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Chapter 1

Introduction

In this thesis we study the time evaluation of solutions of certain partial differential
equations (PDE’s). Though these equations have a different physical background they
describe -or can be thought to describe- mass balance. Consequently the involved
PDE’s have a divergence structure. They are special cases of the general form

uy +divB =g in Q, t>0, (1.1)

where u denotes the density or concentration of a substance which evolves for ¢ > 0
in a given domain Q C RN (N >1). The vector B denotes the mass current density
or flux and the scalar g models the creation or depletion of substance by chemical
reactions or by the presence of sources and sinks.

The total amount of substance in 2 at time ¢ is represented by [ u(z,t)dz. Inte-

Q
grating (1.1) in © and applying the Divergence Theorem, we find for u the balance
law

% u(x,t)d$+/B-D'dS:/gdz, (1.2)
Q a0 Q

where 0 denotes the boundary of € with outer unit normal vector ¥. The second
integral in the left hand side of (1.2) expresses the mass flow rate across 02 and the
integral in the right hand side can be interpreted as the rate of mass production in Q2
at time ¢. For the special case g = 0, and B - v = 0 on 09, relation (1.2) implies that
J u(z,t) dz is constant in time expressing mass conservation.
Q

The actual form of the flux B and the reaction term g depends on the model
or the constitutive law under consideration. For the moment, we will set g = 0 and
consider for B the general expression

B = B(I7t7u7 vu) = _D(u’ VU)VU+Q($’t7u) (13)
In others words, B has a diffusive part which is proportional to the vector Vu =
(57“1, ceey %)’ the gradient of u, and a lower order convective part. The diffusion

1



CHAPTER 1. INTRODUCTION

term is characterized by the diffusion coefficient D: R x RY + [0,00). In many
physical situations we find D(u, Vu) > Dy > 0 and in this case we say that the
problem (1.1) is uniformly parabolic. In this thesis, we will also consider some cases
of degenerate diffusion, allowing D = 0 in parts of the domain.

In this thesis one finds the following expressions for the diffusive part of B :

(i)

(iii)

Fick’s Law. This is the most commonly used form of the diffusive part of the
flux. It states that
B =-DVu

where D > 0 is a particular constant. It measures how fast u diffuses from
high to low values. This is a widely used expression, which holds for chemicals,
particles, temperature, energy, velocity, and as well as populations. This law
can be derived from the probabilistic study of Brownian motion, see Murray [62,
p. 232-236]. If D = 1, we obtain the well-known heat equation,

up = div(Vu) = A, (1.4)

N
where we have introduced the notation Au := ) g%% the Laplacian of u. Equa-
i=1" "
tion (1.4) and its solutions are extensively discussed in the literature, see for
instance Cannon [24], John [56, Chapter 7], Friedman [38].

Concentration dependent diffusion. The evolution of the density u of a gas
which flows in a porous media, can be modelled by a flux that contains a density
dependent diffusion:

B(u,Vu) = —pu? " 'Vu with p > 1.
This results in the so-called porous media equation (PME), given by
ug = AuP with p> 1. (1.5)

This equation can be derived using Darcy’s Law (conservation of momentum in
a porous medium) combined with an equation of state for the gas. Properties
of solutions and others applications of the PME are given, for instance, in the
surveys by Aronson [2], Kalashnikov [57], Peletier [66], and Vazquez [74].

Equation (1.5), can be set in the form
B(v)e = Av (1.6)

where we have used the change of variables v = uP and defined 3(v) := v'/?. The
function 3 is called capacity. Some models may contain a function 8 which is
non invertible or in a more general context a maximal monotone graph (Stefan
problem). See Sacks [70] for regularity results for this formulation.

Gradient concentration dependent diffusion. In hydrodynamics the velocity u
of a fluid can satisfy an equation of the type (1.4). These are the so-called



Newtonian fluids leading to linear viscous terms. Non-Newtonian fluids have
nonlinear viscous terms, which are often modelled by the expression

B(Vu) = —|VuP"2Vu with p> 1,

where |-| denotes the Euclidean norm in RY and where p depends of the rheology
of the fluid. This nonlinear flux produces the parabolic p— Laplacian equation:

ug + div(|Vu[P~2Vu) = 0. (1.7)

Fluids with p > 2 are called dilatant and those with p < 2 are called pseudo-
plastics. Equation (1.7) also appears in other applications, see Diaz [29, p. 6]
for some examples.

To explain the essential differences between these three types of diffusion we
consider the equations (1.4), (1.5), and (1.7) in @ = R¥, for t > 0, subject to the
initial condition

u(z,0) = up(z) =€ RN.
Here ug > 0 (ug # 0) in RV, uy € C(RY), and ug has a bounded support in RV,
meaning that {x € RN | ug(z) > 0} is bounded.

Solving the heat equation yields a solution u = u(z,t) satisfying

(a) u(-,t) > 0 for any t € R* := (0, 00), describing infinite speed of propagation of
disturbances;

(b) u € C®(RN x R*), i.e. the solution is infinitely many times differentiable in z
and ¢.

Solving the porous media equation yields

(a) the support of u remains bounded for all ¢ > 0, describing finite speed of prop-

agation of disturbances;

(b) u € C®°({u > 0}), i.e. only in the open set where u > 0 the solution is smooth.

The difference in behaviour is due to the presence of degenerate diffusion when u = 0.

Finally solving the parabolic p-Laplacian (1.7) with p > 2 we can also have
degenerate diffusion. In fact, at a point where |Vu| = 0 equation (1.7) is degenerate
if p > 2. Here we find that the finite speed of propagation property holds, however
we do not obtain smoothing of solutions whenever u(z,t) > 0.

For the convective part of B, we use the following expressions:

(i) Linear convection. Combining Fick’s law with linear convection gives

B = —-DVu + qu,



(i)
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where the vector g represents a flow field which transports u, In Chapter 5, we
consider the radial flow out of a point source in R, injecting a concentration u
of substance into the surrounding medium.

Non-local convection. One of the main topics of this thesis is the study of a
model of gravitational interaction. There the convection or flow is driven by the
gradient of the gravitational potential, that is g(u) = —V¢, where ¢ solves the
boundary value problem

Ap=u in €, ¢=0 on ON.

Similar models models are used to describe the movement of bacteria by chemo-
taxis, where now ¢ denotes the chemical potential. We observe that Fick’s law
combined with this type of nonlocal convection yields for the flux the expression

B=-DVu—-uV¢

implying the equation
uy = div(DVu + uVe).

If we evaluate the divergence in the right hand side, then we obtain
uy = DAu+ V¢ - Vu + u?, (1.8)

an equation not in divergence form but with diffusion, convection, and reac-
tion u2. The interplay between these terms crucially influences the temporal
behaviour of solutions. This is explained in Section 1.1.

So far we have only discussed properties of the flux B. Reaction terms appears in
equations such as (1.8) or in Section 6, where we consider the stationary solutions of
(1.1) for the p-laplacian with a power like reaction term:, i.e.

—div(|VulP2Vu) = uf, (1.9)

Here, existence of solutions depends on the competition between the effect of blow-up
from the term u¢ and spreading from the term div(|Vu[P~2Vu). In Section 6, we
study a generalization of (1.9) to systems considering more general nonlinearities.

L |

Stabilization and blow-up

The first question that comes to mind when dealing with equations (1.1) and (1.3) is
the well-posedness of the corresponding initial-boundary value problem . That is to
ask, given suitably defined initial and boundary data, whether the following hold:

(i)
(i)

the problem has a solution;

this solution is unique; and
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(iii) the solution depends continuously on the data of the problem.

In a parabolic problem like (1.1) and (1.3), we understand well-posedness in a finite
time interval, i.e. t € (0,7 for some fixed time 7" > 0. In such case, we say that the
problem is locally solvable and has a local solution.

Once local well-posedness is established, we ask whether this solution can be
continued for all times ¢ > 0, i.e is global. The answer to this question is strongly
linked to the properties of the stationary problem

divB =g in Q, (1.10)
with the corresponding boundary conditions.

To illustrate the importance of (1.10), we consider the initial-boundary value
problem:

ug — Au=uP in £, t>0,
u=0 on 01, t>0, (1.11)
u(0) =up in £,

and the associated stationary problem

—Au=uP in €,
{ u=0 on ON. (1.12)
The relationship between these two problems has been studied in detail by Brezis et

al. [22]. The main results are:

(i) Assume p > 1. If there exists a global classical solution of (1.11) for some
ug € L®(), ug > 0, then there exists a weak solution of (1.12);

(ii) Assume p > 1. If there exists no weak solution of (1.12), then for any initial
value ug € L (), up > 0 the solution of (1.11) blows up in finite time; and

(iii) If there exists a weak solution w of (1.12) then for any uy € L*°(f2), with
0 < ugp < w the solution u of (1.11) with u(0) = ug is global.

Note that (ii) is a corollary of (i) and (iii) is a converse for (i). Here a classical solution
is smooth and satisfies the equation in a pointwise manner throughout the domain
Q and for all ¢ > 0. A weak solution is less regular and satisfies the equation in an
integrated sense. Blow-up means that the supremum becomes infinite in finite time.

Having established these results about global existence or local blow-up, it is
natural to ask for a detailed description of the solution near a blow-up point or near
a stationary solution. In others words, we want to know how we can determine the
blow-up rate and the decay rate for a specific problem.

We illustrate this for the special case of (1.11) when p = 2:

u—Au=u? in €, t>0
u=0 on 09, t>0 (1.13)
u(0) =up >0 in Q,
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where  is a bounded, smooth domain in RY or @ = RV,

Suppose u = u(x,t) solves the equation in (1.13). Due to scale invariance , the
function A\2u(\x, \%t) solves again the equation for any A > 0. This suggests that the
quotient @ plays an special role in the dynamics described by the equation. The
scale invariance also suggests to look for self-similar solutions of the form u(z,t) =
t~lv(z/v/t). Note that such solutions are singular at ¢ = 0 along any parabola |z| =
AVt where v(\) # 0. Using this observation, the local behaviour of blow-up at a point
z =a and t = T can be described asymptotically by the self-similar transformation

u(z,t) = (T —t) " *o( xT_ at,T) and 7= —log(T —t). (1.14)
Substituting (1.14) in (1.13), gives
1
177+A1‘)—§y-VT1+17~172:0 (1.15)

point of blow-up, and if 1 < N < 6 then
thn:lr(T —thu(a+yvT —t,t) =1 (1.16)

where y = =2 It was shown by Giga & Kohn [48, 49] that if (z,t) = (a,T) is a

uniformly for |y| < C, with C' > 0 arbitrary. This theorem results as a consequence
of the stabilization of solutions of (1.15), as 7 — oo, towards the stationary solution
7 = 1. Note that in this case ¥ = 1 is the only positive stationary solution of (1.15).
Consequently u(z,t) = (T —t)~! is the only (backward)self-similar solution of (1.13).
Therefore blow-up takes place at a rate (I' —t)~! and with a sufficiently flat profile
at r = a.

Global existence for (1.13), with @ = R™ can be established (provided N > 3)
by constructing super solutions of the form u(z,t) = (T +t)"'v(z/v/T +t), where
now the function v must satisfy

1
Av+§y~Vv+v+02§0.

Here super solutions v are of the form Ae~BY* with A, B > 0. They give the decay
rate (T +t)~! towards the stationary solution u = 0 in RY, see Samarskii et al. 72,
Chap. IV].

One of the main issues of this thesis is to study the temporal behaviour of solutions
of an equation of the type

g =DAu+Ve-Vu+u? in Q, t>0 (1.17a)
where
Ap=u in Q, t>0, ¢=0 on 09, t>0. (1.17b)

Is it possible to arrive at similar conclusions for (1.17) as for (1.13)?. The answer
appears to be much more complicated. Due to the presence of the nonlocal convection
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term, is not clear if the existence of stationary solutions characterizes the global
behaviour of (1.17). In fact, here the large time behaviour not only depends on the
existence of stationary solutions but also on D, on the shape of the initial data and on
the spatial dimension N. For instance, when N = 3, we construct radially symmetric
solutions with quite different temporal behaviour. This is shown in Figures 1.1-1.3.
In Figure 1.1 we observe convergence to a stationary solution as ¢ — oco. Decreasing
the value of the diffusion coefficient D and starting from the same density we now
obtain blow-up at the origin as t — T < oo, see Figure 1.2. Finally, keeping D fixed
and modifying the initial value to a bump shaped form, gives a shock-like solution as
t — T < oo, as is showed in Figure 1.3.

1=0
— - 1=0.60997
—- 1=1.1002

PN P — 1=1.6081

— —1=10

Figure 1.1: The

T T-1=0.002721
— - T-1=0.00013332
— - T-t=4.6522e-006

— T-1=1.3562e-007 [4
— T-t=3.50240-009

Figure 1.2: The solution u(r,t) of (1.17) shows the onset of a singularity at the origin.

To arrive to such description of problem (1.17), we first considered possible sta-
tionary solutions for different values of the diffusion parameter D. In case of existence
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~- 1-1=7.06386-005
— - T-1=4.7358e-005
—- T-1=2.9611e-005
12k — T-1=1.5922e-005

—— T-1=57296e-006

0.022 0.024 0.026 0.028 0.03 0.032 0.034

Figure 1.3: The solution u(r,t) of (1.17) shows a smoothed imploding shock moving
towards the origin.

of a stationary state, we look for conditions to ensure global existence, finding esti-
mates on the solutions. On the other hand, for values of D for which there exists
no stationary state, we ask whether the solutions cease to exists in finite of infinite
time. In the case of finite time existence of solutions, by looking to the scale invari-
ance of the problem, we can find self-similar solutions (as was explained above) which
can describe blow-up patterns. These patterns can observed numerically in Figure
1.2-1.3.

In the remainder of the introduction, we introduce several models which are spe-
cial cases of (1.1). We will consider the ideas and concepts explained above to analyse
these problems. The models are N-dimensional with N > 3, and we will bring special
attention to radially symmetric solutions.

1.2 Gravitational interaction

Chapters 2, 3, and 4 are devoted to the mathematical analysis of a model that arises
in statistical mechanics and describes the gravitational interaction of particles. A
detailed derivation and discussion on the physical assumptions was studied by Biler,
Nadzieja and collaborators in [10, 13, 12, 15|, Chavanis et al. [25, 26] and Wolan-
sky [79]. Below we present a brief summary.

1.2.1 Model derivation

Consider a cluster of particles moving around in a bounded region  C R3. Assuming
that the particles move following a Brownian motion with a gravitational induced
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drift, the spatial particle density n satisfies the mass balance equation
1
B

Here 8 > 0 is a friction coefficient, k& the Boltzmann constant, © the temperature of
the system and ¢ the gravitational potential, satisfying

ne = div{ (kOVn + nv¢)} in QxR (1.18)

A¢ =4rGn in Q x RY, (1.19)

where G is the gravitational constant. Equation (1.18) is called the Smoluchowski-
Poisson equation. For constant temperature, in [79] this equation was derived in the
context of gravitational interaction.

To ensure that the cluster of particles preserves mass we impose zero mass flux
along the boundary: i.e.

(kOVn +nVe)-7=0 on 00 xRt (1.20)

where v is the exterior normal at the boundary 9. This implies
/ n(z,t)de =M forall teRT,
Q

where M represents the total particle mass of the system, which is specified by the
initial condition. Setting n = 0 outside the domain €, equation (1.19) gives what we
call the “free” condition

o(x) z/m—?—y—'n(y,t) dy for z€Q, teR"
Q

for the gravitational potential. However it appears to be convenient to work with a
constant Dirichlet condition on ¢ along the boundary 9. Following [15], we set

=——— on xR (1.21)

with R := max |z|. Note that this boundary condition corresponds to the gravitational
T

potential of a mass M centered at the origin of a ball of radius R. Both definitions

for the potential, the “free” and with Dirichlet boundary condition, coincide when

the domain is a ball.

In general the temperature © in (1.18) varies in space and time. It satisfies a
temperature(energy) balance equation containing thermal diffusion, heat convection
and a term due to gravitational effects (cf. [13, Eq. (1.4)]):

—~

1
(gn@)t = div(AV®) + div (ge {5 kOVn + nv¢)})
+V4- { (kOVn + ans)} in QxR

S e
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The combination of this equation and (1.18) results in the so-called Streater model.
If we assume zero boundary flux on the boundary, the integrated form of the energy
balance does not contain the thermal diffusivity A,

1
E= E/n@(ac,t)da:—l——/ ngdr in RT,
g B s
Q
where E denotes the total energy of the system and « the specific heat of the particles.
If the cluster resembles an ideal gas we have k = 3k. Furthermore we expect that
a large thermal diffusivity will result in a temperature which is nearly constant in
space, i.e. © = O(t). Taking this limit in the integrated energy balance, one finds

E = %@(t) + %/ ngdr in RT. (1.22)
Q

There are two ways to invoke the initial data for the system (1.18)-(1.22). If the
energy E is given, it suffices to specify only the initial density

n(z,0) =no(z) >0 for zel (1.23)
Equivalently one can specify both initial density and temperature
©(0) =69 > 0.
Now E is fixed by (1.22) at t = 0.

Problem (1.18)—(1.23) was first derived for collisionless systems such as galaxies.
The underlying argument is that rapid fluctuations of the gravitational field during
the early stage of wviolent relazation plays the same role as collisions, although the
time scales involved for collisionless systems are smaller than for collisional systems
(Brownian motion). The process of violent relaxation is considered in [26], and further
results and interpretations can be found in [25].

Now, we turn to the analysis of problem (1.18)—(1.23). For that we assume that
the domain Q is a bounded open set, with boundary 92 € C'**(a > 0). As in
Section 2, we introduce the dimensionless version of the system (1.18)-(1.23):

ne = div{O(t)Vn+nVe¢} in QxRT, (1.24a)
Ap = n in QxR*, (1.24b)
0 = (O(t)Vn+nVe¢)-7 on 02 xR*, (1.24c)
6 = 0 in 00 x RY, (1.24d)
n(z,0) = mno(z) in Q, (1.24e)
with the normalization

/ nogdr =1, and ng(z) >0 in Q and suplz|=1, (1.24f)

Q T€EQ

and with the energy balance

E = n@(t)—}—/nqﬁdm in RT. (1.25)
Q
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Instead of studying problem (1.24)—(1.25) directly, we first analyze a simpler
model, in which many of the principal features of the full problem are captured. This
is the so-called isothermal model.

1.2.2 The isothermal model

We shall refer as the Isothermal model, if we drop the energy balance (1.25), and we
complement (1.24) with a prescribed constant temperature; i.e.

O(t) = ©* =const. >0 for teR™. (1.26)

The isothermal model appears in various applications. For instance, it arises
in the context of polytropic stars and the in biological phenomena of chemotaxis.
The corresponding mathematical problem has received considerable attention in the
past years because of its rich structure. As we discussed at the beginning of the
introduction, different forms of blow-up can occur, as well as global existence. To our
knowledge, there is no full description of these phenomena in R3. The reason is that
in contrast to the two dimensional case, global existence in R® not only depends on
the given temperature, but also on the shape of the initial density profile.

In the following, we briefly review the principal features of the isothermal model.
We start by recalling a result on radially symmetric stationary solutions.

Proposition 1.1 ([12]) IfQ = B:(0) is the unit ball centered at 0 in R3, then there
erists © > 0 such that for ©* > © there exists a bounded positive stationary solution
of (1.24) and (1.26), and there are no bounded positive stationary solutions if ©* < ©.

As shown by Biler & Nadzieja in [15], local existence requires ng € LP(2) for p > %,
implying that n € L{2.((0,T]; L>(€2)) for some T' € (0,00). Hence we can allow for
certain singular initial data, which result in solutions that are locally bounded in

(0,T]. Let
T* = sup{ T > 0 | Problem (1.24) and (1.26) has a solution in (0,7 }.

If T* = oo, the solution is defined globally and if 7* < co we have at least

. 3
tl_l)l}l* [n(t)||La) = o0 for each ¢ > 3 (1.27)
For Problem (1.24) and (1.26) the optimal LP(2) space for local existence seems to
be p = %, since there exists a singular stationary solution in the radial case belonging
to L9(Q) \ L¥2(Q) with ¢ < 3. It is given by
1

= W provided (“)* = 8_71’ (128)

U(z)

In the literature, this is refered to as the Chandrasekhar solution. Uniqueness for
problem (1.24) and (1.26) is proven in [15] for ng € LP(§2) with p > 2.
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In [15], T* = oo (global existence) was proved for large ©*. Using a different
argument, in [16] global existence was obtsained if there exists B > 0 such that ©* >
(14 B) and |[no|lL (B, (0)) < (1 + B)z5p for r € [0,1].

There are several conditions in the literature to ensure that 7% < co. We mention
in particular the following result.

Theorem 1.2 ([12]) Let Q = B;(0). If ©* < 5=, then T* < oco.

The proof of this theorem does not give insight in the blow-up process. However,
we know the principal types of blow-up for radially symmetric solutions for problem
(1.24)—(1.26) from references [50, 51, 21]. First Herrero et al [50, 51] studied the
problem of blow-up using careful matched asymptotic expansions. Later Brenner
et al. [21] carried out an accurate numerical analysis and obtained various analytical
results, such as existence and linear stability of self-similar profiles. The two principal
types of blow-up found in the above references are (for n(r,t) := n(z,t) with r = |z|):

e A solution n(r,t) consists of an imploding smoothed-out shock wave which
moves towards the origin. Ast — T, the bulk of such a wave is concentrated at
distances O((T — t)*/3) from the origin, has a width O((T' — t)*/?), and at its
peak it reaches a height of order O((T — t)~#/3). In this type of blow-up mass
concentrates at the origin and at the blow-up time, i.e.

T

. . 2 .
}1_1}1}) tll_)n}/n(y,t)y dy| =C >0. (1.29)

0

This situation is known as gravitational or chemotactic collapse and is de-
picted in Figure 1.4 (left), see also Figure 1.3. This type of blow-up produces
tlir%l* In(t)|| Lan) = oo for all ¢ > 1.

e A solution n(r,t) has a self-similar blow-up in the explicit form
(6+n?)
(14 37%)?
Note that this implies that n satisfies (1.29) with C' = 0. Therefore no concentra-

tion of mass at the origin occurs at the blow-up time. This blow-up behaviour
is depicted in Figure 1.4 (right), see also Figure 1.2.

(T —t)n (n (T - t)@*,t) ~Wy(n):= as t—T.

We will return to the question of blow-up in Section 1.2.4 of this introduction.

First we consider Problem (1.24)—(1.25).

1.2.3 Non-isothermal model: main results

Stationary solutions on different kinds of domains were studied in [10]. We recall in
particular:
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(T—1 1/3 T

—4/3 (T—t) 1
(T—0)

(T—0 23 (T—t) 172

Figure 1.4: The profile n(r,t) for blow-up with(left) and without(right) concentration
of mass.

Proposition 1.3 ([10]) Let @ = B;(0). Then for any k > 0 there exists E, € R
such that for E > E, there exists a bounded positive stationary solution of (1.24)-
(1.25), and there are no bounded positive stationary solutions if E < E,.

Local existence

Local existence is shown in Chapter 2. The proof uses a fixed-point argument and
a careful construction of an invariant set to avoid degenerate diffusion in (1.24a). As
in the isothermal case, local existence requires ng € LP(2) for p > %, and ©(0) > 0,
implying that n € L§2.((0,T]; L>°(€2)) for some T' € (0,00). This existence result is

in the framework of bounded solutions. However, unbounded solutions do exists. For

instance the singular function U defined in (1.28), is a solution provided that £ = "8—;2

and O(t) = const = g-. Uniqueness is proven for ng € LP(2) with p > 2.
Conditions for global existence and blow-up
Let
T* = sup{ T > 0 | Problem (1.24)—(1.25) has a solution in (0,77 }.

If T* = oo, the solution is defined globally and if 7* < oo we have blow up and as
before we have that at least the norms satisfy (1.27).

We first give the following result about blow-up:
Theorem 1.4 Let Q = B1(0). If K > 6 and E < £, then T* < cc.

Unfortunately the proof of this theorem does not give insight in the structure
of the blow-up. We will return to this question in Section 1.2.4. We now present a
theorem which gives conditions for global existence.
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Theorem 1.5 Let Q2 = B1(0) and assume that solutions of Problem (1.24)-(1.25)
are radially symmetric. If the pair (ng,®g) satisfies one of the following conditions

(i) no € L*=() and Oy is sufficiently large;
(ii) nologng € L1(2), and there exists B > 0, such that

r3

réd B

Inollzy(B,0) < (1 + B) for r€l0,1],

and

1 (1+B)(1+3B) 2 / 3

o P G i ‘- — _ _ 5

Qg > & 1+ 5B) exp - ng logng dx — log o ;
Q

(iii) no = 2, and O > &~ with v =0.9519.. .,
then T* = oo (global existence).

Remark 1.6 (i) Due to the parabolic regularity, ng € L>°() is not so restrictive.
(ii) Condition (i) is an special case of (i) and v = g};% —(%;i@ =0.9519....

(iii) The condition onng in (i) implies a bound on the Morrey norm of exponent 3/2,

since [nollarsr2) = sup 7 InollLranB, @))- In [9], the space M3/2(Q)
z€R3, 0<r<1
was suggested as the natural space to prove ezistence.

The proof of Theorem 1.5 contains two essential steps. To extend the local solution
we first need a uniform bound from below on ©. To achieve this we use a Lyapunov
functional associated with (1.24)—(1.25), the so-called Boltzmann entropy (cf. [69]),

W(t):/nlognda:—glog E—/nq&d:c
Q Q

This functional provides a uniform lower bound on ©, which only depends on the
initial data and k. If ©q is positive, then © remains positive in the whole existence
interval, including the blow-up time.

In the second step we construct a control on n. Here we use the radial symmetry
which allows us to transform equations (1.24a) and (1.24b) into a single equation, still
containing © as unknown. It has the crucial property that an ordered pair of given
©’s results in an ordered pair of solutions. As a comparison function we now use the
solution of (1.24a)-(1.24b) with a suitably chosen fixed ©. Under certain hypotheses
this auxiliary problem has a global solution which provides the control on n. The
different conditions in Theorem 1.5 are closely related to global existence conditions
for the auxiliary problem.
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Convergence to stationary states

In Chapter 3 we give sufficient conditions for the convergence of global radially
symmetric solutions to a stationary solution. The idea is the following. Assume
that only one stationary solution exists. Then find a class of initial data which
provide a uniform bound in time on ||n(-,t)| zr(q) for some p > 1. Finally construct
a lower bound on the temperature. These conditions together with the existence of
a Lyapunov functional, provide the convergence to the unique stationary solution.
We present here separate results for different classes of initial data, which provide
solutions in LP(Q) for p = oo and p = 2.

Theorem 1.7 Let Q = B1(0) and assume that problem (1.24)-(1.25) has a radially
symmetric solution. If there exists B > 0 such that

. 3
(i) mno(r) < £llnollzi(s, o)) ond [nollLi(s, o) < (1 + B)Fp for v =lz| €
[0, 1];

(i)

1 (1+B)(1+3B) 2 / 3

s X VA LR ol _ 2 ’

Qg > o 1+ 5B) exp | — ng logng dx — log o -
Q

(iii) £ € R and k > 0 are such that Problem (1.24)-(1.25) has a unique stationary
solution.

Then, Problem (1.24)-(1.25) has a global solution in L*°(S2) which converges to the
stationary solution.

Remark 1.8 If ng is constant in space, the normalization (1.24f) implies ng = %.

Then (i) is satisfies and (ii) becomes ©g > g=7, with y as in Theorem 1.5.

For a L?(2) uniform bound, we have the following theorem.

Theorem 1.9 Let Q = B1(0) and assume that problem (1.24)-(1.25) has a radially
symmetric solution. If

(i) no € L*®(Q) and
X9 >a and |Inoll3:q) < C ((AG0)* — A6y),

where
2
A=exp | —— /nologngdw—log <i) :
K 4dr
Q

(ii) £ € R and k > 0 are such that Problem (1.24)-(1.25) has a unique stationary
solution.
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Then Problem (1.24)-(1.25) has a global solution in L?(Q) which converges to the
stationary solution.

Remark 1.10 Note that condition
(3) ng € L*°(2) and ©¢ large,

implies condition (i). In fact for a given ng we can choose ©¢ sufficiently large so
that condition (i) is satisfied.

We complement these theorems with a result which provides uniqueness for sta-
tionary solutions.

Proposition 1.11 Let Q = By(0). For a given k > 0, there exists a sufficiently
large energy E(k) such that for E > E(k) there exists a unique radially symmetric
stationary solution for Problem (1.24)-(1.25).

1.2.4 Asymptotic self-similar blow-up

In Chapter 4 we study blow-up for the isothermal and non-isothermal models using
ideas of self-similarity introduced in Section 1.1. We complement the results of [50,
51, 21] on blow-up.for the isothermal case. In particular we provide a class of initial
data which rules out the shock-like behaviour as showed in Figure 1.4 (left). We also
present a blow-up description for the non-isothermal case, which is different from the
one given in [26].

We studied blow-up for @ = B;(0) with radially symmetric initial data, which
gives radial solutions. For this solutions the average density function b(r,t) is defined

by

1
b(r,t) == = / n(z,t) dz, (1.30)
T
Bo(r)
This variable turns out to be most convenient when analyzing this system. In fact,
it has the same scale invariance as n(r,t), and it has in addition the advantage that

solutions are smoothen. For example, if n(r,t) is a delta function at the origin with
unit mass, then b(r,t) = r=3.

Let D = (0,1) and set Dy = D x (0,T) for some time T" > 0. Transformation
(1.30) puts system (1.24), in the form

be

4
= 47T§)(t) (bﬂ + ;br> + %rbbr 4+ in Dr (1.31a)

b-(0,t) =0, b(1,t)=1, for te0,7), (1.31b)
b(0,7) = bo(r) for reD. (1.31c)
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Here we have redefined ¢ := %t. Regarding the initial condition, we assume
by € C}(D), and g(bo)r +bo>0 for reD, (1.31d)

where the second condition is equivalent to ng > 0 in D. Note that conservation of
mass is represented by b(1,t) = 1 for ¢t € [0,T). In the isothermal case we consider
(cf. 1.26)

O(t) = ©* = constant >0 for all ¢ > 0. (1.32)

In the non-isothermal case, condition (1.25) takes the form

1
E = kO(t) — 4—1—/b(y,t)2y4 dy in [0,7), (1.33a)
s
0

where E € R and k > 0 are constants satisfying

0(0) = 6y > 0. (1.33b)
We denote by b = b(r,t) the solution of problem (1.31)—(1.32) and by the pair (b =
b(r,t),© = O(t)) the solution of problem (1.31),(1.33).

As was done for problems (1.24)—(1.26) and (1.24)—(1.25), we can now define the
maximal interval of existence in terms of the average density b(r,t). If T* < oo, then
we must have

lim supb(r,t) = co.
t—-T* [0,1]

where T* = 2T*. For the non-isothermal model the behaviour of ©(t) near t = T
will de discussed later. Since problem (1.24) conserves mass, one finds for b

1 —
b(r,t) < 3 for reD,t>0,

which implies a single point blow-up for b(r,t) at the point r = 0.

Next we will state and motivate the results for the isothermal and non-isothermal
case.

Isothermal case

The aim is to characterize the asymptotic behaviour near blow-up of the solution
b(r,t) of problem (1.31)-(1.32). We prove under certain hypotheses on the initial
condition that if a solution of (1.31)—(1.32), blows up at time 7" > 0 and at the point
r = 0, then it has the asymptotic form given by

bu(rt) = (T —t) 1y ( 47r@*(TT — t)/3>
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where ¢ satisfies the boundary value problem
Oun + S0 + 000 — dmen + WP —0 =0, for 7>0, (1.34)
#(0) =1 y(0) = 0.

This problem has many solutions [21, 51]. We classify them by counting the number
of times they cross the singular solution ¢g(n) = n%‘ For that purpose, we introduce
the set

Sk = {1 ¢ is solution of (1.34), having k intersections with ¢s}.

We will show that S is the relevant subset of solutions of (1.34) for the characteri-
zation of blow-up.

The hypotheses on the initial condition are
(bo)r <0 for reD, (1.35)

and

47O*
3

We will show that this imply that b, <0 in Dy and b; > 0 in Dr.

4
((bo)rr + ;(bo)r) + %T‘bo (bo)r + bg >0 for reD. (1.36)

Next we introduce self-similarity in (1.31)—(1.32). Using scale invariance, we
introduce

T = log (TT—_t> and n= (47r@*(T7:- t)/3)1/2; (1.37)
and write
B(n,7) = (T —t)b(r,t). (1.38)
The rectangle Dp transforms into the set
M= {(n7)|7>0,0<n< (4n0O*T/3)"1/27/2}. (1.39)

The initial-boundary value problem (1.31)-(1.32) now becomes
1 4 1
By + B+ 5nBy = Byy + ;B,, +3nBB, + B* in II, (1.40a)
B,(0,7)=0, B ((47(@*T/3)_1/26T/2,T) =e T for 7R, (1.40b)
B(#,0) = Bo(n) := Tho (17(47r@*T/3)1/2) . for nelI(0) (1.40c)
where I1(0) = (0, (4m©*T/3)~1/2). We introduce for (1.40) the w—limit set

w = {pe€L®R")|3Ir; » oo such that
B(,7;) > ¢(-) as 7; — oo uniformly on compact subsets of R}
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Note that a solution of (1.34) is a time independent solution of (1.40). Therefore
the study of the blow-up behaviour amounts to analyze the large time behaviour of
solutions of of b(r,t) is reduced to (1.40) and in particular stabilization towards the
stationary solutions of (1.34).

Now we have the elements to state our main result.

Theorem 1.12 Let ©* < g=. Let conditions (1.35), and (1.36) hold. Further, let
b(r,t) be a solution of problem (1.31)-(1.82) that blows up atr =0 and att =T. If
b satisfies the growth condition

b(0,t) < M(T —t)™* for te€(0,T) (1.41)
with M > 0, then

w C 8.

Remark 1.13 The growth condition (1.41) has been observed numerically in [21].
There are analitical proofs of this condition for related equations, which we believe
can be adapted for this case [72, 77].

Remark 1.14 There is numerical evidence [21] that shows that the set Sy contains
only two elements. These elements are the profiles

e*=1, and ¢i1(n) = ——.
AT 3

Remark 1.15 If we can prove that w = {¢} C Sy, then

lim (T — t)b (n 40+ (T —t) /3) = (1) (1.42)

t—T

uniformly for 0 < n < C for some arbitrary C > 0. Numerical results in [21] show
that for an open set of initial data, the convergence in (1.42) holds for ¢ = ¢1. This
self-similar behaviour is depicted in Figure 1.4 (right), replacing n(r,t) by b(r,t). In
constrast we know of no numerical evidence for the convergence in (1.42) with ¢ = 1.

Remark 1.16 Assumption (1.35) on the initial data gives in terms of ng

3
ring(r) < 7 Imollza (s, 0))- (1.43)

Note that this condition was also used in Theorem 1.7.

The proof of Theorem 1.12 uses the observation that equation (1.40), without the
term %nBB,,, is the same equation that arises in the study of self-similar blow-up for

by = Anb + b2 (1.44)
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with N = 5. Here Ay denotes the Laplacian in RV, see [48, 49]. Therefore we adapt
the methods used for the analysis of (1.44) to prove Theorem 1.12. Note that Theorem
1.12 is very similar to the supercritical case (N > 6) for equation (1.44) when two
different kinds of self-similar behaviour coexist Matos [60]. They are given by

lim (T = £)b(nv'T — t,t) = &(n)

uniformly for |n| < C for some C > 0, with ¢ =1 or @ is such that @(n) = O(|n|™2),
as |n| — oo.

