ouduer on Tyyyy, (2.6)

for i,k=0,1,...,Ny,/l=0,1,... ,N;—1 and n;4y4; is linear in x, and
constant in x; on each cell with

N+, = Ouduey on Thpy,, (2.7)

for i,k=0,1,...,N,—1,/=0,1,...,N,. Here e; and e, are unit vectors
in the x ;- and x,-direction respectively.

With these basis functions, we construct V), and W),
Vi, = Span({ 0+ |i=0,1,...,Ny,j=0,1,... N,—11 Y (28)
{ My |i=0,1,...,N;—1,j=0,1,...,N; }),
Wy = Span({ Xi+unj+»|i=0,1,...,Ny—1,j=0,1,... ,No—11).(2.9)

The product space VX W), is the space of lowest order Raviart-Thomas ele-
ments. To prepare for the definition of the two projections onto the discrete
spaces, we introduce averages over cells and cell boundaries for f € C ),

1
PQI' Yy i+ 14 - < d s 2.10
(82 4 15,4510 W) Q/f p (2.10)
1
e
P[T; ) = [ fan. (2.12)

AMTivn)) ¢

In the above definitions, A is the Lebesgue measure on R and p is the Lebes-
gue measure on R?. We define Py: LY(Q)— W, for all u € LX(Q),

i+

Pou = P[Q;4y,+u)(u) on Qivpjrn Y i, (2.13)

and we define IT,: H'(Q)?— V), for all ¢ € H'(Q)2,
(ITy0); = P[I;;+4](01) on Lijam s (2.14a)
(o), = P[Li4p,)02) on Tivy; Vi (2.14b)
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The spaces V), and W, and the projection II, were introduced by Raviart and
Thomas [1,6]. The projections have the following special properties.
Lemma 2.1.
V ueLXQ),1, €W, : ) = P, (2.15a)
V oe H@?, 1 €W, : (diver) = (divIilez). (2.15b)

Proof.
Equation (15a) follows immediately from the definition of P,. Green’s formula,

f divo dp = f oMy, dA ,

proves equation (15b) OJ

2.3.3. The discretisation scheme.

We first give the discretisation without specifying the quadrature rule.
The choice of a quadrature rule is discussed in section 2.3.4.

We introduce the space
V = H(div,2):= { r€ L} (@)? | divre LQ) }, (2.16)
with inner product,
(0,7)y = (0,7 12@)* + (divo, div 7)) . (2.17)
This space is discussed by Roberts and Thomas [8]. We also introduce
W = LXQ) . (2.18)

Note, that IT, is only defined on H'(2)? C H(div,®). In this chapter, when we
apply I, to the o defined in (Ic), the assumption that this o lies in H'(Q)? is
included in the condition ”o is smooth enough.”

We can now write problem (1) in the form:

(o,u) EVXW,
a(o,r) — (divru) = — < gmmyg > V 7€V, (2.19a)
(divo,r) + (cur) = (fit) V tEW, (2.19b)
where
a(o,7):= (0,7/a) Y o7 EV . (2.20)

For our discrete problem, we take
(o, up) € Vy X W),
ay(op,m) — (divT,u) = — < gmmgg > Vo1, EV, (2.21a)
(div oy,t,) + (cup,ty) = (fity) VY t, €Wy, (2.21b)

-
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2. AN IMPROVED ACCURACY VERSION OF THE MIXED FINITE ELEMENT METHOD

where ay, is a bilinear form on ¥ XV, that approximates « and that satisfies

ah(o,Th) = ah(HhO',’Th) . (222)

2.3.4. The definition of «;,.

The bilinear form «a, describes the quadrature rule used to evaluate a.
The idea behind the introduction of a special quadrature rule is the following,
if we combine (19), (21) and (22) with the results of lemma 1, we find,

a,(IL,0—0y.1) — (div 7, Pou—w,) = ay(Il0,m) — alo,7) , (2.233)

( div (HhU_O’h),th) + (cth,Phu—uh) =0. (2.23b)
We see, that the only term on the right hand side of this equation is,
a,(IT,0,7,) — a(o,7y) . (2.24)

If the discrete problem is uniquely solvable, then it is invertible. In that case
this term is a measure for the difference between (II,0,P,u) and (oj,u;). We
now seek to minimise (24). To do this, we construct a special quadrature rule
for the evaluation of a(a,7,) by defining this rule for a(a,n;) and a(o,m,), for
each m, , 7, given by (6) and (7). We first introduce the obvious notations,

it+pj+1 — P[9i+f/:,j+l/;](a)s
o1,j+4 = Pllij+ull01)
02i+%j — PIT; 4 1,)(02) -

Our two-dimensional integration rule corresponds to the use of a one-
dimensional three-point rule in one direction and exact integration in the
other. To simplify the definition of the quadrature rule, we introduce the fol-
lowing functions,

~ &1
AORER = B . B ER (2.252)
12 12(h +h) 12h(h+h)
Bl LRy — 2R o ROERL (2.25b)
12h 124
C(hh,L,R) = A(h,h,R.L) , (2.25¢)
~ =3
PO L Ry= 2L | ML AR (2.25d)
12 12(h +h) 12h(h +h)
~ B
. 2hR . h'R 2hL | h*L
E(hh,L,R) = % 4 g £ 7,
(h,h,L,R) T h B — (2.25¢)
F(h,h,L,R) = D(hh,R,L) . (2.25f)

Where (25a-c) are used in rules for basis functions with their maximum in the
interior of € and (25d-f) are used in rules for basis functions with a their max-
imum on the boundary of .
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Now, we define oy, for all basis functions. We start by defining its action

for the e, component of 0. We have to distinguish between basis functions
with their maximum on the left boundary of €, (26a), in the interior, (26b), or
on the right boundary of £ (26c).

an(0,m0,j+1)/ hyjiy i = (2.26a)
D(hyyshii+m 1/ @y 41,0000+ 5 +
E(hy hii4ul/ay 400000405 +
Fhyhia+u1/ayj+4,000024+5
(0. j+ 1)/ hayjs = (2.26b)
Ahyi—pshyivm 1 Gy ey, 1/ @ity jy5)01i—1j+y T
Bhyi—yhvivu 1/ ai—y v 1/ 8y jiu)01+5 +
Chii—mhrivu /Gy jrn /@ity j1)01iv1j+5
n (00N, j+ 1) By jry = (2.26¢)
Dhi v —1-mhi N - 10,1/ an s j 4 p)OL N —2 4 T ‘
Ethi v —1-mh1n —50,17an — 1 5)01 N 140 T
Fhyn,—1-mhin,—50,17an, — 4+ 5)01 N, j+ 1 »

for i=12,...,N,—1,j=0,1,...,N,—1.

Next, we define the rule for basis elements for the e, component. Again, we
have to distinguish between basis functions with their maximum on the boun-
dary of 2, (26d, 26f), and basis functions with their maximum in the interior

(26e).

(0, +150)/ Hy ity = (2.26d)
D(ha, ko415 17 @it 11,0002 4150 +
Ehy,ysho+m:1/ai405,0)00 451 +
F(hayyhon+01/ @iy 155,0)02 1142
ap(0, M4 15) By i= (2.26¢)
Ahyj—pshojrn, 1 Qg jy 1 @iy )02 545551 +
B(haj—shyjrus 1/ @iV Gty ji )04 +
Clhoj—shojrus 1/ iy 1 Gty j4 )02k 41
(oM N )/ hyiyy = (2.26f)
D(hyn,—1-nhan,— 10,1/ @iy v, — )02 i 4 ov,—2 T

E(hon,—1-mhon,— 50,1/ a4y N, —5)02i 4N, —1 T
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F(hon,—1—u-hon,— 50,1781y N, —1)02i + 5N, »

for i=0,1,...,N,—1, for j=12,...,N,—1, .

In section 2.5.1, we show, that for the above choice of coefficients, (24) is
O(h*). The use of a three point integration rule means, that we cannot obtain
a higher order than this for (24) unless the mesh is uniform and the coefficients
are constant on €, in which case we gain a factor of 4 due to symmetry.

2.4 Other quadrature rules.

If we take different coefficients in our quadrature rule aj, we find other
variations on the mixed finite element method for lowest order Raviart-
Thomas elements.

2.4.1. Exact evaluation of the form « on test and trial functions.

If we assume piecewise constant coefficients and we use exact integration
for the product of test and trial functicns, we obtain,

hL

A(hh,L,R) = e (2.27a)
B(h,h,L,R) = hTL + h—f , (2.27b)
C(h,h,L,R) = A(h,h,R,L) (2.27¢)

D(h,h,L,R) = hTL , (2.27d)
E(hhLR) = % + hTR (2.27¢)
F(h,h,L,R) = D(h,h,R,L), (2.27f)

this choice results in the usual mixed finite element scheme for this choice of
test and the trial function spaces.

2.4.2. Use of the trapezoidal rule.
The use of the trapezoidal rule corresponds to the choice,

A(hh,LR) = 0, (2.28a)
B(h,h,L,R) = hTL + I;TR’ (2.28b)
C(h,h,L,R) = A(h,h,R,L), (2.28¢)

D(h,h,L,R) = hTL , (2.28d)
E(h,h,L,R) = 0 (2.28¢)
F(h,t,L.R) = D(h,h,R,L) . (2.28f)
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For this scheme, elimination of o, by static condensation is trivial. For ¢ = 0,
the resulting matrix is an M-matrix. This implies, that u, satisfies a local max-
imum principle for ¢ = 0. If a =1 and ¢ = 0 then the matrix after static
condensation corresponds to the classical five point finite difference stencil for
the Laplace operator.

2.5 An error estimate.

We derive estimates for ||II,0—a,, || L@ and || P,u—u,|| 2@ under the
conditions,

¢c =0 on Q, (C1)
o is smooth enough, (C2)

and
Ao(Th1h) < ap(my,m) < Ay(1,73) (C3)

where A, and A4, are positive real numbers, independent of the mesh. To
derive error estimates, we need an estimate of the quadrature error, given in
section 2.5.1, and a special norm on V}, given in section 2.5.2. Section 2.5.3
contains the proof of the error estimate. In section 2.5.4 we show that condi-
tion (C3) is satisfied for a special case.

2.5.1. Error estimates for integration formulas.

We derive an error estimate for our special two dimensional quadrature
rule. This rule is based on the interpretation of the values of IT,o on the edges
of cells as averages over those edges. Combined with a piecewise constant a
and essentially one-dimensional weight functions, this allows a simple exten-
sion of one dimensional integration rules to two dimensions.

To prove this, we combine a special case of Theorem 2 of Bramble and
Hilbert[9] with Fubini’s theorem[10,11] and a Sobolev embedding
theorem [12]. In lemma 5 we combine these results to give an error estimate.
In lemmas 6 and 7 we show that the coefficients given in section 2.3.4 satisfy
the conditions of lemma 5. In lemmas 2, 3 and 4 we formulate the theorems
used.

In this thesis we shall often use Sobolev spaces. The general Sobolev
space WXP(Q) is the space of functions for which the generalised k™ order
derivative to the power p is integrable. The usual norm on this space is defined
as,

k 1/p
ol we@ = [2 lld’u/dx’”’i’(ﬂ)J ;
j=0

with

l/p
lullvg = u ub du] :
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Cf. [13-15]. The usual notation for WA2(Q) is HX(Q). In section 3.2.1 of
chapter 3 we define the term generalised derivative in one dimension.

Lemma 2.2.
Let © be an interval of length p < oo and let 1 < p < co. If F is a linear
functional on the Sobolev space W*?(L), which satisfies

3C>0:|Fw| < Cl|l|lullgpa V u EWHQ), )
with C independent of p,
FO)=0 Vve{lx,...,x*1}, (ii)
then
3C >0:|Fu| < Cot||dusdx||,q.
with C independent of p. Where

1 1/p
lullpe = [—f uf du} ;
o)

k 1/p
||u|lkpe = [2 o7 || dlusdx) |5 g
=0

Proof.
This is a special case of Theorem 2 from the paper by Bramble and Hilbert [9].

O

Note that the norms used in this lemma are those used in the paper by Bram-
ble and Hilbert and differ from the norms used in this thesis.

Lemma 2.3.

Let ©,,9, be bounded intervals in R. For x € €, let f[x] be the function on
Q, given by fIx](y) = f(x,y) V y €Q,. If fis integrable on Q, XQ,, then
flx] is integrable on &, for almost all x € &, F(x):= i! fIx] dX\ is integrable

2

on £, and

[ fdp= [ Fax.
&

Q, XQ,

Proof.
This is a special case of the theorem of Fubini. [10, 11]

O

We use the Sobolev embedding theorem to give a relation between the max-
imum norm and the norms on W>!(Q) and W>%(Q) if Q is a bounded interval.
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Lemma 2.4. :
If © is a bounded interval in R, then there are C,C > 0, such that

lull =@ < Cllullwe V u€ H @),
lull L@ < Cllullw@ VY u€W>'(Q).

Proof.
The Sobolev embedding theorem implies these are linear continuous maps, see
e.g. Gilbarg and Trudinger, theorem 7.10 and Corollary 7.11[13]. O

The next lemma gives an error estimate for our special two dimensional qua-
drature rule. To obtain this estimate, we use that our weight functions (i.e. the
basis functions #) are essentially one dimensional. We also use that the values
for o; can be interpreted as averages over cell edges and that we can define
these averages for o, if ¢ is smooth enough.

Lemma 2.5.

Let ©,,8, and ©; be bounded intervals in R, with €, CQ, and
p = AM£,;) < oo, the length of Q,. Furthermor%,kle]t X15X9, oo o3 Xop s € Dy,
let we€L*(Q), wi,wy, ..., Wy ER, with > |w;| < Kp, K indepen-

i=1
dent of p, and let n = 0. Set

U+
G(u):= fwu d\ — 3 wu(x;) YV uewrthh,
2 j=1

If
Gu)=0 V ue{lx,...,x"},

f € C(Q, XQ), yle wttl vy e Qs where we have

SNx):= flx,y) V x €Q,,and "7 f/79x" ! € LY (R, XQ;) then

Ig{G(f) dp| < Co" 2T f/0x" | g,

with C independent of p.

Proof.

The only difficulty here is the need for a p-independent bound on the values of
u in the nodes. We address this problem as follows. On the unit interval, the
Sobolev embedding theorem implies the following inequality,

lulli=01y < Cllulluory = Cllulliz0) »

for a fixed C €R. Moreover, if u € H'(Q) with Q=(a,b) with b—a=p, then
Mu := u(ép+a) is an element of H'((0,1)). What we need now is a relation
between

| Mul|120.1)

and
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lull120 -
We see immediately that,
[ Mull12.0n = llullize -
So,
lull @ < Cllulhize .
with C independent of p. This implies,
IPilG(u)| =

2%k +1
o ull v Wl e + 07 'C 3 [willlulline ¥ u €H'( ),
i=1
or in the norm used by Bramble and Hilbert,
o 'Gw)| < (Wl =@ llullze + KC[[u]l120) -
So,
lp G| < (Wl @ + KO lullae < Cllullx2e -
Fubini implies,
2% +1
B [ weftey)dp = 3w, ({f(xj,y) dy| = | S{ G(f) dy| -
| X8 Jj=1 3 3

We combine this and find, that there exists a C > 0, such that

|J G(f)dy| < Cp"">/*N(@)" || f70x" || g, <) -
This follows immediately from Cauchy-Schwartz and lemma 2.

O

In the above lemma, G corresponds to the error for a one dimensional integra-
tion rule. Next, we relate the condition on G to the coefficients from (24a-f).

Lemma 2.6. . .
If fe H3([—h,h)), A,B and C are given by (24a-c) and

o
h
{A(h,}?,L,R)f(—h) + B(hhLR)f(0) + C(h,ﬁ,L,R)f(fz)} ,

h+x

0 h
G():= L[ fx) - dx + R [ o)== dx — (2.29)
—h 0

then
Gp)=0 V pe{lxx®}.
Proof.
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This can be proved by direct substitution of the appropriate functions in G(p).

O

Lemma 2.7.
If f € C3([—h,h]), D,E and F are defined by (24d-f) and

0 h
G(H:=L|[ f(x)_Tx dx + R f(x)% dx — (2.30)
—h 0

[D(h,I;,L,R)f(—h) + E(h,h,L,R)(0) + F(h,iz,L,R)f(Z)] :
then
Gp)=0 V pe( l,x,xz}.
Proof.
This is proved as in the previous lemma.

O

Lemma 5, 6 and 7 show that we can find a quadrature rule for ay(.,.) that is
O(h*). If h = h and L = R, then we gain an additional order 4 for the rule
with coefficients 4, B and C,

Lemma 2.8.
If f € C*(—h,h)),
0 h
G(f):= ff(x)h;:x dx + ff(x)h;x dx — 2.31)
—h 0
h 10A h
12/m + 50 + o fh)
then
Gp)=0 V pe{lxxx®).
Proof.

Again, this is proved by calculating G(p) for the appropriate functions.

O

2.5.2. A special norm on V.

The space V), is a finite dimensional vector space. Its natural norm is the
Euclidean vector norm. For later use, we introduce ||. ||, a weighted version
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of the Euclidean vector norm on V), and we prove, that this norm is equivalent
with the L?(®) norm. If o, € V), and

N, N,—1 N,—1 N,
Op — 2 2 S0+ M+ % + 2 2 820+, Mi+ %) o (2.32)
i=0 j=0 i=0 j=0
then we define ||. ||y, as,
llowll¥, = (2.33)
N,—1 N,—1
S S Qi+ )6Tijen stivijen + Sy t+ S3ituj+1) -
i=0 ;=0
Lemma 2.9.
For the o), as given in (32),
llonll %,
—3 < llos 1w < llonll% - (2.342)
and ’
Wi+ s5j+5) || on || 2L‘(sz,,,,,,,.)Z < 2||o4l|7, - (2.34b)
Proof.
For both norms, we have
loxll®> = [l(oneer ||* + [[(onee |l .

so it suffices to prove the inequalities for a single component of 0. Further-
more, we know, that

N,—1 N,—1
2 _ 2.
lree || = = 2 lloneder || Ca@..,. -
i=0 j=0
We compare terms for corresponding cells,
2
X1 X1 X1— X1
2 — 1 1,i 1 1,i
l@reerlf@..,..0 = [ |sijen |17 F suven =m0
i+ 15+ 1 Li+% Li+%

The contribution of
|| (on-€1)e || %/,,
for this cell is,
I/ZH(QI+[/J.j+’/2)(s%.i,j+’/z +5Ti41,44) -
The inequalities in (34a) now follow from,

1 5 [ 3
a2 __ a*+b 2ab
{ (a+b[1—§)7 df = ——=—+ =~

and
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y ) 2412 2432
a+b - 4 +b +2ab . 4 +b '
6 3 6 2

Inequality (34b) is trivial.

O

2.5.3. The error estimate for the modified method.

In theorem 1, we give an estimate for |[II,06—o0, | 1) and in theorem
2, we give an estimate for || Pyu—uy, || 13-

Theorem 2.1.
We define,

hy =maxhy;,y,
hy = mjax h2,j+’/z )
If we assume, that conditions C1 to C3 hold, then
| Myo—on | tq + || Ve@ru—w)|| g < (2.35a)

93 9’
K(hy +hy)* max( || ax—‘i Il =@ Il ay—Z I =)

[nIL.o—oh i + (hy+ho) || (Tyo— o) mag nmam} :

and
| Myo—on || di@ + || Ve®ru—u)| b < (2.35b)
K(h +h;)’ max [ll gjc—(; Il L@ IIS;—Z | L‘(sz)] I TTho =0 || L) -
Proof-
Condition C3 implies, that
Ay(T,0—0,.,0—0;) < ay(Il0—0,,I1,0—ay) .

If we set 7 = 71, and ¢ = 1, in (19) and combine the resulting formulas with
(21), we get,

a,,(Hho—ah,Th) = (le Th,u—uh) = (2363)
ay(I40,7) — alo,m,) V 7, €V,
(le (O_Uh),th) =+ (c(u—uh),th) =0 Vv L,eEW,. (236b)

If we take into account (22) and the properties of P, and II, from lemma 1,
then we find,

ah(Hho—oh,'rh) = (le Th,P;,u—uh) = (2373)
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ap(o,7) — alo,m) V7, € Vi s
(div (0 —0p).1) + (c(Pru—wp),t) =0 Y 4, EW, . (2.37b)
If we set 7, = II,0—0y, t;, = P,u—uy,, then we find
ay(Ily0 =0, 11,0 —0y) + (c(Ppu —uy),Pru—up)
= a(0,I1,06—0;) — ay(o,1l,0—0y) .
by adding (37b) to (37a).

