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Introduction

This manuscript is mainly dedicated to the study of the initial value problem

Ug = Ugg + (U?)g + €%Uggy on R x RT (1)
u(z,0) = up(z) in R

Equation (1) is a special case of
up = {u® + vPug + 2u® (W uy)z } 2, (2)

in which o, # and 7 are non-negative constants. Equation (2) appears as a model
equation for Darcy flow in porous media with a dynamic capillary pressure relation.
We note that equation (2) is a nonlinear diffusion-convection equation with an
additional nonlinear third order term involving two space derivatives and one time
derivative. Equation (1) is simpler in the sense that only the convection term is
nonlinear, but a third order term with mixed derivatives in space and time is also
involved. Parabolic equations extended with such a third order term are called
pseudo-parabolic equations in the literature. They often appear as regularisation
of ill-posed parabolic problems or as a result of a relaxation term introduced in the
model.

Every chapter in this thesis is provided with an introduction, here we give a
brief summary, the derivation of equations (2) and (1), and a brief overview on the
literature on pseudo-parabolic equations.

0.1 Dynamic capillary pressure and derivation of the equa-
tions

Flow in porous materials is encountered in a large number of scientific and engi-
neering scenarios, such as flow of oil, water and gas in a petroleum reservoir, or
transport of water and contaminants in aquifers. Two-phase flow is the particu-
lar case in which simultaneous flow in porous media of two immiscible fluids takes
place. These fluids are also referred to as phases. Equation (2) arises in the case of
unsaturated groundwater flow, where the phases involved are water and air.

To describe phenomena in a porous medium regarded as a continuum, the phe-
nomena at the microscopic or pore level are averaged over a representative elemen-
tary volume (REV), which is also referred to as the macroscopic level. See the
schematic drawing in Figure 1.

A principal characteristic of two-phase flow is saturation of each phase, this is
the portion of pore volume filled with each phase. Equations for mass balance and
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Figure 1: Schematic REV

momentum balance are formulated for each of the phases, the unknown is one of the
saturations of the phases. To solve the system one considers a capillary pressure
relation, that, roughly speaking, accounts for the interaction between the phases
in the REV. We do not go into details on how the mass balance and momentum
balance equations are postulated, this lies beyond the purpose of this introduction.
We rather concentrate on the capillary pressure relation that leads to equation (2).

0.1.1 Capillary pressure and dynamic capillary pressure

When two immiscible fluids are in contact inside a narrow tube (the pore), a curved
interface between them is formed, see Figure 2. The fluid with concave interface is
called the wetting phase, the second fluid the non-wetting one. The force acting on
the interface, that prevents the fluids from mixing, is called interfacial tension. At
equilibrium, this force is related to the jump in pressure of the two fluids and to the
curvature of the interface by the Young-Laplace law, see e.g. [8]. The difference of
the fluid pressures is called capillary pressure, here denoted as p.. For example, if
the radius of curvature, R, of the interface is constant, then the capillary pressure
is given by

o
c = 2*a
pe=2g (3)

where o is the interfacial tension between the fluid phases. This is a microscopic
description of capillary pressure, and results from considerations at the molecular
level.

An REV in a porous medium is somehow a network of narrow tubes, the pore
geometry is complicated, and an averaged (macroscopic) law similar to (3) is difficult
to establish. Usually, in two-phase flow modelling the capillary pressure is also
defined as the difference of the pressures of the two phases, so that

Pec = Pn — Pw; (4)

where p, is the pressure of the non-wetting phase, and p, the pressure of the
wetting phase. In the standard approach, capillary pressure, p. above, is expressed
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0.1 Dynamic capillary pressure and derivation of the equations vii

Figure 2: Capillary tube

as a function of the wetting phase saturation, S, and it has to be determined
experimentally. This typically results in a function p, which is decreasing in terms
of the wetting phase saturation, see Figure 3. Of course, there are a number of model
functions to replace the empirical p., typical examples are Brooks and Corey (1964)
and van Genuchten (1980), see Bear [9, 10] or Bedrikovetsky [11]. Such expressions
are based on measurements of p, under static conditions within an REV.

It is well-known however, that the difference p,, — p, depends on other quanti-
ties, such as interfacial areas, and on dynamic effects. In order to capture all these
dependences, a new definition of macroscopic capillary pressure was introduced by
Gray and Hassanizadeh in [32]. This definition is based on thermodynamical con-
siderations at the macroscale. Following [30], the new p, is a quantity that provides
an indication of the system to admit a change in the saturation of the wetting phase,
and is not simply the difference of the fluid pressures. Although the new expression
for capillary pressure involves many thermodynamic quantities, rather than satura-
tions, they derived a residual thermodynamic relation (that indicates the entropy
production of the system), that relates the difference of pressures and the capillary
pressure measured under static conditions. The simplest approximation (linear in
0,S) for the later relation reads

Pn— Pw = pc(S) - LatS . (5)

Here p. denotes the capillary pressure measured under static conditions, or static
capillary pressure. The difference p, — p,, is defined to be the dynamic capillary
pressure. L is regarded as a capillary damping coefficient, which in principle depends
on saturation. This approximation tells that only under static conditions (8,S = 0)
the equality (4) holds.

Based on experiments, Stauffer in [66] postulated a similar relation. Equation
(5) is compared with Stauffer’s experiments and other experimental work in [30]
and [31]. In the latter (5) is also compared with numerical experiments for various
values of L.

Replacing (4) by (5) in the model equations leads to equations of the type (2),
see the next section.

The capillary pressure relation can be further extended to capture hysteresis.
From the sketch in Figure 3 we see that capillary pressure (at equilibrium) is not
unique. At a particular saturation, the static capillary pressure measured following
drainage of the wetting phase (the non-wetting phase displaces the wetting phase)
is higher than that measured following imbibition of the wetting phase (the wetting
phase displaces the wetting phase). This phenomenon is called hysteresis. The
intermediate curves, or scanning curves, represent capillary pressure changes in
terms of saturation of the wetting phase from imbibition to drainage, and from
drainage to imbibition.

vii
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Figure 3: Typical static capillary pressure curves

Hassanizadeh and Beliaev extended equation (5) by a relation that also accounts
for hysteresis, in which the scanning curves are approximated by vertical lines. We
have not considered this extension. However, the mathematical difficulties are of
the same order as for the equation without this effect. Numerical experiments for
this extension of (5) are presented by Hassanizadeh et al. in [33], and by Schotting
and Beliaev in [12].

Finally, we mention that, using homogenization techniques, Bourgeat and Pan-
filov in [14] derive an equation similar to (5) for the capillary pressure in a water-oil
system containing small scale heterogeneities.

0.1.2 Derivation of equations (1) and (2)

In the derivation of equation (2) we confine ourselves to the particular case of un-
saturated groundwater flow, where imbibition takes place under influence of gravity.
The two phases are water (wetting phase) and air (non-wetting phase). Throughout
we assume relative small values of the water saturation, so that regions where the
porous medium is fully saturated, as described by Hulshof [37] and van Duijn and
Peletier [73] for example, do not occur. According to Bear [9, 10] we have for water
in a homogeneous and isotropic porous medium the momentum balance equation

q=—K(S)(Vpy + pge;) (Darcy’s law), (6)
and the mass balance
$0y(pS) + div(pg) = 0. (7)

viii
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Here g denotes volumetric water flux, S water saturation, K(S) hydraulic con-
ductivity, p,, water pressure, p water density, ¢ porosity and g gravity constant.
Further, e, is the unit vector in positive z-direction, i.e. against the direction of
gravity. All these relations are based on the assumption that the air pressure, p,, is
constant in space and time. The equations for mass balance and momentum of the
air phase are then negligible. This assumption is common practice in unsaturated
groundwater flow and valid for small air viscosity. To solve equations (6) and (7) an
additional relation between p, — p,, and S is needed. We then consider the capillary
pressure relation proposed by Gray and Hassanizadeh

Pa — Pw = pc(S) - ¢L(S)ats (8)

Here L(S) is a nonlinear damping term.

Equations (6), (7) and (8) can be combined into a single equation for S, which
reads

$0,(pS) = div{pK (S)pge: + pK(S)V(—pc(S) + ¢L(5)8,5)}. 9)

Assuming now a one-dimensional flow in vertical z-direction, with p and ¢ constant,
and applying a straightforward scaling, equation (9) reduces to

;S = 0.{K(S) + K(5)0:(=pc(5) + L(5)8:5)}- (10)

To investigate the role of the nonlinear terms (i.e. K(S), p.(S) and L(S)), we replace
them by power-law relations. Note that this is consistent with the assumption of
small water saturation. So equation (10) reduces to

S = 8,{S* + BS*$719,5 + £5°8,(573,5)},

which after a change of notation corresponds to equation (2). Observe that the
diffusion term degenerates at S = 0.

In a previous work, see [4] and [7], G.I. Barenblatt proposed a different model
to describe the non-static situation. He modified (6) and (4) by replacing S by
S+ 19,5 (1 >0), in p.(S) and K(S). The resulting equation then is of the form

S = 0,.{®1 (S + 70,5)} + 0.{®2(S + 76,9)}, (11)

where ®; and ®, are nonlinear positive functions and degenerate at S + 79,5 = 0.
We note here that if the Barenblatt Ansatz (S <> S + 79,5) is applied only in
(4), then (10) would result with

T dpc
implying that L(S) becomes unbounded as S | 0. However, experiments carried
out by Smiles et al [64], see also Hassanizadeh [30] for an overview, show that L(S)
vanishes as S | 0.

Finally, we note that equation (1) can be seen as a formal limit of equation (2)
if one considers a constant initial water saturation Sp. Assuming that S(z,t) =
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So + eu(z,t) and using Taylor expansions of the nonlinear functions K(S), L(S)
and p.(S), the dimensionless equation (10) reads

euy = {(K(So) +eK'(So)u+...)+
(K(So) +eK'(So)u+...)(—pc(So) —epl(So)u—...),+
(K(So) +e K'(So) u+...)(eus(L(So) + e L'(So) u+...)),},

The formal limit as € — 0 of the above equation is a linear equation with solution

S = Sp. In order to get other possible limit equations we scale the independent

variables as z = g and t = Eza, in particular the choice a = 2, b = 1, allows to get

in the limit a convection term of the form (u?), as in (1). There are three cases:
If K'(Sy) # 0 the so

il
e3up ~ e(eK'(Sp)u+ 552K"(So) u’+. .. +eK (Sp)(—epl(So) u+eL(So) ur) x +- . )x-

This calls for the scalings X = —L1K'(Sp)T+Z and L(S;) = %li(So), wich neglecting
the terms of o(e®) gives

1 -
ur = (S0 — K(S(So) uz + K(SOLSIK (So)uzz) . (12
z
If K'(Sp) = 0 the distinguished limit has L(Sp) = 4 L(Sp). In this case the limit
equation is
1 z
ur = (EK”(SO) u? — K(So)p’c(S()) ux + K(So)L(So) UXT) : (13)
X

If K'(Sy) = ep the distinguished limit has L(Sy) = E%E(SO) and setting X =

—uT + Z, the limit equation is
1 <
ur = (K60  ~ K(SOpAS) ur + K(S)L(Su)wrr -+ uzz)) - (14)
z

Equation (13) is similar to equation (1). Equation (12) is a case of the so-called
KdV-Burgers’ equation. Equation (14) combines the two, and is often called BBM-
Burgers’ equation in the literature. These last two equations are regularisations or
the dissipative versions of the KdV equation, see [43], and the BBM equation, see
[13], that appear as models of long wave propagation. In this thesis we shall be
concerned with (1). We shall discuss the literature for this equation on Section 0.3.

0.2 Pseudo-parabolic equations
One of the earliest pseudo-parabolic equation in the mathematical literature is

Up = Ugg + EUgge  on [0,1] x [0,T], with e >0, (15)

which arises in two-temperature theory of heat conduction, see [70] by Ting. This
equation admits a unique solution for given initial data. It exhibits maximum
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principles and comparison principles. This can be seen by computing the funda-
mental solution of (15), which is positive. Unlike for the heat equation (¢ = 0),
the backward problem (or final condition problem) is also well-posed. This is be-
cause equation (15) can be written as an ODE in a Banach space. This is in fact a
common feature of pseudo-parabolic equations.

Methods to investigate ill-posed parabolic problems were introduced by Lions
and Lattes in [44]. This consists of perturbing the ill-posed parabolic equation
so that the perturbed problem is well-posed. Then, the solution of the perturbed
problem is shown to approximate a solution of the ill-posed problem. Standard
perturbation terms are fourth order terms, or mixed terms: second order in space
and first order in time. The latter is also called Sobolev regularisation, and gives rise
to pseudo-parabolic equations. For example, Ewing in [24] introduced the Sobolev
regularisation for the more general problem

up=Au, 0<t<T,

where A is a non-negative self-adjoint operator with dense domain D(A) in a Hilbert
space. It reads

u+ecAuy=Au for 0<t<T, withe>0. (16)

Since A is non-negative and ¢ > 0, the operator (I + €A) is invertible so that one
can write the equation in evolution form as

ug=(I+eA)Au for 0<t<T, withe>D0.

In this case, the operator (I +¢A4) A is bounded, hence the initial value problem
is in fact an ODE in D(A) and is well-posed. Moreover the solution approximates
a solution of the ill-posed problem.

Observe that (I+¢A)~! A is the Hille-Yosida approximation of the operator A. In
general, for accretive operators this result can be generalised. In [20], DiBenedetto
and Pierre considered the class of equations

I~ eAp(u)) = Ay(u), (17)

for monotone ¢ and %, for which they prove maximum principles. The approach
uses nonlinear semigroup theory, and is a generalisation of the linear case (16).
Similar equations are studied in [48], [50] and [5], with a non-monotone ¢, so when
€ = 0 the problem is ill-posed. These equations have positively invariant regions:
if the initial condition lies in an interval of monotonicity of v, then the solution
will be confined to that interval for all ¢ > 0. The existence of these regions is the
equivalent of maximum principles.

We have brought attention to maximum principles, because the diffusion coef-
ficient in equation (2) degenerates at u = 0. In fact the static capillary pressure
relation, (4), would have resulted in the convection-diffusion equation

0;S = az{K(S) + K(S)az(_pC(S))} (18)

This is a degenerate diffusion equation if K(S)p.(S) = 0 at S = 0. In general,
for degenerate parabolic equations, if the initial condition Sy is non-negative and
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not strictly positive, the corresponding solution will have interfaces, i.e curves on
the (z,t)-plane that separate regions in which the solution is positive and regions
where the solution is zero. This lack of smoothness of the solution is circumvented
by defining solutions in a weak sense. Maximum and comparison principles are an
essential tool to prove well-posedness. Existence and uniqueness for the initial data
So is achieved by first considering the family of initial conditions Sy, = Sy +¢ > 0.
By comparison principle arguments, there is a unique solution S, which is positive.
Also the sequence S; is ordered and it is then possible to pass to the limit ¢ — 0,
the unique limit of the sequence S, being the corresponding solution for the initial
condition Sj.

Equation (2) cannot be written in the form (17), unless K(S) and L(S) are con-
stant, and we cannot apply maximum principles as in [20]. It admits, however the
following splitting into two equations which decouple the space and time derivatives

w = 0,S — pc(S) (19)
—0,(K(S)0;w) + w = 0, K (S) — pc(S5). (20)

Thus equation (2) can be studied as an ODE problem in Banach spaces. The
analysis is easy if K(-) > 0 and p, is locally Lipschitz continuous: equation (20)
is an elliptic equation that supplemented with boundary conditions for w and for
each piecewise continuous function S, gives a unique continuous solution w, which
depends smoothly on S, and equation (19) can be written as an ODE in a Banach
space. For instance, well-posedness for piecewise continuous initial data holds.

Notice that typically K(0) = 0 and since we cannot apply maximum principles
as in [20], it is not clear how to adapt the arguments used for (18) to equation (2).

The model introduced by Barenblatt that results in equation (11), degenerates
at S+ 75, = 0. This equation can be written as (17) for the unknown w =
S+ 78;. Maximum principles can be applied, and the approach above described for
degenerate parabolic equations can be adapted. See for instance the related model
presented in [6] by Barenblatt et al., see also [7].

Maximum principles as in [20] do not apply to equation (1) either. In fact Stecher
and Rundell in [67] considered the equation

Up = Ugg + Ug + EUggt (21)

as an example of pseudo-parabolic equation that does not exhibit maximum princi-
ples: it is possible to choose an initial condition, and values of the parameter ¢, for
which the supremum norm of the corresponding solution increases in ¢ in a small
interval [0, tp]. With respect to (1), we shall see numerical examples that show an
increase on the supremum norm for solutions, see Chapter 3 Figure 3.5.

Although equation (1) is not degenerate and well-posedness is not difficult to get,
the lack of maximum principles provides an obstacle to answer other questions like
stability of travelling waves. We shall come back to this point in the next section.

Finally, we mention that pseudo-parabolic equations exhibit persistence of dis-
continuities in space. If the initial data has a discontinuity at a point z = z, the
corresponding solution will also have a discontinuity at z, as long as it exist. This
property will bring some advantages in the investigation of equation (1).
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Other classical references on pseudo-parabolic equations can by found in the
work by Showalter, for example: [62], [58], [63], [60], [59], [61].

0.3 Overview of the thesis

An interesting issue of degenerate parabolic equations is the appearance of moving
fronts. For degenerate parabolic equations such as (18) moving fronts propagate
with finite speed if the power « of the diffusion coefficient is positive, see e.g. Gilding
[29]. By front is meant the interface separating the region where the solution is
positive from the region where the solution is zero. If the front propagates with
finite speed its position can be written as Z(t) = zo + c¢t. Such phenomena have
been widely studied for degenerate parabolic equations. Using formal asymptotic
analysis J. R. King and J. Hulshof in [38] studied the behaviour of solutions near
fronts for the pseudo-parabolic equation (2), without convection term and for v = 0
(this results from taken the capillary damping coefficient constant in (5)).

Motivated by their results, in Chapter 1 we study existence of global travelling
solutions of equation (2), that is to say solutions of the form u(z,t) = f(z + ct),
where ¢ > 0 is constant, and f satisfies f(+o00) = A > f(—o0) = 0. It turns
out that the profiles of these solutions, when they exists, degenerate, and at the
front they behave as profiles of solutions of equation (18), i.e. the front shape does
not depend on the mixed third order term. We obtain the following condition for
existence of fronts

L(S) = o(K(S)p.(S)?) as S —0,

so if K(S) is small near S = 0, then L(S) must decay sufficiently fast near S = 0
to have fronts. This condition is agreement with the results in [38].

Apart from describing the behaviour of moving fronts, travelling wave solutions
are conjectured to describe the long time behaviour of solutions of (2). In the
global picture of these solutions, the third order term plays a role: travelling wave
profiles are non-monotone if € is sufficiently large. The analysis of stability of these
solutions is complicated. We analyse this question for the non-degenerate equation
(1). This is the aim of Chapter 2 and Chapter 4. We namely consider travelling
wave solutions that connect 0 to A = 1. Monotonicity of the profiles depends on
the third order term, in this case travelling wave solutions are monotone if €2 < i.

In Chapter 2 we get stability for monotone travelling waves for initial data suf-
ficiently close to a travelling wave solution. This result also holds if the initial
condition has jump discontinuities in z. We also prove well-posedness results and
conservation of mass. The latter allows to integrate the equation, we then get inte-
gral estimates on the integrated equation that imply convergence to travelling wave
solutions as t — oo.

In Chapter 4 we study linear stability of travelling wave solutions. We linearise
the equation around a travelling wave and study the spectrum of the linearised
operator by means of the Evans function.

The Evans function, denoted by D,()), is an analytic function for ) in a domain
2 C C that contains the right half plane. The zeros of D,()) in § correspond to
eigenvalues of the linearised operator. We investigate the existence of zeros with

xiii



xiv

Introduction

positive real part, i.e. unstable eigenvalues. It turns out that if € < i there
are no eigenvalues with positive real part, this being consistent with the results of
Chapter 2. The case 2 > i is investigated numerically; the numerics suggest that
there are no eigenvalues with positive real part. The numerical computation uses a
winding number argument, and is based on the previous analysis of D.()).

Part of this analysis shows that the limit of D, (\) as € — 0 is the Evans function
corresponding to Burgers’ equation, i.e. to equation (1) for e = 0, see e.g. [35]. For
€ =0, Dy(A) can be explicitly computed, A = 0 being the only zero. This is done
in Chapter 5, where we consider the more general Burgers’ type equation

Up = Ugg + (uP), with p> 1.

What is important in this explicit computation, is that it shows what is the domain
of analyticity of the Evans function. The domain is contained in a 4-sheeted (2-
sheeted if p = 2) Riemann surface, each sheet of which is the complex plane C
except for a countable number of poles. This domain is certainly larger than the
domain expected from the existing theory, which says that the domain of the Evans
function can be analytically extended through the cuts of a Riemann surface to a
small neighbourhood of the branch points.

Coming back to equation (1), in Chapter 3 we study numerically the long time
behaviour of solutions of (1). Burgers’ equation, depending on the initial data,
has solutions exhibiting several possible large time behaviours: convergence to a
self-similar source type solution, a rarefaction wave or a travelling wave, see [39].
A scaling argument suggests that the limiting behaviour of (1) (for any € > 0) is
as for Burgers’ equation (¢ = 0). Numerical examples confirm the expectation, in
particular we have numerical evidence for stability of travelling wave solutions for
large values of €.

As an observation, we deal numerically with jump discontinuities of solutions
(that persists for all time) by imposing continuity of flux through the jumps, which
we get from the conservation of mass property.

Comparison principles would have been very useful to analyse the long time
behaviour of solutions. For example, in the case of travelling waves it is common to
choose an initial condition that lies very close to and between two travelling wave
solutions. By comparison principles the corresponding solution will travel between
the travelling wave solutions and eventually converge to a travelling wave. However
we cannot apply maximum principles techniques, which leads us to use integral
estimates, linear stability analysis and numerical analysis to explain the long time
behaviour.

Finally we mention that a combination of integral estimates, as in Chapter 2,
and Fourier transform techniques are used in a number of papers dedicated to long
time behaviour of solutions of BBM-Burgers’ equation when a source type initial
data is considered, see for instance [2] and references therein. In particular, in
[47] convergence of solutions to solutions of the Burgers’ equation is proved (for
source type initial data). It remains to apply similar ideas to prove convergence to
rarefaction waves, and improve the results of Chapter 2 for large values of .



Chapter 1

Equation (2): travelling waves

Preamble:

In this chapter we consider the model for non-static groundwater flow,
where the saturation-pressure relation is extended by a dynamic term.
This approach together with a convective term due to gravity, results in
a pseudo-parabolic Burgers’ type equation. We give a rigorous study of
global travelling wave solutions, with emphasis on the role played by the
dynamic term and the appearance of fronts !.

1.1 Introduction

In this chapter we consider the equation
08 = 0:{K(S) + K(5)0:(—pc(S) + L(S5)0.S)}, (1.1)

that results as the non-static model of groundwater flow described in the Intro-
duction, see Section 0.1. To investigate the role of the nonlinear terms (i.e. K(S)
-hydraulic conductivity -, p.(S) -static capillary pressure - and L(.S) -dynamic damp-
ing coefficient -), we replace them by power-law relations. Namely we take

K(S) =5 (a>1), (1.2)
p(S)=-1+87* (8>0), (1.3)
L(S)=¢€eS" (y>0), (1.4)

where £ > 0 is introduced as a parameter to investigate the consequence of the third
order mixed term. The parameter ranges are chosen to capture the relevant physical
properties of unsaturated flow. In particular, we want K and L to be non-negative,
with L(0) = K(0) = K'(0) = 0, and p.(0") = co. Using these power law relations,
equation (10) reduces to

8,S = 0,{S* + BS*$719,5 +£5°9,(578,9)}. (1.5)

The static capillary pressure relation, would have resulted in the convection-diffusion
equation
0,5 = 0,{S* + BS*>F-19,S}. (1.6)

LThis chapter has appeared as an article in the European Journal of applied mathematics, see [19].
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Equation (2): travelling waves

It is well-known, see e.g. Gilding [29], that this equation for ¢ = 0 has finite speed
of propagation if and only if

* D(S)
/ TdS < oo for some § > 0, with D(S) = gS* A1 (1.7)
0
This requires a« — f > 1. Because occurrence of fronts has our special interest we
analyse equation (1.5) in the parameter range
B,vy>0 and B<a-—1. (1.8)

In this chapter we analyse travelling waves solutions of (1.5). They are conjectured
to describe the large time behaviour of solutions resulting from a certain class of
initial conditions.

Thus we consider

S(z,t) = f(n) with n=2z+ct, (1.9)
subject to the boundary conditions
fl0)=A>0, f(—o0)=86>0 (6<A). (1.10)

Hence the fluid moves downwards whenever the wave speed c is positive. For f we
obtain the equation

cf ={f*+BfP ' +ccf(ff)} on R, (1.11)
Integration and application of boundary conditions give the equation
o(f —08) =f* =0+ Bf P +eef (P, (1.12)

and the second order boundary value problem
of = 8) = f* — 6%+ Bf P + cef*(f7f) on R

f(=00) =6, f(+00) =4,

(TW)

where c is given by
A _ o
A-6"
which is the Rankine-Hugoniot wave speed if we interpret (1.5) as a regularization
of the hyperbolic equation ;S = 8,5*. Note that ¢ | A ' asd |0, c T aA*! as
01T A, with s—§>0for0<(5<A.

In Section 1.2 we show existence of travelling waves for fixed positive values
of € and §. They are unique up to translations in 7. This analysis also shows an
oscillatory, but non-periodic, behaviour of the profiles. Here the value of € is crucial;
for ¢ sufficiently small (depending on «, 3,7, d and A) we obtain monotone profiles.

In Section 1.3 we study the limit case ¢ — 0, while § > 0 is kept fixed. Using
essentially monotonicity for small €, we obtain convergence to travelling waves of
equation (1.6)

=

(1.13)



1.2 Existence, uniqueness and monotonicity

In Section 1.4 we analyse existence of front solutions to Problem TW with § = 0.
It turns out that there are two relevant ranges of powers «, 3, v for which fronts
appear. In the range 28 > a — v — 2 there exists a family of solutions which
degenerate at a finite value of 7. When 28 = a — v — 2 existence of fronts is
shown provided ¢ < mﬂa_—l). Uniqueness does not hold. Nevertheless we have
discerned in each of the previous cases a unique (up to translations in ) exceptional
profile, which is the limit profile to (7W) when letting 6 — 0. This is shown in
Section 1.5. In the other cases, 28 =a — vy —2, ¢ > m‘i_—l, and 26 <a—7v—2,
bounded travelling wave solutions do not exist. These results correspond to the
formal asymptotic analysis made in [38].