Non-isothermal case

The blow-up behaviour of the solution (b,©) of (1.31),(1.33), was studied by
Chavanis et al. in [25]. There it was claimed that ©(t) and b(0,t) blow up at the
same instant of time 7" > 0. To support this assertion, the authors assumed that
O(t) ~ (T —t)~® with a > 0, and derived a equation for the corresponding self-
similar form. Since a > 0 is a-priori unknown, this results in a family of blow-up
equations indexed by a > 0:

Omn + 200 + A0y — 3(1 —a)npy + 9> —@ =0, for 7>0, (1.45)
e(0)=a=>0 ¢,(0)=0.

Note that (1.34) corresponds to (1.45) with a = 0. Guided by numerical evidence, it
was argued in [25] that

(T — )b (/IR (T = DOD/3,t) — ea(n)
as t—T (1.46)

o@)(T —t)* — Constant

where ¢, is a solution of (1.45) with @ ~ 0.1, which is bounded, decreasing and
satisfies pq(n) = O(n~2(1+%)) for large 7. Recently, in [18], it was proved that for
a > 0 such solutions cannot exist. Therefore the convergence (1.46) cannot hold and
so the question of blow-up in this case remaind open.

In Chapter 4 we partly address this issue. As was pointed out to us by J. King,
the energy relation (1.33) does not exclude the combination of a singular solution b
and a finite temperature ©. For example in the isothermal case at time of blow-up
b(r,T) = % near r = 0, which is unbounded and produces a finite temperature

1
kO(T)=FE + % /b(r, T)%r*dr < 0o
0

This possibility was not addressed in [25].

To conclude we give a numerical result showing a generic blow-up behaviour with
bounded temperature and singular density.

In our simulations we set ng = 2, that is by(r) = 1 for r € D. Selecting E and &
so that blow-up occurs, we find that
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(i) © >0o0n (0,7);
(i) ©(t) — © where O is a positive finite constant;

(iii) (T — t)b (n O (T —t)/3, t) ~ p1(y) as t — T, where 1(1) = r7aye-

We illustrate these findings in Figure 1.5, for a particular choice of F and k.

s - — E=-1/30r and =65
e - - o=1/8x
15

n ) *_log(T—t) ”

Figure 1.5: Convergence in self-similar variable to the profile ¢4 (left) and the associ-
ated temperature behaviour(right), E = —1/30m, k = 6.5, and by = 1.

1.3 Injection of reactive solutes from a
three-dimensional well

Chapter 5 is devoted to the mathematical analysis of a problem arising in reactive
solute transport in a homogeneous porous medium. We refer to van Duijn & Knab-
ner [33] and Bear [3, Chapter 10] for the underlying physical assumptions, derivations
and related problems.

Let € > 0 and let
Q. ={zcR3 |z| > ¢}

denote the domain occupied by the porous medium. The hole {z: |z| < €} represents
a well through which liquid (water) is injected in the porous medium. The corre-
sponding groundwater flow is characterized by the water flux vector g and the water
content O, satisfying the balance equation

00 = -Vq for (z,t) € Qe xRT.

At t = 0 a reactive chemical substance is mixed with the water in the well. Let C,
be the concentration of the injected solute. This solute is transported by the moving



22 CHAPTER 1. INTRODUCTION

groundwater. The total flux of solute is given by the sum of convective flux and
diffusive/dispersive flux

J=qC —ODvVC for (z,t)€ Q. xR

where C' = C(z,t) denotes the dissolved solute concentration and D > 0 the sum of
molecular diffusion and mechanical dispersion. At the boundary 0 with exterior
normal 7, the flux J is given by

J.-v=q-7C, for (z,t)€ 0N xR

where q is the prescribed water flux at the well. Assuming that adsorption is the
principal reaction mechanism that takes place in the medium, we introduce S = S(z,t)
as the adsorbed concentration on Q. x Rt. Consequently the mass balance equation

reads
(0C+8)+V-J=0 for (z,t) € Qe x RT.

If the adsorption reaction is fast compared with the water flow, we can assume that
the adsorbed concentration is an algebraic expression of the dissolved concentration,
that is

S =9(0C).

The function ¥ is called the adsorption isotherm (see for instance [34]). In general ¥
is determined experimentally. Typical examples are

k. C
¥(C) = ﬁlkg_C’ ki,ko > 0, (Langmuir isotherm) (1.47a)
or
¥(C) = kC?, k>0, pe(0,1) (Freundlich isotherm). (1.47b)

We consider the case of a saturated homogeneous medium, which implies that the
water content @ is constant. This means that assuming a uniform normal water flux
at 99, the groundwater velocity q has the radial form

A(t)

= +
q(z,t) = Wer for (z,t) € Q. xR

where A represents the injected water rate at the well and e, is the unit vector in the
radial direction. Here we will consider the case A(t) = A = const, hence a prescribed
constant flow rate at the well.

In a dimensionless setting, we find for the scaled solute concentration u: €. X
[0,00) +— [0,00) the following nonlinear initial-boundary value problem:

B(u)y +divF = 0 in Q, t>0, (1.48a)

F.e.=q-e on 09, t>0, (1.48Db)
u(-,0) = up(-) in Q. (1.48c)
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where
B(u) = u+(u), with ¢ the scaled isotherm, (1.49)

describes the adsorption process. In this introduction we confine ourselves to examples
(1.47), that is

klu
1+ kgu ’

Y(u) = k1,ko >0, (Langmuir isotherm) (1.50a)

or
Y(u) = kv, k>0, pe(0,1) (Freundlich isotherm). (1.50Db)
The general case is treated in Chapter 5. The flux in (1.48) is given by
F=qu—Vu
with g = ﬁger. Note that all the constants are absorbed in € and .

Further note that equation (1.48a) with ¢ from (1.50a) and (1.50b) behaves quite
differently. In the case of the Langmuir isotherm ¢ € C'([0,00)), implying that
equation (1.48a) is uniformly parabolic. If ¢ is given by the Freundlich isotherm
(1.50b) then 3’(s) — +oco as s | 0. This means that equation (1.48a) is degenerate
parabolic.

In a two-dimensional setting, Problem (1.48) was studied in [33] and [35]. In [33]
the authors derived a radially symmetric self-similar solution of equation (1.48a) of
the form u(r,t) = f(r/+/t). This solution is defined on all R? but does not satisfy
boundary condition (1.48b). In [35] it was demonstrated that this solution describes
the large-time behaviour for general two-dimensional radially symmetric solutions of
(1.48a)—(1.48b) and rates of convergence were given.

The existence of self-similar solutions in two dimensions requires the well injection
rate to be constant in time. In three spatial dimensions, self-similar solutions still
exist but require the injection rate be such that A(t) = v/t. From a practical point of
view this is an unsatisfactory setup. Here we investigate the large-time behaviour of
solutions under a constant injection rate.

Two natural questions arise from Problem (1.48): the behaviour as € | 0 and the
behaviour as t — oo.

We first consider € | 0. Taking the formal limit in the combination (1.48a)—(1.48b)
yields the equation

B(u)e +div(F) =6,—0 in R3 t>0 (1.51a)

where 0, denotes the Dirac distribution at the origin. Thus the boundary condition
at the well appears as a source term in the equation. We complement equation (1.51a)
with the initial condition

u(-,0) =up(-) in R3. (1.51b)
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Regarding the initial conditions (1.48¢c) and (1.51b), we take (1.48c) as the re-
striction of (1.51b) to €, and assume

(Hy,) uo€ L®(R3); ug>0inR% lim uo(x) =0; /,B(uo) dx < 0.
|z| =00 &
Note that we allow non-radial initial data.

Our first theorem makes the stabilization as € | 0 precise.

Theorem 1.17 Let (H,,) and (1.49) — —(1.50) be satisfied. Further, let u® be the
unique weak solution of (1.48). Then

u¢ —>u as €—0, uniformly in compact subsets of (R*\ {0}) x RT,

where u is a weak solution of (1.51).

The definition of weak solutions as well as the proof of Theorem 1.17 are given in
Chapter 5. Weak solutions are introduced in this context to allow for solutions with
non smooth behaviour at points that separates the regions {u = 0} and {u > 0}.

Next we consider the large-time behaviour. We expect that different small well
radii (¢) lead to the same large-time behaviour. This was shown rigorously in [35]
for the two-dimensional case. With this in mind we consider only the large-time
behaviour of (1.51) and for technical reasons we limit ourselves to radially symmetric
solutions. Before we state the convergence result, we provide some motivation.

The radial form of equation (1.51a) is:

1—-2r

= Ur — U =0 In 0<r<oo, t>0, (1.52)

B(u)s +

and, as shown in Proposition 5.15 Chapter 5, its solutions satisfy the boundary con-
dition
u(0,t) =1 forall t>0. (1.53)

Equation (1.52) admits a nontrivial stationary solution w = w(r), satisfying
w(0) = 1 and w(oo) = 0. It is given by
w(r)=1-—e ", (1.54)
and under the conditions of Theorem 1.18 below the solution u converges to this
stationary state.

The appearance of (1.54) is quite different from the two-dimensional case. There
the only bounded stationary solution satisfying w(0) = 1 is the constant state w = 1.
In [35] it was shown that the solution attains this state in a self similar way, namely

u(r,t) ~ f(r/vVt) as t— o0



1.3. INJECTION OF REACTIVE SOLUTES 25

where f(0) = 1.
Here we assume an analogous behaviour with respect to (1.54), i.e.

u(r,t)

w(r) ~ f(r/t*) as t— o0 (1.55)

for some a > 0, where f(0) = 1. To this end we set

Z(r,t) :=

and introduce the coordinate transformation
n=r/t%, 7 = logt.

Then z(n,7) = Z(r,t) satisfies:

1 1
e D78 (zw)z, — e VB (2w)zy) — 2y + EA (W) zy =0, (1.56)

where A(s) := 612f—1 +5 — 2 with lim A(s)=0.
8=

To find the appropriate balance in (1.56), we observe that for fixed n > 0, 7 — oo
implies r — oo. Since u(r,t) — 0 as r — 00, the behaviour of 3 near 0 is critical. Let

us therefore assume
B(s)~s? (0<p<1l) ass|O0. (1.57)

Using this and w(r) — 1/r, as r — oo, we find that the second and third term in
(1.56) balance if and only if & = 1/(3 — p).

The resulting equation is
an> P (fP)y + (nfy — f)n =0 for 0 < n < oo, (1.58)

where f(n) := lim z(n,7).

T—00

Below we use the notation [-]+ := max{-,0}, ¢4 := [+, and ¢_ := [-¢]4.

Theorem 1.18 Let hypotheses (1.57) and (Hy,) be satisfied, and let u be a weak
solution of Problem P. Then we have the following estimates:

o0
0 < eP7 /[up — fPwP)yn?dn < Lie™* + Lj¢p—||pce™ " (1.59)
0
for all T € R, and

oo
0< e [[70P —w)inf dn < Lo~ + Lljpllime™™ (1.60)
0
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for all T € R. Here Ly, Lo, and L are positive constants and o = 1/(3 — p).

The function f is the unique solution of

(S) {an2_pﬁl’(f)n+fnn:0 for 0 <n < oo,
f(0)=1, f(o0)=0.

Remark 1.19 The mass of the system increases linearly in time. The scaling used
in (1.59) (and (1.60)) is chosen to normalize the increase of mass:

oo

%/[u” — fPwP) r?dr = ePoT /[up — fPwP) n? dn.
0 0

In this scaled metric the solutions u and fw converge. In the unscaled (original)
metric the distance increases without bound.

Figure 1.6 shows the limit function r +— w(r) f(r/+/t) for different ¢, in the case p = 1.

14

r

Figure 1.6: The function 7 — w(r)f(r/v/t); t = 1, 25, 400.

1.4 A quasilinear elliptic system

In Chapter 6, we study the existence of positive radial solutions of a quasilinear elliptic
system. Physical assumptions and model derivations for this type of equations can
be found in DiBenedetto [28] and Diaz [29].

We motivate our main result by observing the following. Let € be a ball of radius
R > 0 and let u,v be a solution of the weakly coupled system

—Au = P in Q
—Av = u?! in Q (1.61)
u=v = 0 on 0N
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Solutions of this problem are necessarily radially symmetric. The existence of bounded
radial positive solutions was studied by Peletier & van der Vorst in [67]. Their result
asserts that for V > 3

(i) if p,q¢ > 1 are such that

Lt N2 (1.62)
p+1l 1+¢q N '
then (1.61) has a unique positive solution;
(ii) if p,q > 1 are such that
1 1 N -2
(1.63)

+
p+1 14q¢q~ N
then (1.61) has no (positive) solution.

Our aim is to obtain a result of the type (i), for a nonlinear gradient dependent
diffusion, that is, find conditions for existence of bounded positive radial solutions of
a system of the form

d1v(a1(|Vul|)Vuz) + f,(u,+1(|x|)) = 0, for e
i=1,...,n, (1.64)
ui(|z]) =0, for x € 09,

where it is understood that u,;; = u;. Here for ¢ = 1,...,n, the functions ¢; :=
sa;(]s]), s € R, are odd increasing homeomorphisms from R onto R, and the functions
fi : R+— R are odd, continuous, and such that sf;(s) > 0 for s # 0.

Furthermore, concerning the functions ¢;, f;, i = 1,...,n, we will assume that
they belong to the class of asymptotically homogeneous functions (AH for short). We
say that h: R — R is AH at +oo of exponent § > 0 if for any o > 0

h(os)

s—t0o h(s) Loe)

By replacing +o00 by 0 in (1.65), we obtain a similar equivalent definition for a function
h to be AH of exponent ¢ at zero.

In [27], the existence of solutions with positive components for a system of the
form (1.64) with n = 2 and with the functions ¢; and f; having the particular form
¢l(5) = IS|Pi—28’ ¢2(0) = 07 pi > 17 f‘i(s) = |8 6i_187 fl(o) = 0, 6i > 07 1= 1)27 was
done. In [44], within the scope of the AH functions, the case of a single equation
was considered. In both situations the central idea to obtain a-priori bounds was the
blow-up method of Gidas & Spruck [45].

Next we develop some preliminaries in order to state our main theorem. For

i=1,...,n, let 6;,6; be positive real numbers and p;, ; real numbers greater than
one, and assume that the functions ¢;, f;, i = 1,...,n satisfy
(Hy) lim ¢i(os) =P~ lim fi(os) = g%,

§—+00 ¢z (S) 8—+400 fi(s)
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for all o > 0,
H, - =1
g |y
To the exponents p;, d;, let us associate the system
i — 1)E; —6,E;41 = —p; i=1,...,n
AS (p'L 7 141 (X ) 9 10y
() { Eny1 = Ey.

From (H3), it turns out that (AS) has a unique solution (Ei,...,Ey), such that
E; > 0 for each ¢ = 1,...,n. An explicit form for these solutions is given in the
Appendix at the end of the Chapter 6.

Now we can establish our main existence theorem.

Theorem 1.20 For i = 1,...,n, let ¢; be odd increasing homeomorphisms from R
onto R and f; : R — R odd continuous functions with xf;(x) > 0 for x # 0, which
satisfy (Hy), (Hs), and

¢i(08) — Pi—1 li fi(as) _ 5

H. lim =0 , m =g%,

( 3) s—0 ¢Z(S) s—0 f’L (S)

for any o > 0. Additionally, fori=1,...,n, let us assume that
Hy — 2 > 1,

Wy iy

(Hs) i € Ny 1=Tgu 057 Inax {E; —6;} >0,

where 0; = % and the E;'s are the solutions to (AS). Then problem (1.64) has a
solution (u1,...,u,) such that u;(r) >0, r € [0, R), for eachi=1,...,n.

Note that this theorem applied to Problem (1.61), implies that the exponents
satisfy

l1<pg<l+ max{p, q} + 1). (1.66)

N — 2(
Following the proof of Theorem 1.20, we find that condition (1.66) appears as a result
of a non-existence of ground states for the system
—Au =* in RV,
—Av=u? in RV, (1.67)
u>0 v>0 in RV.
However in [73], condition (1.66) was improved for this particular system. They

proved non existence of ground states for (1.67) provided (1.62) holds. Clearly this
assumption is sharper than (1.66).

Having this in mind, as a corollary of Theorem 1.20, we can proof a result of the
type
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Theorem 1.21 Let f, g: R+ R be odd continuous functions such that f is AH at
+oo of exponent § > 0 and AH at 0 of exponent § > 0, g is AH at +00 of exponent
u>0 and AH at 0 of exponent Tt > 0 with ué > 1. Let also p, § > —1 be such that

o> (p+1)(@+1). Then, if
N N
s e s 3 I e 1.68
5+1+u+1> ’ \L.88)

the problem

—div((log(1 + |Vu|))PVu) = f(v), z€Q
(DL) —div((log(1 + |[Vu|))?Vv) = g(u), z€Q
u(z)=v(z) = 0 ze€dQ,

has a non triwvial radially symmetric solution (u,v) such that u(z) > 0 and v(z) > 0
for all x € Q.

Apart from Theorem 1.21, we can also apply our existence result, Theorem 1.20,
to a system that contains operators of the form (—Ap)", (—A4)™, where for t > 1
Agu = div(|Vult =2 V).

Finally, concerning extensions for the system (1.61) to evolution parabolic prob-
lems, we find that little is known. To illustrate this type of results, we consider the
system

ug—Au =P in Qx(0,7),
vu—Av=u? in Qx(0,7), (1.69)
u(0)=up >0 v(0)=v9>0 in Q.
It was shown by Escobedo & Herrero in [36] that if pg < 1 then (1.69) has global

existence. If pg > 1 then blow-up and global existence coexists. Global existence is
ensured provided that the initial data is not so large.
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CHAPTER 1.

INTRODUCTION



Chapter 2

Global existence conditions
for a non-local problem
arising in statistical
mechanics

2.1 Introduction

Let © C R® be a bounded open set satisfying sup |z| = 1. In Q we consider the

TEN
parabolic -elliptic system
ng = div{O(t)Vn+nVe¢} in QxRY, (2.1)
Ap = n in QxR (2.2)
combined with the energy relation
E = £kO(t) +/ nodz in Rt (2.3)
Q

where E € R and s > 0 are given parameters. At the boundary 9Q € C'*2 (a > 0)
we prescribe
(O(t)Vn+nVe)-#=0 on IO xR, (2.4)
$p=0 in 0Q x RT,

This chapter has been submitted to Advances in Differential Equations [32]
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where 77 denotes the exterior normal vector on 9. At t = 0 we have the initial
condition

n(z,0) =no(z) in £, (2.6)
satisfying

/nodle, and ng(z) >0 in Q. (2.7)
Q

This set of equations defines Problem P for the unknowns n, ¢ and ©. The underlying
model is discussed in Section 2, as well as some known properties of the system.

The purpose of this chapter is to demonstrate local existence for Problem P and
to give sufficient conditions on E, k, and ng for global existence. Local existence is
shown in Section 3. The proof uses a Schauder fixed-point theorem and a careful
construction of an invariant set to avoid degenerate diffusion in (2.1). It requires
ng € LP(Q) for p > 3, implying that n € L{5,((0,7]; L>(R)) for some T' € (0, 00).
Hence we can allow for certain singular initial data which result in solutions that are

locally bounded in (0,77]. Let
T* = sup{ T > 0 | Problem P has a solution in (0,7 }.

If T* < oo we have at least lim [n(t)||La(q) = oo for each ¢ > 3 and if T* = oo,
the solution is defined globally. For Problem P the optimal L”(2) space seems to be
D= %, since there exists a singular stationary solution in the radial case belonging to
LI(Q) \ L*?(Q), with ¢ < 2. This solution is given in Section 2.2.3. Uniqueness is
proven for ng € LP(Q?) with p > 2.

Problem P was recently studied in [69]: local existence and uniqueness were
obtained for p > 3. Although the result in [69] is proved only for £ = 3, the method
seems applicable to any s > 0.

In Section 2.4 we consider an auxiliary problem in which we drop the energy
relation (2.3) and treat O(t) as a given function. This provides insight and bounds
which we need in order to prove our main result about global existence. In Section
2.5, we first give the following result about blow-up:

Theorem 2.1 Let Q = B;(0) be the unit ball in R®. If k > 6 and E < 2, then
T* < oo.

Unfortunately the proof of Theorem 2.1 does not give any insight into the struc-
ture of the blow-up. This issue will be considered in a future publication.

Before stating the global existence result we note from (2.3) at ¢t = 0, that instead
of prescribing E and ng one could equivalently prescribe ©¢ := ©(0) and ng. In fact
it seems more natural to consider ©g and ng as initial values. In view of the physical
interpretation of the model we consider ©¢ > 0. With this in mind we have
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Theorem 2.2 Let Q = B1(0) and assume that solutions of Problem P are radially
symmetric. If the pair (ng, ©¢) satisfies one of the following conditions

(i) no € L>®(Q) and Oy is sufficiently large;

(ii) nologng € LY(R), and there exists B > 0, such that

r3

Inollzy s, < A+ B) 55 for r€[0,1],

and

(1+B)(1+3B)

1 2 3
b oAl R = lognodz —log | — )| | ;
Sz arm Pl /"Oog”‘)"T Og<47r> :
Q

(iii) no = %, and ©¢ > %’y, with v = 0.9519.. . .,

then T* = oo (global existence).

Remark 2.3 (i) Due to the parabolic reqularity, no € L*°(2) is not so restrictive.

(ii) Condition (i) is an special case of (ii) and y = min Q4BIE3B) — 0.9519....

(iii) The condition on ng in (i) implies a bound on the Morrey norm of exponent 3/2,

since |[nollpsrz) = sup 7 HInollLians, z))- In (9], the space M3/3(Q)
z€R3, 0<r<1
was suggested as the natural space to prove existence.

The proof of Theorem 2.2 contains two essential steps. To extend the local solution
we first need a uniform bound from below on ©. To achieve this we use a Lyapunov
functional associated with Problem P, the so-called Boltzmann entropy (2.15). This
functional provides a uniform lower bound on ©, which only depends on the initial
data and k. If ©g is positive, then © remains positive in the whole existence interval,
including the blow-up time.

In the second step we construct a control on n. Here we use the radial symmetry
which allows us to transform equations (2.1) and (2.2) into a single equation, still
containing © as unknown. It has the crucial property that an ordered pair of given
©'s results in an ordered pair of solutions. As a comparison function we now use the
solution of (2.1)-(2.2) with a suitably chosen fixed ©. Under certain hypotheses this
auxiliary problem has a global solution which provides the control on n. The different
conditions in Theorem 2.2 are closely related to global existence conditions for the
auxiliary problem.
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2.2 Preliminaries

2.2.1 Model issues

Problem P was first derived for collisionless systems such as galaxies. The under-
lying argument is that rapid fluctuations of the gravitational field during the early
stage of violent relazation plays the same role as collisions, although the time scales
involved for collisionless systems are smaller than for collisional systems (Brownian
motion). The process of violent relaxation is considered in [26], and further results
and interpretations can be found in [25].

Problem P also describes the evolution of density and temperature of a self-
attracting cluster of Brownian particles in a bounded three-dimensional region. Dur-
ing the evolution mass and energy are conserved. A detailed derivation and discussion
on the physical assumptions can be found in [10, 13, 79] and the references therein.
Below we present a brief summary.

Suppose a cluster of particles is contained in a bounded region Q C R3. The
spatial particle density n satisfies the mass balance equation

ny = div{%(k@Vn + nV¢>)} in QxRF, (2.8)

where 8 > 0 is the friction coefficient, k the Boltzmann constant and © the tempera-
ture of the system. To ensure that the cluster of particles preserves mass we impose
zero mass flux along the boundary: i.e.

(kOVn +nVe) -7 =0 on 09 xR*. (2.9)

This implies

n(z,t)dr = constant = M for all t >0,
Q

where M is the total particle mass of the system, specified by the initial condition.

The function ¢ in (2.8) is the gravitational potential. It satisfies

A¢p =4rGn in Q xRT, (2.10)
with
M
¢= —GT on O xRt (2.11)

Here G is the gravitational constant and R := max |z|. Note that we have chosen as

boundary condition the gravitational potentialng a mass M centered at the origin
of a ball of radius R, as was introduced in [25]. An alternative way to define the
potential, physically more relevant, is to consider the convolution of the fundamental
solution of the Laplacian in R® with the density, see [15]. Both definitions coincide
when the domain is a ball. For general domains the Dirichlet condition (2.11) is
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somewhat artificial, but we hope that it will provide insight for the study of more
realistic boundary conditions, see discussion in [10].

In general the temperature varies in space and time. It satisfies an energy balance
equation containing thermal diffusion, heat convection and a term due to gravitational
effects [13, Eq. (1.4)]. This results in the so-called Streater model. However, the
integrated energy balance does not contain the thermal diffusivity [13, Eq. (2.1)].
Furthermore we expect that a large thermal diffusivity will result in a temperature
which is nearly constant in space. Taking this limit in the integrated energy balance,
one finds

E:ﬂ@(t)—}——l-/nqﬁdz in R*, (2.12)
2 2/

where E denotes the total energy of the system and « the specific heat of the particles.
If the cluster resembles an ideal gas we have k = 3k.

Regarding the initial data for the system (2.8)-(2.12) there are two ways to pro-
ceed. If the energy FE is given, it suffices to specify only the initial density

n(z,0) =no(z) >0 for z€Q. (2.13)
Equivalently we can specify both initial density and temperature
0(0) =6y > 0.

Now FE is fixed by (2.12) at t = 0.

If the temperature is constant in time as well we drop the energy balance (2.12)
and obtain the isothermal model. This model also arises in the context of polytropic
stars and the biological phenomena of chemotaxis. The corresponding mathematical
problem has received considerable attention in the past years because of its rich
structure. Blow-up in the form of singular solutions and gravitational collapse can
occur, as well as global existence. To our knowledge there is no full description of
these phenomena in R3. The reason is that in contrast to the two dimensional case,
global existence in R3 not only depends on the parameters of the problem, but also
on the shape of the initial density profile. A detailed discussion and references are
given in [21], [50], and [51]. The isothermal model, however, plays a crucial role in
the analysis presented in this paper.

Since Problem P has an additional equation, one expects that conservation of
energy will act as a selection principle to favor global existence. This has been
demonstrated in 78] for the two-dimensional case: the energy balance implies that
temperature increases whenever density concentrates near a point. This in turn has
a smoothing effect (through (2.8)) on the density profile, preventing blow-up from
happening. Theorem 2.1 tells us that this general observation is not true in R3.
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2.2.2 Non;dimensionalization

We put equations (2.8)-(2.12) in dimensionless form by setting
1 B p GM

) ) R
& = pr, A=4rm, ¢—47TGM(¢+ R) (2.14)
and
s kR ~ 4nGM
e = 47rGM@’ t_—ﬁR3 &

Introducing E = ﬁg (E + %GTIW) and & = %n, and dropping the tildes, results

in Problem P.

2.2.3 Lyapunov functional and stationary solutions

If a triple (n, ¢, ©) solves Problem P, then it is easy to check that

W (t) :/nlogndz—glog (E—/nq&dw) on R* (2.15)
Q Q
satisfies
d B |©(t)Vn + nVe|?
Zw() = / S dz, forall >0, (2.16)
Q

Hence W is a Lyapunov functional for Problem P, sometimes called the Boltzmann
entropy, see [69] and [26] for the original reference.

One consequence of (2.16) is the following. Let (ng, ¢s,©;) denote a stationary
solution of Problem P. Then (2.16) implies

O;Vng +nsVps =0 in Q.

-9
Introducing the scaled potential i := ﬁ e observe that ng = e—, where
0, [e¥dx
Q
satisfies
1 e ¥
Ay = ———-— i Q
(S) v 8, [, Vi 1n ’
v = 0 on o9.
The corresponding energy relation takes the form
1 |
E——=Kx— —/ Viy|*dz. 217

Problem S has only one singular radially symmetric solution [19], the Chandrasekhar
solution
11
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provided ©, = &. It is satisfies (2.17) for E = %. Observe that U € L1(Q2) \
L3/2(Q), with ¢ < 3. If this solution is attained by Problem P for ¢t 1 T* < oo, we
have a blow-up without concentration of mass at the origin.

For completeness we recall a result [10, Proposition 5.6.] for bounded radially
symmetric solutions of Problem S and (2.17).

Theorem 2.4 Let Q = B1(0). For any k > 0, there exists E,, € R such that:

(i) If E > E, there ezist bounded negative solutions;
(ii) If E < E, there are no nontrivial bounded negative solutions.
This observation is originally due to Antonov [1] as a result of a computational

approach. He also showed that stationary solutions are local maxima or saddle points
of an entropy and there is no global entropy maximum.

Theorem 2.4 is still open for general domains [10]. This is related to the non-trivial
nature of the set of singular solutions [19].

2.2.4 Radially symmetric solutions

Our main theorem about global existence is stated in terms of radially symmetric
solutions. Radial symmetry in Problem P not only reduces the spatial dimension,
it also allows us to combine equations (2.1) and (2.2) into a single equation for the
accumulated mass

Q(r,t) ::/ n(z,t)dz for r€(0,1] and teRt.
B, (0)
This is shown in [12]. Introducing ¢ := 2t and ¥ := 1276, we obtain in terms of
Q(y,t) := Q(r,t), with y = r3, the equation
Q: = y4/319(t)ny +QQ, for ye(0,1) and teRT. (2.19)
To transform the energy relation (2.3), we first note that (2.2) and (2.5) give

[ nedz = — [ |V¢|*dz. Further, radial symmetry and (2.2) imply 47r29,¢ = Q(r,1).
Finally we introduce € := 127F, to get in terms of Q(y,t)

1 Q2
5:m9(t)—/0 Wdy for teRT. (2.20)

The boundary conditions for Q are
Q(0,t) =0, Q(1,t)=1, for teR", (2.21)

and the initial condition becomes

Yy
Q) = Qolw) = 5 [ mo(wdy for 0<y<1, (222
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Equations (2.19)-(2.22) define Problem Q.

Note that 3
¥(t) = constant = 5 and  Q(y,t) = y/3

satisfy equation (2.19) and boundary conditions (2.21). The energy relation (2.20) is
satisfied for £ = 2(k — 2). This is the transformed Chandrasekhar solution (2.18).

2.3 Well-posedness for Problem P

Before we give a formal solution definition for Problem P we observe that ¢ is known
in terms of n by the boundary value problem (2.2) and (2.5). Therefore we denote a
solution by (n, ©) instead of the triple (n, ¢, ©).

We call (n, ©) a weak solution of Problem P if for some 7" > 0:

(i) n e L?(0,T; H()) and n, € L?(0,T; (H(Q))');
(i) ® € C([0,T]) and O(t) > 0 for t € [0,T7;

(iii) the triple (n, ¢, ©), where ¢ € C([0,T]; H}(2)) solves the boundary value prob-
lem (2.2) and (2.5), satisfies (2.1) in the weak sense and (2.3) for all ¢ € [0,77;

(iv) n(-,0) =ng >0 a.e in Q.
Remark 2.5 The regularity in (i) implies n € C([0,T]; L*(Q)) [80, p. 260]. There-

fore © and ¢ are continuous in time in the sense of (i) and (iii) respectively and the
initial value of n can be prescribed.

2.3.1 Local existence

Let Ry :=Q x (0,7 for arbitrarily chosen 7' > 0.
The first result asserts local existence for Problem P.
Theorem 2.6 Let E € R, k > 0, and let ng € L*(Q) be such that ©(0) = Oy > 0.

Then there exists a weak solution (n,©) of Problem P with T = T'(||nol|z2(q), 2, ©0) >
0. It satisfies n >0 in Ry and n € L{S.((0,T]; L®(R2)).

loc

Proof: The proof uses a Schauder fixed-point theorem [81, Corollary 9.7]. For any
fixed T' > 0, let

X ={veL?0,T;H () with v, € L*(0,T;(H'(Q)))}

and let F': X — C([0,T]) be defined by

Fu)(t) = =[llv@)3-1(y + E] for any ¢t € [0,T], (2.23)

x| = ~
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and for all v € X. This map is clearly well-defined: observe that v and v; belong
to L2(0,7; H1(Q2)). Note that F(n)(t) is the temperature ©(t) whenever n is the
solution of Problem P.

Next define N: X — X, with u = N(v) satisfying

ey TR } in Ry (2.24)
$p=0

(F(v)(t)Vu+uVe) -7 =0 } on 990 x[0,T], (2.25)
u(z,0) = no(x) for € ) (2.26)

For given v € X, this problem is essentially Problem P with prescribed tem-
perature. As we point out in Remark 2.13, we have local existence and uniqueness
provided F remains positively bounded from below. Under this condition the operator
N is well-defined.

To apply the fixed point theorem, we need to prove that there exists C C X, with
C convex, bounded and closed in (X, || - ||), such that:

(i) N(C) C &

(ii) N is weakly-weakly sequentially continuous in X.

For any v € C, the operator N has to be well defined. Thus in addition to (i) and (ii)
we need

(iii) there exists Fy = Fy(C) such that F(v)(t) > Fy > 0 for all t € [0,7] and for all
vecl.

We show below that
C= {’U e X | 1)(0) =Ny, “U”L2(0,T;L2(Q)) < RTl/Q, |lvv|IL2(O,T;L2(Q)) < R/,

and ||vt||L2(0 Ty (@)') <R"},
for sultably chosen constants R R’ R” and for T sufﬁc1ently small. In fact R =
2llnoll 2y, B = 2lnollz2(e)/€5/% and R = 2||no|| 120y 05~ + 4C||"0||Lz(g)/@1/27
where C' = C( ) is a positive constant. Clearly C is convex, bounded, and closed in

X. Note that C is not empty: the solution of the heat equation with initial value ng
and diffusion coefficient ©¢/4 satisfies ]]VnHLz(OTLz(Q)) < \/_||n0||L2(Q)/@0 and

||'flt||L2(0 Ty @)) S 2\/—I|7L0||L2(Q)@0 Hence n € C for T' > 0.

We first show (iii). Differentiating expression (2.23), applying Cauchy-Schwartz
and the continuous injections (H(R2))" < H~(Q) and L?(Q) — H~1(Q), yields the
estimate

K|F(v):(2)] 2[lv@)ll -1 lve@) | z-1(2)

Cllo@) Lz @ lve @)l (1)) a-e. in [0,T], (2.27)

IAIA
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where C' = C(Q2) > 0. Integration now gives
|F(v)(t) — F(no)| < gR”RTl/2 for all t e [0,7). (2.28)
K

Hence F(v)(t) > F(ng) — %R"RTI/2 =09 — £R"RT"? for 0 < t < T. If we now
choose Fy = ©g/2 and T* such that £R"R(T*)'/2 = ©,/2, we have established (iii)
forall0 <t < T <T*.

Next we verify (i) for a suitable T' < T*. Starting point is inequality (2.53) with
© = F(v)(t) and v € C. It follows that the solution of (2.24)-(2.26) satisfies

1d
_—||U||2L2(Q) + F(U)(t)||vu||2L?(Q) < lulls@)lIVellLs @ IVull L2 (0)-
2dt

Since (2.54) holds for any © > 0, we use it with © = Fj to find
1d

2 Ol + (F@)E) ~ ) IVul e

< (Ot + IOl (229)

for 0 <t < T and for some C = C(Q2) > 0.

Since v € C and consequently F(v)(t) > Fy, we obtain

1d
2dt
in [0,7]. This inequality implies some useful bounds. Disregarding the gradient in
the left-hand side of (2.30) gives a differential inequality in terms of [u(t)[|%. @- It

follows that there exists Ty = Tp(©o, €, ||10[|22()) such that u is well defined in Rr,
and satisfies

Fo c Fy
(lullF2y) + ?HVUH%Z(Q) o8 ﬁ(”u(t)ﬂiz(n))s o 7””@)”%2(9) (2.30)
0

sup |]u(t)||%z(m < (2|lnol|z2())?,  and thus (2.31a)
t€[0,To]

lull 2oz < 2lmollzae T’ (2:31D)
Integrating (2.30) and using (2.31) gives
IVull 2o mzz@) S CTo’ +linollza/(Fo)'/? =
= CT,” + V2 nollz2) /63> (2.32)
for a positive constant C' = C(0o, Q, ||no||L2(q)). Note that (2.31) and (2.32) imply
ue L®(0,To; L*(R)) and wu e L*(0,To; H'(Q)).