We introduce

Kp = {Gj—%|i=1,...,N\,j=1,...,Ny }, (2.384)
Ky = (G—%j)|i=1,...,N\,j=1,...,Ny }, (2.38b)
Ky = {(j—"%)]i=0,...,N;—1,j=1...,N,}, (2380

K= {(—%))|i=1,...,Ny,j=0,...,Np—1}. (238d)

The measure of the support of  is denoted by w(Supp(ny)). We denote the
length of the support in the e, direction by A (Supp(ny)). If A and B are sets,
we use,

AAB = (B—A)|J(A—B),
(the symmetric set difference).
If we combine lemma 5 with lemma 6, lemma 7 and (C3), we find,
a(0,11,0—0,) — a,(0,Il,0—0,) <
> | P[T )0 — 0 )e | (a(o,m) —ax(o,me)) +
k € (Ky (M Kp) U (KyAKy)
> | [T, J(I1,0 —0p)€; | (a(0,m) —an(0,m,n)) <

m € (K, m Ks) U (KyAKy)

83
C > | P[T)(I1,0 —0p)-€)) | (Supp (M)A (Supp (i)’ || 5% Il L=@ *+
k€ (Ky N Ko U X
(KyAK;)

. 9’

+ C > |P[Fm]((Hho—0;)'62)|M(SM,BP(nm))7\2(5141)10(11,"))3 ||'a—(3LH L@ -
m e (K, N KU o4

(K, AK;)

From this formula we can derive (35a) and (35b). We start by deriving (35a),

a(0,IT,0 —0) —ay(0,1l,0—0,) <

173
33
Cl2mQ) X N(S”PP(TIk))P[Fk]((HhU'Gh)'el)z] 8hi || 5 c; || =@ +
k€K, (MK X
Z]
83
Clon@ S MTOPTIMo—oye | shihy |~ |l @
k € (K, AK,) ax
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V3
Cl2u X M(S“PP(ﬂk))P[Tm]((HhU-Oh)'ez)z] 8h3 || B Tl @ T
m € K, () K

%
Cl2n0) X }‘Z(rk)P[rm]((Hho—oh)'eZ)2J 8hh3 || )3 H L@ <

m € (KyAKy)

+

C||(Hh0 on) || L@ (b1 +hy) [H P | =@ + || P s @

3o 9’0

C || (o —0p)mag || gy (h1 +h)* | || T e | ey + = ™ | =@

Here, we used the equivalence proved in lemma 9. Next, we derive (35b),

a(o,Il,0—0,) —ay(0,11,0—0,) <

Cl2m@ X M(SuPP(nk))P[Fk]((HhG—Oh)'e1)2} 8"3” " Tlre +
k€K, NK;

2]
o O
cl2v@ X H(S“PP(ﬂk))P[Fk]((HhU—Gh)'el)2} 8hihy || -‘; Il =@
k € (K,AK,) ax

/]
Cl2um X H(S“PP(ﬂm))P[Fm]((HhU_Uh)'ez)z] 8h3 H )3 e +

m € Ky (M K

%
Cl2n©G) X u(SuPp(nm))P[rm]((Hho—Gh)'ez)z] 8hi'h3 || e i@ <

m € (KyAKy)

930
C | [|(Myo—0p) || L@y (A +hy)? [H e + -5 5 e (Q)H

Again, we used the equivalence proved in lemma 9.

O

For cells in areas of constant @ and uniform mesh-size, the proof of
lemma 8 implies that their contribution to the global error is of order 4*. If
the areas of constant a and uniform mesh-size are large enough, we treat the
cells adjacent to the boundaries of such areas in the same way as the cells
adjacent to the boundaries of ©, this results in an O(k>”) error. If furthermore,

[|(Tho—0n)mag || s sy < ||TTho—os || L)

where 94 is the union of edges between areas of constant ¢ and uniform
mesh-size, then formula (35a) gives us an O(h*) error estimate. These effects
are seen in our numerical results.

Next, we express || Pyu—u, || 1) in terms of ||II,0—0 || 13-
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Theorem 2.2.
Take h; and h, as in theorem 1. Under the conditions C1, C2 and C3, we
have

H Phu —Up || LA(Q) < (239)
k[ o—onll e + M 122 ey + 208122
0—O0 2 A - ——— =
h RIR) L AP L*(Q) | PR @

Proof.
To obtain this estimate, we examine P,u—u;, for each subdomain separately.
We use the following relation, which can be obtained from (19) and (21),

a(O’,’Th)_ah(Oh,’Th)_( div Th,Phu—uh) =0 V Th (S Vh .
When combined with (22) this implies,
( div 7, Pyu—u,) = ay(0,7)—a(o,m) tay(op —IL0,m) ¥ 7 €V (A)

We concentrate for the moment on the sub-domain €, ;. We define a
special 7,

0 on Qk+%_[+l/z lfl<j orl>j,

0 on Qk+l/z'j+l/_, if kK < i,

Thi = 1oon Quiyiy if k > (2:402)

X177 X Q
— On Yty iy

hoivy
Ty =0 on Q. (2.40b)

Substituting this for 7,, we find,

hyj || Pru—uplli=@..,.0 <

0 N —1

Clhyj+ull —ax‘3‘||L’°(9) S htgin + hy + hin—n| +
k=0

N,—1
E #(9k+'/g,j+'/z) || 1T0— 0y, I L’(ﬂh,/.:.)] #
k=0

The first term in the right hand side of this inequality corresponds with the
quadrature error in (A) in the interior and on the edge respectively, the second
term corresponds with the remaining term in (A). So,

| Prse—up || @) <

C |t + 2n)||

830] 1 N, —1
oo lre T 53— kZ MU+ +) |1 TIho —0n || L=, | >
J k=0

where we used that P,u—uj, is constant on £y ;+u, Cauchy-Schwartz and
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(35b).

We multiply both sides of this equation by the square root of the area of the
cell,

N(Qi+%,j+’/z)’/z|lphu_uh”L”(Sl,*.:»/,,,) = ||Phu_uh”Lz(Q,u_,_/$,:) <
3

@yony“c| [+ 28] | S0 g +
URG 405 i+ 15 1 1 ax? L*(Q)

Ny=1
1 1
7 2 &% +n) | Thio—oy || L=, ..
haj =0

If we square the left and right hand sides and then sum over i and j, we find,

| Phue —uy || 130y <
830] 3301
KBS | (12 + 208 || —=||3=@ + [|Thio—on |3z | -
il 3 Il 1= il P 1@ + [[TLio—o4] L@

O

Again, if the conditions following the proof of theorem 1 hold, then we gain
an additional order of 4, because in that case ||II,0—0, | 12q) is O(h*) and
we can replace the term A7 ||9%0; /3x7 || 1=(q), that represents the quadrature
error, by At || 80, / 0x} | L= -

If, in the above proofs, we replace the explicit expression for the local
quadrature error by a more general form, we see, that the order of the error is
equal to the order of the quadrature rule used.

2.5.4. A proof of condition (C3) on a uniform mesh with constant a.

We show that, on a uniform mesh, a;, satisfies condition (C3) if a is con-
stant. Without loss of generality we take a = 1.

Lemma 2.10.
Assume a = 1. If the mesh is uniform, then

48 96
lonll 3, < ?ah(oh’gh) < ?“"h”%/,

Proof.
If we write 0, as a linear combination of basis functions 7,
Op — E S1,mMm + 2 S2.mMm »
m € K, | K; m € Ky | K
then we find,
a,(04,04) =
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+ (2.41)

Qap [ 2 S1,kMk > 2 S1,mMm

k€K, \JKe m € Ky \J Ke
ap 2 S2.kMk > 2 S2,mnm} .
ke Ky U Ks m € Ky U K

where Ky etc. are defined in (38). For the term in (41) corresponding to the
e, component, we find:

ap [ 2 S1,kMk » 2 sl,mnm} =

kek, UK. me K, |JK:
1 10 1
hihy D Sim lﬁsl,m*(l,O) + TS m + 135 1m+(1.0) +
m e Ky, () Ke
7 6 —1
hih —Sim + o + — +
112 E—KLSW [24S1,m 24Sl,m+(l,0) 24 S1,m+(2,0)

m€E K,

6 7
hih;y 2 Stm | TAg S1,m—(2,0) + —Sim-1,00 T 55Lm| >
K, 24 247" 247"

m € K,
where m—(1,0) = (i—1,j— %) if m = (i,j — ") etc.
Next, we interpret the coefficients s with m € Ky | J K¢ as a vector s

in RY' DY We introduce the notation f, ,, for the unit vector along the coor-
dinate axis corresponding to s ,,. We define the matrix 4 by,

1 AR = (M omm) -
We can write ay,(0y,0,) as follows,
sTAs = #sT(A+AT)s .

According to the fundamental theorem on symmetric matrices, this implies
that all eigenvalues of A4 +A4 T are real and that,

A+A4T = 0"DO,

where O is an orthogonal matrix and D is a diagonal matrix with as diagonal
elements the eigenvalues of A. Gershgorin’s theorem implies that all eigen-
values are larger than

14 8 1._ 5
Aoy~ g ) ag Mk
and smaller than
10 1 |
h1h2(12+12+12)—h1h2.

The same reasoning can be applied to the e, component of ;. We find,

ap(op,0p) = #sT(A+A4T)s = 4sT0'DOs > 4ig||5||2vh .
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O

Lemma 2.11.

For a constant coefficient a, the bilinear form a,, satisfies condition (C3).
Proof-

This follows immediately from lemma 9 and lemma 10.

|

2.6 The effect of a non-zero c.

We use a one-dimensional example to illustrate the problems associated
with a zero order term mentioned in the introduction (cf. Polak, Schilders and
Couperus ) [5]. The one dimensional problem is studied, because we can easily
obtain the discrete system of equations in u. We see, that, for the quadrature
rule given in section 2.4.1, ch?/a > 6 results in the loss of the conditions for
the local maximum principle for wu,. For our new quadrature rule, the
corresponding bound for satisfying the local maximum principle is
ch*/a < 12. As any one-dimensional problem can be trivially extended to an
example for two dimensions, the same difficulties will appear in two dimen-
sions.

If we write down our modified discretisation in one dimension on a uni-
form grid with a=e¢, c=1, f=0 and g(0)=0, g(1)=U, then we find the fol-
lowing system of equations:

Th 6h h
EOO Sk EO] — E(Q +u, =0, (2.42a.0)
h 10A h .
F 1 EO,’ = EO,—+1 — Ui—y =+ Uiy, = 0 (2.423.1)
for i=1,2,...N—1,

h 6h Th
- EON_2 -+ ‘QION_] + EON — UN-—y — U s (2.428N)
—o;_1+0; + hu_y, = 0 for i=1,2,.,N . (2.42b)

Elimination of ¢ yields,

4h* 4h? _
3uy(1+ 24€) (1 24 Yuryy =0 (2.43a.1)

h? 5h? h? .
(=5 - — 2(1+E)ui+l/z + (I_E)ui+l+% =0, (243ai)

i=1,2,.,.N—2,
4h* 4n* .
uN_l_%(l 2de ) + 3UN_%,(1+ 24e ) =2U. (2433.N)
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We see, that the matrix is always diagonal dominant, but for h?/e > 12 itis
not an M-matrix.

If we use exact integration for Raviart Thomas mixed finite elements,
then we find,

h? h?
3u,/1(1+—) = (1_—)1,l]+1/2 =0 (24431)
6e 6¢
h? h? h? .
A= —j—y — 2(1 + iy + (1 — 1+ = 0, (2.44a)
6e 3e 6e
for i=1,2,..,N—2,
h? h®
= uN,l_,/Z(l——) + 3“1\]7%(1_}_—_) = 2 . (244aN)
6€ 6e
Here we see, that there is no qualitative difference in sensitivity to the ratio
L between our method and the standard method. However, for the tra-

€
pezoidal rule we find:

2
3141/1(14"};—(‘) = W1 = 0 (24531)
h? .
—w_y + 201 + —2?)“i+l/.» — dypren = 0 (2.45a.1)

for i=1,2,..;N—2 ,
h?.
— Uy_1—yp t 3uN_,/2(1+—3;) =2U. (2.45a.N)

In this case, we do get an M-matrix.

We recall from section 2.5, that the accuracy of a method is determined
by the accuracy of the quadrature rule used in aj. If o is sufficiently smooth,
then we find the following orders for the above schemes, O(h*") for (42) (
O(h*) if the error is not concentrated at the edges), O(h*) for (45) and for
(44). The latter result may seem strange, because this scheme is based on exact
integration of products of test and trial functions. However, by inspection of
the formulas, we see that the need to integrate products of continuous piece-
wise linear functions results in coefficients, that are not optimal for approxi-
mate integration of products of smooth functions and continuous, piecewise
linear functions.

In scheme (42) and (44), we find the same equations for boundary cells.
The equations for boundary cells in (45) however, are different. As (42) is
O(h*") accurate, the equations for the boundary given by this scheme are
more accurate than those given by (45). So, on the same mesh, we expect the
error in the boundary cells for scheme (45) to be larger than for scheme (44),
but we expect to find the same order behaviour for both schemes. Our experi-
ments confirm this expectation.
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2.7 Numerical experiments.

This section gives numerical results for problem (1) on a uniform mesh.
We take ¢ = 0, & = the unit square and £, g such that

y = Epx—H)=1) (expy =)= 1)
a

is the solution of the continuous problem. First we give results for a=1 on
the unit square, then we divide the unit square into four smaller squares and
give results for a discontinuous coefficient @, a=1 in the lower left square,
a=10 in the upper left square, =100 in the lower right square and @ =1000
in the upper right square (Figure 1).

X2

T

- X
Figure 1.

For uy,, the size of the error is expressed in the L?(Q) norm. For o, the
size of the error is expressed as the Euclidean norm in the space of vectors of
coefficients of the 5 basis vectors, scaled by the square root of the area of one
cell.

We give results for the discretisation from section 2.3 and the two discre-
tisations from section 2.4.
We indicate the quadrature rule used in the discretisation by roman numbers, I
denotes the quadrature given in section 2.3.4, number II denotes exact quadra-
ture (section 2.4.1) and discretisation III denotes the trapezoidal rule (section
2.4.2).
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h 10g2||Phu—uh||E 10g2HHhO_0h“E
I 11 111 1 11 111

1/2 | -13.03 | -13.03 -7.22 -9.18 -7.43 -5.13
1/4 | -16.32 | -14.88 -9.13 | -12.67 -9.25 -6.42
1/8 | -20.06 | -16.81 | -11.04 | -16.41 | -11.21 -8.05
1/16 | -23.95 | -18.79 | -12.99 | -20.25 | -13.2] -9.83
1/32 | 2790 | -20.78 | -14.97 | -24.14 | -15.21 | -11.67
1/64 | -31.87 | -22.78 | -16.97 | -28.07 | -17.21 | -13.56
17128 | -35.86 | -24.78 | -18.97 | -32.01 | -19.21 | -15.47
1/256 | -39.86 | -26.78 | -20.97 | -35.96 | -21.21 | -17.39

Table 1. Errors for the three methods for the constant coefficient case.

h logy || Pt —uy || £ log, || 11,0 —0y || £
| 11 111 1 11 111

1/2 | -16.23 | -16.23 -8.23 -9.26 -7.59 -4.91
1/4 | -17.89 | -16.94 | -10.22 | -12.53 -9.31 -6.12
1/8 | -21.75 | -18.72 | -12.20 | -16.24 | -11.26 -1.71
1/16 | -25.69 | -20.67 | -14.18 | -20.06 | -13.25 -9.47
1/32 | -29.67 | -22.65 | -16.17 | -23.94 | -15.25 | -11.31
1/64 | -33.67 | -24.65 | -18.17 | -27.85 | -17.25 | -13.18
17128 | -37.67 | -26.65 | -20.17 | -31.78 | -19.25 | -15.08
17256 | -41.67 | -28.65 | -22.17 | -35.72 | -21.25 | -17.00

Table 2 Errors for the three methods for the discontinuous coefficient case.

Starting at h=1/8, we see, for case I, convergence of order 4 as
predicted in section 2.5.2 for a uniform mesh and large areas with constant
coefficients. The other schemes show second order behaviour. We recall, that
the error analysis in section 2.5 shows that the accuracy of a method is deter-
mined by the accuracy of the quadrature rule a applied to 0. Our o is smooth,
so we indeed expect the following orders for the above schemes, O(h*) for (I),
O(h?) for (IT), O(h?) for (III).

2.8 An a-posteriori error estimate.

We see that there is a difference in order of accuracy between our special
method, given in section 2.3.4 and the method based on the use of the tra-
pezoidal rule, given in section 2.4.2. This suggests that the special scheme may
be used to obtain an a-posteriori estimate of the error in the solution of the
trapezoidal scheme.

In this section, we shall use the following notation, aj3 is the bilinear
form we obtain if we use the three point rule given in section 2.3.4 to evaluate
a;, and @, is the bilinear form we obtain if we use the trapezoidal rule given
in section 2.4.2. Furthermore, let (o,u) be the solution of problem (19), let
(0),,u;) be the solution of the discretisation (21) given in section 2.3.3 with
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Ap =

and let (,u,) be the solution of the same discretisation, with O =ay ;.

The simplest way to obtain an a-posteriori error estimate is to solve both
schemes. Given the solution of both schemes, we can obtain estimates for

11,6 -0, l H(div,2) »
and
I Phu—uy || 2y

as follows, we insert an extra term in the above expressions and use the trian-
gle inequality to find,

”‘;h_ohHH(div,Q) - “Hho_ah”H(div.Q) < ||Hh0“0h||H(div,sz) <
| 6x =0 || Haivgy + || 11408, || Heaiv.g) »
and
=l @ = IPae—iay || v < || Pru—] gy <
it —un || @y + || Pate—ity || Ly -
Next, we assume that o is sufficiently smooth and we recall that
|10 =0 || naive) + || Pt —uy || 2y = OK*)
and
I Tho =0y || naivey + || Pae—ity || 2@y = OG'T?),
where k,/=2 if the mesh is uniform and a is constant and otherwise
k=1 or 2,/=1 or 2 depending on the mesh and a. This implies, that
1Th6 —04 || naive) = (1 + Oh)) || 8, — 0y || aiv.g) »

and
| Phte—up || @) = (1 + OGR)) ||y —uy || 12q) -

where 4 is the maximum cell diameter of the mesh.

2.9 Conclusions.

For equation (1), we have increased the accuracy of the mixed finite ele-
ment approximation of (II,0,P,u) by introducing a particular quadrature rule
for a(o,7;). This leads to a scheme, that has the same complexity as standard
mixed finite elements for lowest order Raviart-Thomas elements, but that is of
O(h%) in stead of Oh?) if o is sufficiently smooth. This behaviour is
confirmed by numerical experiments.

In section 2.8, we show that this difference in order can be used to give
an a posteriori error estimator for the less accurate version.
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If we compare the usual method (section 2.4.1) with the other two
methods, we see, that the only advantage of the method given in section 2.4.1
over the method that uses the trapezoidal rule (section 2.4.2) is a better treat-
ment of boundary cells (see the discussion in section 2.6). The only advantage
of the method given in section 7.4.1 over our modified method is, that the
method from section 2.4.1 may give exact results for less smooth solutions, Viz.
for solutions with o € V.

To decide whether to use the method based on the trapezoidal rule or
our modified method, we must weigh the advantage of a simpler matrix, that
reduces to an M-matrix for u, for all ¢ = 0, against the loss of accuracy. The
numerical experiments show the loss of accuracy to be considerable for smooth
o. So, only if it is known, that the combination of a, ¢ and & may lead to insta-
bility (for instance if ch?/a = 1), or if o is not smooth enough, is it more
efficient to use the method based on the trapezoidal rule. In all other cases our
modified method would be the better choice.

The choice between our method and the method discussed in section
2.4.1 is simple. Both methods are equally sensitive to a zero order term. Both
methods also have the same sparsity pattern in their matrices, so they roughly
need the same amount of work to solve. As the method in section 2.4.1 is of
lower order than the modified method, the modified method is more efficient if
we look at accuracy obtained versus complexity.

References

1. P. A. Raviart and J. M. Thomas, “A mixed finite element method for 2-
nd order elliptic problems,” in Mathematical aspects of the finite element
method, Lecture Notes in Mathematics, vol. 606, pp. 292-315, Springer,
1977.

2. Mie Nakata, Alan Weiser, and Mary Fanett Wheeler, “Some supercon-
vergence results for mixed finite element methods for elliptic problems
on rectangular domains,” in The Mathematics of Finite Elements and
Applications, ed. J. R. Whiteman, vol. 5, pp. 367-389, 1985.

3. J. Douglas, Jr. and J. Wang, “Superconvergence of mixed finite element
methods on rectangular domains,” Calcolo, vol. 26, pp. 121-133, 1989.

4. Junping Wang, “Superconvergence and extrapolation for mixed finite ele-
ment methods on rectangular domains.,” Math. Comp., vol. 56, pp. 477-
503, 1991.

5. S. J. Polak, W. H. A. Schilders, and H. D. Couperus, “A finite element
method with current conservation,” in Simulation of semiconductor devices
and processes, ed. M. Rudan, vol. 3, pp. 453-462, Tecnoprint, Bologna,
1988.

6. M. Fortin, “An analysis of the convergence of mixed finite element
methods,” RAIRO Numerical Analysis, vol. 11, no. 4, pp. 341-354, 1977.

-52 -



2. AN IMPROVED ACCURACY VERSION OF THE MIXED FINITE ELEMENT METHOD

10.

11.

12

13.

14.

15.

J. Douglas, Jr. and J. E. Roberts, “Global estimates for mixed methods
for second order elliptic equations,” Mathematics of computation, vol. 44,
no. 169, pp. 39-52, 1985.

Jean E. Roberts and Jean-Marie Thomas, “Mixed and Hybrid Finite Ele-
ment Methods,” RR 737, INRIA, Rocquencourt, October 1987.

J. H. Bramble and S. R. Hilbert, “Estimation of linear functionals on
Sobolev spaces with application to Fourier transforms and spline inter-
polation,” SIAM J. Numer. Anal., vol. 7, no. 1, pp- 112-124, 1970.

P. R. Halmos, Measure Theory, Springer Verlag, 1974.
H. L. Royden, Real Analysis, second edition, MacMillan Company, 1963.

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes
Equations, Springer series in computational mathematics, 5, Springer-
Verlag, 1986.

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of
Second Order, Springer-Verlag, 1977.

William P. Ziemer, Weakly Differentiable Functions, Springer-Verlag,
1989.

Robert A. Adams, Sobolev Spaces, Academic Press, 1975.