It is worthy to observe that the limits ¢ — 0 and § — 0 do not commute. We
can always take the limit € — 0 followed by § — 0. However, the converse order is
only possible if 26 > a — v — 2.

Remark 1.1. Fizing 6 € (0, A), the ezistence is demonstrated for « > 1 and
B,7v > 0. All other results require in addition 8 < o — 1.

1.2 Existence, uniqueness and monotonicity

The main result of this section is:

Theorem 1.2. Let o > 1, 8,7, > 0 and 0 < § < A. Further, let c be given by
(1.18). Then there ezists a C™® solution of Problem TW , unique up to translations
mn.

Proof. We transform equation (1.12) into a planar system and apply a phase plane
analysis. First we set u = f!*7, which gives

8 _ ec
u ey 4

u" on R (1.14)
+7 1+~

culs — 1= (6 — 6%)u~ %7 + 1
with boundary conditions
u(—o0) = 67, u(oo) = AV,

Next we put this equation in the Liénard phase-plane, by considering v and v :=
EC
14y

u' — w1+, as independent variables. This results in the system

eu' = F(u,v) = HT” (v +u‘1%)
(P)
1-o a
vV'=G(u)=—-1+cu™ — (cf — 6)u i+v.
A solution f of (T'W) is an integral curve of (P) connecting the equilibria p_ =

(6'*7,—67?) and p; = (A'*7,—~AF). The phase plane, with the isoclines T, =
{(w,v) : F(u,v) =0} and T, = {(u, ) : G(u) = 0}, is drawn in Figure 1.1.

3



Equation (2): travelling waves

| + &
AN

1

Figure 1.1: Phase plane for (P)

The matrix of the linearised system is

_B x—B-1-y Lty
ec

EC

%_;_1 (cl—a)X+(cX —X%a) 0

where X = ¢ corresponds to the equilibrium p_, and X = A to p,. The eigenvalues
in p_ and p, are, expressed in X,

B 1 c—aXe!

A=—aivaz+bWitha=gwandbzwc—. (1.15)

It is clear that a > 0 for positive X, and b has the sign of c— X* . Introducing
its primitive

i(X) = cX — X°, (1.16)

we note that A and § are related by ¢(A) = i(d) > 0, so that b > 0 in X = § and

b < 0in X = A. Therefore at p_ the two eigenvalues are real and of opposite sign,
whence p_ is a saddle point. The point p, is a sink and

0 < a® + b < a? implies two real eigenvalues, A\; < Ay < 0, and
(1.17)
a®? + b < 0 implies two complex eigenvalues, with negative real part.

To prove Theorem 1.2 we have to show that an orbit leaving p_ connects to
p,. Because p_ is a saddle point there exist locally two orbits containing solutions

(u(n),v(n)) of (P), satisfying
Jm (u(n), v(n) = p-.

Let C be the orbit for which u',v" > 0. Inspection of Figure 1.1 shows that the
other orbit will never reach p,. The only possibility giving existence of a travelling

4



1.2 Existence, uniqueness and monotonicity

wave is for C to end up in p,. The corresponding solutions will satisfy (TW), and
uniqueness up to translations in 7 will hold.
To show that C' connects to p; we consider the sets, see also Figure 1.1,

Si={(u,v) eR?: " <u< A v > —uiﬁ},
Sy ={(u,v) ER? :u > Ay > —u”%},

Sz ={(u,v) eRZ : u> A v < u_ﬁ},
Si={(u,v) eR?: " <u< A v < —u'%}.

Note that the boundaries of Sy, S5, S3, S4 are the isoclines of system (P). Further-
more C enters S; from p_.
We have the following two possibilities.

Lemma 1.3. The orbit C rotates around p,, going from S; to Sii1 mod 4, OT it enters
py from Sy or S;.

Proof. Let (u(n),v(n)) be a solution of (P) parametrising C. Further, let 5.y <
oo be the maximum 7-value for which the solution can be extended to (—o0, Nmaz)-
Near points where u'(n) # 0, we can express any solution of (P) locally as v = v(u),
satisfying
dv ' G(u)
du  uw' EF(u, v)’
Below we exhaust all possibilities.
1. Suppose (u(n),v(n)) € Sy for all 0 < 7 < 7Ymae- Then two cases need to be
considered:

(1.18)

(i): vt wand v T ¥, with 4,9 < co. This impliés Nmaz = +00 and (4, 7) =
Y

(ii): » 1 @ and v 1 co. Since F(u,v) becomes unbounded as v — oo,
while G(u) remains bounded, (1.18) directly gives a contradiction.

Thus either (u(n),v(n)) — py as n — oo or C crosses u = A at np =y, €
(0, Pmaz) and enters Ss.

2. Suppose (u(n),v(n)) remains in S, for all n € (N1, Nmaz)- Again two cases are
possible.

(i): w * @ and v | ¥ with & < oo and, of course, & > —oo. Then
Thmae = +00 and (&, ) is an equilibrium point, which is impossible because
there are no equilibria to the right of p,.

(ii): » 1t 400 and v | ¥, with ¥ > 0. Then the v-equation implies
v" — —1 contradicting ¥ > 0.

Thus, there exists 7o € (71, 7hmas) such that (u(n),v(n)) crosses I', and enters Ss.

3. Suppose (u(n),v(n)) € S for all § € (12, Mmaz). Completely analogous to 1.,
we find that either (u(n),v(n)) — py or C crosses A'*” at some 73 € (79, Thmaz) and
enters Sy.

4. Suppose (u(n),v(n)) € Sy for all ) € (73, Ymaz)- Again we distinguish

5



Equation (2): travelling waves

(i): v | @ and v 1 9. As before 7,,; = +00 and consequently (, ) =
p_. Thus C is a homoclinic orbit. Next we consider the domain D enclosed
by C. Since its boundary is smooth, except at p_ where it is Lipschitz,
we may apply Gauss’ theorem. Using the fact that C' is an orbit of (P)

we get
0 :?{ (lF(u,v)dv - G(u)du) = // div (M,G(u)),
c \¢ D €
contradicting

_B+y+1

div (éF(u, U),G(u)) = —gu 1 <0 forall u > §7t,

(ii): C crosses u = §7™ below p_ at (617, %). Consider the closed
curve C' U Cy, where C is the straight line segment parametrised by

{ u(s) = 6711,

v(s)=s se€p,—-67].

As before we call D the interior of C' U C;, and apply Gauss’ theorem.
This gives

0> / /D div (F(’L;,U)’G(u)) = }2 UCI(;F(u, v)dv — G(u)du) =

—6B.

]{(éF(u, v)dv — G(u)du) = /v %F((svﬂ, s> 0,

a contradiction.

Hence there exists 74 € (73, maz) at which (u(n),v(n)) crosses I', and enters S;.
]

To complete the proof of the theorem we use Lemma 1.3 and the Poincaré-
Bendixon theorem. This leave us with two possibilities. Either (u(n),v(n)) — p,
as 1 — oo or C approaches a periodic orbit. The latter is impossible by the same
argument as in 4(i), now applied to the periodic orbit instead of C. The C*®
regularity for f follows from a bootstrap argument. O

Next we derive a sufficient condition for the travelling wave solution to have a
monotone profile. This condition is related to the value of . Therefore we write
C = C, and P = P. whenever appropriate.

From (1.15) we see that for all € such that

* ﬂz a—28—y— *
Eeg == mA 2B-7-2 (5 > 0), (1.19)

the eigenvalues A;, A are real and strictly negative, which is a necessary condition
for the travelling wave profile to be monotone. Henceforth we suppose we are in

6



1.2 Existence, uniqueness and monotonicity

this situation. With Ay < A; < 0 we call (uy,v;) the slow eigenvector and (ug, va)
the fast eigenvector at p,, where

_ {1 1 B++/B?+4(cA— A*a)ecA2P—atril
(u1,2a 01,2) - ’ 2(1 + 7) A1+’Y+B .

By standard local analysis, see e.g. [16], there exist exactly two orbits entering
P+ tangent to the (ug,v;)-direction: one along (us, vs), the other along (—ug, —vs).
The connecting orbit goes around p, at most a finite number of times.

Proposition 1.4. Let (1.8) be satisfied. For § > 0 fized, there ezists 0 < & < €*,
such that for every 0 < e < £ the travelling wave obtained in Theorem 1.2 is strictly
increasing on R.

Proof. Proposition 1.4 is a direct consequence of Lemma 1.5 below, in which we
construct an invariant region which contains C' and which itself is contained in S;.

More specifically, for fixed § € (0, A) and p € (0, 1), let SZ denote the set enclosed
by the curves

u=086"v= —u % and w= gu(u) := (—,uu_lf-v —(1—pAP).

We will show in Proposition 1.5 that for ¢ sufficiently small (i.e. ¢ < si), Sﬁ is
invariant for Problem P. or, equivalently, C, € Sz. Proposition 1.5 will also be
helpful in the study of the limits ¢ — 0 and § — 0. In particular we want to
bound EZ away from zero as 6 — 0. It will appear that this is only possible if
26+v+2—a>0.

Lemma 1.5. For any fized 6 in (0, A) and pu € (0,1) there exists sﬂ € (0,e*), such
that for every e € (0, sf,), C. € Sf,. Further, if 26+~v+2—a >0,

2
: 5 _ _ : * _ L —2—y—1
lime, = 4p(1 — p) lime” = p(1 #)4(a - 1)A :

and
llsiné Sﬁ 1s tnvariant for Problem TW with & = 0.
—

Proof. Observe that the eigenvectors at p, satisfy

B

W), and (uy,v2) — (1,0) as € — 0,

(Ul, ’l)1) — (].,

where (1, W) is the tangent vector at p; to I',. The invariant region S

is below the horizontal line v = —A~#, and only contains orbits entering p, along
_8

the slow eigenvector (uy,v;). Observe that g,(u) > —u™t+ for all 0 < u < A7,

and g,(A'"") = —A~A. Obviously the vector field is pointing inwards at boundary

points of SZ ony = 67 and I',. It remains to examine the vector field on v = gu(u).

We clearly must have
dv _ ec G(u)
du 1+”Yg,‘(u)+u_$

< g,(u) for all u € (6'17, A7), (1.20)
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for S2 to be invariant. This is equivalent to
eHs(u) < p(l —p) (1.21)

where

l1-a o
— N O S ) Wik v
Hyl) = € —1-+ien™ : (ed — 0%)u™ 1+ e (1.22)
g (u"t+ — A-P)

Note that Hs(6'™) = 0 and, by L’Hospital’s rule,

Aa—l _
HJ(A1+7) — u_l)iAnllﬂ H;(u) =c a—20A2ﬂ+’Y+2—a

B

(@~ 1) gaprrra g5 5 .

28+7+2—a
For u > 0 fixed, (lsiné Hj(u) behaves as u v near 0, which suggests to write
—

Hj(u) as

Hy(u) = gu%ff‘“ hs(u) (1.23)

—utty 4 cuttr — (cd —6)

u i (1— A-Put)
Observe that for every u € (0, A'*?) and every & > 0, recalling (1.13),
(cd — 6%) — utv (c — A°~1)

wit 1- A‘ﬂu%)

where hs(u) =

ho(u) — hs(u) = > 0. (1.24)

So that
_ ﬁ Aa—l ﬁ 1— Al—a ‘f_,,;l
hald e Rlli=m e B BT i T S {35
utr (1 — A= Put+r) 1— A Bur+r

which is increasing for u € (0, A'*7). Here we used 8 < o — 1 from (1.8).
Setting

_ a—1
M:= sup ho(u) = (—%,
u€(0,A1+7) B

an upper bound for Hs(u) is given by

Hj(u) < M%A”*"’”‘“ if 28+y+2—a>0,

and
Hj(u) < M%(S””““’ if 264+7+2-a<0.

Thus a sufficient condition for (1.21) to hold is
p(l — p) 22 A1 if 284y +2—a >0

c(a—1)
g e = (1.26)

,u(l - /.L) Ja—_%;—_léak2ﬂA7~2 if 2,8 + v+ 2—q S 0.

8



1.3 The € — 0 limit case

This completes the proof of the first statement. The statements about the § — 0
limit follow immediately from (1.26) with 28 > o —y — 2, (1.19) and (1.13). O

1.2+ 1.2 / \
| A ———

O 10 20 30 a0 2 10 20 30 ao

(a) monotone profile: € = £* — 0.01 ~ 0.048 (b) oscillatory profile: € = 1

)

NN

Figure 1.2: Travelling wave solutions for different values of &, where f(0) = %, a=%,8=

7=5A4=16=3}

1.3 The ¢ — 0 limit case
Let 6 € (0,A) be fixed and (1.8) be satisfied. In this section we examine the

behaviour of the connecting orbit C. and that of the corresponding travelling wave
f = feas e — 0. For € < £ we denote C, by

v=g(u), 0" <u< AL (1.27)
As a first convergence result we have

Proposition 1.6. ¢.(u) — —u i uniformly on [6'17, A1) as e — 0.

Proof. Lemma 1.5 implies
—uttr < e(u) < gu(u) (1.28)

for all u € (6'*7, A™") and for all € € (0,&%). Since g, (u) — —u" T as w11, the
result is immediate. a

For the travelling waves f. we have

Theorem 1.7. Translate f. so that f.(0) = % foralle > 0. Then f., — f €
C*®(R) as ¢ — 0, uniformly on R, where f satisfies Problem TW with & = 0.

9
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Proof. First we employ the scaling n = 7, so that in the 7-variable (P;) reads

(P.) { . f(,ﬁ’(‘ug’) (1.29)

Unlike (P,) the limit system (P,), is well defined. The one-dimensional manifold of
critical points

My = {F(v,u) = 0} = {v = —uii"}
is invariant and normally hyperbolic in the sense of geometric singular perturbation
theory, see [65], because for (P,) the only pure imaginary eigenvalue is zero, and
has a one-dimensional eigenspace tangential to M. Let K be a neighbourhood of
{(u,v) € My : 6" <u < A}, and choose 0 < §; < ' < A7 < A; such that

{(u,v) € My : 8 <u < A} CC K. By Fenichel’s invariant manifold theorem [65],
there exists, for given k € N, a number &y > 0 and a function h € C*([d;, A;] %[0, &0))

with h(u,0) = —u'lzv, such that for every 0 < € < gg
M, ={(u,v) € K: v=h(ue), 6 <u< A}

is locally invariant. The manifold M, is not uniquely determined. However between
v = 67 and u = A7 it must coincide with the connecting orbit v = ¢ (u),

because this is the only orbit which remains close to {v = —u_% D0 <u< A}
Using (1.27) and the v-equation in (P;), we note that u, = f}*7 satisfies,

u = , (1.30)

and connects the two zeros of G.
Since h € C* and h(u,&) = @.(u) for 6'*7 < u < A", we have as a result of

28 .
Proposition 1.6, that ¢L(u) — %u 1+7~! uniformly on [§'*7, A'*7] and thus

Gw) | G

(pls(u) %uél)—?—?_l

uniformly

on [6'7, A1*7] as ¢ — 0. In this limit the differential equation (1.30) is identical to
equation (1.14) with e = 0. Using the fact that u.(0) is fixed for all € > 0, standard
arguments imply that u, converges uniformly on R to the corresponding solution of
the limit equation. O

1.4 6 =0 system
In this section we consider the limit case 6 = 0 directly. Thus we study the system
(PO) EU'=F0(’U,1))= H—T’Y (’U+U_Hb:;;) i
: v = Go(u) =—1+cu111:',

10



1.4 § = 0 system

11

where ¢ = A*~!, and we look for orbits connecting u = 0 to u = A'*". The critical
point corresponding to the latter now has real eigenvalues, see also (1.19), for

ﬂ2 —a—28—y
4(ax—1) “ ’

The phase plane, see Figure 1.1, clearly implies, that the desired orbit has to be
originated from the segment {(u,v) : u = 0,v < 0} where the equations are
singular. Since we are interested in (P?) as limit of (P?), and in particular of a
possible limit orbit of the connecting orbit C, we expect such a limit orbit, if it
exists, to behave as v ~ —du_lfi, 0 <d< 1, asu — 0. Thus a convenient
new dependent variable is Z = u%, where g, for later purposes, is not fixed yet.
Whenever «' # 0, Z satisfies the equation

0<e<er=

a—1
ugZ— =qZ+ _EC gt CTUT ulﬂL. (1.31)
du 1+« Z +ut

Below we investigate the solvability of (1.31) for 0 < u < A'*". The analysis and
results critically depend on the value of the parameters o, 8 and +. In particular
the value of 28 — a + 7 + 2 plays a crucial role, which is to be expected considering
the results of the formal analysis by Hulshof and King [38]. With ¢ appropriately
chosen, we consider the cases:

141 286>a—v-—2.

28+7+2-a

Here we take ¢ = %, and set W =u 1+v . Then (1.31) becomes
7 A _ Wwies
@B+y+2-a) P2 B2 ecle=Wutiie) (1.32)

aw W Z+1

We look for solutions of (1.32) with Z > —1 as W — 0 (i.e. v’ > 0 as u — 0).
In Figure 1.3 we sketch the (W, Z)-phase plane. Equation (1.32) and the phase
plane imply that Z — Z, € {0,—1} as W — 0, where orbits with Z, = 0 have
v= o(—uﬁév) while orbits with Z; = —1 have v ~ —u
Propositign 1.8. For 23 > a — v — 2 there is a unique orbit C° with u — 0 and

v ~ —u 1 as n decreases. This orbit reaches (u,v) = (0,—00) at some finite
n-value, implying the ezistence of a travelling wave with a front. The local behavior
of the front is determined by the relation

i~ ;fﬂ“"" as f—0.

Proof. We first prove existence. Choose W, small and denote the solution of (1.32)
with Z =& in W =Wy by Z = Z(W,€). Let

Sy ={£€(-1,00: Z(W,£) > 0as W |0}
S_={€ € (~1,0): IW. € (0, Wo) Z(W,€) — —1 as W L W, > 0}
So={¢€(-1,0): Z(W,£) > —1 as W | 0}

11



12 Equation (2): travelling waves

By standard arguments we have for W sufficiently small that
(0,-1)=S_USU S,

and S_ and S, are nonempty and open. Hence Sy is nonempty, which gives exis-
tence. We observe that for such an orbit, see (1.32),

Z+1~aWasz0wherea=%. (1.33)

Next we prove uniqueness. Suppose there are two solutions Z = Z;(W) and
Z = Zy(W) with Z — —1 as W | 0. Since
1 1 1

G4l Ll :_(2+1)2(Zl_22)’

where Z lies between Z; and Zy, we have for Y = Z; — Z5 > 0, say,

ay Y Y
W‘bw“’—b’ﬁ aSW-)O,
where b = 2;‘34»’7%’ and b = eci!(zﬂfw Here we used (1.33). Hence Y — oo as

W | 0, contradicting (1.33).
Expressing W and Z in terms of f we observe that (1.33) implies the behaviour

fl S s f 0,

B

Since B8+ 2 — a < 1 we find that f reaches zero at some finite n-value; i.e. the
travelling wave has a finite front. O

Figure 1.3: Phase plane related to (1.32), with ¢ = %

Note that we did not put any restriction on ¢. Thus the conclusion about the
behaviour as f — 0, provided 28 > a — v — 2, is valid for any value of € > 0. This
e-uniformity is lost in the next case.

Indeed, the behaviour of the travelling wave near the front when it vanishes
corresponds to criterion (1.7) in the case where the capillary damping is absent.

12
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142 286=a—7vy—2.

Now we take g = %, and set W = uitr. Then (1.31) becomes

(a— 1)% - (52 2 60((57”)/)) = (1.34)
Again we look for solutions satisfying Z > —1 and Z — Z; as W — 0. It follows
that )
#edalf-)
implying € < %. With reference to Figure 1.4 we have
Proposition 1.9. (i) If ¢ < %, there exists a family of orbits satisfying v ~

_B
ngu_% asu — 0, and a unique orbit, denoted by C°, which satisfies v ~ Zy u™ T+
as u — 0. All cases give travelling waves with finite fronts. In particular the orbit

C° implies .
2\ 2
f,Nz-:l_c<1_(1—4%) )fﬂ“_“, as f — 0.

. _B_
(i) If € = % there erists a family of orbits having v ~ —%u Ty ai u— 0. In
particular there is a unique orbit, again denoted by C°, satisfying ui+vv 1 —% as

u — 0. The orbit C° implies again a traveling wave with a finite front, such that

2c
f’ ~ Efﬁﬁ aa
(iii) If € > ﬁg, there is no orbit with v > —u™ and u — 0.
Remark 1.10. (i) Comparing (1.19) and (1.26) we observe that
. B B

- =4(a—1)02<@’

as f — 0.

€

-]

implying that, depending on the e-value, monotone and oscillatory waves with finite
fronts occur.
(ii) Since now f+2—a = —B—+ < 0, finite front waves have f' — oo as f — 0.

Proof. (i) It is immediate from the phase-plane in Figure 1.4 that (0, Z;) is a
source, and (0, Z; ) is a saddle, with one unique orbit Z = Z(W) leaving in the

direction W > 0. It behaves as Z — Z; ~ (% — 1 4;#)%) as W — 0.

(i) Now Zy = —1 at local analysis shows that (0, Z,) is a saddle-node, with a
unique orbit in the direction of W > 0. This orbit does not cross the isocline, and
behaves as Z — Zy ~ JW.

(4ii) Now the segment {(W,Z) : W =0,Z € (—1,0)} is disconnected from the
isocline and hence no connecting orbit exists. O

13
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.‘ﬁ /7?;
A
‘ ﬁ\

77

™
0]

&1

a =

f

—

e> P
4¢?

Figure 1.4: ¢ = %, 2 = a — v — 2 phase-plane for different e-values.

143 28<a—-vy-2.

— B 5. L4 ¥
Here we choose q¢ = ‘;(_12;;)’ > ﬁ% and W = u? 1+7, yielding the equation

2(a—1)
dz Z  2ec(c— Wa--2-2)
(0=y=2-2) ===+ — g izw (-5

Bl
Proposition 1.11. There exists no orbits with v > —u~ ™ and u — 0.

Proof. Suppose such an orbit exists. Then we would have

dz 1 2ec?

(a—7—2—25)dWNW((a—7—2)Z+Z>’ Z>0,

as W | 0. Since (¢ —y—2)Z + % is negative and bounded away from zero, this
gives a contradiction. O

14
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1.5 § — 0 limit

For the purpose of this section we denote the connecting orbit of (P?) by v = ¢;(u)
and, in the cases for which C° from Proposition 1.8 and 1.9 exists, we call its graph

v = @o(u).
AQ_JQ

Lemma 1.12. There exists * > 0 such that, with ¢ = ¢(8) = 2%,

Fu(6) = ¢(6)Gs(u) = c(5) (—1 +e(uitr — c(5)A — Aau—ﬁ)

is decreasing in 0 < § < 6* for any fivred 0 < u < (%)1“-

Proof. Since

dF, dc l-a o i

dT = % (_1 + 2cu t+r + (A — 2CA)U 1+7) §

and 37? > 0, we need to show that the term between brackets is negative for small
0. At 6 =0 it becomes

-1 +A“_1u_ﬁ(2uﬁ —A) <0,
for all 0 < u < (4)"*7. O

Proposition 1.13. For «, 3,7 such that 28 > a—~v—2, or 28 = o — vy — 2
and ¢ € (0, ;1%) fized, translate f5 such that f5(0) = g for all § € (0,6%). Then
fs = f € C°(R) uniformly on R. Hence f satisfies Problem TW with § = 0.

Proof. It will be sufficient to show that ys(u) — ¢o(u) locally uniformly. By
Lemma 1.12 we have for any 0 < § < 6*

_8
—u” < oy (u) < s, (1) < o(u)
for 0 < 6, < 6, < 6* and u € (J, (%)H'y). Also

ec(0) Gs(u) R eA*™t Go(u)

0—=0
1+ v F5(u,v) 1+7v Fy(u,v) as

uniformly on [6"+7, (4)"*"]. Therefore

s(u) T @(u) < po(u)

where v = @g(u) is a solution of (P?). The reasoning above holds for every 0 < § <
0%, which implies that @o(u) exists for all u € (0, (g)lH)
and ¢ < ¢ this implies that @o(u) = ¢o(u).

Using that f;(0) = ’% is fixed for all 0 < § < ¢* standard arguments imply

that f5 converges uniformly on (—oo, %) to the corresponding solution of the limit

equation. Existence of global travelling waves and uniqueness of the initial value
problem for all 0 < § < ¢*, implies the uniform convergence on R. O

. In view of Section 1.4

15
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Equation (2): travelling waves

1.6 Concluding remarks

In this chapter we present a study of a model for unsaturated groundwater flow
which includes expression (8) for the non-static phase pressure difference. Replacing
the nonlinearities in the transport equation by power-law expressions we arrive at
(1.5). We study travelling wave solutions representing moisture profiles moving
downwards due to gravity.

For positive initial saturation (0 > 0) we demonstrate existence and uniqueness
(up to translations). Small values of the damping coefficient ¢ result in monotone
saturation profiles. Large values of ¢ result in profiles which exhibit oscillatory
behaviour near the injection saturation A.

When initially no moisture is present (6 = 0) existence of bounded travelling
waves depends critically on the exponents of the power-law expressions. This is
related to the occurrence of finite fronts in the moisture profiles: i.e. descending
planes (in the direction of gravity) below which the water saturation remains zero.
Related to equation (1.5) we have shown the following.

If 28 > a — v — 2, then travelling wave solutions with fronts exist for all € > 0.
In other words, for S(z,t) = f(n), with n = z + ct, there exists 7y € R such that
f(n) = 0 for all n < ny. Moreover near n = 1 the profile satisfies

fl ~ E fﬂ+2—a_
B
This corresponds to the front behaviour of solutions of the convection diffusion
equation under static conditions (equation (1.6)); i.e. € and <y are absent in this
asymptotic expression.

If 28 = a — 7y — 2 we obtain a similar result provided the damping coefficient ¢ is
sufficiently small: i.e. € < 4,42(%1)' For larger values of €, no waves exist satisfying
f(—o0) = 0. Finally, if 28 < a — v — 2, again no such waves exist, regardless the
value of € > 0.

Let us interpret this in terms of the nonlinear functions, K(S), p.(S) and L(S),
as they were approximated in (1.2), (1.3) and (1.4). If we write the condition for
existence of travelling wave solution with fronts as v > a — 2(8 + 1), this implies
that if & < 2(8 + 1), then for any positive value of vy fronts exist. But instead, if
a > 2(8+1), then «y needs to be sufficiently large in order to have fronts solutions.
In other words, if K(S) is small near S = 0 in the sense that a > 2(8 + 1), then
L(S) must decay sufficiently fast near S =0, i.e. ¥ > a — 2(8+ 1), to have fronts.
We can express the condition for existence of travelling wave solutions with fronts

L(S) = o(K(S) p.(S)?) as S — 0.