To show that u € C, for sufficiently small 7', it remains to prove the bound on wu;.
With & € L?(0,T; H'(R)), we have from (2.24)

T T T
/0 (g, €) dt = — 0/ Fl)(t) ! VuVe dadt + 0/ Q/ uVVE dudt, (2.33)



2.3. WELL-POSEDNESS FOR PROBLEM P 41

where (-, -) denotes the pairing between (H!(Q2))’, and H'(Q). To estimate the right
hand side we first note that F(v) € L>(0,7*). Indeed, from (2.28) we deduce

8,
Fo < F(v)(t) < ;RR”TI/2 +0, for 0<t<T<T" (2.34)

Next we use (2.72) and interpolation inequality (2.71) from the appendix. This
gives

IN

lull 3 ) IVl Lo ) VEl L2 ()

‘ Q/ uVoVEdx

IA

Cy*Crllull @ llull 22 (o) I VEll 2 (0)-

Finally we combine this expression with (2.31), (2.32), and (2.34), and obtain after
some manip ulation

T
| e < {C@2 +1) + VEImoll s O3 Hielago,z. e
+2v2C}*Crlnoll32/€6 €]l 2 0 1, )

for some C' = C(%,|no| z2(n), ©0). Taking now T7 < Tp < T™ sufficiently small we
obtain that u € C for 0 < T < T} and consequently N(C) C C.

Next we show (ii): i.e. we claim that vx € C, vy — v in X implies N(vg) — N(v)
in X. For any such sequence v, define uy := N(vg) € C. Using the weak compactness
of C we extract a subsequence uy € C such that ugp — u* in X. We show below that
u* = N(v), which proves the assertion. Since

v = v and up —u* in C,
we obtain by Aubin’s Lemma [59, pag. 58] for a subsequence, denoted again by &/,
vp —v and wy —u* in L*(0,T;L*(9Q)).

We use this in (2.33) for ug/, vk, and ¢r. Since Agyr = ug/, we have ¢ — ¢* in
L*(0,T; H*()) satisfying A¢* = u*. Moreover, as k' — oo,
ug, —u; in L*(0,T,(H(Q))),
Vér — V¢* in L*(0,T,H'(Q)),
Vup = Vu* in L?*(0,T;L*(Q)).
Now suppose F(vy) — F(v) in C([0,77]). Then letting £’ — oo in (2.33) we obtain a

solution u* of problem (2.24)-(2.26) for the temperature F'(v)(t). By uniqueness we
have u* = N(v).

It remains to show that F(vg) — F(v) in C([0,77]). In view of the continuous
injection L2(Q) — H~!(Q), we find from (2.23)

KIF (v)(t) = F(0)()] < C(Q) [low ()l z2(0) + [0l L2(e] llvw () — v(®) ]| 22(0)-
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This implies directly F(vx) — F(v) in L1([0,77]). Writing (2.27) for the difference
F(up) — F(v), using the continuous injection (H'(2))" — H~'(Q), and integrating
the result gives

T
K}/ |F('Ukl)t(t) —F( |dt /| 'Uk/(t —Ut( ))H~1|dt
0

+ ||U — Uk ||L2(0,T;L2(Q)) ||(Uk’)t“L2(0,T;(H1(Q))’)'

Since vy, — vy, in L2(0,T, H~1(Q)), we obtain F(vx) — F(v) in Wh!([0, T]). This
concludes the proof of (ii) and establishes local existence for Problem P.

The boundedness of n follows from [11, Theorem 2] and n > 0 a.e. in Rr is
essentially demonstrated in [14].

Remark 2.7 Let ng € LP(Q2) with p > 3 and let ©(0) = ©g > 0. Then Problem P

has a local solution satisfyingn € L®(0,T;LP(Q)) and n?/? € L?(0,T; H'(Q)). The
proof is almost identical to the proof of Theorem 2.6.

2.3.2 Uniqueness

Unlqueness 1s stated for an equivalent formulation of Problem P in which we replace ¢

by T = fo t)dt. This transformation only affects equation (2.1), which now becomes
ne = div{Vn + #w} in Ry (2.35)
where T' = fo t)dt. The problem stated in terms of z and 7 is denoted by Problem

P.. Without proof we remark that (n = n(z,t),© = O(t)) solves Problem P if and
only if (n = n(z,7),0 = ©(7)) solves Problem P,. This is due to the strict positivity
of © in the existence interval.

Theorem 2.8 Ifng € L*(Q) and ©g > 0, then Problem P, has at most one solution
(n, ©).

Proof: We use a uniqueness result of Biler & Nadzieja [14], who considered the
problem

= div(Vn +nX(n)) in  Rr, (2.36)
(vn +nX(n)) -7=0 on 09 x[0,T], (2.37)
n(-,0) =ng in Q, (2.38)

where X is a general non-local vector field operator in R®. For this problem uniqueness
in L?(Q) was proved in [14, Theorem 1 (i)] under the following condition: there exists
C > 0 such that

) [ X (u) — X(v)llLo() < Cllu — vz
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for all u,v € L*(Q).

Note that the constant C in (U) does not depend on the choice of u,v € L?(Q). In

our case X (n) = e—v(f—). Below, in Lemma 2.9, we show that again (U) holds but with

C depending on both norms ||u||z2() and |[v]|12(q). Now suppose that Problem P,
admits two solutions (n1,©1) and (ng, ©2) in some interval [0,7]. From the solution
definition we know that both ||ny(t)||.2() and ||n2(t)||L2(q) are uniformly bounded in
[0, 7). Therefore (U) is satisfied for the two solutions ny(t) and ns(t), with 0 < ¢ < T,
for an appropriately chosen constant C. As a consequence we can apply the result of
(14]. This proves the theorem.

Lemma 2.9 Suppose there ezist § > 0 and u,v € L*(Q) such that

min{@u ::E+/|V¢u]2dx, o, ::E+/IV¢U|2dx} >8>0,
Q Q

where

A¢y = u, Ad, =v n Q, (2.39)
Gu =y =0 on o9Q. (2.40)

bu Dy
“V(e—u - e—u)

where C = C(8, ||ull2 ), vl L2 (@))-

Then

< Cllu— vl 2@
Ls(Q)

Proof: Using
IV(éu — ¢0)llLs) < Crllu — v 20

Ou Do
Hv(e—u - @T)
1

we estimate

Pu Pu | Pu Py )
LG(Q) “ @u @v @v ev LG(Q)

Cr
< 8.0, IVoullo@[®u = 8ol + G- llu = vl
< O1 { lule) /(|v¢u|2— V6o[?) dz| + lu = vllL2e) -
0, SH
Q

Since

[ J U962 = 1962 da| < 19660+ 8021960 ~ S0l
Q

IA

C(llull 2@y + Il L2()) llu — vl 20

for some C > 0, we obtain the assertion. W
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Remark 2.10 Note that for ng € LP(Q2) with p > 2, we can apply the above theorem
and obtain uniqueness of solutions for such initial data. Thus the local solution given
in Remark 2.7 of Theorem 2.6 for ng € LP(Q) with p > 3 is unique.

Remark 2.11 A slight modification of the above argument directly gives uniqueness
for ng € LP(Q) with p > 3 and ©¢ > 0. Again following [14, Theorem 1 (ii)], we need
to show

(%) [ X (w) = X()z=(@) < Cllu—vllLe@) (P> 3).
With X(n) = %, inequality (U") results from inequality (2.72).

The next theorem extends the local existence result for ng € LP(2) with p > %
To do this we modify our definition of weak solution for 1 < p < 2. We replace
(i) by n € L®(0,T;LP(Q)) and n, € LP(0,T; (WP (Q))’) with L + L = 1. We
show that n € C([0,T]; LP(R2)), implying that ny can be prescribed. In fact as
n € L (0,T; LP(2)) and n € C([0,T], (W¥ (Q))'), (since n € LP(0,T; (WP (Q))')
and n, € LP(0,T; (W7 (Q))')), we use the injection LP(Q) — (W1#'(Q))’, and
follow the argument in [59, p. 23] to conclude.

Theorem 2.12 Let ng € LP(Q) with p > 3/2, and ©(0) = ©¢ > 0. Then there exists
T = T(, ||nollLr (), ©0) > 0, and a weak solution (n,O) of Problem P. It satisfies
nP/2 € L2(0,T; HY(Q)) and furthermore n € L{5,(0,T]; L®(%)).

Proof: Due to Remarks 2.7 and 2.10, we only need to demonstrate local existence
for ng € LP(Q) with p € (3/2,3). We follow the proof of [14, Theorem 1 (iii)] and
approximate ng € LP(Q) by functions in LP+(Q) with p, > 3. Thus let {noc} C LP*(£2)
satisfy ||noc — nollLr@) — 0 as € — 0.

For each € > 0 we consider Problem P with initial data (ng, ©¢). By Remark
2.10 there exists a solution (n., ©.), with ©, > ©¢/2, in some interval [0, T,]. Next
we use the estimate [14, Eq. (10)]

: t
“nE(t)”sz(Q)‘*’/|v]ne|p/2|2dT§exp (C/H%
g 0

€

=
=

dr> Inocllfr(y (2:41)
La(Q)

for almost every t € [0,7¢]. Here p € (3/2,3),1/g=1/p—1/3 and C = C(€,p). Note
that ¢ > 3. Further, using |Ve||rs0) < C||nellzr (o) and the uniform lower bound
on ©., we obtain

t
2 29
||ne(t)|}’£,,(m < Cexp (9_0 / |]ne(7')||z;?ﬂ) dT) for almost every t € [0,T],
0

where C = C(€) > 0 and 0 < ¢ < € Since C' does not depends on € we have that
T. =T and

[ne@®)ll ey < C and O(t) > O/2 for almost every ¢ € [0,T] (2.42)
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and for all 0 < e < €. Using this and (2.41), we deduce

[ne(®)P/?| i) < C and ©(t) > ©/2 for almost every te€ [0,7]. (2.43)
and for all 0 < e <e.

Next we separate the demonstration into two cases: p < 2 and p > 2.

We begin with p < 2. Under this condition, we have

IVallzo@) < COPIVRP2 2y Il G B)? for nP/2 € HY(Q).
Combining this with (2.42) and (2.43), since p < 2, we obtain
IVnelrorrro)y <C forall 0<e<e (2.44)

Consequently, we can check that ||n.,|| < C for all 0 < € < & Now

e (o1,(wh* ())
using a compactness theorem [59, p. 141], with LP() < (W' (Q))’, we find for a
subsequence € — 0,

ne—n in  LP(0,T;LP(Q)). (2.45)

Now using standard arguments and above estimates, we get as € — 0

ne, =~mn; in  LP(0,T, (WY (Q))"), (2.46)
V¢ —» V¢ in  LP(0,T,W'P(Q)), (2.47)
Vne—Vn in  LP(0,T;LP()). (2.48)
To conclude, it suffices to prove ©, — © in C([0, 7). This follows from showing that
s P
H:/ O, — O:]dt < 2/ ‘ /nfd)et —ngedr|dt -0 as e€—0. (2.49)
0 0 Q

We obtain this using [81, Proposition 23.9 (d)], combining (i) strong convergence of

ne — nin LP (0,T; LP(Q)) with (ii) weak convergence of ¢., — ¢; in L?(0,T; ¥ ().

In fact (i) is consequence of (2.42) and (2.45); and (ii) yields using (2.46) and the

estimate [|@¢, [l < Cllge, [lwrr) < Cline,ll (w1 (q))» Where we have used p > 3.
Now we take the limit € — 0 to conclude that n satisfies Problem P.

For p > 2, we use that ng. € L?(2) and in particular (2.42) implies
[ne)llzz) < C and ©O(t) > ©g/2 forall tel0,T].

We follow the proof of Theorem 2.6, to find ||n, ||L2(0 T.(H (@)’ < C. With this we

may apply again the compactness theorem [59, p. 141}, now with LP(Q) — (H*(Q))’,
since p > 2, and obtain n, — n in L?(0,T,LP()). Finally, we show (2.49) using
p =p' = 2 and obtain ©, — © in C([0,T]), which concludes the proof of the theorem.
|
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2.3.3 Radially symmetric solutions

In Section 2.2.4 we introduced Problem Q describing radially symmetric solutions of
Problem P in the unit ball. In this paper we do not prove existence for Problem
Q. Instead we shall assume that if Q@ = B;(0) and if ng is radially symmetric, then
the corresponding weak solution is radially symmetric. By standard regularity theory
weak solutions of Problem P satisfy equations (2.1)-(2.3) and boundary conditions
(2.4)-(2.5) in a classical sense. With this in mind we introduce for Problem Q the
following solution definition.

Let Dr = (0,1) x (0,77]. A pair (Q,9) solves Problem Q, if for some T" > 0:

(i) Q € C>Y(Dr)NC(Dr), and ¥ € C([0,T));
(ii) (Q,9) satisfies equations (2.19)-(2.22);
(iii) Qy >0 in Dy and ¥ > 0 in [0, T7.

Clearly radial solutions of Problem P with ng € LP(B;(0)), p > %, satisfy this defini-

tion. This follows directly from the identity

4T
n

Q) =~ (y'/3,t) for (y,t) € Dr. (2.50)

2.4 Prescribed temperature problem

In this section we study Problem P with prescribed temperature O(t) satisfying

©:[0,7] - R such that © € C([0,T]) and ©O(t) >d >0 for te[0,7].
(2.51)
Thus we drop the energy relation (2.3) and assume that ¢ in (2.1) and (2.4) is given
and satisfies (2.51). We denote this modified problem by P*. Clearly, if Problem P*
has a radially symmetric solution, then the corresponding formulation in terms of the
accumulated mass @, which we denote by Q*, has a classical solution according to
the definition given in Section 2.3.3.

We first recall some recent results of Biler & Nadzieja [16, 14], related to local
existence for Problem P* and global existence for Problem Q*.

Remark 2.13

(i) Let ng € L3() and let © satisfy (2.51). Then there exists a time T =
T (2, ||nollL2(0),0) > O so that Problem P* has a unique weak solution in [0,T]
which satisfies n € L2, ((0,T],L>(R)). Proof: see [14, Theorem 1 (i)].

loc

(i) Let ng € LP(Q) with p > 2 and let © satisfy (2.51). Then there exist T =
T(8, |[nol|Lr (), 9) > 0 so that Problem P* has a weak solution in [0,T7] satisfy-
ing n € L*®(0,T,LP(Q)) and n?/? € L*(0,T, H'(2)). For p > 3 the solution is
unique. Proof: see [14, Theorem 1 (ii) and (iii)].
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(iii) If for some B > 0, Qo(y) < yyml% for 0 <y <1 and 9(t) = constant >
%iﬂ-—;ff—m then Problem Q* has a global classical solution satisfying Q(y,t) <
y% for (y,t) € Doo. Proof: see Appendiz.

In the remainder of this section we present some new results related to Problem P*
with constant temperature © > 0. We first extend a global existence result of [15].

Theorem 2.14 For a given domain €, there exist positive constants, oy, s, A, B,
and C with ag > ay so that if the constant temperature © and the initial condition

ng satisfy
B
©>a; and |nollfaq <A+ ot
or
©>ay and |nol7zq) < C(O° - 0),

then Problem P* has a global (weak) solution for which the L*(Q) norm is uniformly

bounded in time.

Proof: Integrating (2.1) we obtain the expression
§;i_t||n||L2(Q) + @HVnHLz(Q) == nVnV¢dx (252)
Q
As in the proof of [15, Theorem 2 (iii)] we estimate

1d
53{”"”%2(9) + 0| Vnlzq) < Inlls@ IVl Ls@ Va2 @)- (2.53)

The aim is to obtain a differential inequality for ||n(t)||%2(m. From the appendix we
first use (2.71) and then (2.72) with 7 = 6 and p = 2. This gives

Cy

(€]
)l e @) VRl Lo (@) [Vl L2 (o) < 5”””?{1(9) + 53'(”””%2(9))3' (2.54)
Further, we use (2.70) with ¢ = 2 and p = 1 to obtain
2 © . 12 2
20||n[|z2q) < 5”””1{1(9) + C20||n||11 (- (2.55)

The combination (2.53)-(2.55) eliminates the gradient term. Since | L1y = 1, we
are left with an inequality of the form

d C
pri < po(w) := (—9%11}3 —Ow+C20 for t>0 (2.56)
with w(t) := ||n(t)|%. (a)- Here C1 and C are positive constants only depending on

Q. The assertions of the theorem now follow from particular properties of (2.56).
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First observe that if © > a; := %(CQC}/2)1/2, then pe(w) = 0 has two positive
real roots w, < w* and pe(w) < 0 for w, < w < w*. If © = o, these roots coincide.
A simple calculation shows that

cicC
741020'24-—-2@4—1

satisfies 0 < wy < w, for all © > a;. Since pe(w) > 0 for 0 < w < w,, we deduce that
w(t), with w(0) < wy, satisfies w(t) < w, for all t > 0. This proves the first assertion.

Next consider
w =20 - 0).

Then pe(w®) < 0 provided

1/2
B G 1 ” 31c0
O >ay = —4—‘ —5 -I———4—.

Clearly ap > ay, since pe(w) > 0 for © < a; and for all w > 0. As before we have
that w(t), with w(0) < w°, satisfies w(t) < w® < w* for all t > 0. This proves the
second assertion. H

In a similar fashion global existence results are obtained in L?(2) for p > 3/2.
Instead of (2.56) one now finds

d Cl ﬁ
prid < oY ~ Ow+ C20 for t>0 (2.57)

with w(t) := [n(t)[|]s - Here

%g%é for 3/2<p<3

”;%2 for p>3.

Inequality (2.57) implies the following result.

Theorem 2.15 For a given domain ), there exist positive constants, (1, 2,4, B,
and C with By > By so that if the constant temperature © and the initial condition ng
satisfy

B
e8+1

e Z ,31 and ||n0||1£p(ﬂ) S A +
or

= ’ B8+1
©>0; and |nolf,q <CO—0), with v= F-1

then Problem P* has a global (weak) solution for which the LP(§) norm is uniformly
bounded in time.
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2.5 Global existence for Problem Q

In this section we study radially symmetric solutions of Problem P. We will use the
classical formulation in terms of Problem Q. Before we prove the global existence
results, we first demonstrate the blow-up result Theorem 2.1.

Theorem 2.16 Let k > 6 and £ < 3. Then T* < oo.

Proof: Suppose Problem Q has a global solution @ = Q(y,t) and ¥ = 9(t) € (0, c0)
for all t > 0. Setting

1
we(t) := /Q(y,t)y_l/?’ dy forall t>0,
€
we find, after differentiating and using equation (2.19),

dw,(t)
dt

= ﬁ(t)Qy(lvt) - Eﬁ(t)Qy(Ev t) - ﬁ(t) + 19(t)Q(67t)

1Q(,t)? 1 & E 1 j o —4/3
- = -+ = — =+ = for all 0.
5 /3 +2+619(t) 6+6 Q*(y,t)y dy forall t>
0
(2.58)
Since ¥(t) < oo, we obtain from (2.20)
Qy,t)%/y*3 e L}(0,1) for all ¢ >0,

which implies that we can choose a sequence €, | 0 along which lim %‘—Sﬁ =0 for
€nl0  €n
all t > 0. Using this and Qy(1,t) > 0 in (2.58), we find in the limit

dwo(t)
dt

1 K &
> - - S9(t) — = .
2 3 I(t) + 619(t) 5 forall ¢>0

The parameter choice implies that d"’st(t) > > 0 for all t > 0. This contradicts
wo < 2 (implied by Q <1in Dy;). M

Next we turn to global existence. The proof uses a comparison principle for
the Q-equation (2.19) with respect to given ordered temperatures, and the fact that
temperature is positively bounded from below. The results are stated in terms of an
equivalent formulation, as in (2.35), in which we replace t by 7: i.e.

Qr = y4/3ny+$QQy in Dr (2.59)
Q(,7) = 0, Q1,7 =1 for T€10,7), (2.60)

Q(Y,0) = Qo(y) for yel0,1], (2.61)
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and the energy relation
1
Q2
g = nﬁ(T)——/ﬁdy for 7€[0,7). (2.62)
)
0

We first consider (2.59)-(2.61) for given ordered temperatures and ordered initial data.

Proposition 2.17 Let i = 1,2. Suppose Q; solves (2.59)-(2.61) in Dr, subject to
Qo = Qui, and given ¥ = V;, satisfying (2.51) in [0, T;]. Let T = min{Ty, T>}. If

’191 S 192 mn [O,T], and QOI > Q02 mn (0,1)
and if there exists K > 0 such that either
0<Qi, <K or 0<Q, <K in Dr,

then
Q1>Q2 in Dr.

Proof: Suppose 0 < @2, < K. Since

1 1 1
= y¥/3 b B + ( - ) in Dr.
Q2, =y¥7°Qa,, 191(7_)Q2sz 520 000 Q2Q2, T
It follows from ¥; < 95 and @2, > 0 that
1 .
Q2. <y*3Qs,, + ——Q2Q2, in Dr.
J1(7)

This inequality and the boundedness of Q2, allows us to use [52, Theorem 3.2|, which
show that Q5 is a subsolution for the Q-equation with ;. W

Next we use the Boltzmann entropy (2.15) in terms of Q = Q(y,7) to establish a
positive lower bound on 9 (see [69] for a similar estimate).
Proposition 2.18 Let (Q,9) be a solution of Problem (2.59)-(2.62). Suppose ¥(0) =
1
%(S—G—Of%g‘l—%—)dy) > 0. Then

1
9(r) > AI(0) for T>0, with \=exp (—% /Qoy log Qo, dy). (2.63)
0

Proof: Rewriting (2.15) results in

1

1
2
W (r) ::/leongdy——glog<E+/;?T/gdy) for >0
0 0
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and differentiation gives, see also (2.16),

1
dW(7) Q7
N T —dy<0 for 7>0.
dr ) ¥4,

Hence W () is decreasing in 7. As a consequence

IA

1 1
K 2
W(r) = /leongdy—Elog(SJr/mdy)
0 0

1 1

2
< W(O):/Qoylongydy—glog(5+/%dy) for 7> 0.
0 0

Here we use Jensen’s inequality to estimate

1 1 1
Qylog Qydy > ( Qy dy) log ( Qy dy) =0,
/ [l

from which lower bound (2.63) directly follows. M

Note that whenever ¥ is bounded away from zero, blow-up in Problem (2.59)-
(2.62) can only occur at the boundary y = 0. This is a direct consequence of classical
regularity theory, which implies that @ is smooth away from y = 0. Blow-up manifests
itself through singular behaviour of @, as (y,7) approaches the point (0,7*). This
corresponds to unbounded density at the origin of the radially symmetric solution of
Problem P. Below we use the comparison argument (Proposition 2.17) to control the
behaviour of @, (0, 7). We show that this implies a uniform bound on [|Qy(7)|z2(0,1)
and thus on ||[n(7)||L2(B, (o)) for all 0 < 7 < T™. Global existence for Q@ = Q(y, T) as
a consequence of Theorem 2.6. The results translate in a straightforward manner to
the assertions of Theorem 2.2.

Theorem 2.19 Let Qq: [0,1] — [0, 1] be nondecreasing, Qo, € L>(0,1) and Qo(0) =
0, Q(1) = 1. Let ¥(0) = Yo > 0. If either

(i) Yo is sufficiently large;

or

(ii) there exists B > 0 such that

(1+ B)(1+3B)
(1+5B)

y(1 + B)

3
35> = w2

) and QO (y) <

1
with A = exp ( — 2 [Qo, log Qoydy).
0
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Then Problem (2.59)-(2.62) has a global solution (Q,V) in the sense of Section 2.3.3.
Moreover there exist constants L > 0 and 9* > 0 such that

1) <" and ||Qy(T)llz2(0,1) < 1Qo, lIz2(0,1) exp(Lt) forall T>0.

If (ii) is satisfied we have in addition

1+ B _
Qy,7) < ?;g/—3+—1_; for all (y,7) € Doo.

Proof: First we consider the auxiliary problem

Q_T = y4/3ny+%QQy in D,
(AP) Q(,7) = 0, Q(l,7)=1 for 7>0, (2.64)
Q(y,0) = Qoly) for  yel0,1],

where A > 0 and where Qq satisfies the conditions of the theorem.

By Theorem 2.14 and Remark 2.13 (iii), we have: if either

(Hi) A> a2 and [Qo, |22, < C(42 - 4)
or

(Hy) A=3(1+ B) and Qo(y) < %}—3% for 0 <y <1, and for some B > 0,

then Problem AP has a global solution Q: Do, +— [0,1]. Since Qo, € L>(0,1), the
regularity theory of [12, Theorem 2] gives

1Qyll=(0,1) € Lige([0,00))- (2.65)

The conditions on Qg and ¥ guarantee that Problem (2.59)-(2.62) has a classical
solution in Dy for some 7. Now suppose

T* = sup{T > 0 | solution of Problem (2.59)-(2.62) exists in Dr} < oco. (2.66)

Fix A > 0 such that (H;) is satisfied, and choose 9o > ; By (2.63), we have
9(r)>A forall 7€[0,T") (2.67)
and by Proposition 2.17 and (2.65), we find
Qy,7) <Q(y,7) < Ky for (y,7) €[0,1] x [0,T7) (2.68)

for some K > 0. Below we show that this implies a uniform bound on [|Qy(-)|lz2(e)
in [0, 7*). Multiplying (2.59) by Q,/y*/® gives
1

1
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Using (2.67) and (2.68), the second term on the right can be estimated by

1 1,
—4/_3QTQQy S WQT 4/3Q Qy

Ty 4192( )
1 o 2.2
Using this in (2.69) and integrating the results gives

d K? .
E”Qy(ﬂ”%i’(o,n < m”@y(ﬂ”%z(o,n forall 0<7<T"

Hence

M 2
1Qy()llz20,1) < 1R, llz2(0,1) exp ((EZ) T*>

QW 1/ 3.4
A< (E+/ 4/3 y)<-(B+zK

for all 0 < 7 < T*. This allows us to use Theorem 2.6 at 7%, which contradicts
(2.66). The uniform upper bound in the temperature follows from the observation

and

Yy
Qly,7) = / Gy, ™) dy < v21Gy (M)l L2 0.0,
0

implying

Q*(y 3.5
/ 7 ay < 210D a0,

and thus last expression is uniformly bounded if A satisfies (H;) (Theorem 2.14).

If (ii) holds, global existence follows in a identical way. Again (2.67) and (2.68)
hold, yielding the same bounds on ||Qy(7)||z2(0,1) and ¥(7). The pointwise bound
on Q in Dy, results from the fact that y(1 + B)/(y*® + B) is a supersolution for
Problem AP if A and Qo satisfy (H). Take for instance K = Z%1 in (2.68). The
corresponding temperature bound is a direct consequence. M

As a special case of Theorem 2.19 (ii) we have

Corollary 2.20 If Qo(y) =y, and 190 > , then Problem (2.59)-(2.62) has a global
(Q,V) solution and Yo < 9(1) < 9o + 22 for all 7> 0.

Proof: Since A = 1, we can select a sufficiently small B > 0 such that Theorem 2.19
(ii) holds. The pointwise bound on Q implies Q(y,7) < y'/3 for all (y,7) € Deo. Since

1 N2 _ N2
o [ E0N-G0),,
0

yi/3

the upper bound is immediate. B
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2.6 Appendix

2.6.1 Inequalities

For completeness we give in this appendix some inequalities which are used at various
places in the paper.

Let © be a bounded open subset of RY with a C**(a > 0) boundary.
First interpolation inequality. Let N > 2, r < ]3—1_\’2 and let p < g < r satisfy

% =2+ M for some a € (0,1). Then

Inll o) < C3~lInllinloyInlgr (@ forall ne HY(Q)NLA(Q). (2.70)
Proof: Use the Sobolev inequality ||n|/z-@) < Cs ||nl|H1(Q for N >2and r < 25,
and the interpolation inequality |1 fe(q) < ||n||L,,(Q)||n| 2

Second interpolation inequality. Let N = 3. Then
1/2 2
Inllza) < CY2Inll g lInllfag, forall ne H'(Q). (2.71)

Proof: Takep=2,g=3,r = % =6and a=1/2in (2.70). W

Poisson’s equation and LP-norms. Let n € LP(Q), p > %, and let ¢ satisfy
(2.2) and (2.5). Then

IVéllr@) < CrlinllLr) for 1<r< 7\';_% and & <p<N,
(2.72)
IVollL=@) < CrlnllLe@) for p>N.

where the constant C; depends on €2 and p.

Proof: Since ¢ satisfies (2.2) with (2.5), we use the representation by the Green’s
function to obtain ||¢|rr(a) < |A@|Lr() for E > 2 and p > N/2. If p < N we
combine this with the Sobolev inequality ||V 1) < C(|1A¢|Lr) + |#]lLr () for
r < pN/(N — p) to obtain the desired inequality. If p > N we proceed similarly. B

2.6.2 A result on global existence for constant temperature

Theorem 2.21 If there exists B > 0 such that Qo(y) < y—i2s 2/3+B for0 <y <1 and

v > %OL(?J)};;—_;E’ then Problem Q* with 9(t) = ¥* has a global classical solution

satisfying Q(y,t) < yy—«}% for (y,t) € Do

Proof. We follow the proof of [16, Theorem 1 (iii)], for a similar result. We can check

that the function
Ay
q(y,t) = 7B
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satisfies
. 20 A 109*
@~y ey tagy = (-5 + WP+ (-—— +A)B.
Hence q is a super-solution provided that
20 A 109*
(—T =+ §)y2/3 + (_T +A)B <0.

This inequality holds if either ¥* > % or 9% > %}—j_% depending on the sign in
front of the term y2/3. Clearly in the second case we have a sharper estimate. Finally,

since A > 1+ B we choose A = 1+ B to conclude the result. W
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Chapter 3

Convergence to stationary
states

3.1 Introduction

In this chapter we study the convergence of solutions to a stationary state of Problem
P from Chapter 2. We recall that this problem consists of the parabolic-elliptic system

ny = div{©(t)Vn + nVe} in QxR (3.1a)
Ap=n in QxR (3.1b)

combined with the energy relation

E = kO(t) +/ ngdr  in RT, (3.1¢)

Q
where E € R and x > 0 are given parameters and where 2 C R3 is a bounded open
set. At the boundary 99 € C** (a > 0) we prescribe

(Ot)Vn+nVep)- =0 on 02 xR, (3.1d)
$=0 in 0QxRT, (3.1e)

where 7 denotes the exterior normal vector on 9. At ¢t = 0 we have the initial
condition
n(z,0) = no(z) in Q. (3.1f)

This chapter will appear as a paper in collaboration with T. Nadzieja (Zielona Gora, Poland).

57
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We assume for ng
/nod:c: 1, and ne>0 in €, (3.1g)
Q

while sup |z| = 1.
€N
Throughout this chapter we shall refer to this set of equations as Problem P for
the unknowns n, ¢ and ©. Note that ¢ can be obtained from n by the boundary value
problem (3.1b) and (3.1f). Therefore we denote by (n,©) the solution of Problem P.

The problem of existence and uniqueness was studied in Chapter 2. For ng €
L?(©2) and ©(0) > 0, local existence and uniqueness of solutions was proved. Moreover
assuming € is a ball and ny is radially symmetric, an a-priori estimate of the L?(£2)
norm of solutions was obtained. This estimate guarantees global existence.

The main result of this chapter is to show convergence of global radially symmetric
solutions towards stationary solutions. This requires a uniform bound on ||n| 1)
for some 2 < p < 00, a positive lower bound on ©(t), and uniqueness of the stationary
problem. The precise statement is given in Theorem 3.11.

A delicate issue is to obtain conditions on the data of Problem P, i.e. ng, ©(0),
and &, which ensure the uniform LP bound on n(t). The uniform lower bound on
O(t) was already constructed in the global existence proof of Chapter 2. There it was
shown for radially symmetric solutions:

Proposition 3.1 Let ng € L>(2). Let (n,©) be a solution of Problem P. Suppose
0(0) = %(E + [ nodo dy) > 0. Then
Q

O(t) > A0(0) for >0, (3.2)

with

2 1
A =exp — /no log ng dz — log <m) . (3.3)
Q

The function ¢o is determined by the solution of the boundary value problem (3.1b)
and (3.1e) replacing n by ng.

Remark 3.2 Note that, the integral [ nglognodz is finite whenever ng € L*°(Q2).
Q

Inequality (3.2) for general domains was obtained in [18].

Concerning the uniqueness of stationary solutions, we shall show that it is suffi-
cient to assume a large energy E, which is accomplish by taking large ©(0), with ng
and & fixed.

To highlight some of the convergence results we give here explicit conditions on
the data of Problem P that leads to uniform L*°($2) and L?(Q2) bounds on n(t). Here,
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as in the case of global existence (Theorem 2.2), we consider 2 = B;(0) the unitary
ball in R® and ng radially symmetric. Thus again we restrict ourselves to the study
of radially symmetric solutions and to emphasize that we shall sometimes denote by
n(r,t) = n(z,t) with |z| =r.

The next result shows convergence to a stationary solution by providing a class of
initial data such that the corresponding solution n(t) is uniformly bounded in L*°(2).

Theorem 3.3 Let Q = B1(0) and let A > 0 given by (3.3). Assume that Problem P
has a radially symmetric solution (n,®). Suppose there exists B > 0 such that

(i) the inaitz'al data g satisfies r3no(r) < 2 |nollL1(s,(0)) and |nollLi(s, o)) < (1+
B) g forr €[0,1];

(ii) a lower bound on initial temperature

1 (1+B)(1+3B)
00 z & xatsE)

(iii) E € R and k > 0 are such that there exists a unique stationary solution (ng, ©;)
of Problem P.

Then Problem P has a global solution (n(t),O(t)), with n(t) uniformly bounded in
L*°(Q). This solution converges to the stationary solution (ns,©s).

Remark 3.4 Note that ng = constant = f’; satisfies (i) for any B > 0. Since in
this case condition (ii) holds for any B > 0 and X = 1, (i) becomes ©g > g~ with
v = 0.9519.... Here the value of v is computed as in Theorem 2.2.

Remark 3.5 The first inequality in (i) is new with respect to the assumptions in
Theorem 2.2. This extra condition implies the uniform L>°(Q) bound in time for the
solution. Combining the two conditions in (i), we have

<31—!—B

no(r) = Em fOT re (0,1)

We will show that this estimate implies the uniform bound in time:

3 1+B
L —— 3
n(r,t) < 2B for re€(0,1),t>0

The next result concerns with the L2(Q) bound.

Theorem 3.6 Let Q = B;1(0) and let A > 0 given by (3.3). Assume that Problem
P has a radially symmetric solution (n,©). Suppose there exists a and C positive
constants such that, if
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(i) no € L*(82) and ©¢ > 0 are such that

A8 > a and ||noll7ziq) < C((A60)* — ABo),

(ii) F € R and k > 0 are such that there exists only one stationary solution (ng, ©)
of Problem P.

Then Problem P has a global solution (n(t),O(t)), with n(t) uniformly bounded in
L?(Q). This solution converges to the stationary solution (ns,©s).

Remark 3.7 Note that condition
(1) ng € L®(Q) and large Oy,

implies condition (i). In fact for a given ng we can choose ©¢ sufficiently large so
that condition (i) is satisfied.

Remark 3.8 The L2-bound in ng implies a uniform bound for n, given by

||n(t)”%2(n) 5 C(()\@o)2 — A6y).

The remainder of this chapter is organized as follows. In Section 3.2, we carried
out the transformation from Section 2.2.4 for radially symmetric solutions. In terms
of this transformed variables we discuss the existence and uniqueness of stationary
solutions. Next we construct the uniform L (€2) bound for the particular initial data
mentioned in Theorem 3.3 In Section 3.3, the main convergence theorem is proven and
as a first consequence we completes the proof of Theorem 3.3. In Section 3.4, without
assuming radial symmetry, we construct an uniform L?(Q2) bound of a solution of
Problem P and as a consequence we prove Theorem 3.6.