-53-



3. The one-dimensional convection-diffusion equation

3.1 Introduction.

In this chapter we give a general technique to obtain a discretisation
scheme for the one-dimensional convection-diffusion equation starting from
Raviart-Thomas [1] or Brezzi-Douglas-Marini [2] type elements. The technique
can also be applied in two or more dimensions. The resulting schemes are
equivalent to the schemes based on transformed variables (called Slotboom
variables in semiconductor context) introduced by Brezzi, Marini and Pietra [3]
but without the Lagrange multipliers used in the latter schemes. The purpose
of this chapter is to give an error analysis for such schemes that yields infor-
mation on their local accuracy. For this purpose we adapt the technique used
by Douglas and Roberts[4]. Our analysis differs in following two respects
from the approach by O’'Riordan and Stynes[5-10] or the approach by
Reinhardt[11]. One: it deals with mixed finite elements as opposed to finite
elements. And two: it attempts to deal with problems with localised singular
perturbation. This last aspect is very important for semi-conductor problems,
where we find such a situation in the continuity equations for the charge car-
riers. In that case the convection is given by the electric field. Singular pertur-
bation may occur around junctions between differently doped materials, where
very localised and very large electric fields can appear. We analyse the model
equation,

—(au’'—bu)y=f on 2, (3.1a)
on the domain £=(0,L) with homogeneous boundary conditions,
u(0) = u(L) = 0. (3.1b)

Note the absence of a zero order term. In this respect our analysis is less gen-
eral than that of the approaches of Stynes and O’Riordan and Reinhardt. Our
analysis makes use of the regularity of the continuous problem and its adjoint.
We take the adjoint problem to be

—((av’y+bv')=F on Q, (3.2a)
with homogeneous boundary conditions,

v(©0) = w(L) = 0. (3.2b)

We proceed as follows. To derive error bounds for the discrete problem,
we need to know the regularity of the solution of (1), upper bounds on the

-54 -



3. THE ONE-DIMENSIONAL CONVECTION-DIFFUSION EQUATION

norm of the solution of (1) and upper bounds on the norm of the solution of
the adjoint problem. In section 3.2, we discuss the regularity of problem (1)
under the condition that b/a is strictly positive. Section 3.3 derives upper
bounds for the norm of the solution of the adjoint problem. In section 3.4 we
describe the discretisation. Section 3.5 derives special estimates for projections
of the solution of the adjoint problem that are needed later. Section 3.6 uses
the results from the sections 3.2 to 3.4 to derive a priori error estimates. In sec-
tion 3.7 we give our conclusions.

3.2 Regularity of the problem.

We formulate a theorem on the regularity of problem (1), which gives
general formulas for the solution u of (1) and its flux 6= — (au’ —bu). We post-
pone its proof to sections 3.2.2 and 3.2.3. In section 3.2.1 we recall some facts
concerning differentiation and integration needed in the proof of this theorem.

Theorem 3.1.
We assume that,
1 ey, esint L = 0, (3.38)
a xEQ a
beLiQ), essinf b > 0, (3.3b)
x EQ
LR e TR (3.3¢)
P q r
fEWH(@), (3.3d)
where
essxuelgf essxsg% f Mcszl,rle(M):o x esu—M f&)

with A the Lebesgue measure on R. Note that (3b) implies 1/b € L®(Q).
Under the conditions (3a-d), equation (1) has a unique solution u € W!(Q)
and

Null =@ < 11/b]| =@ I f]l '@ » (3.4a)
lullw@ < (3.4b)
(M flve Hle/all @) l1/b] =@ I fllv@ + [117a]l ve IIf]l @
loll =@ < IIfllv@ - (3.4c)
lollwe < IMlve Ifllve + I1f]wae - (3.4d)
Moreover, if we introduce
_ b
x) = dr , 3.5
Wx) , lo 20) (3.5)
n
Sm = [ LU 4 (3.6)
(=% a(t)
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then the functions ¢ and S are well-defined and the solution and the flux have
the following absolutely continuous representations,

u(x) = 3.7

L X
exp((x)) [ SG.L)SO.x)f(p)dy + [ SONSCL)A) dy|,
so.L) |2, y=0

—o(x) = (3.8)
a(x)u'(x) — b(x)u(x) =

1

L X
1
son, L, S0 S~ g 1 SO S-

The above results stay valid as long as a and b are of fixed sign and are
bounded away from zero. Section 3.2.1 recalls some important facts concerning
the integration and differentiation of Lebesgue integrable functions. In section
3.2.2 we use the Green’s function for (1) to derive the formulas for the solution
and the flux. In section 3.2.3 we prove the rest of the theorem.

3.2.1. Facts on integration and differentiation of Lebesgue integrable functions.

In preparation for our proof of theorem 1, we recall some facts concern-
ing the integration and differentiation of Lebesgue integrable functions. We
recall the definition of weak differentiability and the definition of the Sobolev
space W5P(Q). We assume that € is a bounded interval.

Definition 3.1.

Let the absolute value of u be integrable on compact subsets of . A function
v, whose absolute value is integrable on compact subsets of Q, is called the k"
weak derivative of u if it satisfies,

d* -
[ ovdp=(—1F[ u;xik’du V ¢ E€CTQ).
Q Q
Cf. section 1, chapter 2 [12].

Definition 3.2.
The Sobolev space WKP(Q) is the space of L7(Q) functions for which all weak
derivatives up to order k are L”(®) functions. We use the following norm on
this space,

/p

k dj 1
1 lvrw = [If18@+ S 15 EIke| ¥ FEWH@.
j=1
Cf. section 1, chapter 2 [12].

Definition 3.3. B
A real-valued function f defined on a closed bounded interval € is said to be
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absolutely continuous on € if, given € > 0, there is a § > 0 such that

> | fi)—f(x;)| < € for every finite collection of non-overlapping sub-

i=1

intervals { (x;,y;) }7=, of € with > |y;,—x;| < 8. Cf. section 4, chapter 5
i=1

[13].

Theorem 3.2.
A function F'is an indefinite integral if and only if it is absolutely continuous.
Theorem 13, section 4, chapter 5 of [13].

Theorem 3.3.
Every absolutely continuous function F' is the indefinite integral of its deriva-

tive F” and if fis an integrable function on £,

F(x) = FO) + [ fuyadr,
t=0

then F'(x)=f(x) for almost all x in Q. Corollary 14, section 4, chapter 5 and
Theorem 9, section 3, chapter 5 [13].

Lemma 3.1.

If f and g are absolutely continuous on £, then fg and exp(f) are absolutely
continuous.

Proof.

Consider the condition

n

2 —fe(x)| < e.

i=1

Continuous functions on a closed interval are bounded, so f and g are
bounded. Take M =max(||f|| L@, |2 || L*@ )- Now there exists by definition
a 0 such that, for every finite collection of non-overlapping sub-intervals

{ (xi,pi) }i=1 of @ with X |y;—x;| <6,
i=1

i§1 | fO)—fx)| < ﬁ and I§l|g(y,-)—g(x,-)[ < 2—;;
This implies that

_é] Ifg(yi)—fg(xi)l < é|g(yi)f(yf)—g(xf)f(yi)+g(xi)f(yi)—g(x,-)f(x,-)| <

i=1

2 Mg —gx) |+ M| fo)—flx)| < e.
=
Moreover, there is a § such that, for every finite collection of non-overlapping

sub-intervals { (x;,y;) }/=; of @ with > |y;—x;| < 8,

i=1
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S ) —fx)] < eexp(—3M).
i=1
In that case,

S |exp(f(r) —exp(f(x)| <
i=1

' exp(fOe) | —Fex) [expl | f) =) |) < e.

i=1

Theorem 3.4.
Let 2=(£,m) be a bounded interval of R. Let C§° () be the space of all C* ()
functions with a compact support in Q. Let W7 () be the closure of C§° () in
WXP(Q). All elements of W(7(R), where 1 < p < oo, are absolutely continu-
ous. Cf. Gilbarg and Trudinger, page 148 [14].
Proof.
We prove this to get an idea of the character of the space in question. For
each 1 € W{?(Q) there is by definition a Cauchy sequence { ¢, },%; C C§° (),
that converges to ¢ in the W52(Q)-norm. We denote the first derivative of a
function g by g’. We have, 7,—7 in I7(Q) and ,'—>t" in L7(£), so, if we define
X X
T,(x) = [ t,/()dy and T(x) = [ () dy for x€Q,
y=¢ y=¢
then for all elements of the sequence { #, }, we have 7, = T, and theorem 3
implies that

||t,”‘T'||LI'(Q) =0.
Moreover, for a given n,
lt=Tllve < llt=tllve + 1Ta—Tllre -

SO
X
lt=Tllve < lt—tllve + | [ @—t)d|ve <
y=i
lt—=tallr@ + @=HI =t e < A+a=H|l1—t]we -

This holds for all n, so ||1—T||1r@=0. This proves that ¢ is the indefinite
integral of #". By theorem 2 this implies that 7 is absolutely continuous. [
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3.2.2. The derivation of expressions for the solution and the flux.

We derive the expressions (7) and (8), we show that these functions
satisfy (1), and we prove the statement about absolute continuity from theorem
1. We proceed as follows. In theorem 5 we construct the Green’s func-
tion [15, 16] of (1) and use this to derive (7) and (8). We then substitute (7) in
(1) and use theorem 3 to show that (7) and (8) satisfy (1). Absolute continuity
of (7) and (8) is shown to follow from theorem 2. First we show that i is
well-defined.

Lemma 3.2.

If (3a-d) hold, then the function ¢, defined by (5) is an absolutely continuous
function on § and its derivative y/(x) lies in L"(Q) and is equal to b(x)/a(x).
Proof.

The Holder inequality implies that

g llve < Ifllvellgllae - (3.9)

for all p,g,r €[1,00] with l+l=%. For superscripts of L7(2) spaces only,

we use the convention that 1/0=o0 and 1/00=0. We assumed that
4 el/(Q), b eLiR), so, according to (9) b/a €L'(R). According to
a

theorem 2, ¢ is absolutely continuous. Theorem 3 implies that ¥/ = b/a in
almost all points of Q. [J

Theorem 3.5.

Assume (3a-d), take ¢ as in (5) and S as in (6). If f € L(Q) then the function
u defined below is a solution of the equation (1) with right hand side f and
with homogeneous boundary conditions.

1
u(x) = [ Geep)fy) dy (3.10)
y=0
with

Gxy):= EEEE [0y —2)S0.L)SOx) + 0x—)SO.)S(,1)] G

where 6 is the Heaviside function,
0if z <O,

0(z) = 1 % if z=0, (3.12)
1if z>0.

Proof.
We see immediately that G € C([0,L]X[0,L]). We use theorem 3 and the
chain rule to derive (8) from (7). According to the chain rule and theorem 3,

u'(x) = (3.13)
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L X
b(x) 1 1
0"t wasen L SePW Y~ seD), [ SO &
equation (8) follows immediately from (13) and the definition of the flux.
Absolute continuity of the solution constructed with the aid of the Green’s
function follows from theorem 2, lemma 1 and equations (7) and (8). We see
immediately that u satisfies the homogeneous Dirichlet boundary conditions.
When we apply theorem 3 to equation (8), we find, o'(x) = fix). O

See also the books by Roach and Yosida [15, 16].

3.2.3. Upper bounds on the norms of the solution and the flux.

We complete the proof of theorem 1 by proving that (1) has a unique
solution in W"'(Q) and deriving the upper bounds on the norm of the solution
and the flux from (7) and (8).

First we verify uniqueness of the solution as follows. Suppose (1) has two
solutions  u,,u; E WH(Q) for a given f  This implies that
Wog = u,—u; € W7 (Q) is a solution of (1) with f = 0. Now by definition,

((exp(—¥)wo)',aexp(d)¢’) = 0 V ¢ € CF (D),

so (exp(—y)wq) = 0. According to theorem 4, the function wy is absolutely
continuous and according to lemma 1 the function exp(—4) is absolutely con-
tinuous. Theorem 3 now implies that exp(—y)w, is constant. The only
wo € WP (Q) that can give this result is wy = 0.

Before we can derive upper bounds on the norms of (7) and (8), we need
to derive some bounds on S(§,7).

Lemma 3.3.

Assume (3a-d) and take ¢ as in (5). Let S be the function on ©X defined by
(6). Then S(0,x) and S(x,L) are absolutely continuous functions. If
0 <& < &< m<mn < Lthen

0 < S¢En < Ssm) » (3.14)
and
SEN) < ||| L7 (exp(— (&) —exp(—¢(m)) - (3.15)

Proof.
From (3a, b) and the positivity of the integrand (14) follows immediately.
From (6) it follows that

1 —dexp(—¥(x))
X'£ b(x) dx i

We see, that (—exp(—v)) = ¢exp(—y¢) > 0, so
T’ — —
S < |15 | v [ —EEHED 6 g
x=§

SEn) =
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As exp(—y) is absolutely continuous according to lemma 1, we find from
theorem 3 that

n
[ (exp(— ) (t) di = exp(—(m))—exp(—¥$)) .
1=¢

O

Next, we can prove the inequalities (4a-d). We assume that (3a-d) hold. Appli-
cation of (14) to (7) yields the following upper bound on u,

exp(x))S(x,L)S(0,x) I/l u
SO,L) Lo

We use (14) and (15) to write this as,
lu)| < (1176 =@ I /1l '@ -

This proves (4a). Now (4b) follows immediately from (13). Next, we derive
(4c). From (14) and (8) an estimate for o follows immediately:

la()u'(x)—byux)| < ||f]lve@ -
And (4d) follows from (4c) and the fact that (1) implies o’ = f.

lu(x)| <

3.3 The adjoint problem.

First, we derive a Green’s function for (2). Then we give expressions for
the solution and the flux of (2). Finally we derive upper bounds on the norms
of the solution and the flux. The following theorem accomplishes our first two
goals.

Theorem 3.6.

Assume (3a-d), take ¢ as in (5) and S as in (6). If F € L(2) then the function
v defined below is a solution of the equation (2) with right hand side F and
with homogeneous boundary conditions.

y(x) = (3.16)

1
S(0,L)

x L
| SG.L)SO.p)expyDF()dy + [ SO,x)S(y,L)exp(y)F(y)dy| -
/s 4

)= y=x

Proof. _

The Green’s function for the adjoint problem (2) is given by, G(x,y) = G(y,x).
See also Roach or Yosida[15,16]. According to theorem (2) v is absolutely
continuous on [0,L], so v(0)=v(L)=0. Moreover,

m(x) = —a(x)'(x) = (3.17)
E( ,( D * L
- S(E L)x — [ SO)exp@NFY)dy + [ S, L)exp(y)F(y)dy| .
? y=0 y=x

<61 =



3. THE ONE-DIMENSIONAL CONVECTION-DIFFUSION EQUATION

_ b

a(x)
implies that v satisfies the adjoint problem. [J
It now remains to give upper bounds on the norms of the solution and the
flux.

And by differentiation of integrals, 7(x) = 7(x) + F(x). This in turn

Theorem 3.7.
Assume (3a-d), take ¢ as in (5) and S as in (6). Assume F € W*!(Q). Now (2)
has a unique solution v € W"'(Q). The solution v and the corresponding flux

7, defined by 7 = —av’, have the following properties:
vll@ < [1178]l @ [ Fll L@ - (3.182)
v l[we < (3.18b)
i 1176 ]| L@ 1 F
I v 1176 =@ + H—S(ﬁ)_ 117a]lve | [1Fll i@
17b] L@
Il @ < 1+———S(O L) 1 F[l v - (3.18¢)

Moreover, the solution and the flux are absolutely continuous.

Proof.

The solution is unique, because if it is not, then (2) with F = 0 has a non-
trivial solution in W{'(Q). This in turn would imply that there is an absolutely
continuous wq such that

(awy’Y +bwy = 0 on @,
wo(0)=wo(L)=0.

According to theorem 1 there is a unique absolutely continuous v € wWH(Q)
such that

(av'—bv) = wy .
But this implies that
(wo,wo) = (wo,(av'—bv)) = —(wo',av'—bv) = —(awy',v")+(bwy',v) .
We use the definition of weak differentiability to write this as,
(wo,wg) = ((awy’) +bwy',v) = 0.

This implies that wy=0. Absolute continuity of the solution constructed with
the aid of the Green’s function follows from theorem 2, lemma 1 and equa-
tions (16) and (17). Uniqueness of the solution implies that we may derive
upper bounds on the norm of the solution and the flux from the previously
given expressions. We proceed as follows. Application of (14) and (15) to (16)
yields the following estimate for v,

)| < [[17b]| =@ | Fll V@ -
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This proves (18a). The inequality (18b) follows immediately from (17). Next,
we derive the (18c). From (14) and (17) an estimate for 7 follows immediately:

: 167"
|a(x)v (x)| < 1+T,L) ”FH L@ -

3.4 The discretisation.

We construct a Petrov-Galerkin mixed finite element discretisation. Our
derivation uses trial spaces ¥, and W), that are defined as the ranges of the
prOJecuons Il,:V—V, and P,:W—W,, where we take V = W'(Q) and
W = LY(Q). This approach was first used by Raviart and Thomas[1] and
Fortin [17].  Our test spaces are derived from the trial spaces by multiplication
with an exponential function. The final result will be equivalent to the stan-
dard mixed finite element discretisaticn for the symmetrised form of the equa-
tion but the special derivation allows us to obtain better a-priori error esti-
mates. We proceed as follows. First we give conditions on the projections P,

and IT,. We show that these conditions guarantee that E(V,,) = W,. Next

we give an example of such projections. Finally we derive the discrete scheme
and verify that the resulting discrete problem has a unique solution.

3.4.1. The projections onto the trial spaces for the solution and its flux.

As mentioned earlier, we derive our trial spaces from projections
Py:W—W and 11,:V—V. We assume these projections have finite dimen-
sional ranges and satisfy the following conditions:

(,Pyt) = (Pys,t) V st EW, (3.19)
and
Pty =41,y vver, (3.20a)
dx dx
ILv(0) = v(0) V veEV, (3.20b)

We define our approximation spaces as follows. We set V, = %(II,) and
Wh =X (Ph)

Theorem 3.8.

The map %:W”(Q)—) L'(Q) is continuous and surjective.
x

Proof.

Continuity follows immediately from the norms on these spaces. The map is
surjective because, for all f € L'(Q), theorem 2 shows that the function F,
defined by
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F(x) = ]f(y)dy for x €8,
y=0

is an element of W'!(Q) with derivative f. [J

Corollary 3.1.

The map %:Vha W), is surjective.

Proof.

From (20) it follows that the image of ¥, under d;i lies in W),. From theorem
8 and (20) it follows that the image is in fact equal to W),. O

The above use of projections can be found in [1,17].

3.4.2. An example of a set of trial spaces.

An example of a set of spaces and projections that meet these criteria are
the lowest order Raviart-Thomas spaces with the projections given in [1]. For
the one dimensional case, this simply means that the image of a function under
II, is obtained by linear interpolation between the values in mesh nodes and
for P, the image is obtained by taking cell-wise averages. Now V), is the space
of continuous functions that are linear on the mesh cells and W), is the space
of functions that are constant on mesh cells.

3.4.3. The discrete scheme.

We construct a Petrov-Galerkin mixed finite element method as follows.
We take V), as trial space for o. As test space for o we take X, =exp(—{)Vj.
For u we take W), as test space and Y, =exp({)W), as trial space. Here ¢ is
defined as in (5). We define projections onto Xj and Y.

IL,r = exp(— VI (exp@)r) , (3.21)
Pyt = exp()P,(exp(—¥)1) . (3.22)
From (19) it follows that,
(5.2t = (exp(—)Pu(exp@)s).1) = (exp(—W)Py(exp@)s), Put) = (Pys. AAR3)

where 13; is the adjoint operator of i’h. By application of the defining formulas
we find,

d b » d by 4
—7+—= = | |—+— .
L 7,Ppt { o a 11,7, Pyt (3.24)
The continuous solution of (1) satisfies
(o,u) EVXW, (3.25a)
T d b 1
Il - |=—r+—=1u|=0 V .
[a, a] § e Tu| =0 e H'(Q) , (3.25b)
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[io,z]:(f,z) V 1€ LYQ) . (3.25¢)
dx
Our discrete scheme has the following form.
(on,up) €E V) XYy, , (3.262)
{Gh,T_h] - [i'rh—i-ﬁ'rh,uh =0 Vv Th (S Xh N (326b)
a dx a
d _
—Onslp _(f;th) \4 nLew,. (326C)
dx
We see that this scheme is equivalent to,
(Gh’Uh) (S Vh X Wh N (327&)
exp(—
[oh,MJ — [if,,,u,, =0 V 7, €V, (3.27b)
a dx
d _
Edh,th —(f,th) \Y € Wh . (327C)

This last system has a unique solution. This can be demonstrated as follows.
Suppose f=0. As g, is continuous, (20) and (27¢) imply that o, is constant.
Now take 7, =1, from (27b) it follows that o, = 0. Now corollary 1 implies
U, = 0. This completes the demonstration.

3.5 Properties of the projections.

In the section on a priori error estimates we shall need estimates of terms
containing the difference between a function and its projection under one of
the projections introduced in the previous section. In this section we give esti-
mates for those terms. We start by considering 7—1II,7. To do this we need the
following auxiliary lemma.

Lemma 3.4.
If £ € W-(Q) then

SO -1, fx) = 0(/" = Py()dy . (3.28)
e

Proof.
The function f is continuous and differentiable, so

=0 + [ o) dy

Moreover (20) implies that,
ILf(x) = ILAO) + [ Pu(/)) dy .
y=0
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Lemma 3.5.
If (v,7= —av’) is the solution of the adjoint equation for the right hand side F,
then

=T, /a)| < || o IF—PiFllve e Y 1€ L=(Q) .

Proof.
We know that
L

v(x) = [ Geey)F(y) dy

=0
where a(x, y) is Green’s function for the adjoint problem. Now consider
av’(x) —exp(—y(x))II, (exp(Y)av’) .

We can write this as,
exp(—¥(x)) [CXP(\P)GV "(x)— 11 (exp(¥)av ’)} .

