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Abstract

We study sample-path large deviations for Lévy processes and random walks with heavy-tailed
jump-size distributions that are of Weibull type. Our main results include an extended form of an LDP
(large deviations principle) in the J1 topology, and a full LDP in the M

′

1 topology. The rate function
can be represented as the solution of a quasi-variational problem. The sharpness and applicability of
these results are illustrated by a counterexample proving nonexistence of a full LDP in the J1 topology,
and an application to the buildup of a large queue length in a queue with multiple servers.
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1 Introduction

In this paper, we develop sample-path large deviations for Lévy processes and random walks, assuming the
jump sizes have a semi-exponential distribution. Specifically, let X(t), t ≥ 0, be a centered Lévy process
with positive jumps and Lévy measure ν, assume that − log ν[x,∞) is regularly varying of index α ∈ (0, 1).
Define X̄n = {X̄n(t), t ∈ [0, 1]}, with X̄n(t) = X(nt)/n, t ≥ 0. We are interested in large deviations of X̄n.

The investigation of tail estimates of the one-dimensional distributions of X̄n (or random walks with
heavy-tailed step size distribution) was initiated in Nagaev (1969, 1977). The state of the art of such
results is well summarized in Borovkov and Borovkov (2008); Denisov et al. (2008); Embrechts et al. (1997);
Foss et al. (2011). In particular, Denisov et al. (2008) describe in detail how fast x needs to grow with n
for the asymptotic relation

P(X(n) > x) = nP(X(1) > x)(1 + o(1)) (1.1)

to hold, as n → ∞. If (1.1) is valid, the so-called principle of one big jump is said to hold. It turns out
that, if x increases linearly with n, this principle holds if α < 1/2 and does not hold if α > 1/2, and the
asymptotic behavior of P(X(n) > x) becomes more complicated. When studying more general functionals
of X it becomes natural to consider logarithmic asymptotics, as is common in large deviations theory, cf.
Dembo and Zeitouni (2009); Gantert (1998); Gantert et al. (2014).

The study of large deviations of sample paths of processes with Weibullian increments is quite limited.
The only paper we are aware of is Gantert (1998), where the inverse contraction principle is applied to obtain
a large deviation principle in the L1 topology. As noted in Duffy and Sapozhnikov (2008) this topology is
not suitable for many applications—ideally one would like to work with the J1 topology.
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This state of affairs forms one main motivation for this paper. In addition, we are motivated by a
concrete application, which is the probability of a large queue length in the GI/GI/d queue, in the case
that the job size distribution has a tail of the form exp(−L(x)xα), α ∈ (0, 1). The many-server queue with
heavy-tailed service times has so far mainly been considered in the case of regularly varying service times,
see Foss and Korshunov (2006, 2012). To illustrate the techniques developed in this paper, we show that,
for γ ∈ (0,∞),

lim
n→∞

− logP(Q(γn) > n)

L(n)nα
= c∗, (1.2)

with c∗ the value of the optimization problem

min

d∑

i=1

xαi s.t. (1.3)

l (s;x) = λs−
d∑

i=1

(s− xi)
+ ≥ 1 for some s ∈ [0, γ].

x1, ..., xd ≥ 0 .

where λ is the arrival rate, and service times are normalized to have unit mean. Note that this problem is
equivalent to an Lα-norm minimization problem with α ∈ (0, 1). Such problems also appear in applications
such as compressed sensing, and are strongly NP hard in general, see Ge et al. (2011) and references therein.
In our particular case, we can analyze this problem exactly, and if γ ≥ 1/(λ− ⌊λ⌋), the solution takes the
simple form

c∗ = min
l∈{0,...,⌊λ⌋}

(d− l)

(
1

λ− l

)α

. (1.4)

This simple minimization problem has at most two optimal solutions, which represent the most likely
number of big jumps that are responsible for a large queue length to occur, and the most likely buildup of
the queue length is through a linear path. For smaller values of γ, asymmetric solutions can occur, leading
to a piecewise linear buildup of the queue length; we refer to Section 5 for more details.

Note that the intuition that the solution to (1.3) yields is qualitatively different from the case in which
service times have a power law. In the latter case, the optimal number of big jobs equals the minimum
number of servers that need to be removed to make the system unstable, which equals ⌈d − λ⌉. In the
Weibull case, there is a nontrivial trade-off between the number of big jobs as well as their size, and this
trade-off is captured by (1.3) and (1.4). This essentially answers a question posed by Sergey Foss at the
Erlang Centennial conference in 2009. For earlier conjectures on this problem we refer to Whitt (2000).

We derive (1.2) by utilizing a tail bound for Q(t), which are derived in Gamarnik and Goldberg (2013).
These tail bounds are given in terms of functionals of superpositions of random walks. We show these
functionals are (almost) continuous in the M ′1 topology, introduced in Puhalskii and Whitt (1997), making
this motivating problem fit into our mathematical framework. The J1 topology is not suitable since the
most likely path of the input processes involve jumps at time 0.

Another implication of our results, which will be pursued in detail elsewhere, arises in the large deviations

analysis of Markov random walks. More precisely, when studying X̄n (t) =
∑⌊nt⌋

k=1 f (Yk) /n, where Yk, k ≥ 0
is a geometrically ergodic Markov chain and f (·) is a given measurable function. Classical large devia-
tions results pioneered by Donsker and Varadhan on this topic (see, for example, Donsker and Varadhan,
1976) and the more recent treatment in Kontoyiannis and Meyn (2005), impose certain Lyapunov-type
assumptions involving the underlying function, f (·).

These assumptions are not merely technical requirements, but are needed to a large deviations theory
with a linear (in n) speed function (as opposed to sublinear as we obtain here). Even in simple cases
(e.g. Blanchet et al., 2011) the case of unbounded f (·) can result in a sublinear large deviations scaling of
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the type considered here. For Harris chains, this can be seen by splitting X̄n (·) into cycles. Each term
corresponding to a cycle can be seen as the area under a curve generated by f (Y·). For linear f , this results
in a contribution towards X̄n (·) which often is roughly proportional to the square of the cycle. Hence, the
behavior of X̄n (1) is close to that of a sum of i.i.d. Weibull-type random variables. To summarize, the
main results of this paper can be applied to significantly extend the classical Donsker-Varadhan theory to
unbounded functionals of Markov chains.