3.2 Radially symmetric solutions

Following transformation from Section 2.2.4 for radially symmetric solutions we obtain
for
Q(r,t) ::/ n(z,t)dz for r€(0,1] and te€R".
B,(0)

the problem (with redefined temperature ¥ and the energy &)

Q: =y*39(t)Qyy + QQ, for ye(0,1) and teRY, (3.4a)
1 Q2
E =ri(t) — Wdy for teRT, (3.4b)

Q(0,t) =0, Q(1,t)=1, for teRT, (3.4c)
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and

_47r

Yy
Q.0 = Qo) =5 [ oy for 0<y< (3.44)

Equations (3.4) define Problem Q for the unknowns (Q,¥). We call the pair (Q,9) a
solution for Problem Q if satisfies equations (3.4) in the classical sense. Since n > 0,
it is clear we only look for solutions satisfying @, > 0.

3.2.1 Stationary solutions

Existence of stationary solutions of Problem Q is well known [1, 25, 12, 10] see The-
orem 2.4. We present here a result which asserts uniqueness of stationary solutions
for appropriated choices of E and k.

Theorem 3.9 For any x > 0, there exists an energy E(k), such that for € > E(k)
there exists a unique stationary solution (Qs,3s) for Problem Q.

Proof. We introduce the new function Q := Q, /9, which satisfies the equation
y3Qyy + QQ, =0 for ye (0,1) (3.5)

and the boundary condition

Q(0) =0, Q(1) = 1/9s. (3.6)
Next we introduce the variables [12]

v=9y%Q,, w=3y 30, y=-e.
A simple computation shows that v, w satisfy the system of equations

vV=02-wwy, w=v-w, (3.7)
where ’ denotes 4. The boundary conditions translate into w(—oc) = 0, w(0) = %.
Note that system (3.7) has solutions for all s € R. In particular there exists a unique
trajectory (v(s),w(s)) connecting the critical point (v(—00),w(—o0)) = (0,0) and
(v(00),w(00)) = (2,2). This trajectory is shown in Figure 3.1. The corresponding
solution w(s) is nonnegative and bounded. Using this boundedness into the energy

relation
0

E(Ws) = kI, — 92 / w?(s)e® ds.

shows that a large energy implies a large temperature and hence a small value of w(0).
This ensures the uniqueness. W
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35

Figure 3.1: The solution (v(s),w(s)) of system (3.7) with limits (0,0) as s — —o0
and (2,2) as s — oo.

3.2.2 An uniform L*°(Q2) bound

In the next result we provide a class of initial data for Problem Q which give a uniform
bound in time for @, .

Lemma 3.10 If (Qo)y < Qo/y for y € (0,1] then the solution (Q,?) of Problem Q
satisfies

Qy <Q/y in (0,1] x (0,00). (3.8)

Proof. Let T > 0 be any finite time. We switch to the average density b(r,t) =
Q(y,t)/y with y = r3. Using (3.4a) it follows that

¥ 4
b= §b,~,« + 9—be - %rbbr +b% in Dp:=(0,1) x (0,T). (3.9)

Following the ideas of [39], we define the variable w = w(r,t) := r*b,, which satisfies

9 4 1 1 .
We — 5 (wrr a ;wr> - g'f‘b’wr = (b + §Tbr) w 1 DT'

Note that w = 3yQy, — 3Q.
Assume for the moment the stronger assumption on the initial data:
(bo)r(r) <0 for re€(0,1) and (bo)rr(0) <O. (3.10)

This implies w(0,7) = r%b.(0,7) < 0. Now if by = Qo/y satisfies (3.10) then the
function b = 1 is a sub-solution of (3.9). Applying Hopf’s Lemma to (3.9), we find
that w(1,t) = b.(t,1) < 0 for all ¢ > 0. By global existence and regularity we have
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=b+ % < C(T) on Dr for each T' < co. Since T > 0 was arbitrarily chosen, an
application of the maximum principle gives

w=3yQy —3Q <0 in Dy
To conclude, we note that if by is non-increasing, i.e. (Qo)y < Qo/y, then by the

strong maximum principle, condition (3.10) is satisfied by a solution b(r,%) in (0,1)
for each £ > 0. This proves the result. W

3.3 The convergence result and proof of Theorem 3.3
Now we state our main result.

Theorem 3.11 Suppose the constants £ € R and k > 0 are such that the stationary
solution (Qs,Vs) of Problem Q is unique. Suppose that the initial data (Qo, Yo) are
chosen such that the global solution (Q,?) of Problem Q satisfies ||Qy(t)| Lr0,1) < M
for somep > 2 and 9(t) > ¢ > 0 for allt > 0. Then (Q(t),V(t)) — (Qs,Vs) ast — oo,
uniformly on [0, 1].

Proof. Denote by (Qs,9s), the unique stationary solution of Problem Q. Con-
sider the functional

1
W(t) : /{Qy log(=£ —1) -l—Qs} dy — log(ﬁ%).
0

Below we show that W is a Lyapunov functional. Let

1
Wie) = [ @0z, + 1y - .

Integrating by parts, we obtain

! e ny = (ny --)
wW'(t) / dy / Qi 0, +5Qy y  (3.11)
ci,tﬁy_4/3 dy < 0. (3.12)

It follows from the properties of the solution that W is bounded from below. Hence
there exists a sequence {t,} such that W’(t,) — 0 as n — oo. This implies that for
every 0 <y <1,

Y

Ay, tn) ;:/ (s,tn)d /y{ 39(£) Qyy (5, tn) + %(QQ)y(s,tn)} s
0

0
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tends to 0 as t,, — oco. Integrating by parts, we get

y
4 4 _z2 1
A(y tn) = (tn) {y“/‘?’Qy(y,tn) - 3vQM, tn) + 5/8 gQ(s,t‘n>d8] +5Q%(; tn)-
0
The uniform bound in time for ||Qy(t)| and the lower bound on ¥(t) imply that the
family Q(-,t») is compact in C°-topology and ¥(t,,) is bounded. Therefore Q(,tn) —
Q(-) uniformly on [0,1] and ¥(t,) converges to ¥ > 0. Moreover

Because A(y,t,) — 0 we conclude that Qy (-, tn) converges pointwise to Qy on (0,1],
and @ satisfies
y

~ 4 ~ 4 2 = 1. =
¥5Q0) - 390w + 5 [ 5710 ds| + 3@ w =0
0
Differentiating above formula with respect to y we see that y*/39Q,, + QQ, = 0,
therefore Q = Qs, the unique stationary solution of Problem Q.

To conclude the theorem, let {s,,} denote an arbitrary sequence satisfying s, — oo
as n — 0o. Because W (t) is bounded there exists a sequence {t,, } such that |t,—s,| | 0
and W'(t,) — 0. Clearly Q(t,) — Qs as n — oo. Now let Q(s,) — Q1 as n — oo.
We show that @1 = Q,. From (3.11) we obtain

W (tn) — W(spn)| = //(Qt ‘4/3dy>dt——>0 as m — oo.

Sn

1t,
This implies that f f |Q:| dtdy — 0, Hence f 1Q(sn) —Q(tn)|dy < [ [ |Q¢] dydt — 0,

0 sn
as n — oo and therefore Q1 =Qs.

Proof of Theorem 3.3. Theorem 2.19 gives us

1+B —
Q(y,t)S% for all (y,t) € Do,

Together with Lemma 3.10, we find the L>°(§2) bound on Q. Combining this with the
uniform lower bound on temperature from Proposition 3.1, the result follows directly
from Theorem 3.11. W

3.4 An uniform L%*(Q)) bound and proof of Theo-
rem 3.6

For the next result the condition that € is a ball in R3. We now assume that Q is
bounded in R® with piecewise smooth boundary. We extend a global existence result
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of [15].

Theorem 3.12 Suppose the initial temperature ©g and the initial distribution ng
satisfy
AOp > a and ||n0||%2(9) < C ((A80)? — A8y) ,

where o and C are specific constants depending only on the domain Q@ and where
A\ > 0 is given by (3.8). Then Problem P has a global (weak) solution for which the
L2(Q) norm is uniformly bounded in time.

Proof. As in Chapter 2, we manipulate equation (2.52) and obtain

1d
——||n||%z(9) + @(t)liVnH%z(Q) =— [ nVnVedz. (3.13)
2dt

Q
Using this, we obtain for w(t) := ||n(t)||2L2(Q), the inequality (2.56)

Cq

@_(ng?’ —O(t)w+C20(t) for t>0 (3.14)

@0 < pogu(w)
—w w) =
Pl Po(t)
Here C; and C, are positive constants only depending on 2. The assertion of the
theorem now follow from particular properties of (3.14).

First observe that if © > o; := %(02011/2)1/2, then pg)(w) = 0 has two

positive real roots w.(t) < w*(t) and pe)(w) < 0 for w.(t) < w < w*(t). If © = ay,
these roots coincide.

Now consider

wO(t) := CTV3(02(t) — O(t)).
Then pe (w°(t)) < 0 provided

1/2
3+C,CY\? 1 34 0?2
@(t)2a2=<(%) = +%.

Clearly az > a4, since pg(y(w) > 0 for ©(t) < oy and for all w > 0. We now choose
w(0) such that w(0) < @w° < wO(t), where @w° := 01—1/2 ((A©g)% — AOy). Note that
po()(w°) <0 for all ¢ > 0. Hence it follows w(t) < w(0) < @°. W

We are now in a position to prove the second main theorem.

Proof of Theorem 3.3. Using the uniform bound on O(t) from Proposition
2.18 and employing the above L2?-bound of the solution n, i.e. the uniform bound in
time of ||@Qy| £2(0,1), we apply Theorem 3.11 to obtain the result. W



66

CHAPTER 3. CONVERGENCE TO STATIONARY STATES



Chapter 4

Asymptotic self-similar
blow-up for two models
arising in statistical
mechanics

4.1 Introduction

In this chapter we study the blow-up profiles for the parabolic-elliptic system

ne = div{0(#)Vn+nVg} in QxRT, (4.1a)

Ap = n in QxRT, (4.1b)

0 = (BF)Vn+nVe¢)-7 on 0QxRT, (4.1c)

$ = 0 in 00 xRY, (4.1d)
n(z,0) = mno(z) in Q, (4.1e)

where Q@ = B1(0) = {z € R3: |z| < 1}. The initial condition ng is chosen radially
symmetric and such that

/nodle, and ng(z) >0 in Q. (4.1f)
Q

Regarding temperature © = ©(t), we introduce two models:

This chapter is to appear as an article in collaboration with M.A. Peletier (CWI, Amsterdam)
and J. Williams (Bath university, England) .
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(i) Temperature is defined by:
O(t) = ©* = constant > 0. (4.2)

Equations (4.1)—(4.2) define a problem for the unknown density n and potential
¢. However, we observe that since ¢ is known in terms of n by the boundary
value problem (4.1b) and (4.1d), we denote a solution of (4.1)—(4.2) simply
by n. Since the temperature remains constant we shall call this problem the
isothermal model.

(ii) Temperature is given by the energy conservation relation

E:m@(t)—k/ ngdr in RT, (4.3a)
Q

where E and k > 0 are given constants such that
©(0) = ©g > 0. (4.3b)

Equations (4.1),(4.3) define a problem for the unknown density n, potential
¢, and temperature ©. Arguing as in the previous problem, since ¢ can be
expressed in terms of n, we denote a solution of problem (4.1),(4.3) by the pair
(n,©). We shall call this problem the non-isothermal model.

Problems (4.1)—(4.2) and (4.1),(4.3) are models for the evolution of a cluster of par-
ticles under gravitational interaction and Brownian motion. The isothermal model
also arises in the study of the motion of bacteria by chemotaxis [6, 20]. The non-
isothermal model was first introduced to describe galactic dynamics [26]. Note that
both models are in dimensionless form. This was done in Chapter 2, where we have
chosen mass and radius one. By the non-flux condition (4.1c), mass is preserved. In
fact, condition (4.1f) gives

/ n(z,t) dz = / nolidide =1, (4.4)

Q Q

We know from Chapter 2 that problems (4.1)—(4.2), and (4.1)—(4.3) have a unique
local solution if ng € L?(2). Moreover, this solution satisfies n € L*°(0,T"; L*°(Q2))
for some T' > 0. Now, since = B;(0) and ng is radially symmetric, by uniqueness
this local solution is radially symmetric. For that reason, we restrict ourselves to
the analysis of radial solutions, and to emphasize this we write n(r,t) := n(z,t) with
r=|z| € [0,1].

Since we are interested in the question when and how the isothermal and the
non-isothermal model generate singularities, we define:

Ty = sup{7 > 0 | Problem (4.1)—(4.2) has a solution in (0, 7] },

and
Ty = sup{ 7 > 0 | Problem (4.1),(4.3) has a solution in (0,7] }.
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If Ty < oo, or Ty < oo then we say that blow-up occurs for (4.1)—(4.2) and (4.1),(4.3

respectively. For T5 < oo we find that energy conservation implies tlirg supn(r,t) =
—4200,1]

0o. We shall discuss later the behaviour of ©(t) near t = T.

There are various conditions in the literature which ensure 77 < oo or T < 00.
For example, to ensure 77 < oo, we can assume that ©* < ﬁ [12] and to ensure
T> < oo we can suppose that £ < % and £ > 6 (Chapter 2). However, from the

proof of these results we cannot infer how the blow-up occurs.

The first aim of this chapter is to characterize the asymptotic behaviour near
blow-up of the solution n(r,t) of problem (4.1)-(4.2). We prove that under certain
conditions on the initial data, a solution n = n(r,t) of (4.1)—(4.2), which blows up at
time T" > 0 and at the point » = 0, with the growth condition

sup n(r,t) < M(T —t)~! for te(0,T),
refo,1]

has a structure near blow up given by

— (T _ )1 r
n.(r,t) = (T —t) \P( @*(T—t))’

where the function ¥ belongs to a subset of solutions of a steady state problem; a
subset that includes the functions

(6 +7n°)

m and ‘I’*('I]) =1 for n > 0,
2

Ui(n) =

(Theorem 4.1).

Our second goal is to provide a numerical description of blow-up in the non-
isothermal case. We show that for constant initial data ng, and for £ € R and x > 0
ensuring blow-up, the corresponding solution (n, ®) of (4.1),(4.3), which blows up at
time 7" > 0 and at the point r = 0, has a structure near blow up given by:

n.(r,t) = (T —t)~ 10, (W) .

O.(t) = © = constant.

See Figure 4.1 in the case £ = 0 and x = 10.

The form of blow-up for radially symmetric solutions for the isothermal model
were already described in [50, 51, 21]. The problem of blow-up was first studied
by Herrero et al. in [50, 51] using careful matched asymptotic expansions and later
by Brenner et al. in [21], using an accurate numerical analysis and deriving various
analytical results, such as existence and linear stability of self-similar profiles. Note
however that no proof of convergence or characterization of blow-up in terms of initial
data is given in these references The principal types of blow-up described in [50, 51, 21]
are:



70

CHAPTER 4. ASYMPTOTIC SELF-SIMILAR BLOW-UP

o ALY

= T-1=0.0039139

5 6 7 8 9

r/[(T-t)o]""2

1 2 3

; 10
—log(T-t)

Figure 4.1: Convergence in self-similar variables to the profile II; (left) and the asso-
ciated temperature behaviour(right), with £ = 0, k = 10, and ng = 3/4x.

(a)

4.2

A solution n(r,t) consists of an imploding smoothed-out shock wave which
moves towards the origin. As t — T, the bulk of such a wave is concentrated at
distances O((T — t)1/3) from the origin, has a width O((T — t)*/?), and at its
peak it reaches a height of order O((T' — t)~%/3). This type of blow-up has the
property of concentration of mass at the origin at the blow-up time, i.e.

T

. . 2 _
}1_{1(1) tlgr%/n(y,t)y dy| =C>0. (4.5)

0

This situation is known as gravitational or chemotactic collapse and is depicted
in Figure 4.2 (left). Note that the class of initial data considered in our study
rules out this possibility.

A solution n(r,t) has a self-similar blow-up in the explicit form
(T —t)n (n (T — t)@*,t) ~Ui(n) as t—T.

Note that this implies that n satisfies (4.5) with C' = 0. Therefore no concentra-
tion of mass at the origin occurs at the blow-up time. This blow-up behaviour
is depicted in Figure 4.2 (right). This is the type of behaviour found in our
results.

Main results

For radial solutions, the average density function b(r,t) is defined by

3w r
b(ryt) = 2 [ o) (46)
0



4.2. MAIN RESULTS 71

n n
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—4/3 (r-n ~!
(T—v)
A
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(T—n 23 (T—t) 172

Figure 4.2: The profile n(r,t) for blow-up with(left) and without(right) concentration
of mass.

where wz = %’r is the volume of the unit ball in R3. This variable turns out to be
most convenient when analyzing this system. In fact, it has the has the same scale
invariance as n(r,t), and it has in addition the advantage that solutions are smoothen.
For example, if for some fixed ¢t > 0 the density n(r,t) is a delta function at the origin

with unit mass, then b(r,t) = r—3.

Let D = (0,1) and set Dy = D x (0,T) for some time 7" > 0. Transformation
(4.6) puts system (4.1) in the form

1
bt = W3@(t) (brr + %br) + g'f’bbr + b2 in DT (47&)
b-(0,t) =0, b(1,t) =1, for te[0,7), (4.7b)
b(0,7) = bo(r) for re D. (4.7¢)

Here we have redefined t := wiat. Regarding the initial condition, we assume
b € C2(D), and g(bo), +by>0 for reD, (4.7d)

where the second condition is equivalent to ng > 0 in D. Note that the conservation
of the mass (4.4) is represented by b(1,t) = 1 for t € [0.T). Concerning the function
©, for the isothermal case condition (4.2) remains unchanged

O(t) = ©" = constant >0, forall ¢ > 0. (4.8)

In the non-isothermal case, condition (4.3a) takes the form
. 1
E =kO(t) — o /b(y,t)2y4 dy in [0,7), (4.9a)
w3
0

recalling that £ € R and x > 0 are constants satisfying

©(0) = 6 > 0. (4.9b)
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We denote the solution of (4.7)-(4.8) by b = b(r,t), and the solution of (4.7),(4.9) by
the pair (b = b(r,t),© = O(t)).

As was done for problems (4.1)—(4.2) and (4.1),(4.3), we can now define the max-
imal interval of existence in terms of the average density b(r,t). If 71 < co or Ta < 00,
then we must have

lim sup b(r,t) = oco.
t—T; [0,1]
where T; = T; /w3 for i = 1,2.

Since problem (4.1) conserves mass, one finds for b

1 —_
b(r,t) < 3 for reD,t>0,

which implies a single point blow-up for b(r,t) at the point r = 0.

Next we will state and motivate the results for the isothermal and non-isothermal
case.

Isothermal case

To characterize the asymptotic behaviour near blow-up of the solution b(r,t) of
problem (4.7)-(4.8) it is important to study the solutions of an associated boundary-
value problem

p(0)>1 Son(o) = 0.

If b is a solution of (4.7)—(4.8), which blows up at time 7' > 0 and at the point r = 0,
then we will show that it has the asymptotic form given by

{wnn+%wn+%nwu—%nson+so2—<p=0, for >0, )

NN S
w30*(T —t) ‘

Equation (4.10) has multiple solutions [51, 21]. We classify them by counting the
number of times they cross the singular solution ¢g(n) := fg. For that purpose, we
introduce the set

bu(r,t) = (T —t)_lw(

Sk = {¢: ¢ is solution of (4.10) having k intersections with ¢g}.

We will show that S; is the relevant subset of solutions of (4.10) for the characteri-
zation of blow-up.

For the initial condition, we assume
(bo)r <0 for reD, (4.11)

and

4 1
w30* ((bo)rr + ;(bo)r> + gTbo (b())r + b(2) >0 for reD. (4.12)
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We will show that this implies b, < 0 in Dp and by > 0 in Dp.

Next we introduce self-similarity in (4.7)—(4.8). Using scale invariance, we set:

T = log (%) and 7= (w3@*(;— t))l/z; (4.13)
and for the unknown b we define
B(n,7) = (T — t)b(r, t). (4.14)
The rectangle Dp transforms into
O={(n7)|7>0,0<n< (ws®*T) Y2e/2} (4.15)

The initial-boundary problem (4.7)—(4.8) now becomes

4 1
B, + B+ %nB,, = By + ;B,, + gnBB,, +B* in TI, (4.16a)
B,(0,7)=0, B ((wg@*T)—1/2eT/2,T) —e T for TeRY, (4.16b)
B(n,0) = Bo(n) := Tho (n(wS@*T)lﬂ) for 7 e I1(0), (4.16¢)

where I1(0) = (0, (w3©*T)~1/2).

Note that a solution of (4.10) is time independent solution of (4.16). Therefore
the study of the blow-up behaviour of b(r,t) is reduced to the analysis the large
time behaviour of solutions B(n, ) of (4.16), and in particular stabilization towards
solutions ¢ of (4.10). For that, we introduce for (4.16) the w-limit set

w={p € L®R")|3Ir; —» oo such that
B(-,7j)) = ¢(-) as 7; — oo uniformly on compact subsets of R*}

Now we have the elements to state our main result.

Theorem 4.1 Let ©* < g=. Let by be such that (4.11), and (4.12) hold, and let
b(r,t) be the corresponding solution of problem (4.7)-(4.8) that blows up at r = 0 and

att =T. If b satisfies the growth condition
b(0,t) < M(T —t)~1 for te€(0,T). (4.17)
with M > 0, then

w C Sy.

Remark 4.2 The growth condition (4.17), has been observed numerically in [21].
There are analitical proofs of this condition for related equations, which we believe
can be adapted for this case [77, T2].
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Remark 4.3 There is numerical evidence [21] that shows that the set S; contains
only two elements. These elements are the profiles

=1, and p1(n) = —7%-
() )

Remark 4.4 If we can prove that w = {p} C S, then
lim (T — )b (/3 ®" (T = 1)) = () (4.18)

uniformly for 0 < n < C for some arbitrary C > 0. Numerical results in [21] show
that for an open set of initial data the convergence in (4.18) holds for ¢ = ¢1. This
self-similar behaviour is depicted in Figure 4.2 (right), replacing n(r,t) by b(r,t). In
constrast, we know of no numerical evidence for the convergence towards ¢™.

Remark 4.5 Assumption (4.11) on the initial data, gives in terms of no,

1
3 < — 1 5 4.19
ring(r) < w3||n0||L (B.(0)) (4.19)
We remark also that there exists a family of by, which satisfy the conditions (4.7d),
(4.12) and (4.11). These assumptions are satisfied, if for ezample bo(r) =1, and also

if

K>
bo(r) = K1 + ————
o) =Ht

for K; >0 fori=1...3 with K1 + 12 =1 and ©* < K5/24n.

The proof of Theorem 4.1 uses the observation that equation (4.16), without the
term %nBB,,, is the same equation that arises in the study of self-similar blow-up for
the parabolic semilinear equation

by = Anb +b%, (4.20)

with N = 5. Here Ay denotes the Laplacian in RY, see [48, 49]. Therefore we adapt
the methods used for the analysis of this equation to prove Theorem 4.1. However
here, due to the presence of the convection term, we need to construct a new Lyapunov
functional, which is given in a implicit form as was done in [82]. Note that Theorem
4.1 is very similar to a result for the supercritical case (N > 6) for equation (4.20),
when two different kinds of self-similar blow-up behaviour coexist [60].

Non-isothermal case

The blow-up behaviour of the solution (b, ©) of (4.7),(4.9), was studied by Chava-
nis et al. in [25]. There it was claimed that ©(t) and b(0,t) blow up at the same instant
of time T > 0. To support this assertion, in [25] it was assumed that ©(t) ~ (T'—t)~¢
with a@ > 0 and derived a corresponding self-similar equation. Since a > 0 is a-priori
unknown, this results in a family of blow-up equations, indexed by a > 0:

©nn + %807; + %77‘:0907] - %(1 - a)mpn = ‘P2 —¢=0, for >0, (4.21)
¢(0) 21 ¢,(0) =0.
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Note that (4.10) corresponds to (4.21) with a = 0. In [25], it was argued on the basis
of numerical experience that

(T = )b (1v/walT = 0(0) ) — °(1)
as t—T (4.22)

Ot)(T —t)* — Constant

where % is a solution of (4.21) with a ~ 0.1, which is bounded, decreasing and
satisfies p%(n) = O(n~2(1*+%)) for large 1. Recently, in [18], it was proved that for
a > 0 such solutions cannot exists. Therefore the convergence (4.22) cannot hold and
so the question of blow-up in this case remained open.

In this chapter we solve in part this issue. As was pointed out to us by J. King,
the energy relation (4.9) does not exclude the combination of a singular solution b
and a finite temperature ©. For example, in the isothermal case at time of blow-up
b(r,T) = ;65 near r = 0, which is unbounded and produces a finite temperature

1

kO(T) =E+ 5 b(r,T)%r*dr < co.
3L¢J3
0

This possibility was not addressed in [25].

To conclude we give a numerical result showing generic blow-up behaviour with
bounded temperature at singular density.

We set in our simulations ng = -“}—3, that is bo(r) = 1 for r € D. Selecting F and
K to ensure blow-up, we find that

(i) © > 0on (0,7);
(ii) ©(t) — © where © is a positive finite constant;

(iii) and recalling that ¢1(n) = Tn%?V’ we have the convergence
(T —1t)b (77 w3O(t)(T — t),t) ~i(n) as t—T.

We illustrate properties (i)—(iii) in Figure 4.3, for a particular choice of E € R
and k > 0, for which we know blow-up is ensured.

Finally, from a view-point of analytical results, we prove that under certain initial
condition, including the ones used in the numerical experiences, that the temperature
must increase near ¢ = 0. This agrees with conclusion (i).

The remainder of this chapter is organized as follows. Sections 4.4 and 4.5 are
devoted to the proof of Theorem 4.1. In Section 4.3, we discuss the main results of this
chapter comparing them with existing results from the literature. In Section 4.4, we
study properties of solutions of problems (4.7)—(4.8) and (4.7),(4.9). In Section 4.5 we
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R s — E-—1/30mand =65
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Figure 4.3: Convergence in self-similar variables to the profile ¢ (left) and the asso-
ciated temperature behaviour(right), E = —1/30m, k = 6.5, and by = 1.

prove the convergence to a self-similar solutions. In Section 4.6, we introduce the self-
similar problem for the non-isothermal case and we numerically study this problem.
We conclude that section by proving that for certain initial data the temperature
increases for short times.

4.3 Discussion

From our results we find that the non-isothermal and isothermal case present essen-
tially the same features on blow-up behaviour for a constant initial density. This
is explained by the fact that in the non-isothermal case the temperature remains
bounded when a singularity appears in the density. Both cases are described by the
same blow-up profile for the density, that is n(r,t) = (' —t)"1¥(n) near t = T, with

6 + n?

m for n > 0. (423)

U(n) =Vyi(n) =

for n = 172 containing the (variable)temperature.

ST

This is in contrast with the findings of Chavanis et al. [26], where the authors
concluded that the isothermal and non-isothermal model show different blow-up be-
haviour. For the non-isothermal model it was claimed that both temperature and
density blow-up at the same time in what they called “gravothermal catastrophe”.
The arguments used there were numerical experiments as well as modelling consid-
erations. The singularity in the temperature was fitted to the function (7" — t)~,
resulting in a ~ 0.1. As a result of the different scaling different blow-up profiles were
found in the isothermal and non-isothermal cases: n(r,t) = (T'—t)~'¥(n) near t = T,
with

¥(n) = ¥y(n) (isothermal case) and ¥(n) = ¥*(n) (non-isothermal case),
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where ¥? is a bounded and decreasing function such that ¥%(n) = O(n=2(1*9)) for
large 7.

In the numerical experiments [25] the maximum value of the density n (n(0,t))
that was obtained was of the order 10%; at this point the calculation was discontinued.
This corresponds in our simulations to calculations up to a time —log(T —t) ~ 6,,
indicated in Figure 4.4 by a circle. Note that we compute up to a time with n(0,t)
of the order 10°.

We conjecture that the difference between our interpretation of our simulations
(temperature remains bounded at blow-up) and those of [25] (©(t) = O((T —t)~2)
as t — T') can be explained by the fact that our simulations continue further into
the singularity. We hope to study this question in more detail in the future. We

0.02

0.018[

0.016

0.0141

0.012|

o002 —— E=—/30% and x6.5
o pO.N-10*

-5 o 5 10 15 20

—log(T-t)

Figure 4.4: Temperature for E = —1/307, k = 6.5, and by = 1 : comparison of results
with Chavanis et al. [25].

conjecture that a result similar to Theorem 4.1 can be proved for the non-isothermal
model; the main difficulty lies in proving b; > 0, which in turn implies ©, > 0.

Now we describe a family of blow-up patterns which appears when we refine the
asymptotic expansion for the profile ¢ = ¢* = 1. This situation is closely related to
the blow-up behaviour of (4.20), with N < 6. In fact, if a solution b blows up point
at xt =0 and t =T, then

lim, (T —t)b(nvT —t,t) =1

uniformly for |n| < C for some arbitrary C' > 0 [49]. Moreover it have been shown
(cf. for instance [61, 76]), that a refined description gives the existence of two possible
behaviours: either

lim (T — )b (n/(T = ) Tog(T — )], t) = 1(n) (4.24)

t—T

or

lim (7 = )5 (n(T — )™, ) = G () (4.25)
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uniformly for |n| < C, for some m > 2 and where the family {@;};>1 is known
explicitly.

For problem (4.7)—-(4.8), it was shown in [51] that if blow-up is of the form ¢* =1,
then there exists a the refined asymptotics given by either

(T — t)b (n\/(T — )| log(T — £)[1/3, t) ~ @) as t—T, (4.26)
or
(T—t)b(n(T_t)%+m,t) ~@m(n) as t—T (4.27)

for some m > 2. An implicit formula for the family {@,, }m>1 is given in [21, eq. (43)].
The convergence towards these profiles remains an open problem.

In the asymptotic (4.27), we can take formally the limit m — oo and find a non
trivial scaling, that is

Jim (T = 1)b((T — £)'/3,t) = Goo(n). (4.28)

This cannot be done from the semilinear equation where (4.25) holds. The conver-
gence (4.28) represents the convection dominant behaviour of (4.7), which in terms
of the density n = n(r,t) describes an imploding wave moving towards the origin, as
was shown in Figure 4.2 (left). Now the function @, is discontinuous (cf. [50, Eq.

(3.16)), 3
Q—WCy for n>C

Poo(m) = {0 for n<C,

where 2C3 is the mass accumulated in the origin, which can be made arbitrary. In [50]
this type of blow-up was studied using matched asymptotics. There it was suggested
that this behaviour is stable and moreover it was expected that there exists an initial
data such that (4.28) holds uniformly in subset away from the shock. A result of this
type was proved in [37, Theorem 3] for a related situation.

4.4 Preliminaries

4.4.1 First estimates

In this section we develop some estimates for problems (4.7)—(4.8) and (4.7),(4.9),
which in turn will imply bounds for the respective self-similar problems.

The following three lemmas hold for a solution (b, ©) of (4.7)—(4.8) or a solution
b of (4.7),(4.9). We use indistinctly 7" > 0 as a blow-up time for both problems.

Lemma 4.6 If by satisfies (4.7d) then
gbr +b>0 in Dr. (4.29)
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Proof. Note that the solution n of problem (4.1), satisfies the relation

1
n(r,t):w—s[gbr+b] in Dr. (4.30)

Since ng > 0 in D, an application of the maximum principle to problem (4.1) shows
that n > 0 in D7. Using this and (4.30) the result follows. H

To prove the following results, we proceed as in [39], where similar estimates were
found for the semilinear equation 4.20.
Lemma 4.7 If by satisfies (4.11) then
b-(r,t) <0 in Dr. (4.31)

Proof. Set w(r,t) := rtb.(r,t). Therefore differentiating (4.7a), we find
4 1 1
wy — w30 | wpyr — —wy | — =rbw, = b+ =7b, | w (4.32)
7 3 3
Assume for the moment a stronger assumption on the initial data

(bo)r(r) <0 for 7€ (0,1) and (bg)(0)<O. (4.33)

This gives w(0,7) = r%b,.(0,7) < 0. Noting that under (4.33) the function b = 1 is a
sub-solution for (4.7), and by Hopf’s Lemma, we find that w(1,t) = b,.(¢,1) < 0 for
all t > 0. Now choosing 7" < T arbitrarily close to 7T, and noting that wsn(r,t) =
b+ % < C(T) on D_:,:, then by the maximum principle, we find w < 0 on D7 and
whence b, < 0 on Dr. To finish the proof, we note that by the strong maximum
principle, if by satisfies (4.11), then for each t; € (0,T’), condition (4.33) holds for the
function b(r,¢1). This proves the result. W

Lemma 4.8 If by satisfies (4.11), then
b(0,t) > (T —t)~! for tel0,T), (4.34)
Proof. Since the maximum of b in D is attained at r = 0 (by b, < 0), therefore

Ab(0,t) < 0. It follows from (4.7a) that b;(0,¢) < b%(0,t). Integrating this inequality
on (0,T) gives the result. W

The following results hold only for the isothermal model. Therefore in the sequel
b(r,t) is a solution to (4.7)-(4.8).

Lemma 4.9 If by satisfies (4.12) then by > 0 for all t € (0,T).

Proof. Condition (4.12) implies that b(r,€) > b(r,0) for € small enough. Using the
comparison theorem in [21, p. 1079], we find b(r,t +€) > b(r, t; fort € (0,7 —¢€). We
conclude, using this and noting that b:(r,t) = liI’I(l) imi‘z_b(—r’t. H

The next lemma gives a lower bound on b, in Dyp.
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Lemma 4.10 Let by satisfy (4.11) and (4.12). Then

2
wg@*bﬁ(r,t)<§b(o,t)3 for (r,t) € Dr. (4.35)

Proof. Since b; > 0 and b, < 0, we multiply equation (4.7a) by b, and obtain
* " 1 3 1 3
0> w30 brbrrds + =b°(r, t) — =b°(0,t).
0 3 3
Integrating by parts, we obtain
T 1 1
0> w30* {bf(r, t) — b2(0,t) — / bybyr ds} + §b3(r, t) — §b3(0,t) >
0
2 2
> w3O*[b2(r, t) — b2(0,t)] + §b3(r, t) — §b3(O,t).

Now, since b2(0,t) = 0, we obtain the desired inequality. H

To conclude this section we translate the properties of solutions derived above
into estimates for the self-similar solutions associated with problem (4.1).

From hypothesis (4.17) and noting that b > 1 and b, < 0 in D7, we have the a
priori bound

0< B(n,7) <M for (n71)ell (4.36)
Combining this with (4.35) and using (4.31), we obtain
0<—By(n,7)<M for (n,7)€ll, (4.37)
where M depends on M. Finally from (4.34), we get

1< B(0,7) for 7€ (0,(wsO*T)"Y2e7/?). (4.38)

4.4.2 The steady state equation (4.10)
We begin recalling the problem (4.10):

4 1 1
P+ o+ 3N0Pn = gien + 7~ =0 for 5>0, (4.39)
#(0) 21, n(0) =0. (4.:39D)

Since B(0,7) > 1 therefore in the limit 7 — oo we require that ¢(0) > 1, and so
condition (4.39b).

Equation (4.39a) has three special solutions:

es(n) ==, () =1 and @.(n)=0 for n>0.
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The singular solution ¢g and the constant ¢* will play an important role in the
analysis. Note that ¢g satisfies

1 4 1
s+ 5n(ps)y =0 and 0= (ps)my + ;(sos)n + 3m5(¢5)n + (ps)?.  (4.40)

For bounded non constant solutions we have the following theorem from [21] and
[51].