We wish to apply the previous lemma. To do this we need the first derivative
of exp()av’. Equation (17) implies that

(exp()av’) = —exp(x))F(x) .
We use this to evaluate the expression (t,('r—fIh'r)/ a),

L X
o—Tymra) = [ LRI [ o) F—Py(exp@)F) dy 1(x)dx =
x=0 =0

a) L

L x
/ Ofﬁa%xw)i’ﬂl [ exp@)(F— PyF) dy t(x)dx .

y=0
This implies,
A L L ~
—Tymnsa)y < | [ f Maz(%‘kﬁnw—mn(y) ((x)dxdy | <

y=0x=y
L

[ Il 16" || L@y | (F—PaF)p) | dy -
O

Next, we consider v —Pyv.

Lemma 3.6.
If (v,r= —av’) is the solution of the adjoint equation for the right hand side F,
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then

Iv=Pwllve < [ITlce /b ellFllre - (3.29)

Proof.
This follows immediately from ||v—Pyv || @) < [|v|| 1@ and (18a). O

3.6 A priori error estimates.

We derive estimates for ||o—oy, || L= and || Pyu—u, || w+qy. We start
by giving estimates for |[0—oy, || =@ and |[o—o0 || w" (). We proceed as fol-
lows. First we show that there is a point £ € @ where the function 6—o), is
zero, then we determine the first derivative of the function and use this to
determine the desired estimates.

Lemma 3.7.

Given that (3a-d) are satisfied and o satisfies (25¢) and o;, is a solution of
(26¢), there is at least one point £ such that (6 —0,)(§)=0.

Proof-

We see immediately that exp(—y) € X),. The solution of (1) satisfies (25b), so

{O“Oh,ex — } =0.
a

We know that exp(—4) and a are strictly positive and bounded from below, so
there must be places where 0 —oj, is negative. We know that ¢ € W!(Q) from
—o’=f, and o), € V;, C W"!(Q) so 0—a;, is continuous. This implies that there
is a § such that (0 —o0,,)(§)=0.

O
Theorem 3.9.
If (3a-d) hold and
n
c() = —P, dy | , 3.30
"= s, / Ramaterd (3.30)
then C(f) < [|f—Puf|l L@ and
lo=onllL=@ < C(N), (3.31)
lo—anllw@ < lItllve €O+ [If~Pufllve - (3:32)

Proof.
We take £ to be a zero of 0—oj,. We know that 6—o0, € W"!(Q), so we may
write,

(@—on)(x)—(o—a,)®) = [ g(o—oh)'(y)dy :
L
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From (25) and (26) we see immediately that
(0—0) = f—Puf.
This implies,
(=a—=e® = [ (PN -

This implies that

llo—oull =@ < sup, fg(f—th)(Y)d)’-
L

O

We give an estimate for || Pyu—uy, ||w@ - To derive this estimate we use the
dual problem.

Theorem 3.10.
Under the conditions given in(3a-d),

| Poe—ws || 2@y < 21167 " I =@ (1 + G I/ —Pufll @) »

where
| F=PyF || L@
G):= sup —— )
ret@ IFllve
and
| Pru—uy || W@ < 21167 | @ + D) | f—Pufll L@ >
where
||F—i)hF|| L'(Q
D)=  sup B J
FeEW Q) | F [l w@
Proof.

Regularity of the adjoint problem gives us a solution (z,7= —at’) of (2) for all
F € LY(Q). For this solution, we see that according to (26),

P F) = (7 +¢/m, Ppu—wy) = (LY +¥m), Ppu—w,) =
(o—oh,ﬁhfr/a) = (6—oy,7/a) — (G“Uh,(T'ﬁhT)/a) =
(0—0p)s1) — (6—op(r—TL,7)/a) = (f=Pyfit —Pyt) — (6—oy,(1—11,7)/a) .

We use lemma 5 and 6 and theorem 9 to derive from this that,
| (Pyu—w,,F)| <
(Ul v 1Fl e + IF=PFllv@2lb ™ e I/ ~Pufll ve -
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Corollary 3.2.
Assume that W) contains the characteristic functions x,, ., of the cells of the

partition P = { 0=x¢ < x; < x, < --- < x,=L }. As a direct conse-
quence of theorem 10 and under the same conditions, we find

| Pu—up || L' ((x,_,.x)) i
<2067 | @ I/~ Pufll vy - (3:33)

RN PRI

Proof.
We prove this as follows. For F in the proof of theorem 10, take
F = exp({)X(x, ,.x)- According to the Riesz representation theorem

L'(Q) = L*(Q). We find,
1 exp) || L' (x, ,,x)) || €XP(— N PU =) || L7((x, .x)) < (3-34)
20167 | =@ Il exp@ Il L' on 1L f—Puf Il L'y -
We see immediately that,
0 < (@-Pugg—Pg) = llgll e — IPsgll Lo -
This implies that,
lexp@) || £, 1.xy)
RS FRTEIES

lexpY) || L'(x,1x)) =

We apply this to (34) and find,
lexp() [ L'x, x))

| Y| POTPY
20167 | =@ Il expW) Il L'¢x, x| F— Pif |l L@y -

| exp(—¥)(Pu—up) || L=(x_.x)) <

This implies,
llexp) || L'cx, ,x)
| RS RTERS)
2167 =@ I/~ Pafll ) -
Which in turn implies that

| exp(—¥)(Pu— 1) | L((x.xy) <

| Pu—up || L'((x,_,.x)

e < 20167 | @ 11/ =Paf Il @) -
[ RN | PR
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3.7 Conclusions.

We see that the accuracy of the solution of the problem with homogene-
ous Dirichlet boundary conditions is entirely determined by two factors. One
being the accuracy of the approximation of the right hand side f by P,f and
the other being the quality of the approximation of F € WX (Q) by P,F. As
mentioned in the introduction, in the semi-conductor continuity equations the
convection is given by the electric field. Singular perturbation may occur
around junctions between differently doped materials, where locally very large
electric fields can appear. From the uniform L*(Q) error estimate for the total
error in the flux in theorem 9 it follows that local singular perturbation on the
approximation has no influence on the error in the flux. In corollary 2 we get a
uniform cell-wise estimate for the discretisation error with respect to a problem
dependent projection that is close to L%(Q) projection on cells where the con-
vection does not dominate the diffusion. The main problem that must be
faced when extending this analysis to two or more dimensions, is the deriva-
tion of a useful estimate for ||o—o,||.
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4. A Finite Volume Discretisation Scheme with a-posteriori Error
Estimates for the Symmetrised Continuity Equation.

4.1 Introduction.

Before we can discuss the approach used to obtain an a-posteriori error
estimate, we must give our interpretation of the well-known extension of the
one-dimensional Scharfetter-Gummel scheme [1] to two dimensions. We take as
our starting point the continuity equation for electrons in the stationary case,

—a(gradu +ugrady) = o,
dive = f.

We sketch the derivation of the discretisation on a rectangular grid. Consider
two adjacent cells. We assume that a and the component of grady along the

line segment I' connecting the cell centres are constant. Furthermore we

assume that the component of o parallel to I' is constant on T and on the
common cell edge. Under these assumptions we can give an expression for ¢ in
terms of u. Furthermore we can calculate the integral over the common cell
edge of the component of ¢ orthogonal to the common cell edge. This gives us
a finite volume scheme for the above equations. Note that along the line seg-
ment I' we get an exponential fitting scheme as described by I'in [2]. The
resulting discretisation scheme is equivalent to one of the schemes discussed in
the articles by Bank et al. [3,4].

For the error analysis we choose a trial space V;, X W, and write the
finite volume scheme as a saddle point problem which has a solution in that
trial space. We use theorem 3.1 from the article by Nicolaides [5] to prove sta-
bility of the problem and existence of the solution. We then choose a projec-
tion IT, X P, of the solution (e,u) of the continuous problem. We use the sta-
bility of the problem to give an upper bound on the global discretisation error
in terms of the local discretisation error. We show that we may express the
local discretisation error in terms of partial derivatives of . Consistency fol-
lows immediately from the expression obtained. We then use the expression for
the residual to construct a deferred correction scheme, based on the finite
volume scheme in that form. We prove that, if the original scheme gives an
O(h*) accurate approximation, then this deferred correction scheme gives an
O(h**1) accurate approximation.
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Our analysis shows, that the discretisation error for the Scharfetter-
Gummel scheme is second order in areas of constant cell size and slowly vary-
ing electrical potential (i.e. the jump in y - the scaled potential - between cell
centres is smaller than 2). It also shows the scheme to be only first order accu-
rate if the ratio of adjacent cell edges differs too much from one or if the
number of boundary cells is a large fraction of the total number of cells.

In section 4.2 we formulate a model problem. Section 4.3 discusses the
discretisation spaces to be used. We give a description of the discretisation in
section 4.4. Section 4.5 gives conditions that imply existence of the solution
and stability of the problem. In section 4.6 we describe a quadrature rule. Sec-
tion 4.7 shows consistency and section 4.8 gives the a-posteriori error estimate.
In section 4.9 we summarise our results and draw some conclusions.

4.2 The model equation.

In this chapter we study a model equation for the semi-conductor con-
tinuity equation. For a discussion of both numerical and physical aspects of
semi-conductor modelling, we refer to the books by Markowich [6], or Sel-
berherr [7], or the papers by Polak et al. [8] or Engl et al. [9]. For a review of
numerical aspects of such models, we refer to the articles by Bank et al.
[3,10,11]. We consider a linearised model for the equations for one of the
two charge carrier densities.

—a(gradu +tugrady) = ¢ on (4.1a)
dive = f on @, (4.1b)

with Dirichlet boundary conditions on some parts of the boundary
ulr, = g, (4.1¢)

and mixed or Robin boundary conditions on the remaining parts of the boun-
dary
grad u-nyg |1"2 + u gradx}/-nag 'rz =0 5 (41d)

where the notation ny, denotes the outward unit normal vector on the boun-
dary of a domain 4. In equation (la), ¢ corresponds to the electrical potential
scaled by the thermal voltage. We place the following restrictions on the
coefficients. We assume that the coefficients ¢ and ¢ are continuous and
differentiable, a,y € C'(Q), we also assume that a is bounded away from zero,

3 ay > 0ER:a = a; on Q, and ¥ is piecewise bilinear on 2. We assume
that the function g is continuous and differentiable, g € C'(39). Note that the
connected subsets of the Dirichlet boundary generally correspond to the con-
tacts of the device. We assume that the right hand side f is square integrable,
ie. f€ L*(Q), and that T, (T, = 9Q and T, T, = @ . We assume that
the shape of ©, I'; and I', and the conditions on a, y, f and g guarantee that
o € H(Q)? and u € C(Q).
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For later reference, we give an equivalent system of equations, obtained
by a transformation of the dependent variable,

o = —aexp(—y)grad U, (4.2a)
dive = f, (4.2b)

Ulr, = exp)glr, (4.2¢)
ongo|r, = 0, (4.2d)

where U = exp(y)u. Note that, in these variables, condition (2d) implies
homogeneous Neumann boundary conditions for U on I';.

We assume that U is square integrable and that ¢ lies in the space,
H(div;Q):={ r € LXQ) | divr € L*Q) },
with the inner product,
(LT HEve = (TLT)ie + (dive,dive)rge YV 1m € LX(Q) ,
where

L2Q) = {m2-R?| [rrdp < )
Q

with the usual inner product,

(TLT)e = f‘fl""z dp ¥V 1,1 € L*(Q) .
Q

Properties of H(div;Q) are found in Girault and Raviart[12]. We wish to
define a subspace V of H(div;Q) that contains all elements that satisfy the
homogeneous Neumann boundary condition given in (2d). To do this properly,
we define this subspace as the closure in H(div;Q) of the space ¥{{) of
C*(Q) functions that satisfy the condition (2d),

Q)= { 7€ CP(Q) | (rmyg)ag = 0 on Ty},

where we assume that I'; and T, are such that this definition makes sense.
Now V is by definition a closed subspace of H(div;{) and a Hilbert space for
the H(div;Q) inner product.

4.3 The discretisation spaces.

The Scharfetter-Gummel discretisation can best be interpreted as a finite
volume scheme, so we need an mesh of finite volumes, which we call the pri-
mary or finite volume mesh, and a dual mesh with the cell centres of the origi-
nal mesh as vertices. In addition, the dual mesh needs vertices on the centres
of those edges of finite volumes that lie on the boundary of the domain. For
that purpose we add cells of zero thickness to the finite volume mesh, to avoid
the need for special formulas that refer to dual mesh vertices on the domain
edge. We restrict ourselves to rectangular domains and to partitions of & that
are Cartesian products of partitions of the sides of the rectangle. We assume,
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that the boundaries between I'; and I'; coincide with vertices of the mesh. We
assume, that ¢ is piecewise bilinear on the cells of the dual mesh.

We use a Cartesian coordinate system and we position our rectangular
domain { as follows,

Q = 10,L,[X]0,L,[ . (4.3)

We use the following naming conventions. The horizontal unit vector is
denoted by e, and the vertical unit vector is denoted by e,. All lower case
bold letters are vectors, the corresponding lower case italic letters with sub-
script 1 or 2 are the vector components in the horizontal or vertical direction.

4.3.1. The partition.

To introduce names for the vertices and cells we need to specify the par-
titions of the sides of our domain. We use the letter P for the partition of the
horizontal axis and the letter Q for the partition of the vertical axis,

P={0=p_1=po<p1 < " <py=pyv+1 =L}, (449
0={0=g1=qo < q1 < '+ < gnv,=qn,+1 =L }, 4.5)

where we added p —y,py,+1, §-1,9n,+1 to take into account the zero-width
boundary cells. The partition of & is given by P X Q. In the obvious way we
introduce a notation for particular points in the primary and in the dual mesh.
First, the vertices of the primary mesh,

X,; = (g’ for i=—1,0,12,...,N;+1, (4.6)
j=-10,1,2,...,N,+1.

We denote the vertices of the dual cells by,

Xy TX

Xi—pj—ts = e for i=Q12, ..., B+, (4.7)

j=0,1,2, ... ,N,+1.

Finally, we introduce,

Xusl DX o =012, Ny =12, . N
=V L4 ..,y =04 ., 2'(4'8)

Xij—n = )

and

Xi—1; t X

Ry_gg g = > L for i=1,2,...,N;,j=0,1,2,...,N;,. (4.9)

We denote the finite volumes, i.e. the cells of the partition P X Q by,
Qiyj—n = (4.10)
-1 < X < Xy } for i=12,... ,N,,j=12,...,N,,

{ x|x;-1;

where the notation
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a<b, (4.11)
has its usual meaning, i.e.
a<bea <b and a, < by . (4.12)
Similarly,
iy = { X|Xim1; < X < Xy } (4.13)
for i=12,...,N;,j=012,...,N;,,
and
Lij—5 = {x|x-1 < X < X } (4.14)

for i:0,1,2,...,N1 ,j:1,2,...,N2 .

In our error analysis in section 4.7, we also need to identify the cells and edges
of the dual mesh, these are denoted by,

Q= {X|Xi—pj—n < X < Xitpj+s } (415
for i:O,l,Z, & @ ,Nl ,j:0,1,2, - ,N2 5
Ty = { X[ Ximmj-n < X < Xiopjin ) (4.16)
for i=1,2,...,N,,j=01,2,...,Np,
and
Tijon = { X[Xi—nj—n < X < Xty -y } (4.17)
for i=0,1,2,...,N,,j=12,...,N;y.

Note that, at the start of this section, we assumed zp|§2,_/ to be bilinear. This
implies that ¢ |t is linear for all r € E, where E is the collection of index
tuples of edge centres,

E={(e=(j—%)]i=012,...,N;,j=12...,N, }U
(e=(i—%))|i=12...,N,,j=012...,N2 }.

We indicate the set of indices of all edges that are not on the Neumann boun-
dary by,

E={ecE|l,CcQ-T,}.
Finally, we define the set of index tuples of cell centres, by
M= {e=(—%j—%|i=12...,N,,j=12,...,Ny },

and we extend the definition of the Kronecker-8 to index tuples,

1 if r=s,
8 = 10 if rots .

.
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4.3.2. Local coordinates.

When we analyse the quadrature rules - in section 4.6 - and the discreti-
sation - in section 4.7 - it is convenient to have at our disposal a local coordi-
nate system with its origin at the intersection of a primary and a dual mesh
line. We define this system as follows. Take a unit vector e, , parallel to T',,
and let the direction of increasing coordinates correspond to the direction of
increasing coordinates in the global coordinate system given at the start of sec-
tion 4.3. Take a unit vector e, , parallel to I', and directed to give a right hand
coordinate system when combins:d with e, ,. l.e. e,, is a normal vector on T’,
and e, is a normal vector on I',. We shall use the letters x and y for local
coordinates, so if X is an arbitrary position vector in the global coordinate sys-
tem and x, is the global coordinate vector of the intersection of I', and T,
then

X =X, T xe,, + ye,,.

When we use the terms left and right, we shall mean left and right with respect
to the local coordinate system. We denote the length of I', by &, , = A(T}).
So, the highest local coordinate on I', is y =%h, ,. We denote the width of the
cell to the left of T', - i.e. the cell to the left of the origin of the local coordi-
nate system - by 4, ;, we denote the width of the cell to the right of I', by &, ¢.
So, the highest local coordinate on T', is x = Vih, g If x, lies on the boundary

of @ where the global coordinate along I', is highest, then we have a cell with
width A, g =0 to the right of I',. The same holds at the other boundary.

We construct a function ¢, on each T,

Yr(x) = Yx, £ xey,) . (4.13a)
By linearity, we can write this as,
$ix) = Bb T+ ¥ X E [—I/Zhr,L’ I/Zhr,R] - (4.18b)

We define ¢, to be the difference between the values of ¢ in the two cell cen-
tres,

hr,L +hr,R
Gx) = B

To have a convenient notation, we introduce a special notation o, for the e,,
component of a continuous vector valued function ¢ given as a function of
local coordinates, i.e.

(4.18¢c)

Ur(X,)’) = O(X, + X€xr + yey,r)'ex.r ¢ (419)

4.3.3. Some local projections.

In this chapter we need several projections that are mesh dependent. To
simplify their definition, we introduce a notation for the average of a function
over a given area or a given line segment. We denote the average over an area
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A by,
1
A = — 4.20
PIANN = oy [ S e (420)

for all measurable and bounded 4 C @ with p(4) > 0 and all f, integrable
over A, where p is the Lebesgue measure on R>. We denote the average over a
line segment I" by,

PITIY) = }\—(lﬁlfdk, 421

for all measurable finite line segments I' with A(I') > 0 and all £, integrable
over T, that lie in Q. Here X is the Lebesgue measure on R.

4.3.4. Some global projections and the trial spaces.

In this chapter we examine the difference between the solution of (1) and
a discrete approximation of that solution. To do this we need to compare a
known discrete solution with an unknown continuous solution. We simplify the
problem by using a projection II; XP; of the continuous solution onto the trial
space V), X Wj,. The problem then reduces to the study of the interpolation
error - i.e. the difference between the continuous solution and its projection -
and the discretisation error - i.e difference between this projection and our
discrete solution -. In general the projection can not be calculated numerically,
but its properties and accuracy are known, so the problem reduces to finding a
measure for the distance - in the trial space - between the projection and the
discrete solution. This approach differs from the standard approach in Hilbert
spaces, because the chosen projection is not necessarily orthogonal. However,
the approach can also be found in Douglas and Roberts[13]. In this section
we describe the trial space ¥, W,. Using the local projections defined earlier
we then construct the global projection IT;,XP;: H'(Q)% X LA(Q) = Vi X W,.
We use the lowest order Raviart-Thomas space[14] for our trial space. The
subspace V), of the trial space is spanned by vector valued functions that
satisfy the homogeneous Neumann boundary conditions,

Vy = Span({n, |r€E}), (4.22)

where the basis vectors 7, have a triangular prism shaped components (tent
functions),

n.(x, txe,, tye,,) = (4.23)
hr.L +x .
h, . €x.r if (X’)’) = hr,L’O] X[—= I/zhr,y’ I/Zhr,y]
hr.R X . P i
—m_ex,r if (X,)/) € [O’hr,R] X[ /2hr,ya /Zhr,y]

0 elsewhere
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for all r € E. For W), we use a space of piece wise constant functions,
Wi = Span({ xg,_,,_. |i=12,...,Ny,j=12,... ., N, }), (429
where x4 is the characteristic function of 4 C , i.e.
x4x)=11if x€4 ,x,x)=0 if x€Q—4 . (4.25)
Next we define the projection II, Xf’h. The map l_)h:C(SZ)—> W), is a projection

such that the function and its image coincide at cell centres:

PN = 3 fix)xe, - (4.26)

seEM
and the mapping IT,,: H'(R)>—V},, taken from [14], is given by,
LM = 3 PILI(fe. ), - 4.27)

rekE

These are the basic ingredients for our calculations. However, we still need
some other definitions associated with cell edges. We define the space E,
spanned by the characteristic functions of dual cell edges,

E, = Span({ xi, |r €E }),
and the space G,
Gy, = Span({ xr, | T, CT1 }),
and we introduce a map Q:V,—E,, similar to P,
On(h) = EIE f(x,)e. xr, - (4.28)

Finally, we define the additional global projection, Py,: L(Q) — W},
Ph() = X PI%I(Nxa, - (4.29)

sEM
and we notice that the pair of projections I, and P, are those discussed by
Raviart and Thomas [14].

4.4 Discretisation of the system.

We construct a scheme for the approximation of the solution (e,u) of (1).
We proceed as follows. We formulate the set of integral equations that hold for
the solution of (1) and that correspond to the classical finite volume equations.
We then write this set of equations as a saddle-point problem. Finally we
replace exact integration by quadrature rules where appropriate.