Let us now describe precisely our results. We first develop an extended LDP (large deviations principle)
in the J1 topology, i.e. there exists a rate function I(·) such that

lim inf
n→∞

logP(X̄n ∈ A)

L(n)nα
≥ − inf

x∈A
I(x). (1.5)

if A is open, and

lim sup
n→∞

logP(X̄n ∈ A)

L(n)nα
≤ − lim

ǫ↓0
inf

x∈Aǫ
I(x). (1.6)

if A is closed. Here Aǫ = {x : d(x,A) ≤ ǫ}. The rate function I is given by

I(ξ) =

{∑

t:ξ(t) 6=ξ(t−)

(
ξ(t)− ξ(t−)

)α
if ξ ∈ D↑∞,

∞, otherwise.
(1.7)

with D↑∞[0, 1] the subspace of D[0, 1] consisting of non-decreasing pure jump functions vanishing at the
origin and continuous at 1. (As usual, D[0, 1] is the space of cadlag functions from [0, 1] to R.)

The notion of an extended large deviations principle has been introduced by Borovkov and Mogulskii
(2010). We derive this result as follows: we use a suitable representation for the Lévy process in terms of
Poisson random measures, allowing us to decompose the process into the contribution generated by the k
largest jumps, and the remainder. The contribution generated by the k largest jumps is a step function for
which we obtain the large deviations behavior by Bryc’s inverse Varadhan lemma (see e.g. Theorem 4.4.13
of Dembo and Zeitouni, 2010). The remainder term is tamed by modifying a concentration bound due to
Jelenković and Momčilović (2003).

To combine both estimates we need to consider the ǫ-fattening of the set A, which precludes us from
obtaining a full LDP. To show that our approach cannot be improved, we construct a set A that is closed
in the Skorokhod J1 topology for which the large deviation upper bound does not hold; in this sense our
extended large deviations principle can be seen as optimal. This is in line with the observation made for
the regularly varying Lévy processes and random walks (Rhee et al., 2016), for which the full LDP w.r.t.
J1 topology in classical sense is shown to be unobtainable as well.

We derive several implications of our extended LDP that facilitate its use in applications. First of all,
if a Lipschitz functional φ of X̄n is chosen for which the function Iφ(y) = infx:φ(x)=y I(x) is a good rate
function, then φ(Xn) satisfies an LDP. We illustrate this procedure by considering an example concerning
the probability of ruin for an insurance company where large claims are reinsured.

A second implication is a sample path LDP in the M ′1 topology. We show that the rate function I is
good in this topology, allowing us to conclude limǫ↓0 infx∈Aǫ I(x) = infx∈A I(x) if A is closed in the M ′1
topology. The above-mentioned application to the multiple server queue serves as an application of this
result.

We note that both implications constitute two complementary tools, and that the two examples we
have chosen can only be dealt with precisely one of them. In particular, the functional in the reinsurance
example is not continuous in the M ′1 topology, and the most likely paths in the queueing application are
discontinuous at time 0, rendering the J1 or M1 topologies useless.

This paper is organized as follows. Section 2 introduces notation and presents extended LDP’s. These
are complemented in Section 3 by LDP’s of certain Lipschitz functionals, an LDP in the M ′1 topology, and
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a counterexample. Section 4 is considering an application to boundary crossing probabilities with moderate
jumps. The motivating application to queues with multiple servers is presented in Section 5. Additional
proofs are presented in Section 6. The appendix develops further details about the M ′1 topology that are
needed in the body of the paper.

2 Sample path LDPs

In this section, we discuss sample-path large deviations for Lévy processes and random walks. Before
presenting the main results, we start with a general result. Let (S, d) be a metric space, and T denote the
topology induced by d. Let Xn be a sequence of S valued random variables. Let Aǫ , {ξ ∈ S : d(ξ, ζ) ≤
ǫ for some ζ ∈ A} and A−ǫ , {ξ ∈ S : d(ξ, ζ) ≤ ǫ implies ζ ∈ A}. Let I be a non-negative lower semi-
continuous function on S, and an be a sequence of positive real numbers that tends to infinity as n → ∞.
We say that Xn satisfies the LDP in (S, T ) with speed an and the rate function I if

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

logP(Xn ∈ A)

an
≤ lim sup

n→∞

logP(Xn ∈ A)

an
≤ − inf

x∈A−
I(x)

for any measurable set A. We say that Xn satisfies the extended LDP in (S, T ) with speed an and the rate
function I if

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

logP(Xn ∈ A)

an
≤ lim sup

n→∞

logP(Xn ∈ A)

an
≤ − lim

ǫ→0
inf

x∈Aǫ
I(x)

for any measurable set A. The next proposition provides the key framework for proving our main results.

Proposition 2.1. Let I be a rate function. Suppose that for each n, Xn has a sequence of approximations
{Y k

n }k=1,... such that

(i) For each k, Y k
n satisfies the LDP in (S, T ) with speed an and the rate function Ik;

(ii) For each closed set F ,
lim
k→∞

inf
x∈F

Ik(x) ≥ inf
x∈F

I(x);

(iii) For each δ > 0 and each open set G, there exist ǫ > 0 and K ≥ 0 such that k ≥ K implies

inf
x∈G−ǫ

Ik(x) ≤ inf
x∈G

I(x) + δ;

(iv) For every ǫ > 0 it holds that

lim
k→∞

lim sup
n→∞

1

an
logP

(
d(Xn, Y

k
n ) > ǫ

)
= −∞. (2.1)

Then, Xn satisfies an extended LDP in (S, T ) with speed an and the rate function I.