We also investigate the limit ¢ — 0 (for 6 > 0, fixed) and § — 0 (for ¢ > 0
fixed). In particular the latter provides a uniqueness criterion for the degenerate
case when 0 = 0. We also note that the limits ¢ — 0 and 6 — 0 do not commute:
e — 0 followed by 6 — 0 is always possible, while § — 0 followed by € — 0 is only
possible when 28 > a — v — 2.

16



Chapter 2

Equation (1): well-posedness and
stability of monotone travelling
waves

Preamble:
We investigate stability of travelling wave solutions of the pseudo-parabolic
Burgers’ equation (1), for which we first obtain well-posedness results *.

2.1 Introduction

In this chaper we consider the pseudo-parabolic Burgers’ equation
Ut = Ugg + 2uy + E2Ugzy on R x [0, 7] (2.1)

with initial data

u(z,0) =ug(z) in R (2.2)
In this chapter we aim for a better understanding of the effect of the third order
term on the dynamics of diffusion and convection. Intuitively one expects that
this effect is more notable if the large time behaviour of solutions of the diffusion-
convection equation is characterised by profiles which do not become flat (in terms
of their dependence on z). This is why we restrict our study of the large time
behaviour to the travelling wave case, meaning that S(+oc0) > S(—o0) > 0. In fact
we shall only consider the large time behaviour of solutions of (2.1), the simplest
pseudo-parabolic equation allowing convection-driven travelling waves, with initial
data satisfying

up(—00) =0, ug(+o0) = 1. (2.3)
We will show that such solutions converge to a travelling wave solution
u(z,t) = p(z + t), (2.4)

provided the travelling wave profile ¢ is monotone. This depends on & > 0: travelling
wave solutions connecting zero to one and travelling with speed one exist for all
€ > 0, but only when 0 < € < % the profiles are monotone, see Section 2.3.

LThis chapter is to appear as an article in Nonlinear analysis TMR, see [18].
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Equation (1): well-posedness and stability of monotone travelling waves

Our stability result is of a global character and therefore we first require well-
posedness results for the initial value problem. To this end we reformulate equation
(2.1) in Section 2.2 as

= F.(u) = A.u + B.u?, (2.5)

where A,, B, are linear operators defined by

2
Au=(-e Lty Bu= (- L), 26)

dz?

and study local well-posedness of the ODE (2.5) in several Banach spaces, namely
in L'N L2 L'NH', L*, L? and H'. Here LP(R) = LP with norm u — |u|, and
H' = H*(R) is the Sobolev space with norm u — |[u|| = /|uf2 + [v/[2. We note
that although formally equation (2.1) preserves the integral (conservation of mass),
the map u — B.u? is not well defined on L', hence the choice of L' N L? with norm
u — |ul12 = |u|i + |ulz, and L' N H? 2= |ult + ||y

Since travelling wave solutions do not belong to L? if 1 < p < oo, we also consider
(2.1) in affine spaces of the form H + X, where # is any smooth function such that
H(—00) = 0, H(+o0) = 1. It is no restriction to assume that H' is nonnegative
and compactly supported. In Section 2.4 we obtain local well-posedness in H + X
for X =L2,L'NL2 H, L' N H.

In Section 2.5 we establish mass conservation: if u; and uy are solutions of (2.1)
with u; — ug in L' N L? then

;t/(ul(z t) — ua(z,t))dz = 0 for all ¢.

This allows us to follow [39] by introducing
T
v(z,t) = / (uls,t) — ¢(s+t))ds. (2.7)
~00
The function v is well defined if u is in H+ L'. For solutions u with values in H+ X,
X = L' N L?, shifting either ¢ or uy we may restrict attention to solutions v of
Vp = VUgg + v: + 2vz¢ + EQUzzta (28)

with v(400) = 0.

Equation (2.8) is derived in Section 2.6 and analysed in Section 2.7. Again we
establish local well-posedness in several natural spaces, in particular in H' and
H? = {v € L% v',v" € L?}. In Section 2.8 we prove the identities

1d (v? + e®v2)dz = — /(1 —v)vidz — / ¢'v’dz, (2.9)
and id
5%/(v2+62v2m)dx— /v dz+/¢'v2dm (2.10)
R

and obtain a global well-posedness result for solutions of (2.8) in H?. To formulate
and prove stability results we need ¢’ > 0 and v(z, 0) sufficiently small in H' guaran-
teeing v < 1. Using (2.9) this gives convergence of the integral [;° |[v(-,¢)||*dt and

18
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thereby of [;° [*° |u(z,t) — ¢(z + t)|*dzdt. If in addition v(z,0) is in H* we adapt
methods from [52] and show that v(-,¢) — 0 in H? whence ||u(-,t) — ¢(- +¢t)|| = 0
as t — oo.

A natural question is of course whether the monotonicity of ¢ is essential. In the
context of Korteweg-de Vries type equations there are examples where a switch from
monotone to oscillatory behaviour of the travelling wave leads to instability, but this
depends on the exponent in the nonlinearity, see [53]. Numerical experiments so far
have been inconclusive.

So far we have formulated asymptotic stability in %+ H', in particular we assume
solutions to be continuous in space. This can be relaxed a little bit. In Section 2.9
we examine solutions with jump discontinuities and show that jumps are fixed in
space and decay in time. Moreover we extend our stability results to solutions
having one single jump in z = 0.

We conclude this introduction with the observation that we have avoided a trans-
formation of the problem to travelling wave variables. Such a change is common in
the study of stability properties of travelling wave solutions of Burgers’ and other
“normal” equations. Here it would lead to an equation with yet another third or-
der term involving three space derivatives, which cannot be seen as an ODE in a
function space.

2.2 Local well-posedness in Banach spaces

In this section we show that the initial value problem for the ODE (2.5), which as
we recall reads
us = F,(u) = A;u + Bou?,

is locally well-posed in the Banach spaces L' N L2, L' N H', L, L? and H'. The
operators A, and B, may be rewritten as

Au—(l—szd—z)’1 = (I- 2i2)’1—1 —i( * ), (2.11
e — d.’L'2 uzz—gz €d$2 u_62 Ge*U —U), . )
and
2 &y
Bu=(I-¢ @) U =G ¥ Us; (2.12)
where
1 =l
9:(z) = e (2.13)
is the Green’s function for the problem
w— " = f. (2.14)
That is to say,
w(e) = (CE) = 0.+ @) = [ oo - 1))y (215)
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is the solution of (2.14). Since for any v € LP with 1 < p < oo, the derivative
(ge * u); is well defined and (g, * u); = g. * u we have

Beu(z) = (gl *u) (z) = EIE/RgE(x —vy) /y u(s)dsdy forall zeR  (2.16)

Theorem 2.1. Let X denote any of the Banach spaces L' N L?, L' N H', L*>, L?
and H'. Then for all ug € X there exists T > 0 such that there exzists a unique
solution u € C*([0,T); X) of (2.5).

Theorem 2.1 will follow from Picard’s Theorem: if X is a Banach space and
F : X — X is Lipschitz continuous in a neighbourhood of uy € X, then there
exists T > 0 and a unique solution u € C*([0,T]; X) of u; = F(u) with u(0) = uo.
We shall show that F; is locally Lipschitz continuous on each of the Banach spaces
listed above. This is done within the next five lemmas and is based on the following
properties of g,:

o= [awir=1 lof= [(@wrd= . (217)
ot = [ laldr = W= [ @w)a = g, (2.18)
[otmiay=c. [ dan=o. (219)

Throughout B(X,Y’) denotes the Banach space of bounded linear operators from
a Banach space X to a Banach space Y, with the usual convention that B(X) =
B(X, X).

Lemma 2.2. The map F. is locally Lipschitz continuous in L.

Proof. Since A; = (G, — I) it follows from (2.17) that A, is a bounded linear
operator in L® with [|A.||pz~) < 5. Thus it is uniformly Lipschitz continuous on
L>™. By (2.16) and (2.19) we have

o

1
g(z—y)|z—yl |u]oo dy = g‘u|ooa

1
Ba@/ < [

—0o0
which implies that the operator B, is a bounded linear operator in L*°. The map
u — u? clearly maps L™ into L*, and is locally Lipschitz continuous: if u;,uy € L™
are such that ||u]| < R, for some R > 0, then

[u? — u2|oo = |(u1 + ua) (U1 — Uz)|oo < 2R|u1 — Us)oo-

Lemma 2.3. The map F, is locally Lipschitz continuous in L2
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Proof. Since A, is the Hille-Yosida approximation of the operator A = — (;%, which
is maximal monotone in the Hilbert space L?, A, is bounded linear operator in L2
with [|Ac|| g2y < %, see [15]. In view of Beu = glxu, the inequality |f*gl, < [fl, |g]s
and (2.18), the linear operator B, is bounded as an operator from L' to L?, with

1
2 1
IBelmarn < ([ IdPay)” = Ly, (220)
R 2¢2
For u;, us € L? with |u;] < R we have
R
’Be(u% - Ug)lz < ||Be||B(L1,L2)|(U1 =+ u2)(u1 - U2)|1 = —%|U1 — Uz|2-
€
O
Lemma 2.4. The map F, is locally Lipschitz continuous in H".
Proof. Since A = —% is maximal monotone on the Hilbert space H!, its Hille-

dz?
Yosida approximation A, is a bounded linear operator in H' with ||A.||p@) < 5.

For u;, us in H' with ||u;|| < R we now have

R
|B:(uf — u3)|2 < E—gHul — ugl|,

and
| (Be(ut —u3)), 2 < |Bellpr,poy | (1 +us)(ur — ua) ), |1 <
1Bl Bzt p2y ([(ur + tg)elour — uala + [ur + unla|(ur — up)z|2) <
R
— [[ur — ua|.
£2
Thus v — B.u? is locally Lipschitz continuous. O

Lemma 2.5. The map F is locally Lipschitz continuous in L' N L2.

Proof. The inequality [g. *ul, < |g.|1 |ulp for all 1 < p < oo and (2.17) imply that
A, is a bounded linear operator in L* with || A,|| Bt < 6% Consequently A, is also
bounded in L' N L? with ||A.||prinz) < 3. Now B, is a bounded linear operator
in L'(R) with
1Bl < [ lawldy =,
R €
so by (2.21) and (2.20) v — B.u? maps L' N L? to itself. Let uy, u, € L' N L? with
[Uih‘g S R. Then

B:(u} —u3)l12 < ||Bellpzr, ooy |(ur + uz)(ur — uz) |y +
| Bell Bzl (w1 + ua) (w1 — ug)|y <

11 1,1
2R (— + —3) lur —uplz < 2R (- + —3) |1 — ual10.
€ Q¢ € 2e:

(2.21)

Lemma 2.6. The map F. is locally Lipschitz continuous in L' N H'.

21



22
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Proof. Again A, is a bounded linear operator on L' N H' with [|A.| pzinm) < 5.
As in Lemma 2.5 one has that « — B.u? is locally Lipschitz continuous in L' N H*

with Lipschitz constant 2R (% + —lg) on the ball with radius R in L' N H*. O

2.3 Travelling waves

The analysis of travelling wave solutions of (2.1) is similar to the analysis of trav-
elling wave solutions of (1.5) in Chapter 1. Substituting

u(z,t) = ¢(z + ct) (2.22)
in (2.1), we have for ¢(z), after an integration in z, that
c(¢(2) — p(=00)) = ¢'(2) + (¢(2)* — d(=00)*) + ’c4"(2), (2.23)
so that " )
_ 6(00)* — d(-00)?
¢(00) — ¢(—00)
Restricting attention to ¢(—o0) = 0 and ¢(c0) = 1 we have ¢ = 1 and (2.23) can
be written as a Lienard type system of two equations:
o0
V' =¢(1—9).
The travelling wave solutions connecting ¢(—o00) = 0 to ¢(c0) = 1 are unique up

to translation and correspond to a unique orbit connecting the saddle (0,0) to the
sink (1,1). Note that (0,0) has eigenvalues

(2.24)

1
Ma=—5 <1i\/1+462), AL <0< A, (2.25)

>

and (1,1) has eigenvalues

1
Hi12 = —@(1 +v1-— 462), Re,ul,g < 0. (226)

The unique orbit coming out of (0, 0) into the first quadrant connects to (1,1). This
follows from arguments very similar to the arguments in [19] and relies in particular
on the negativity of the divergence of the Lienard vector field.

If £ < | the eigenvalues at (1, 1) are negative: (1, —e2u,) is an eigenvector of the
slow eigenvalue p; and (1, —&?u;) is an eigenvector of the fast eigenvalue pp. The
set {¢ >0, 0 <1 < —e?upgp + (1+¢€%us)}, contained in the region where ¢’ > 0, is
then invariant and contains the connecting orbit. Therefore ¢ is monotone if €2 < }1.
In this case the invariant region gives an explicit upper bound for ¢, namely

— 1+¢2 1—+1—4¢2
g=Y=9 . . (2.27)
€2 €2 2¢?
Theorem 2.7. Equation (2.1) has a travelling wave solution connecting u = 0 in
z = —o00 tou =1 1in x = oo. This solution is unique up to translation and of

the form u(z,t) = ¢(xz +t). Ife? < % the profile ¢ is monotone increasing and its
derivative is bounded by (2.27).
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2.4 Local well-posedness in affine Banach spaces

In this section we show that the initial value problem for the ODE (2.5) is locally
well-posed in the affine Banach spaces Y = H+X, X = L'NL? L'NnH', L?, H'. We
recall that # is a smooth function with #(—o0) = 0, #(c0) = 1 and H' nonnegative
and compactly supported. We say that u is a solution of (2.5) in C* ([0,T]; Y) if
@ =u — H is a solution in C* ([0,7]; X) of the equation

u = F.(a) + 2B:(Ha) + F.(H). (2.28)

Theorem 2.8. Let Y = H+X, where X is any of the spaces L'NL% L'NH*, L* H".
Then for all ug € Y there exists T > 0 and a unique solution of problem (2.1)
ue CH([0,T]; Y).

Proof. If we show that the operator
4 — F.(4) + 2B, (Hu) + F.(H)

is locally Lipschitz from X to X, the theorem follows again from Picard’s theorem.
From Section 2.2 we know that @ — F,(@) is locally Lipschitz in X for each of the
choices of X. We only need to prove that F.(#) € X and that the linear map
@ — 2B,(Ha) is a bounded operator in X.

Clearly F.(H) = AcH + B.H? = G:H" + G.(H?)'. F.(H) is in X for any of the
choices of X, because H" and (#?)' are compactly supported smooth functions. As
for 4 — 2B.(Hu), we saw in (2.21) that B, is a bounded linear operator in L'. It
is also bounded in L? and H' with

IB.llsws < /R 0. (v) dy =

1B sy < /R 10L)ldy =

- (2.29)

; (2.30)

™ | - m‘_ln—‘

respectively. Thus B, is bounded in L' N L? and in L' N H'. Finally if we set
"H|oo =1, ‘,H’|00 < 00,
[Haly < [al,

[Hal| < |Hils + [Higls + [H'Elz <
(]2 + [tzla + [H'|oo A2 < [|@llar (1 + [H|oo)-

Combining (2.29) and (2.30) with the above estimates we get that @ — 2B.(Hu) is
a bounded linear operator on each X. This completes the proof. O

2.5 Conservation of mass

In this section we prove that equation (2.1) preserves the integral if we consider
solutions in H + L' N L?. Note that unlike in the case of the Burgers’ equation, this
is not the same as being contracting in L'. Again this is due to the absence of a
comparison principle.
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Proposition 2.9. Let u,, uy be two solutions of equation (2.5) in C* ([0, T); H + L' N L?).

Then

/R(ul(m, t) — us(z,t))dx = /R(ul(:c,o) —ug(z,0))dzx  forall t€[0,T]. (2.31)

Proof. Consider the composite map
F:te0,T] > u(,t)e L'NL* - /u(x,t)d:t: eR
R

where u = u; — uy. Since by definition u € C'([0,7]; L' N L?), we have F €
C'([0,T),R). The chain rule implies that

F'(t) = /RAE(ul(m,t) — uy(x,t))dz + /RBE(ul(x, t)? — uy(x, t)?)da. (2.32)

We claim that both right hand side terms in (2.32) are zero for all t € [0, T).

To see that the first term is zero, we recall that A, = ZIZ(GE — I) and note
that [ Geu = [pu for all u € L'. This is immediate from the definition of G as
convolution with the Green’s function for (2.14): if f € L' then both w and w' are

in L' and [w= [, f.
Before proving

[ Bitws(a, 0 ~ (e, )z =0,

R

we observe that it is well-defined. Indeed, if u; = u4; + H, i = 1,2 then u? — ul =
u? — u% + 2H (4, — u2). Since u? — @32 € L' and 2H (4, — 1) € L' N L? we have
u? — u? € L' and from Lemma 2.5 (2.21) we have B, € B(L'). Thus the second

right hand side term in (2.32) is well defined.
Now let w € L! and consider the integral

/R Bow(z)dz = /R ( /R gelz — y)w(y)dy> da.

Applying Fubini’s theorem to g’.(z — y)w(y) € L'(R x R) we obtain, in view of

(2.19),
[ Btz = [ i) [ dio-iz) ay =0,

which in particular holds for w = u;(-,t)? — us(-,£)> € L*. Thus also the second
term in (2.32) is zero. O

2.6 The integrated equation

Now that we have conservation of the integral we may adapt ideas from [52]. Rather
than solving (2.1) for the unknown u(z,t) we consider an equation for the unknown
v(z,t), which as we recall is formally defined as

v(z,t) = /I (u(s,t) — ¢(s + t))ds. (2.33)

—00
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Thus if u is a solution of (2.1) in C* ([0,T]; H + L' N L?), then by Proposition 2.9

/R(u(s,t) —P(s+1t))ds = /R(u(s, 0) — #(s))ds forall ¢e0,T], (2.34)

which, without loss of generality, we take equal to zero, just by shifting ¢. This
allows us to work with function spaces for v having v(+o00,t) = 0 in some weak
or strong sense. The equation for v(z,t) is obtained by formally integrating (2.1).
This yields (2.8), which, rewritten as an ODE in similar fashion as (2.5), reads

1 S
v+ V= Ge (6—21) +v; + 2vz¢) ; (2.35)

Proposition 2.10. Let u be a solution in C' ([0,T); H + L' N L?). Then v defined
by (2.33) is a solution of (2.85) defined on [0, T].

Proof. We rewrite equation (2.5) as

1 1
Ut —+ ?u = G5 (6—2’” + (uz)w> - (2'36)

Subtracting from (2.36) the same equation for ¢(x + t) we arrive at
11 ,
2+ E—2z = gGEz + G (2° + 22¢),. (2.37)

for z(z,t) = u(z,t) — ¢(z +t). We define the operator J : L' — L* by
(Jf)(z) = / I (2.38)
—00
and apply J to (2.37). Then
1 1
(J2)e + E—QJZ — ‘E—QJGEZ + JG (2 + 220).,

and v1= Jz satisfies (2.35), provided JG.f = G.Jf and JG.f, = G.f for all
J G\’\i .note that J commutes with G.. Indeed, if f € L!, then w = G, f has w, w’
and w” in L' and satisfies the equation —&?w” +w = f. Thus Jw = JG. f satisfies
—2(Jw)" + Jw = Jf,
whence G.Jf = JG.f. Finally JG.f, = G.f for all f € L'(R) because
JGefe = J(g.* ) = (Jgi) * f = G.f,

where, if we write the integrals explicitly, we have used Fubini’s theorem applied to
(s,y) = gi(s —y)f(y) on (—o0,z) xR m
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Remark 2.11. Note that if u € L' N H' we only need G, commuting with J in the
argument above. Applying J to (2.37) gives

1
(J(u— )+ ?J(“ —¢) = JGc(u—¢) + JGE(U2 - ¢2)z
Since (u? — ¢?), € L' this implies
vy + gl?v = G+ G (u? — ¢?),

and the result follows because u* — ¢* = (u — @)(u + @) = v2 + 2¢v,.

2.7 Local well-posedness of the integrated equation

By Proposition 2.10 a solution u of (2.5) in C* ([0,T]; H + L' N L?) defines a so-
lution v of (2.35) in the Banach space X = {v € L* : v, € L' N L?} with norm
[lv]|x = |v|oo + |g|1,2- In this section we give a direct proof of local well-posedness
of (2.35) in a number of Banach spaces.

Proposition 2.12. The initial value problem for equation (2.35) is well-posed in
each of the following Banach spaces.

(i) X = {v e L*®, v, € L' N L?} with norm |v|eo + |vz]1,2-

(ii) X = {v € L*®,v, € L?} with norm |v|e + |Vz]2-
(i5) X = H" with norm |v|z + |vg].
(iv) X = {v € L?, v, € L' N L?} with norm |v|s + |vg)1,2.
For each of these spaces it is also well-posed in X, = {v € X, vy € L?} with norm
lvllx, = llvllx + [vzsle.
Proof. We rewrite the equation (2.35) as

vy — Aev = Ge(v2 + 2v,9). (2.39)

We first observe that the linear operator A, is bounded in X and in X;. This follows
from (A.v); = A.v, and (Aev)ge = Aevg and the boundedness of A, on L*®, L!
and L2, see Section 2.2.

Next we prove that the operator v — G.(v;¢) is bounded in X and in X;. It
is bounded on L? and L* because for all v € L? (1 < p < o) we have, writing

¢Uz = (¢U)z - ¢I’U,
1 1
‘G6(¢U2)|p < |gé * ((bv)‘p + [ge * (¢xU)|p < g’¢v|p + "ﬁwv[p < (g‘qﬁroo + |¢’|oo)’”|zr
Moreover,

‘(Ge((f’"w))m’p = ’gé * (¢'Ux)‘p < \92111¢Uz\p < §|¢|oo|vw|p'
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Thus the operator v — G.(v,¢) is bounded in X for each of the choices of X.
Finally if v, € L? and v,, € L?, then

|(Gs(¢vz))z112 < 'g; * (¢Uzz)|2 + ‘g:; * (¢zvz)]2 < g(lwoo‘vmb + ‘¢"M‘vz|2),

50 v = G (vz ) is also bounded in each Xj.

It remains to show that the map v — G.v? is locally Lipschitz continuous in
X and in X;. It is well defined on X because with f = v2 € L' the solution
w = G.v2 of (2.14) has w,w, € L' and w,w, € L?. If in addition vy, € L2, then
fz = (V2)s = 20,05, € LY, so that w, has the same properties as just formulated
for w and in particular w,, € L?. The local Lipschitz continuity in each X follows
from the estimates

|Ge((01)3 — (v2)2)|p < 1elpl(v1 + v2)al [(v1 — va)zl,
which we use for p =2 and p = oo,
[(Ge((v1)z = (©2)2))ah = |92 % ((1)2 — (2)2) 1 = [Be((v1)2 — (v2)2)1 <
|[Bell By (v1 + v2)el2|(vi — v2)sl2,
and
(Ge((01); = (v2)2))al2 = |6t * (v1)2 = (@2)2)|2 = |Be((v1)2 — (v2)2)]2 <
||B6HB(L1,L2)1(U1 + v2)zl2| (V1 — v2)z)a-

The local Lipschitz continuity in each X , i.e. the estimate for the L2-norm of the
difference of the second order derivatives, is left to the reader. [}

Remark 2.13. As long as v, € L? the operator v — G2 is Lipschitz continuous
in X. Thus if v, € L? for all t > 0 then the solution of (2.85) for vy € X exists
globally. As for vy € Xy, v exzists globally if v, € L? and vy, € L? for all t > 0.

2.8 Global existence and stability

In this section we establish two equalities for solutions of the integrated equation
(2.35) and deduce from them global existence for small initial data and stability
properties of the zero solution of equation (2.35). The first comes from testing the
equation with v.

Lemma 2.14. Any solution v of equation (2.85) in C'([0,T]; H') satisfies
1d
S /]R(v2 +e%?) = — /}R (@ = v)o2 + ¢0%) . (2.40)

Proof. We use again (2.39). Let w = v; — A,v and f = v2 + 2v,¢. Then by
assumption fisin L'+ L? and thus w € H' is the (weak) solution of —&2w"+w = f,

1.€.
ez/wzgam-I-/wcp:/ﬁp forall e H.
R R R
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Taking ¢ = v and observing that

/Rfvz/mvvi—/m;qbzv?, 62/]R(A5v)zvz+/R(Asv)v=—/Rvi,

we arrive at

/]R (Vs + €2050m) = — / (1= )02 + 6y02) .

R
This equality is valid for each t € [0, 7. |
The second equality is derived testing with v,.

Lemma 2.15. For any choice of X, in Proposition 2.12 any solution v of equation
(2.85) in C*([0,T]; X1) satisfies

ld 2, .22 2 2

| (M) =— [ v+ | oo (2.41)

Proof. We follow the proof of Lemma 2.14 above. Differentiating with respect to
= we have with the same notation that f; = VzeVs + 200z + 26,0 is in L' + L2
wy = G.f, is in H', so that

62/wm<pz+/wx<p=/fw<p forall o€ H.
R R R

Taking ¢ = v, and observing that

/fzva: =/¢z'”ia 52/(A5U)mvzz+/(Ae'”)zvz = _/Uiz’
R R R R R

we arrive at
2 2 2
/(Uzvzt T8 Umxvzzt) = _/'Uxm + / ¢zvz'
R R R

This equality is again valid for each ¢ € [0, 7. m]

Since the L®-norm is controlled by the H'-norm, see (2.43) below, the first
equality tells us that a solution in H' can be continued as long as |v;(-)|2 remains
bounded. The second equality shows that this is also the criterion for solutions in
X; to be continued. In terms of u the condition for global existence is therefore
that |u(-,t) — ¢(- +t)|2 does not blow up in finite time. Next we show that this can
be assured by a smallness condition on the initial data. It will be convenient to use

the norm X
2
olle= ( [+,
R

which is equivalent to the standard H'-norm:
1
lIvlle < [loll < _Ilvlle- (2.42)

Estimate (2.40) implies stability of the null solution in H', provided the travelling
wave profile ¢ is monotone.
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Proposition 2.16. Let > < L. For every initial value vo € H' with ||v||: < v/€
there erists a unique solution v : [0,00) — H' with ||v(-,t)||c decreasing for all
t > 0. Moreover

/oo lvg (-, ) [2dt < oo,

whence also

/ [u(-, t)|2,dt < oo.