Theorem 4.11 There exists a countable set of solutions {¢ }ken of (4.39) such that
vk(0) > 1 and pr(0) — oo as k — oo, Moreover py, intersects k times the singular
solution @g, and has the asymptotic behaviour oy (n)n* = Const(k) > 0.

It was argued [21] that for each integer k > 2, the set
Sk = {¢: ¢ solution of (4.39) with k intersections with ¢g}

is a singleton and that the set S; contains only two elements. More precisely, S1
consists of the constant ¢* and surprisingly enough a function with an explicit form,
given by

6

— 5 .
1+%

v1(n)

If we relax condition (4.39b) to ¢(0) > 0, we can find more solutions. In fact, a
numerical solution ¢} of (4.39a) was found in [21, Figure 14] such that ¢3(0) < 1,
(¥3)n(0) = 0 and intersects once with ¢g.

4.4.3 Comparison with the singular solution ¢g

From the preceding section, we recall that solutions ¢ of (4.39) are clasified by their
intersections with pg. In this section we study the intersections of solutions B of
(4.16) and pg. Our results are closely related to the ones found in reference [4], where
the semilinear equation is studied.

First, we see that a solution B of (4.16) intersects at least once in I1(0) with the

singular solution ¢g whenever ©* < 2L since
87

#5(0) = 00 > B(0,0), and s ((ws0°T)""/?) < B ((wg@T)_l/z,O) =T

Therefore there exists ; € I1(0) such that B(n;,0) = ¢s(m1) and B(n,0) < ¢s(n) for
n<mn.

Lemma 4.12 Under the assumptions (4.11), (4.12), and ©* < g, there ezists a
continuously differentiable function n1(7) with domain [0,00) such that 11(0) = m
and B(ni(1),7) = ps(n1(7)) for all 7 > 0.
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Proof. Define H(n,7) := B(n,7) — ps(n). We first claim that H, H,, and H, do not
vanish simultaneously. Using Lemma 4.9 and the strong maximum principle, we find

1
by =(T-t)"Y(Br+B+ 57By) >0 in Dr. (4.41)

If there exists a point in IT where H, = H, = H = 0 then H, = 0 implies B; = 0,
and using (4.40) the condition H,, = 0 combined with H = 0 implies

1
B+ 57}377 =0.

In turn this implies that b, = 0 at some point of Dr, a contradiction with (4.41).
Secondly, we claim that H, # 0 at any point (7,7) € II where H(7,7) = 0 and
moreover H(n,7) < 0 in a left neighborhood of 7. A proof of this is given in [4], and
moreover it was deduced that H, (7, 7) > 0.

Now we prove that H,, (n1,0) > 0. This follows from the equation for H(»,0). On
the left side of 1, we find

4 1
Hnn(na0)+;Hn(77»0) + gan(n,O)(B(n, 0) + ps)
1
+gnH(n7 0)(B(n,0) + ¢s)y = 0.

Since (B(n,0) + ¢s), < 0 and H(n;,0) = 0, we can apply Hopf’s Lemma to conclude
that H,, (n1,0) > 0. The rest of the proof follows in the same manner as in [4] using
the implicit function theorem. M

Define the set
I ={(n,7) |0 <n<m(r)}

and the value
nz = sup{1 € (n1, (W30°T)~"/?]: H(s,0) > 0for s € [m, ]}

Since H(m,0) = 0 and H,(n:1,0) > 0, the supremum is finite. We have 7o <
(w3©*T)~1/2. Define the set

I = {(n,7) | m(1) <n < na(7) :=me™/? }.

Let F(7) = H(nz2(7), 7). By definition of s, F(7) > 0. Also,

L P(r) = Homa(r),7) + 31a(r) Hy 2 (r), 7).
Using (4.41), we have P
Z[CTF(T)] > 0.

An integration yields F(7) > 0 for 7 > 0.

As was done in [4], applying the maximum principle, using Lemma 4.12, and
noticing that H(nz(7),7) > 0 for 7 > 0, we can prove the following lemma.
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Lemma 4.13 The function H(n,7) = B(n,7) — @s(n) satisfies H < 0 in II; and
H >0 inIls.

And as a direct corollary, we find

Corollary 4.14 Assume the conditions in Lemma 4.12. For each N > 0 there is
T~ > 0 such that for 7 > 7y, B(n,T) intersect ps(n) at most once inn € (0, N).

The reader can found the details of the proofs of these last two results in [4].

4.5 Convergence

In this section we prove the following convergence theorem:

Theorem 4.15 Assume that ©* < 1/8x, and let conditions (4.11) and (4.12) hold.
Let B(n,T) be a uniformly bounded global solution of (4.16). Then for every 1, — oo
there exists a subsequence relabelled T, such that the limit of B(n, T,) ezists and equals
¢ € S1. The convergence is uniform on every compact set of [0, 00).

Proof. Define B?(n,7) := B(n,0 + 7). We will first show that for any increasing
unbounded given subsequence {n;}, there exists a subsequence renamed {n;} such
that B™ converges to a solution ¢ of (4.39) uniformly in compact subsets of R x R.

Let N € N. We take i large enough such that the rectangle Qon = {(n,7) €
R%: 0 <75 < 2N, || < 2N} lies in the domain of B"™. Let B(¢,7) = B (|¢],7) be a
solution of

B, =AB- 36 VB+3(6-VB)B+B - B
on the cylinder given by

oy = {(§,7): R® x R: [¢] < 2N, |7| < 2N},
with |B(¢,7)| uniformly bounded in Ty using (4.36).

By Schauder’s interior estimates all partial derivatives of B can be uniformly
bounded on the subcylinder I'y C I'an. Consequently B™, B!, By, and By are
uniformly Lipschitz on Qn C Qan. By Arzela-Ascoli, there is a subsequence {n}{°
and a function B such that B™, B?, By, and By converge to B, By, By, and By,
uniformly on Q.

Repeating the construction for all N and taking a diagonal subsequence, we can
conclude that

B% - B, B" — B,, By — B,, and Bl — Bnm (4.42)

uniformly in every compact subset in RT xR. Clearly B satisfies (4.16a) and estimates
(4.36) and (4.37). Assume for the moment that B is independent of 7. We postpone
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the proof of this assertion. This implies that B is a solution of (4.10). Moreover B
intersects g (n) at most once. This follows from Corollary 4.14, which asserts that
for every N > 0 the solution B™i(n,7) intersects ¢g(n) at most once on [0, N] for
each 7 > 7. This concludes the proof.

Claim. The function B is independent of 7.

To prove this we use a non explicit Lyapunov functional in the spirit of Galak-
tionov [40] and Zelenyak [82].

We define the functional

z

B(r) = / (1, B, By) dn,
0

where z = (w30*T)~/2e7/2 and ® = ®(n,v,w) is a function to be determined. We
introduce the function p = p(n,v,w), such that the functional E has the form of a
Lyapunov functional with a contribution on the boundary, that is

d z

B =~ [ ol B.B,) (B, dn
0

1
+ ®,B|g + §z<I>(z,B(T, z), By(7, 2)). (4.43)

In the appendix we show that there exist functions @, p: R C R® — R such that
(4.43) holds, where the domain R is given by

R=Rn{0<v<M,0<—w< M},

where R = {n > 0,v > 0,w < 0}U{n = 0,v > 0,w = 0}, and the positive constants M
and M are given by the estimates (4.36) and (4.37) respectively. Later, we show that
it is sufficient to define ® and p on the set R, to be allow to write p(n, B(n, ), By(n,7))
and ®(n, B(n,7), B,(n,7)) for each n,7 > 0 whenever B solves (4.16). Note that R
only depends on M > 0, remember that M can be expressed on M. To derive (4.43)
and prove this convergence theorem, we construct p continuous in R\ {n =17, v > 1}
and such that
1 -
En‘le_c(’"z < p(n,v,w) < n4e—"2/12 for (n,v,w) € R, (4.44)
0
with Cyp = Co(M) > 0 (Lemma 4.20). On the other hand, the function ® has the

form
w v

®r,0,0) = [(w—9)p(v,9)ds ~ [ plr,, 0 = w
0 0
and therefore it is also continuous in R\ {n =7, v > 1} with
D(n,v,w) < 017746_’72/12
for (n,v,w) € R (4.45)
D(n,v,w) > —(711746_’72/12
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for some positive constants Cy(M) > 0 (Lemma 4.21).

Now we show that it is sufficient to define ® and p in R. In fact, if B is a solution
of (4.16), then (n, B(n,7), By(n,7)) € R for each 7 > 0 and 7 > 0. To prove this, we
first note that if n — 0 then B,, — 0, since B is bounded and solves (4.16) which
contains the radially symmetric Laplacian in R®. Therefore for 7 = 0 corresponds the
set {v > 0, w = 0}. On the other hand B, < 0 and B > 0, this means that for n > 0,
we consider {v > 0, w < 0}. Finally, we complete the assertion by noting that B and
|B,| are uniformly bounded by M and M respectively.

Now having (4.43) and the corresponding properties of p an ®, we proceed to
prove the claim. An integration in the interval (a,b) of (4.43) gives

b z
/ / pB2dndr = E(a) — E(b) + ¢(a,b) (4.46)
a 0

where

b
il B = /%m(z,B(z,r),Bn(z,T))dH

a

b B, (z,1)
+ /BT(Z,T) / p(z,B(z,71),8)ds| dr. (4.47)
a 0
Since B, (z,7) = —B(z,7) — 32B,(z,71),
1
B (z,7)=-Te ™ — §br(1,T(1 —e")).

Using Lemma 4.6 with b = 1, gives |b-(1,7(1 — e7))| < 3 and consequently B, is
uniformly bounded as 7 — co. Employing this bound on B, and the uniform bounds
on B(z,7) and |B,(z,)|, the estimates (4.44) and (4.45) imply |®(z)| < Czle~%"/12
and p(z) < z*e~*/12 for some C > 0. Consequently

lim {sup ¢ (a,b)} = 0. (4.48)
a0 "h>a

By (4.42), we have that there exists a sequence n; — oo such that B™(n, ) con-
verge to B uniformly in compact subsets of R. For any fixed N we will prove for a
subsequence satisfying lim (n;41 — n;) = oo that

J—00

//pB.,Q.dndT: lim //p(ij)and’rzo,
N ’ QN

where we recall that Qy = {(n,7): R?: 0 < n < N, || < N}. For all j sufficiently
large, .
N < (w3®*T)_1/265("j_N) and njp; —n; > 2N.
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Consequently using (4.46), we find

N N Ninjp1-n; (wae*T)_l/ze%(nj—N)
//p(B?j)andT S/ / p(B:Lj)2 dndr
_N 0
-N 0

< E(n —N) —E(nj+1 —N) +¢(nj —N,?’Lj+1 —~N)
Hence applying (4.48), we discover

/ / (B"%)2 dndr < limsup[E(n; — N) — E(nj+1 — N)|.

Jj—00

Next we divide the expression E(nj — N)— E(nj;1 —N) into three integrals, choosing
K arbitrarily large
E(’I’Lj — N) —E(TL]‘+1 —N) =
K
= [0 B (0, -N), B (0, ~)) = 900 B (0, ~N), By (0, =Nl (449)
0
n;—N
e’
+ [ BN B V) (450)
K
1 —-7—2—"4+17N
7172 €
+ [ ewBYm-N). By @ -N)dn (451)
K

Integral (4.49) tends to zero as j — oo. In fact by the continuity of @ in the second
and third argument we obtain pointwise convergence and by the bounds (4.45) of @,
we apply the Dominated Convergence Theorem to conclude. Expressions (4.50) and
(4.51) can be made arbitrarily small since they can be bounded by

o
C / n4e—n2/12dn,
K

where C is a positive, and K can be chosen arbitrary large.

Thus we have proved that [ f p(B7?)?dndr = 0 for all N which in turn using

(4.44) implies B, = 0. This proves the claim, and consequently the theorem. H

4.6 Non-isothermal problem

In this section we provide a numerical description of blow-up for the non-isothermal
model. Mimicking the isothermal model, we first introduce the corresponding self
similar problem and then we show numerical results, whose methods are explained at
the end of the section.
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4.6.1 Self-similar problem

Let T > 0 be the blow-up time for problem (4.7),(4.9). Using the variable transfor-
mation

T = log (%) and 7= (sl = :)@(t))l/Q; (4.52)
and for the unknown (b(r,t), ©(t)), we define
B(n,7) = (T —t)b(r,t), and O(7)=O(t). (4.53)
The rectangle Dp transforms into the set
O={(n7)|7>0,0<n< (wsTO(1)"Y2/2}. (4.54)
The self-similar problem for non-constant temperature reads
B:+B4 %(1 —a)nB, = By, + %B,, + %nBB,, +B%? in 0T (4.55a)
B,(0,7)=0, B (((U3@(T)T)_1/26T/2,7') =Te ™ for TRt (4.55b)
B(n,0) = Bo(n) i= Tbo ((nws®(0)T)/?) for neTl(0), (4550)

where I1(0) = (0, (w3T'©(0))~'/2?) and @ = a(r) is a function given by
i Oy
a(r) = (T - t)g

If for some C > 0, O(t) = C(T' —t)~* near t = T, then lim a(7) = a. Moreover, since
T—00
O(7) > ¢ > 0, then a > 0.

Using (4.38) and (4.31), problem (4.55) satisfies the bounds B(0,7) > 1 for 7 €
(0,0), and B,(n,7) <0 for (n,7) € II

Now since the function @ = a(7) is a-priori unknown, and assuming B(0,7) < M,
a steady state solution of (4.55), say ¢(n) = lim B(n,7), a = lim a(7) must be a
T—00 T—00
bounded solutions ¢ of a family of equations indexed by a > 0:

Pun + 30n + 30000 — (L —a)npy +9* —p =0, for n>0, (4.56)
©(0) =1 ¢y(0)=0.

The condition ¢(0) > 1 follows since B(0,7) > 1 for 7 € (0, 00). Concerning bounded
solutions of (4.56), when a = 0 this problem is equivalent to (4.10), which we know
that has infinitely many bounded solutions (Theorem 4.11). On the other hand, an
interesting result from [18] shows that the only non zero bounded solution of (4.56)
is * =1, if a > 0. In the next section, we show numerical results showing a generic

convergence of B(n,7) towards the profile ¢; solution of (4.10). As a consequence
O(t) — © for © < 0.
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4.6.2 Numerical results

We fix for our simulations,
ng=1/ws in D, thatis bo(r)=1 for reD. (4.57)

Therefore, assuming (4.57) as initial condition and considering several values of E
and s such that E < 1/47 and k > 6, for which we know blow-up is assured, we
conclude the following

(i) ©¢ > 0on (0,7);
(ii) ©(t) — © where © is a positive finite constant;
(iii) and recalling ¢1(n) = ﬁ%, we have the convergence

(T = t)b(nVws®@)(T —t),t) ~ p1(n) as t—T.

The properties (i) and (ii) are shown in Figure 4.5. Here the line © = glw-, as a
reference. We observe that all final temperatures showed here are such that © < %.
This coincides with the isothermal case where blow-up can occurs for ©* < 1/8.

—
=
@ 002 s S T R P e
/'/
0.015 7’ .
v
/
0.01 e
&
e — E=0and x=20
0.005 / . E=0 and x=10
E += E=-1/30x and x=6.5
2 — - 8=1/8xn
s " T
-5 ) 5 10 15 20
—log(T-t)

Figure 4.5: Convergence of temperatures

The convergence in (iii) is plotted in Figures 4.6, 4.7, and 4.9, for the correspond-
ing profiles for the temperatures of Figure 4.5.

Finally since we use a moving mesh grid where the solution is calculated, in Figure
4.9 is shown how the points of the mesh accumulate near the singularity at r = 0.

4.6.3 Numerical method

For the numerical simulations we use an equation in the variables

Q(y,t) = b(r,t)r® and y=r>
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Figure 4.7: Convergence for E = 0 and « = 10.

Therefore problem (4.7) becomes

Q: = w30 (t)y3Qyy + QQ, (4.58)

with boundary conditions Q(0,t) = 0 Q(1,t) = 1, and the particular initial data
(4.57), that is Qo(y) = y. This representation was first introduced in [12] and has
been successfully used to study radially symmetric solutions for problem (4.1).

The variable () represents the accumulated mass and so @, is proportional to the
density n from problem (4.1), that is

n(ra t) = 'stQy(yr t)'

Since density is positive, we search for monotone solutions (Q, > 0). Blow-up for
the solution n of (4.1), translates for a solution @ of (4.58) in the existence of a time
T > 0 and sequences y, — 0 and t,, — T such that Qy(y,,t,) — o0 as t, — T.
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Figure 4.8: Convergence of E = —1/307 and k = 6.5.
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Figure 4.9: Moving mesh for £ = 0 and x = 10.

In the all simulations, the time of blow-up T" was determined assuming that
Qy0,t) (T —t) = C

for some C > 0 constant. This holds in the isothermal case with constant initial
distribution [21].

All the pictures presented here were computed with a modified version of MOV-
COL [55]. As written MOVCOL solves problems of the form

d
F(y, t’ Qa Qy) = @G(yv t? Q7 Qy)
Assuming for the moment that temperature is fixed equal to ©, this means solving

Q1 + 6w30y'/2Q, = (Iw30y*/3Qy + Q?/2)y or (Qr — QQy)/y*® = Iw3O(Qy)y
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We found however that neither of these forms produce monotone solutions. This
has to do with where the right hand side G is evaluated. Therefore, we extended
MOVCOL to solve problems of the form

d
F(y,t,Q, vany) = Ey'G(yvtaQaQy)

and then we solved the problem in its original form (4.58).

MOVCOL uses Hermite collocation: the solution is represented by piecewise con-
tinuous cubic polynomials in the form

N-1
Qy,t) = Z $1()U7 (1) + ¢2(s)Uy (t) + $3(s)U7H(t) + ga(s)UF 1 (E)  (4.59)

where ¢; for i = 1...4 are the shape functions, cubic polynomials, and

s=(y—v;)/(yj41 —y;) for j=1...N-1,

where N is the number of mesh points. The function U J(t) is an approximation of
Q(y;,t) and U;“(t) is an approximation of Qy(y;4+1,t).

This gives a representation which is C! on [0,1] and C* on [0, 1]\ {y;}. Defining
the vector Y = [U, U, ], the goal is now to find Y,Y; such that the differential equation
is satisfied exactly at the four gauss points in each subinterval when applied to this
representation of the solution. This is a method of lines approach since we have
discretized in space to give a system solved as a system of coupled ODE’s. Notice
that there is no notion of upwinding with this form of discretization. Because of the
implicitness of the resulting system and the grading of our mesh, we are not worried
about that.

The mesh motion is based on the idea of equidistribution [53, 54]. See [23] for an
application to a blow-up problem. We define a monitor function M(y) > 0 and we
try to find the grid such that the integral of M is the same over every interval. If M
is related to the error of the method then this can easily be shown to be the optimal
grid.

Denoting y as the the computation variable, this means that

0= x/ol M(s)ds — /Oy(x) M(s)ds

which is difficult to solve numerically as it is a DAE with no differential variables.
Instead we set the right-hand side of this as the forcing term for the mesh motion
1 y(x)
TYs = x/ M(s)ds — M(s)ds
0 0
differentiating twice leads to the moving mesh partial differential equation MMPDE6
from [54, 23]
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which has the advantage that it can possess scaling invariance. Ignoring boundary
conditions, the equation we are solving has scaling invariance, in fact if Q(y,t) solves
(4.58) then A~'Q(A3y, A%t) for A > 0 also does. We expect convergence to an asymp-
totically self-similar solution for which this scale invariance is very important, hence
we would like to build it into the mesh equation as well as the physical PDE. This
is done by choosing a monitor function which leads (4.60) to have the same scaling
structure as (4.58). Setting M (y) = Q¥ implies p = 1. This means that in the blow-up
limit, the mesh lines move on level sets of the similarity variables (excluding boundary
effects which slowly pull the mesh points away).

For p < 1 the mesh motion will be too slow and will eventually ’freeze’ as
Qy(0,t) — co. For p > 1 the motion of the mesh is faster than the similarity variable
causing additional stiffness and meaning that in the blow-up limit all mesh points
will tend to zero in both the physical and similarity variable. However, because of
the nature of the singularity in this problem, we found that M = @, was not enough
to resolve an evolving cube root and the error in approximating Q ~ y'/3 required
a smaller mesh. So, we use M = Qz/ ? for this initial data. Note that other initial
condition could require another monitor function.

The parameter 7 is determined by experience, too small and the system is too
stiff, too large and the mesh does not move. The idea is that the moving mesh PDE
has as its steady state the equidistributed grid and we want to relax onto that in
a sufficiently short time relative to the natural dynamics of the PDE. In practice
1072 < 7 < 10~* is generally best but there is no hard and fast rule.

To include the change in temperature, we use an implicit/explicit method,
Qr — Q"Qp — wsO™ 1y /3, = 0

where ©"~1 was evaluated at the preceding time step. We recall here that temperature
can be expressed by

1
1 Q?

Ezﬁ@—% Wdy
0

To compute this integral, we used two point Gauss integration

/ £ (Flg) + F(L—g1))/2

over each interval smaller than a tolerance (dy = .01) and four point

/ £ ~ (wif(gr) + waf(g2) + waf (1 — g2) + w1 f(1 - g1))

if the interval is large.

4.6.4 Increasing temperature near t =0

We show that the temperature is increasing in small time interval for certain initial
data.
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1
Lemma 4.16 Let E < 55— and 2k — 3 — Ofr‘l(bo)f dr > 0. If (b,0) is a solution of
(4.7), then there exists t* > 0 such that ©; > 0 on (0,t*).

Proof. Multiplying (4.7a) by b(r,t), gives
1 1
bb; = wg@r—4(r4br)rb ¥ §r(b3)r + B8,

1
Integrating and using that 3w3k©, = [ bb;r* dr, we find
0

1 1
1
gwgn(%t = w30 /(r‘lbr)rbdr + 5 /r(b3),~r4dr + /b3r4dr
0 0

and then

1 1 1
1
;w;m@t = w30 r4brb|(1) - /r‘lbzdr - 3 b3r° —5/b3r4dr +/b3r4dr.
0

0
Simplifying, one finds
1 1
gwgn@t = w30 |by(1 / rtbZdr + +3 / b*ridr.
0 0
Multiplying this by 9 and since b,(1,¢) > —3 (using (4.6)),

1
2
77‘*/'3915 > 9w3O | =3 — /r4b3dr 41 +4/b37"4dr.
0

[=}

1 1 1
On the other hand we have [b*rtdr < 2 [b3rdr +1/15 and [b*r*dr = 3w3k© —
0 0 0

3w3zFE, so
1

27 3
7w3f$@t >9w3 | 26— 3 — /r4bzdr O + E~ 18ws E.

1
This implies that ©; > 0 for ¢ near 0 if E < 1/407 and 2k — 3 — [7%(bg)2dr > 0. W
0

4.7 Appendix

In this appendix we construct the Lyapunov functional E satisfying (4.43) and de-
duce the necessary properties of p and ®. We start with a formal derivation for the
Lyapunov functional. This construction requires that p solves a first order equation,
and give an expression for ® in terms of p. We solve the equation for p, with con-
venient data such that ® and p have the needed properties. Finally we use smooth
approximations of ® to obtain a rigorous derivation of (4.43).
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4.7.1 Formal derivation of a Lyapunov functional

To find the functions ® and p satisfying (4.43), we first assume that they are regular
enough and then compute

(%E(T) = /<I>vBT dn—|—/<I>me dn—}-%z@(z,B(r, 2), By(T, 2)). (4.61)
0 0

Integrating by parts the second integral in (4.61) we obtain for this integral

z

/ ®, By dn
0

z
o}
- - wB‘r wBTZ:
[ 2 @)Brdn+ ®uB.;
0

_ / (@0 + ®ouwBy + BBy Br dip + BB, (4.62)
0

Define the function f = f(n,v,w) such that

1 1
fn,v,w) = —ﬁw — gw+ gnvw—H)Z —.

Using this, equation (4.16a) takes the form B, = By, + f(n, B, By). Replacing this
formula in (4.62), we substitute (4.62) into (4.61) and write

d

EE(T) = / {[Qv - (I)mu - (I)van it c]::’wwf]B‘r - wa(B'r)2} dn (4'63)
0

Z . 1
+ @B |y + §Z(I)(Z,B(T,Z), B, (7, 2))- (4.64)
Now if we find functions p = p(n,v,w) > 0 and ® = ®(n,v,w) solving the system
—®, + Py + WPy = pf and Py =p, (4.65)

then we find that formally F has the form of a Lyapunov functional with a contribution
on the boundary, that is
V4 Z 1
B) =~ [ ol B BB dn+ BuB s+ 5200, B(r,2), By(r,2). - (466)
0

g
dr

Therefore to obtain this expression, we solve the system (4.65). To do that, from
(4.65) we deduce a first-order equation for p,

wpy + py = fPw = fuwp- (4.67)
Employing the function p, we can construct ® using (4.65) and find

w v

(I)(nv U, w) = /(’U) - S)P(ﬁ,’U, 8) ds — /P(U,M,O)f(ﬂa My O) dp. (468)

0 0

where f(n, 1,0) = —p + 2.
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4.7.2 The first-order equation for p

We solve equation (4.67) using the method of characteristics. Since p = p(n,v,w) is a
function in three variables, let introduce a smooth curve x = x(n) = (n,v(n), w'(n))
in R3. We shall obtain p by solving (4.67) along this curve; thus a solution p of (4.67)
is given by

d
P = fup, (4.69)
n
along the curves defined by
d d
gl — —wl=—1. 4.70
Tv=w Tul=—f (4.70)

In order to solve this system of ODE’s, we select a vector (o, vo,wp) € RT x R? and
introduce the solutions ¢(&) = ¢(&, 1o, v, wo) of the ODE:

"+ f(n,4,¢') =0, with @lp=p, =vo and ¢'|p=y, = wo, (4.71)

where ' = -2 Since the curve x satisfies equations (4.70), it can be expressed in terms
of ¢ by setting

U1(77) = ¢(n, Mo, vo, wp) and wl(n) = ¢/(77» 10, Vo, Wo). (4.72)

where v!(n9) = vo, and w'(ny) = wo. Noting that f, = % — 2 + inv, by (4.69), we
find

plo.ovw) = sl wo)expd [ 2= &+ 36000 e

7o

From the proof of Theorem 4.15, we see that is only necessary to define p in the
set R. For the moment we assume that the vector (n,v,w) € R, remember that
R={n>0,v>0,w<0}U{n=0,v>0,w=0}. Now for each fixed (n,v,w) € R,
we calculate p(n, v, w) by selecting a characteristic curve which connect this point with
a reference point (1o, vo, wo) for which we know the value of p. To select an appropriate
curve and a reference point, we study some of the properties of solutions ¢ of (4.71)
since they define the characteristic curves. It follows from standard theory of ODE’s
that solutions of (4.71) are locally smooth and continuous under perturbations. We
observe however that in general we cannot extend the solution to the whole R*. In
fact for each (n,v,w) € R, there may exist a £&; > 0 and/or a & > 0 such that

¢(§17 v, ’U)) = oo with 51 <n and/or ¢(§27 v, 'LU) = —oo with 52 > 1.

In light of this, we choose to use forward solutions of (4.71) to define the characteristic
curves. The next result show the possible behaviour of a forward solution ¢ of (4.71).

Lemma 4.17 Select (n,v,w) € R, and let (&) = P(&,n,v,w) be the solution of
(4.71). For & > n, exactly one of the three alternatives holds:
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(i) p=1or¢p=0;
(ii) there exists n* > n such that ¢(n*) =0 and ¢(§) < 0 for & > n*;

(iii) (&) — 0 as & — oo and there exists a constant C > 0 such that #(€)€2 — C as
& — 0.

Proof. Functions ¢ = 1 and ¢ = 0 are the only constant solutions of (4.71). To prove
(ii)-(iii), we divide the proof in three steps and we assume that ¢ is not constant.

Step 1. We recall a property found in [51]. If (&) = ¢(&,n,v,w) solves (4.71)
such that

#(&) > 1, ¢'(&) =0 for some large &, (4.73)

then ¢(&) becomes negative at some &; > &p.

Step 2. We next show that the solution ¢(&) is bounded from above for § > 7.
Multiplying (4.71) by ¢’ in the interval (s,7) we obtain

¢'(27")2 _ ¢'(28> ~ / [% _ % 1 %ﬂ (¢')2 dn — G((r)) + C((s))

where G(t) = 33 — % If ¢(s) = 3/2 and ¢(t) > 3/2 for all ¢t € [s,r] then
|4 (r)] < 16'(s)I.

This implies that ¢(&) is bounded from above for any finite £&. Suppose now that
¢ is unbounded as & — oo. Then, for ¢ large, and ¢(£) > 3/2, equation (4.71)
asymptotically becomes:

¢" +76¢" + 3¢ =0

for some positive v and §. This implies that there exists &; large such that ¢'(§1) =0
which is a contradiction with (4.73).

Step 3. We assert that if ¢(§) — C = constant then C' = 0. First observe that if
#(&) — C as £ — oo then C =1 or C = 0. Now, we claim that if ¢ is monotone near
infinity, then ¢(£) /4 1 as & — oo. In fact, assuming ¢ < 1, ¢’ > 0 and ¢” < 0 for £
large, then ¢ cannot satisfy (4.71) since we find the inequation

" + (%— + %é(b — %5) ¢+ ¢(¢p—1) <0 for some large fixed & (4.74)
A similar situation occurs if we assume 1 < ¢(§) < 3/2, ¢’ < 0 and ¢” > 0 for
large, now inequation (4.74) is satisfied with the opposite sign. The only remaining
possibility is for ¢ to approach C' =1 in an oscillatory way. This is not possible since
if ¢ has a maximum for ¢ large then property (4.73) holds. This proves the assertion
of this step.
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We finish the proof using these three steps. Suppose that ¢(§) — 0 as £ — oc.
Then equation (4.71) reduces for ¢ large to

w € . o
@~ ~p=10

and from here we deduce that ¢(£)é? ~ C as ¢ — oo. Combining this with the
assertion in step 3, we obtain possibility (ii).

Combining steps 2, and 3 we find that the only possibility left is (ii), that is
é(n*) = 0 for a finite n*. Note that once this occurs then ¢(£) < 0 for £ > n* since ¢
cannot have a negative minimum. M

Now with the properties of forward solutions of (4.71) at hand, we define a solution
p in R, along the characteristics. From the previous lemma we can classify the vectors
in R. We define {R;} fori =1...3,
Ry = {(n,v,w) € R: $(&,n,v,w) satisfies (i) in Lemma 4.17};
Ry = {(n,v,w) € R: ¢$(&,n,v,w) satisfies (ii) in Lemma 4.17};
R3 = {(n,v,w) € R: ¢(&,n,v,w) satisfies (iii) in Lemma 4.17}.
Using these sets, we shall define p on each subset R; C R with i = 1...3. In

the next result we introduce a parameter to give a definition of p with appropriate
estimates.

Lemma 4.18 There exists a large constant 7] such that for every n. > 7, we have
(& Mes€,—€) <1 for &€ (7,me)
forall0 <e<1/2, and 0 < €< 1.
Proof. Proving this lemma is equivalent to proving that each 7; large enough satisfies
the property
every solution ¢ of (4.71) with
(L) é(m) =1 and ¢'(n1) < 0 satisfies: for all gy > n;
with ¢(n2) € [0,1/2], —¢'(n2) > 1.
To prove (L) for large 11, we define the variable y such that & = 7y, and find the
equation
1 /. 4. A
0=—2<¢+—¢)-g¢+—y¢¢+¢2—¢, for y>1 (4.75)
m ) 2 3
¢(1) =—Dm, ¢(1) =1, (4.76)

where "= d%. Assuming 7, large then # < y?, and the dominant terms of the above
equation are '

T S S S S I
0= 26— 50+5u66+ ¢~ ¢ (4.77)
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Note also that ¢”(n;) < 0 for gy > C where C is a large constant. The equation
(4.77) near y = 1, becomes

and integrating we have ¢( } = —%nf[(% — 1¢)? — %] — Dn;. In the original variable
&, we have ¢'(§) = 2171[( 3¢ — %] D. This shows that ¢’ ~ n; and then larger
than 1 for ¢ < 1/2. To conclude, we set

7 = min{n;: with n; satisfying property (L)} + 1. H

Now we turn to calculate p in R. The idea is to use as a reference a point where
no = 7. In this way, owing to Lemma 4.18, we can obtain useful estimates for p.
However it can happen that the function ¢(&,n,v,w) is not defined at £ = 7. In
such situation, to define p, we introduce functions representing the intersection of
#(-,n,v,w) with the line ¢ = 0 for 7 < 7 and the line ¢ =1 for n > 7. We start, by
computing p(n,v,w) for (n,v,w) € R3 where ¢(7,n,v,w) € (0,1).

Case R3. Fix a point (n,v,w) € Rs. We choose 19 = 7, vo = ¢(7,n,v,w) and
wo = ¢'(7,m, v, w). Setting p(70, vo, wo) = nige~"/4, we find

p(n,v,w) = p(n,v () w'(n))

= et exp %&b(& i, (7, m, v, w), ¢ (7, m, v, w)) dE 5 . (4.78)
7

Now we explain the reason why we choose 79 = 7] as a reference point. This choice
allows us to estimate the height of ¢ for & > 7, which in turn permits to control p
for large 7. In fact, since ¢(£)é2 — C > 0 as & — oo, there exists 1. > 7 such that
(ne,n,v,w) = € < 1/2, and —¢'(ne,n,v,w) = € < 1, with € ~ n_ Then Lemma 4.18
implies ¢(¢) < 1 for £ > 7. Substituting this bound in (4.78) implies an exponential
decay for p as n — oo.

Case R;. Points in R; are of the form (n,1,0) and (7,0,0). Substituting ¢ =1
and ¢ = 0 into formula (4.78) gives

52 :

p(n,1,0) = nleFe %, and p(n,0,0) =n'e”T. (4.79)

G’HO

Case R;. We provide a definition for p dividing Ry in two disjoint subsets:
Rza:RzLJ{T]Sﬁ} and RQb:RQU{T]>17}.

Case Rs,. Fix a point (1,v,w) € Ra,. Let n* be given by Lemma 4.17 and
define the function Lg: Ra — R such that Lo(n,v,w) = min{n*,7}. Note that the
function Lg is continuous and represents the point n* where ¢(n*,n, v, w) vanishes or
equals 7 if ¢(7,n,v,w) > 0. To find p, we choose (1o, vo,wo) = (7,0, &' (n*,m,v,w)),
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and set p(no, vo, wo) = nde~"/4. This gives

p(n,v,w) = p(n,v*(n),w' (1)) = ne™/4x
n
e / 2606, Lo(n, v, 0),0,6 (Lo(n, v,w),mv,w)) dE . (4.80)
Lo (n,v,w)

Case Ry;,. Here is convenient to define for any (1, v, w) € Rgp, the function Ly : Rop —
R*, by

max{max{¢ € (0,n) | ¢(n,&,v,w) 2 1},7} if v <1,
Li(n,v,w) =
min{¢ € (n,00) | ¢(n, &, v,w) <1} if v>1.

The function L; is well defined for v < 1 since by contradiction if ¢(n, &, v, w) = 0 for
& > 7 then ¢ has to attain a local maximum below the line 1, which is not possible.
For v > 1, L; is well-defined by Lemma 4.17. Note that ¢(L1(n,v,w),n,v,w) < 1.
This function is continuous and represents the value 7, where ¢(n.,n,v,w) = 1 or
equals 7 if ¢(7,n,v,w) € (0,1) when v < 1. Fix a point (n,v,w) € Rap. we select
no = L1(n,v,w) and set p(no, vo,wo) = ndem0/12¢=7°/6 Then p is given by

p(n,v,w) = p(n, v} (n), w'(n)) = yte ™"/ 127" /0x
n

X exp / %5[(15 (§7L1(777'U,w),1,¢,(L1(777an),77,v,w)) - 1] dé. s (481)
Li(n,v,w)

4.7.3 Properties of p and ¢

In the previous section, we have find p solving (4.67). Here we show that this solution
together with @, satisfies the required properties to prove Theorem 4.15.