The proof of this proposition is provided in Section 6.
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2.1 Extended sample-path LDP for Lévy processes

Let X be a Lévy process with a Lévy measure ν with ν[x,∞) = exp(−L(x)xα) where α ∈ (0, 1) and L(·)
is a slowly varying function. We assume that L(x)xα−1 is non-increasing for large enough x’s. Let X̄n(t)
denote the centered and scaled process:

X̄n(t) ,
1

n
X(nt)− tEX(1).

Let D[0, 1] denote the Skorokhod space—space of càdlàg functions from [0, 1] to R—and TJ1 denote the
J1 Skorokhod topology on D[0, 1]. We say that ξ ∈ D[0, 1] is a pure jump function if ξ =

∑∞
i=1 xi1[ui,1]

for some xi’s and ui’s such that xi ∈ R and ui ∈ [0, 1] for each i and ui’s are all distinct. Let D
↑
∞[0, 1]

denote the subspace of D[0, 1] consisting of non-decreasing pure jump functions vanishing at the origin and
continuous at 1. For the rest of the paper, if there is no confusion regarding the domain of a function space,
we will omit the domain and simply write, for example, D↑∞ instead of D↑∞[0, 1]. The next theorem is the
main result of this paper.

Theorem 2.1. X̄n satisfies the extended large deviation principle in (D, TJ1) with speed L(n)nα and rate
function

I(ξ) =

{∑

t:ξ(t) 6=ξ(t−)

(
ξ(t) − ξ(t−)

)α
if ξ ∈ D↑∞,

∞, otherwise.
(2.2)

That is, for any measurable A,

− inf
ξ∈A◦

I(ξ) ≤ lim inf
n→∞

logP(X̄n ∈ A)

L(n)nα
≤ lim sup

n→∞

logP(X̄n ∈ A)

L(n)nα
≤ − lim

ǫ→0
inf
ξ∈Aǫ

I(ξ), (2.3)

where Aǫ , {ξ ∈ D : dJ1(ξ, ζ) ≤ ǫ for some ζ ∈ A}.

Recall that Xn(·) , X(n·) has Itô representation:

Xn(s) = nsa+B(ns) +

∫

x<1

x[N̂([0, ns]× dx)− nsν(dx)] +

∫

x≥1

xN̂([0, ns]× dx), (2.4)

with a a drift parameter, B a Brownian motion, and N̂ a Poisson random measure with mean measure
Leb×ν on [0, n] × (0,∞); Leb here denotes the Lebesgue measure. We will see that the large deviation
behavior is dominated by the last term of (2.4). It turns out to be convenient to consider the following
distributional representation of the centered and scaled version of the last term:

Ȳn(·) ,
1

n

N(n·)
∑

l=1

(Zl −EZ)
D
=

1

n

∫

x≥1

xN̂([0, n·]× dx)− 1

n
N̂([0, n·]× [1,∞))

where N(t) , N̂([0, t] × [1,∞)) is a Poisson process with arrival rate ν1, and Zi’s are i.i.d. copies of Z
independent of N and such that P(Z ≥ t) = 1

ν1
ν[x ∨ 1,∞). To facilitate the proof of Theorem 2.1, we

consider a further decomposition of Ȳn into two pieces, one of which consists of the big increments, and
the other one keeps the residual fluctuations. To be more specific, we introduce an extra notation for the
rank of the increments. Given N(n), define SN(n) to be the set of all permutations of {1, ..., N(n)}. Let
Rn : {1, . . . , N(n)} → {1, . . . , N(n)} be a random permutation of {1, . . . , N(n)} sampled uniformly from
Σn , {σ ∈ SN(n) : Zσ−1(1) ≥ · · · ≥ Zσ−1(N(n))}. In words, Rn(i) is the rank of Zi among {Z1, . . . , ZN(n)}
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when sorted in decreasing order with the ties broken uniformly randomly. Now, we see that

Ȳn =
1

n

N(nt)
∑

i=1

Zi1{Rn(i)≤k}

︸ ︷︷ ︸

,J̄k
n

+
1

n

N(nt)
∑

i=1

(Zi1{Rn(i)>k} −EZ)

︸ ︷︷ ︸

,K̄k
n

.

The proof of Theorem 2.1 is easy once the following technical lemmas are in our hands; their proofs are
provided in Section 6. Let D6k denote the subspace of D↑∞ consisting of paths that have less than or equal
to k discontinuities and are continuous at 1.

Lemma 2.1. J̄k
n satisfy the LDP in (D, TJ1) with speed L(n)nα and the rate function

Ik(ξ) =

{∑

t∈[0,1] (ξ(t)− ξ(t−))α if ξ ∈ D6k,

∞ otherwise.
(2.5)

Recall that A−ǫ , {ξ ∈ D : dJ1(ξ, ζ) ≤ ǫ implies ζ ∈ A}.

Lemma 2.2. For each δ > 0 and each open set G, there exist ǫ > 0 and K ≥ 0 such that for any k ≥ K

inf
ξ∈G−ǫ

Ik(ξ) ≤ inf
ξ∈G

I(ξ) + δ. (2.6)

Let BJ1(ξ, ǫ) be the open ball w.r.t. the J1 Skorokhod metric centered at ξ with radius ǫ and Bǫ ,

BJ1(0, ǫ).

Lemma 2.3. For every ǫ > 0 it holds that

lim
k→∞

lim sup
n→∞

1

L(n)nα
logP

(
‖K̄k

n‖∞ > ǫ
)
= −∞. (2.7)

Proof of Theorem 2.1. For this proof, we use the following representation of X̄n:

X̄n
D
= Ȳn + Z̄n = J̄k

n + K̄k
n + R̄n, (2.8)

where R̄n(s) =
1
nB(ns)+ 1

n

∫

|x|≤1 x[N([0, ns]× dx)−nsν(dx)] + 1
nN̂([0, ns]× [1,∞))− ν1t. Next, we verify

the conditions of Proposition 2.1. Lemma 6.1 confirms that I is a genuine rate function. Lemma 2.1 verifies
(i). To see that (ii) is satisfied, note that Ik(ξ) ≥ I(ξ) for any ξ ∈ D. Lemma 2.2 verifies (iii). Since
dJ1(X̄n, J̄

k
n) ≤ ‖K̄k

n‖∞+ ‖R̄n‖∞, Lemma 2.3 and lim supn→∞
1

L(n)nα logP(‖R̄n‖∞ > ǫ) = −∞ implies (iv).