0

This result is better than stability but slightly weaker than asymptotic stability:
we do not get that v(-,t) — 0 as t — oo in H™.

Proof. In view of ¢, > 0 and the estimate
1 1
o < [ [2002] < 2olalocle < B+ el = ZIbIE (249
R

the assertion follows immediately from (2.40). In particular the solution has 1 — v
bounded away from zero by a positive constant, C, so that upon integrating (2.40)

we find the first estimate:
* 9 1 2
¢ [ [ ot <3liml
o JRr

Combining |v?| < 2|v|2|vz|2 and the estimate above with the boundedness of
[v(-,t)|2 gives the second estimate in the theorem. a

Next we obtain an asymptotic stability result using the stronger norms with
vz € L? and a combination of (2.40) and (2.41).

1
max ¢’ *

Proposition 2.17. Let €2 < i and 0 < a < For every initial value vy € H?

with |vo||e < /(1 — amax¢’)e (no assumption on the size of |vf|s) there ezists a
unique solution v : [0,00) — H? with not only

/(v2 +e%v2),
R

/R(v2 + (€2 + a)v? + 2an?,

but also

decreasing for allt > 0. Moreover, t — ||vg(-,t)||c is square integrable and converges
to zero ast — oo. Finally, [v(-,t)|ec — 0 and |vg(-,t)|e — 0.

Proof. Combining (2.40) and (2.41) we have

1d

5 (W +(E +a)vi+an?,) = —/qﬁzvz—/(l—v—aq&z)vi—a/viz. (2.44)
R R R R

As in the proof of Proposition 2.16, the first assertion follows immediately from

(2.44). In particular the solution has 1 — v — a¢, bounded away from zero by a

positive constant. Note that Proposition 2.16 applies here as well.
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To establish the asymptotic behaviour we note that we now have two decreasing
functions. Taking the difference it follows that the function

t— /(vx(.r, t)? + e%v55(x, t)?)dx
R

has a finite limit as ¢ — oco. Integrating (2.44) over (0, 00) on ¢, it is also integrable
over (0,00) and thus the limit is zero. This proves the statement about ||v,(-,?)||..
The remaining assertion follows again using (2.43). ]

We list the consequences that Proposition 2.16 and Proposition 2.17 have for
solutions of (2.1).

Theorem 2.18. Let ¢* < 1 and let ug € H + L' N L? be such that vy € L?, where
e / (u(s, £) — $(s + 1))ds. (2.45)

If vy s sufficiently small the solution exists globally and
t [ ) - 4o+ P
—00

is both integrable and bounded on [0, 00). If in addition vy € H? is sufficiently small,
the solution has (u(-,t) — ¢(- +1t)) = 0 ast — oo in H' and therefore also in L™®
ast — oo. Without any restriction on € and the norm of vy the solution is global if
Vo € H?.

2.9 Discontinuities

In this section we show that jump discontinuities persist as ¢ evolves. The jumps
do not move and decrease exponentially as ¢ increases. We then focus on the case
of initial data with a single jump at z = 0 and establish convergence of the solution
to a travelling wave.

Theorem 2.19. Ifug € L'N L™ or ug € H+ L' N L™ has a jump discontinuity in
z =0, then so does the solution u(-,t) as long as it exists. Moreover

u(0,) = (07, =exp (5) (w0(0) ~ w(07)),

in which the superscripts — and + indicate left and right limits.

Proof. We only discuss the case ug € H + L' N L™ and write © = H + @, thus @
satisfies the equation

1 _
Uy + U= b, (u)
where (i) = 5G.u + B.u? + 2B, (Hu) + F.(H). Clearly
@, : L' N L*® — H" is continuous. (2.46)
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By using the variation of constants formula we get
_ _ —t Lo —(t—3s)
a0 = i 0)exp () + [ @ulaC,t) exp (Z52)as,

so t — (11(-, t) — g exp (;—})) is a continuously differentiable H'-valued function.

Since u € H' — u(0%) and u € H' + u(0~) are bounded linear functionals, the
theorem follows. a

In what follows we assume that ug € H + L' N L™ and that v} is the sum of
an L2-function and a multiple of the §-distribution with a point mass at the origin.
Following the steps of the proof of Proposition 2.17 for the integrated equation
(2.35) for (2.33) we shall prove that

[u — ¢lc = 0 as t — oo.

Reasoning as in the proof of Theorem 2.19 we have v, € L%(—00,0) and v, €
L*(0,00), as long as the solution exists, and that v, + Eiz'u is continuous. However
Lemma 2.15 does not apply because v & H?2. Instead we have the next lemma.

Lemma 2.20. As long as the solution exists it satisfies

li (/0 (’U2+62U2 )+/°°(1}2+52'U2 )) e
2dt o T Tz b T Tz

0 o0
- / Vo — / i + / ¢:0; + R(t), (2.47)
—00 0 R
where

—t 1 _ _ _
R(t) = exp () (uf — ) (5((1);)2 +ofu; + (1)) + B() (v +v;) — w0, t)> :
the superscripts — and + denoting the left and right limits at = = 0 for fized t.

Proof. The function z = u — ¢ satisfies equation (2.37) and thus w = 2, + E%z is a
solution of (2.14) with f = %5z + (2?), + 2(¢2),. Using the formula

o0 oo oo
52/ w'e + %' (0)p(0) +/ we =/ fo
0 0 0
with ¢ = 2 leads, after integrating by parts, to

1d = oo 00
55/ (2* +e%f) = —/ % + / ¢,2° + R*(t), (2.48)
0 0 0

where 9 1
RH () =~ = 8O - (e + ).
Along the same lines we have

l1d d 2 2.2 ! 2 0 2 =
5%/ (2 +e%22) = —/ o +/ ¢:2° + R (1), (2.49)
31
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where g 1
Ro() = 5 + 6V + %2 (e + 552):

Using v, = z we express R (t) and R™(¢) in terms of v. Since

Pu vk 4 S+ B0t = v - 5072 - gt
it follows
R () = —(oiof - 03)° — 4w,
R(0) = (g = 505)° — 6()(w5)?)
Setting R(t) = R*(t) + R~ (t) completes the proof. |

With Lemma 2.14 and Lemma 2.20 we can now adapt Proposition 2.17.
Proposition 2.21. Lete? < }, 0 < a < —. Let up € H + L' N L*™ be such that

ax ¢’
uly is the sum of an L? function and a multiple of the 6-distribution with a point
mass at x = 0. If vy is given by (2.45) and ||vo||e < +/€, there exists a unique global
solution v of (2.35) with

loll? = /R (0% +¢%2)

decreasing for all t > 0. Moreover

00 0
/ (v2 + (2 + a)vi) +e%a (/ v2, + / viz)
R 0 —o00

is eventually decreasing and

00 0
t—)/v§+52/ vzz+s2/ v2,
R 0 —00

is integrable on [0,00) and converges to zero as t — co. Finally |v(-,t)|c — 0 and
|vz('at)’oo = |U(',t) - ¢( + t)|oo — 0 ast— o0.

Proof. Proposition 2.16 implies global existence and the monotonicity of ||v]|..
Combining (2.40) and (2.47) we get

1 0 00
Ld (/ (v + (a+€%)02) +52a/ v§z+s2a/ vﬁz) <
2dt R —00 0
0 00
—/(l—v—amaxqﬁ’)vi—/qbzvz—a/ viz—a/ v2, + a|R(t)]. (2.50)
R R 0

—00
If |R(t)| — 0 as t — oo we have
0 =)
lim (/ (v + (a+e)2) + 52(1/ v, + sza/ ng> < 00,
t—o00 R —oo 0
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which implies the rest of the statements by the same arguments as in Proposi-
tion 2.17.
Thus it remains to show that |R(t)] — 0 as t — co. We observe that |R(t)| is
bounded for all ¢ > 0,
—t B
BE)| < exp (55 ) 1ug = 45| (620 + 20lolvaloo + [0,)])

We shall prove that the last factor cannot increase as fast as exp (E%) as t — oo.

The last term inside brackets, |v;(0,¢)|, is bounded. Indeed, v satisfies equation
(2.35), so, by the maximum principle we get

1 1
v+ 6—21) < |v:‘oo + 2[@oo|Vz]00 + 8—2[”‘00
for all (z,t) € R x [0,T]. In particular
2
v¢(0,2)| < |’Ug‘oo + 2|8 0| V2|00 + =
where we have used that ||v||. decreases with ¢ and ||vp|. < v/e. Thus
Y 1+ — 2 2
RO)| < exp (55) luf = ug (2oelZs + 4lluclvuloo + 5 ) - (251)
Note that
def 0 oo
et <) ™ ([ ety + [Toz+ent),
—00 0

so, in view of (2.51)

—t\, . (2 4 2
RO < e (5 =] (20 + Zolavi@+5). 25)
From (2.47) we also get
o (0) < 191ep(0) + R (253)

Next we obtain an estimate for y(t) as ¢ — oo which, combined with (2.52) gives
the behaviour of |R(t)| as t — oco. By (2.53) and (2.52),

1 ! ! —t + _ (2 4 2
L (t) < 1¢'|0oy(t) + exp (5—2) lug — ug | <gy(t) + %W[oov y(t) + 5"’) - (2.54)
With o(t) = 4e exp (g) lu¢ — ug | as integrating factor,. w(t) = e?®y(t) satisfies

w'(t) < 2|¢'|ow(t) + 2exp (;—Qt o+ U;—t)) lud — ug| ( w(t) + 532) )
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Since exp (;—f + M) — 0 as t — oo, there exist £ > 0 and a positive constant C

2
such that ~
w(t) < exp (2¢']u0) € forall ¢ >,

and, possibly with a larger constant,
y(t) < exp (Zt\q&'!m) C forallt>t (2.55)
By substituting (2.55) into (2.52), we get
|R(t)| < exp (;—; + 2t\¢’|oo) lug — ug | r(t) for all t > £,
where

r(t) = (gc + |8looexp (= el ) VC + :—Zexp (- 2t|¢'[w))

is uniformly bounded in ¢. The upper bound (2.27) for ¢ implies 2|¢'|oc < 3, thus
|R(t)] — 0 as t — oo. |
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Chapter 3

Long time behaviour of (1):
numerical analysis

Preamble: In this chapter we approximate equation (1) numerically.
Numerical examples that reflect the long time behaviour of solutions are
presented. The chapter is complemented with analysis of the equation
posed on bounded interval and a discussion of the numerical methods and
convergence results.

3.1 Introduction

In this chapter we investigate numerically the long time behaviour of solutions of
the Cauchy problem

Ut = Ugg + (U?)g + €%Uzey  on R x R, (3.1)
u(z,0) = up(z) in R

To this end we consider numerical solutions of the problem
Up = Ugg + (U?)g + E2Uggy o0 (=1,1) x [0, T, (3.2)
with initial condition satisfying
uo(=l) =u~, uo(l) = u't (3.3)
and boundary conditions imposed on the pressure w := u + £%u;, namely we take
w(-Lt)=u" w(l,t)=u" forte|0,T). (3.4)

Here v~ and u' are non-negative numbers, and [ > 0 is sufficiently large.
Equation (3.2) subject to initial data u, satisfying ug(—o00) = 0 < ug(+00) =1
is investigated in Chapter 2, where stability of travelling waves is proved in different
spaces. Nevertheless, these results rely on monotonicity of travelling waves, i.e. 2
must be sufficiently small. Two natural questions appear from this former analysis,
namely whether the non-monotone travelling wave solutions are stable, and what
is the long time behaviour of solutions obtained for initial data satisfying —oo <
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up(+00) < up(—00) < oo, and also ug(+00) = ug(—o0) = 0, for both small and
large values of 2.

Comparison and maximum principles are generally used to answer these ques-
tions. Maximum principles for a class of pseudo-parabolic equations were studied
in [20]. However these results are not applicable here. For instance, the linear ver-
sion of (3.1) is known not to exhibit a maximum principle, see [67]. Therefore we
concentrate on numerical experiments.

Two numerical schemes are used, one first order explicit, and the second first
order implicit in time. Spatial discretisation is achieved by first order up-wind
schemes, see [45]. In conservative form, equation (3.2) reads

uy = Fy, (3.5)
with the flux F = u? + w, and the pressure w satisfies the elliptic equation
—2wge +w = u + 2(u?),.

The conservation form is convenient for discontinuous initial data. As shown in
Chapter 2, if ug has a jump discontinuity at some z € R, then so does the solution
for every t > 0. Conservation of mass allows one to impose flux continuity at
the location of the jump of the solution, and deal with it numerically. Similar
techniques can be found in [71] or [72], where interface conditions between different
homogeneous porous layers are considered.

Numerical methods for equations of this type are considered, for example, in
[13] and [25], where the finite element method (FEM) is used. These papers are
motivated by the so-called Benjamin-Bona-Mahony (BBM) equation that arises in
the context of long wave motion, see [13] for a derivation of the model. The analysis
carried out in these works results in error estimates, but no jump discontinuities are
considered. We finally mention the work by Schotting, Beliaev and Hassanisadeh
[33], where a numerical treatment of the original problem for a capillary pressure
relation accounting for hysteresis is presented.

This chapter is organised as follows. In Section 3.2 we indicate qualitative prop-
erties of solutions to the problem (3.2)-(3.4). We prove well-posedness, derive con-
servation of mass and state persistence in time of jump discontinuities of solutions.
Our numerical schemes take into account these properties. A global existence result
is also proved.

Section 3.3 describes the numerical schemes, including the treatment of jump
discontinuities. For the implicit scheme we apply an iterative scheme, which is
shown to converge in Section 3.5.

Before presenting the examples, in Section 3.4 we give an heuristic argument for
the expected long time behaviour. To this end we refer to Burgers’ equation with
and without diffusion and apply a scaling argument. Extending this argument to
equation (3.2), we immediately conclude that the long time behaviour is similar
to the one for Burgers’ equation. Hence if the initial data satisfies u= < ut, we
expect asymptotically stable travelling wave solutions. If u~ > u*, solutions should
rather exhibit a rarefaction wave profile. Finally, if u* = u~ the expected limiting
profiles are approximations of N-waves. The numerical examples given at the end
of Section 3.4 sustain the predictions above.
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It is worth mentioning here that numerical examples also confirm the absence of
maximum principles. When v~ < up < u~ and €? is sufficiently large the solutions
evolve to profiles that oscillate around the constant state u*. Also when v~ > ug >
ut = 0 with &2 large enough, the numerical solutions become non-positive at early
time steps.

Throughout this chapter ||-|| denotes the L?-norm, ||-||; the H'-norm and ||-||s

the L*®°-norm. (-,-) stands for the usual inner product of L?. We introduce the
following coercive (¢? > 0) bilinear form in H*,

ae(u,v) := (u,v) + (ug, vz),

and denote the associated norm by ||+ ||.. The norms ||-||; and || - ||, are equivalent,
with

lulle < Cellully, [lully < cefulle, (3.6)

where C; =1 and ¢, = % if € < 1, respectively C, = ¢? and ¢, = 1 if £ > 1.

3.2 Analytical results

In this section we give some analytical results that are analogous to those proved in
Chapter 2: well-posedness, persistence in time of jump discontinuities, conservation
of mass, and global existence of solutions in H*(—,1).

To prove well-posedness problem (3.2)-(3.4) is formulated by introducing the
unknown w = u + e%u;. Formally w satisfies the elliptic equation

—®Wep +w = u+eX(u?), on (=1,1). (3.7)

with boundary conditions that we take to be w(—!) = u~ and w(l) = u*. Note that
since u itself is time dependent, ¢ appears only as a parameter in equation (3.7).
In a rigorous manner, w is defined by the non-linear operator

w:=W(u) +w = Ge (u+*(v?),;) +w, (3.8)

where G, is the Green function associated with the operator (I — 62‘;—22—), on the
domain (—I,1) (with boundary conditions w(+l) = 0), and w is a solution of
—e?wgy + w = 0 in [—,1] with boundary conditions w(+l) = u* . In this way
we end up with the initial value problem

iy = 6% (W () - u) + Elzu-;, on (=1,1) x [0, T] (3.9)
u(+,0) =uo(-) in (=I,1), and up(£l) = u. (3.10)

For the problem above we have

Theorem 3.1. Let X = L*(—1,1), H'(-1,1). Ifuy € X, a T > 0 exists so that
problem (8.9)-(3.10) has a unique solution u € C*(0,T; X).
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Proof. The proof follows the ideas in Chapter 2 for the Cauchy problem on R. The
operator £(u) = %(W(u) — u) maps X to X, and is locally Lipschitz continuous.
Then by Picard’s theorem for ordinary differential equations in Banach spaces,
equation (3.9) has a unique solution in C'(0,7T; X). ]

Notice that (3.9)-(3.10) is an initial value problem rather than a boundary value
one. As for the diffusive Burgers’ equation the long time behaviour is expected to
depend on the boundary values of the solution. The next lemma shows that the
solution has the same boundary values as the initial condition. The lemma also
accounts for evolution of discontinuities on the initial condition.

By the variation of constants formula, (3.9) is solved by

alen )= gl (;—,f) + ;/Otw(-,t) . (#) fort € [0,T), (3.11)

w given by (3.8). From this we obtain the following
Lemma 3.2. Let ug in L?(—1,1), then

(i) If uy has a jump discontinuity at o, then so does the corresponding unique
solution u. Moreover the jump decreases according to

u(zy,t) — u(zg,t) = exp (;) (uo(zy) — uo(zg)) for allt €[0,T), (3.12)

where by u(zy) we mean the left and right limits of u at x;.

(43) If lim,,_;up(z) = v~ and lim;,; uo(z) = u™, then u solving (3.9) also sat-
isfies
u(=lt)=u" and u(l,t)=u" forallte0,T]

Proof. (i) The proof is analogous to the proof of Theorem 2.19 in Chapter 2. We
use continuity of w € H*(—l,1), and (3.11).
(ii) Let u > 0 be small enough such that ug is continuous on (—I,—! + p) and
(I = p,1). By (i), u is continuous on these intervals as well, so passing to the limit
in (3.11) as £ N\, —/ and z | makes sense. To conclude the proof we use the
boundary conditions on w and on ug in (3.4). O
Lemma 3.2-(%) covers the case of initial conditions with jump discontinuities, in
the sense that %uo = v + Zfio Cidy;, with vy € L? C € R, §;, denoting the
Dirac distribution in z;. In Section 3.4 we consider initial conditions of this form
with a single jump. As for the diffusive Burgers’ equation, mass is conserved if
equation (3.1) is taken on R (see Chapter 2). A similar property holds for problem
(3.9)-(3.10). The numerical schemes for discontinuous initial conditions relies on
this property. We namely have the following

Proposition 3.3. If ug € L*(—1,1), then the flur F = w, + u? is continuous.
Moreover, the solution u of (3.9)-(3.10) satisfies

/l u(z, t)dz = /l uo(z)dzr — /Ot(F(—l, s)— F(l,s))ds forte[0,T]. (3.13)

= l
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Proof. We first notice by (3.8) (or (3.7)) and (3.9) that the flux F defined in (3.5)
satisfies
Fp = wee + (4?); = (w — u)/e? (3.14)

in distribution sense. By Theorem 3.1, if ug € L?(—, 1), then u € C*(0,T; L*(—1,1))
and thus w € C(0,T; L?(—1,1)). It follows from (3.14) that F, € C(0,T; L*(—l,1)).
Also by the definition of F', F € C(0,T; L*(—,1)) thus F € C(0,T; H'(-1,1)), and
hence the flux is continuous everywhere. This also holds at the position of a jump
discontinuity.

For the second part we test equation (3.9) with a family of functions ¢; €
Hj(—1,1) and obtain

/Ot /_’l u(y, 8)ps(y) dsdy = EIZ/Ot /_’l(w(y, s) — u(y, s))ps(y) dy ds.

By (3.7) we obtain
¢ t pl
/0 /_luz(y, $)¢s(y) dsdy:/0 /_l(wy(y, ) -+, a))s g dyids
t pl
= —/0 /_l(wy(y, s) + u’(y, 8))0,ps(y) dy ds. (3.15)

Since F'is H' and u; € L? we can take {5} converging to 1 (the constant function)
as 6 N\, 0. Convergence is understood strongly in L?(—I,1) and therefore holds
almost everywhere. This also means that 9,5 — §(1) — (—1) in H~! sense. Now
passing to the limit in (3.15) gives (3.13). ]
The next proposition gives stability estimates for equation (3.2), which ensure
global existence of solutions in H'(—1,1). We first need the following lemma

Lemma 3.4. Assume that the boundary values ut,u™ > 0, then there ezists a
unique stationary solution h of equation (3.2) such that h(—l) = u~ and h(l) = u™,
and h is monotone in [—1,1].

Proof. A stationary solution of (3.2) must satisfy
K+h*=C, in[-l,l], withCeR (3.16)

The initial value problem of (3.16) with initial condition v~ at 2 = —I is well-posed
for any C' € R Let us see that C' can be chosen uniquely so that h(l) = u*. Let
hc denote the family of solutions of (3.16) such that Ac(—I) = u~. Note that h¢
depends continuously on C. Clearly, if ut = v~, h¢ = ut with C > 0 such that
ut = v/C is the only possibility. Let us consider next the other cases.

If u= < u™ we assume that C' > 0 so that ' > 0, and » > 0. In this case the
equation implies that h"(z) = —2h(z)h'(z) < 0 for all z > —I, and A"(-1) < 0,
Le. every hc with C' > 0 is concave in (—1,1]. Now if C; < C,, then by (3.16)
he, (=1) < hg,(=1), but he, and hc, are concave, hence hg, (z) < hg,(z) for all
z > —l. Therefore h¢ is monotone increasing in C. This and the continuity in C
implies that there exists a unique C' such that hc(l) = u™.
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Similarly, if u* < u~, then from (3.16), if C' > 0 such that u* > V/C then i’ < 0.
By similar arguments we then have that h”(z) > 0 for all 2 > —I, and h"(—I) > 0.
Again this implies that hc(—!) is monotone increasing in C, so that there exist a
unique C such that h(l) = u™. If u™ = 0 then C is negative, and similar arguments

apply. O

Proposition 3.5. Assume, ut,u~ > 0 and that ug € {uv € H'(=1,1) : u(-l) =
u~,u(l) =u*}. Let h be the stationary solution of (3.2) such that h(—1) = u~ and
h(l) = u*, then the solution u of (3.2) satisfies the estimates.

(i) Ifu= > u* , then t — ||u(t) — h||? is decreasing, hence

(u(t) = hl2 < |luo — hI[Z for all t >0.

(i) If u= < ut, then
u(t) = B2 < exp(K)|luo — b2 for allt > 0.

where K > 0 is a constant given below.

Proof. Using the weak formulation of (3.7), and equation (3.9), we get equation
(3.2) in weak form as

1 1 i 1
62/ utzgpz-k/ utga:—/ uz(pz—/ up, forall p € Hy(=1,1). (3.17)

=l - -l —l

Set @ := u — h, then @ € H}(—1,1) and satisfies the equation

1 ! ! 1
/ ﬁtgo—l-ez/ gt Pz = —/ g P +/ (@W)2p, for ¢ € Hy(—1,1). (3.18)
_ 4 -l

-l

Testing (3.18) with ¢ = @ we get

1d/l(a2+52a2)——/la2+/l @*h, (3.19)
2dt J ¢ AL .

Then if u™ > u~, Lemma 3.4 and equation (3.19) immediately imply the statement.

If u= < u*, by Lemma 3.4, hy(xz) > 0 for z € [—,l], and it is bounded by
C —(u™)?, where C > 0 as in the proof of the lemma, then application of Gronwall’s
lemma implies (%) with K = C — (u™)?. O

Remark 3.6. As we have seen in Proposition 3.5, (3.2) admits stationary solutions,
and those are stable in H' if u= > ut. We then expect numerical solutions to
approach the stationary solutions. However if the interval [—1,1] is long enough the
solution will exhibit the long time behaviour of the problem posed on R, until the
solution is affected by the boundary values.
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3.3 The numerical schemes

In this section we describe the numerical schemes we use to approximate equation
(3.2).We use the following notation. Let — = 29 < ... < 2,4, = [ be a uniform
partition of the spatial interval I = [—[, ], with h = z; 11 —z;. Alsolet 0 =t; < t, <
... <tmy1 =T be a uniform partition of the time interval [0, 7], and 7 = tx41 — t
respectively. ¥ and w* are the numerical approximations of u and w solving (3.2)
and (3.7)respectively, at ¢ = k7. Their values at a grid point z; are denoted by u}
and wf.

The discretisation in space will differ for continuous initial data and initial data
with a jump discontinuity. We shall take discrete initial data for which a single
jump discontinuity occurs at the mid-point of the interval [z}, z;] for some j €
{1,...,n}. This point is denoted by Tjyi1- By Lemma 3.2, the jump persists at

Tj,1 as k increases. Therefore we assume that at Tt the numerical solution u*

takes two different values u*~ and u**, which denote the left and right value of u*
at ;1 respectively. The same might be assumed for the numerical solution w* at

time step &, but w is continuous in (-, ), since it solves the linear elliptic equation
(3.7). Hence we simply let W* denote the value of w* at z;, L.
We have implemented the following schemes.

3.3.1 Explicit time discretisation
We write equation (3.2) in conservation form
uy = F,, with F = w, + u? (3.20)
with w solving the elliptic equation
—&%Wee +w = u+€%(u?), on (—I,1). (3.21)

Knowing u* at a given time step t;, we first solve (3.21) numerically, and obtain
the corresponding pressure w*. Next we use u* and w* to obtain u**! explicitly.

A first order upwind discretisation - that we adopt for gaining in stability - of
(3.21) at ¢t = ¢ reads

g? g
wf = St e ruh) — 4 S (W - (), (22)
K _

with boundary conditions w§ = u~ and w¥ , = u*. Next uf*! is computed by

ulp+1_uf:%(Fik+;—Fi'ié), fori=0...n, (3.23)
2

1
with the discrete upwind flux given by
1 .
F}i% = (uly P4 E(wf+1 —wk), fori=0...n.

It is easy to check that this one-side discretisation is conservative, see [45], i.e. it
satisfies the discrete version of (3.13).
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When the initial data has a jump discontinuity at z; +1, we modify the scheme
as follows. We define

_ _ 2
Fil =) + - (W —uf),
2
k+ __ k k k
Fj+% = (uj+1)2 + E(w]+1 -W"),

to be the fluxes at the left and right sides of the jump respectively.
We modify the discretisation of (3.22) at the right and left adjacent grid points
of z, 1:
Jt3

62

wh — E—(w'-‘_l —2wh + W5 =ub + 5%

i~ 2\ ((uf)? + (@) = 2(u5)?)  (3:24)

and

e? e? _
w;'c+1 - ﬁ(Wk - 2“’;'CH + wf+2) = u§+1 + ﬁ@(“;w)? - (u§+1)2 - (ub7)?). (3.25)

The right hand sides in the above equations are due to the upwind strategy. For
example, (u), is approximated in (3.24) as (((uf,,)*+ (u*7)?)/2— (u)?) /h. In this
way at the jump discontinuity we take into account the contribution of v from both
sides. This approach is also consistent with an up-wind finite element formulation.