We now prove a result which provide a lower bound for p in a subset of R.

Lemma 4.19 Let M and M be the constants given by estimates (4.36) and (4.37)
respectively. Then there exists a large constant fjo such that the function G: Rt — R
given by

G(n) = max{Li(n,a,b) | I<a<Mand —M <b<0}

satisfies G(n) < Cn for some constant C = C(M) > 0.

Proof. First note that G(n) = L1(M,0,n) for n > fj, if we take a large enough
o > 0. Therefore for n > 7o, we define the variable y > 1 such that £ = ny. Asin
(4.77), we find the problem

0=%$—g¢+%y¢q§+¢z—¢> for y>1, $1) =0, andp(1) = M. (4.82)
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We have two possibilities, either M > 3/2 or M < 3/2. Suppose first that M < 3/2.
A solution of problem (4.82) has the form

o(y) = %(y— 1)+ C(1 - ePn-V) 4 M (4.83)

for A, B, C positive constants. Then for some y close to 1, the solution ¢ crosses 1,
which solves this part. Suppose now that M > 3/2, in this case we have for y near 1,
a solution of the form (4.83) with B < 0. In this case for some y; near 1, the solution
takes the linear form ¢ = -’g—;(y — 1)+ C + M. Hence the equation in (4.82) with small
second order term becomes

(¢—¢2)+y(%—§>¢=0

and is valid till ¢ is near 3/2. From this equation we can estimate where is the yo
such that ¢(y2) = 1. Integrating above equation in the interval (yi,y2) estimating

¢(y1) = M we find

M3(@a -1
% - __(M(f 1)a-’2 with a = 3/2.

At the point y = y2 the equation takes now the form n% =—-A+ yz(% — %)(ﬁ and
integrating

this shows that for y near y, the solution crosses the line 1. We conclude by noticing
that G(n) ~ yan, and by the above analysis y2 ~ M?2. This proves the lemma. W

Now to obtain estimates for p and ®, we narrow the set R and define
R=RN{0<v<M,0<—w< M}

where M and M are constants given by estimates (4.36) and (4.37). Also as a conse-
quence of the above lemma, we redefine if necessary 7 = max{7,7o}.

Lemma 4.20 The function p is continuous in R\{n = 7,v > 1} and for (n,v,w) € R,
one finds

p(n,v,w) < 1746_”2/12. (4.84a)
In addition if (n,v,w) € R, then
1
p(n,v,w) = Zontem (4.84b)
0

for some constant Cy = Co(M) > 0.

Proof. We start by proving (4.84). We abuse notation and redefine R; = RN R; for
7= 1..3.
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If (n,v,w) € Ry the estimate (4.84) follows directly by definition. If (n,v,w) €
Rs,, using that ¢ > 0 in (7, Lo(n,v,w)), then the integral in (4.80) is negative, and
implies p(n,v,w) < n4e"’2/4. The continuity of ¢ in (1, Lo(n,v,w)), produces the
lower bound C(M)nte=""/* < p(n,v,w), where C(M) < 1.

C(M)n'e"/* < p(n,v,w) < e /% for (1,0,w) € Roa, (4.85)

for some C(M) < 1. From which (4.84) follov&zfs. For any (n,v,w) € Rap, we use (4.81)
and find the upper bound p(n, v, w) < nie=""/12¢=7"/6, For a lower bound, we find

p(n,v,w) > nte=" /4 for v<1,
p(n, v, w) > nle=n"/12¢=7"/6¢=C(M)n* for v>1,

where C(M) > 0 and we have used Lemma 4.19 for v > 1. Finally for (n,v,w) € Rs,
we have two cases, if < 7] then the estimate (4.85) holds and if n > 7 then the above
estimate for Rgp with v < 1 holds.

Claim. p is continuous in R\ {n =7, v > 1}.
Before to prove this we note that Rs is an open set and R; and R3 are closed.

We first see that p is continuous within Ry, and Rap, by continuity of Lo and L;.
For the elements in R;, the definition of p is as for Rs, therefore there is continuity
of p between Ry and R;.

The delicate part is to proof continuity between Rz and R,. Taking a sequence
(M, Un, wn) € Ra, we associate a solution ¢y, (-, 7n, Un, Wy ). Suppose that (1, v, wy) —
(n,v,w) € R3. Now if ¢(-,n,v,w) is the solution of (4.71) then ¢, — ¢ in compact
subsets of R*. Therefore by Lemma 4.18, for n > ng € N, we find ¢,(77) € (0,1).
Then (1, vp, w,) € Re for n > ngp, have the same definition of p as for (n,v,w) € Rs.

Finally if v <1 and n = 7, then p is continuous. If n close enough to 7 then we
have that 79 = 7. So the computation of p uses the same formula, independent of the
subset of R to which (n,v,w) belongs. Bl

For @ we deduce the following lemma

Lemma 4.21 The function ® is continuous in R\{n = 7,v > 1} and if (n,v,w) € R,
then

2
(n,v,w) < {w? + Yyt /12

and
®(n,v,w) > —P(v)pe /1

where P(v) = % forv>1 and P(v) =0 else.

Proof. Follows directly from the definition of ® (4.68) and using the upper bound
for p (4.84a). A
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4.7.4 Regularizing argument

In the beginning of this appendix, we formally constructed a Lyapunov functional
E(7) with ® and p satisfying (4.66). In the previous section, we obtained a solution p
of (4.67) and ® given by (4.65). Moreover these functions satisfy the properties found
in Lemmas 4.20 and 4.21. From these results we do not obtain enough regularity to
derive (4.66). To do this, we need to introduce a regularization of ®. This is done in
the next result.

Lemma 4.22 Let p be a solution of (4.67) obtained as in the previous section and ®
in terms of p by (4.65). Then for a given 72,71 > 0 such that T2 > 71, we have

E(r) — E(my) = — / / p(1, B, By)(By)* dndr + (1, ™), (4.86)
71 O

where 1 is defined by (4.47).

Proof. First for the analysis that follows we extend p and ® to R3 by setting it to
zero outside R. Define o € C*®(R?) by

0 if 2| > 1,

and C = ([ 0)~!. Set ge(z) = Ce ?p(z/e), and note that this family of functions
satisfies [ g.dz =1 and supp(o.) C Bo(€)-
R2
Let ¥: R?> — R be any locally integrable function. We define for ¢ > 0 the
translation U¢(n,v,w) = ¥(n — €,v,w) and its mollification ¥, = g * ¥¢ in R3, that
is

U (n,v,w) = /Qe("? —e—y1,v —y2)¥(y1, y2, w) dy1y2
R3
= / 0e(Y1,Y2)¥(n — € — y1,v — Y2, w) dy1dy2
By (e)

for (n,v,w) € R3. Note that this convolution is only in the variables (n,v).

For @ it is enough to regularize only in the variables (7, v) since it has the required
regularity in w. In fact, since p is continuous in R\{n = 77}, 4w = p is also continuous
in R\ {n = 77}. Therefore ®. € C?(R) and we may write

T2

E.(m3) — E (1) = +//{L(I>€BT — ((I)e)ww(BT)z} dndr
0

T1

+ / (@.)uB: |2 dr+% / £, (2, Br 2), By, 2))dr, (4.87)

T1 T1
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z
where E.(7) = [ ®.dn and we have introduced the linear operator L®, = (®.), —
0
(Pe)nw — W(Pe)vw + (Pe)wwf. The idea is to obtain (4.86) from (4.87) letting € — 0.
To prove (4.86), we first show that

//(L@e)(n, B(n,7),By(n,7))Brdn — 0 as €— 0. (4.88)
71 0

To prove this we first examine the expression (L®.)(n, v, w). Recalling that p = @,
in the sequel we write p. = (®¢)ww. Since the derivatives of ® in the variable n and
v are weakly defined, the equation L® = 0 is understood in the weak sense. In
particular, we have 0 = [L®|. and we find

L(I)e = ((I)e)v - ((I)e)nw - w(q)e)vw + pef
= [L®]c + pef — (pf)e
= pef = (pf)e-

Using this expression, we turn to prove (4.88). We proceed in two steps.

1. We assert that

[L®](n, B, By) = [(pf)e — (p)f1(n, B, By) = 0 forall (n,7)€ (R*)? n#q.
(4.89)
This gives pointwise convergence of L®(n, B, B,)B, — 0 a.e. in (R?)*. This follows
since B, is bounded on compact sets if (7, B, B,) € R. See beginning of proof of
Theorem 4.15.

The convergence in (4.89), is a consequence of

(pfle = (pe)f — 0 forall (n,v,w)eR, n#7n. (4.90)
To confirm this, let V' C R be open and such that (n,v,w) € V with n # 7. Then
I(ef)e = pfllcovy < N(pfe — (Pf) llcovy + (o) — pfllcovy.- (4.91)

The second term on the right hand side converges to 0 with e, since pf is uniformly
continuous on bounded sets; and the first term also vanishes in the limit because (pf)¢
is continuous. On the other hand

lpef — pflicowvy < lpef — P fllcoqvy + Ip°F — pfllcoqvy. (4.92)

By reasoning similar to (4.91), the right hand side goes to 0 with e. Combining (4.91)
and (4.92), the assertion (4.90) is proved.

2. We claim that there exists g € L*(R* x (1,72)) such that |L®.(n, B, B,)| <
g(n, 7). To find g, it is convenient to write

|IL®c(n, B, By)| < |(pf)el + |pef -
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The first term can be written as

|(pf)e| = / 0e(y1,y2)[pfl(n — € = y1, B — y2, By) dy1dy2| -
o(e)
Then
|(pf)e’ < sup [pf]e(s,t,Bn).

n—e<s<n+te
B—e<t<B+e

Using the form of f and the estimates on p, we obtain
4_-—n?/12 1 3
|lof](n, v, w)| < Cn’e (5 +Cn) for (n,v,w)€R (4.93)
for C > 0 a constant depending on M. Using this estimate, we find
|(pf)e| < g2(n) == Cmin{n®, (n + 2¢)e~(12°/12},

Similarly, using now the estimate 0 < p(n,v,w) < nte=""/12 for (n,v,w) € R, we
obtain

pefl<|  sup  p(s)| 1] < ga(m) := Cmin{n?, (n + 2¢)te” (1+29°/12},
n—e<s<n+te
B—e<v<B+e

Taking g = g1 + g2, we have g € L}(RT x (71,72)) which proves the convergence in
(4.89).

Reasoning as in the proof of (4.88), we obtain

T2 2 T2 Z
//pEBE dndr — //pBE dndr as €— 0. (4.94)
T1 0 71 O
In fact using the argument to prove (4.89), we deduce
loc — pl(n, B(n,7), By(n,7)) = 0 forall (n,7) € (R")? n#7. (4.95)

Moreover the estimate 0 < p(n,v,w) < Cnte=""/12 for (n,v,w) € R, yields

bl < sup  [ol(s,t,By) < ga(n) = Cmin{n?, (5 + 2¢)te="+297/12},
n—€eSs<n+te
B—e<t<B+e

This combined with (4.95) concludes the proof of (4.94), since g3 € L*(R* x (11, 72)).

In the same manner, we can proof that E.(7) — E(7) as € — 0, as well as the
convergence of the boundary term in (4.87). Combining these results with (4.88) and
(4.94), we let € — 0 in (4.87) to find (4.86). W



Chapter 5

Asymptotic results for
injection of reactive solutes
from a three-dimensional well

5.1 Introduction

Suppose a homogeneous and saturated porous medium occupies the region
Qe = {z € R |z| > €}

Here € > 0 denotes the radius of an injection well, which induces a radially symmetric
flow in Q.. At a certain instance (¢ = 0), a reactive solute at tracer concentration
is added to the fluid in the well and subsequently carried into the porous medium.
Within the medium, the solute interacts with the porous matrix by means of equilib-
rium adsorption.

Following van Duijn & Knabner [33] or the introduction of this thesis, where a
detailed derivation was presented, we find for the scaled solute concentration u: Q. x
[0,00) + [0,00) the following nonlinear initial-boundary value problem:

B(u): +divF =0 in  Q, t>0 (5.2)
(Pe) F.e. =u.q-e, on 09, t>0 (5.3)
u(+,0) = ug(-) in Q. (5.4)

This chapter has appeared in Journal of Mathematical Analysis and Applications [31]
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Here F' = q u — Vu denotes the solute flux, ¢ = ﬁer the induced flow field, and
A > 0 the Peclet number of the problem, which combines the effects of flow rate and
dispersion. In (5.3), u. denotes the solute concentration in the injection well and e,
is the unit vector in radial direction. The adsorption mechanism is accounted for by
the nonlinear term 3 = (u). Generally it takes the form

B(u) = u + P(u), (5.4)

where 1 is called the adsorption isotherm (see for instance VAN DUIJN & KNABNER
[34]). Typical examples are

klu

1+ ko’ ki,ky >0, (Langmuir isotherm)

P(u) =

or
Y(u)=kuP, k>0, pe(0,1)  (Freundlich isotherm).

In a two-dimensional setting, Problem P, was previously considered by van Duijn &
Knabner [33] and van Duijn & Peletier [35]. In [33] the authors derived a radially
symmetric self-similar solution of equation (5.2) of the form u(r,t) = f(r/ V/t). This
solution is defined on all R? but does not satisfy boundary condition (5.3). In [35]
it was demonstrated that this solution describes the large-time behaviour for general
two-dimensional radially symmetric solutions of (5.2)-(5.3) and rates of convergence
were given.

The existence of self-similar solutions in two dimensions requires the well injection
rate to be constant in time. In three spatial dimensions self-similar solutions still exist
but require the injection rate and therefore A to grow as V/t. From a practical point
of view this is an unsatisfactory setup and the main goal of this paper is to investigate
the large-time behaviour of solutions under a constant injection rate. We do this in
the framework of a contamination event (see also [35]), i.e. assuming that far away
from the well no solute (contaminant) is present.

Two natural questions arise form Problem P.: the behaviour as ¢ | 0 and as
t — oo. Since in [35] the authors were only concerned with radially symmetric
solutions, their proofs of the limiting behaviour as € | 0 and as t — oo follow essentially
along the same lines. This is due to the scale invariance of the equation and the
boundary condition. In this paper the proofs are quite different and are treated
separately.

We first consider the behaviour as € | 0. Taking the formal limit in the combina-
tion (5.2)—(5.3) yields the equation

B(u)s + div(F) = uebp—o in R3, >0 (5.5)

where §,_o denotes the Dirac distribution at the origin. Thus the boundary condition
at the well appears as a source term in the equation. We refer to (5.5), together with

the initial condition
u(-,0) =up(-) in R3 (5.6)

as Problem Py or (Py).
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Regarding the initial conditions (5.4) and (5.6), we take (5.4) as the restriction
of (5.6) to €2, and assume

|z]—o00

(Hy,) uo € L®(R3); up>0inR3 lim wo(z) = 0; /ﬂ(uo) dzr < 0.
R3

Note that we allow non-radial initial data.

With respect to the nonlinear capacity term 8 = 5(u) we assume the regularity
(Hpl) B € C%(0,00) NC([0,00)),
and the structural properties
(Hg2)  B(0)=0, B'(s) >0, and B"(s) <0 for s > 0.
Later, when we consider the large-time behaviour, we will add some additional hy-

potheses, essentially expressing that 3(u) behaves as u? (0 < p < 1) near u = 0%.

Since equation (5.2) is scale invariant, we may set A = 1 after redefining € := ¢/A.
By redefining 5(u) := B(ueu)/ue we may also set ue = 1.

Our first theorem makes the stabilization as € | 0 precise.

Theorem 5.1 Let (H,,) and (Hgl-2) be satisfied. Further, let u® be the unique weak
solution of (P¢). Then

u¢ - u as €—0, uniformlyin compact subsets of (R®\ {0}) x RT,

where u is a weak solution of Problem Py.

The definition of weak solutions as well as the proof of Theorem 5.1 are given in
Section 5.2.

Next we consider the large-time behaviour. We expect that different small well
radii (€) lead to the same large-time behaviour. This was shown rigorously [35] for the
two-dimensional case. With this in mind we consider only the large-time behaviour
for Problem Py and for technical reasons we limit ourselves to radially symmetric
solutions. Before we state the convergence result, we provide some motivation.

The radial form of equation (5.5) is:

1-2
Blu)+ gt~y =0 in 0<r<o00, t>0, (57)

and, as shown in Proposition 5.15, its solutions satisfy the boundary condition

u(0,t) =1 forall t>0. (5.8)
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The initial condition takes the form
u(r,0) = up(r) for 0<r <oo. (5.9)

Equation (5.7) admits a nontrivial stationary solution w = w(r), satisfying w(0) = 1
and w(oco) = 0. It is given by

w(r) =1-e /7, (5.10)
and under the conditions of Theorem 5.3 below the solution u converges to this
stationary state.

The appearance of (5.10) is quite different from the two-dimensional case. There
the only bounded stationary solution satisfying w(0) = 1 is the constant state w = 1.
In [35] it was shown that the solution attains this state in a self similar way, namely

u(r,t) ~ f(r/vVt) as t— o0
where f(0) = 1.
In this paper we assume an analogous behaviour with respect to (5.10), i.e.

u(r, t)
w(r)

for some a > 0, where f(0) = 1. To this end we set

~ f(r/t*) as t— o0 (5.11)

u(r.t)
w(r)

Z(r,t) ==
and introduce the coordinate transformation
7 =r/t®, T = logt.
Then z(n,7) = Z(r,t) satisfies:

e—a‘r . 27]
n2
To obtain the convergence (5.11), we study the large-7 behaviour of (5.12). In partic-

ular we need to select the exponent « so that the appropriated terms in (5.12) balance
as T — oo. For this purpose we rewrite the equation as

e DT [B(zw), — anB(zw)y,] + (zw)y — (2w)ny = 0. (5.12)

1
e@=D76 zw)z, — aeP* VT8 (2w) 2, — 2y + —A (

= ) 2 =0,  (5.13)

neC\fT
where A(s) := 6725—1 + s — 2 with liII(l) A(s) = 0.
. Lo
To find the appropriate balance, we observe that for fixed n > 0, 7 — oo implies
r — oo. Since u(r,t) — 0 as r — 00, the behaviour of 3 near 0 is critical. Let us

assume
B(s) ~sP (0<p<1l) ass]O. (5.14)
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Using this and w(r) — 1/r, as r — oo, we find that the second and third term in
(5.13) balance if and only if &« = 1/(3 — p).

The resulting equation is

an® P(fP)y + fan =0 or an'P(fP)y+ (nfy — f)y =0 for 0 <y < oo, (5.15)
where f(n) := lim z(n,7). Note the resemblance between (5.15) and the limiting
T—00
equation obtained in [33].

Before we state the main convergence theorem, we specify some additional hy-
potheses on 3. Related to (5.14) we assume that there exists 0 < p < 1 such that

(Hp3) pﬂslg )1 =L+ 0(s") as s |0,

for some ¢ > 0 and v € (0,3 — p). Furthermore we assume the lower bound

.. B(s)
Hg4 = .
(Hp4) selﬁ)f,lj a1 m >0

Let Bp(s) := £sP and p(s) := &ﬁé(—s)

psP~

Remark 5.2 The simplest function (3 that satisfies (Hgb—4) is
B(s) =ks? pe(0,1],

with £ = m =k, ¢ =0, and for any v € (0,3 — p). Hypotheses (Hg3-4) are also
fulfilled by the examples given at the beginning of the introduction. In the case of the
Freundlich isotherm,

B(s) = s+ks” pe(0,1),

we have £ =m =k, and v =1 — p. Note that this choice implies p(s) = 1/p > 0. In
the Langmuir isotherm case,

kis

Ble)=s+17

k17k2 >07
we have p=1, £ = ky + 1, m—1+m, l,andcp(s)z—klkz(%;%ggo.

Below we use the notation [-]4 := max{-,0}, ¢4 := [p]+, and p_ := [—¢] ;.

Theorem 5.3 Let hypotheses (Hzl—4) and (H,,) be satisfied, and let v be a weak
solution of Problem Py. Then we have the followmg estimates:

(e o]
0< ep‘”/ — fPwP)in?dn < L1e™ + L|p_||pce™ " (5.16)
0
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for all T € R, and

o0

0< e [1fPuP —wPlnf dy < Lae™™ + Lljpy e (5.17)
0

for all 7 € R. Here Ly, Lo, and L are positive constants and o = 1/(3 — p).
The function f is the unique solution of

(S) an2_pﬂp(f)n vl fnn =0 for0<n<oo,
f(O):l, f(OO):O

Figure 5.1 shows the limit function r — w(r)f(r/v/t) for different ¢, in the case
p=1,

wf

0 14

r

Figure 5.1: The function 7 — w(r)f(r/v/); t = 1, 25, 400.

Remark 5.4 Note that the constants in the estimates of Theorem 5.3 depend on p.
For instance, it follows from the proof that if p = 1 then Ly = 0. An immediate
consequence of this fact concerns functions B of the form

kls
by 0-
ﬂ(s) s+ kQS 1 k‘l, kg 2

Here p=1 and ¢ <0 (Remark 5.2), so that fw < u.

Remark 5.5 The mass of the system increases linearly in time. The scaling used in
(5.16) (and (5.17)) is chosen to normalize the increase of mass:

1 o0 [ee)
Z/[u” — fPwP)yr?dr = ePoT /[u” — fPwP)1n? dn.
0 0

In this scaled metric the solutions u and fw converge. In the unscaled (original)
metric the distance increases without bound.
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We conclude with a statement about the applicability of the results. Problem P,
clearly describes an idealized flow model. Homogeneous porous media with spherical
symmetry do not occur in any practical setting. Problem P, and related questions
are studied mainly out of mathematical curiosity, in particular to understand the
difference between the two and three dimensional case. Having said this, we see two
reasons why our results could be of interest to applied researchers.

(i) Idealized models such as Problem P, can be used as benchmarks for complex
contaminant transport codes.

(if) In practical situations there is often a need to work with local solutions near sin-
gular points (such ar wells). Our stability result and error analysis can be used
for that purpose. Replacing the contaminant concentration by the self-similar
solution in a neighborhood of a well will considerably reduce the computational
effort, since less grid refinement is required.

5.2 Convergence as € —

5.2.1 Weak solutions of (P,)

Let T be a fixed positive number which eventually tends to infinity and let ES =
Q¢ x (0,T]. Note that we have rescaled the problem such that u, = A = 1.

Definition 5.6 A weak solution of Problem P, is a non-negative function u such that

(i) u € C(E%) and Vu € L*(E%),

(ii) For every test function ¢ € L2(0,T; H' (%)) N H(0,T, L*()) that vanishes
for large |z| and att =T,

/{ﬂ(u)¢t + (qu— Vu)Ve}dzdt + /ﬂ(uo)qS(O) dz +
ES. Q

T
1
+6—2/ / ¢ dSdt = 0. (5.18)
0 2o

Qe

If u satisfies (i) and (i) with the equality replaced by > (<) and with ¢ > 0 in ES then
we call u a sub(super)solution. Here and in the sequel, we use the obvious notation

$(0) = ¢(t = 0).

Theorem 5.7 (Existence for (P.)) Let(H,,) and (Hg1-2) be satisfied. Then there
exists a unique weak solution of (P.).
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The proof of existence will be given in Section 5.2.3, the uniqueness follows from
Proposition 5.10 below.

Proposition 5.8 Let u be the weak solution of Problem P.. For eacht >0,

[ Beyde = [ Bu)do -+ am.
Qe Q.

The proof of Proposition 5.8 follows along the same lines as in [47].

5.2.2 Uniqueness of (P,)

Throughout this section we denote Q7 = {z € R® | € < |z| < m} and similarly
EZ™ =Q" x (0,T].

In order to prove the comparison result for Problem P, we introduce as in [30]
an equivalent definition of solution, which we call generalized solution:

Definition 5.9 A generalized solution of Problem P, is a function u satisfying:

(i) u is bounded, nonnegative, and continuous on Eg;

(ii) for any t € (0,T) and any bounded domain Q, C Q. with smooth boundary
0. :=T . UT, such that . C B, and I N 9B, = 0,

/ﬂ (u(t))o(t) de — //{ﬁ )0t + uqVep + ulp} drdt +

+€l2 O] F/ dSdt + O/t F/ ud, ¢ dSdt = Q/ Bluo)p(0)dz  (5.19)

for all p € C*H(QL x (0,t]), ¢ > 0 with 8¢/0v =0 on e x (0,t) and ¢ =0 on
I x (0,t].

We define a subsolution (supersolution) by (i) and (ii) with the equality replaced by
< (2)-

For the proof of equivalence between generalized and weak solutions we refer to [30].

Pr0p051t10n 5 10 Let u' and u® be generalized sub- and supersolutions with initial
data u} and u? respectively. Then for any t € [0,T], we have

JECOREE0 m</W% w3+ d.

Q€
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Proof. Let 4 = u' —u? and 8 = B(u') — B(u?). Subtracting equations (5.19) we find

t

/ Bt)o(t) dx — / B(0)$(0) dx < / / (B(t)0ud + a(qV + Ad)} dadt
Q QL

0 Q

’
_ 0/ F/ ad,pdSdt.  (5.20)

Following [5] we define a family of weight functions wy: R? — R*, for each A > 0, by

(@) = 1 if |z| € (¢,1),
DAITIZ eV E-D i |g) € (1, 00).

Hypothesis (Hg2) implies that there exists by > 0 such that 5'(s) > by for all s € R.
We define A: Q. x R — R by:

ﬂ(uiz:ﬁ(uz) if 4l + u2’
b() if u1 = u2.

A(z,t) = {
We choose £ € C°(2) such that 0 < & < 1, with ¢/0v = 0 in T'.. In addition let
QL = Q" where m > 0 is such that supp¢ C B,,. We introduce smooth functions
A Q% (0,T) — R, satisfying

1 A, —A
0<b0SAmS IAH oo (Be) + —, “ e
4l (ER) T, VA

Consider for each C,, the problem

An0-0+qVop+Adp = Ao in Q" x [0,
O¢ = 0 on 0B x|0,t]

¢ = 0 on 9B x [0,

b@,t) = E@r(z) i Q.

(PAm)

This equation has a unique solution ¢, € C*>1(Q™ x [0,t]), ¢y, > 0. Using ¢,, as a
test function, we find

/ Bt ey () de — / 3(0)m (z,0) dz < / (A — Ay) s davdt
om om

Ef

A / Bl — /t / @b dSdt.  (5.22)

Ef 0 ar,,
Lemma 5.11 The functions ¢, satisfy the following properties:

(i) 0 < ¢ < wy in Ef
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(ii) / A |0y b ?dzdt < C;

€,m
Et

0<7<t

(iii) sup /|V¢m(T)|2da:§C;
Qr

(iv) 0 < —¢my < Ce=v2™  0ndB,, x [0,1].

estimates. To prove (iv), we follow the ideas of [5]. We fix mg < m such that
suppé C B, and define @ : By, — [0,1] separately on the two subsets By, and
Q.- In B, we set Wy = wy, and in Q7 we define Wy as the solution of

qVaoy + Ay — vy = 0 in Q%O
@y = wy on 0Bp, (5.23)
wy = 0 on O0Bp,.

By (i) we have 0 < ¢,, < @ on By, x (0,t]; by an application of the comparison
principle on Q7 x (0,#] it follows that 0 < ¢, < @y on Q" x (0,t]. Therefore
0 < —pmy < —@r, on OB,,. To estimate @), we introduce another auxiliary function

@y, defined by @) = wy in B, and the solution of

Ay —Awy, = 0 in Qmo
Wy = w) On 8Bm0 (5.24)
wy = 0 on OB,

in Q7 . By a standard argument we have Vay - e, <0 in Q7 . The function @) is
therefore subsolution for (5.24). Then

0< —¢mw < —Wxp < —@xy on 0By

which proves (iv), because wy, < c()\,mo)e_‘/xm on 0B,,. A
We continue the proof of Theorem 5.10. Using (5.21) and Lemma 5.11 the in-
equality (5.22) yields
[ 6 @) - sengerds < [ 1) - BB da
Qm Qr

+ / (A — Apm)Or ¢, dzdt + / Mu! — u?)wy dzdt + Cm e~ VAm,

€,m €e,m
B ES

With the estimate

. \Y Amat¢m ||L2(Ef’m)’

A—A,
\/A_'m- HL?(E;'")
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we find in the limit m — oo,

/ (B (1)) — BE(t)))ws do < / Bud) — B(ud)] s da +

Q Qe

/ Mu! — u?)wy dzdt. (5.25)
Eé

In (5.25), we take a sequence {&,} that converges pointwise to sgn(3;). We then let

A — 0 to obtain the result; the convergence of the term [ A(u!— u?)wy dzdt follows
E™
from the L'-bound (Proposition 5.8) and (Hz2). B

5.2.3 Existence for (P,)

Now we use solutions of a regularized problem to prove the existence of solutions for
(P.). Let &, := 1/n and introduce the approximations {uo,} and {unc},

ton € CO(R3), with |lugnllz= < lluollz= + ou;
Uy | g uniformly on compact subsets of €);
uon(z) =6, for n—1<|z| < n;

Vugn(z) -, =0 at |z|=¢€

and
Une(T,t) := 1 — (1 —ugp(z))e™™ for |z|=€ and 0<t<T.

Then consider the regularized version of (P.),

([ B(u); +div(F) = 0 in EZ",
F.e, = upq-e at |z]=¢ t>0,
(Pne)
uw = 6, at |z|]=n, t>0,
1 u(z,0) = wupp(z) in QF.

Let u, € C®(E") N C?+*1+e/2(EL™) be the unique solution of (P,) (see [58],
Theorem 7.4), which satisfies

671 < u;(z,t) < maX{HUOHL""v 1} + 5na
and
/ |Vué |2 dedt < M, (5.26)
EL™

where M is independent of n and € (see [74], Theorem 4).

With the above estimates, we are ready to prove the existence for (P.).
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Proof of Theorem 5.7. For this proof we fix ¢ > 0. Using Bernstein estimates
as in [65], we find

||Vufl(:r,t)||Loo(Q$1/mx[%yT]) < C(m) forall n>m. (5.27)
Using GILDING [46], we find that, for n > m,
jug, (2, t2) — uS, (2, t1)] < C(m)|t2 — ta]? (5.28)

for all 1/m < ¢, <ty <T and z € Qﬁ_l/m. By a standard argument we combine

estimates (5.26), (5.27), and (5.28), to conclude the existence of a solution of (P¢).
2]

5.2.4 Weak solutions of Problem P, and proof of Theorem 5.1

We now turn to Problem Py. Let Er = R® x (0,7).

Definition 5.12 A weak solution of Problem P is a non-negative function u such
that

(i) v € C(Er) and Vu € L?(Er).
(ii) For every test function ¢ € H*(Er) with [ |q||V¢|>dz < oo, that vanishes for
R3
large |x| and att =T,

/ [B(u)py + {qu — Vu} V] drdt + / B(uo)¢(0) dx +

Er

R3 .
ar [ $(0,t)dt = 0. (5.29)
/

If u satisfies (5.18) with the equality replaced by > (<) and with ¢ > 0 in Er then we
call w sub(super)solution.

Remark 5.13 Since |q| € L},.(R3), the integrals in (5.29) are well-defined,

loc
‘/quv¢>d$
R3

D)
<( [ tahac) ([ raivor i) <o
supp ¢ supp

The existence of a weak solution of (Pg) is a consequence of Theorem 5.1. Uniqueness
holds in the class of solutions of (Pg) that are obtained as limits of solutions of (P.),
since the comparison principle (Proposition 5.10) carries over to the limit. However,
due to the singularity of g at the origin, uniqueness in the class of all solutions of
(Pg) remains an open question.

We have the following properties of the weak solution of (Py).
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Proposition 5.14 Let u be a weak solution of Problem Py. Then

/,8 dm—/ﬁuo Ydx +4nt  for all t>0.

The proof of this proposition is similar to the proof of Proposition 5.8.

The singularity of g at the origin creates a “pseudo-boundary condition”:

Proposition 5.15 For any weak solution uw of Problem Py we have

u(0,t) =1 for 0<t<T.

Proof. Consider a fixed function p € C°(0,7), and the functions 7, : R® — R given
by

(r) = 1—nr ifOSrS%,
= o if L <7,

Let ¢n(z,t) := p(t)nn(|z]). We estimate [ quV¢y, dx by
Er

T

T
/ nf {ule)o(0)dt <~ / G, Bt < / aup fulz, O} () &t

fl:EBl
0 BEr n

therefore in the limit, n — oo, we find

n—0o0

T
lim | quV¢, dzdt = —4~n / u(0,t)p(t) dt.
Er 0

Using the boundedness of [ |Vu|?dzdt,
Er

1 1
3 3
< (/ |Vu|2da:dt> (/ |V77n|2dxdt) -0
Er Er

asn — 0o. As u is bounded near the origin 0 < | [ B(u)(¢n)¢dzdt| < C [ n,dz — 0
Er R®
as n — oo, and with a similar argument [ 3(ug)¢,(0)dz — 0 as n — oo.
R3

} / VuVey, dxdt
Er

Using the above estimates and taking the limit in (5.29) as n — oo we have
T
/ (0,t) = D)p(t)dt =0 forall pe CX(0,T),
0

which proves the lemma. W
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Finally we are ready to prove Theorem 5.1.
Proof of Theorem 5.1. Using estimates (5.27) and (5.28), we have

”’U‘e” 0+1,0+4 (om 1 < C(m) for all €< l/m.
c (@7, % [&.T])

Extending u¢ by zero on B, we extract a subsequence of u¢ that converges a.e. in Ep
to a limit u.

Fix ¢ € C([0,T) x Rg) Since u€ is uniformly bounded, and |g| € L},.(R?), the
pointwise convergence of u¢ implies

lirr(l) / quVo dxdt = / quV ¢ dxdt.

Er

Using the bound [ |Vuf|?dzdt < M, we have (after extracting a subsequence),
2

/Vuev¢dxdt—> /Vqubdxdt as €—0.

Therefore
liII(l) B(u)¢s + (qut — Vu)Vodzdt = / B(uw)p: + (qu — Vu) Vo dxdt.
Es. Er

Furthermore by the continuity of ¢ we have

/ﬂuo r0d$+//—d5’dt—>/ﬂu0 a:de+47r/T¢0t)dt.

0 9Q. 0

as € — 0. Combining these results we conclude that u satisfies equation (5.29) for all
¢ € C([0,T) x R3). To extend this equation to all ¢ as mentioned in the definition
we note that the set C°([0,7) x R3) is dense in the set of all such ¢ with respect to
the norm

161720y + 1617280y + (Vg + DVolli2(g,-
[ |

5.3 Asymptotic behaviour for a solution of (Py)

5.3.1 Preliminaries

To study the long-term behaviour we consider an extension to Problem Py:
B(u)e +div(F) = dz=0+G(z,t) in R3 t>0

(Po)
u(z,0) = wup(xz) in R3



5.3. ASYMPTOTIC BEHAVIOUR FOR A SOLUTION OF (Py) 119

Here G € LY(0,T, L}(R3)).

The notion of weak solutions of (P{)) follows along the same lines as above. For
(P{) we can state a comparison principle:

Proposition 5.16 Let u! be a subsolution and u?® a supersolution of (Py) with data
uy, G1 and u¢, Go. Then for each t € [0,T],

/[ﬂ(ul(t)) — ydz < /[5 (ud) — B(ud)]+ dx + /[G1 — Ga) 4 dxdt.
R3

E;

The proof of Proposition 5.16 is a direct extension of that of Proposition 5.10.