Now, the conclusion of the theorem follows from Proposition 2.1.

2.2 Extended LDP for random walks

Let Sk, k ≥ 0, be a mean zero random walk. Set S̄n(t) = S[nt]/n, t ≥ 0, and define S̄n = {S̄n(t), t ∈ [0, 1]}.
We assume that P(S1 ≥ x) = exp(−L(x)xα) where α ∈ (0, 1) and L(·) is a slowly varying function, and
again, we assume that L(x)xα−1 is non-increasing for large enough x’s. The goal is to prove an extended
LDP for the scaled random walk S̄n. Recall the rate function I in (2.2).

Theorem 2.2. S̄n satisfies the extended large deviation principle in (D, TJ1) with speed L(n)nα and rate
function I.
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Proof. Let N(t), t ≥ 0, be an independent unit rate Poisson process. Define the Lévy process X(t) ,

SN(t), t ≥ 0, and set X̄n(t) , X(nt)/n, t ≥ 0. Then the Lévy measure ν of X is ν[x,∞) = P(S1 ≥ x).
We first note that the J1 distance between S̄n and X̄n is bounded by supt∈[0,1] |λn(t)− t| which, in turn, is
bounded by supt∈[0,1] |N(tn)/n− t|. From Etemadi’s theorem,

P( sup
t∈[0,1]

|N(tn)/n− t|) > ǫ) ≤ 3 sup
t∈[0,1]

P(|N(tn)/n− t|) > ǫ/3),

where P(|N(tn)/n − t|) > ǫ/3) vanishes at a geometric rate w.r.t. n uniformly in t ∈ [0, 1]. Hence,
lim supn→∞

1
L(n)nα logP(dJ1(S̄n, X̄n) > ǫ) = −∞. Now we consider the decomposition (2.8) again. Condi-

tion (i), (ii), and (iii) of Proposition 2.1 is again verified by Lemma 2.1, Lemma 2.2, and Lemma 2.3. For
(iv), note that since dJ1(S̄n, J̄

k
n) ≤ dJ1(S̄n, X̄n) + ‖K̄k

n‖∞ + ‖R̄n‖∞,

lim sup
n→∞

logP(dJ1(S̄n, J̄
k
n) > ǫ)

L(n)nα
≤ lim sup

n→∞

log
{
P(dJ1(S̄n, X̄n) > ǫ/3) +P(‖K̄k

n‖∞ > ǫ/3) +P(‖R̄n‖∞ > ǫ/3)
}

L(n)nα

= −∞.

Therefore, Proposition 2.1 applies, and the conclusion of the theorem follows.

2.3 Multi-dimensional processes

Let X(1), . . . , X(d) be independent Lévy processes with a Lévy measure ν. As in the previous sections, we
assume that ν has Weibull tail distribution with shape parameter α in (0, 1) and L(x)xα−1 is non-increasing

for large enough x’s. Let X̄
(i)
n (t) denote the centered and scaled processes:

X̄(i)
n (t) ,

1

n
X(i)(nt)− tEX(i)(1).

The next theorem establishes the extended LDP for (X̄
(1)
n , . . . , X̄

(d)
n ).

Theorem 2.3.
(

X̄
(1)
n , X̄

(2)
n , . . . , X̄

(d)
n

)

satisfies the extended LDP on
(∏d

i=1D ([0, 1],R+) ,
∏d

i=1 TJ1

)
with

speed L(n)nα and the rate function

Id(ξ1, ..., ξd) =

{∑d
j=1

∑

t∈[0,1] (ξj(t)− ξj(t−))
α

if ξj ∈ D
↑
∞[0, 1] for each j = 1, . . . , d,

∞, otherwise.
(2.9)

For each i, we consider the same distributional decomposition of X̄
(i)
n as in Section 2.1:

X̄(i)
n
D
= J̄k (i)

n + K̄k (i)
n + R̄(i)

n .

The proof of the theorem is immediate as in the one dimensional case, from Proposition 2.1, Lemma 2.3,
and the following lemmas that parallel Lemma 2.1 and Lemma 2.2.

Lemma 2.4. (J̄
k (1)
n , . . . , J̄

k (d)
n ) satisfy the LDP in

(∏d
i=1 D,

∏d
i=1 TJ1

)
with speed L(n)nα and the rate

function Idk :
∏d

i=1 D → [0,∞]

Idk (ξ1, . . . , ξd) ,

{∑d
i=1

∑

t∈[0,1] (ξi(t)− ξi(t−))
α

if ξi ∈ D6k for i = 1, . . . , d,

∞ otherwise.
(2.10)
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Lemma 2.5. For each δ > 0 and each open set G, there exists ǫ > 0 and K ≥ 0 such that for any k ≥ K

inf
(ξ1,...,ξd)∈G−ǫ

Idk (ξ1, . . . , ξd) ≤ inf
(ξ1,...,ξd)∈G

Id(ξ1, . . . , ξd) + δ. (2.11)

We conclude this section with the extended LDP for multidimensional random walks. Let {S(i)
k , k ≥ 0}

be a mean zero random walk for each i = 1, . . . , d. Set S̄
(i)
n (t) = S

(i)
[nt]/n, t ≥ 0, and define S̄

(i)
n = {S̄(i)

n (t), t ∈
[0, 1]}. We assume that P(S

(i)
1 ≥ x) = exp(−L(x)xα) where α ∈ (0, 1) and L(·) is a slowly varying function,

and again, we assume that L(x)xα−1 is non-increasing for large enough x’s. The following theorem can
derived from Proposition 2.1 and Theorem 2.3 in the same way as in Section 2.2. Recall the rate function
Id in (2.2).