To determine W* (the pressure at the jump) we impose flux continuity at Tyt
FF = F*% for all k, which gives W* as
Jjtz Jjts

2
wk = g ((u;?_H)2 + E(w}“ﬂ “+ wf) — (uk’_)Q) for each k. (3.26)

Thus the system of equations (3.22) for i # j,j + 1, (3.24), (3.25) and (3.26), gives
wk at every z; and at Tjp1-

To get u* away from the discontinuity we use (3.23), while at z; and Tjy1 We
take at the left side of the jump

k+1 k_ T/ pk— k
w; " —u=—(F"7 — F;
J J h( i+§ J——;)’

and at the right side of the jump (3.23) we take
k+1_ ok _ Tk k,+
Ujpr = Uj1 = E(FH% - Fj+§ 4

Finally we have to determine the values of u at the discontinuity, i.e. u**1%. To do
so we use the definition of w, w = u + eu;. Explicit discretisation of u; gives

uktLE = ket E(Wk — yk),

Observe that at each time step u* is not used to solve the equations at the each
time step. This is due to the right up-wind discretisation. However, we compute
these values and use them in the examples.
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3.3.2 Implicit time discretisation

For the implicit scheme we consider equations (3.7) and (3.9). Assuming that u*~*
and wF~! are given, at grid points not adjacent to the jump location the fully
discrete equations read

k

e’ o2
wf = 5z (Wi — 20f +win) = + (i)’ - (uf)?), (3.27)

and #
uf —uf = ?(wf —uf). (3.28)

The above scheme is nonlinear, due to the convection term. A straightforward
semi-implicit linearization of (3.27) reads

2

wk — %(w = 2wf k) =uf s (uz_Hu uftuk). (3.29)
In order to get a better approximation to the fully implicit scheme (3.27)-(3.28) we
use the following iteration procedure

k,s e2r. . ks k,s k,s o k,s—1 ks k,s—1_ k,s
wi’ — o (wi — 2w +wi) = fep (uz+1 Uifs — U Uy
(3.30)
k,s k-1 _ T k: s k,s
U’i, — Uy = Ef( ui’ )a

where s > 0 is the iteration step. Initially we take u*? = u*~1 and w*? = wk=1,
i.e. the first iteration solves the semi-implicit scheme (3.28)-(3.29). Under some
restrictions on the discretisation parameters, convergence of u*** to the solution of
the fully implicit scheme (3.27)-(3.28) u* (as s * 00) is shown in Section 3.5.4.

For grid points in the neighborhood of the jump location we mention only the
modifications that are specific to the semi-implicit discretisation (3.28)-(3.29), it-
eration procedure and fully implicit scheme are treated similarly. At z; and z;41,
(3.29) becomes

g? 2¢e? B
wf — ﬁ(w;‘_l — 3w} +2W*) — ub — T(u'C b — bl ) =0, (3.31)
and
why, — 0 (2W’c 3wl +wh,,) — (u] Uy —uilut ) =0. (3.32)

Observe that now, the flux function reads:

1
k k-1 k k k L
Fz+1 =i ul+1+ﬁ(wi+1—wi), for i # j.

At the jump we consider the left and right flux functions

_ 2
F]k+; = bl b 4 7(Wk _ w;-“),

2
k,+ k=1, k
F]+1 j+1 U +1 + h( Al )-
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Then continuity of flux gives the following expression for W*

2
Wk = i ub b+ T (wh g +wh) —u b uR ) forall k. (3.33)
4 J+1 7+ h' It J

Again the definition of w (3.9) gives equations for u™ and u ™, in this case

2
(:f) ubE — ET—ZW’“ — (3.34)

In this way we end up with an algebraic system. This includes equations (3.29)
fori=1...7—1andi=j+2,...,n, to which we add equations (3.31) and (3.32),
finally, equation (3.33), the equations (3.28) for ¢ = 1,...,n, and (3.34) close the
system.

Solving this system we obtain a solution for the semi-implicit scheme. Finally,
the iteration procedure is performed for discontinuous initial data with the obvious
changes.

3.4 Asymptotic behaviour

This section is divided in two parts. The first part gives the preliminaries for
understanding the asymptotic behaviour that is observed numerically. The second
part comprises the numerical examples.

3.4.1 Preliminaries

In this section we briefly discuss the long time behaviour that should be expected
for the Cauchy problem of equation (3.1). We first give a review on large time
behaviour for the inviscid Burgers’ equation and the diffusive (viscous) Burgers’
equation, from where we conclude formally the asymptotic behaviour for equation
(3.35).

First we consider the scalar conservation law

u = (u?); onR. (3.35)

Observe that this equation is invariant under the group of scaling transformations
z — Az and t — At, so that if u(z,t) is a solution of (3.35), the family of functions

ux(z,t) =u(zA, t)), for \eR (3.36)

satisfies (3.35) as well. In fact there exist solutions of the form u(z,t) = f($).
For this equation subject to the Riemann condition

(3.37)

ut ifz>0
u- ifz <0,

it is well-known that if 1 = u~ > u* = 0 the weak entropy solution is a rarefaction
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wave, a solution of the form u(z,t) = f(%), which is given by
1 if§<-2
z T 3 z
0 ifz2>0

Equation (3.35) is also invariant under translations in space and time. In fact
if 0 =4~ <u't =1in (3.37) then the weak entropy solution is a travelling shock
wave, namely

0 ifz+t<0
9(“’“):{ 1 ifz+t>0. (3.39)

which is also of the form u(z,t) = f(3).

Solutions of the Cauchy problem of (3.35) with bounded compactly supported
initial data, tend to a so-called N-wave, see [46], a solution of (3.35), also of the
form u(z,t) = f(%). In fact, N-waves combine both travelling shock and rarefaction
wave behaviour, in a way that mass is conserved. The graphs of this solutions are
drawn in Figure 3.1 for completeness.

(a) Travelling shock. (b) Rarefaction. (c) N-wave.

Figure 3.1: Entropy solutions of (3.35)

These three types of solutions describe the large time behaviour of more general
solutions. One way to prove that is by observing that the scaling (3.36) transforms
the limit problem ¢ — oo into the limit problem A — oo. Indeed, it can be proved
that if ug € L*°(R), and the family uo y — v as A — oo, where v is the initial data
that gives one of the above solutions of the form v(z,t) = f(%), then the family of
solutions u, converges to that solution v as A\ — oo. In particular

u(Az, A7) =2 v(z,7) as A = oo
for each fixed 7 € (0,77, and by setting 7 =1, A=t and & = £
u(y,t) — v(%, 1) ast— oco.
The diffusive (viscous) Burgers equation
Up = Ugg + (UP)g (3.40)
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is invariant under the groups of transformations z — pz, t — p’*t and v — u/p,
and under translation in z and ¢. It is not invariant under the scaling (3.36). In
fact the family u, satisfies the equation

1
Unt = XUA’ZI + (ui)za

which limit equation for A — oo is (3.35). Similarly the limit A — oo transforms
to the limit ¢ — oo, i.e for initial data such that u* > u~ solutions tend to an
approximation of a travelling shock, which is a travelling wave solution of (3.40),
this being consistent with translation invariance. For initial data with vt < u~
solutions tend to an approximation of a rarefaction wave. Finally for initial data
with 4t = u~ = 0 solutions tend to an approximation of an N-wave, in this case
a self-similar solution of equation (3.40), which is consistent with the invariance
under the transformations z — uz, t — p?t and v — u/p.

These results can be found in [39] and [35]. See also [74] for a more general
theory on asymptotic behaviour of parabolic equations and conservation laws.

Assuming that the same argument can be applied to equation (3.1) we scale
equation (3.1) according to (3.36), then the family u, satisfies the equation

1 4 e

Unt = Xu/\,zz + (u)‘)z e Fu/\,zwt-

Thus taking the limit A — oo we expect the limiting behaviour as t — oo to be
described by the formal limit equation (3.35). Then in the case u~ < u™ travelling
wave solutions are expected to describe the long time behaviour for any value of £2.
In the other two cases we expect solutions to approximate rarefaction waves and
N-waves respectively, as t — oco.

In view of the third order term in the rescaled equation, we expect this conver-
gence to take longer as 2 gets larger, since as long as A < 2 the third order term
dominates.

3.4.2 Numerical examples

In this section we present numerical experiments that illustrate the long time be-
haviour exhibited by solutions of (3.1).

There is no visual difference in the numerical solutions obtained by the explicit
discretisation (3.22)-(3.23), and solutions obtained by the iterative procedure (3.30)-
(3.28); note that the rate of convergence for both method is of the same order, see
Section 3.5. Since the explicit method is less time consuming, we chose it to generate
the examples.

We consider three cases, depending on whether u* is larger, smaller of equal
than »~. The asymptotic behaviour is of the following type:

Travelling waves

We take ut =1 and v~ = 0, and the following step function as initial condition,

1 ifz>0
uo(z)z{ 0 ifz<0 (3.41)
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Solutions are represented in the travelling wave coordinate n = z + t, each graph
corresponds to the profile at a time step. We have taken the half length of the
interval to be [ = 100. The spatial step size is h = 0.5 and the temporal step size
is 7 = 0.01.

In Figure 3.2-(a) we plot results for €2 = 0.2 at time steps ¢ = 5,10, 15 and 20. In
Figure 3.2-(b) solutions are plot for €2 = 5, at time steps ¢ = 10, 15, 20, 25 and 30.
It is easily observed that the profiles tend to overlap (in the travelling coordinate)
as t increases. This convergence takes longer for €2 = 5 than for ¢ = 0.2. Finally
we observe that the profile of the solution oscillate around ut = 1 for €2 = 5, this
being consistent with oscillatory travelling waves solutions found for e > %, see
Section 2.3.

We finally point out that the example with €2 = 5 > i confirms the absence of a
maximum principle, since the oscillations make the solution exceed the maximum

of the initial condition.

Rarefaction waves

We take v~ = 1 and u* = 0 for simplicity, and as initial condition the step function
0 ifz>0
w@={ 7 ifso @34

We have taken the half length of the interval to be [ = 200. The spatial step size is
h = 0.5 and the temporal step size is 7 = 0.01.

The solutions are plot in the rarefaction coordinate J; at each time step. Fig-
ure 3.3 shows results for €2 = 0.2 and €% = 5 at time steps ¢ = 10, 20, 30 and 40.

For both values of £ the profiles of the solution tend to overlap as ¢ increases.

N-waves

In this section we consider examples for continuous compactly supported initial
data. We namely take the following initial condition
5 if —26<z<0
u(r)=¢ £+2 if —50<xr<-25 (3.43)
0. otherwise

We have taken the half length of the interval to be [ = 200. The spatial step size
is h = 0.5 and the temporal step size is 7 = 0.1. The solution is plot in self-
similar variables, i.e. we plot % against u(z,t)y/t for each time step. In Figure 3.4
the corresponding results for €2 = 0.2 and €2 = 5 are drawn at time steps t =
50, 100, 150, 200 and 250.

Observe that in this example, with continuous initial condition, we have taken
much larger time step. This is because if we were to compute solutions for step
function intial data as for the previous cases, with steps sizes as in this case, we
would have seen the effect of the boundary values at ¢ = 200. Also, in the travelling
wave case, the profiles of the solution (in the travelling coordinate) overlap already
at approximately ¢ = 20.
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Remark 3.7. Figure 3.5 shows initial jump discontinuities decreasing with time.
The initial data are the heaviaside function, H, and reverse heavisisde function,
1—H, as in (3.41) and (3.42) respectively. In both cases € = 5. We have taken
7 =0.01, h = 0.5, here | = 200. At each time step, t = 4,12 and 20, the profile of
the solution is plot against the spatial coordinate x.

In Figure 8.5-(a), for small values of t the discontinuity and the oscillations of
the solution generate a peak in the profile. This, however, disappears as t increases
due to the decrease of the jump discontinuity.

In Figure 3.5-(b), the solution becomes non-positive at early time steps. But the
decrease on the jump, pushes up the solution as t increases. In particular the gives
an example of non-positivity.

3.5 Convergence results

In this section we give error estimates for both explicit and implicit discretisation
schemes, assuming the initial data is in H', and the boundary values are homoge-
neous. Convergence results for less regular initial data can be obtained in a similar
fashion, leading eventually to lower convergence orders, but this lies beyond the
purpose of this chapter. In what follows, we let Vj, C H}(—(,) denote the space of
piecewise linear finite elements. These are considered on a uniform spatial grid of
size h and vanish at the boundaries.

The following inequalities will be used in the sequel, their proof being elementary.

llull2o < 2[[ull |8zl < [lul[®+ [|0zu]l* < &7 ([ull* + &*||8zul[*) (3.44)

[l [* < 4lf[ul| [|8zul| = [lul| < 41]|0zull (3.45)

3.5.1 Error estimates

We first consider only the spatial discretisation of equation (3.2). This consists in
seeking U € C*([0,T); V4) such that, for all x € Vj, and all ¢ >0

(Ut x) + *(Uat, Xa) = —(Us, Xa) + (U*)z, ) (3.46)

with initial data given by (U(0), x) = (uo, x) for all x € V.

Observe that the weak formulation of equation (3.7) allows to write problem
(3.9)-(3.10) in a weak form similar to the above, the solution of which is compared
to the semidiscrete solution. Then we obtain the following estimates.

Theorem 3.8. The semi-discrete solution U of problem (3.46) is defined for all
t > 0, and satisfies the stability estimate

U@ < Clluollx (3.47)

for all t > 0, where C = C.c. (the constants defined in (3.6)). The approzimation
error is bounded by

t
1) = u@)]]s < O fuoll)h* (1 + [ Q@i+ Hu(v)lll)dv) (3.18)
for allt > 0 and s = 0, 1 respectively.
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For a proof we refer to [3], where this result is shown in a more general framework,
or to Appendix A.1. The estimates are obtained for a standard finite element
formulation. For stability reasons we have considered an up-wind discretisation of
the convection term. In this case, in which U and 8,U are H', this approach does
not affect the above results, see [69] and [56], and Appendix A.2.

3.5.2 Time explicit discretisation

Applying a forward Euler discretisation to equation (3.46) we look for {U*},_7 C
V}, such that

U* —U*"x) +6° (UF —UE ' xa) = —7(Us 0 —7(UF ) xa)  (3:49)
for all x € V},, with U® = U(0) € V,. In this case we obtain the following

Theorem 3.9. Let U* and u solving (3.49), respectively (3.2), then the approi-
mation error is bounded by

23
Hu(tk) o Uk||s < hl—scl + 7'02/ HUtt(V)Hl dv (350)
0

where
Gy = O(lfuolly) (1 + [ @i+ u(u)rh)du) ,

and Cy is a positive constant that depends on the uniform bound of the solutions on
[0,T] and on T.
3.5.3 Time implicit discretisation

The implicit scheme can be defined in a similar manner. We seek for {U*}, ;7 C Vj,
such that, for all xy € V},,

U*F —U* 1, x) + X(UF — U, x2) = —7(UF, x2) — 7(U*)?, x)- (3.51)

Testing into this with x = U* and using (3.52) and (3.44) we can immediately prove
the following a-priori estimates.

Lemma 3.10. Let U* be a solution of (3.51), then
U] < [IU*He (3.52)

fork=1,...,m. In particular
1
10U loo < 75 lo]e (3.53)

for all m.

The error estimates for (3.51) are obtained in the same fashion as for the explicit
scheme. Details are omitted here.
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Theorem 3.11. Let U™ and u solving (3.51) and (3.2) respectively, then

tr

[lu(ty) — U"||s < h=sc, +7'Cg/ [|Ug | dv (3.54)
0

where

e =0l (1+ [ (il + [ ar)

and Cy is a positive constant that depends on T and ||ug]|;.

3.5.4 Iterative process

Here we prove that the iteration procedure described by (3.30) converges to the
solution of the implicit scheme, assuming the boundary conditions are homogeneous
and u® € H}(—l,1). To this end we denote My := ||U°|?, then Lemma 3.10 and
(3.44) give ||U*|[%2, < e 'My for any k > 0. Now the iterative procedure can be
written, as follows. Fix £ > 0 and let U*! solve (3.51). For any i > 0 find

U*t € H(—1,1) such that for all x € H}(—1,1) we have

(U, x) + (% + 7)(8.U**, 0:x) + T(UR*1U**, 8,x) = (U, x) + (8:U*, 8,:x),
(3.55)
with U0 = Uk-1,
For each s, existence and uniqueness of a solution is provided by standard argu-
ments (monotone perturbation of bounded and coercive bilinear forms). Moreover,
the resulting array can be bounded a-priori.

Lemma 3.12. Denote a = 161?/(161> + ¢) € (0,1) and assume T satisfying

ag’ 23
< = 5 :
"= 8EMy T My(162 +¢) )
If U*L solves (3.51), then for each i > 0 the solution of (3.55) satisfies
1= s+1
|2+ elfauel 2 < by L2, (357)

11—«

Proof. The proof will be done by mathematical induction. For U¥? = U*~! (3.57)
obviously holds. Now fix s > 0 and assume (3.57) for U**~!. Denoting M, the H*
equivalent norm of U*-

M, = |[U*|[* + el|0U*| 2,

by (3.44) we have
[|[UR*1 2 < e IM,_;. (3.58)

Taking x = U** into (3.55) and using Cauchy’s inequality yields
AP + e + QU < re=M Um0,
HIUEHUR|] + ellosU*]] [[0:U%]].
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Applying the mean inequality 2|ab| < v|a|? + |b|?/v for any reals a,b and v > 0
(with v, = 6_1/2M81121/2, vy = 1 and v3 = 1), after multiplying by two we end up
with

20U+ 2(e +7)] 0T < T gt U7k g

HUEH 2 + [ |[UR*|? + €] |8:UF |2 + ]|8,U*|

2 4 27(|8,U*|

2

This can be rewritten as

Te~! 8— s s = —
(1 - =238=s) Ul + ell UM < |2 +elaUs 2. (3.59)

The choice of o and (3.56) ensures that the factor multiplying ||U**||?> above is
positive. Therefore Lemma 3.10 gives

EHazUk’s a S MUa

which, together with (3.45) leads to
[|[U*|]2 < 1612 My /Je.
Applying the last inequality into (3.59) gives
M, = |[U*|? + €[ |0.U**| P < My (1 + 181%7°M,_,) (3.60)
which, together with (3.56) proves the induction assumption. O

Remark 3.13. The lemma above guarantees that, under the given restrictions on
7, the dteration array {U**},5¢ is bounded in H'. In fact, by (3.44), for all s > 0
we have

My
ve(l—a)
In this way we have shown that the iteration array is uniformly bounded in both

H' and L®. We will use this result for proving that the iteration (3.55) converges
to Uk,

Theorem 3.14. Let k > 0 be fized and assume 7 satisfies both (3.56) and

V2t
My[e* + (1612 +€)?]1/2°

M2 + el < 20 and - [[UR|,, <

T<

(3.61)

Then the iteration array {U**},5¢ defined by (3.55) converges to the solution U* of
(8.51) strongly in H".

Remark 3.15. Note that both restrictions imposed on 7 do not depend on k or s.

Proof. In what follows we denote the error at the iteration s by e® := U* — Uks.
Subtracting (3.55) from (3.51) gives

(€%, x) + (€ + 7)(8:€°, 0ux) + T(Ue® + Ures !, O:x) = 0. (3.62)
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Setting x = e®, Cauchy’s inequality gives
le°]? + (¢ +7)|8e€’||* < e Mu|le®|| ||0z€°|| + 76> My (161 + ) ||| [ Bze”

where we have also used Lemma 3.10 and Remark 3.13. Using now the mean
inequality yields

TM, 5 14
e+t + e)anel < T (sl + 5 lle?)
2e4 1

™My s-1y2 4 L s2
+ortemeas (Bl + Z12lP).

My (1612
We choose 6, = T—yg‘l and 0y = Leéﬂ, then

2 2 2M2 1 l2 2
(1 T MU) |2+ ljaer]? < MBS E) oyyp (3.63)

2e4 28
Since 7 satisfies (3.61) it follows that

(1 - TzMg) | TP MB6P + &)

= = >0, (3.64)

and hence

2T

4 2772 2 2 4
5((2 € a2 T-MG(160° +¢) s—1(2 271 s—1(|2
“+ < + )
HeH 254—T2M[2]Haze|| = He H H

foacd L LN
et(2et — 2 ME) 2t — 72 M7 19z

By (3.64), the multiplication factor on the right is less than one, which immediately
implies that e® — 0 strongly in H'. O
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(b) €2 =5, t = 10, 15,20, 25 and 30.

Figure 3.2: Travelling wave type limiting profile.
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Figure 3.3: Rarefaction wave type limiting profile.
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Figure 3.4: N-wave type limiting profile.
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Figure 3.5: Persistence of discontinuities in z.
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Chapter 4

Linear stability analysis of
travelling waves: Evans function.

Preamble: We investigate the linear stability of travelling wave solutions
of the pseudo-parabolic Burgers’ equation (1), introduced in the introduc-
tion. We search for eigenvalues with positive real part of the linearised
operator obtained from linearisation around travelling wave solutions. For
that we use the Evans function and analyse the appearance of zeros in the
right half plane. The analysis is divided in two parts. We analyse the
problem for small ¢, where we prove that the Evans function is a contin-
uous perturbation in € of the Evans function for Burgers’ equation. The
analysis of the Evans function is completed by a numerical search of zeros
for large values of €. The numerical examples yield the conclusion that
no zeros with positive real part appear.

4.1 Introduction

In this chapter we analyse the linear stability of travelling wave solutions to the
problem
U = Ugg + Uty + €%Uggy on R x RT, (4.1)

with initial condition
u(z,0) = up(z) in R,

where 4 is a bounded function and satisfies
up(—00) =0, wug(+00) = 1. (4.2)

Equation (4.1) was introduced as a pilot-problem of the model of unsaturated
groundwater flow presented in Chapter 1. The question of stability of these special
solutions was partially answered in Chapter 2. From the integral identities (2.40)
and (2.41) we obtained stability for monotone travelling waves, i.e. for e2 < }1. In
Chapter 3 a numerical investigation shows convergence to travelling wave solutions
when €2 > 1 (see Fig 3.2 where £2 = 5). In order to understand this behaviour we
now concentrate on the linear stability analysis.
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In this chapter we define the Evans function D(A) for the eigenvalue problem
of the linearised operator corresponding to equation (4.1). The definition follows
the idea of defining the Evans function as a transmission coefficient, see [23] and
[54]. In Section 4.2 we formulate the eigenvalue problem for the linearised operator.
We prove for completeness that this operator generates a Cy-semigroup. Next we
locate the essential spectrum and define the Evans function. In Section 4.3 we
prove that the Evans function converges to the Evans function corresponding to the
diffusive Burgers’ equation (obtained by setting e = 0 in (4.1)) as € — 0. To prove
the limit we use geometric singular perturbation theory, see [27]. In Section 4.4
the limit D(A) — 1 as |A| — oo is proved for € > 0 fixed. This result and the
continuity of the Evans function in € help us carry out a numerical computation
to find eigenvalues. In Section 4.6 we described the numerical method and give
examples for different values of €. The examples lead to the conclusion that no
eigenvalues with positive real part appear for large values of €, and hence stability
of travelling wave solutions is expected.

Preliminaries

First we give a brief overview of the general method. Let us consider a general
initial value problem

uy = Bu+ F(u,u;) onR x [0,7]

u(0,7) = up(z) in R (4.3)

where B is a linear operator, and F'(U,V) is nonlinear. We assume that problem
(4.3) is well-posed in a Banach space X, which is typically L>(R), or the space of
uniformly continuous functions. We also assume that (4.3) admits travelling wave
solutions, i.e solutions of the form u(z,t) = ¢(x + ct), with ¢ > 0, that connect two
constant states: ¢(+00) = ¢t to ¢(—00) = ¢~.

Before performing the linearisation it is convenient to transform the equation
to the travelling wave coordinate n = z + ct, so that a travelling wave ¢(n) is a
stationary solution of the resulting equation. Let z := u — ¢ and (4.3) becomes

zi+czy=Bz+Bo+F(z+¢,2,+¢') —cd'. (4.4)
Since ¢ satisfies the equation
c¢' = Bp+ F(¢,4),
the linear part of (4.4) reads

OF(¢,¢')  OF(¢,¢')
au °t oy

We further assume that the operator L is an infinitesimal generator of a Cy-
semigroup 7'(t). Then an estimate of the form

||T(t)2|| < Me*t fort>0 (4.6)

holds for the solution z(t) = T'(t)zo of (4.5), see [51]. The infimum of all possible
w’s such that (4.6) holds is called the type of the semigroup 7'(¢t). Clearly if this is

2z =Bz + 2y — €2y 1= Lz. (4.5)
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negative, travelling wave solutions are asymptotically linearly stable, in the sense
that ||z|| — 0 as ¢ — oo, where z is a solution of the linearised equation (4.5).
If further the nonlinear operator is locally Lipschitz continuous in X then linear
stability implies stability.

The classical method of finding the type of the semigroup relies on the fact
that for most of these problems, the linearised operator L is sectorial and hence it
generates an analytic semigroup 7'(t), see [51], or equivalently there exist a € R,
0 € (5,7) and M > 0, such that the sector of the complex plane

S:={Ae€C: 0< |arg(A—a)| <0, \#a}

is contained in the resolvent set of L, and the resolvent operator satisfies the estimate

I = L)Y < MMfa‘ on . (4.7)

The last estimate allows to get the following representation of the semigroup

1
T(t)=— [ (A\I - L)"eMdAr 4.8
(0 = 57 [T =DM, (1.9
where I is a contour of the spectrum o (L) of L. The contour I' can be taken with
argA — +0 as |A| = oo for some # € (7, ), which together with the estimate (4.7)
implies that the integral (4.8) exists. As a consequence of (4.8) and the semigroup
being analytic the following form of the spectral mapping theorem holds:

e?@t = 5 (T(t)) — {0} for all ¢t > 0. (4.9)

The proof can be found in [42].

In general if the spectral mapping theorem (4.9) holds for a semigroup and its
infinitesimal generator, then the type of the semigroup coincides with the spectral
bound of L, i.e. with sup{Re(\): A € o(L)}. The analysis of the stability for the
zero solution of the linearised problem (4.5) then reduces to finding the sign of the
spectral bound of L.