Lemma 5.17 Let G = 0. Then w(r) = 1 — e™+ is a stationary solution of (P})
satisfying

(i) 0 <w(r)r <w(r)Pr? <1 for allT > 0;

1 2
. < < mind 2 .
(ii) 1tr _w(r)_mln{1+2r,1} forall r>0

Proof. We only demonstrate (ii). The function z(s) = w(1/s) satisfies 2’ = 1 — z.

The function y(s) = ;37 satisfies y’ < 1 —y’ this implies the first inequality. The

second follows along the same lines. W
To prepare the proof of Theorem 5.3 we derive some relevant properties of the

solutions of (S).

Proposition 5.18 Let f be a solution of (S) and consider the set Py = {n > 0 |
f(n) > 0}. Then
(i) feC=(Py);
(ii) f' <0, f” >0 on Py;
(iii) f" — 0 asn — oo;
)

(iv hm f'(n) = —K with K € (0,00);

V) [ By rdn = 1;
0
(vi) If p=1, then 0 < f(n) < Ca~le= /4 forn>a; if p<1, then sup Py < 0.

Proof. Parts (i-iv) follow from Proposition 2.3 in [33]. Part (v) is a simple
integration of the equation in (S). For part (vi), case p < 1 we refer to [33]. For the

case p = 1, (S) has the explicit solution f(n) = erfc(%n). This implies
fin) < —f'(O)Qa_le‘Z"2/4 for n>a.
L4
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5.3.2 Proof of Theorem 5.3

We consider Problem Py in the radially symmetric form. Let St = {(r,t) : 0 <r <
0, 0<t<T}.

Proof of Theorem 5.3. The proof is based on Proposition 5.16, applied to u
and fw. We claim that the following estimates hold:

o0

0<e™ / B(w) — B(fw)]4n?dn < Lye=*" + Lse™" + Llip_|L~e~®""  (5.30)
0

for all 7 € R, and
D= g™ /[ﬁ(fw) — B(u))1n’dn < Loe™®" + Ly || L~e™ "7 (5.31)
0

for all 7 € R. By (Hp4) the function 9 (s) := B(s) —msP is non decreasing. Therefore,
if a > b we have

B(a) — B(b) = (a) — b(b) + m(a? ~ )
By this observation estimates (5.30-5.31) imply (5.16-5.17).
Let h(r,t) := f(r/t*) for all (r,t) € (0,00) x (0,00). Then h satisfies
rl_p/gp(h)t - hrr =0 in ST (532)

Using (5.32) and §'(s) = B,(s) + ¢(s)s”, the function g(r,t) := h(r,t)w(r) satisfies
(P") with

o _ _ 1—rw)r),
G(r,t) = plalpg™ 0 — Bymyw?(ri—pwr =7 — 1) 4 (L2200,
Writing G(r,t) := G14(r,t) + G1—(r,t) + Ga(r,t) + G3(r, t), with
— o P+ ( fp+Y /L
Gl:i:(r7 t) 2 :Fp+ ,YQOi(g)pw (f ) fot1”
VoD 1 _ »
Ga(r,t) = %(rl"’wl—f’ ~1), and Gs(r,t) = 4 :;”)’”) e

we note that G11 > 0, Gi— < 0, Gy > 0, and G3 < 0. These inequalities follows
directly from Lemma 5.17 and Proposition 5.18.

Now we compute estimates for the integrals associated with each part of G. For
G14, we have

o0 o0
C oo
/ Gy (rt)r’dr < ——”f;'“ / (f7) =P dy
0 0
o0
< M Clplie [ P = Lt

0
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since v < 3 — p. Hence L is a positive constant. We have a similar estimate for G;_
replacing |4z by [lo—|[L<-

For G5 we have two cases. For p < 1 we use 1 — r17Pw!=? < w < 1/r to obtain

oo o0

o0
[esttnar < & [@unywran < E222 [ pn-ran = 2.
0 0 0
For p =1, we use 1 — r!7Pw!~P = 0, so that G5 = 0.
Computing the integral of Gg, gives
o0 ) o0
—/G3(r, t)ridr = /(r(wr —1))phedr = /r(l —wr)hppdr < h|g° = g,
0 0 0

where K is defined in Proposition 5.18. Here we used Lemma 5.17 (ii). To complete
the proof we use the sign of the functions G14, G2, and Gs, and Proposition 5.16. W
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Chapter 6

A weakly coupled system

6.1 Introduction

In this chapter we will study existence of positive solutions to a system of the form

—(rN = i(uj(r)) = rNV71 fi(uiga (r))

(D) i=1,...,n
uf(0) = 0 = u;(R),
where it is understood that u,y; = u;. Here for i = 1,...,n, the functions ¢; are odd
increasing homeomorphisms from R onto R and the f; : R — R are odd continuous

: _ d
functions such that sf;(s) > 0 for s # 0. Also’ = L.

System (D) is particularly important when the homeomorphisms ¢; take the form
¢i(s) = sa;(|s]), s € R since it is satisfied by the radial solutions of the system
div(ai(|Vui|)Vus) + fi(uit1(|z])) =0,
I .
ui(|z]) =0, =€ o9,

where Q denotes the ball in RN centered at zero and with radius R > 0.

Furthermore, concerning the functions ¢;, f;, i = 1,...,n, we will assume that
they belong to the class of asymptotically homogeneous functions (AH for short). We
say that h: R +— R is AH at +o0o of exponent § > 0 if for any o > 0

h(US) 5
s—+00 h(s) B

(6.1)

This chapter has appeared in Abstract and Applied Analysis [41]

123
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By replacing +oco by 0 in (6.1) we obtain a similar equivalent definition for a function
h to be AH of exponent § at zero. AH functions have been recently used in [44]
and [42] in connection with quasilinear problems. They form an important class of
non homogeneous functions which without being necessarily asymptotic to any power
have the suitable homogeneous asymptotic behavior given by (6.1). In a very different
context they have been used in applied probability and statistics where they are known
as regularly varying functions, see for example [69], [71].

By a solution to (D) we understand a vector function u = (u1, ..., u,) such that
u € CY([0,T),R") and ¢;(u}) € C*([0,T],R), i = 1...,n, which satisfies (D).

In [27], the existence of solutions with positive components for a system of the
form (D) with n = 2 and with the functions ¢; and f; having the particular form
¢Z(S) - |S pi_287 ¢l(0) = 07 pi > 1, fi(s) = IS 6i_1$7 fz(o) =0, 51 > 07 1= 1527 was
done. In [44], within the scope of the AH functions, the case of a single equation
was considered. In both situations the central idea to obtain a-priori bounds was the
blow-up method of Gidas and Spruck, see [45]. As a consequence of our results in
this chapter, those in [27] and [44] are greatly generalized.

Next we develop some preliminaries in order to state our main theorem. For
i =1,...,n, let §;,0; be positive real numbers and p;, p; real numbers greater than
one, and assume that the functions ¢;, f;, i = 1,...,n satisfy
. i(os o . i(os .
(Hy) lim e =oPi7l lim fi(os) =%,
s§—+00 ¢i(s) 8§—-+400 fi(s)

for all o > 0,

(H>) 11 (pf;‘ 5> 1

To the exponents p;, §;, let us associate the system

(AS) {(pi~1)Ei-5iEi+1=—pi, i=1,...,n,

E’n+1 = El.
From (H3), it turns out that (AS) has a unique solution (E4,...,En), such that
E; > 0 for each i = 1,...,n. An explicit form for these solutions is given in the

Appendix at the end of the chapter.

Now we can establish our main existence theorem.

Theorem 6.1 Fori = 1,...,n, let ¢; be odd increasing homeomorphisms from R
onto R and f; : R — R odd continuous functions with xf;(x) > 0 for x # 0, which
satisfy (Hy), (Hz2), and

¢i(0'3) _ pi—1 li fz‘(O'S) o O'Si

Hj; lim =0 ; m = ,
() e )
for any o > 0. Additionally, for i =1,...,n, let us assume that
n _
5
H —>1,
_ -1

i=1
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(H5) pi<Nai:17"’7n7 max {EZ_G’L}ZO’

i=1,...,

where 6; = J;;__f and the E;'s are the solutions to (AS). Then problem (D) has a
solution (uy,...,u,) such that u;(r) >0, r € [0, R), for eachi=1,...,n.

The plan of this chapter is as follows. We begin Section 6.2 by discussing some
properties of the AH functions that will be used throughout the paper. Then we
provide an abstract functional analysis setting for problem (D) so that finding solu-
tions to that problem is equivalent to solving a fixed point problem. Section 6.3 is
first devoted to the study of a-priori bounds for positive solutions to problem (D)
and then to prove our main theorem by using Leray Schauder degree arguments. To
show the a-priori bounds we argue by contradiction and thus by using some suitable
rescaling functions we find that there must exist a vector solution v = (vy,...,v,)
defined on [0, +00) (vector ground state) to a system of the form

NP2 )) = G o (D i (1) 7 € [0, +00)
(Dp) 1="04.:557;
vi(0) =0, w;(r)>0, r € [0,+00),

where v,41 = v; and C; are positive constants, ¢ = 1,...,n. We observe here the
interesting fact that in this asymptotic system only properties of ¢;, f; at 400 appear.
We reach then a contradiction, and hence the existence of a-priori bounds, by using
hypothesis (Hs) which prevents the existence of such a vector ground state.

In all of our previous argument the existence of suitable rescaling functions is
crucial. The lemma for their existence (as well as some of their key properties) is
stated without proof at the beginning of Section 6.3 and its proof (which is delicate
and rather lengthy and technical is postponed to Section 6.4. In Section 6.5 we
give some applications that illustrate our existence result. In particular, in Theorem
6.13 we apply our existence results to a system that contains operators of the form
(—=A,)", (=A™, where for ¢t > 1 Ayu = div(|]Vu[t=2Vu). We end the chapter with
an Appendix which contains some technical results.

We introduce now some notation. Throughout this section vectors in R™ will be
written in boldface. Cyx will denote the closed linear subspace of C|0, R] defined by
Cy = {u € C[0, R] | u(R) = 0}. We have that C4 is a Banach space with respect to

the norm ||+ || := || - ||oo- Also we will denote by C%, the Banach space of the n—tuples
n
of elements of Cx endowed with the norm ||u||, := > ||u;||, where u = (uq,...,u,) €
i=1
Ch-

Finally we adopt the following conventions. By Ry and Rt we mean [0, +00)
and (0, +00) respectively. For a function H : R — R (with lir% @ =0) we define
g~

H(s) := Hgs), s # 0, H(0) = 0, and we note that if H is AH of exponent p (at +oo
or zero) then H is AH of exponent p — 1. Also if v;, i = 1,...,n, are real numbers or
functions, we define v,4; =y, foralli=1,...,n.
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6.2 Preliminaries and abstract formulation

We begin this section with a proposition.

Proposition 6.2 Let h : R — R be a continuous function with h(0) = 0, th(t) > 0
fort #0, and let H(t) := fot h(s)ds and H : R — R as defined in the Introduction.

(i) If h is AH of exponent p > 0 at 400, then there exists to > 0 and positive
constants di and do with 1 < di < do such that

d1 <——=< d2, fOT‘ all t> t(), (62)

A

h(s) — +oo as s — 400, H(t) is increasing fort > to and

dy1h(s) < dgh(t) for all s, t such that to < s <t. (6.3)

(ii) If h is AH of exponent p > 0 at 0 then there exists to > 0 and positive constants
dy and do, with 1 < dy < ds such that
th(t)

dy < W <d,, foralllt| < to,

I;T(t) is increasing in [—to, to], and
di|h(s)| < da|h(t)]
for all s, t with |s| < [t| < to.

Proof. We only prove (i), since (ii) is similar. From Karamata’s theorem (see [69],
p. 17, Theorem 0.6), it follows that for any ¢ > 0
H(t) 1

Mat) = g¥ if and only if lim ——=

t—too h(t) t—too th(t)  p+1’ (64)

and thus, if h is AH of exponent p > 0, for ¢ > 0 (less than min{p,1}) there is a
to > 0, such that for all ¢t > ¢,

p+1—s< h(t) <p+1+5.

t ~H(t) ~ t (6:3)

Setting d1 :=p+1—¢c > 1 and dy := p+ 1+ & we have that (6.2) holds. Now since
h(t) = H'(t), from (6.5) we obtain that

Cith ! < h(t) < Cot®™' for all ¢ > to, (6.6)
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for some positive constants Cy, Cy and thus h(t) — 400 as s + oo.

We observe now that the function H is a C! function for ¢ > 0, and that H'(t) =
%EQ. Then from (6.5) and since d; > 1, we find that I;T'(t) > 0 for t > to, i.e.,
His ultimately increasing. Finally, and again from (6.5) for to < s < t, we have that
dih(s) < dydoH (s) < d1da H(t) < dah(t), ending the proof of the proposition. H

As a consequence of this proposition we have the following result, which will be
used to prove our main result.

Proposition 6.3 Let h : R — R be continuous and asymptotically homogeneous at
+00 (at 0) of exponent p > 0 satisfying th(t) >0 fort #0. Let {wn} and {t,} C Rt
be sequences such that w, — w and t, — +oo (t, — 0) as n — oo. Then,

1 b Sl Lk YAy 6.7
aam BL) {6:7)
Proof. We only prove the case when h is AH at +o00, the other case being similar.
Let H(s) := [ h(t)dt and assume first w # 0. Then t,w, — +00 and by writing

h(town)  tpwph(tnwn) H(thwy) H(ts)

= X 6.8
h(ty,) H(thwn)  H(t,) tnh(ts) (6:8)

we see from (6.4) that to obtain (6.7) it suffices to prove that
Hitntn) _ 0. (6.9)

1m 73
n—o00 H(tn)

Since by Proposition 6.2, His ultimately increasing, given € > 0 sufficiently small,
there exists ng > 0 such that for all n > ng

A A~

H(tn(w —¢)) < H(thwn) < ﬁ(tn(w+€))
H(t,) ~ H(t.) ~—  H(ta)

and thus (6.9) follows by using the fact that H is AH of exponent p and & > 0 is
arbitrarily small. Assume now that w = 0. We claim then that

lim —h(tnw")

If not,
h(tn,Wn,)
h(tn,)
for some subsequences {t,,}, {wn,}, which implies that t,, w,, must tend to +oc.
Let now € > 0 be such that ¢ < p'/?. Since Wy, — 0, there exists ky > 0 such that
Wy, < € and as t,, w,, — +00, both t,, w,, and t,, e belong to the range where H
is increasing for k > kq.. Hence,

2 by

H(tn, wn, ) < H(tn,e)

0< —; " :
- H(tn) — H(tny)
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Using now that H is AH of exponent p, by letting K — oo we find that

A

lim sup —H(fn""‘w"k ) <egf

k— o0 H(tnk)

h(tn, wn, )

and hence, by (6.8), u < limsup G
k

k—o0

< eP < p, a contradiction.

Finally, regarding properties of AH (at co or 0) that we will need later on, it is
simple to see that if x, 1 : R — R are AH functions of exponent p and ¢ respectively,
then y o1 is AH of exponent r = pq. Also, if ¢ is an increasing odd homeomorphism

of R onto R which is AH of exponent p — 1, then its inverse ¢~! is AH of exponent

_»
p* — 1, where p* = P

We now find a functional analysis setting for problem (D). A simple calculation
shows that finding non trivial solutions with positive components to problem (D) is
equivalent to finding non trivial solutions to the problem

—(rV T i(ui(r)) = N filuira (r)])
(4) 1= 1,...,.0,

Let (u1(r),...,un(r)) be a non trivial solution of (A). Then for each i =1,...,n,
we have that u;(r) > 0 and is non increasing on [0, R]. By integrating the equations
in (A), it follows that u,(r) satisfies

u; = Mi(uit1)

where M; : Cy — Cyu is given by

R s
Mo)r) = [ 67 i [ €Y Adlo(eDelds,

0
for each ¢ = 1,...,n. Let us define Tp : C; — C% by
T()(U) = (Ml(UQ), '-'aMi(u’i-{-l)a ...,Mn(U1)),

where u = (uq,...,u,). Clearly Tj is well defined and fixed points of Tj will provide
solutions of (A), and hence componentwise positive solutions of (D).

Define now the operator 7}, : C x [0,1] — CZ by
T (, A) i= (W (2, A)y oy Mt 41), oy M (1)

where M : Cy x [0,1] — Cy is the operator defined by

M) [ 6 [ € RlluED + Mdelds
0

T
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with A > 0 a constant to be fixed later. Define also S : C} x [0,1] — CJ by
S(u, /\) = (Nl(U2, /\), cony Ni(uH_l, /\), voey Nn(ul, /\)) (610)

where N; : Cy X [0,1] — Cy4 is the operator defined by

R s
N () = [ 67 e [ € @D dglds, i=1cm (611)
r 0

It follows from Proposition 2.2 of [44] that all the operators My, M;,N;,i=1,...,n,
are completely continuous, hence the operators Ty, T and S are also completely
continuous. We note that T3 (-,0) = Tp = S(-, 1).

To prove existence of a fixed point of T we use suitable a-priori estimates and
degree theory. Indeed, we will show that there exists Ry > 0, such that degrs(I —
To,B(0,R1),0) = 0, and also that the index i(7p,0,0) is defined and it satisfies
(1o, 0,0) = 1, from where the existence of a fixed point of T follows by the excision
property of the degree.

Finally in this section, in our next lemma we will select the constant h that
appears in the definition of the operator T}, and hence fix this operator once for all.

Lemma 6.4 Fori=1,...,n let the homeomorphisms ¢;, and the functions f; satisfy
(Hy) and (H3). Then there exists hg > 0 such that the problem

u = Tp(u,1) (6.12)

has no solutions for h > hyg.

Proof. We argue by contradiction and thus we assume that there exists a sequence
{hk}ken , with hy — 400 as k — oo, such that the problem

u="Tp (ul)
has a solution ug = (u1,k, ..., Un,k), for each k € N. Then wu; satisfies
R s
uk) = [ 67y [ € (ulluan(@)) + h)delds (613)
T 0

R s
usa(r) = [ 67 s [ €9 Alluan(©Ddelds, i=2,..n, (619)
T 0

for each k € N. Clearly u; x(r) > 0, € [0, R), and is non increasing for r € [0, R], for
allk e Nyand alli=1,...,n. From (6.13)

uk(r) > (R — r)qbl_l(%), for all r € [0, R]
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and thus for r € [0, ?R] (we choose this interval for convenience, but any other interval
of the form [0,7] C [0, R) will work as well) we find that
1, Rhg
u(r) > 297 () (6.15)

where we have used that uj x(r) > uqx(R/4) for all r € [0, R/4]. Then, using that
fi(z) — 400 as z — +oo, from (6.14) and (6.15), by iteration, we conclude that for
any A > 0, there exists k4 > 0 such that for all 7 € [0, %]

ujk(r)>A forall k>ky andall i=1,...,n (6.16)

Now, from the second of (H;) and (i) of Proposition 6.2 there exist to > 0,1 < d; < d»
such that

difi(t) < da2fi(?) (6.17)

for all t > 7 > to and all i = 1,...,n. Hence, by (6.12), and by increasing A if
necessary,

d1 fi(luit1,k(r)]) < dafi(lwipr,k(6)]) (6.18)
for all £ € [0,7] with r € [0,3R/4]. Since from (6.13) and (6.14) we also have that

r

/ N fi(luir k (©))de)ds, i =1,...,n,  (6.19)

0

%
_ 1
uik(r) > /¢i 1[SN—1
then, for k > k4, from (6.18) and the monotonicity of ¢; ! we have that
3R
/ R 3R
wa) 2 [ 071 fiturn(r)delds, e (3.7

where d = 38— Thus for all r € [£, £], we find that

INd,3V-1*
R
uik(r) 2 £ ¢;(d fi(uir1,k(r))), (6.20)
for all k large enough and for all ¢ = 1,...,n. Next, setting
R o7 (d fi(us
bi,k(T) - _¢z ( [ (’LL +1,k(r))) (621)

4 ¢ (filwiprk(r)))
(6.20) becomes

_ R R
uik(r) > bik(r)g; " (filuir k(M) €7, 3] (6.22)
Observing that by (6.16) and (H), b; x(r) — ¢; as k — oo, uniformly in [£, £] where
¢; is a positive constant, we have that b; (1) > Clorallre [4, 2] foralli=1,...,n
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and for all k sufficiently large and where C is a positive constant. Hence, by (6.6) in
the proof of Proposition 6.2, for £ > 0 small there is a k9 € N such that

S
#—1—5 R R

uik(r) > Cujiyy (1), T€ [Z’ 5—], (6.23)
for all K > ko and all ¢ = 1,...,n, and where C is a positive constant. Now, by
iterating in (6.23), we find that

W EE)
ur k(1) > C(uy k(r))i=1\" ; (6.24)

where C is a new positive constant. Since by (Hs) we may choose

9
0<e<minf{——, i=1,...,n
{pi’—l !

n
so that [] (5%—1 - 5) > 1, from (6.24), we have
=1 ‘

I

o 5
-1
(u1’k(’l"))il;[1(l’i1 ) S %’ for any ﬁXed re [E E

4’2 b
which by (6.16) gives a contradiction for large k. This ends the proof of the lemma. l

6.3 A-priori bounds and proof of the main result

In this section we will use the blow up method to find a priori bounds for the positive
solutions of problem (D},) and then prove Theorem 6.1. Let ¢;, f;, ¢ =1,...,n be as
in Theorem 6.1 and set

L] S
D,(s) = / di(t)dt, Fi(s) = / Filt)dt, $=1,...n. (6.25)
0 0
In extending the blow up method to our situation it turns out that a key step is to
find a solution (z1,...,Z,) in terms of s (for s near +00) to the system
Fi($i+1)$i = zi+1¢>¢(xis), 7= 1, Y (O (626)

In this respect we can prove the following.

Lemma 6.5 Assume that the homeomorphisms ¢;, and the functions f;, 1 =1,...,n
satisfy (Hy), (H>), (Hs), and (Hy). Then

(i) there exist positive numbers so,x?, and increasing diffeomorphisms ; defined
from [sg, +00) onto (29, +00), i =1,...,n, which satisfy

Fi(ait1(s))ai(s) = air1(s)Pi(i(s)s), (6.27)

for all s € [sg,+00).
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(ii) The functions «; satisfy

. filoiga(s) _ di+1
Sll’rgo spi(ai(s)s) o

i=1,...,n. (6.28)

b

(iii) The functions o satisfy

a;(os) B,

lim =0 forall o€ (0,+00) i=1,...,n,

§—+00 ai(s)

where the E;’s are the solutions to (AS).

We call these a;’s functions rescaling variables for system (D).

The proof of this lemma is rather lengthy and delicate and thus in order not to
deviate the attention of the reader we postpone it until section 4.

We next find a-priori bounds for positive solutions. To this end let h satisfy the
conditions of Lemma 6.4 and consider the family of problems

[N 1)) + eV (fa(ua(r)]) + AR) =0,

(Dy)
(PN (u)) + V1 fi(luipa(r)]) =0, Ae€[0,1], i=2,...,n,

a0y = 0=u(R) fori=1...5m
Clearly, a solution to (D,) is a fixed point of Th(-, A).

Theorem 6.6 Under the conditions of Theorem 6.1, solutions to problem (D)) are
a-priori bounded.

Proof. We argue by contradiction and thus we assume that there exists a sequence
{(ug, M)} € C% x [0,1], with ug = (u1k, - - ., Un,k), such that (ug, Ax) satisfies (Dy,)

n
and ||ug|| = Y |luikl| — o0 as k — oo. It is not difficult to check by using the
i=1

n

equations in (Dy, ) that 3 |ju; k|| — oo as k — oo if and only if ||u; x| — oo as k —
i=1

oo for each i = 1,...,n. Hence, by redefining the sequence (ug, Ax) if necessary, we

can assume that ||u; k| > so (So as in Lemma 6.5) for all i = 1,...,n and for all
k > 0. Let us set
n
=Y oy (lukll) and tik = ai(yx)- (6.29)
i=1

Then, 7 — 00 as k — oo, and |lu; k|| < tix, for each i =1,...,n. Also by (6.28)

filtivik) 6+ 1. (6.30)

k—o0 Vk®i(tik V) Di
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Next we define the change of variables y = vir, w;x(y) = ";—’“(r—) and set wy :=

(W1ky---Wnk). Clearly we have |w;k(y)| < 1forall y € [0 'ykR] In terms of these
new variables and since (ug, \x) satisfies (D), ), we obtain that (wg, Ax) satisfies

N _ to k|w Ah
(b (@) = gLk @D | Achy (6.31)
Yk Yk
i(ts i .
W it (@) = VI “”“';” k@) 5 _ 9 n(632)
k
w;1(0) = 0 =wx(wR) for i=1,...,n, (6.33)

where now ' = di. Let now T > 0 be fixed and assume, by passing to a subsequence
if necessary, that vxR > T for all K € N. We observe that by the usual argument,
w} (y) <0 and w;x(y) >0 foralli =1,...,n, for all k € N, and for all y € [0, 7].

Claim. The sequences {w;’k}k, i=1,...,n, are bounded in C[0,7]. Indeed, assume
by contradiction that for some i = 1,...,n, {w; ;} contains a subsequence, renamed
the same, with ||w; ;|lcjor) — o0 as k — 0o. Then there exists a sequence {yi},
yk € [0, T, such that for any A > 0 there is ng such that |w;  (yk)| > A for all k& > nq.
Integrating (6.31) (respectively (6.32) ) from 0 to yx, we obtain

Y JN—1¢ (1. .
B3 (s, 1H w; k(yk)l):ykl_N/ 2 fz(tl+l’kwl+1’k(s))d8+)\khyk-
’ 0 Yk Ny,

Now let tg, di, d2 be as in Proposition 6.2 and set M = max sup f;(z). Since
ZE{]., 77"} IE[O to]

tit1,k — —I—oo as k — 00, by redefining the sequence if necessary, we may assume

that m < d for all i = 1,...,n and all kK € N. Also, since w;41.(s) < 1, if

ti+1,kWit1,k(S) > to, then by Proposition 6.2 we have that

(6.34)

filtiv1,pwit1,k(8) _ d2
: 2 — 6.35
filtis1,k) T dy ()
Since if t;41 kwit1,k(s) < to (6.35) holds by the definition of M, we have that indeed
(6.35) holds for all i = 1,...,n, all k € N and all s € [0,7]. Hence from (6.34) and
the monotonicity of ¢; we find that

$i(tixkA) _ dofiltiv1,6)T + hT .

Gi(tikve) — di Diltikvi) N Ni(tikve) Ve
Thus, by (H;) and (6.30), and by letting kK — oo in this last inequality we find that
do (6; + l)T
di pN
which is a contradiction since A can be taken arbitrarily large and hence the claim
follows.

Arl< =

From this claim and Arzela Ascoli Theorem, by passing to a subsequence if nec-
essary, we have that wy — w := (wy,...,w,) in C"[0,T]. Also, by (6.29),

b

i a; ! (t kwik(0)) i a; ! (ti kwi k(0))

= -1
i=1 = o (tik)



134 CHAPTER 6. A WEAKLY COUPLED SYSTEM

and hence, by letting k£ — co and using (ii7) of Lemma 6.5, we obtain

which implies that w is not identically zero.

Now by integrating (6.31) (respectively (6.32)) from 0 to y € [0,77] and using
(6.33), we obtain

= i(fit1,
—¢i(ti kWi, (y)) = fi,k(y)L’y:l_k), (6.36)
fori=1,...,n and all k € N, where

gl Y no1filtekwak(s)) Axhy
firly) = /0 s Fitar) ds + NACE (6.37)

and

ﬁ-,k(y):yl‘N/O oN-1filt ’;j(’“i’:)’“( Ny §=3,....n. (6.38)

Using now Proposition 6.3, we have that L(t—;l%ﬁ:)"(s—)) — (wi41(8))% for each
s€[0,T)and i =1,...,n, and thus by (6.35) we may use the Dominated Convergence

Theorem to conclude that

-~ * N—140 _
Jim fix(y) =y | wit (s)ds = fi(y) (6.39)

for each y € (0,77]. From (6.36),

7 ' (Jisk (y)1k)
~wix(y) = == : (6.40)
i ¢; (k)
e Fu(®) iz ()
~ i,k \Y)Jili+ 1Tk
5 = = and = ¢;(Vklik)-
Gik(y) R i = Gi(Vktik)
Then ju; — +00 as k — oo and by (6.39) and (i7) of Lemma 6.5,
Jik(y) — % + 1fz( ) as k— oo foreachye[0,T]. (6.41)

Integrating (6.40) over [0 y] we obtain
s
w; k(0) — wik(y / P ng )'uk) . (6.42)

Kk

Then, since by (6.39) there exists A > 0 such that |fi(y)| < Aforalli=1,...,n and
all y € [0, T, using (6.41) and the monotonicity of ¢!, by another application of the
Dominated Convergence Theorem, we find that

6;+1 o =t
l_}i )pil_l (SI_N/ tN ! f+1( )dt) " ds,
Di 0 0

wi(0) ~ wi(y) = (
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and hence that w; satisfies

~WN M) PP ) = (G5 el ) v e 0.7

pPi

(Dp)r
wi(0) =0, w;(y)>0 forall ye0,T]

We observe next that each component w;(y) is decreasing on [0,7]. Thus if for
some i, w;(0) = 0, then necessarily w;(y) = 0 for all y € [0,T]. But from (D,)r it
follows that w;1(y) = 0 for all y € [0, T] and hence by iterating, that w = 0 on [0, T,
which cannot be. Now, for the purpose of our next argument let us call {w{ } the
final subsequence, solution to (6.31), (6.32) and (6.33), which by the limiting process
provided us with the non trivial solution w to (D,)r defined in [0,7]. We also set
wl = w. Let us choose next T} > T. By repeating the limiting process following
(6.33), this time starting from the sequence {w{ }, we will find a subsequence {wh},
which as k — oo will provide us with a non trivial solution w”* to (D,)r, . Clearly w!
is an extension of w?' to the interval [0,7}], which satisfies w!*(y) > 0,i=1,...,n.
It is then clear that by this argument we can obtain a non trivial solution (called
again w) to (D,), i.e. w satisfies

— (N w(y) P 2wi(y)) = ()Nl (y), g € (0, +00)

pi

(Dyp)
wi(0) =0, w;(y) >0 forall ye€[0,+00).

We claim now that under the hypotheses of Theorem 6.1 such a non trivial solution
cannot exist. The proof of this claim is entirely similar to Lemma 2.1 in [27] so we
just sketch it. An integration of the equations of (D,) over [0,7], r € (0,+00), shows
that wi(r) <0, for all 7 > 0, and that

N=1, 1 - 51-{—1 1 T‘N 5.

= T wi () [P 2w (1) z(p—)zvrl Wwiil(r), for all r > 0, (6.43)
i

Also it must be that w;(r) > 0 for all > 0 and all i = 1,...,n. Now by Proposition

2.1 and Lemma 2.1 in [27], see also [63] for related results, we have that for all

i=1,...,n, w; € C?0,+0c0) and that
rw;(r) + 6;w;(r) > 0, for all > 0. (6.44)
Hence, from (6.43)

0, w; i i
%(r) > —w;(r) > CriT wﬁﬁl (r) forall r>0,

where C is a positive constant. (In the rest of this argument C will denote a positive
constant that may change from one step to the other). Multiplying this inequality by
rEitl using (6.44) and system (AS), we obtain

_6i
pi—1

rEiw; (r) > C(rP+1w; (1)) , forall r>0andi=1,...,n. (6.45)
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Iterating this expression n — 1 times, we find first that

%
E: E; iy PiT .
riw(r) > C(riw;(r))? for each i=1,...,n, (6.46)
and thus by hypothesis (Hz),

w;(r) < Cr % foreach i=1,...,n. (6.47)

By (6.44), r%w;(r) is non decreasing, and thus combining with (6.46),
C; = wi(ro)rgi < w,-(r)rei < CrBipti = op=(Bi=0:) (6.48)
for all r > rqg > 0, for all i = 1,...,n and where the C;’s are positive constants. If

the strict inequality holds in hypothesis (Hs), we obtain a contradiction by letting
r — 400 in (6.48) and the claim follows in this case.

Next, let us assume that for some j € {1,...,n} we have that E; = ;. Integrating
the j-th equation of (R,) on (rg,r), ro > 0, using (6.45) and iterating n — 2 times, we

obtain
.

PN ()Pt > C / SNIEras (5B (s)) P ds
T0o

0

n
where P} := ] @fs—il). Hence, since w;(r)r% is non decreasing, and using that

1=1,1#]
E; =0,

r
=)t > C/s"lds for all r > ro,
To

where C is a positive constant. Hence by (6.44), we find that
1
P (r) > C(log(TL))”J“l for all 7 > ro, (6.49)
0
which combined with (6.47) (i = j) and using that E; = 6;, yields again a contradic-
tion and thus the claim follows.

In this form we have concluded the proof that solutions to (D)) are a priori
bounded. B

To prove Theorem 6.1 we need a last lemma. Let S be as defined by (6.10) and
B(0, p) denote the open ball centered at 0 and having radius p in CJ.

Lemma 6.7 Under the assumptions of Theorem 6.1, there exists po > 0 such that
the equation

u=S5(u,\) (6.50)

has no solutions (u, \) € (B(O, o)\ {0}) x [0,1] for all 0 < p < po. In particular, the
index i(S(-,1),0,0) = i(Tp,0,0) is defined and i(Tp,0,0) = 1.
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Proof. We argue by contradiction and thus we assume that there exist sequences
{uk} in C%, {pk}, px > 0 such that ||uk|| = pr — 0, and a sequence {Ax}, A € [0,1],
such that

up = S(uk,)\k). (6.51)

Let ugp = (U1,k,- -, Unk)- Since u; x(s) < |Jugl| for all s € [0, R], by (ii) of Propo-
sition 6.2 we find that there exist ko > 0, d; > 1, d2 > dy, such that f;(u;k(s)) <
%fi(ﬂukﬂ), for all s € [0, R], for all k > kg, and for alli =1,...,n

Then, from (6.51) we obtain that wuy, k > ko, satisfies

A Rda fi([|wig1 k)

ikl <ot R, 1=1,...,n,
“uak” —¢l [ Ndl ] I n
and hence
Ui,k Rdg
6u(12L) < 2 sl (6.52)
Using the fact that the functions ¢; and f;, i = 1,...,n, are AH near zero, we have

that given € > 0 small, there are sg > 0 and positive constants C, C, such that

CcsPite < fi(s) < <Cs% ¢ forall 0<s< s, (6.53)

and
CsPi~1%e < ¢i(s) < CsPi717¢ for all 0 < s < so. (6.54)
Hence by combining (6.52), (6.53), and (6.54), we obtain ||u; k|| < C||wit1 k| 7Tt

foralli=1,...,nand k € N sufﬁc1ently large. Then by iteration, there is a positive
3.—¢
1- H 7
constant C such that ||u; || = " < C for each i = 1,...,n. But this is not

A
possible for £ > 0 small since ||u; k|| — 0 as k — oo, and since by (Hy) 1— [] —6% i
=1

0 for € > 0 small enough. That the index i(S(-,1),0,0) = i(7p,0,0) is defined and
that i(7p,0,0) = 1 is elementary. W

Proof of Theorem 6.1. It follows from Theorem 6.6 that if (u, ) is a solution to
the equation
u="Tp(u,N), XeJo0,1],

u = (uy,...,Up), then there is a positive constant R; such that Z lu;|| < Ry for

all A € [0, 1] and where we may assume R; > pg. Thus if B(0, Rl) denotes the ball
centered at 0 in C with radius Ry > C, we have that the Leray-Schauder degree of
the operator

I—Tw(-,A): B(0,Ry) — C}
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is well defined and constant with A € [0, 1]. Then, by Lemma 6.4

degLs(I —T(),B(O7 Rl),O) = degLS(I—Th(-,O),B(O, Rl),O)
= degLS(I—Th(',l),B(O,Rl),O)
= 0. (6.55)

Thus by Lemma 6.7, the excision property of the Leray Schauder degree, and (6.55),
we conclude that there must be a solution of the equation

u = To(u)

with u € B(0, Ry) \ B(0,¢&p), for €9 > 0 small enough. ll

Remark 6.8 We point out that condition (Hs) in our main Theorem 6.1 is only used
to conclude that problem (D,) has no non trivial solutions on [0,+00). Thus it can
be replaced by any other condition which ensures this property and enlarges the set
of parameters {8;,p;} i = 1,...,n, for which the conclusion of Theorem 6.1 remains
true. This remark will be illustrated in Theorem 6.15.