Theorem 2.4. (S̄
(1)
n , . . . , S̄

(d)
n ) satisfies the extended LDP in (

∏d
i=1 D,

∏d
i=1 TJ1) with speed L(n)nα and

the rate function Id.

Remark 1. Note that Theorem 2.3 and Theorem 2.4 can be extended to heterogeneous processes. For exam-
ple, if the Lévy measure ν(i) of the process X(i) has Weibull tail distribution ν(i)[x,∞) = exp(−ciL(x)xα)
where ci ∈ (0,∞) for each i ≤ d0 < d, and all the other processes have lighter tails—i.e., L(x)xα =

o(Li(x)x
αi ) for i > d0—then it is straightforward to check that (X̄

(1)
n , . . . , X̄

(d)
n ) satisfies the extended LDP

with the rate function

Id(ξ1, ..., ξd) =

{∑d0

j=1 cj
∑

t∈[0,1]

(
ξj(t)− ξ

j
(t−)

)α
if ξj ∈ D↑∞[0, 1] for j = 1, . . . , d0 and ξj ≡ 0 for j > d0,

∞, otherwise.

Similarly, (S̄
(1)
n , . . . , S̄

(d)
n ) satisfies the extended LDP with the same rate function under corresponding con-

dition on the tail distribution of S
(i)
1 ’s.

3 Implications and further discussions

3.1 LDP for Lipschitz functions of Lévy processes

Let X̄n denote the scaled Lévy processes (X̄
(1)
n , . . . , X̄

(d)
n ), and S̄n denote the scaled randomwalks (S̄

(1)
n , . . . , S̄

(d)
n )

as defined in Section 2. Recall also the rate function Id defined in (2.9).

Corollary 3.1. Let (S, d) be a metric space and φ :
∏d

i=1 D → S be a Lipschitz continuous mapping w.r.t.
the J1 Skorokhod metric. Set

I ′(x) , inf
φ(ξ)=x

Id(ξ)

and suppose that I ′ is a good rate function—i.e., ΨI′(a) , {x ∈ S : I ′(s) ≤ a} is compact for each a ∈ [0,∞).
Then, φ

(
X̄n

)
and φ

(
S̄n

)
satisfy the large deviation principle in (S, d) with speed L(n)nα and the good rate

function I ′.

Proof. Since the argument for φ(S̄n) is very similar, we only prove the LDP for φ(X̄n). We start with
the upper bound. Suppose that the Lipschitz constant φ is ‖φ‖Lip. Note that since the J1 distance is
dominated by the supremum distance, ‖K̄k

n‖∞ ≤ ǫ and ‖R̄n‖∞ ≤ ǫ implies dJ1

(
φ(J̄k

n), φ(X̄n)
)
≤ 2ǫ‖φ‖Lip,

where J̄k
n , (J̄

k (1)
n , . . . , J̄

k (d)
n ), K̄k

n , (K̄
k (1)
n , . . . , K̄

k (d)
n ), and R̄n , (R̄

(1)
n , . . . , R̄

(d)
n ). Therefore, for any
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closed set F ,

P
(
φ(X̄n) ∈ F

)
= P

(
φ
(
X̄n

)
∈ F, dJ1

(
φ(J̄k

n), φ(X̄n)
)
≤ 2ǫ‖φ‖Lip

)
+P

(
dJ1

(
φ(J̄k

n), φ(X̄n)
)
> 2ǫ‖φ‖Lip

)

≤ P
(

φ
(
J̄k
n

)
∈ F 2ǫ‖φ‖Lip

)

+P
(
dJ1

(
φ(J̄k

n), φ(X̄n)
)
> 2ǫ‖φ‖Lip

)

≤ P
(

J̄k
n ∈ φ−1

(
F 2ǫ‖φ‖Lip

))

+P
(
‖K̄k

n‖∞ > ǫ
)
+P

(
‖R̄n‖∞ > ǫ

)
.

Since P
(
‖R̄n‖∞ > ǫ

)
decays at an exponential rate and P

(
‖K̄k

n‖∞ > ǫ
)
≤∑d

i=1 P
(
‖K̄k (i)

n ‖∞ > ǫ
)
, we get

the following bound by applying the principle of the maximum term and Theorem 2.3:

lim sup
n→∞

1

L(n)nα
logP

(
φ
(
X̄n

)
∈ F

)

≤ lim sup
n→∞

1

L(n)nα
log
{

P
(

J̄k
n ∈ φ−1

(
F 2ǫ‖φ‖Lip

))

+P
(
‖K̄k

n‖∞ > ǫ
)
+P

(
‖R̄n‖∞ > ǫ

)}

= max

{

lim sup
n→∞

logP
(
J̄k
n ∈ φ−1

(
F 2ǫ‖φ‖Lip

))

L(n)nα
, lim sup

n→∞

logP
(
‖K̄k

n‖∞ > ǫ
)

L(n)nα

}

≤ max

{

− inf
(ξ1,...,ξd)∈φ−1

(
F 2ǫ‖φ‖Lip

) I
d
k (ξ1, . . . , ξd), max

i=1,...,d
lim sup
n→∞

logP
(
‖K̄k (i)

n ‖∞ > ǫ
)

L(n)nα

}

≤ max

{

− inf
(ξ1,...,ξd)∈φ−1

(
F 2ǫ‖φ‖Lip

) I
d(ξ1, . . . , ξd), lim sup

n→∞

logP
(
‖K̄k (1)

n ‖∞ > ǫ
)

L(n)nα

}

From Lemma 2.3, we can take k → ∞ to get

lim sup
n→∞

logP
(
φ
(
X̄n

)
∈ F

)

L(n)nα
≤ − inf

(ξ1,...,ξd)∈φ−1(F 2ǫ‖φ‖Lip)
Id(ξ1, . . . , ξd) = − inf

x∈F 2ǫ‖φ‖Lip

I ′(x) (3.1)

From Lemma 4.1.6 of Dembo and Zeitouni (2010), limǫ→0 infx∈F ǫ‖φ‖Lip I
′(x) = infx∈F I

′(x). Letting ǫ→ 0
in (3.1), we arrive at the desired large deviation upper bound.