We also observe that if L generates a Cy-semigroup, the spectral inclusion

e’ @t o (T(t)), fort>0,

holds, and therefore the type of the semigroup is less than or equal to the spectral
bound of L. In particular, the spectral bound of L being positive is a sufficient
condition for (linear) instability.

The first difficulty in the application of these ideas to our problem, is the fact that
the linearised operator for equation (4.1) does not generate an analytic semigroup.
Moreover, it is not known whether the spectral mapping theorem holds in this case.

Recently, Howard and Zumbrun in [36] concluded stability results of dispersive-
diffusive waves by first estimating the resolvent operator of the linearised operator.
These estimates are later used to prove that an evolutionary Green’s function of the
form (4.8) can be constructed. Further estimates on this Green’s function then give
the stability and instability results. We postpone a similar analysis on the resolvent
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operator in our case, and conjecture the spectral mapping theorem for the moment;
in this chapter we analyse the spectrum of the linearised operator related to (4.1).

The first step of the analysis is to locate the essential spectrum, i.e. the spectrum
of L aside from isolated eigenvalues with finite multiplicity. Even though in most
cases the essential spectrum is contained in the left half plane, instability can still
originate from the appearance of isolated eigenvalues in the right half plane; so after
locating the essential spectrum it is necessary to look at the eigenvalue problem

(L — AI)¢ =0. (4.10)

In L™ the eigenvalues are those values of A for which there exist non-trivial bounded
solutions of (4.10), see [34]. In order to find eigenvalues equation (4.10) is written
as a system of first order linear ODEs

Y' = A\ n)Y, (4.11)

where A()\,7) is an n X n matrix, n being the order of equation (4.5), and Y is the
column vector (¢,¢'...¢™).

The coefficients of A(n, A) depend on ¢ and ¢'. This implies that the matrix
A()\,m) tends to constant matrices A*(\) as 7 — +oo. By standard results on
asymptotic behaviour of ordinary differential equations, see [17], solutions of (4.5)
behave as solutions of the constant coefficient equations Y’ = A*Y as n approaches
+00, hence bounded solutions of (4.11) must decay exponentially to 0 at both
7 = #+o0o0. This can be measured in terms of a vanishing determinant of a set of
solutions of (4.11). If A is away from the essential spectrum, then a set of solutions
of (4.11) can be formed by k independent solutions that decay to 0 at n = —oo,
and n — k independent solutions that decay to 0 as 7 = co. When the determinant
(or Wronskian) of this set is zero, a linear combination of these solutions give a
bounded solution, hence A is an eigenvalue. This determinant is the so-called Evans
function, see [41], [1] and [54] for more precise definitions. Thus the Evans function
has the properties of being analytic in A aside from the essential spectrum, and its
zeros on this domain are isolated eigenvalues of L.

Finally, observe that A = 0 is always an eigenvalue since translation invariance of
the equation (4.5) implies L¢, = 0. If A = 0 is isolated, and the rest of the spectrum
lies in the left half plane one can consider the projection on X, := ker(L) = span(¢'),
so that X = X; @& X,. This allows to pose the linear problem in X,, where the
spectral bound is strictly negative. An estimate of the form (4.6) holds on X,
and hence stability also holds, see [22] or [34]. If zero is contained in the essential
spectrum, a weighted norm might be introduced in a way that the spectrum of the
operator in the weighted space is pushed off the imaginary axis, leaving the zero
eigenvalue isolated. A typical example in which stability is studied in weighted
spaces is the diffusive Burgers’ equation, see [34] and [57].

4.2 The linearised operator and the Evans function

In this section we formulate the eigenvalue problem for the linearised operator L
resulting from equation (4.1). We first prove that the linearised operator generates a
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CP-semigroup. Next we define the Evans function and locate the essential spectrum.
We also prove that the eigenvalue A = 0 is a simple zero of the Evans function. For
simplicity of notation we shall skip the dependence on ¢ throughout this section.

Linearisation around a travelling wave solution leads for z = u — ¢ to the linear
operator

d
Lz:=(I- EQdT)Z ! (znn + 2(62)n) — 29, (4.12)

Here, as in previous chapters, ¢ denotes the travelling wave solution of (4.1).
By adopting the notation (2.11)-(2.12) of Chapter 2, the linearised operator reads

Lz = A.z+ 2B.(¢2) — 2.
With this formulation the next proposition follows easily.

Proposition 4.1. The operator L generates a Cy-semigroup in X = H*(R), L (R).

Proof. First observe that A, is a bounded operator in X (see proofs in Chapter 2
of Lemma 2.3 and Lemma 2.4). Therefore it generates a Cy-semigroup, that we call
S(t). If T, denotes the translation operator

Ta(u(n)) = u(n — a),

then for all t € R, T} is the group generated by the operator z — —z,. An easy
computation shows that A, — % generates the semigroup 7;S(t). This is a Cy-
semigroup of contractions, since || T, ||x= 1.

The operator z — 2Bz is bounded in X (see Chapter 2 Lemmas 2.3 and 2.4).
This and the fact that ¢ and ¢’ are bounded imply that the operator z — 2B, ¢z is
bounded in X as well. Hence the operator z — Lz = A,z — 2, + 2B.¢z generates
a Cop-semigroup in X, see [51]. O

Assuming now that the spectral mapping theorem holds for L, we now study its
spectrum. The eigenvalue problem of L reads

d?
0=LC—-A=(- €2%§)_1(C" +2(6¢)) = ¢' = A¢
or inverting the operator (I — 52$)‘1 in (4.12):

A =C"+ (20 = 1)¢" + 24'C + 2(C" + A(). (4.13)

We transform the eigenvalue equation to a first order linear system of ODE’s.
Let Y := (¢, (", ("), then (4.13) reads

dY
— =AM, \)Y b
o =AY (114)
where
0 1 0
A(n, A = 0 0 1 . (4.15)
A=2¢'(n) 1-2¢(n) _ Koo L
P e2 g2

The following properties are satisfied by the matrix A(n, A):
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(i) A(n, ) is analytic with respect to A for every n € R and ¢ > 0 fixed.

(ii) The asymptotic matrices A*()) := Hgl A(n, A) exist for every A in C. The
n 0o

convergence is uniform in \.
The characteristic polynomials corresponding to the asymptotic matrices read

Ptu) =i+ A+l +pu— A for AY, (4.16)
P (u)=eld+ A+’ —p— 2 for A~ (4.17)

In order to study the spectrum of the operator, we have to understand in which
regions of C it is possible to construct bounded solutions of (4.10), i.e. for which
values of A a matching of solutions decaying to 0 at —oo with solutions that decay
to 0 at 400 is possible. We look at the roots of the characteristic polynomials P*.
First we introduce the necessary notation.

Each polynomial P* has three complex roots (counting multiplicity) for every
fixed A in C. A*()) being analytic in A implies that the number of eigenvalues
(counting multiplicity) of A*()) having negative (resp. positive) real part is con-
stant as A varies inside any of the connected components of the sets C — S*, where

S*:={X € C: A*()) has purely imaginary eigenvalues}.

Those sets for AT are

2 2,2
- : =T _ T
ST = {heC: Re()\)—1+€2T2,Im(/\)— T , T € R}, and
.2
§™ = {AeC: Re(N) =1 T Im(\)=-1, T€R},

+ 272’

see also Figure 4.1. Q7 is the component containing the interval (0, +o00), 7} is the
component containing the interval (—55,0), and € is the component containing
the interval (—oo, —55z). The simply connected components of C—S~ are: Q; is the
component containing the interval (0,+o00), and €, is the component containing
the interval (—o0, 0).

In the sequel pf(\) for i € {1,2,3} will denote the eigenvalues of A*()), v will

denote the right eigenvectors of A* given by
t
U;t:(l’ /J’ii’ (“?)2) s

and w denote the left eigenvectors of A* such that v fw} = 1. Thus w
by

+

%

are given

82

1 1 1
+_ [, £t +
w; = (Mi (w5 +’\+;2)i;2, M5 +)‘+;2, 1) PE ()
Here the subscript p indicates derivative with respect to u.
In the next lemma we study the sign of the real part of the roots of polynomials
P* for ) in each of the above connected components.
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o A-plane
A-plane
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+ +
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1 0 = 0
£2 ) €2
(a) Sign of real part of ut’s. (b) Sign of real part of u~’s.

Figure 4.1: Distribution of sign of eigenvalues of P*.

Lemma 4.2. For each € > 0 fized, the signs of the real part of the eigenvalues of
A* change with X as follows:

If AeQf, then Re(uf(A) > 0 > Re(uf(})) > Re(uy(N)),
if A€Qf, then 0> Re(uf(}) > Re(usf(}) > Re(uf())
if xeQ, then Re(uf(\) > Re(us(A) > 0 > Re(ud (V).

Finally,

fAE0;, then Re(u; (V) > 0 > Re(uz(N) > Re(s (V),
FAEQr, then Re(u;(N) > Re(u5(N) > 0 > Re(s (V).

Proof. The result holds by application of the Routh-Hurwitz criterion, see for in-
stance [17]. We sketch the criterion for a third order polynomial in Appendix B.1.
The method allows to count the number of roots with positive real part of a polyno-
mial with real coefficients. Since in each component of C — S* the number of roots
with positive (resp. negative) real part does not change, we can apply this criterion
by assuming that A is real. Therefore we apply the criterion to Pt separately for
A in (—00, —55), A in (—55,0) and A in (0, —00), and to P~ separately for A in
(—00,0) and A in (0, 00). a
The sets Qri,z,c are depicted in Figure 4.1, as well as the sign of the real part of
the roots of the polynomials P*.

We are now ready to define the Evans function. We follow the idea in [54]. Let
Q:=QrNQ, . For all A € Q there is a unique solution Y~ of (4.13), which behaves
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as exp(u;n)v; as n — —oo. Thus for all A € Q, Y~ decays to 0 as n — —oo by
Lemma 4.2. We take the Evans function D()) to be the transmission coefficient
such that .

Y~ (z,A) ~ D(A)e"r My as n — +oo. (4.18)
for all A € Q. Clearly by Lemma 4.2, if D(A\) = 0, then Y~ decays to 0 as n — o0,
therefore ) is an eigenvalue and Y~ its corresponding eigenfunction. Conversely if
Y is an eigenfunction for some A € €, then Y must be a multiple of Y'~. This is
because other independent solutions of (4.13) do not decay to 0 as 7 — —oo (they
behave as exp(u; n)vy and/or exp(uzn)vs when 7 — —o0).

D(A) can be expressed as the scalar product

D(\)=ZtY~, (4.19)

see [54], where Z*, a row function, is the solution of the adjoint system df—; =

—Z7T A, such that
Ve
Zt ~e TNyt as n — +oo.
The following properties are satisfied by the Evans function.

Lemma 4.3. (i) D()\) does not depend on n. (i) D(X) is analytic in the domain
Q:=QrnQ;. (iii) Also D(A) = D(A).

The first statement is immediate from the formulation (4.19). Analyticity holds
by standard arguments for ODE’s and (4.19). The last statement holds by using
the symmetry A(n, A) = A(n, A).

Remark 4.4. A second Evans function can be defined as a transmission coefficient
on the set QO U, . In this case the Evans function is obtained as the coefficient

D(\) that makes

Yt ~ D\ exp(uzn)v; asn — —oo,
here YT is a solution that behaves like exp(ud )vy as n — oo (it decays to 0 as
n — 00). D()) satisfies Lemma 4.3 on o usr.

In order to locate the essential spectrum we observe that the operator L — AI can
only be inverted in regions of the A-plane that allow consistent splitting of roots,
i.e regions where P~ and P* have the same number of roots with positive (resp.
negative) real part. This is because a Green’s function for the operator L — A\I can
only be constructed by matching linearly independent solutions of (4.13) that decay
to zero as 7 — oo to linearly independent solutions that decay to 0 as n — —oo. If
for some A these solutions are linearly dependent, A is an eigenvalue. Observe that
in the regions of consistent splitting the Evans function is analytic and its zeros
are eigenvalues of L. Thus eigenvalues must be isolated in regions of consistent
splitting, whereas the rest of points are in the resolvent set.

In our case Q2 and ©; N €Y' are the regions of consistent splitting. We then have
the following proposition

Proposition 4.5. The essential spectrum of L is the set

C\(QU @ NY)) = @ N U@ N0F).
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4.2 The linearised operator and the Evans function

A-plane

Figure 4.2: Essential spectrum

The essential spectrum is drawn in Figure 4.2. Clearly L is not sectorial.

As mentioned in the introduction, A = 0 is always an eigenvalue of L, with
eigenfunction ¢', but 0 ¢ Q. In fact the function D()) can be extended through
the essential spectrum to a neighbourhood of A = 0. Moreover it can be extended
through the essential spectrum to a neighbourhood of the set S~, as it is shown in
the next lemma

Lemma 4.6. There ezists an open set Q* in C that -contains the sets S~ and (2,
such that for all € > 0, D()) is well-defined and analytic in Q*.

Proof. Observe that D()) is well-defined for all A such that
Re(uf (1)) > Re(uz (A)), Re(uf (1)), (4.20)
Re(; (V) > Re(uz (A)), Re(u (A)). (4:21)
These conditions are satisfied for A € S~. Indeed, if A € S—, then A = H:TT:Tf —aT
for 7 € R, and the eigenvalues of P~ are

- —14+A2 o 3~ Ab
pr(A) = T2 pa (A) =78, pz(A) = T9gz

where A = 1+4¢2(e27% +1 +€%72) — 4ire?(1 +7%€2), with Re(A2) > 1, this implies
(4.21). Also if A € S7\{0}, then A € Q;, and (4.20) holds by Lemma 4.2. Finally
if A =0,

—14 (1 —4¢?)3 —1—(1—4¢?)>

w0 =0, w0 = = 2L, )= T ET N
hence (4.20) also holds. Since 4 are analytic in A € Q, there exists a neighbourhood
U of S7, in which (4.20) and (4.21) hold, and hence D()) is well-defined. |
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Then D(0) is well-defined and clearly D(0) = 0. In the next lemma we compute
D'(0).

Lemma 4.7. For alle > 0, A =0 is a simple zero of D()), with

2e?

D)= ——F——— >0.

©) (—1+v1+4e?)

Proof. For the purposes of this lemma we adopt the notation Y~ = (v, y5,v3)

and Z* = (2, 25,27 ), for the components of the vector functions Y~ and Z*.
The first derivative of D()) is computed similarly as in [54], it reads

D) = /_ Z <z+(A, 5) dA(gi’ Vy-a, s)) ds+

zx»(guﬁ—un+dﬁ§”murmmuﬁ%jﬁ)

see Appendix B.2. Clearly if A is an eigenvalue the derivative reduces to D'(\) =

[, Z+44Y ~ hence
+oo 1
0= [ s (G -w). (122)

o0

An eige{lfunction for A = 0is ¢/, and ¢' ~ uy(0)exp(uy(0)n) as n - —oo, then

= == /
U = m‘f’-

From the adjoint equation we see that 23 satisfies
(25)"e” = (23)'(1 — 20) + ()",
and from the choice of wy, 23 must behave as e‘”f(o)”?_(—i,_(T)) as 7 — +o0. Using
w4y

that x4 (0) = 0 and Pf(ui(0)) = 1 implies z3 = . Finally substitution of
yy = (u)7 ¢ = %\/L_be’ and z7 = &? into (4.22), and computing this integral
finishes the proof. O

4.3 Behaviour of D ase — 0

In this section, we prove that the Evans function of (4.1) converges to the Evans
function of the diffusive Burgers’ equation as € — 0.

To avoid confusion we will write the Evans function related to (4.1) as D.(\), and
its domain Q* as 7. The polynomials P* will be written as P*, and their roots will
be written as ,ufe for 2 = 1,2,3. We shall also write the travelling wave solutions
of (4.1) as ¢.. No subscript or the subscript 0 will mean that the set, function,
polynomial, root, or travelling wave solution corresponds to Burgers’ equation (e =
0).

Let us recall briefly the linear stability problem corresponding to equation (4.1)
with € = 0. We consider travelling wave solutions of Burgers’ equation that connect
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0 at —oo to 1 at 400, hence the wave speed is 1, and the travelling wave coordinate
is 7 = z +t, as for the £ > 0 problem. The eigenvalue problem reads

AC(n) = ¢"(n) + 2¢(n) — 1)¢'(n) + 26/ (n)¢ (m), (4.23)

or written as a first order system of ODE’s

0 1
Y' = Ag(n, MY = Y. 4.24
oMY = (s~ 5i) 1300 ) #24)
with Y = ((,(’). The characteristic polynomials of the limit matrices A7 are
P (p) = p* + p— A = 0 with roots p}, = =LA pie = ==Y and
Fy(p) = p? — p— X = 0 with roots pi, = SV 00 = I=VIHX - (learly

Re(j15) < 0 < Re(ui,), for all A such that Re(\) > —1.
The Evans function is then defined by

1
Dy(X) =Y~ Z*, for all A such that Re()) > =g

where Y~ is a solution of (4.24) that satisfies Y~ ~ exp(u;n) v, as n — —oo,
with vy = (1,41,). And Z7* is a solution of the adjoint system to (4.24) that
satisfies Z~ ~ exp(—pfgn)wyy as n — +oo, with w, the left eigenvector to u;,
such that wy(1, ) = 1.

We will need the behaviour of the eigenvalues of P* for € small, this is done in
the next lemma.

Lemma 4.8. If A € C such that Re(\) > 0, then
(V) = pip(N) + O(€%), u3.(A) = pzo(N) + O(€?),
and i, ()) = —Elz (14 2) +O0() as e — 0.

Proof. The roots of P;*(u) are simple if A has positive real part. By the implicit
function theorem there are two roots that approach those of Py uniformly in A € 28
for * > 0 sufficiently small.

By using asymptotic expansions in € of u, we get the behaviour

2 ~Hip (V) (Hin(Y) +X)
+1 4 245 (A)

er()\)=ﬂii,o()‘)+5 +0(*), fori=1,2 ase— oo.

We employ the scaling p = E%E in P*, and apply the same argument as above to
the scaled polynomial, for which —1 is a simple root. This gives the third root,

y

1
jiz . = = (1+X)+0(?) ase>—0.
O
Theorem 4.9. For every A € C such that Re()\) > 0, D,(X\) = Dy()) as e — 0.
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Proof. We first observe that the solutions Z, of the adjoint system of (4.14) are of
the form Z, = (2 — (1+€2))2L/e? + (2p— 1)z [e?, —2zL + (1 +€%N)2z. /€?, 2), where
2. satisfies the equation €22 = —\z. + (1 — 2¢)z. + (1 +€2X)z. Also a solution
Z of the adjoint system is of the form Z = (—2' — (1 — 2¢)z, z), where z satisfies
2'(1 — 2¢) + 2" = Az. Then computing the inner product (4.19) we get the Evans
functions for e =0

Do(N) = Z*Y™ =( (=2 + (26 — 1)2) + 2¢'

and the Evans function for ¢ > 0

/g
by =2y, =< (%) v -

!
Ilzi 2

Z o 2y Ze 9 1 Ze / Ze 2 1 2y Ze
¢ 3¢ —(1+¢ )E—2+(¢E— )E—2 + ~ 2t +(1+e¢ )5_2 +C£e25'

We have divided z., 2. and 2! by € in D, so that the limit &€ — 0 makes sense.
In fact if for some 19 € R, (¢, ¢) — (¢, ¢") uniformly in some interval (—oo, ),
(2. /€%, 2. [€?) — (2, 2') uniformly on (19, 00), and ¢, — ¢ uniformly on R as & — 0,
the result holds. The limit for ¢, can be analysed separately. The proof is similar
to the proof of Proposition 1.7 in Chapter 1. Next we prove the limit for ¢,. This
is a singular limit. We shall apply geometric singular perturbation theory (GSPT),
see [27] and [40]. For that we need to augment system (4.10), so that it becomes
autonomous. We simply add the travelling wave equation. The complete system
reads

u' =
w

!

A=2¢)u+ (1 —2¢)v — (1 + 2\ w

s

,UI
(Se)§ €
¢l
e =¢— ¢* — 1,

here u = (. In the context of GSPT this is the slow system. The fast system is the
system reformulated in the variable £ = Elz-n, in this case

= e
0= e’w
(F){ w=A=20)u+(1—-20)v— (1+*Nw
¢ =%
Y=0¢—-9¢"—1,

where the dots on top stand for ‘%. The limit € — 0 for (S;) is not well defined. The

formal limit equations (taking ¢ = 0 in (S.)) can be seen as a flow on RS restricted
to a 3-dimensional manifold M, which is given by the singular equations, i.e.

MO :{(U,U,w7¢,¢) €R5 W= ()‘_zw)u+(1_2¢)va ¢=¢_¢2}

The aim of using SGPT is to restrict system (S.) to a 3-dimensional manifold which
is close to My for € sufficiently small, and in which the limit € — 0 is regular. Part
of the information to find this manifold is provided by the fast system (F.). M,
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coincides with the manifold of critical points of (#p). Under the condition that M
is normally hyperbolic for (Fp), the first Fenichel’s invariant manifold theorem, see
[26], gives existence of a manifold M., which is a C* e-perturbation of My, and that
is locally invariant under the flow (F}).

The eigenvalues of the linearisation of (Fy) are {0,0,—1,0,—1}. Only the —1
eigenvalues (the eigenvalues with non trivial real part) have eigenvectors that are
transversal to My, thus M, is normally hyperbolic. We use the Fenichel’s invariant
manifold theorem reformulated in [40], which is suitable for manifolds given by a
graph on R®. Then for all R > 0, and for all £ € N, there exists an g5 > 0,
depending on R and k, such that for all € € (0,¢0) there exists a locally invariant
manifold of system (F.), given by

M, = {(u,v) € Br(0), ¢ € (-R,1+ R): w=2(u,v,6,¢,}), ¥ =¥(4,¢)}
with ® in C¥(Bg(0) x (—R,1+ R) x [0,&¢]), and ¥ in C*((—R,1 + R) x [0, &)).
Also ®(u,v,¢,0,A) = (A —2(¢ — ¢%))u + (1 — 2¢)v, and ¥(¢,0) = ¢ — ¢
M, is in turn also locally invariant under the flow (S.); we can consider (S;)
restricted to M., this reads

u =v
(Sé) v = (I)(ua v, ¢7Ea/\)
¢' = ¥(g,¢),

and is now a regular perturbation of the system

u=v
(So) 4 V' =2(u,v,6,0,A) = (A—=2(¢ — ¢*))u+ (1 — 2¢)v

¢ =U(¢,0)=¢— ¢
The critical points of (Sp) are (0,0,0) and (0,0,1) if A # 0. From the implicit
function theorem it follows that for € > 0 small there are two critical points of (S.),
thus they correspond to the only critical points (0, 0, 0,0, 0) and (0,0,0,1,0) of (S.),
hence (0,0,0) and (0,0, 1) are the critical points of (S.). Observe that there exists
a 2-dimensional unstable manifold coming out of (0, 0,0) for system (Sy), which at
(0,0,0) is generated by the eigenvectors {(1, ug1,0), (0,0,1)}. Next we see how this
manifold perturbs to an unstable manifold of system (S.).

First we observe that the linearisation of (S.) around (0,0,0,0,0) gives the 2-

block matrix

( A=(\e) Bie) ) with B(e) = ( 1/052 —11/62 )’

B(e) results from linearisation of the travelling wave system around (0,0), and
A= (A e) = lim A(n, A ). We distinguish between fast and slow eigenvalues. The
n——00

fast eigenvalues are those which in the fast scaling approach —1 as ¢ — 0, i.e. they
approach the eigenvalues of (Fy) which have eigenvectors transversal to Mp.
The matrix of the linearised system around (0, 0, 0) of (S.) is

0 1 0
®,(0,0,0,6,1) ®,(0,0,0,6,A) ®4(0,0,0,,) |. (4.25)
0 0 \I’¢(0, E)
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Since M, is locally invariant under the slow flow (S;), the eigenvalues of (4.25)
must be eigenvalues of the matrix resulting from linearisation around (0, 0,0, 0,0) in
(Se). In particular the eigenvalue U4(0, €) is the positive eigenvalue of the travelling
wave problem at (0,0), i.e. w; := =HHYIHE =124 0(e*) as € — 0. The negative
eigenvalue of B(e) is a fast eigenvalue since wp = =HYIHE = =L — 1 4+ £2 4 O(e?)
as e — 0.

Also the eigenvalues given by the 2 x 2 minor on the top left of (4.25) must
correspond to eigenvalues of A~(),€). These are the slow eigenvalues p; . and p, ,
since by Lemma 4.8, the remaining is a fast eigenvalue.

By the stable manifold theorem and continuation of solutions in parameters,
there exist a 2-dimensional unstable manifold WY (0) of (S%) at (0,0,0), which is a
C* perturbation of the unstable manifold at (0,0, 0) of (Sp). Locally the manifold
WY (0) is generated by the eigenvectors {(1, u;,0),(0,0,1)}. Hence solutions of Sy
on the orbits of W’ (0) behave as a linear combination of exp(ug,7)(1, #g,,,0) and
exp(n)(0,0,1) as p — —oo. And solutions of S, on the orbits of WY (0) behave as a
linear combination of exp(u,,)(1, #.,,0) and exp(w17)(0,0,w;) as 7 — —oo. Then
(e (), v.(m), 6. (n)) — (u(n), v(n), ¢(n)) as & — O uniformly on (—o0, mo). Since
¢ and ¢, are travelling wave solutions, and the solutions belong to the unstable
manifolds we get ((, ¢!) = (¢, {’) on (—o0, ).

The argument for the adjoint problem goes similarly. But first we have to intro-
duce w = %, and hence study the system

' =—(\—2¢)w
v'=—-u—(1-2¢)w
' = —v+ (1+N)w
=9

e =¢—¢*— 1.

Similar arguments apply here, the limit being (u., we, @) to (u,v, ¢) as ¢ — 0, with
W, ~ exp(—pt ) and v ~ exp(—pug,n) as 7 — 0o, where (u, v, ¢) solve the system
resulting from setting € = 0 in the above sets of equations. m|

4.4 Behaviour of D(\) as [A| = o0

In this section we prove that D(A) — 1 as |A| = oo for A € Q. We first consider
the limit for € > 0 fixed.

We follow the approach by Pego and Weinstein in [53] and [54], and repeat
the arguments for completeness. The proof is completed by verifying the sufficient
conditions in our particular case. The second case turns out to be easier, the idea,
explained below, appears for instance, in [75].