Given a (horizontal) dual mesh edge f‘,-‘ j—u» the following formula holds
for the solution (o,u) of (1):

Pi+11Tp; qi—1 +q,-

PitpPi-1 g-17tg
2 2 ’

2 2

(exp(¥)u) ] = (A)

] — (exp(¥)u)
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pitpia
p p g-1tq
— f &= (lp)a-e] xl,————J_l . dx, .
:P:71+P: a 2

* 2
This follows immediately from (2a). An analogous formula is derived for a
vertical dual mesh edge. In this way we find one equation for each dual mesh
edge. Note that, if x, lies on the Dirichlet part of the boundary, then one of
the endpoints of the integration coincides with x, and u(x,) is given by g(x,).
For each cell £, of the primary mesh, (2b) implies that

[ omyg, d\ = J fdp. (B)
09, -

This gives us an equation for each cell 2,,. The set of equations given above is
the starting point for our derivation of a finite volume version of the
Scharfetter-Gummel scheme. Our derivation is a variation on the derivation of
a finite volume scheme as given in [15].

We introduce some notation in order to write this in the form of a sad-
dle point problem. We define two operators EW,—W, and &,q:C(0Q2)—Gy,
and two bilinear forms, agg:V X E,—R and b:V, X W, —>R:

&, = 3 expUxNn(x)xe, ¥V 1 EW,, (4.30)
sSEM

(638 |r, = exp(x,)gx)xr, V I, CIy,
asc(0,0m,):= NT,) [ exp(¥) ove., d\ V rEE V 6 € H'(Q)? (4.31)

T,
and
B(th,ty) 1= f divr, t,dp ¥ 1, EV,, 1, EW), .
Q
Using these definitions, we can write the equations as follows,
asg(@.0m,) — b, EPu) = — < Sgmmg >V r € E(432)
and
ble,t;) = (fity) VYV t, EW) . (4.32b)

Equation (32a) corresponds with (A) and gives a relation between the current
along an edge and the value of u at the endpoints of that edge. Equation (32b)
corresponds with (B) and gives a relation between the currents through the
different edges of a given cell. Note that in the form ag; the basis vector 7,
just serves to indicate the edge over which the integration takes place. We shall
use the same convention in the quadrature rule for ag;. We obtain our
discrete system by replacing ¢ by o, P,u by u, and ag; by a quadrature rule
;. The discrete system has the form,
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(oh,uh) = VhXWh 5
(04, Qpy) — b1y, Ewp) = — < Epag,mmpg > V1, €V (4.332)
b("h,th) = (ﬁth) \4 = Wh . (433b)

We discuss a specific quadrature rule «; for ags in section 4.6. To facilitate
the study of the properties of different versions of «,, we introduce a bilinear
form (.,.),: V, X E,—>R,

(ohth'rh)h = 2 p‘rH[Fr](ah)'ex.r H[rr](Th)'e,V.r v o, , T, € Vh 5

rekE

where p, is
w=M)ML) VY rEE,

and A is the Lebesgue measure on R. The bilinear form (.,.), is a weighted
version of the Euclidean inner product on V). We prove that in V), the norm
derived from this inner product and the L?()-norm are equivalent. Note that
the norm corresponding to (.,.), resembles the norm ||.||, introduced in
chapter 2.

Lemma 4.1.
Hﬂh”sz(sz) < (04,010,); < 3||0h||2|f(9) 3
where L*(Q) = L%(Q)2.
Proof.
We start by determining the value of (6),0,)1g). To simplify matters, we

introduce coordinates s, for ¢, with respect to the basis 7, given in (23) and
we split o;, into mutually orthogonal e; parts (i =1,2),

N,
0 — zﬂi,j—'/zsi,j—'/;a
i=0
and
N,
0y = zni—’/z.jsi—%.j'
j=0
Now,
N, N,
(on,01) @) = 21(02,i302,i)L2(Q) + 1(01,j,°1,j)L1(9) :
i= J=

We see immediately, that
N
(01,,01) @) = 2}?(512-1.1—1/1 +Si2,j~’/z Fsiy—uSij— M-y 1)
=
SO
N,
32(512—1,1—'/: 57— - ) < (61,01 )@ <

i=1
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N
l 1
5 (21— s 50— Ui s ) -

i=1
Furthermore,
Mt 1 M
_ 2 2
(ol,jaol,j)h ) . M(9i+%.j—'/z)si,j~/z + ’2_2#(91'7'/2,]—'/2)&.]'—'/2 -
i=0

i=1

O

4.5 Existence and uniqueness of the solution.

In this section we give sufficient conditions for the existence and unique-
ness of the solution of the discrete system.

We plan to use theorem 3.1 from Nicolaides[5] to prove existence,
uniqueness and stability for the discrete scheme. To apply the theorem, we
need to define norms on our discrete spaces and to verify the conditions (2.1,
2,2, 3.1 and 3.2) given in [5]. We shall use the norms associated with the fol-
lowing inner products on ¥, and W},

(oh’Th)V,, = (oh,'r,,)h +- (diVGh, diV'l'h)Ll(Q) V o,1€E Vh s (4343)
and
(upst)w, = (st i@ Y untn € Wy . (4.34b)

The conditions 1, 2 and 3 that follow are equivalent to the conditions (2.1;.2:2;
3.1 and 3.2) imposed by Nicolaides.

Condition 1.
The bilinear form «, is bounded, i.e. thereisa 0 < 4 ER, independent
of the mesh, such that
an(on ) < Alloxllv, [ 7allv, »
and ay, is coercive on the kernel of the divergence operator in V,, i.e. there
exists a 0 < & € R, independent of the mesh, such that
8 (61,0, < ay(0,,04) ,

for all e, € V), (") #(div). Our condition 1 corresponds to conditions (3.1)
and (3.2) in the paper by Nicolaides [5].

Condition 2

The bilinear form b is bounded and there exists a 0 < y’ € R, independent of
the mesh, such that
| b(Th, 14) |

su - = Y|t , )
05T, v, H'rh || v, Y ” h ” L(Q)
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Condition 3
There exists a 0 < y € R, independent of the mesh, such that

bo.w)| _ . Sl le—z||,, ¥ 6€EV,.

su =
o;swgwh [|w]lw, z €(Mdiv) V)

Our conditions 2 and 3 correspond to conditions (2.1) and (2.2) in [5]. We
can now give a version of theorem 3.1 of Nicolaides.

Theorem 4.1.
If the conditions 1, 2 and 3 are satisfied, then the discrete system (33) has a
unique solution and the norm of the solution is bounded by,

A
21l v

1 1
o < —|| & . —
ol v, 8” gllv; ”

1
Iwlle <~ [Alenllv, + 11 88lv] -

Proof.
The proof is a direct application of theorem 3.1 in [5].

O

Now, we have to ask ourselves when these conditions are satisfied. In
section 4.6, we shall introduce an a; that satisfies condition 1. Because the
remaining two conditions are not easily verified in the form given here, we give
alternative conditions 2a and 3a that are easier to verify. Lemma 2 shows that
2a and 3a imply 2 and 3.

Condition 2a.

The corresponding Poisson problem is regular, ie. €, I'|,I', C9Q are
such that there exists a C > 0, C € R such that

V feLXQ) I'u € HX(Q) :
Au = f on Q,
u=20 on I,

gradumgg = 0 on T,

lull @ < CIIfll e >

Condition 3a

The map II, has the following approximation property, there is a
K > 0, K € R, independent of the mesh, such that

|| gradu —1I, gradu || o) < KH ||u|| 1) »
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where H is the maximum mesh diameter.

Assuming that 2a and 3a do indeed imply 2 and 3, it remains to see
when 2a and 3a are satisfied. For condition 2a we refer to Grisvard [16]. Con-
dition 3a follows almost immediately from the assumption that o has com-
ponents in H'(Q). To illustrate this, we prove Lemma 3. This lemma proves
that IT, has the approximation property.

Lemma 4.2.
If all mesh edges have a length that is bounded above by a constant H, then
1

the conditions 2a and 3a imply conditions 2 and 3 with y=y'= 3—C(1—+K_H;.

Proof.
Assume that (2a) and (3a) hold and take a fixed w € W, If we solve the Pois-
son problem for f=w then, according to (2a), the solution u, satisfies,

| gradu, || naivey < Cliwllce >
and
(div gradu,,w) = ||w || ixg) -
Furthermore, (3a) implies that for all u € H(Q)
|| gradu —IT, gradu || ) < KHollu[l we -

So we find, that

Py div gradu,, = Ppw ,
and

|| 11, grad u,, || naiviey <

HoK ||u, || @ + | gradu, || @ + [ divIL gradu, || v -
Our w lies in W), so special properties of P, and 11, imply,
divIl, gradu, = Pyw = w .

We combine this with condition (3a) to find,

|| Hh grad Uy, H H(div;Q) =

|y || @ T HoK ||t || 1@ < CA+HK)|[w|| L) -
We see immediately, that
| div || av,wy < 1,

and
V we Wh 3 Th ~ VhZ divr = w and H'Th H H(div:Q) < C(1+H0K)IIWH L:(Q) »
Lemma 1 implies, that

7n || vy < ll7ally, < \EH'fhll Haiviey Y ThE Vi
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We find, that
| b(11, grad u,,,w) | 1
> Iwll @ -
|| 11, grad u,, || ;. 3C(1+KH,)

Now suppose o, € V;,. Then the above derivation implies, that there is a
T, €V, such that divr, = divey, and |7 || Haivigy <
C(1+HyK)|| divey || 13g) - Moreover, 7, —6, € A(div), so

inf oy tz4|ly, < ||Tl]ly, < 3C(1+HK)| dive,|| 1) -
z, EV, () AUdiv)

So we find,
(le gy, div Uh)Ll(Q .
0 = || dive|| e =
|| divey || 1)
1 .
O —— inf 0,—z Y o€ ,V,.
3C(1+HOK)zhE(Mdiv)th)|| h hIlV,, h"h
This implies,

|b(o.w)] 1 .
su = inf o—z VoEV,.
B il > 3CA+HE) el ® 2% g

O

The inequality proved in the following lemma is also included in Lemma 5.1 nf
chapter 5.

Lemma 4.3.

If f'is a square integrable function with square integrable derivatives on a rec-
tangle 2=[0,/4,]X[0,h,] with sides I'; ; ={ h, } X[0,h,], Iy, =[0,h]1X{ h; },
I'o={0}X[0,h,] and T, (=[0,n;]X{ 0}, then the following inequality
holds for all s € L*([0,4,]) and Z(s) C[0,1],

|f= (=TT o lf =TTy I | 2@y < V2003 +43)* || grad || g -
Proof.
We start by proving the above inequality for f € C'(). Then we can extend
the inequality by density to H'(2). We see that,

| f— (=)L, olf—sI[Ty 1 If ]| 2@ =

h ok A, 2

[0SO = 0.2 + sCNfx) .2 || dcy

x=0y=0 h; z=0

We use partial derivatives to rewrite the expression,

| f= =)L o [f =Ty, 1f | 1@) =
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Z

h h, :
1 x a ) a
Xf va e i { s(x)){a i Ogg(a,z)da + ) i Zgg(x,b)db} +

2

X y
sy [ gi(a,z)da + gg(x,b)db dz| dxdy .
a=h, a b=z

We use Holder and extend the integrals where appropriate,

| f— Q=)L of — sy 1] o) <
2

h, I/ h, 2
ad
f [ |G lar/esillva +a%| f [%(x,b)} db| | dxdy .
x=0y=0 b=0
Weuse (|4 |+ |B|)’ < 2(4*+B?) to write this as,
||f_(1_5)H[F1olf—SH[rl,llf”zLE(m <
h hz a 2
2 f f -”Haf/axl i@ + A2 f [—a‘g(x,b) db|dxdy .
x=0y=0 b=0

This reduces to,
|| f—Q =)L, olf —sIITy 1 1f || 1) <
20} ||9f/3x 1 || de + 2R3 110f/0x2 || L) -

4.6 The quadrature rule.

In the previous section we left open the choice of the quadrature rule for
the computation of a;. In this section we select a quadrature rule and we
check whether it meets condition 1 from section 4.5. If it is to satisfy the nor-
mal addition rules for integrals, the quadrature rule must respect the local sup-
port and vector character of the basis vector functions given in (24), so it must
satisfy,

(M j— 1 OnMi—15.0) = 0, jFI = ay(ij— 1, Qi) =0,
ik = oy (-1 QM — ) =0 .

On T, we use a one-point rule with x, as nodal point. We choose the weight at
the node in such a way, that

ah,l(ex,rthT'r) = aSG(ex,rth"r) ) (4353)

i.e. the rule is exact for all o that have a constant component along T’,.
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The discretisation obtained in this way can be derived in several other
ways, see e.g. the papers by Bank et al.[3,4], the discretisation is closely
related to the method given by MacNeal [15]. If we use the quadrature rule
given above, we find the following formula for a;, (%, Qsn;),

ah.l("r’QhT’s) = 6rs>\(rr)[ S)SI;L‘Q d}\ ) (4-35b)
T

this shows that the corresponding matrix is a diagonal matrix. It is clear that
this rule corresponds to the use of a Scharfetter-Gummel scheme for each of
the two directions e; and e, separately.

Lemma 4.4.
If ¢ is piecewise linear, then

|l on || ZLZ(SZ)rrneiréP[I‘r](exp(‘l/)/a) < ap(04,0;) <
3104 ]| L@ maxP(L, exp)/a) -

Proof.
This follows immediately from (35b), the definition of (.,.), and lemma 1.

O

So, formally a;; satisfies condition 1 from section 4.5 and we can apply
theorem 1 from section 4.5 to the discrete scheme based on this quadrature
rule. We use the word ”formally” to indicate that the constant 4 in condition
1 may need to be very large. This is due to the appearance of the exponential
weighting function in the nodal weight for the quadrature rule. In general we
shall use the words “formal” and ”formally” to indicate that certain statements
hold, but only for very small 4.

4.7 Consistency.

As discussed in section 4.3.4, we use a projection onto the trial space to
split the difference between the solution of (1) and its discrete approximation
into an interpolation error and a discretisation error as follows,

llo—onll naivey < [0 —Iio|| naiviey + 3[[Ile—04 ]|y, .
|U=Eullv@ < |U-PuU|l 1@ + [IPaU— Syl w, -

The interpolation error can be estimated by standard approximation theory.
Here we study the discretisation error.
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4.7.1. Effects of piecewise bilinear interpolation for ¢.

At the start of section 4.3 we assumed that ¥ was piecewise bilinear. If
this does not hold then we can estimate the error caused by approximation of
¢ with the aid of the following lemma.

Lemma 4.5.
If ¢ € C?([0,h]) and we replace ¢ in
h
J exp) ax
0
by ¢, defined as
_ h—x
b =
then
h h
| [ exp@) dh — [ exp(y;) d\| <
0 0
h
| expn) dh| (expt? ([ a34/dx? | qom) — 1] -
0
Proof.
We start by giving an estimate for

=l L=qo.my -
If € C*([0,h)), then

X

W) —(x) = YO)+ f )y — w0) ~ f Ay =

z=0
h
1
w ]

z=0y

X y 2
[ f %(w)dwdydz -

0w=z

x h
i ﬂ(y — —lp(z)dydz = 711-_1

o ax

X

h X z )
lf f f —i(w)dwdydz = lf f f %(w)dwdydz

hz =0y=0w=0 =0y=0w=0
h o)
of io (x—) —%)dy -l (h—z)%(z)dz .

This implies that
=i |l =qony < P> Nld*97dx? || L=qony -

We combine integrals and reorder terms to find,
h

| f exp(¥) dA — fexpw,) d\| = | f exp(y;) [exp@—y)— 1] d\| .
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We use our estimate for

=1l L=qo.np -

and move the resulting constant term out of the integral to find the desired
estimate.

O

This implies that the approximation of ¢ by its bilinear interpolator causes a
relative error in the coefficients of our quadrature rules that is formally of
order O(h?*), where h is the maximum edge length and the error constant is
dependent on 3%y/9x?} and 0*)/0x3. As we shall see in section 4.7.2, this is
comparable in order to the local error resulting from the use of the quadrature
rule Qp .-

4.7.2. The discretisation error.

In section 4.5, theorem 1, we gave an expression for the norm of the
solution of a saddle-point system in terms of the right hand side. If we insert
of the difference between the projection (II,0,P,u) of the solution of (1) and
the solution (oy,,u;) of (33) into the saddle-point problem corresponding to the
discrete system, the norm of the right hand side is given by

“w |y (11,0, Qp7,) — asG(0,QnTh) |
ot By, s ll v,

, (4.36)

for (33a) and O for the (33b). In this section, we consider this expression for
ap=ay; and a = 1.

We consider the above expression for 7, = 7, and express it in the local
coordinates and local function§ defined in section 4.3.2. As we consider the
expression for one fixed edge I',, we may omit the subscript r. The two bil-
inear forms of interest take the following form,

Vahg
asg(e,.0m,) = h, [ o(x,0) exp(Bx +7) dx , (4.37)
x=—1"h,
Yh, Vshy
@1 (0.0m) = | [ o@p)dy| [ expBxty)dx. (4.38)
y=—1Ysh, x=—Yh

We assume, that 0,0, are elements of C*(2). In the following lemma we
give a formula for the difference between (37) and (38) for an arbitrary
vector-valued function ¢ € C*(Q)>. To simplify notation, we introduce the
moments of exp(y) on all dual mesh edges,

Vah,

L,= [ x"exp@)dx,

x=—1h,,
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we see immediately, that

a1 (0,.05m) = Ny -

We also introduce scaled versions of these moments,

Vo, 4
“ x" exp(B,x) dx
Lr,n x=—1sh,,
Lr,n = = - Vi,
Lr.O .
f exp(B,x) dx
x=—"Yh,,

Lemma 4.6.

We consider a vecAtor-valued function o in local coordinates around x,. Let
H = max(\(I',),A(T',)). If we assume that o, € C 4(R?), then we can expand o,
in a Taylor series around the origin of the local coordinate system, as r is fixed
we omit the subscript 7 on o, x and y. We write o, 0, for the partial deriva-
tives in the local x and y directions. '

asG(0,05m,) — a1(0,01m,) = (4.39)
a1 (11,Qi1) [0 0.0y + Ho OO =
Z ooh"'2 L OO & o OL,s — 20,0 L
Zf)y( ) )—12_ + 6Oxxx( ) ) .3 24 oxxxx(p'xv ) r.4 24 o}y))'( »uy) 30 )

with u, € [—%hy,Y%hg], p, € [—%h), V2hy].

Proof.

to verify this, we subtract (38) from (37), expand all occurrences of ¢ in Taylor
series around the local origin and carry out all integrations over y. After
integration, we are left with the above expression for agg —ax 1,

O

The form of this expression and the earlier expression for the error due
to bilinear approximation of ¥ suggest that the formal order behaviour is best

studied by dividing the part of the error corresponding to a given dual edge T',
by a1 (0, Ony)-
The use of a one point rule for ay, can affect accuracy. We specify three
cases where
(as6 —0,1)(0,Qn,)
a1 (0, Onny)

may be O(h) in stead of O(h?).
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Case L
If I, C Ty, i.e. we are dealing with an edge on the Dirichlet boundary,
then there are p € (0,1), k, € [— K,K], where K depends only on the L*({)
norm of derivatives of o, such that
|as6(0, Onmy) — (1140, Opmp) |
Qp (nr’ Qh"r)

this contains a first order error term in the right hand side.

nHo,(0,0) + k,H?* ,

Case 1L
If a vertical edge I', lies in the interior on { and the width of the cell on
the left side of he edge differs from that of the cell on the right side by more
than a factor of order O(H?), then there are pu € (0,1), k, € [—K,K], where K
depends only on the L*(£) norm of derivatives of @, such that
|asG(0,Onmy) — @140, Onm) |
1 (M, Ony)
because the first order error terms for these cells do not cancel even when

B=0.

Case IIL
Lastly, if an interval vertical edge I', lies in the interior on § and the
jump in ¢ over the edge is larger than 2, then there is a k, € [— K, K], where K
depends only on the L*(£2) norm of derivatives of o, such that
| asg(0,0nm,) — ap1(IL,0,05m,) |
a1 (M, Opy)

because of the asymmetry of exp(y). The coefficient C of 0,(0,0) is given by

pHo,(0,0) + kH? ,

= Co0,(0,0) + k,H?,

c= Lr,l >
this is equivalent to
hg+h;
L, = % |Yhg—hy) + Y(hg+h )G |B 2 3
with
_ zcoshz —sinhz
G@) = zsinhz ’
We see that,

d_G(z) _ (sinhz)? —z2
dz z%(sinhz)?

The behaviour of G is as follows,

G(z) = —G(—2),
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limG(z) = 1,
0 < idf—(z) <1,
so —1 < G(z) < 1. If we assume that hg =h,, then
hgr+hy
L., = Y(hgth,)G B——4_‘ .

So the order behaviour of L, is determined by the order behaviour of G.
Assume that h=h; +hg < 1. The order behaviour of G is as follows. If
Bh < 2, then
15Bh(1+ Y(¥Bh)*cosh(1))— ¥ Bh _ Bhcosh(1) _ Bcosh(l)h
(4:Bh)? 2 2
so G(%Bh) is O(h). On the other hand, as long as Bh > 20,
10cosh(10) —sinh(10) - 9
10sinh(10) 10 °
so for all meshes with & > 20/ B, we have G(%Bh) is O(1). We see that L, , is

at worst O(h) and at best Oh*). If h < |2/B]| then L., is OH?. If
h > |20/B] thenis O(H).

G(¥%Bh) <

G(¥%Bh) = G(10) =

4.8 An a-posteriori error estimator.

In this section we study an a-posteriori error estimate for the discretisa-
tion based on a, =a; ;. We calculate a correction to an initial solution and use
this to improve the order of approximation, this method is related to the
deferred correction scheme as described by Fox and Mayers in chapter 6 of
[17].