Turning to the lower bound, consider an open set G. Since φ−1(G) is open, from Theorem 2.3,

lim inf
n→∞

1

L(n)nα
logP

(
φ(X̄n) ∈ G

)
= lim inf

n→∞

1

L(n)nα
logP

(
X̄n ∈ φ−1(G)

)

≥ − inf
(ξ1,...,ξd)∈φ−1(G)

I(ξ) = − inf
x∈G

I ′(x).

3.2 Sample path LDP w.r.t. M ′

1 topology

In this section, we prove the full LDP for X̄n and S̄n w.r.t. the M ′1 topology. For the definition of M ′1
topology, see Appendix A.

Corollary 3.2. X̄n and S̄n satisfy the LDP in (D, TM ′1) with speed L(n)nα and the good rate function IM ′1 .

IM ′1 (ξ) ,

{∑

t∈[0,1]

(
ξ(t)− ξ(t−)

)α
if ξ is a non-decreasing pure jump function with ξ(0) ≥ 0,

∞ otherwise.
.
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Proof. Since the proof for S̄n is identical, we only provide the proof for X̄n. From Proposition A.3 we know
that IM ′1 is a good rate function. For the LDP upper bound, suppose that F is a closed set w.r.t. the M ′1
topology. Then, it is also closed w.r.t. the J1 topology. From the upper bound of Theorem 2.1 and the fact
that IM ′1 (ξ) ≤ I(ξ) for any ξ ∈ D,

lim sup
n→∞

logP(X̄n ∈ F )

L(n)nα
≤ − lim

ǫ→0
inf
ξ∈F ǫ

I(ξ) ≤ − lim
ǫ→0

inf
ξ∈F ǫ

IM ′1(ξ).

Turning to the lower bound, suppose that G is an open set w.r.t. the M ′1 topology. We claim that

inf
ξ∈G

IM ′1(ξ) = inf
ξ∈G

I(ξ).

To show this, we only have to show that the RHS is not strictly larger than the LHS. Suppose that
IM ′1(ξ) < I(ξ) for some ξ ∈ G. Since I and IM ′1 differ only if the path has a jump at either 0 or 1, this
means that ξ is a non-negative pure jump function of the following form:

ξ =

∞∑

i=1

zi1[ui,1],

where u1 = 0, u2 = 1, ui’s are all distinct in (0, 1) for i ≥ 3 and zi ≥ 0 for all i’s. Note that one can pick
an arbitrarily small ǫ so that

∑

i∈{n:un<ǫ} zi < ǫ,
∑

i∈{n:un>1−ǫ} zi < ǫ, ǫ 6= ui for all i ≥ 2, and 1− ǫ 6= ui
for all i ≥ 2. For such ǫ’s, if we set

ξǫ , z11[ǫ,1] + z21[1−ǫ,1] +

∞∑

i=3

zi1[ui,1],

then dM ′1(ξ, ξǫ) ≤ ǫ while I(ξǫ) = IM ′1(ξ). That is, we can find an arbitrarily close element ξǫ from ξ w.r.t.
the M ′1 metric by pushing the jump times at 0 and 1 slightly to the inside of (0, 1); at such an element,
I assumes the same value as IM ′1(ξ). Since G is open w.r.t. M ′1, one can choose ǫ small enough so that
ξǫ ∈ G. This proves the claim. Now, the desired LDP lower bound is immediate from the LDP lower bound
in Theorem 2.1 since G is also an open set in J1 topology.

3.3 Nonexistence of large deviation principle in the J1 topology

Consider a compound Poisson process whose jump distribution is Weibull with the shape parameter 1/2.

More specifically, X̄n(t) , 1
n

∑N(nt)
i=1 Zi − t with P(Zi ≥ x) ∼ exp(−xα), EZi = 1, and α = 1/2. If

X̄n satisfies a full LDP w.r.t. the J1 topology, the rate function that controls the LDP (with speed nα)
associated with X̄n should be of the same form as the one that controls the extended LDP:

I(ξ) =

{ ∑

t∈[0,1]

(
ξ(t)− ξ(t−)

)α
if ξ ∈ D↑∞,

∞ otherwise.

To show that such a LDP is fundamentally impossible, we will construct a closed set A for which

lim sup
n→∞

logP(X̄n ∈ A)

nα
> − inf

ξ∈A
I(ξ). (3.2)

Let
ϕs,t(ξ) , lim

ǫ→0
sup

0∨(s−ǫ)≤u≤v≤1∧(t+ǫ)

(ξ(v)− ξ(u)).
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Let Ac;s,t , {ξ : ϕs,t(ξ) ≥ c} be (roughly speaking) the set of paths which increase at least by c between
time s and t. Then Ac;s,t is a closed set for each c, s, and t.

Let

Am ,

(

A1;m+1
m+2 ,

m+1
m+2+mhm

)

∩
(

A1; m
m+2

, m
m+2

+mhm

)

∩
(m−1⋂

j=0

A 1
m2 ; j

m+2 ,
j

m+2+mhm

)

where hm = 1
(m+1)(m+2) , and let

A ,

∞⋃

m=1

Am.

To see that A is closed, we first claim that ζ ∈ D \ A implies the existence of ǫ > 0 and N ≥ 0 such
that B(ζ; ǫ) ∩ Am = ∅ for all m ≥ N . To prove this claim, suppose not. It is straightforward to check that
for each n, there has to be sn, tn ∈ [1 − 1/n, 1) such that sn ≤ tn and ζ(tn) − ζ(sn) ≥ 1/2, which in turn
implies that ζ must possess infinite number of increases of size at least 1/2 in [1− δ, 1) for any δ > 0. This
implies that ζ cannot possess a left limit, which is contradictory to the assumption that ζ ∈ D \ A. On

the other hand, since each Am is closed,
⋃N

i=1Ai is also closed, and hence, there exists ǫ′ > 0 such that
B(ζ; ǫ′) ∩ Am = ∅ for m = 1, . . . , N . Now, from the construction of ǫ and ǫ′, B(ζ, ǫ ∨ ǫ′) ∩ A = ∅, proving
that A is closed.