In order to prove the limit we shall write the Evans function as D(A\) = ZTV-W~Y~,

where V'~ is the matrix of right eigenvectors of A~, and W~ the matrix of left eigen-
vectors of A~ such that W=V~ =1, i.e.

Vo= (Ul_avz_’vs_)v
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and

W™ = (wr,wy,wy)"-
Similarly, V* and W will be the corresponding eigenvector matrices of AT. We
will prove the limit in Proposition 4.12. Namely, we prove that W~ (A\)Y~(},0) ~ e,
as [A| = oo, and that Z+ (), 0)V*T()\) ~ et as |A\| = oo, where e; = (1,0,0)%. This
requires a transformation of the system (4.14), and estimates on the matrix function

F(n,\) = { F*(n,A) == WH(A) (A(n, A) = AT(A) V() ifnp>0 (4.26)
! F=(n,A) =W~(A) (A(n, A) — A~ (V) V~(1) ifn<0. ’
Observe that if X = WY, then X' = F~ X + diag(uy, pg, p3 )X. Then if FF — 0
as [A| = 00, X~ = WY~ ~ exp(u;n)e; for all n € R, as |A\| = oco. Similarly, if
X =V*tZthen X' = —ZF~ —diag(pf, ps, pf) X, so that if F — 0 as |A| — oo then
X+ =V+Zt ~exp(—uin)el. If in addition u ~ py as |A| = oo then D(A) — 1
as [A| = oo. Unfortunately if ¢ > 0, F — 0 as |A\| = oo does not hold, and the
estimates presented in Lemma 4.11 below are needed to conclude the limit.

We start with a lemma that accounts for the behaviour of eigenvalues of the
matrices A* as |A| — oo.

Lemma 4.10. Let ,uii, i = 1,2,3 be the roots of the polynomials P* for A € Q,
then if € > 0 is fized

i ~uf as|A = oo fori=1,2,3.

Moreover

1
pt = +O(N™) as A > o0,

1 -
W= —2+O(A™) s N =0
1
uE=-A- ) +O(A™)  as |A| = oo

Proof. Let d = |A|™!, and 0 = arg A so that \ = ¥‘ Reasoning as in Lemma 4.8,
we get the asymptotic expansions

1 1 )
+_ + _ o 2
u1—6+<¥1 1 8) —2ei052+0(6) as 0 — 0
and
i——1+ 1+1—1 L+O((52) as d — 0
b2 =—¢ . € ) 2eife? ’

In order to capture the third eigenvalue, the one with least real part, we scale the
polynomials P* by setting fi = 6%y, with a > 0, then

- 6
5% Pi((sﬁa) =e2id + (1 + 5266> JR 5% L 1570 — g™ JP0-L, (4.27)

71



Linear stability analysis of travelling waves: Evans function.

For ¢ fixed, the dominating terms are the third order term and the second order
term, thus we take o = 1. this gives

j=—e?— ;2(5 +0(6%), hence pf=-\— ) + 0(9).

O
The following lemma states the crucial estimates on F.
Lemma 4.11. F satisfies the following properties
(i) If e denotes the vector (1,0,0)", then
/ |F(s,A)e1lds — 0 as |A| = oo.
(it) There exists C > 0 independent of A such that
/|ﬂ&mmg0aﬂMam.
/ |F(A,8)|ds >0 as 19— —oo uniformlyin X € Q.
[s|>m0
Proof. Let us write
o v
FEr=W*(A-AYYW*=| r5 5 ry where
T31 T32 T33
29/ 2%—1F1
i 2 s 2
15 6= T e°+ Mo ———TE 5 (428)
N (7)) S i (T

Then it is enough to prove that

0 00
/ Iri; (A, 8)| ds+/ Irfi(A,s)|ds =0 as [\ s ooforj=1,2,3 (4.29)
00 0

0 e8]
/ Iri;(s)| ds +/ [rij(s)|ds < C  uniformly in A for 4,5 =1,2,3  (4.30)
- 0

oo

—no 00

/ Ir:i(s)| ds +/ [rij(s)|ds — 0 as 1y — oo uniformly in A,  (4.31)

o o
fori,7=1,2,3.

Next we prove the necessary ingredients to get these estimates. Observe that since
¢ tends to zero exponentially as 7 = —oo, and ¢ — 1 tends to zero exponentially as
7 — 00, then

Aﬂwmw<m [|wm@<m, (4.32)
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also

Awwg—mm<m [ 16(s)| ds < oo. (4.33)

From this, it remains to show that the constant coefficients of the elements r;f of F
in (4.28) do not spoil the limits (4.29)-(4.31). Using Lemma 4.10, it is not difficult

to prove that
L 0 as|A\—>oofori=1,23
— as oo fori=1,2,3,
Pu(ﬂii)

also
£

Hj
P, (/ﬁ)

(]

-0 as |A| 200 for j=1,2,i=1,2,3,

and

M
P, (M'i)

7

I3
—=— =0 as [A]— oo,
Py(u3)
These estimates together with (4.33) and (4.32) imply (4.29)-(4.31). |
With these two lemmas the proof of the limit for ¢ > 0 fixed is now analogous
to the proofs of the limits in [54] and [53]. We have the following proposition.

—c as [A|—>oo fori=1,2.

Proposition 4.12. Let e > 0 and X € Q, then the Evans function, defined by (4.18)
satisfies
D)) —»1 as |\ — oo

Proof. Let us write D(X) as D(A) = ZT(A,0)V-(A)W~(A)Y~(),0). Next we prove
that W= (A)Y~(A,0) ~ e; as |A| = oo.
Let v = —e; + e ™"W ™Y~ and v(—o0) = 0, then v satisfies the equation
d
%v =F (v+te)+W (A V —pDv+ W (AV™ — u;De,.
Since (A~V~ — py I)e; = 0, using the variation of constants formula we get for any
n<0,
7
v(n) = / exp B(A)(n — s)F~ (A, s)(v(s) + e1) ds
where B(A\) = W~ (A"V~ — pyI). Observe that B(}) is a diagonal matrix, which
entries are all non-positive, hence

7

vl <sploGe) [ PO oldst [1 vl ds

—00

Then Lemma 4.11 (7:z) implies that there exists ny sufficiently small such that
J™ |F~(\s)|ds < } for all A € Q, then

70
sup |v(s)] S/ |[F(A s)er|ds =0 as |\ = oco. (4.34)

s<no
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Using again the variations of constants formula we get at 1 such that 7o <7 <0

v(n) =v(n0) exp B(A) (1 — m0) + /n exp (B(A)(n = 8)) F~ (A, 5)(v(s) + 1) ds,

hence
)] < Cow)l +C [ IOl ds +C [ 17 0,9) (o) s

where C' = | exp(—B()\)no)|. By Gronwall’s lemma, Lemma 4.11 (i) and (4.34), we
get

7 n
o) < Cexp (0 [ 179 w66 ds) (Jotanl + [ 17O erlas ) = o)
o o
as |A| = oo

This proves W~Y~(),0) ~ e; as |\| — oo. Similarly one proves that ZtV* ~ el as
|A\| = oo. Lemma 4.10 implies V= ~ V* as |A| — oo, and hence Z+(\,0)V~ ~ ¢!
as |A| = oo. a

To prove that D,()) is continuous in € = 0, one follows the same steps as for the
case € > 0, but taking the limit ¢ — 0, so that the conditions on F' as in Lemma 4.11
are not spoiled in the limit. Checking this is arduous and we shall not write it here.

We state the result in the following proposition.
Proposition 4.13. D.()) is continuous in € > 0 for all A € QU oco.

4.5 Small ¢

In this section we prove that there are no eigenvalues of L with positive real part if
2 1
e°< 5.
>

Proposition 4.14. If2 < %, then D, does not have zeros in the right half plane.

Proof. First we assume that ) is an eigenvalue such that Re()\) > 0, and that ( is
the corresponding eigenfunction. Hence by integrating the characteristic equation

(4.13) we get
)\/ Cdn=0.

Let & .= ffoo ¢, then ¢ and its derivatives decay to zero as n — +oo. Also £ satisfies
the equation

2 2
/\(1—523‘%)52 (%+ (26 — 1)+52dd7,2)gn. (4.35)

Now following the hypothesis Re()\) > 0 we have
o0 d? d?
I — 2 7 I — 27 * __
0<Re(h) [ (- E - )

e </_w(% +(20-1) +6237?)§" (I - e“’d—n2)5 ) (4.36)
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where * denotes complex conjugate. Then
0<Re( [ (Emt"+ (28— Dt + 6" ~ by — (26— Ve
~+o0
_5257711715:111) dn) = _/_ (|§7l|2(1 -’ + ¢'1E + 52|§nn|2) dn. (4.37)

We know from Chapter 2 Section 2.3 that if €2 < ¥ then ¢/ > 0 and from (2.27)
we get (1—&?¢’) > 0, which contradicts (4.37). Hence Re()\) < 0. Now if Re()\) = 0
but A # 0 following the same steps as before we end up with

+o0
0= —/_ (& (1 = €2¢) + #'[€[* + €[ [*) d,

and hence £ = 0. Notice that this does not give a contradiction for A = 0.
O

Remark 4.15. We can argue similarly if A is an eigenvalue with real part smaller
than —;1;, and €2 < i. If we assume that X is an eigenvalue, we call again by ( its
corresponding eigenfunction, and take £ := ffoo ¢, we get

0 > (Re(\) + 51_2) / +00(1 — E20,,)€ (I — £20,,)€* =

+o00
- / (61— 26) + $IEP + e26mP) dn +

oo

1 i 2 2 *
5| U= - =
00 +o00 1
[ aresar+ [ TG -sverzo

a contradiction.

4.6 Large ¢: numerical search for zeros

So far we have seen how the analysis for € small confirms the stability results of
Chapter 2. The aim of this section is to provide numerical evidence of linear stability
of travelling waves for large values of €. Before we present the numerical results we
state the proposition which tells that zeros of D, can only emerge in pairs through
the imaginary axis as € increases.

Proposition 4.16. Suppose that there exists * > % such that D.. has a zero at
some \* with positive real part. Then there ezists € € (%, €*] such that D¢ has a pair
of zeros in the imaginary azis aside from the origin.

Proof. It is a consequence of the continuity of D, in &, Proposition 4.12 and
Rouche’s theorem. Rouche’s theorem says that if two analytic function are close to
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each other in a simply connected domain, then they will have the same number of
zeros (counting multiplicity) in that domain; since for e < % there are no eigenvalues
with positive real part in the right hand plane, the only way zeros can enter this
domain as € increases is if they pop up from oo or cross the imaginary axis from the
left half plane.The first possibility contradicts Proposition 4.12. Thus for D,. () to
have a zero in the right half plane, there must exist £ < e* and A with Re()) =0
such that D:(X) = 0. X # 0 since by Lemma 4.7, D’(0) # 0 for all . Then A = 7i
for some 7 € R\{0}, and Lemma 4.3- (%) implies that Ds(—77) = 0 as well. a

We compute numerically the Evans function along the imaginary axis. Since
by Proposition 4.12, zeros of D.()\) only enter the right half plane through the
imaginary axis, we take the imaginary axis as a wide contour around the right half
plane. We look at the number of times that the graph of the curve 7 € R — D(71)
wraps around the origin (Winding number), this gives the number of zeros of D(])
in the right half plane, and hence, the number of isolated eigenvalues of the operator
L.

In Figure 4.3 we have plotted the graphs of D, along the imaginary axis, for
several values of €2, including ¢ = 0. As a guideline to interpret the results notice
that if a new zero of D appears through the imaginary axis, the curve D(7¢) must
intersect itself at the origin (since D = 0 for 7 = 0, for some 7 = 7 and —7). However
the numerical results do not exhibit this self-intersections. And the evolution of the
graphs with respect to € suggest that this is not going to happen at very large values
of e.

We have approximated the Evans function at each A-value by first transforming
Y~ by

V= (0, A) = exp(—p(n, )m)Y ™ (n, A),
where 0 it
— 121 un < m
mn ) ={ 1) s

for some 7, € R. Now V~ satisfies
V=(n,A) ~v_(A) asn— —oo
V= (n,A) ~ vy (A)D(N) asn— +oo,
and the equation
dV~(n, )
dn
We approximate numerically this equation on a finite interval [, 777]. First on the

interval [, 7] we solve the equation

.
= —H YT+ AR, (4.39)

for my < 0 sufficiently small, with initial condition the eigenvector (1, ui, (17)?).
On the interval [7,,,7;] we solve
ay-
dn

=~ (7/’ /\)V_ (77) ’\) + A()" ’I])V_ (na /\) (438)

=—uf V" + ANV,
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for ny > 0 sufficiently large. The initial condition at 7, is taken to be the value of
V™ at n, obtained after solving (4.38). We capture the value of V™ at 7y and use
it to approximate D(\). We then take

D(A) = w™V~(my).

In practice this computation is repeated at each value A = 74, where 7 € [—100, 100].
We have only discretised the interval [0, 100], since the symmetry of D gives D(—1)
as D(7t). The partition of the 7-interval is not uniform. We use a finer grid near 0.
From 0 to 1 we take 0.001 as 7-step size, and 0.5 for the rest of the interval. At each
T-step the systems (4.38) and (4.39) are solved simultaneously with the travelling
wave equation (2.23). Here we have taken ng = —50, 7, = 0 and ny = 500. We

have used the Runge-Kutta solver implemented for matlab.
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Figure 4.3: {D.(7i) : 7 € R} C C for different values of £2.
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Chapter 5

Evans function for Burgers’
equation

Preamble:

This chapter is devoted to the explicit computation of the Evans function
of the diffusive generalised Burgers’ equation, with convection term of
the form (u?), for p > 1. We analyse the domain of analyticity of the
Evans function. It turns out that for p = 2 the domain is a 2-sheeted
Riemann surface, the cut given by the essential spectrum of the linearised
operator. In this case, the Evans function has only one zero, A = 0,
which is simple. If p # 2 the Evans function can be extended through the
essential spectrum, which has two branch points, hence it is a four valued
function. In the first sheet A = 0 is the only zero and is simple, here zeros
of the Evans function correspond to eigenvalues of the linearised operator.
However it has infinitely many poles and zeros in other of the sheets. Here
zeros do not correspond to eigenvalues.

5.1 Introduction

In this section we construct the Evans function associated with the linear stability
analysis of travelling wave solutions of the diffusive Burgers’ equation

U = Uz + (UP); on R xRY, with p>1, (5.1)
subject to bounded initial data satisfying
u(—00,0) =4~ < u(+00,0) =u. (5.2)

Existence and uniqueness of equation (5.1) can be found in [49]. Equation (5.1)
admits travelling wave solutions, i.e. solutions of the form u(z,t) = ¢(n) with

n = + ct, connecting u~ at 7 = —oo to ut at n = +o0, with wave speed given
D (g~
by w It is well-known that such solutions are (orbitally) stable, see for

instance [39], [55], [57]. Our computation is however motivated by the following:

(i) We can discern from the explicit formula of the Evans function its domain
of analyticity. In particular this confirms the gap lemma, see [28]. In fact
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Evans function for Burgers’ equation

in this case the Evans function is analytic in a wider domain than just a
small neighbourhood around the branch points of the essential spectrum. See
Appendix B.3 for a version of the gap lemma in the two-dimensional case.

(ii) Equation (5.1) might appear as the reduced limit of a higher order equation,
or of a system of equations. It is useful to know where the zeros of the Evans
function of the reduced problem are, since they may turn into eigenvalues of
the perturbed problem.

Our analysis is, in particular, motivated by the work of A. Doelman, R. Gardner
and T. Kaper in [21]. In their paper the linear stability of N-pulses is studied
for a coupled system of parabolic semilinear equations. This system is a singular
perturbation of a single semilinear parabolic equation. In this way the spectral
picture of the reduced problem allows the spectral set of the linearised operator
of the perturbed problem to be analysed. The reduced eigenvalue problem of the
reduced problem reads

V" + (pgP ' — (1+X)¥ = 0.

This equation can be transformed into a hypergeometric equation, from which the
Evans function can be computed explicitly, and a formula for the zeros, which
are eigenvalues is given. It is this method of solving the eigenvalue equation that
suggested to us the possibility of solving similarly the eigenvalue problem associated
with equation (5.1).

This chapter is organised as follows. In Section 5.2 we give a framework for the
problem of linearised stability. We comment briefly on travelling wave solutions
and set up the problem of linearised stability in a weighted space, in which the
linearised operator is self-adjoint. The essential spectrum is real and lies in the left
half plane away from 0. Next we define the Evans function related to the eigenvalue
problem in the weighted space, which up to a multiplying factor coincides with
the Evans function of the operator in the original space. Finally in Section 5.3 we
give an explicit formula for the Evans function. The formula allows one to prove
that for p > 1 there are no eigenvalues away from the essential spectrum, except
A = 0 which is simple. However, we find zeros of the Evans function that do not
correspond to eigenvalues. This, in particular, confirms that the Evans function is
analytic on a 2-sheeted Riemann surface. Namely, we find that the Riemann surface
consists of two complex planes cut and pasted through the essential spectrum, up
to a countable number of real poles on the second complex plane. If p = 2 there
are no poles or zeros in the second plane. If p # 2 we find infinitely many zeros and
poles of the Evans function in the other planes, all of them real.

5.2 Travelling waves and linearised equation

In this section we derive the eigenvalue problem associated with the linear stability
analysis of travelling wave solutions of equation (5.1). We set v~ =0 and u™ =1 in
(5.2) for simplicity. Let ¢(n) with n = z + ct be a travelling wave solution to (5.1).
After substitution of u(z,t) = ¢(x + ct) into (5.1) and integration we get that ¢(n)
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must satisfy
cd(n) = ¢'(n) + d(n)” (5-3)

and the Rankine-Hugoniot condition gives ¢ = 1. Equation (5.3) is of Bernoulli
type; its family of solutions can be computed explicitly and reads

1 =
1+exp(—(p = 1)n + k))
Observe that ¢(n) ~ exp(n) asn— —oo and @(n) — 1 ~ exp(—n) as n — +oo.

Linearisation of equation (5.1) around a travelling wave solution gives, in the
moving coordinate n = z + ¢, the equation

for k € R.

é(n) = (

2= Zgy +02(* )y + 02y (9P ") — 2 =: Lz,

where z = u — ¢.
The eigenvalue problem for L consists of finding the values of A € C for which
there are nontrivial solutions of

"+ ("t = 1)+ (pg? )¢ = X =0. (5.4)

Observe that the essential spectrum of L is contained in the parabolic region £ :=
{A € C: Im(A\)?+ vRe()) < 0} for v = max(1, (p — 1)?), see [34]. Also, if A is
an eigenvalue away from the essential spectrum its eigenfunctions ¢ must behave as

exp (=2 Vi+An) when  — —oo0, and as exp(L Wﬂ) when 7 — +o00.
Next we transform the operator L to a self-adjoint linear operator by introducing
a weight function w. Let ¢ be defined by { = w1, where w satisfies w' = aw for

some function a. Then the eigenvalue problem in the weighted unknown 1) reads
¥+ Q2a+pg" " — DY + (6 +a') +a(pd” ' —1) +p(p— 1)¢P ¢ — Ny = 0.

The choice a = —p"’p;l’l in the above equation, gives w = ¢(1)?% exp( —1—;277) and the

eigenvalue problem

L-ap =" (o0 =17 = plo- 1020 -2 )u=0. (9

The linearised operator in the weighted space L is self-adjoint, hence its spectrum
is real. The limit equations of (5.5) at n = 400 and n = —oo give the following
characteristic polynomials

1 1
P’(u):,uz—i—)\ at —oo and P+(,u)=,u2-—i(p—1)2—/\ at + oo,
respectively. The essential spectrum of L is then the set

E={deR:1< ma.x(—}l, —(‘"_471)2)},

see [34].
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Let us consider the roots of P* as 2-valued functions. We have

1
A—);f(/\)=§\/1+4/\ for P~ and

/\—>,u+()\)=%\/(p—1)2+4)\ for P*.

Let QF denote the positive branch of u*, and Qf the negative branch of u*, i.e

1 1
QF = {AeC: arg(u (V) = 2218 (Z + /\> + 2km, k € Z}
1
Q = {AeC: arg(p (V) = 2318 (% + )\) + (2k+ )7, k € Z},

and similarly

BE + 1 (p_1)2
QF = {MeC: arg(p (/\))=§arg T+)\ + 2km, k € Z}

1 —1)?
QF = {AeC: arg(pt()) = 518 ((p q ) + /\) + (2k+ 1), k € Z}.
and Q% denote the domain of ut.
By standard results on asymptotic behaviour of ODE’s there exists a solution of
(5.5), ¥y , such that if A is away from {A e R: A < —i}, the cut of u~, then

Yy ~exp(u n) asn— —oo. (5.6)

1y is well defined for X in Q7 away from the cut of p~. In particular there exist a
coefficient D such that

Ii)m ¥y exp(—ptn) = D()\) for A€ Qy NQf. (5.7)
n—00

Observe that D()) is the Evans function as defined in Chapter 4.

Our claim is that D()) is analytic in the Riemann surface defined by the sheets
Q NQf, 9, NOQf, Q7 NQF and Q; NQF cut and pasted through the essential
spectrum £ of L and apart from a countable number of real poles that lay in
0, NQF. This is seen in the next section after the explicit computation of D()).
A schematic picture of this Riemann surface for p # 2 is shown in Figure 5.1.

Observe that in this case there are two branch points —i and —(”;1)2, and the

essential spectrum contains two cuts of the domain, (—oo,min{—i, = ;1)2 }) and
(min{—}, —g”;—l)z},max{—i, —(”—Tﬁ}). We denote Q; := Q; NQF and Qy := Q5 N
Qf for simplicity of notation.

Finally we observe that the introduction of the weight function here is moti-
vated by two reasons; the first reason is to push the spectrum away from the zero
eigenvalue, and the second (that works for second order linear operators) is to make
the operator self-adjoint. In view of the behaviour at n = oo of ¢, w and the
eigenfunctions of L, it is not difficult to see that in the set C\E the spectrum of L
and the spectrum of L coincide. Moreover, the Evans functions are the same for
both operators, provided that \ ¢ &.
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1<p<2

Ae; NQT
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AeQrnQF

p>2

AeQr NGO

T

AE

A€
A€ N

Figure 5.1: 4-sheeted Riemann surface

5.3 Explicit computation of the Evans function

In this section we give an explicit formula for the transmission coefficient D()), and
analyse its domain of analyticity in \.

The idea is to transform equation (5.5) to an equation whose solutions can be bet-
ter analysed. As we mentioned in the introduction, our approach is similar to that
used in [21]. To be specific, we transform equation (5.5) to a hypergeometric equa-
tion. We first introduce a new unknown F, defined by setting ¢ = ¢®exp(8n) F,
with o and § constants to be determined later. Finally a change of independent
variable will be needed for technical reasons. In the forthcoming, I' will denote the
gamma function. The result is the following.
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Theorem 5.1. Let D(\) be the transmission coefficient defined by (5.7), then
2u~ (A 2ut(\
(15 r (50)

3p—2+2(ut(M\)+p— (A 2utN)+u=(A)-p )’
1“(” +gu(p£1))u()))[\((u()u()) ,,)

2(p—1)

D)) = (5-8)

which domain lies in the Riemann surface defined by the positive and negative
branches of p~ and u*. Moreover

(1) For allp > 1, A =0 is the only zero of D(\) in Q1, and is simple.

(it) For p # 2, there is a countable number of zeros of D(\). The zeros are given
by

yo k=1)(k=2)(p—1)*(kp—k—p)(kp—k —2p+1)
(2 — 3p + 2kp — 2k)?

fork=0,-1,...,

which lie in Qy, and by

k(k+1)(p—1)%(kp—k+1)(kp — k +p)
(2kp — 2k +p)?

A= fork=-1,-2,...

which for p > 2—:% lie in Qo, and for p < %lf“ﬁ lie in Q7 NQJ .

(iii) There is also a countable number of poles of D()) given by
(K -1)(p—1)°
4 )
these X’s lie in Qy and in Q; NQF, and by
_ k-1 +DkE-1)-1) , _
A= k=
4
which lie in Qy and in Q, N QY.

(iv) If p= 2 then, D()) is analytic in , U (\{0}) UE, and is given by

X= k=0,-1,...

)

=

D) = L= VIT D
14T+ AN

Proof. Throughout the proof we will need standard properties of hypergeometric
functions and gamma functions, for which we refer for instance to [68].

Let F' be defined by ¢ = ¢* exp(fn)F. Substitution of ¢ into (5.5), and division
by ¢ exp(8n), leads to the equation

/ /2 I /
F"+ 2(a$ +B)F' + ((a2 - oz)(f;—2 - a% + 2a,8$ + 8% — B) F=0, (5.9)

where B := (% — ’2—’) PP — I1p?gP 4t A+ L Letz = 1-— %’ be the new
independent variable, chosen such that the coefficient of F' is linear in z. Observe
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also that 2 = ¢!, by the travelling wave equation (5.3). With this observation,
equation (5.9) in z, after dividing by (p — 1)%z(1 — z), becomes

z(l—z)i’—l—((1—2z)+p%1(a(l—z)+ﬁ))F+AF=0 (5.10)
with
1 2 2
A= m((a —a)(1—-2)°+a(l—2)(1—-pz)+2a8(1—2)+

3> p 1 1
2 _ (Y PN ,2 _2_ -
B (4 2)z +2pz A 1l

The dots on top of F' indicate derivatives with respect to z. For (5.10) to be a
hypergeometric equation A must be a constant. This gives the conditions

(a+8)* = i +, (5.11)

and g
-1
g2 = % + A (5.12)
After setting the coefficients of F' and F in (5.10) equal to ¢ — (a + b+ 1)z and —ab
respectively, F' satisfies the hypergeometric equation

z1-2)F+c—(a+b+1)2]F —abF =0 (5.13)

with
_3p—2+2
2(p—-1)
20— p
2(p-1)
c=1 + w
p—1
Note also that o + 8 and f are 2-valued as functions of A\. Also note that the
conditions (5.11) and (5.12) give us two possible choices: a + 8 = p~ or —u~, and
B = pt or —ut. But in any of these cases a + 8 and 3 are 2-valued as functions of
A. We shall make a choice below.
To get the coefficient D(\), we have to look at the behaviour of ¢; at n = oo
1
in terms of z, i.e. at z = 0 and z = 1 respectively. Since ¢ = z»-1, the explicit
1
formula for ¢ gives exp(n) = (*%) »~' (up to translation in 7). Hence, according
to (5.6) and (5.7), for A € Q; NQ, ¥, behaves as

Yy ~zr-1 for z~0, (5.14)
_ut
Yy ~DA)(1—2) »1 for z~1. (5.15)
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We look now at the solutions of (5.13). The space of solutions is spanned by the
hypergeometric functions

F(a,b;c;z) and 2" “F(a—c+1,b—c+1;2— ¢ 2).