6.4 Proof of Lemma 6.5

Throughout this section we will use freely the definition H for a function H that we
gave in the Introduction.

To prove Lemma 6.5 we need some preliminary propositions. We begin by noting
that the functions <i>i, FA}, i =1,---,n defined in (6.25) are C'! functions from R*
onto RT. Also <i>,v is AH of exponent p; — 1 > 0 at 400 and of exponent p, —1 > 0
at zero and F}; is AH of exponent §; > 0 at +oo and of exponent J; > 0 at zero.
Furthermore F is strictly increasing in some interval of the form (—t,%;), t; > 0,
and in some interval of the form (t3, +00), t2 > t;.

For « = (x1,...,z,) € (RT)", we have that solving (6.26) is equivalent to solving
EFi(@ip1) — Di(xis)s =0, i=1,...,n. (6.56)

Proposition 6.9 For each fized s > 0 there ezists a solution © € (RT)" of the system
(6.56).

Proof. Let us fix s > 0 and suppose that € (R*)" is a solution to (6.56). We
have that (6.56) is in turn equivalent to the system

Ir; = \I/i(.'l,‘i+1) 1= 1, ooy Ty (657)
where U,(t) := %i’:l(FT(t)) fort > 0,and i =1,...,n. Here and in what follows, for

simplicity of the notation we will not show the dependence on s. Hence the component
1z, of the solution satisfies {(z1) = 0, where

() =t — (T 0Ty0--0W,)(t), (6.58)
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Conversely, if z; satisfies I(z1) = 0,, then by recursively defining z; = ¥;(z;41),
i=2,...,n, we find that @ = (x1,...,z,) satisfies (6.56). Thus we are led to study
the zeros of the function . Since the function ¥; is AH of exponent p—,‘s_”—l at +o0 and

of exponent Sjl at zero, i =1,...,n, we obtain that the function UioW,...00,

e > 0 there are to > t; > 0 and two positive constants C’1 C’l( ) and Cy = Cy(s)
such that

I(t M (i -e)-1
0] <1-—Cotimt P77 for all ¢ > tq, (6.59)
and
I(t M (525 -e)-1
i) >1-Cyti=r 7 - forall 0<t<t. (6.60)

t
Since by (Hs) and (H4) we may choose € > 0 such that

H(%—s) —1>0 and 11;11(2_715—11

we have by (6.59) that [(t) < O for all large ¢ and by (6.60) that (¢) > 0 for all small
positive t. Thus the equation [(t) = 0 has at least one solution, which is what we
wanted to prove. ll

)—1>Q

We note that for each s > 0 the set of solutions of [(t) = 0 is bounded (the
bound depending on s) but may not be a singleton. For s > 0 let us define 51 (s) :=
min{¢ | {(t) = 0} and ~1(s) := max{t | {(t) = 0} (these max and min are reached),
and define recursively B2(s) to Bn(s) by 5i(s) = ¥;(Bi+1(s)), 72(8) to vn(s) by vi(s) =
\Ili(’yH—l(S))- Then, :8 = (617 s 7/Bn) ‘Rt (R-l—)n, A= (71a s 7771) :RT > <R+)n
and B(s), «v(s) are solutions to (6.56) for each s > 0.

Proposition 6.10 We have that

(i) Bi(s) — 400 as s — 400 for eachi =1,...,n.

(if) For each m > O there is a constant M = M(m) such that for all0 < s < m, it
follows that ||v(s)|| < M.

Proof. (i) We will show first that

hmlnfﬁz( )>C forall i=1,...,n, (6.61)
S—> oo
where C'is a positive constant. Suppose by contradiction that for some j € {1,...,n}

there is a sequence {s;} — +o0 such that 3;(sx) — 0. By (6.56),

_l(ﬁi(ﬁi-f-l(sk))) Z/Bz(sk) i= 17"‘an, (662)
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for s > 1 and thus by an iteration process starting with i = j — 1 we conclude that
Bi(sk) — 0 for all i = 1,...,n. Using now that the function @;1 o F; is AH at 0
of exponent %—1—, we obtain from (6.62) that given € > 0 small enough, there is a
positive constant C' such that

(ﬁm(sk))ﬁ%_s > Ci(sk) i=1,...,n,

and hence o
Il (757 -e)-1
(Igj(sk))izl i—1 Z C
for some other positive constant C. Since by (H4) we may choose € > 0 so that
n =
11 (I_,—_‘;i—l —¢) > 1, this is a contradiction and thus (6.61) holds. We conclude then
LAV

:;Tlat there are a positive constant Cy and sq > 0 such that §;(s) > Cy for all s > sg
and all i = 1,...,n. Hence, F;(B;i11(s)) > s®;(sC4) for all s > sy, which implies that

lim B;41(s) = 400 and (i) is proved.
8—+00

To show (ii) we assume there is an m; > 0 and a sequence {sx} C [0,m;] such
that v;(sk) — +o0o as k — oo for some component y; of y(s) = (71(s),--.,n(s))-
Since by (6.56)

a7 (o (Bl (o)) <o) i=Lm, (6.63)

by iteration (starting with i = j — 1) we find that v;(sy) — +oo for alli =1,...,n.

Using now that (i)l_—l and FZ— are AH at +o0o of exponents p,-_l_%_ and 0; respectively,

for € > 0 small enough we obtain from (6.63) that (’yj_H(sk))W‘Ll_6 < Cv;(sk), and

. [ (545 -e)-1
thus by iterating, we conclude that (’yj+1(sk))1=1 ! < C for k large, where
C and C are positive constants. Since by (Hs) we may choose ¢ > 0 such that

n
—fs_L —¢) > 1, we have reached a contradiction. Hence (ii) is proved and the
pj—1

proposition follows. W

We begin now the proof of Lemma 6.5.

Proof of (i) of Lemma 6.5. Suppose first that there is a function o = (a1, ..., ) :
R* — (RT)™ such that a(s) is a solution of class C! to (6.56) for s in some subinterval
I of R*. Then, for s € I, a(s) satisfies

ﬁ’i(ai+1(s)) — <ADi(OZi(S)S)S = 0, 1= 1, O (664)

By differentiating with respect to s, we find that « is a solution to the system of
differential equations

a;i(s, a(s))as(s)—bi(s, a(s))aiy1(s) = —ci(s,a(s)), i=1,...,n, (6.65)
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where ' = %, and
ai(s, 0) = s2®(say), bi(s,a)= F!(aiy1) and ci(s,a)= ¢(sa;).  (6.66)
Conversely if & = (a1, ..., a,) is a solution to (6.65) in I, then a(s) satisfies
Fi(ip1(s)) — ®i(u(s)s)s=Cy, i=1,...,n. forall sel. (6.67)
Hence if for some sg € I (s, (sp)) satisfies (6.56), then (s, a(s)) satisfies (6.56) for
all s € I. At this point the proof of (i) of Lemma 6.5 consists in showing that indeed
the initial value problem

() ai(s, z)zi(s) — bi(s, x)xiyy = —ci(s,®), i=1,...,n,
.'E(So) = X9

has a solution defined for all s > s, for some initial condition (sg, @) which satisfies
(6.56). Thanks to Proposition 6.9 we know that we can choose a pair (sg, o) satisfying
(6.56) for any sp > 0.

Observing that the system in (IV) has the form (6.76) in the Appendix, with
/

x}(s) in the place of X;, we have that we can solve for the z}(s) in any subset of

Rt x (RT)" where [] bi(s:®) 4 1 is satisfied. We will find next a point (so, @o) and
=1

ai(s,x)

hence by continuity a neighborhood of this point where [] Seleys) # 1 holds. To this
i=1

ai(s,x)

end, let us define the lower and upper envelopes of F, by

F7(z) = inf Fi(s), Ff(z)= sup Fi(s).
s€[0,z] s€[0,z]

Then, v, F[, and I:‘f are nondecrgasing and since F} is ultimately increasing, there
exists 77 > 0 such that F, (z) = F' (z) = Fy(z) forallz > My and all i = 1,...,n.

After computing the derivatives in (6.66), we find that
bi(

az-(

= D(s, ) 1:[1 % (6.68)

n
1=

8, )
1 ai(s, )

T (i fi@ig) szi$i(szi) 1 ; .
where D(s,x) = Z1;[( }1(w+51 —1)( o i 1)~!. Now, since the functions f;,
¢; are respectively AH at 400 of exponent ¢; and p; — 1, from (6.4) in the proof of

Proposition 6.2, we have that for € > 0 small there is an m; > ™ such that for all

x = (z1,...,2,) with ; > m; and s > 1 it holds that
0<5i_53w_155i+5
Fi(%it1)
and

O<p—l—e< STii(STs)
2

—1gp:—1
o= @z(sml) _pl +67
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::]:

foralli=1,...,n. Thus D(s,x) > —5*'1—+E for all (s, ) in the set

1

o
Il

Si={(sx)|s>1,2>mi, i=1,..,n}

Since by (Hz) we may choose € small enough so that H —’i > 1, we have that

—14¢
D(s,z) > 1 for all (s,x) € S. Then from (6.68), we find that

n
by
[[2%2

i=1 il

n

.'II+1 i F
1 Z 7/
H ®,;(sz;) I;I <f>

(sz;)

for all (s,xz) € S.

By using (i) of Proposition 6.10 we choose now sy > 1 such that 3;(s) > m; for
alli=1,...,nand all s > s and set g = (B(so). Then (sp,x) satisfies (6.56) and

bi(s0,z0)

e e 1. By continuity the same is true for

(so0,xo) € IntS, implying that H

(s,x) € Qo := (so — ko, So + ;L()) >< B(xg,c0) for some small 9 > 0 and €9 > 0 and
where B(xg,c0) is the ball in R™ centered at x¢ and with radius €o. By using (6.76)
in the Appendix we can solve for the derivatives z} in (IV) in terms of (s,x) € Qo to
obtain the equivalent initial value problem

ci(s,x) N S[ci+k(s,w) ’ﬁ bi+e(s,m)}
) a;(s,x) — aivk(s,x) e aiye(s,x) .
(IV.) T; = ln_[bj(&w)_ s i =1.005m
j=1 aj('sa {B)
x(s0) = xo.

Since the right hand in the system in (IV,) is continuous in g, by the theory of
ordinary differential equation problem (IV.) has a solution a = (1(s),...,an(s))
defined in an interval (so — 7o, S0 + Y0), With 70 < po which can be extended to the
right as a solution of (IV¢) (this extension is also denoted by ) to a maximal interval
of existence of the form [sq, w).

We claim that w = +o00. We argue by contradiction and so we assume w < +oo0.
Indeed, since a(s) satisfies (6.56), by the definition of the vector function 3 we have
that

P (aa(s)) > Fi(aa(s)) = S‘?l(sal(S))
Z S<I>1(s,31(s)) R
= Fi(Ba(s)) = Fi (Ba(s)),

and thus as(s) > f2(s) > my for all s € [sp,w). By iteration we conclude that
a;(s) > Bi(s) >my foralli=1,...,n and all s € [so, w). Hence, (s,a(s)) € IntS for
all s € [so,w). On the other hand by the choice of m; the function F;(y) is strictly
increasing for y € [my, +00), and thus it holds that E/(y) > 0 for all y > m,. Then
from the definition of a;, b;, and ¢; in (6.66) and the fact that P! ‘() > 0 for all z > 0,



6.4. PROOF OF LEMMA 6.5 143

we see that the numerator on the right hand side of the equations in (IV,) is positive
for all (s,z) € S and thus &(s) > 0 for all s € [sp,w). Also, it can be easily verified
that a;(s) < 7i(s) for all s € [so,w) and all i = 1,...,n. Indeed, by the definition of
EF,

A

FY (as(s)) < Fi(as(s)) & (sai(s))

s¢>1(871(8)) A
= Fi(n(s)) = F (n(s)),

and therefore by the monotonicity of £, we have that aa(s) < y2(s) for all s € [so, w),
and thus iterating, we find that a;(s) < v;(s) for all s € [sp,w) and alli =1,...,n
Hence, by (i7) of Proposition 6.10, we obtain that a;(s) is bounded in s, w) and then

lim a(s) =d = (di,...,d,) and (w,d) € S. But from the continuity of the «;’s,

S—w™

-
and the fact that a(s) satisfies (6.56), we obtain that [] 11%(%}*’;—')) = 1 which implies
=1 Wi

IN

n
H EZ’) Z) > 1. Hence we conclude that a(s) can be extended to the right of w, a

contradlctlon and our claim is proved.

Thus the domain of the solution a to (IV), is [sg, +o0). Now for 1 = 1,...,n,
aj(s) > 0, and a;(s) > f;(s), for all s > sg. Hence by (i) of Proposition 6.10 az( )
+o00 as 8 — +00. Then «; : [sg,+00) — [Bi(s0),+00), is a diffeomorphism onto
[Bi(s0), +00), foreach i = 1,...,n. Also (s, a(s)) satisfies (6.56) for each s € [sg, +00).
This concludes the proof of (i) of Lemma 6.5. B

Proof of (ii) of Lemma 6.5 By (6.56), for each i = 1,...,n , we have that

Fi(ait1(s))ai(s)
@it1(8)P;(a;(s)s)

=1, forall s> sq.

Since we can write

filair1(s)) _ filair1(s))ait1(s) Fi(ait1(s))ai(s)  Pi(ai(s)s)

spi(ei(s)s)  Fi(airi(s))  @i(eu(s)s)airi(s) sgi(au(s)s)au(s)’
and
iy Jil@ir1(s)aira(s) _ o i Bilais)s) 1
Sl_,oo Fi(aiy1(s)) i+1, sl—+oo d(ai(s)s)ai(s)s  p;’

we have that (6.28) follows immediately. B

Proof of (iii) of Lemma 6.5. We begin the proof by observing that if A : R — Rt
is continuously differentiable then by an obvious modification in Karamata’s theorem,
(see [69], page 17, Theorem 0.6), we have that

sh'(s) . . W (os) B—1
1 =FE f — = .
Jm A0 >0, if and only if sl}moo W(s) o” T, (6.69)

for all o > 0. Then, by L’Hopital’s rule, we find that

lim fi e}
8§——+00 h(s)

=oF, forall o>0. (6.70)
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From this observation the rest of the proof consists in showing that

salj(s)

— E;, as s — +o0o0, foreach i =1,...,n. (6.71)
;i (s)

Since « satisfies (6.65) and (6.66) for s large, by computing the derivatives of the
coefficient functions in (6.65), we find that a satisfies

sy () _

A;(s) a:(s) — By( ne1(®) -1, for i=1,...,n, (6.72)
where
o Bi(s0(s)) e [, Fle(s)
46)=[1- i oa) O mtom) [ amisi e @)

fori=1,...,n. We note that for each fixed s this system has the form (6.77) and thus

a

it can be solved for (s) if H A 7é 1. Furthermore using the AH properties of the

¢:’s and f;’s functions it can be seen that there exists sop > 0 such that H %—8 # 1,
A

for all s > sg (we leave these calculatlons to the interested reader). Then, since
11m Ai(s) = pip—: and hm B;(s) = %, by letting s — 400 in (6.72), it follows

s—+

that (6 71) holds true, concludlng the proof of (iii) of Lemma 6.5. This in turn ends
the proof of Lemma 6.5. l

6.5 Applications

In this section we wish to show by means of simple examples the applicability of our
main theorem. We will denote by Q the open ball, centered at 0 with radius R > 0
in RV,

Theorem 6.11 Let ¢, 1 : R — R be defined by
$(s) = [s|272s + s61(s) +als|” 7%, p2>p1>1,

P(s) = |s|2 75 + 502(s) + bls|" s, g2 >q1>1,
where a,b are positive constants, and for i = 1,2, 6; : R — R, are even continuous
functions with 0 < 6;(s), s6;(s) non decreasing for all s > 0, lirr(l) s6;(s) =0, and such
88—
that

im 29;8) =0 and lim L(s) =0,
s—+00 |5|P2’25 s—0 Islpl—zs
s62(s) 562(s)

im =0 and lim =0
S$—+00 lsl‘I?_Qs s—0 |$|q1’23
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Let also f,g : R+— R by odd continuous functions defined by
f(s) = s|”"ts + £1(s) + c|s|7ts, 6y > 61 >0,
9(s) = ls|** 7 s+ &a(s) +dls|“*T1s,  pa > >0,

where ¢,d are positive constants and fori = 1,2, & : R — R, are odd continuous (non
necessarily increasing) functions such that 0 < &;(s), for all s > 0, and

m —61(8) =0 and lim —51(3) =0,
s—+00 ]8]52_13 s—0 |s|51_1s
£2(5) =0 and lim £2(s) =
s——+00 |3|H2—13 s—0 Isl“l_ls
Then, zfmax{pz, QQ} <N, (;)2—_(512)% >1, (p]——(sll)h > 1, and
m { pa(g2—1)+02¢2  N-—po
bapz — (P2 —1)(q¢2—1) p2—1"’
g2(p2—1) +pep2 N -— Q2} >0, (6.73)
bap2 — (P2 — 1)(g2 — 1) -1

the problem
(—div(|VulP?~2Vu) — div(82(|Vu|) Vu) — adiv(|Vu|Pr~2Vu)

= [u(@)[% () + &1(v(@)) + clo(@)[ (@), T inQ
—div(|Vv|%2~2Vv) — div(|62(]Vv|) Vo) — bdiv(|Vu|9*~2Vv)

= [u(@)|* " u(z) + &(u(@)) + dlu(@)|"* ~u(z), = inQ

u(z) =v(z) =0, x € 09,

\

has a componentwise positive radial solution (u,v) of class C*.

Proof. It can be easily shown that the function ¢ is AH of exponent p; — 1 at +oco
and of exponent p; — 1 at zero, while ¢ is AH of exponent g — 1 at +oo and of
exponent q; — 1 at zero. Also, the function f is AH of exponent d5 at +oo and of
exponent §; at zero, while g is AH of exponent us at +00 and of exponent p1 at zero.
It only remains to show that condition (Hj) is fulfilled. Indeed, in this case system
(AS) is given by

(p2—1)Ey —5E;, = —po
—woE1 4+ (g2 — 1)E2 = —qq,
and thus
-1 -1
B p2(q2 — 1) + d2¢2 and By — g2(p2 — 1) + pap2

" Sapiz — (2 — 1) (g2 — 1) ~ bapz— (p2—1)(g2 — 1)
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Also, o W
g = — D2 and —q2 ’
=1 @2 —1
and thus (Hs) is given by (6.73) and the result follows directly from Theorem 6.1. H

Remark 6.12 A particular but illustrative case for the functions 6; is given by
mi m2
01(s) = 3 bls 2, a(s) =D cilsl¥ 7,
j=1 j=1

where b; > 0, aj € (p1,p2), j=1,...,my and ¢; 20, B € (q1,92), j = 1,...,ma.
Thus

miy
#(s) = |s|P*2s + Z bj|s|*% 25 + a|s|P* s
j=1
and
m2
W(s) = |s|27%s + Z c;ls|P2s + b|s| 7 2s.
j=1

In the next example we show that our method allows us to find existence of
positive solutions to some Ap, A, systems.

For p, ¢ > 1, n, m € N and p, § positive real numbers such that ud # (p —
1)™(q — 1)™, define

_ 89Qm+plg— V)P, 5 HpPn q(p—1)"Qm

B R RV R ™ R R LI RV
k k
where for any k € N, P, = Y. (p— 1)"! and Qx = Y (¢ — 1)""'. We have the

i=1 i=1

following existence result.

Theorem 6.13 Let f, g : R — R be odd continuous functions such that f is AH at
+00 of ezponent 8 > 0 and AH at 0 of exponent § > 0, g is AH at +00 of exponent y >
0 and AH at 0 of exponent i > 0. Assume also that min{ud, @6} > (p—1)"(¢—1)™.
Then, if N > max{p, q} and

N_p n—1 N_p
max{A———p_l,(p—l) A+an_1—pTl,
N—-q —1 N_q
B —— —1)™ = —— > .
=1 @) BAaQn — L=y }20 (679
the problem
(=Ap)"u= f(v); (—Ag)™v = g(u), in Q

) { (Ap)u)(@) = (Aw)(@) =0, i=0,1,...,n—1,

j=0,1,...,m—1, z €99,
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has a nontrivial radially symmetric solution (u(zx),v(x)) such that u(x) > 0 and
v(z) > 0 for all x € .

Proof. We apply the result in Theorem 6.1 to the problem

—Apu; = uit1, i=1,...,n—1; —Apup = f(uny1), inQ
(SS) —Aqun+j:un+j+1, .?'21,...,7’)’7,—1, in Q
—AgUntm =g(u1) inQ
wi(z)=0,i=1,...,n+m, xS
By a solution to (SS) we mean a vector function (u1(z),. .., Untm(2)), € €, that

satisfies (SS). Indeed, in this case the functions ¢;, f; defined by

bi(t) = [t|P=2t fori=1....,n
S92 fori=n41,...,m4+m

t fori=1....,.n—1,n+1,...,n+m~—1
filt)=q f(t) fori=n
g(t) fori=n+m,
satisfy the hypotheses of the theorem with o;=1fori=1,...,n—1, n+1 ,n+
m—1,5n=6,6n+m:u,6i:lfori-—-l,...,n—l,n—i—l, n+m—1,6, =39,
5n+m:ﬁ,ﬁizpi:pforizl,...,nandﬁi:qi:qforz—n+1,...,n+m.
Furthermore, system (AS) for this problem is given by

(p—1)E;—Eiy1=—p, i=1,...,n—-1, (p—1)Ep —6Ep41=—p
(@—1Enti — Enyivi=—¢, i=1,....m—1, (= 1)Epym— pE1=—q

which has the unique solution (E1,...,E,+m) given by By = A, B4 = B, E; =
(p—1)"1A4+pP,1,i=2,...,n, Enyi = (q—1)""'B+¢Qi_1,i=2,...,m. Also,
0; p—Eforz—l nand&——ﬂforz—n+1 ..,n + m. Since, as it can
be checked, either Fy < ... < E, or E1 >...>FE,,and E,4; < ... < Ep4pp o1
E,i1 > ... > Eptp, we see that hypothe51s (6.74) corresponds to hypothesis (Hs)
in Theorem 6.1. Hence, according to that theorem, for N > max{p,q}, (SS) will
have a radial solution which is positive componentwise in 2. The result follows now
by setting u(z) = u1(z) and v(z) = up41(x). B

Remark 6.14 It is interesting to note that if

N — N —
pPy_1 — 2 >0 or qQm-1-— d >0
p—1 q

=1 =

then (6.74) is automatically satisfied. Thus for instance, if p=q =2, n, m > 1, then
P,_1=n—-1and Qn_1 = m— 1, and we have that the problem

(A= flv); (ZA)"v=g(u), inQ

u(z) = ((A ) u)(z) = v(z) = (AYv)(z) =0 =z €09,
i=1,. -1, j=1,....m—1,
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has a non trivial radial positive componentwise solution (u,v) whenever
max{2n, 2m} > N > 2
for any choice of u, T, 8,0 satisfying ué > 1 and @6 > 1.

Our last application illustrates the Remark 3.1 following the proof of Theorem
6.1. It is known from [73], Theorem 1.1, that the problem

(DD) —Au= /% ly; —-Av= |u|“_1u,N in RV
u(z) >0, wv(z)>0, zeRY,
where § > 0, u > 0 does not possess non trivial positive radially symmetric solution
if
N N
—+——>N-2,
0+1 i p+1

and thus we have the following existence result.

Theorem 6.15 Let f, g : R — R be odd continuous functions such that f is AH at
+00 of exponent § > 0 and AH at 0 of exponent § > 0, g is AH at +00 of exponent
u>0 and AH at 0 of exponent T > 0 with ud > 1. Let also D, § > —1 be such that
op > (p+1)(@+1). Then, if

o 3 N =13, (6.75)

the problem
—div((log(1 + |Vu|))PVu) = f(v), z € Q

(DL) —div((log(1 + [Vu|))TVv) = g(u), = €

u(z) =v(x) =0 z €09,

has a non trivial radially symmetric solution (u,v) such that u(x) > 0 and v(z) >0
for all z € Q.

Proof. For this problem we have that ¢,(s) = (log(1 + |s|))Ps and ¢2(s) = (log(1 +
|s|))7s are AH at +oo of exponent 1 and AH at 0 of exponents p+ 1 and 7 + 1
respectively. Moreover, the limiting problem at infinity is (DD) and thus the result
follows. M

Remark 6.16 We observe that for (DL) condition (Hs) of Theorem 6.1 becomes
1
wc{2EL HELY Sy
opu—1"6pu—1
Thus condition (6.75) above improves the set of §, u values for which existence of
positive solutions is guaranteed by Theorem 6.1.

Finally, for related existence results of positive solutions for the case p =q = 0,
in (DL), see [67] and [75].



6.6. APPENDIX 149
6.6 Appendix

Here we briefly consider the solutions to the system (AS), which for convenience of
the reader we repeat here.

(AS) (pi—1VE;—6i+1Eiy1=—-p; for i=1,...,n.
This system is a particular case of the system
a; X; —b; X;41 = —c;, for (6.76)
where a;, b;, ¢; are constants and which has played an important role in this paper.

It can be easily verified that if a; # 0, ¢ = ,n and H L # 1, then (6.76)
has the unique solution X= (X,...,X,)

SO =1y ,
i+ z+ ]
z_: [az+k H o i+t .
XZ-: — b, , i=1,...,n, (6.77)
H |
=1%
with the usual convention that a,+x = ak, bp+k =bg and ¢y =cx for k=1,...,n.

Clearly if a; > 0,b; > 0,¢; > 0,4 = 1,...,n, then X; > 0 foralli =1,...,n
n n

Hence, if p; > 1, 6; >0 and [] §; > [] (p; — 1) then (AS) has the unique solution E
i=1 i=1

= (E1,...,En)

n—1 k—1

[ Pitk dite ]

_1 pz+k_1€0pz+£_1
E,-: . i=1,....n, (6.78)

6
FHlpj—l

such that F; >0,i=1,...,n
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Summary

In this thesis we consider three mathematical problems. These problems have
their origins in different physical problems yielding certain classes of multidimensional
nonlinear elliptic and parabolic PDE’s. The three-dimensional setting is the main
topic of this research and radial symmetry plays a special role.

Chapter 1 contains model derivations and gives an overview of the results pre-
sented in Chapters 2-6, contrasting them with the existing theory.

Chapters 2—-4 concern a model of gravitational interaction and diffusion of parti-
cles, confined to a three-dimensional region. The system conserves mass and energy
and has the density of particles and temperature as unknowns. We call this the non-
isothermal model. To study this model, the fixed temperature (isothermal) model is
revisited.

In Chapter 2 we give conditions for the non-isothermal problem to have a unique
solution. In addition conditions for global existence and finite time existence are
given.

In Chapter 3 we present criteria on the data of the non-isothermal problem which
ensure the convergence of global solutions towards stationary states.

Chapter 4 deals with finite time solutions for the isothermal and the non-isothermal
model. We see that for certain initial data the behaviour of the solutions of the
isothermal model is given by self-similar solutions. Numerical results are obtained to
describe the blow-up behaviour in the non-isothermal case.

In Chapter 5 we study a problem that arises from the injection of water with a
reactive solute from a well into the ground. We consider a radial flow profile and see
that the large time behaviour of solutions is given by a self-similar solution. We also
study the behaviour as the well size goes to zero.

Chapter 6 studies a quasilinear elliptic system. We prove that this problem has
at least one nontrivial radially symmetric solution. As a corollary, this result gives
existence of radial solutions for higher-order nonlinear partial differential equations.

Chapters 2—6 are transcriptions of articles.

Chapter 2: Global existence conditions for a non-local problem arising in statisti-
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cal mechanics, submitted to Advances in Differential Equations, with C. J. van Duijn
(TU/e) and M. A. Peletier (CWI and TU/e);

Chapter 3: Convergence to a stationary solution for a model arising in statistical
mechanics, in preparation, with T. Nadzieja (Zielona Géra, Poland);

Chapter 4: Asymptotic self-similar blow-up for two models arising in statisti-
cal mechanics, in preparation, with M.A. Peletier and J. Williams (Bath University,
England);

Chapter 5: Asymptotic results for injection of reactive solutes from a three-
dimensional well, Journal of Mathematical Analysis and Applications 280 (2000),
367-385, with C. J. van Duijn and M. A. Peletier;

Chapter 6: Existence of positive radial solutions for a weakly coupled system via
blow up, Abstract and Applied Analysis 3(1-2) (1998), 105-131, with R. Manésevich
(Universidad de Chile) and M. Garcia-Huidobro (P. Universidad Catdlica, Chile).
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Samenvatting

In dit proefschrift beschouwen we drie problemen die behoren tot een klasse van
meerdimensionale niet-lineaire elliptische en parabolische parti€le differentiaalverge-
lijkingen. Deze vinden hun oorsprong in diverse natuurkundige problemen. Het hoof-
donderwerp van dit onderzoek is het drie-dimensionale geval waarin radiéle symmetrie
een bijzondere rol speelt.

In Hoofdstuk 1 worden de modellen geintroduceerd en wordt een overzicht van
de resultaten zoals die naar voren komen in de overige hoofdstukken gegeven. We
vergelijken de resultaten met bestaande theorie.

Hoofdstukken 2-4 hebben betrekking op een model van zwaartekrachtinteractie
en diffusie van deeltjes in een drie-dimensionaal gebied. Het systeem behoudt massa
en energie en de dichtheid van deeltjes en de temperatuur zijn de onbekenden. We
noemen dit het niet-isotherme model. Om dit model te bestuderen, bekijken wij het
probleem met constante temperatuur (het isotherme model) opnieuw.

In Hoofdstuk 2 leiden we voorwaarden af voor het niet-isotherme probleem die
garanderen dat dit een unieke oplossing heeft. Voldoende voorwaarden worden afgeleid
voor oplossingen die voor alle tijd bestaan en voor oplossingen die in eindige tijd op-
blazen (finite time blow-up).

In Hoofdstuk 3 gebruiken we dit resultaat om globale oplossingen en de conver-
gentie naar stationaire oplossingen te bestuderen.

Hoofdstuk 4 behandelt blow-up-gedrag van oplossingen van het isotherme en het
niet-isotherme model. We laten zien dat dit gedrag wordt gegeven door een gelijk-
vormigheidoplossing. In het isotherme geval geven we een analytisch bewijs en voor
het niet-isotherme geval een numeriek resultat.

Hoofdstuk 5 bestudeert een probleem dat ontstaat bij het injecteren van water
met reactieve stoffen in de grond via een bron. Hierbij ontstaat een radieel stro-
mingsprofiel. We laten zien dat hier het lange-termijn gedrag van de oplossing wordt
gegeven door een gelijkvormigheidoplossing. Ook bestuderen we de gedrag als de
maat van de bron naar nul gaat.

In Hoofdstuk 6 bestuderen we een quasi-lineair elliptisch systeem. We bewijzen
dat dit probleem een niet-triviale radieel-symmetrische oplossing heeft. Een gevolg
van dit resultaat is het bestaan van radiéle oplossingen voor hogere-orde niet-lineaire
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partiéle differentiaalvergelijkingen.
Hoofdstukken 2-6 zijn transcripties van artikelen:

Hoofdstuk 2: Global existence conditions for a non-local problem arising in sta-
tistical mechanics, ter publicatie aangeboden in Advances in Differential Equations,
met C. J. van Duijn (TU/e) en M. A. Peletier (CWI and TU/e);

Hoofdstuk 3: Convergence to stationary solutions in a model of self-graviting
systems, in voorbereiding, met T. Nadzieja (Zielona Géra, Poland);

Hoofdstuk 4: Asymptotic self-similar blow-up for two models arising in statisti-
cal mechanics, in voorbereiding, met M.A. Peletier en J. Williams (Bath university,
England);

Hoofdstuk 5: Asymptotic results for injection of reactive solutes from a three-
dimensional well, Journal of Mathematical Analysis and Applications 280 (2000),
367-385, met C. J. van Duijn en M. A. Peletier;

Hoofdstuk 6: Existence of positive radial solutions for a weakly coupled system via
blow up, Abstract and Applied Analysis 3(1-2) (1998), 105-131, met R. Manésevich
(Universidad de Chile) en M. Garcia-Huidobro (P. Universidad Catélica, Chile).
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I

While studying parabolic equations it is useful to introduce and make use of
several function spaces.

Olga Aleksandrovna Ladyzenskaja (1985)
See results on local existence in Chapters 2 and 5.

11

The time evolution of a cluster of self-gravitating particles following Brownian
motion -starting from a three-dimensional constant distribution- has a very
similar behaviour, whether we consider the constant temperature model or the
energy conservation model. See results in Chapters 2-4.

111

For nonlinear equations, such as the Navier-Stokes equations, it is known that
a regular solution for the nonstationary problem need not to exist for all times
t > 0. At some finite time the solution may go to infinity or loose its regularity.
Even if the solution exists for all ¢ > 0, it need not converge towards the solution
of the stationary problem as ¢ — +o0c, when the boundary conditions and the
forces converge towards a stationary situation.

Olga Aleksandrovna Ladyzenskaja (1970)
v

Blow-up is a property that cannot be expected to take place for the magnitudes
that describe the behaviour of biological or physical systems. Usually, in many
problems in applied mathematics blow-up occurs only for some approximation
of the real problem, and it indicates the presence not of a real singularity, but
rather of a change in the orders of magnitude of the values of some quantity
that characterizes the state of a system. For instance, this is a well established
fact in combustion theory, where blow-up just means that the values of the
temperature and other physical magnitudes rise several orders of magnitude
when ignition takes place (cf. [1]).

Extract from an article of J.J.L. Velazquez.

[1] A. Linan and F.A. Williams, Fundamental aspects of combustion, Oxford
University Press, (1993).

v

There exists a strong resemblance between the argument used to prove an a-
priori bound of solutions for the system studied in Chapter 6 (cf. [2]), and the



argument to prove the following result found in [3] (see also [4]). Let Q be a
bounded convex domain in RY, or © = RV, let p > 1, and assume that u solves

u = Autu? in Qx(0,7),
u = 0 on 90 x(0,T),
u(0) = wu>0 in Q,

and blows up at ¢t = T. Then

sup u(z, t)(T— )P~V <
Qx[0,T)

provided that p < %—}3 or N <2.
[2] B. Gidas, and J. Spruck, A-priori bounds for positive solutions of nonlinear
elliptic Equations, Comm. in P.D.E. 6 (1981), 883-901.
[3] Y. Giga and R. Kohn, Characterizing blowup using similarity variables, In-
diana Univ. Math. J. 36 (1987), 1-40.
[4] F. B. Weissler, An L blow-up estimate for a nonlinear heat equation,
Comm. Pure Appl. Math. 38 (1985), 291-296.

VI

In principle, the matter is a conscious matter, but it is required a very developed
organic existence to be able to cross -the threshold beyond of which it can show
itself as a consciousness.

Theilhard de Chardin
VII

The world is made of three infinities, the infinitely big, the infinitely small and
the infinitely complex.

Theilhard de Chardin
VIII

We can have a non-consequent way of thinking, but we have to know exactly
when we are not being consistent.

IX
Time travelling is unlikely to happen because if it were possible then someone
from the future would have already travelled to the past.

X
The closest we can get to immortality is to pass our genes from generation to
generation, which is guaranteed if we have at least two offspring.

XI
Science also suffers natural selection, some disciplines go extinct, and others

evolve and new branches are created. It is very little what we can do to change
the course of this natural selection.