Next, we show that A satisfies (3.2). First note that if ξ is a pure jump function that belongs to Am, ξ
has to possess m upward jumps of size 1/m2 and 2 upward jumps of size 1, and hence,

inf
ξ∈A

I(ξ) ≥ inf
m

(

11/2 + 11/2 +m(1/m2)1/2
)

= 3. (3.3)

On the other hand, letting ∆ξ(t) , ξ(t)− ξ(t−),

P(X̄(n+1)(n+2) ∈ An)

≥
n−1∏

j=0

P

(

sup
t∈[0,1]

{

X̄(n+1)(n+2)

(
(n+1)j+nt
(n+1)(n+2)

)

− X̄(n+1)(n+2)

(
(n+1)j

(n+1)(n+2)

)}

≥ 1

n2

)

·P
(

sup
t∈(0,1]

{

∆X̄(n+1)(n+2)

(
(n+1)n+nt
(n+1)(n+2)

)}

≥ 1

)

·P
(

sup
t∈(0,1]

{

∆X̄(n+1)(n+2)

(
(n+1)(n+1)+nt
(n+1)(n+2)

)}

≥ 1

)

= P

(

sup
t∈[0,1]

{

X̄(n+1)(n+2)

(
nt

(n+1)(n+2)

)}

≥ 1

n2

)n

·P
(

sup
t∈[0,1]

{

∆X̄(n+1)(n+2)

(
nt

(n+1)(n+2)

)}

≥ 1

)2

= P

(

sup
t∈[0,1]

{

X(nt)
}

≥ (n+ 1)(n+ 2)

n2

)n

·P
(

sup
t∈[0,1]

{

∆X(nt)
}

≥ (n+ 1)(n+ 2)

)2

≥ P

(

sup
t∈[0,1]

{

X(nt)
}

≥ 6

)n

·P
(

sup
t∈[0,1]

{

∆X(nt)
}

≥ (n+ 1)(n+ 2)

)2

,
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and hence,

lim sup
n→∞

logP(X̄n ∈ A)

nα
≥ lim sup

n→∞

logP(X̄(n+1)(n+2) ∈ An)
(
(n+ 1)(n+ 2)

)α

≥ lim sup
n→∞

logP

(

supt∈[0,1]

{

X(nt)
}

≥ 6

)n

(
(n+ 1)(n+ 2)

)α + 2 lim sup
n→∞

logP

(

supt∈[0,1]

{

∆X(nt)
}

≥ (n+ 1)(n+ 2)

)

(
(n+ 1)(n+ 2)

)α

= (I) + (II).
(3.4)

Letting pn , P

(

supt∈[0,n]

{

X(t)
}

< 6

)

,

(I) = lim sup
n→∞

log(1− pn)
n

(
(n+ 1)(n+ 2)

)α = lim sup
n→∞

npn log(1− pn)
1/pn

(
(n+ 1)(n+ 2)

)α = lim sup
n→∞

−npn
(
(n+ 1)(n+ 2)

)α = 0 (3.5)

since pn → 0 as n→ ∞.

For the second term, from the generic inequality 1− e−x ≥ x(1− x),

(II) = 2 lim sup
n→∞

logP

(

supt∈[0,1]

{

∆X(nt)
}

≥ (n+ 1)(n+ 2)

)

(
(n+ 1)(n+ 2)

)α

= 2 lim sup
n→∞

logP

(

Q←n (Γ1) ≥ (n+ 1)(n+ 2)

)

(
(n+ 1)(n+ 2)

)α = 2 lim sup
n→∞

logP

(

Γ1 ≤ Qn((n+ 1)(n+ 2))

)

(
(n+ 1)(n+ 2)

)α

= 2 lim sup
n→∞

logP

(

Γ1 ≤ n exp(−((n+ 1)(n+ 2))α)

)

(
(n+ 1)(n+ 2)

)α

= 2 lim sup
n→∞

log
{

1− exp
(

− n exp
(
− ((n+ 1)(n+ 2))α

))}

(
(n+ 1)(n+ 2)

)α

≥ 2 lim sup
n→∞

log
{(

n exp
(
− ((n+ 1)(n+ 2))α

))[

1−
(

n exp
(
− ((n+ 1)(n+ 2))α

))]}

(
(n+ 1)(n+ 2)

)α

= −2. (3.6)

From (3.4), (3.5), (3.6),

lim sup
n→∞

logP(X̄n ∈ A)

nα
≥ −2. (3.7)

This along with (3.3),

lim sup
n→∞

logP(X̄n ∈ A)

nα
≥ −2 > −3 ≥ − inf

ξ∈A
I(ξ),

which means that A indeed is a counter example for the desired LDP.
Note that a simpler counterexample can be constructed using the peculiarity of J1 topology at the

boundary of the domain; that is, jumps (of size 1, say) at time 0 are bounded away from the jumps

12



at arbitrarily close jump times. For example, if Ȳn(t) , 1
n

∑N(nt)
i=1 Zi + t where the right tail of Z is

Weibull and EZ = −1, then the set B = {x : x(t) ≥ t/2 for all t ∈ [0, 1]} gives a counterexample for
the LDP. Note that M ′1 topology we used in Section 3.2 is a treatment for the same peculiarity of M1

topology at time 0. However, it should be clear from the above counterexample X̄n and A that the LDP
is fundamentally impossible w.r.t. J1-like topologies—i.e., the ones that do not allow merging two or more
jumps to approximate a single jump at any time—and hence, there is no hope for the full LDP in the case
of J1 topology.