4.8.1. A derivation of a deferred correction scheme.

In this section we give a deferred correction scheme. The discussion takes
into account formal order only, i.e. it assumes that & is “small enough”. In
equation (33) we take ay;, given in (35b), as our a;. If we insert
(I1,6 — 65, Pyu —u;) in (33) to determine an expression for the right hand side,
then we find

ap (0 — 04, 0my) — (divay, E@u — uy)) = (4.40a)
a1 (10,0,0,1) — ag6(0,04m) V¥ 17 €V,
(diV(HhO—Oh),th) =0 V 1, € W . (440b)

Our approach is the following. We assume that 0,,0, € C 4(Q) and we assume
that we have Dirichlet boundary conditions on the entire boundary of our
domain. We see from (39) that we can approximate the right hand side of
(40a) by an expression in the partial derivatives of o. If we can justify the use
of finite difference approximations based on e, for these derivatives, then we
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can solve (33) with a adjusted right hand side and obtain a better solution.
First we show that we can approximate partial derivatives of ¢ of first or
second order in a given direction by finite differences of II,6. Next we show
that we can use finite differences of ), to approximate the finite differences of
IT,06. We introduce the following special notation.

by = LX)

f(x+he,)—2f(x)+ f(x—he,)
h? )

O f(x) =

Lemma 4.7.
If fe C3([O,1]><[O,l]), h €(0,1/4),

I'x) = {(xp)|x1=x,y E[x,—h/2,x,+h/2] },
and x € [h,1—h]X[h,1—h], then

| 0, f(%) — g{“(ﬁ%he«)l = 0(h?), (4.41a)
9700 — Lt she)| = 007, (441b)
0,1 (f = PICOIMNX) | = O, (4.41¢)
| 85,2(f = PITOIMNX) | = O*), (4.41d)
|05 (f— PILOINX) | = O(h?), (4.41¢)
|872(/— PITINX) | = OR?). (4.411)

Proof-
The above statements are easily verified through the use of Taylor expansions.

O

For a special case we justify the use of finite differences of ) to approxi-
mate the finite differences of I1,6. We assume that the mesh is uniform, i.e.
A(T;-y;)=h and (T, j—,)=h for a fixed h € R for all edges. We also assume
that ¢ is linear and increasing on the entire domain, i.e.

Ux) = Bix;+Bxy+y,

with fixed B;,8,,y ER and B,,8, > 0. We introduce two vectors R;,S; in
V,,. The bilinear form a;; acting on the sum of these vectors generates the
right hand side of (40a) up to third order. We define
Voh
f x"exp(xf,) dx
x=—1h
Vah ’

f exp(xB,) dx

x=—1"h
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this is equal to L, , if I', does not lie on the Dirichlet boundary I';. We define
the vectors by giving their value for each edge I',,r € E, we express this value
in terms of local coordinates,

h2
Ry, = Llor.x(o’o) + I/ZLZOr,xx(O»O) - —2?0,’”,(0,0) . (4.42)

Shr = [(L,,l —L1)0,,(0,0) + (L,,z—Lz)'/zo,.xx(o,O)] . (a4)

note that S, is non-zero only on the Dirichlet part I'; of the boundary. If we
compare (42) and (43) with (39), then we see immediately that,

asg(0,0mm,) — ap1(0,04m,) = (4.442)
o, (R, + Sp,0m,) + 0 [hBah,](T’rthnr)] VreE.

We wish to approximate @y (R,+S,Qmm,) by oy (1T, R, Qym,)
+ < &S.m,myg > , where R and S are continuous functions on £ and
the Dirichlet part of the boundary (I';) respectively, we define,
¢ h2 9’o-e,

() + YLy L
(x) + %L, ox2 ) = .

do-e

RK(X) = Ll 9x

x),

K

Sx)|r, =

1 o€, d’o-e,
;exp(‘ll/r(o))ah,](nr,Qhﬂr) (Ly1—Ly) x,) + (L2—Ly)% (x,)

0
axnc axi

v x,EFl.

On each straight part of the Dirichlet boundary, we can extend S to a C'
function on that part of the Dirichlet boundary by replacing x, by x. We see
immediately that,

ap (IR =R, Qm,) = O [hZ(Ll + L, + L3)a,,,l(1,,,Qh1,,)] , (4.44b)
and
< ExSaynr, > = @1 (SkOnmy) (4.44c)

for all r such that T, is a part of the Dirichlet boundary. We see that, if prob-
lem (1) is solvable for all (f=F,g=G), then, according to (33), the solution of
(1) (p,v) for F=divR on @, G=S on T will satisfy the equations,

asc(p,Oim,) — b, EP) = — < ExpSmymp >V r EE (4.45)
b(p,ty) = (divR,t,) YV t, €W, . (4.45b)
If we subtract R from p in these equations, then we find,
as(p—R.Qim,) — b(n,, EP) = (4.462)
—ag(R,Qpm,) — < ExSwymr, > V re€E,
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b(p—Ri) =0 Y 1, EW, . (4.46b)
We can write (46a) as follows,
0,1 (IL(p—R),Qm,) — b(m,, Py) = (4.472)
ay, 1 (IL,(p—R),0im,) — asg(p—R,Opm,) —asg(R,Qpm,) —
< &Snr My, > VYV rek,

for r € E, this equation can be written as follows,
a1 (I4(p—R).Qym,) — b(n,, EPy) = (4.48a)
ap  (IL,p,Onm,) — asg(P, Qnm,) — ap (IR =Ry, Opm,) — a1 (R, + Sy, Onmy) -

According to 47a, if we subtract 46 from 40 and we use (44,a,b,c) then we get,
a1 (11,0 — 0, —TT,(R—p),Qsm,) — (diva,, EPpu—wu,—Py)) = (4.49)
aso(p.Qim) ~ 1P 0im) + O [(Ly+La+ Lohe,a(n Qm)| +

0 [h3¢¥h,1("anh'ﬂr)] V reE,
(div(Il,o—oe)) — IL(R—p)t,)) =0 V 1, EW,. (4.49b)

If we assume that L, is @(h) but not O(h?), - this holds if e.g. 8;,8, > 20/h
- and that problem (1) satisfies the following regularity condition for all
/€ L¥Q).g € H/?(20),

lull e + lloillw@ + llo2llwe < CUIfllve + |Iglln-ee)

then we can derive an estimate for

| as(p, Onmy) — an (I, Opm,) | -

To prove that the problem has this regularity, we use theorem 5.2.2. by P.
Grisvard [16], for our problem, the theorem states that, if we have Dirichlet
boundary conditions everywhere and (1) has a unique solution, then operator
(1) - with ;=02 is a bijective continuous mapping from H*(Q) to
L2(Q) X H*%(3Q). From the equivalence of (1) and (2) and the ellipticity of
(2), we see that - for Dirichlet boundary conditions - equation (1) has a unique
solution. Now the above mentioned theorem states that the operator is
bounded, so bounded inverse theorem (Schechter[18], theorem 4.1) implies
that the operator has a bounded inverse. This in turn implies that the above
regularity condition holds.

According to our assumption that 0,,0, € C*(Q) and the fact that L, is
O(h), we have R=hF with F|,F, € H%Q), divR=hf with f € H}(Q) and
S=h?g with g € H*(0Q). According to lemma 6, this implies that,

|asg(p, Qnm,) — a1 (ILp,Om,)| <
hCL (|| fIl o + |l g1l mee) | an i, Omm,) | = O(h*ey, (1,,04m,)) V r EE,
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this implies that (o, +IL,(R —p),u, +I_’,,v) considered as an approximation to
(I1,0,P,u) is one order of & more accurate than (oy,uy), ie. itis O(h?).

Now assume, that L, is O(h*) - this holds if e.g. 81,8, < 2/h - and
problem (1) satisfies the above regularity condition. Now according to our
assumption that 0,0, € C*(Q) and the fact that L, is O(h?), we have R =h*F
with F.F, € HYQ), divR=h2f with fEH’Q) and S=h’g with
g € H?(3Q). Note that L,; is O(h) if T, is a part of the Dirichlet edge.
According to lemma 6, away from the Dirichlet edge,

| s (P Qnmy) — a1 (ILp, Qnmy) | <
CL+Lh(|| fll v + llglln=ee) e i(-Qm)| =
O3, \(,,0m,) ¥ rEE.
and on the Dirichlet edge,
| asG(p, Qnmy) — a1 (1L, Omy) | <
CLh(|| fll @ t+ 112 lln7ee) | @ni (- Qi) | = Oh*ay (0,,Qim,)) ¥V r EE.
This implies that
| 0 —0; —IL(R—p) || L@ = O*),
because expression (36) for the above case is bounded by
CN|N,h3 + 2D(N | +N)h* .
We can summarise the two results given above as follows,
| M0 —0,—IL(R—p)|| @ = OG*"),
where k is the order of L, i.e. L, = O(h*).
This in turn implies that,
|| IT,6 —0), —I1,(R—p) || L=@) = oh*) ,
on at most a O(h) part of & and
| o —0;, —IL(R—p) || L7@ = 0"
elsewhere.

We use this to justify the approximation of the partial derivatives 8" /dxy
of ¢ in R, by divided differences 9}, , of ;. As

Mo—o, = I(R—p) + O "),
and R—p=h*t witht € Cz(ﬁ)z, we find,

am[nw—uqu»:am[HAR—mkmy+0@””rzwiﬁﬁu»+0wk”»
axy

for k=1,2 on a O(h) part of the domain & and
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e (Mo —an|x) = 30 (R =p)|x) + O 177 =

hkaa—"t(x,) + OMh<TTTmy

K

for k=1,2 elsewhere. Combined with lemma 7 we find that for k=1,2 and
n=1,2,

0" .
|9 (%) = Bhuox)| = OG*"),

on a O(h) part of the domain and
| "o

dx,

(%) = dp0(x,)| = ORI,

elsewhere.

Let us denote by R, the approximation of R, and by S), the approxima-
tion of S, obtained by substituting 9 e, for 9"/dxy with n=1,2. We see
that

R,+S,—R—S = L,0(h*™") + L, 0(h*7?),
on O(h) of all cells and
R,+S,—R—S = L, 0(h*) + L,0h*" "y,
elsewhere. Let (oy,u;) be the solution of
a1 (6, Q) — (divey, E(y)) = (4.50a)
ah,l(ih+§h’QhTh) — < &gmynr, > V1 EV,

(div@),t) = (ftn) ¥V 1, € Wy, (4.50b)
then
a1 (o — 3, Q4m) — (divey, ERuu — i) = (451a)
ap | (R + 83, 0nmh) — a1 (R + 83, 047))
Vo1, EV,,
(div(Il,6—6))1,) =0 ¥ 1, € W), (4.51b)

so - in LX(®) norm - (5.i,) is formally one order of & closer to (II,0,P,u)
than (oy,uy,).

We can derive an a-posteriori error estimate by calculating the difference
between the discrete solution with and without a tilde. It may be possible to
derive a mesh-refinement criterion from R,,.
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4.8.2. Numerical results.

In this section we show how the deferred correction method works in
practice. We consider problem (1) with Dirichlet boundary conditions on the
entire boundary,

T, =02,a =001 and ¢ = 100(x; +x,),
and data derived from a known solution,
u = tanh(8(x; —x,)) .
It follows that,

g = ula,
f=- div (gradu +u grady)
100 '

We show results for the Scharfetter-Gummel version of the discretisation and
the results obtained after applying the correction discussed in section 4.8.1
once, twice, thrice or ten times.

We take the unit square for €. On a mesh of nXn cells with mesh width
h=1/n, we have 4n —4 Dirichlet edge cells and a total of n* cells. We use the
2-norm as norm for the error vectors,

ol = |—— 342
i) [uu%]’

where || is the number of elements in the index set.
All experiments satisfied the expected symmetry relation

log, ||(IT,0—0),)e || = log, ||(II,6—0,)e€ ] ,

for the accuracy given in the tables.

the log, of the errors for o), = ay, ;.
meshwidth | log, || Phu—uy|| | log || (11,6 —0y)e ||
1/2 -1.6 -0.9
1/4 -1.5 -1.4
1/8 -1.9 -1.9
1/16 -2.6 ' -2.6
1/32 -3.8 -3.8
1/ 64 -5.5 -5.4
1/ 128 -1.3 -7.3

We see that the large jump in ¢ per cell on the coarsest meshes, combined with
the large gradient of the solution relative to the coarsest meshes result in con-
vergence slower than O(h). For a fine mesh, 1 < 1/32, we see that the con-
vergence behaviour tends to O(h*). For intermediate meshes intermediate con-
vergence rates are found.

- 98 -



4. A DISCRETISATION SCHEME WITH A-POSTERIORI ERROR ESTIMATES

the log, of the errors after one correction.
meshwidth | log, || Pru—u,|| | logy||(II,6—0))e ||

172 2.2 -1.6
1/4 -2.1 -2.0
1/8 -2.7 -2.8

1/ 16 -39 -39
1732 -6.0 -6.0
1/ 64 -9.1 9.1
17128 -12.9 -12.8

We still see slow convergence rates at the coarsest meshes, probably due to the
relative steepness of the solution on that mesh. Convergence speed on the finer
meshes is improved by the correction. We see that - as predicted below equa-
tion (4.51b) in section 4.8.1 - where the previous table shows first order
behaviour between meshes, we now find second order convergence. And where
the previous table shows second order behaviour between meshes, we now find
third order convergence.

the log, of the errors after two corrections
meshwidth | log, || Phu—u,|| | logy ||(I1,6—0,)-e, ||

1/2 -2.6 -1.8
1/4 -24 -2.4
1/8 -3.1 -3.3
1/16 -4.7 -4.8
1732 -7.6 -7.6
1/ 64 -11.8 -11.7
1/ 128 -15.4 -15.3

We still see slow convergence at the coarsest meshes. Again we find & +1-th
order behaviour between meshes where the previous table shows k-th order
order behaviour between meshes.

the log, of the errors after ten corrections.
meshwidth | logy || Phu—uy, || | logy || (1,6 —ay)-e ||

1/2 -2.8 -2.0
174 -2.8 -2.7
1/8 -3.7 -3.9
1/16 -5.9 -6.1
1732 -9.2 -9.2
17/ 64 -12.6 -12.6
1/ 128 -15.4 -15.4

After ten iterations no further significant changes occurred. We see that we
have third order behaviour from 2#=1/16 onward.
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4.9 Conclusions.

In section 4.4 and 4.6 we have seen that the Scharfetter-Gummel discreti-
sation in two dimensions can be written as a saddle point problem. We can
use theorem 3.1 by Nicolaides [5] to show that this discretisation is at least for-
mally stable and consistent. We then showed consistency. In section 4.8 we
presented a technique to obtain a local error indicator and we gave numerical
results.

The results on a posteriori error estimates can be summarised as follows.
We show that it gives an approximation of the error that is an O(h*"') accu-
rate approximation to the true error, when the true error is O(h* ). This can
also be seen in the numerical results for this method.

We see that the two dimensional Scharfetter-Gummel scheme for the
current continuity equation is stable and consistent. Our error analysis in sec-
tion 4.7 yields the following information on the order of the error. For small
enough h, he error is order two only if a cell is not adjacent to the boundary
and has a size that differs at most @(h?*) from its neighbours. If these condi-
tions do not hold the error is of order O(h). To be certain that the global
order of the error is @(h?) the change in ¢ between cell centres must be
smaller than 2. For semiconductors this means that the change in the voltage
scaled by the thermal voltage must be smaller than 2. In Section 4.8 it is
shown that is possible to calculate a correction to the solution of the
Scharfetter-Gummel scheme. From this we can derive an a-posteriori error esti-
mator.

As we mentioned in chapter one, a search of the literature shows that
papers on a posteriori error estimates for finite volume or mixed finite element
discretisations - other than for fluid dynamics - are rare. There are papers that
deal with a posteriori error estimates for the mixed discretisation of the
Navier-Stokes equations, see e.g. the paper by Verfiirth, [19] but the tech-
niques used there are geared to that type of problem.
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5. A Petrov Galerkin Mixed Finite Element Method with exponential
fitting.

5.1 Introduction.

The use of a form of exponential fitting for the semiconductor continuity
equation is suggested by the success of the Scharfetter-Gummel discretisa-
tion [1] in one dimension and variations on that discretisation in two dimen-
sions. Numerous derivations of Scharfetter-Gummel type discretisations are
given in the literature, for instance by Selberherr[2], Markowich [3], Bank et
al.[4], Brezzi et al.[5], and others. This chapter extends a one dimensional
exponential fitting technique, discussed by Hemker [6], to the two dimensional
problem.

In section 5.2 we introduce a model equation for the semiconductor con-
tinuity equations. We introduce several bilinear forms, related to the
coefficients in this equation. In section 5.3 and 5.4 we treat the discretisation.
In section 5.5 we collect some technical results and in section 5.6 we derive
two error estimates. These error estimates are based on the techniques used by
Douglas and Roberts[7]. The proofs in section 5.6 take all characteristics of
our special discrete system into account, in particular the quadrature rule for
the approximation of certain integrals in the discrete system. Note that the
error estimates in section 5.6 are degenerate if the problem is singularly per-
turbed, i.e. if the convection dominates in the problem. On the other hand, an
indication for good behaviour of the method for singular problems is that - for
constant  coefficients - it reproduces reproduces the  solution
Cexp(—B1x1—Byx,) exactly. In section 5.9, we develop an a posteriori error
estimator. In the last section we discuss our findings.

5.2 The equation. v
We consider the following problem, find u € H*(®) such that:

—div(%(gradquuB)) +yu=f on © and G.1)

u= —g on 3,

where © is a bounded rectangular domain in R?. We impose the following res-
trictions on the coefficients:

aEWP@®) and I AER:a=>4 >0 on @, (5.2)
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%ew,w(sz) on €, (5.3)
B = (B]nBZ)T with BI’BZ € W?Q(Q) ’ (54)
yEWPE®) and y = 0 on @, (5.5)

where W°(2) , H2(Q) are the usual Sobolev spaces [8], and
H(div,Q):= { € L2(®)? | divr € L}(Q) },
with scalar product

(0, THeiv,e) = fo-'r dp + f dive divr dp,
Q Q

is a Hilbert space (see also Girault and Raviart, [9] formula 2.15 in section
22). We assume, that the equation has a solution and that
fELXQ) , g € H2(39).

The stationary semiconductor continuity equations take the form (1).
Here B corresponds to the electric field, the term yu corresponds to a linear
approximation to the recombination term and 1/« corresponds to the electron
or hole mobility. The exact correspondence depends on the choice of scal-
ing [10].

To formulate the weak mixed form of this equation, we use the following
bilinear forms

(s,2) = 's{” du Y st € LA(Q),
a(e,m) = [aerdp V o1 €H(div,Q),
Q
b(e,1) = éﬁ-ot dp V o € Hdiv,Q),t € LX(Q) ,
c(s,t) = éyst dp V st € LX(Q) ,
<gh> = [ghd\ V ghe L*?Q) .
a9

Given these definitions, we see immediately, that any solution
u € HX(Q) of (1) generates a solution (o,u) € H(div,Q)X L*(Q) of

a(e,7) — (divr,u) + b(r,u) = < grmyg > V 1€ H(div,Q) ,(5.6a)
(dive,r) + c(ut) = (fit) V t € L(Q) . (5.6b)
Where o = —l(gradu + up).
(84

To simplify the notation, we denote the Cartesian product of a normed
linear space E with itself by E in bold faced type, E:= EXE. We define

2
[ (1.m2)" || & = (> w5 ¥V (.m)" €E.

i=1
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5.3 Preparations.

We introduce a partition of the domain and we define the adjoint prob-
lem of (1), which we use in the derivation of one of our error estimates. Next,
we introduce several special projections, that are needed in the definition of
our approximation spaces and in the derivation of the error estimates. Finally
we give an error estimate for the projections.

5.3.1. The partitioning of the domain.

We assume, that our domain € is rectangular. On @, we use Cartesian
coordinates, with the unit vectors e; and e, parallel to the edges of . We
define 7,:= 1€ for 7 € L*(Q) and x;:= x-¢; for x € R2. Before we treat our
discretisation, we define our approximation space. We assume that our parti-
tion is the cartesian product of partitions

P={0=py<p < - <py =L}, (5.7
and
Q={0=gqo<q1 < - <gn =L} (5:8)
of the sides of our domain. We define the index set K,
K= {(@{+%j+%|i=01,...,N;—1,;=01,...,N,—1},

with the obvious index pair for a given cell,

Qiypjrn = {X |pi < x1 < pit1.9 < X2 < Pj+1 } -
We define x; to be the centre of €, and hy to be the diagonal of Q.. We use
the notation x, for the characteristic function of €. (The characteristic func-
tion of a set is the function that is equal to one in all points of the set and
zero elsewhere). The edges of §; are the sets:
Tpij = { xEQ | xe = (e H(—Hy)e ) for i=12,j =0,1.(59)

Xk.ij 18 the characteristic function of edge I'; ; ;. So (i,/)=(1,0),(1,1),(2,0),(2,1)
denote the left, right, bottom and top edges.

5.3.2. The adjoint problem.

We use the following definition for the adjoint problem of (1) (cf. Doug-
las and Roberts [7] ),

w € HX(Q) , (5.10)

—div(igradw) + ﬂ-gradw +yw =f on &,
o
w =20 on 0%.
The adjoint problem is called regular, if there is a unique solution w for every
f€ L*Q) and this solution satisfies ||w||w@ < C||f]l @ for every
f € L¥Q).
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Both in the above equation and in the rest of this report, the upper case C,
without a subscript, denotes a generic constant. It may have a different value
at each appearance.