We take o + 3 = p~ so that F(a,b;c;z) is regular at z = 0. Then by (5.14),
P, = z%(l — 2)71751' F(a,b;c; z). In general F(a,b;c; z) has a singularity in z = 1,

namely
Fe)'(a+b—c)

['(a)T'(b)
Since c—a—b = ;f‘sl, we set 3 = —p™, so that by (5.15) and (5.16) we get for
AEQ NQf

lim(1 — 2) "¢ Y F(a,b;c; 2) = (5.16)
z—1

e (1 who T(@T(a+b—0)
D(/\) —ll_I)n1 ’lf)l (1—2)1’ 1 —il_r)r%(]. —Z)P 1F(a,b,c,z) = W
This proves the first statement. Observe that the formula for ¢, = 2ot (1-

+
z) =92 (a, b; ¢; z) implies that the solution v, is not only analytic for A in Q; but for
A in the 4-sheeted Riemann surface R, which sheets are Q;, 2, NQF, Q, NQ; and Q,,
see Figure 5.1. We also observe that we could have chosen a+ 5 and £ differently, for
example to identity 1/, with an expression involving 2! °F(a—c+1,b—c+1;2—c; 2)
instead of F'(a,b;c; z), or a linear combination of both. All possibilities, however,
lead to the same expression for D(A). We have chosen the most transparent one.

The next step is to find the zeros of D()), i.e the poles of I'(a) and I'(b) that are
not poles of I'(c) and I'(a + b — ¢).

We recall here that the poles of the gamma function are the negative integers.
Hence setting a = k for £ = 0,—1... we get that the poles of I'(a) are given by
solving

20 +pt)=2k(p—1)+2—-3p fork=0,-1,... (5.17)

with respect to A. This gives an explicit formula for A, namely

(k—1)(k—2)(p—1)*(kp—k —p)(kp—k—2p+1)

A = == —1 PP .1
(2 — 3p+ 2kp — 2k)? b =Op=ly 3:18)
Similarly we get the poles of I'(b) by solving
200 +pt)y=2k(p—1)+p, fork=0,-1,... (5.19)
which gives
k(k+1)(p—1)%(kp—k+1 -
A= KEAD -V hp—k+ Dlkp=k+p) | 4 (5.20)

(2kp — 2k + p)?

It remains to study whether these explicit expressions for A give zeros of D(A) or
not, and if so, whether they are eigenvalues of the operator L (A € ), or zeros
on the other sheets. For that we look at the graph of A — 2(u* + u7) for A € R
and the possibility of this graph to intersect the constant lines 2k(p — 1) +2 — 3p
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and 2k(p — 1) + p. Observe that A — 2(u* + p ) is monotone for A in each of the
four sheets. Equation (5.19) is satisfied for £ = 0 and any p > 1, this giving A = 0.
Clearly this solution is in €2y, hence A = 0 is an eigenvalue. Also I'(a) does not have
poles if )\ € Qy, since for every £k =0,—1,...and p > 1, 2k(p—1) +2 — 3p < 0.
If p > ;2% for fixed k € {—1,-2,...}, the right hand side of (5.19) is negative,
so ['(b) cannot have poles for A € ;. If p < ;2% the right hand side of (5.19) is
positive, but only for p =2 and k = —1 does the equation (5.19) have a solution,
which is A = —;. This is because the graph of A — 2(u* + pu~ ) which is increasing,
does not intersect the lines 2k(p — 1) + p when p < 2&1 for k =—1,-2,.... So the
only zero of D()) in Q; is A = 0.

Similar arguments give that the lines 2k(p —1)+2—3p k = —1, -2, ... intersect
the graph of A = 2(ut+p7) only if A € Q,. This giving the zeros of D()\) expressed
by the formula (5.17). If p > 2 then the lines 2k(p — 1) + p cut the graph only if
A€M Ifp<2andp < 2k+1 then the 11nes 2k(p — 1) + p cut the graph only if
A € Q; NF. Whereas if p < 2 and p > then the lines 2k(p — 1) + p cut the
graph 0f2(,u +p7) only if A € Q; N

In Figure 5.2 we have sketched a.ll the possibilities for p # 2. We have drawn the
graph of A = 2(u* + ) for A € R in the different sets Q;, 2 NQF, O, NQf and
(25, and the lines 2k(p — 1) + p and 2k(p — 1) + 2 — 3p.

If p = 2 the zeros of D(A) in €2 are given by V1 +4X =k — 2 for k=0, —1,
and V144X = k+1 with k = 0,—1,.... In particular A\ = 0 is a simple zero in §2,.

Next to give expressions of the poles of D()), we have to find the poles of I'(c)

and T'(a + b —c). Since a+b—c = 2 ﬁ, the poles of I'(a + b — ¢) are in Qs NR and

in Q7 NQF NR (the sheets that contain the negative branch of u*), and are given
by

2k+1

A:W Rl —1,.... (5.21)

The poles of I'(c) are found by setting :“T_l = —1,-2,..., they are in Q, N R and
Q, NQF NR, and are given by

p I ke =1,~2,....

-1 1 —-1)—-1
A= =D+ )4(]“(” D=1 jo g, (5.22)
If p = 2 all poles of I'(a) and I'(b) in 2, are removable, since they are given by
E=DE+D p_ o 5. andr = F-DE+D

4 1

This includes the zero A = —i that lies in £. Observe that A = 0 is a double pole
and a simple zero in €, of D(A), so it is a simple pole of D(X) in Q.

In fact only for p = 2 and p = 0, equations (5.18) and (5.20) can be written as
second order polynomials in &, so there is no way these expression simplify out as
(5.21) and (5.22), hence if p # 2 there are infinitely many poles and zeros of D())
that are no removable.

The formula for D()) when p = 2 is obtained from the general formula (5.7), by
using I'(z) = (z — 1)I'(z — 1).

O
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88 Evans function for Burgers’ equation

1<p<2
/
\Aeﬂl
AeQrNQF
| 2kp—1)+pifp< 2 /
= - A
AeQ; N
\ 2k(p— D+ pifp> ;2%
\2k(p—1)—|—2—3p
A e Q,
p>2
-
I~ aeq
~ +
| xe 9Ny
__ “]
A
X AeQrnf
\ 2k(p-Dp+p
\2k(p —1)+2-3p
\AEQZ

Figure 5.2: Graphs of A € R — 2(u* + p~) and the intersection with 2k(p — 1) + p and 2k(p —
1) +2—3p.
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Appendix to Chapter 3

Before going into the proof of Theorem 3.8, let us recall some aspects of the FME
approach. We first define the space of finite elements V},. Let -l =2y <2, < ... <
2, = | be a uniform partition of I = [—{,[], with h = z; — z;_;. Then we take V}, to
be the space of continuous functions on I that are linear on the intervals (z;_1, ;).
V,, is a subspace of H{, moreover Vj, satisfies the following approximation property
see ([69]),

%ﬁﬂw—WH+sz—Wm}SCJ¢mm 1<gq, VoeHI(-1), (A1)

see ([69]). V;, is a Hilbert space. A base of V}, is given by the functions

1 =i
%@ﬁ_{Oifj¢L

Then a function of the space V}, has a unique representation as
n
u(z;) = Y wipi(;)-
i=0

The bilinear form

n
(u,v)n = Zuivj(‘;oi,(ﬁ’j)y
]
is an inner product on Vj. Here (-,-) denotes the usual inner product on L?. The
inner products (¢;, ;) are computed by extending the functions ¢; by the piecewise

linear functions
0 if z<mz;
T—5 =
i1l if g <z<uwm
#i(#) =9 n's +1 if a:l Lz L 1
h P > Lg41
0 if =z Z Ljy1-

A.1 Formal error estimates: proof of Theorem 3.8

To get error estimates of the full discrete equation, one usually consider a semi-
discrete in space or time problem, the second step is then to compare the discrete
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problem with the semi-discrete one. Here we have chosen to start with the semi-
discrete in space equation, i.e. we first obtain Theorem 3.8, this theorem simplifies
the proofs of Theorem 3.9 and Theorem 3.11. Let U be the solution of the semi-
discrete problem (3.46), i.e. of

(Ut, X) + E(Uzta X:t) = _(Uza Xa:) + ((Uz)an X)
(U(0), x) = (uo, x) for x € V

and let be u the solution of the continuous problem.

(ut, @) + €(Ust, Pz) = — (e, Pz) + ((u2)za ®) (A.2)
(u(0), ) = (uo, ¢) for € Hy.

For simplicity we assume that [Up|lee < |tg|eo- Then Theorem 3.8 holds. The
estimate (3.47) holds easily by testing equation (A.1) with U. Observe that this
estimate implies that |U|y is uniformly bounded in [0,7]. This is later used to
prove the error estimate. In fact the more general estimate

U() = u(®)]ls < C(luol ke (1 + [ Qo+ nu(u)uq)dv) L (A3)

holds if uy € HY, for ¢ > 1 and ¢ > 0. We prove it in the sequel. We define the error
as e := U(t) — u(t) for each ¢ € [0,T]. To simplify the analysis we further define
n = 4(t) — u(t) and £ = U(t) — a(t), so that e = £ + 7. Here a(t) is the unique
solution of

(uz — Uy, X) =0 for X€ Vh7 (A4)

or the Ritz projection of u(t) on V}, see [69]. Using (A.1) one proves that 7 satisfies
the estimates

1@ —ull = [In|l < Ch¥|ull; and [|&—ully = |ln|ls < CRTull,  (A.5)

see for instance [69]. With this estimates it only remains to show similar estimates
for [|¢[[, and ||]].

By (A4), (7, xz) = 0 and also (1, xz) = 0 for all x € V}. Hence subtraction
of (3.46) and (A.2) gives

(&6 x) + &(&ats Xa) + (€as Xa) = BU —u, x) — (e, x)  for x € Vi, (A.6)
where B(, x) := ((¥U)4, x) + ((¥u)s, X), and satisfies the following inequalities
1B(%, x)| < [(Yu, Xa)| + [(¥U, Xz)| < C(|[wol[1) [I19]][x]]1, (A7)
and
[B(¥, x)| < C(lluollr) (¥, xz) < C(|[uollr) 1911 [1x]]2 (A.8)

Here we have controlled ||[U||o and ||u||c with the H'-norm, and the stability
estimates of Proposition 3.5 (for «) and (3.47) (for U). To control the inner product
(¥, Xz) in (A.8) we use Poincaré-Friedrichs inequality, so that in general (1, x) <

]2 [1x[ls-
90
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We first proceed to get an upper bound on [|£|[;. To this end we set x = £ in
(A.6), then using (A.7) we get

1d
2dt
Arranging constants and dividing up by [|¢||. in the latter, lead to

E@IZ + ll:]1” < Ble, &) + limel| [1€1] < Cllell 11€]]x + llmel| l1€]]-

%HEHE < Cllel| + llmel| < C([[€]]e + [ml[) + lImell- (A9)

Finally application of Gronwall’s lemma and (A.5) implies

€@ < C/Ot(m(V)l + @) < Ch"/o (lue()llg + [[u(@)ll) dv,

which together with (A.5) proves (3.48) for s = 1. For s = 0, we use a duality
argument. Let ¢ € H? be the solution of

_Ewmz‘ + 1/" = &ta (A].O)

with homogeneous Dirichlet boundary conditions. In particular v satisfies |[)|| <
[1U]r < [|9¥]]2 < [|&]|- With this observation, using equations (A.10) and (3.46),
the estimate (A.8) and the Poincaré-Friedrichs inequality, we get

H&HQ = (waft) +6(wma€zt) = _(w.’né—z) & B(ea ¢) + |(7h, w)l S
|(Yzz, &) + Cllel| 1[92 + [Imel| -1 [[9]] <
&I (€1 + CUIEN + [mll-1) + [lmell-1) -

This implies
&Il < CAIEN + Il -1 + el |-1), (A.11)
then by Gronwall’s lemma and (A.5),

t
0

@Il < C/O (@)1 + [In(@)[| 1) dv < Ch"“/ ([ (@)lq + [[u(@)llq) dv.

O

Remark A.1. Observe that the estimates obtained for £ = u—U are of better order
than for the error w — U. This is because the form of the equation, lets one obtain
estimates on the derivative of the H® of £, that depend on the H*~! norm of n and
not in the H*-norm of n, see (A.9) and (A.11).

The proofs of Theorem 3.9 and Theorem 3.11, are similar. At each time step
one introduces the error E* = u* — u(t). But E*¥ = u* — U(t) + e(t;), thus only
the estimates for u¥ — U(#;) has to be deduced. For the implicit case boundedness
of the solution U* is achieved by the stability estimate (3.52). In the explicit
discretisation it is first assumed that |U¥|y is uniformly bounded in [0, 7], since
the error estimates imply convergence of the discrete solution to the solution of
problem (3.2), then |U*| is uniformly bounded by the same bound as [u(t)|s, if T
is sufficiently small.
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A.2 Up-winding

In both our methods we discretized the convection term by one-side up-wind dis-
cretisation, that is to say that the derivative of u? at each finite element z; is
approximated by
2 _ .2
u; — u;
(u2)z($i) ~ il
h
But if we compute the derivative of some u € V}, at a point z; of [, ], we have
to compute

(A.12)

n

(U,z, (pi)h = —(U, @:)h = = Z u]((p]a (p:)
j=0

We need to determine the values of the integrals (¢;, %), Then by inserting the
continuous extensions of ¢;, and computing the integrals give

(pi, ;) =0 for |i—j|>1,

and
! 1 ! ! ]'
(pir pi1) = 9’ (@i, i) = 0, (i, ‘Pi+1) = Ty
hence

(i, ) o oL = e =8 (A.13)

In this way the variational formulation has to be modified, since up-winding does
not correspond to the standard FEM approximation (A.13).

There are several ways to get up-wind by FEM. For example:
The artificial diffusion method: We approximate the terms (u, ¢;) by

h
E(uzma 901') + (uza <pi)-

The addition of a discrete laplacian of u to the usual approximation of u, by FEM
yields to the discretisation

1
5(‘%’-1 + 2u; — uiq) + §(Ui+1 — Ui1)

which coincides with the up-wind discretisation (A.12). Observe that the diffusion
term introduces an error of order O(h). So it does not reduce the order of the
spatial error, as obtained in Theorem 3.8.

Quadrature approximation: If we approximate integrals on the interval (z;, z;,)
fori=0...n by

Tit1
[ 1@~ i,
Z;
we can define a new inner product on the space Vj. This gives for the base {¢;};
< 4, (p;—l 2= ]-a < @i, (p: >= _17 < Qoia(p;+1 = O’
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hence
< Ugy, @ >p= Ui — Ui—1-

This inner product, < -,- >, is equivalent to (-, ), so the error induced in H?®, for
s =0, 1 is of the same order as for (-, ).

Remark A.2. For the one-side method,

1
us(2i) ~ (Ui — ),
then one may use

h
_i(uzm (Pz) =+ (U‘I’ Soi)7

for the artificial diffusion method, and the quadrature approzimation consists now
of taking the integrals as follows

[ 1@ ~ b i),
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Appendix B

Appendix to Chapter 4 and
Chapter 5

B.1 Sketch of Routh-Hurwitz Criterion

There are several ways to determine the sign of the real part of eigenvalues of
matrices. This question is of relevance in the context of linear stability of ODEs.
We shall give here a theorem without proof due to Routh and (independently) to
Hurwitz that gives an algorithm to count the number (counting multiplicity) of
positive roots of a polynomial with real coefficients, see [17] and references therein.

Before stating the result we need the following concepts and notation. Let P(z) =
aoz™ + a1z" ' + ... + a, be a polynomial of degree n (ay # 0), with a; € R. The
following matrix, constructed from the coefficients of P, is called the Routh-Hurwitz
matrix

ai a3 as -+ QG2n—1

ayg Qg Gg - QGp—2

0 a az --- a3

0 ap az -+ agm

0 0 ap -+ agms

0 0 a - amms

0 0 0 -+ a,
Let also Hy denote the principal minor of order k£ of the Routh-Hurwitz matrix,
and V'[by, ba, b3, . . ., by,] denotes the variation of sign in the sequence by, by, bs, . . . by,

m € N. Then the following theorem holds:

Theorem B.1. If Hy # 0 for allk =0, 1,...,n, then P(z) has no purely imaginary
zeros and the number of its zeros with positive real part is equal to

V[a(), Hl,Hg, §% ] + V[l, HQ, e ]

Proof of Lemma 4.2

We only need to apply Theorem B.1 to
Pt =i + 1+ N’ +p—A=0
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assuming that A € R. In this case the Routh-Hurwitz matrix reads
1+e2A =X 0
g? 1 0
0 1+e2x A

Then we have

ag = €2
H1 = 1+€2/\
H2 = 1+2€2A

Hy = —\(1+262)\)

If X\ > 0, then a9 > 0, Hi > 0, Hy > 0, H3 < 0, hence V[1,Hy] = 0 and
Vlao, Hy, H3] = 1 and P* has one root with positive real part and two roots with
negative real part. This corresponds to A € Q;f. If —%2' < A<0,thenay >0, H >
0, H, > 0, H3 > 0 and so V[1, Hy] = 0, and Vag, Hy, H3] = 0, hence all roots
of P* have negative real part. This corresponds to A € QF. If —E% <AL —25%,
then a9 > 0, H; > 0, H, <0, H3 < 0 hence V[1, Hy] = 1, and V[ao, H, H3] = 1,
and P' has two roots with positive real part and one with negative real part. This
corresponds to A € ;. Finally, if A < —5%, then ag >0, Hy <0, Hy <0, H3 <0
hence V[1, Hy] = 1, and V{ag, H;, H3] = 1 and P* has two roots with positive real
part and one with negative real part. Here also A € Q.

Applying the same criterion to
P=(p) =&’ + (1 +’AN)p’ —p— A =0,

we obtain that for A > 0 there is one root with positive real part and two with
negative real part. And for A < 0 there are two roots with positive real part and
one with negative real part. This corresponds to A € 2 and A € Q] respectively.

B.2 Formula for D'())

Let Y' = A(n,\)Y be a linear system, for A € C, n € R, where the matrix A(n, \)
tend to constants matrices A*()\) as ¢ — +oo. Assume that there exists 2 C C
such that for all A € Q, both, A* have one eigenvalue with positive real part, and
the rest of eigenvalues have negative real part. As in Chapter 4, we denote these
positive eigenvalues by ui, and similarly we denote by v the right eigenvector of
A* associated to pi, and wi the left eigenvector of A* associated to ui, such that
viwi = 1. Then we can define the Evans function, as in (4.19), by D(\) = ZtY~,
where Y~ and Z* are as in Chapter 4. Recall D()) does not depend on 7.

Next we prove that

D)) = /_ h (zm, 5 44N oy s)) da &

. X
o) ( gyt - my + 2B,y 4wy 254 (B.1)
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First we observe that D'(A) = Z{Y~ + Z'Y,, and does not depend on 7, in
particular D'(A) = Z}Y~(0) + Z*Y, (0), (the subscript A indicates derivative with
respect to A). Let us compute Z;'Y~(0) and Z*Y, (0). We first observe that

%z; — _Zt A\ ZFA,
%Z} =AY~ +AY,,
this easily implies that
4 vy = —L(zty-) = 2+ 4,7 (B.2)
dn A dn
Integration of (B.2) then giving
Z}Y=(0) = lim Z}Y~(s) +/ Z1TAY T, (B.3)
8—00 0

and
0

ZTY(0) = lim Z+Y; (~s) + / ZtAY (B.4)
500 .

Using that Y~ — v as 7 — —oo, Y~ — D(A)v;f as n — oo, and similarly that

Z+t — D(A)w{ as n — —oo and Zt — w as n — oo we get

+ +
lim Z}Y~(s) = {—dﬂ + dﬂv*} D())

3300 dx T odx !
and
. du;y  dvy _
Y (=) =<4 2L 4 L
shﬂn;loZ Y, (—s) { o T }D(/\).
Substituting these expressions into (B.3) and (B.4) respectively and summing up
the two, we get (B.1). a

B.3 Gap lemma for second order equations
Let
Y' = A\ 2)Y (B.5)

be a 2-dimensional linear system. Where A(z, ) is an 2 X 2 matrix. The following
hypotheses on A(z, \) are assumed:

H1. A(z, )) is C¥(R) in z € R, and analytic in A € C.

H2. A(z,A) tends uniformly on C to constant matrices A*()\) as z —
oo, and to A7(A\) as £ — —oo at exponential rate, namely there exist
constants C; > 0 and « > 0 such that

lA(z,A) — A%|| < C4 exp(—alz|) as |z| = co.
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H3. There exists a domain  C C, that contains the semi-plane {\ €
C: Re(A) > 0}, such that for all A € Q both A*()\) and A~()) have one
eigenvalue with positive real part, and one eigenvalue with negative real
part. Let 4 denote the eigenvalue of AT with negative real part, and p~
the eigenvalue of A~ with positive real part if A is in Q.

H4. Finally, the set 2* is chosen so that A € Q* if the following conditions
hold:
(@) If B4 (A) := min{u(A) € (AT (A))} —pT, then for all A € Q*, By < a.
(i) Similarly if 3_(\) := max{u(X) € o(A~(A\))}—p~, then for all A € Q*,
B_ > —a.

Lemma B.2 (gap-lemma). If hypotheses H1 - H4 are satisfied, then the Evans
function associated to problem (B.5) can be analytically extended to Q*.

Proof. If Y~ and Y are the exponentially decaying solutions at —oo and oo,
which define the Evans function of (B.5) on €2, we only have to prove that both Y~
and YT extend analytically in A to Q*. We prove it only for Y, the proof for Y~
is analogous.

We introduce the unknown

z = exp(—pTz)Y,
hence z satisfies
2 = (A(z,A) — p*I) z = B(A\)z + R(z, )z, (B.6)

where B(A) = (AT(A) — put(N)) and R(z, A) = A(z, A) — AT()N).

We seek solutions of (B.6) that are uniformly bounded on some interval (zq, —00),
and that are analytic in A € Q*. Using the variation of constants formula we reduce
the equation to the following integral equation

z(z) = Z(z) + /oo exp(B(A)(z — s))R(s, A)z(s) ds = Z(z) + F z(z), z € [z9,00)

(B.7)
where Z(z) is a bounded solution of Z' = B(A)Z on [z¢, ), and xy > 0 arbitrary.
This is possible since for every A, B(A) has at least one zero eigenvalue. Observe
that the operator F maps C([zo, 00]) into itself. Moreover, by H2. and H4.

||exp(B(A)(z — s))R(s, A)|| < exp ((B+ —a)(s—z)) forall s >z, z >0,

and hence zy can be chosen sufficiently large so that

- /w |exp(B(\)(z — 8))R(s, \)|ds < 1

T>To

and hence F is a contraction on C([zg,00)). By the fixed point theorem, for any
given Z in C([zy,00)) there exist a unique solution of (B.7) in C([zg,0)). If Z is
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a solution of 2’ = B(A)Z then z is solution of (B.6) on [z, 00) and is analytic in
A € Q*. Thus y; = z exp(u(A)z) on [z9,00) and can be extended to satisfy (B.5)
on R by continuation of solutions. Analyticity follows from the analyticity of z and
ut(A). a
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Samenvatting

De modellering van verticale grondwaterstroming met dynamische capillaire druk
leidt tot een eigenaardige niet-lineaire diffusie-convectie vergelijking, een pseudo-
parabolische partiéle differentialvergelijking met een derde orde term (tweede orde
in plaats en eerste orde in tijd).

In Hoofdstuk 1 bestuderen we de lopende golf oplossingen van deze vergelijking,
met speciale aandacht voor het effect van de dynamisch term en de vorming van
grenslagen.

In Hoofdstuk 2 beschouwen we een gereduceerde versie van de vergelijking, de
zogenaamde Burgers’ vergelijking uitgebreid met een lineaire derde orde term, die
gemengde afgeleiden heeft. We bewijzen dat het Cauchy-probleem een unieke op-
lossing heeft en dat monotone lopende golven stabiel zijn.

In Hoofdstuk 3 bestuderen we het lange-termijn gedrag van oplossingen met
numerieke technieken. De numerieke voorbeelden laten zien dat het lange-termijn
gedrag door oplossingen van de Burgers’ vergelijking gegeven wordt. Afhankelijk
van de begintoestand gaat de oplossing naar een lopende golf, een ’rarefaction’ golf
of een gelijkvormingheidsoplossing.

In Hoofdstuk 4 keren we terug naar de kwestie van stabiliteit van lopende golven,
nu door middel van een lineaire stabiliteitsanalyse: de vergelijking wordt gelinea-
riseerd rond een lopende golf, wat leidt tot een eigenwaarde probleem dat via de
Evans functie kan worden bestudeerd. De analyse van de Evans functie suggereert
dat lopende golven (monotoon en niet-monotoon) stabiel zijn.

In Hoofdstuk 5 berekenen we expliciet de Evans functie voor de gegeneraliseerde
Burgers’ vergelijking, die formeel een gereduceerde singuliere limiet is van de pseudo-
parabolische Burgers’ vergelijking.
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Summary

Modelling vertical non-steady groundwater flow with dynamic capillary pressure
leads to a peculiar nonlinear diffusion-convection equation, namely, a degenerate
second order diffusion equation extended with a third order term with two space
derivatives and one time derivative.

A rigorous study of global travelling wave solutions of this equation is given
in Chapter 1, with emphasis on the role played by the dynamic term and the
appearance of fronts.

In Chapter 2 we consider a special case of the model equation, in which the
underlying equation is the Burgers’ equation and the third order term is linear. We
investigate stability of travelling wave solutions of the resulting pseudo-parabolic
Burgers’ equation by energy methods, and establish stability of monotone travelling
wave solutions.

This study is extended in Chapter 3 by a numerical analysis with emphasis on
the large time behaviour of the Cauchy problem. Depending on the initial data the
solution converges to a self-similar source type solution, to a rarefaction wave or to a
travelling wave. In particular, the numerical evidence suggests that non-monotone
travelling waves are stable as well.

In Chapter 4 we come back to the stability of travelling wave solutions, now by
means of a linear stability analysis. This leads to the study of the Evans function
corresponding to the eigenvalue problem of the linearised equation. The analysis
again suggests that travelling waves (monotone and non-monotone) are stable.

Finally, in Chapter 5 we compute explicitly the Evans function arising in the
linear stability analysis of the generalised Burgers’ equation, which is, formally, a
reduced singular limit of the pseudo-parabolic Burgers’ equation.
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