The weak mixed form of the adjoint problem is:

(t,w) € H(div,Q) X L*(Q) , (5.11)
a(t,0)—(dive,w) = 0 V o € H(div,Q) and (5.11a)
(divr,0)—b(r,t)+c(w,t) = (fit) V t € LX(Q) . (5.11b)

Any solution w € H?(2) of (10) generates a solution ( —Lgradw,w) of this
[44

problem. If (9) is regular, then this solution satisfies the following regularity
condition, ||w || w@ + lI7lln@ < Clfllve-

5.3.3. Some projections.

We introduce several local projections, we use these to define four global
mappings, P;,, P, , I, and II, that map function spaces to finite dimensional
function spaces. First, we define P[] to be the orthogonal projection from
L2(;) to the space of constant functions on £, and we define P[I' ; ;] to be
the orthogonal projection from L*(T;; ;) to the space of constant functions on
I‘k,i’j.

We use P[§] to create two global mappings, Pj: L(Q) — LX(Q),
Pf= 3 xPIUN YV FELAQR), (5.12a)

kEK
and P,:L*(Q)—>L*(Q),

P = 3 x[PRBeer + PIUI(Bedes] V BELXQ) (5.120)

kEK
Next, we introduce two mappings, based on P[I';;;]. These mappings have as
their domain the space Z,
S:= { 7+ € H(div,Q) | 7|ag, Mg, EL*O) V kEK }.

This space is similar to the one introduced by Roberts and Thomas in formula
(1.10) of their report [11].

To simplify the definition of these mappings, we introduce local coordi-
nates on each cell £,

i —
1 Xk, 1 +_1_
Z e ? 5.13
= . -1
X X3 — Big +l (5.13)
hy 2

The mappings are defined as follows:

2
Mr= 3 %3 [(l—gk.,-)P[Fk.,-,o](r,-) +£k.,-P[Fk.f.11(vi)]ei, (5.14)

k€K i=1
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- )
r = 2 Xk 2 [(l*fk,i) P[rk,i,o]("'i) + §k,iP[Fk.i,1](’Ti)] e, (5.15)

kEeK i=1

where

exp(éx. i PI](B)) — 1 .
P[Q)(B: 0,
exp(hy; PIU)(B)) — 1 if P[)(B) #

&k.i if P[%](B;) = 0.

Crg =

So, for II,r we get the i” component on € by linear interpolation between
the projections of this component on the two sides orthogonal to e;. For I,
however, we obtain the same component by using an exponential function to
interpolate between the projections of this component on the two sides orthog-
onal to e;.

Now we introduce the following finite dimensional function spaces as the
ranges of the above projections,

V, = IS) . Wy = PA(LA®)) and X, = IL,(3) .

V,, X W), is the lowest order Raviart-Thomas-Nedelec space for rectangles. This
space and the above projections were described by Douglas and Roberts, [7]
Raviart and Thomas [12] and, for @ C R, by Nedelec[13]. In this chapter we
use the usual space, V), X W), as the trial function space and X, X W) as the
test function space. In effect, we use exponential test functions instead of the
usual linear test functions. Thus, we obtain a Petrov-Galerkin mixed finite ele-
ment discretisation.

5.3.4. Error estimates for projections.

We prove a lemma on the accuracy of our projections. Considering the
number and diversity of articles on error estimates, e.g. the classical projection
estimates from Ciarlet and Raviart[14], this may seem superfluous, but we
shall see that the relative simplicity of the case under consideration makes it
possible to derive sharp error estimates under minimal assumptions.

Lemma 5.1.
If fis a square integrable function with square integrable derivatives on a rec-
tangle Q:[O,hl]X[O,hz] with sides rl’l :{ hl }X[O,hz], FZ,] :[O,h|]><{ h2 },
T10={0}X[0,hy] and T,(=[0,h;]}X{ 0}, then the following inequalities
hold,

Ilf—PIAYf ] @ < (2h}+2h3)" || gradf|| ) - (5.16a)

If s is a continuous function with domain [0,4,] and range [0, 1], then we have,

| /= =T, olf =TT || @ < (2hi +2h3)" || grad f|| g, - (5.16b)
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If f€ L*(Q), grad f € L*(Q), then

If=PlAY || =@ < (hithy)|| gradf][ =) - (5.16¢)

Proof.

The mequahty (16b) has already been proved in lemma 4.3 of chapter 4. We
start by proving the remaining inequalities for f € C'(4). We can then extend
them by the usual density argument to H'(Q). To prove the first inequality,
we write,

n ho b 2

l/=PiAYlve = [ [ [ JSwn = fonz)dndz| dxdy ,

x=0=0 hlh2w 0z=0

>
o

by definition,
% Y
SfCey)—flw,z) = ) i wgf(a,z)da + ) i z-g‘g(x,b)da .

If we substitute this into the above expression, then we find

I f—PlOf || 10 =

gyg | Baha wio:le

h, h, 2
[ ] f f [/ L a2y + / L, b)db}dwdz iy
x=

We apply the Holder inequality to the inner integrals and extend the integra-
tions over a and b where appropriate,

I~ PO || L@ <

%2

hy h, V; hy 3 2

[/ ,/2 1870, || 2@ + h / [—a-g(x,b)] db| | dxdy .
x=0y=0 b=0

We use (|4 |+ |B|)* < 242+ B?) to write this as,
/=PI || L <
h, h, h,
h,

2 f_llaf/axlll L@ dxdy + 2fh2|l3f/3x2|l L@ -

x=0p= 0 =0

This reduces to,
/=PRI e <
203 ||3f/0x, || 1@ + 2h3 || 9f/0x2 || 1) -
Lastly we verify (16¢),

x y
fx,y)—fw,2) = aiw%(a,z)da + biz%(x,b)da .
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So,
h, h

! f fx,p)— flw,z)dxdy =

hlh2 x=0y=0

h h

1 ey B
Loy fgg(a,z)da & f—a-g(x,b)da dxdy < (h1+hy)|| gradf]| Lo -
b=z

h1h2 x=0=0 [a=w

O

Note that the above inequalities imply,

lo—0| L@ < I{neai(Zh,%_l +2h%2)" |0l we) » (5.17a)
loe—1L0| @ < Elg;ﬁ(zhi‘l +2h72)" || o || wi@) - (5.17b)
lu—Puull @ < Féﬁ(zhi‘l +2h%) " || v - (5.17¢)

for suitable u and o.

5.4 The discretisation.

We describe our discretisation. The basic idea of mixed finite elements
with a lowest order Raviart-Thomas trial space and an exponentially fitted test
subspace for the vector valued functions is complicated by the use of a quadra-
ture rule, needed to keep the M-matrix property for the system without
Lagrange multipliers for non-zero y. This quadrature rule is discussed in sec-
tion 5.4.1. Another complication is the approximation of the coefficients by
piecewise constant functions, as described below. In section 5.4.2 we give the
resulting discretisation.

We replace the coefficients a , B and y by two dimensional step func-
tions. To write our modified problem in weak form, we need to define three
new bilinear forms,

a(e,T) = s{(r'rPhaz dp V 6,1EX,

k

bo,1):= [toPBdp V 6 EZ1E LX(Q) ,
Q
o(s,0):= [ stPyydp ¥V st € LX(Q) .
Q

The bar on the bilinear forms denotes that the coefficients are replaced by
their cell-wise averages. We then replace a by a,, the subscript ¢ indicates that
a - not yet specified - quadrature rule will be used in the evaluation of this bil-

inear form.
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5.4.1. The quadrature rule.

We construct a quadrature rule @, ; by imposing the condition that, if a,
B are constant, y=0, CKER, and the solution satisfies
u = Cexp(—fBi1x;—Byx,)+K, then the discrete solution should satisfy
6, = II,0 and u, = P,u. We see that for the u given above 6 = —KB/a, so
o is constant. We define o, separately for each basis function #, ;1 where

f(f—l/;,ﬁ%),lﬁ on @iy,
%j+n = 0 —$i+nj+mw1)e on 9i+’/:.j+'/: )
0 elsewhere ,

and 7, 5 ; where

$i+uj—1.2€2 on Qivnj—n>

Ni+ypj — (1=$G+nj-n.2)e2 on Qitmj+u -
0 elsewhere .
We denote the set of all possible indices for the basis functions 5 by
E = { e={ij—¥) | i=0,12, ... N, j=L12,...,Ng } )
{e=(—%))|i=12,...,N;,j=0,1,2,...,Ny }.
Our quadrature rule should satisfy the following condition,
a1(0,m,) = a(em,) , (A)

for all constant ¢ and all » € E. Due to our assumption that the coefficients
are constant, we have a =a and b =h. The above condition guarantees that, for
constant coefficients and constant o,

a(a,'r;,)—(u, div'rh)—l-b('rh,u) = Eh‘l(Hho,'rh)—(Phu, div'r,,)+b('rh,Phu) \Y T (S Xh
and we also have,
(dive,t) = (divIl,e,r) =0 V ¢t € L*(Q) .
So our condition (A) on @ is sufficient for our purposes. We now select the
quadrature rule by taking the following definition for a ;.
a, (o,1) = (5.18a)
2
> > )P N(e) [P[Qk](fk,i)P[rk.i.l](Ui’fi) + P[] _fk,i)P[rk.i.O](OiTi)] .
kEKi=1
We introduce a new problem dependent norm on Xj,
NTnlln = (5.18b)
2 %
S 3 M@ [PIOIGKIPTei k) + PRI —§)PTeiolrh)|

kEKi=1
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From this point onwards, we take a, =ay ;.

5.4.2. The discrete system.
We approximate the solution (o,u) of (6) by (6,,u;) € V) X W, where

(o) — (u, dive) + b(ruy) = < Tmg,g > VY TEX;, (5.19)
(divoy,,t) + cupt) = (fit) ¥ t E W, . (5.19b)

If we use a in stead of @,, then that means that our discrete problem
does not always yield an M-matrix for u,. Consider, for instance, the
corresponding discretisation on a uniform mesh with mesh width /2 in one
dimension with « = 1, 8 = 0 and y constant. If ayh?/6 > 1, then the off-
diagonal elements of the discretisation matrix for w, after elimination of @,
through static condensation have the same sign as the elements on the diago-

nal.

The idea of using linear trial functions and exponential test functions
was used by Hemker for singularly perturbed two point boundary prob-
lems [6]. For the one dimensional case, the introduction of exponential test
functions follows from the requirement that it must be possible to approximate
the Green’s function of the problem by the test functions. For finite elements
in one dimension the the singularly perturbed case was studied by O’Riordan
and Stynes[15-20] and Reinhardt[21]. For finite element in two dimensions
O’Riordan and Stynes derive a uniformly convergent estimate [22] but only for
problems with a strictly positive zero-order term.

In the following sections, we prove, that the solution of our discretisation
(19) is an O(h) approximation to the solution of our original problem.

5.5 Several technical results.
This section contains some technical results, collected for later reference.

Lemma 5.2.
I, o II, = I, , (5.20a)
I, oI, = II, (5.20b)
(dive,P,t) = (divIlyo,r) V o €3, 1€ LXQ), (5.20¢)
77 = yrityg V 1EZ. (5.20d)
Proof.

Both mappings are based on the same projections P[T'; ], so (20a) and (20b)
are trivial.

To prove (20c) we use a special case of Green’s theorem:

2 W@
[ divodn= 3 “; 2
: ki

i=1

[P[rk,,-,ﬂ(o,«) - P[rk,i,ol(o,-)} .
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If we combine this with the definition of II,, the proof of (20c) is complete.
Equation (20d) follows immediately from the definitions. [

Lemma 5.3.
If 6 € 2 and we define a,; = P[I';;0l(0;) and by; = P[I';;](s;), then the fol-
lowing inequalities hold for || 11,6 3q, and ||II,6]| 3,

() 2 p(Sy) 2

6 E(alz(,i+b12<.i) = ”Hho”%f((h) < "2_2 (ai,i+b£.i)‘ (5.21a)
i=1 i=1

1oty < 2o} < 12| el i - (5:21b)

Cf. chapter 2, section 2.5.2, lemma 2.9 and chapter 4, lemma 4.1.
Proof.
Formula (21a) follows immediately from

2
(e, ILe) = 3 [(1—§k,i)ak.i + gk,ibk‘i]zd""-

i=1keKQ,

Next, we derive (21b) from,

- ~ 2 9
(ITy0,IT,0) = > > [(1—§k,i)ak,i + §k,ibk,i] dp .
i1 kEKD,

We see immediately that

2
/ [(1—§k.i>ak.f + §k,,-bk.,-] d < [20=5 )k, + 2F b <
2[(1_§k,i)012<.i + gk.ibi,idp' = 2p(S%) [P[Qk](l_fk,i)alzc,i + P[Qk](fk,i)blzc,i] .
Q

This implies (21b). O
Lemma 4 shows, that @ is L?(2)-bounded and L()-elliptic.

Lemma 5.4
Let a€EWP@), a=>4 >0o0n 2 and a(o7):= [ Pya)ordp
Q
Y o,7 € L*(Q), then
a(e,m) < |la|| =@ llollvellTllve YV orELXQ), (522

and
a(r,r) = A||7||be VY TELXQ). (5.22b)
Proof.
From (2) it follows that,
adp
4 < ;"(Qk) < lleflt=@
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together with the definitions of 2 and a this implies (22a) and (22b). OJ.

We introduce the minimum mesh width A, and the maximum mesh
width 7 .,

hmin = min - min |l (5.23a)
hpax = max max |7 | . (5.23b)
kek i=1.2

5.5.1. The properties of a,.

We discuss the properties of the quadrature rule a,. We assume that
th:thl, where @), ; is given by (18a). We discuss the interaction between 11,
11 and a,. We show, that Eq is Lz(ﬂ)-bounded on V), and we also show, that
a, is L*(Q)-elliptic on ¥, and X;,.
Lemma 5.5.

If 0,7 € Z, then

Eq(HhU,HhT) - Eq(HhT,HhO’) = Eq(o,Hh'r) = Eq(HhO,T) = (5243)
a,(0,11,7) = a,(Il0,m) = a,(I,0.11;7) .

HO[“ L*(Q) ||H;,0H;21 = Eq(Hho,Hho) = (524b)
. et A . E
Ya(1ly0,11,0) = EHHh“H%f(Q)v
Zq(Hho,Hh'r) < 6 || [ || L*(RQ) H Hhﬂ' || L(Q) H Hh'r H h s (524C)
A ||Hh'r||,2, < ay(7IL;7) < [l ]| L= ||Hh'r||;21 . (5.244d)

Proof. .

The definitions of II,, II, and a, imply (24a). Inequality (24b) follows
immediately from (18a), (18b) and (21b). To prove (24c), we need some auxili-
ary variables, a;; = P[T;0)(0), bi; = P[T4i110), cr; = P[Ly;ol(r) and
di; = P[T}1)(1). We use Cauchy-Schwartz twice to obtain

. 2
a,(Ie,1Ir) = ¥ [ adp X (P[QJ(A—Skidaricki + PNk )bx,idr,i) <

kEKQ, i=1

2 , , v P ]
E adp 2 (ar; + bii) E [P[Qk](l_g'k,i)zc%.i + P[Qk](fk.i)zd%-,i] :
kek{, i=1 i=1
We use

PIQI(N < PIUI()
to rewrite the term in ¢ and d and we use (21a) to replace the term in ¢ and b
by || 1Li0 | 2@,)

Zz_q(Hh o, fIh T) <
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%

2
2 (PIUNA =8Pt + PIQNGe))dr )

2 !{ o dy dl MMhollvay
(Q @)t
We see immediately that this implies,

a,(I0,I1,7) <

6llall L@ [IHxe|l@ [[ThT]a-
This proves (24c). Inequality (24d) follows immediately from (13).

O

5.5.2. The difference between a and a,.

For our error estimates, we need an upper bound for the difference
between the value of a(e),7) and that of a,(0),7) for o, € V), 7€ H'(Q). As
we already know from (16¢) (see also Lemmas 8 and 9) that,

la(o,m) — a(o.1)| < 2hmu|la|lwr@llollv@llmllve

an estimate for |a(e,7,) — ay(o,7;)| suffices. Such an estimate is derived in
lemma 6.

Lemma 5.6.
Let 1, € X, and o € H'(Q), then

la(e,m) — a,(0,m)| < 2||a|| 7@ hmax [|Tllrllo|l@ - (5:25)
Proof.
To simplify our notation, we introduce a,; = P[I'y;0l(Th), bx; = P[Li;i11(Th),
ori0 = P[Txio0l(0;) and oy ;; = P[Iy;,)(0;). We prove the lemma for ¢ with

01,0, € C'(Q), and extend by density.

We consider the difference between the two forms on one subdomain £,
with P[Q;](a) = 1.

2
[[on = 3 [P[szkl(l—fk.i)P[rk.i.ol(oiTh,i) + P[ﬂkl(fk,,-)P[rk.,-,l](onh_,-)] dp| =

i=1

5)
| 2 [(l_fk,i)ak,i + §k.ibk,i]0i dp —

, i=1

() z [ (900 — )P Tesol(ar0) + Pmkks“k,,«)P[rk,,-,]1(bk.,-oi)]| =

3 [(1 — )10+ S b0 =PI — 800 —P[ﬂkkfk,i)bk.iok,,-_l] dp| =

=1

2
I [(1—§k,,-)ak.,-(o,-—ok.,-,o) +§k_ibk.i(oi—ok,i,.)] dp|

=1
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The application of the Cauchy-Schwartz inequality to this last term and inser-
tion of a yields the following result,

|a(o,7;) — ay(0,1)| <
2 1 , "
Boax @]l @ 17 lln | 2 2 2 lloi—oik;ll @] -
KEKi=1]=0

If we take s = j in (16b) then this implies,
%
|a(o,m) — ae,m)| < [lafl L@ [[7alln [24hmax || grada, || %z(m] =
i=1

2hmax HaH L*(Q) ||'rh ”h ||6HHI(9) #

Because Cl(ﬁ) is dense in H'(R), the formula also holds for 6,0, € H'(Q).

O

5.6 The error estimates.

We use the standard estimates for ||6—1IL,0||12@) and ||u—Pyu|| ),
as described in section 5.3.4, to reduce the problem to deriving bounds for
|| Pyu—uy || 12 and || 11,00y || @) We discuss two possible derivations of
an O(h) error bound. The first derivation needs the assumption, that A,y is
”small enough”, the second derivation places a condition on an approximation
of the discrete version of the adjoint problem.

5.6.1. Errors due to approximation of the bilinear forms.

As preparation for the derivation of a pr10r1 error estimates, we derive
some upper bounds on the errors caused by the piecewise constant approxima-
tion of the coefficients a,B and y. We use the followmg well-known notation.
If ¥ and W are normed linear spaces, then AV, W;R) is the space of bounded
bilinear forms on ¥ and W. the standard norm of an element b € AV, W;R)
is given by

_ __LbCwy|
161l av.wmy = Sup S M

e v lviwliw -

Lemma 5.7.
If « € Wi (Q) then

H a —Eq H AH@.X,. | R S 6/ max || o ” W@ »

where (X),, ||. || ) is @ normed linear space with as elements the elements of X),
but with ||. ||, as norm.
Proof.

From equation (16c) and (21b) it follows that,
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la(o,m) — a(o,m)| < hma[la|lwr@ ol | Talln -
When combined with lemma 6, this implies

la—aq |l am@.x,. ). 108 < Omaxllallwr) -

Lemma 5.8.
If B € W (Q) then

16=b || av@. @r) < YmallBllwr) -

Proof.
This follows immediately from (16c).

O

Lemma 5.9.
If y € W(R) then
le—cllave.caor < 2AmxllYlwr@ -
Proof.
This follows immediately from (16c).

O

5.6.2. An a priori error estimate.

The following two lemmas show nice properties of our discretisation. We
need these properties to derive the error bound.

Lemma 5.10.
Lett €3, 1t € LX(Q), then

b(I,7,t —Pyt) — (divILz,t—Pyt) = 0. (5.26)
Proof.

A straightforward calculation shows that Ph(B)-fI,,-r — div ﬁ,,-r is constant on
Q. From this (26) easily follows. [J

Lemma 5.11.
If (o,u) is a solution of (6) and (e,u;) is a solution of (19), then

(div(o—oy),Put) + c(u—u,,Pyt) =0 V ¢t € LA(Q) . (5.27)
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Proof.
We take (19b),

(divey, Pyt) + c(uy, Ppt) = (f.Pyt),
¢ is derived by orthogonal L*(€) projection, so this implies
(diVOh,Pht) + c(uh,Pht) = (ﬁPht) .

If we subtract this from (6b), (dive,P,t) + c(u,Pyt) = (f.Pyt), then we find
27. O

We are now ready to give an estimate for || [I,6—0y, || .

Theorem 5.1.

If (o,u) is the solution of (6), (oj,u,) is the solution of (19) and
(o,u) € H'(Q)X H2(Q), then there exist positive real numbers C and D such
that

€ = (5.28)

12
— max(l, ||e lw=@» | Bllwz@s 1Yl we@) max(L, [[o]] n, [l ]l @) »

_ LBl
A

|| [T — 01|17 < Chpa (|| — 0y ||n + || Pru — || @) +

D

PR

D || — oy || 4|l Pru — unl L) -

Proof. . -

According to (24d), 4 ||Il(6—0,)||7 < a,(6—0;, 1I,(6—a)). This is the
starting point for the derivation of our error bound. Equations (6a) and (19a)
imply, that

aq("—"h»ﬁh("_t’h)) =
(Eq‘a)(",ﬁh(o'ﬂh)) + a(e,IL,(6—0)) — aq(ah’f[h(o_oh)) =
@,—a)e.I,(@—0y) + (divIT(6—0,),u) —
bl (c—0p)u) + < gmgll(c—0y) > +
b, (6—0p)uy) — (divil,(e—o).u) — < gmglle—e;) > =
@,—a)o,[o—ay) + (divIle—0o)u)r@ — (b~ bYiLie—oy).u) —
b(ITy(0—ay)u) + b(Ily(6—04).u) — (divITi(o—ay).up) -

Where we give b —E, Eq —a etc. their obvious meaning. If we use lemma 10, we
find:

A||Te—0p) |} < @, —a)e.lle—0,) — (b—b)XITy(6—0,).u) +
(divILy(o—04). Pt — ) @) — b(IL(0—04). Pyu—uy) -
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If we use (20b) and (20c) to prepare the way, then the application of lemma 11
to this expression results in:

A||To—0p) |20 < @—aXe,Il,(6—0,)) — (b—b)ILi(6—0,),u) —
c(u—uh,Phu—u;,) - E(I:[h(o—ah),Phu—uh) 3

As vy is non-negative according to (5), we may add c(Pju—uy,Pu—u;) on
both sides of the inequality, we find,

AT —0y) || B + c(Phu—upPru—u,) <
(@,—a)@.l(6—a,)) — (b—b)ITy(0—0,),u) —
(c —)u— Py, Pyu—uy) — b(IL,(6—ay), Phu—uy) .
We use lemmas 7, 8 and 9 to reduce this to,
A||Tye—ay)||} <
P max [6||“||w.‘°<sz)||°|| wa + 41Bllwr@ llull v | 11 Tie—oy) |4 +
2R ma 1Y | wr@ |4 = Prue || 2@y | Prut—un || 2@y +
2(| Bl @ | (o =) || L || Pu—144 || i -
Note that for all u€ L*Q), |u—Pul| g < |lu|1@ and
e ||, = [[ 1140 || 4-
O

Next, we prepare for the second part of our error estimate.

Lemma 5.12.
If (o,u) is the solution of (6), (6y,u,) is a solution of (19) and (7,q) is the solu-
tion of the adjoint problem for an arbitrary right hand side p € L*(Q), then

(divr,Ppu—uy) — b(r,Pyu—uy) =
a(o,TTym) — @y, ) + (b—b)(ILym,u) + b(ILyr—7, Pyu—uy) + (b—b)(r, Pyu—up) .

Proof- _
We start by replacing b by b,

(divr,Pyu—u,) — b(t,Pyu—uy,) =
(divr, Pyu—uy) — b(r,Pyu—uy) + (b—b)(r, Pyu—uy) .
We use (20a) and (20c) to get,
(divr,Pyu—uy) — b(t,Pru—uy) =
(div I, Pyu—uy) — b7, Pyu—uy) + b(ILym— 1, Pyu—uy) + (b—b)(r, Pyu—uy) .

We use lemma 10 to find,
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(divr,Ppu—uy) — b(t,Pru—uy) =
(divIT,mu—w,) — b(ymu—uy) + b(Lyr—7,Pu—u,) + (b—b)x.Pyu—uy) .
We use equation (6a) and equation (19a),
(divT, Ppu—uy) — b(t,Ppu—uy) =
a(o,f[h'r) = & g,flh'r-nag > — Eq(oh,ﬁhr) +
< gllrmg > + (b—b)ILmu) +
b([,—7,Pyu—uy) + (b—b)(T,Pyu—uy) .

Lemma 5.13.
If (o,u) is the solution of (6), (0;,uy) is a solution of (19) and (7,w) is the solu-
tion of the adjoint problem for an arbitrary right hand side p € L*(Q), then

c(Pyw,u—uy) = —a('r,flh(o—o;,)) + E(ﬁh(a—oh),w—P,,w).

Proof.
According to lemma 11,

c(Pyw,u—uy) = —(div(e—o,),Pyw),
according to (20b) and (20c) we can rewrite the right hand side,
c(Pyw,u—uy) = *(divﬁh(o—oh),Phw) .

We wish to use equation (26) from lemma 10 to remove P,. To do this we
must add and subtract a term b(I1,(6—a;),P,w) on the right hand side of our
equation. We apply lemma 10 and gather terms in b together,

c(Pyw,u—uy) = —(divl:Ih(o—oh),w) + B(ﬁh(o—oh),w—Phw) ;
Finally, we use (11a),

c(Ppyw,u—uy) = —a('r,fIh(o—oh)) + E(ﬁh(o—oh),w—Phw).

O

Theorem 5.2.

Assume the adjoint problem (11) has a unique solution for all square integr-
able right hand sides and assume that there is a constant C, such that, if (7,w)
is the solution of (11) for a given right hand side f, then

Irllwe + wllne < Glifllve -
Now, if (a,u) € H'(Q) X H*(Q) is the solution of (6), and (e},,u;) is a solution
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of (19) then there are constants
C.D,E € (0,4C,(1+2h o )max(|| || wr @) || Bllwr@s | Y[ wra@) 1
such that
| Prtte =y || L@y <
Chumax(||u ]| @) T |lon(@) + Dh oo || Tu(@—03) || 5 + Ehna || Prtt =104 || '@ -

Proof.
If we have an estimate for (P,u —uy,p) for all p € L%(2), then we can use

sup _@n
PeLl@p#0 ||p|l L@

to find ||Pyu — uy|| 12@- We use the regularity of the adjoint problem (11)
to find a solution (7,w) € H'(2) X L*(®) of (11) for a given right hand side
p € LA(R). We may write,

(p,P,,u—u,,) = (diV'r,Phu—u;,) = b('r,Phu—u,,) + c(w,Phu—uh) i

2]l e =

If we apply lemma 12, we find,
P, Ppu—uy) =
a(e,11,7) — ay(op,m) + (b—b)ILmu) + b(ly7—7,Pyu—uy) +
(b—b)T,Pyu—uy) + c(w—Pyw,Pou—up) + c(Pyw,Pyu—uy) .
We use lemma 13,
(. Pyt — uy) =
a(e,I1,m) — a,(0;,IL7) +
(b—b)YIL,m,u) + b —7,Pyu—uy) + (b—b)(1,Pru—uy) +
c(w—Pyw,Pyu—u;) — a('r,fIh(o—o,,)) + l_)(I:[h(a—ah),w—Phw).
We can write this as follows,
@, Ppu—uy) =
(a—a,X0,IL,) + a,(6—0,IT;7) +
(b —b)TTym,u) + bALr—1,Pyu—u,) + (b—b)r, Pyu—uy) +
c(w—Pyw,Pyu—uy) — a(r,ﬁh(o—ah)) + B(ﬁh(o—oh),w—P,,w) :
We use (24a) to write this as,
P, Ppu—uy) =
(a—a,)o.M;7) — (a—a,)(7IT,(c—ay) +
(b—b)I,m,u) + b(AL,7r—7,Pyu—u,) + (b—b)(t,Pyu—u,) +
c(w—Pyw,Pyu—uy) + b(IL,(6—a;),w—Pyw) .
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We can use the regularity of the adjoint problem (11), lemma 7, 8 and 9 and
the projection error estimates (16a,b,c), to obtain

| P —uy || L) <
Co(1+ 2k max) 2P max || @ | w7 @) [||°‘||H‘(m + ||ﬁh(°_°h)||h] +
4C, || Bllwr@(1+ 2ma) | [ @) + 2C max | Bl L@ | Prt =t || @)+
2C,h max [hmaxHYer(mHPh”‘“h lv@ + 18]l v e —ay)]] L%ﬂ)] :

This can be written as,
| Pr—up || @y <

Chmax + DhmaxHHh(o_ah)Hh + EhmaxHPhu_uhH L@ -

O

If A,y is small enough, theorem 1 and theorem 2 together give an O(h )
error estimate. An important limit on %y, is implied by the form of the esti-
mates in theorem 1 and 2. The main problem is, that large values of
lle|lw=@s ||B]lw=@ and ||v|lwr @ decrease the range of h .y for which the
estimate is valid. This problem can be avoided if we make an extra assump-
tion. We discuss this in the next section.

5.6.3. A different approach.

To improve our estimate of || Pyu — u || 1), We consider the adjoint
of the discrete problem. This means, that we look for (7,v,) € Xj, X W), , such
that

ay(1y,04) — (dive,,vy) =0 V 0, € Vi, (5.29a)

(divry,ty) — b(mpty) + copty) = (ity) ¥ 1, EW, . (5.29b)

We call this system regular, if there is at least one solution for each
f € P,(L*()), and that all solutions for a particular f satisfy

Nralle + llvallve < CHPSfll @ - (5.29¢)

with C independent of the mesh size. This is a somewhat less stringent regu-
larity condition than that given for the continuous adjoint problem (10). Note,
that 7, € X),, so 7, is a piecewise exponential function on ; for i =1,2.

An example of a general condition under which this system is regular is
the following:

«a=A>0,y=Cy >0 and ACy — ||B|lt~@ = Ci1 > 0 (5.30)
To show this, we need the following relations,
f Ph(a)

——1,1, — Pu(B)y vy + Py(Y)vivn dp = (5.31)
Q
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P 2P : P,(B)
g_h:f‘l [,h _ P,,h((ali) Vh} Py(y) — %]vhvh dp = (5.31a)
P B 2 P 2 )
i/)‘Ph(Y) vy — % + |Pya) — zf,,(fy)) 7”47" dp. (531b)

We know, that (div ﬁ,,o,P,,t) = (divIl,e,P,t), so, if we take the sum of (29a)
and (29b) with ¢ = II,7, and ¢t = v, we find

ay (s TLymy) — blmv) + Onva) = (fivn) - (5.32)
According to (24a), a (7, 11,7,) = Eq(fIh'rh,fI,,'rh), and by (24b) we have

%E(ﬁha,ﬁho) < Eq(l:lho,f[ho) .

Hence
Py()
[ =3 = PaBymvi + PuCyvvy dp < [ Pp(fvy dpp . (5.33)
Q Q

This expression is identical to (31), so (31a) is smaller than (f,v,), combined
with (30) this implies

Cy
— llve < Ifllve - (5.34a)

In the same way, we find, that (31b) is smaller than (f,v;), together with (30)
and (34a), this implies

¢,
(ACo)*

From (32) we see that this implies,

e < Ifllve - (5.34b)

Allmlli < ag(mnmy) <

WAl vl ce + IBllv@ lmnllce vl cay + 171 @ vl e
this implies that there is a C such that

lmalln < ClIfIl e -

Theorem 5.3.
If we assume, that (29c) holds, then

| Pru—uy || @) < (5.35)
P max [6||a||w:‘<sz)||°||H‘<ﬂ) + + 2([|Bllwre t 1Y Ilwra@) | u|| L%ﬂ)] :

Proof.
We use (29b),

(Pout = wy, Pyf) = (dive, P — wy) — b(my, Pyu — wy) + C(Pyu — up,vy) -

- 121 -



5. A PETROV GALERKIN MIXED FINITE ELEMENT METHOD

Hence, according to lemma 10 and the definition of c,
(Ppu — wp, Prf) = (divr,u — wy) — I;('rh,u — uy,) + c(u — up,vy) .
We use (6a) and (19a) to find
(Pru — up, Ppf) =
(divry,u — wy) — (b—b)(wpu) — b(ry,u) + b(my,uy) + c(u — up,vy) =
(b—b)my,u) + a(0,my) — (on,m) + (€= Yuvy) + el = upy) -
According to (24a) and lemma 11, this implies
(Ppu — up, Pyf) =
(b—b)(Thu) + (a—a,)o,7y) + a,(Al,6 — 04,7;)
+ (c—c)u,vy) — (div(Ilo — 0,),v)
Now, (29a) implies,
(P — w, Pf) = (b—b)(mpu) + (@—a,)(0.m) + (€= c)uvi) -

Finally, we use lemma 7, 8, and 9 and (29¢) to obtain our error estimate (35).
O

5.7 A verification of the local maximum principle.

We use the discrete adjoint problem to show that, for this quadrature
rule, the matrix after elimination of ¢ by static condensation is an M-matrix.
The discrete adjoint problem is defined in (29).

We assume a regular uniform mesh. We denote the matrix corresponding
to (29), after elimination of o), by 4. We see, that the matrix 4 has non-
positive off-diagonal elements. We shall show, that 4 is an M-matrix. To do
this, we use theorem 5.12, chapter 5, page 124 of [23]. This theorem states,
that, for irreducible matrices with non-positive off-diagonal elements, the M-
matrix property is equivalent to the existence of a positive vector with a non-
negative image, that is not identically zero. In our case, the vector
) 1%) 1)T has a such an image, because all row sums are non-negative, and
any row corresponding to an edge or corner has a positive row-sum.

The fact, that the matrix A is irreducible follows from theorem 3.6, [23]
which states that, for a square matrix, irreducibility is equivalent to its di-
graph being strongly connected. Inspection shows, that the di-graph of the
matrix under consideration is indeed strongly connected.

According to theorem 5.6 [23], A T is an M-matrix too. This implies, that
the discrete equations for the original u, satisfy a local maximum principle.

The M-matrix property implies that the system for u, has a unique solu-
tion. From the form of the equations for o,, we see that a given u;, induces a
unique o,. this implies that our system is always uniquely solvable. A quick
calculation of the coefficients of u, in (19a) shows that, for constant
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coefficients and large B, i.e. with large convection diffusion ratios, we get a
relation between o, and u;, where the “upwind” point is weighed more heavily.
If B/a remains bounded and we go to the limit |8, |+ |B, | —oo then we get
a first order upwind scheme. This suggests that the scheme, in which the
coefficients are continuously dependent on this ratio, remains useful close to
such a limit.

5.8 An a-posteriori estimator.

We use a special quadrature rule and obtain a higher order discretisa-
tion. We seek an a;5(.,.). that minimises a —a,, 3. To do this, we choose a spe-
cial quadrature rule for each a(.,n), where 7 is one of the basis functions intro-
duced earlier. Due to the nature of our test functions, the quadrature rule is
essentially a one-dimensional rule.

5.8.1. The derivation of the quadrature rule.

For #;,:, we proceed as follows. We replace the two dimensional
integral by a repeated integral, we integrate exactly in the e, direction and
then use a three point rule to approximate the remaining integral. As nodes for
the last integration we take either the centres of I'i_y ; 40, ity j+50 and
Tityj+n1- Or, if we are at a boundary, the edge centre on the boundary and
the two next closest edge centres. We choose the weights as follows,

ap3(1pomij+) = alomj+y) ,

for all ¢ with x;-components that are second order polynomials in x,. I.e. for
all p,g,r €R, and all Mij+1, WE have

@, 3(I((pxT +gx 1 +r)e)mj+5) = a((pxi +gx, +r)ep,m; j10)

In a similar manner, we define the rule for 9, ;.

5.8.2. An estimator for the local discretisation error and a lower bound for the
global error.

If we assume that ¢ =g, b=b and a=a , then we can use this rule to
obtain an a-posteriori estimator for the local discretisation error and a lower
bound for the global error as follows. It is immediately obvious, that

@3(0m) = @a(0m,) = Ohia) .
where r is a possible index-tuple. Moreover,
E(U,ﬂr) - Eh,3(o:nr) = @(h?nax) 5
if o is smooth enough. If
'Eh,S(ph’nr) - (diV"Ir_ﬁ"'lr,Wh)l = K 5
then we have either

Iwill =@ = C1K,
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or
llpnll =@ = C2K,
We see immediately that, if (6y,u,) is the solution of (19) with a,=a,, then
ay (e —0pm,) — (div—Bm, . Ppu—u;) = oh*),
with k=1 or 2 depending on the coefficients in (1) and
@, 3(I,6—6y,m,) — ((div —Bm, . Ppu—uy) = O(had) + @y 1 (04,m,) — ap3(05.m,)-

So, (ap, —ap3)(6,.m,) is an estimate for the local discretisation error. More-
over this implies, that there is a constant C such that

| Te—04 || Lo + || Pat =t || L@ = Clani(@nm,) = @3(opm,) | + O
If we assume that
| o—0s| 7@ + [P~ 7@ = O(h%.a0)
we see that, for /,,,, small enough,

o —0s || 7@ + [|Pau—unll L@ = %C | ap1(op,m,) — ap3(opm,)| -

This provides a lower bound on the global discretisation error. We expect the
solution for @, 5 to be two orders of magnitude more accurate than the solu-
tion for Eh.l -

5.9 Numerical results.
We consider problem (1) with
u = tanh(8(x; —x3)),
a=100, B;=B,=100 ,
I =02,g = uls.
f=- div(gradu +up) .

«

We find the following results for the two discretisations. The two components
of the error vectors for the fluxes were identical up to the accuracy given. We
use the norm described in section 4.8.2 of chapter 4.

the log, of the errors for a,=aj, i,
meshwidth | log, || Pyu—uy,|| | logy || (11,6 —0;)e ||
174 -1.5 -1.3
1/8 -1.9 -1.9
1/16 2.6 -2.6
1/32 -3.8 -3.7
1/ 64 -5.4 -5.4
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the log, of the errors for a,=a 3,
meshwidth | log, || Pyu—uy|| | log, ||(I1,6—ay)e ||
1/4 -3.0 -3.1
1/8 39 45
1/16 -6.0 -6.7
1/32 -8.5 -10.0
1/ 64 -10.9 -13.7

We see that the order of convergence is indeed higher for the second method.
we also see that the difference in order for the fluxes approaches 2. Deviations
from the expected order may be caused by the steepness of the solution rela-
tive to the mesh.

5.10 Conclusions.

The Petrov Galerkin mixed finite element method with exponentially
fitted test functions for the fluxes has several nice properties. For instance, just
as for a finite volume method, if the true solution ¢ is divergence-free, then the
same holds for o;. Furthermore we have a formal a-priori error estimate, and
after elimination of o, by static condensation the two dimensional discretisa-
tion results in an M-matrix for u,. We can extend the method to three dimen-
sions without additional difficulties. Section 5.9 suggest that the scheme with
the three point quadrature rule a, ; can serve as a source for a-posteriori error
estimates. To judge the effectiveness of the method for singularly perturbed
problems is very difficult. However the fact that it incorporates exponential
fitting, copes well with the exponential solution of the constant coefficient case
and approaches a two-dimensional upwind scheme if the convection goes to
infinity suggests the method based on g, ; can be applied to such problems.
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Samenvatting

Enige aspecten van gemengde eindige elementen methodes voor halfgeleider
simulatie.

Als uitgangspunt voor dit proefschrift dient de discretisatie van het sta-
tionaire drift-diffusie model voor de halfgeleider. Dit is het eenvoudigste model
voor het gedrag van electronen en gaten in een al dan niet gedoteerde
halfgeleider en het wordt beschreven door de Van Roosbroeck vergelijkingen.
Dit proefschrift bestudeert de discretisering van de afzonderlijke vergelijkingen
en de nauwkeurigheid van de discretisatie. De oplossingen worden benaderd
in de laagste orde Raviart-Thomas ruimte voor rechthoeken. Hoofdstuk één
bevat een korte inleiding over halfgeleiders en halfgeleider-modellering.

In hoofdstuk twee wordt een nieuwe variant op de gemengde eindige
elementen methode voor een tweede orde elliptisch probleem besproken. Door
het gebruik van een gepaste kwadratuur-regel voor de berekening van de
coéfficiénten-matrix levert de methode een betere orde van benadering voor
locale gemiddelden. Het verschil in orde tussen de nieuwe variant en de
oorspronkelijke methode kan gebruikt worden om een a-posteriori foutschat-
ting voor de oorspronkelijke methode te construeren.

Hoofdstuk drie levert foutschattingen voor een klasse van Petrov-
Galerkin gemengde eindige elementen methodes voor de één-dimensionale
convectie-diffusie vergelijking. We vinden een uniforme foutschatting voor de
flux van de oplossing. Voor het verschil tussen de discrete benadering ener-
zijds, en een probleemafhankelijke projectie van de continue oplossing ander-
zijds, kan ook een uniforme afschatting worden afgeleid. De genoemde projec-
tie is bijna gelijk aan de standaard L2(Q)-projectie voor alle roostercellen waar
de convectie en diffusie van dezelfde orde van grootte zijn, hetgeen aantoont
dat een gelocaliseerde singuliere verstoring geen globale gevolgen heeft. Als
hulpmiddel bij de hierboven beschreven analyse worden enige stellingen
afgeleid over de regulariteit van de oplossing van het continue probleem.

Hoofdstuk vier heeft als doelstelling het afleiden van een a-posteriori
foutschatting voor de Scharfetter-Gummel discretisatie van de continuiteits-
vergelijkingen in het halfgeleider probleem. We gebruiken de methode van uit-
gestelde correcties (deferred corrections) om een a-posteriori foutschatting af te
leiden. Het discretisatie schema blijkt stabiel en consistent te zijn.

In hoofdstuk vijf wordt een Petrov-Galerkin gemengde eindige elementen
formulering van de continuiteits-vergelijkingen gegeven. Het hoofdstuk bevat
foutschattingen voor de discretisering. De foutschattingen zijn in principe niet
geldig voor het singulier gestoorde geval. Er zijn echter argumenten die aan-
tonen dat de discretisatie voor het singulier gestoorde geval toch bruikbaar is.
We ontwikkelen ook een discretisatie die een hogere orde van nauwkeurigheid
biedt. Deze discretisatie wordt gebruikt om een a-posteriori schatter voor de
locale discretisatie fout af te leiden. Tevens wordt een ondergrens afgeleid voor
de globale discretisatie fout.
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S
saddle-point problem 72,79,89
scaling 18,103
Schrodinger wve equation 14
second order elliptic equation 22,28
semiconductor 11,14
continuity equation 102
semiconductor device ' 11ff
crystal rectifier 12
diode 16
MOSFET 17
transistor 16
singular perturbation 54,70
localised 54
singular perturbed 23
Slotboom variables 19
Sobolev embedding theorem 35f
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Sobolev space
Span
stability
subdivision

T

Taylor expansion
Taylor series

(see Taylor expansion)
test space

thermal voltage
transistor

trial space

U

upwind scheme

A%

variational formulation
VLSI

W

weak differentiability
weak mixed form

zZ

zero order term

INDEX

35,56
30,79
72
29

90,93

21,64,108

18,73

16
12,21,64,72,108

23

21
12

56
103,105

47,52
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