4 Boundary crossing with moderate jumps

In this section, we illustrate the value of Corollary 3.1 We consider level crossing probabilities of Lévy
processes where the jump sizes are conditioned to be moderate. Specifically, we apply Corollary 3.1 in
order to provide large-deviations estimates for

P

(

sup
t∈[0,1]

X̄n(t) ≥ c, sup
t∈[0,1]

∣
∣X̄n(t)− X̄n(t−)

∣
∣ ≤ b

)

. (4.1)

We emphasize that this type of rare events are difficult to analyze with the tools developed previously. In
particular, the sample path LDP proved in Gantert (1998) is w.r.t. the L1 topology. Since the closure of
the sets in (4.1) w.r.t. the L1 topology is the entire space, the LDP upper bound would not provide any
information.

Functionals like (4.1) appear in actuarial models, in case excessively large insurance claims are reinsured
and therefore do not play a role in the ruin of an insurance company. Asmussen and Pihlsg̊ard (2005), for
example, studied various estimates of infinite-time ruin probabilities with analytic methods. Rhee et al.
(2016) studied the finite-time ruin probability, using probabilistic techniques in case of regularly varying
Lévy measures and confirmed that the conventional wisdom “the principle of a single big jump” can be
extended to “the principle of the minimal number of big jumps” in such a context. Here we show that a
similar result—with subtle differences—can be obtained in case the Lévy measure has a Weibull tail.

Define the function φ : D→ R2 as

φ(ξ) = (φ1(ξ), φ2(ξ)) ,

(

sup
t∈[0,1]

ξ(t), sup
t∈[0,1]

|ξ(t)− ξ(t−)|
)

.

In order to apply Corollary 3.1, we will validate that φ is Lipschitz continuous and that I ′(x, y) ,

inf{ξ∈D:φ(ξ)=(x,y)} I(ξ) is a good rate function.
For the Lipschitz continuity of φ, we claim that each component of φ is Lipschitz continuous. We

first examine φ1. Let ξ, ζ ∈ D and suppose w.l.o.g. that supt∈[0,1] ξ(t) > supt∈[0,1] ζ(t). For an arbitrary
non-decreasing homeomorphism λ : [0, 1] → [0, 1],

|φ1(ξ) − φ1(ζ)| = | sup
t∈[0,1]

ξ(t)− sup
t∈[0,1]

ζ(t)| = | sup
t∈[0,1]

ξ(t)− sup
t∈[0,1]

ζ ◦ λ(t)| (4.2)

≤ sup
t∈[0,1]

|ξ(t)− ζ ◦ λ(t)| ≤ sup
t∈[0,1]

|ξ(t)− ζ ◦ λ(t)| ∨ |λ(t)− t|.

Taking the infimum over λ, we conclude that

|φ1(ξ) − φ1(ζ)| ≤ inf
λ∈Λ

sup
t∈[0,1]

{|ξ(t)− ζ(λ(t))| ∨ |λ(t)− t|} = dJ1(ξ, ζ).

Therefore, φ1 is Lipschitz with the Lipschitz constant 1.
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Now, in order to prove that φ2(ξ) is Lipschitz, fix two distinct paths ξ, ζ ∈ D and assume w.l.o.g. that
φ2(ζ) > φ2(ξ). Let c , φ2(ζ) − φ2(ξ) > 0, and let t∗ ∈ [0, 1] be the maximum jump time of ξ, i.e.,
φ2(ξ) = |ξ(t∗)− ξ(t∗−)|. For any ǫ > 0 there exists λ∗ so that

dJ1(ξ, ζ) , inf
λ∈Λ

{‖ξ − ζ ◦ λ‖∞ ∨ ‖λ− e‖∞} ≥ ‖ξ − ζ ◦ λ∗‖∞ ∨ ‖λ∗ − e‖∞ − ǫ.

≥ |ξ(t∗)− ζ ◦ λ∗(t∗)| ∨ |ξ(t∗−)− ζ ◦ λ∗(t∗−)| − ǫ. (4.3)

From the general inequality |a− b| ∨ |c− d| ≥ 1
2 (|a− c| − |b− d|),

|ξ(t∗)− ζ ◦ λ∗(t∗)| ∨ |ξ(t1−)− ζ ◦ λ∗(t∗−)| ≥ 1

2

(
|ξ(t∗)− ξ(t∗−)| − |ζ ◦ λ∗(t∗)− ζ ◦ λ∗(t∗−)|

)

=
1

2

(
φ2(ξ)− φ2(ζ)

)
= c/2. (4.4)

In view of (4.3) and (4.4), dJ1(ξ, ζ) ≥ 1
2 |φ(ξ) − φ(ζ)| − ǫ. Since ǫ is arbitrary, we get the desired Lipschitz

bound with Lipschitz constant 2. Therefore, |φ(ξ) − φ(ζ)| = |φ1(ξ) − φ1(ζ)| ∨ |φ2(ξ) − φ2(ζ)| ≤ 2dJ1(ξ, ζ)
and hence, φ is Lipschitz with Lipschitz constant 2.

Now, we claim that I ′ is of the following form:

I ′(c, b) =







⌊
c
b

⌋
bα +

(
c−

⌊
c
b

⌋
b
)α

if 0 < b ≤ c,

0 if b = c = 0,

∞ otherwise.

(4.5)

Note first that (4.5) is obvious except for the first case, and hence, we will assume that 0 < b ≤ c from
now on. Note also that I ′(c, b) = inf{I(ξ) : ξ ∈ D

↑
∞, φ(ξ) = (c, b)} since I(ξ) = ∞ if ξ /∈ D↑∞. Set

C , {ξ ∈ D↑∞, (c, b) = φ(ξ)} and remember that any ξ ∈ D↑∞ admits the following representation:

ξ =

∞∑

i=1

xi1[ui,1], (4.6)

where ui’s are distinct in (0, 1) and xi’s are non-negative and sorted in a decreasing order. Consider a step

function ξ0 ∈ C, with
⌊
c
b

⌋
jumps of size b and one jump of size c−

⌊
c
b

⌋
b, so that ξ0 =

∑⌊ c
b⌋

i=1 b1[ui,1] + (c −
⌊
c
b

⌋
)1[u⌊ c

b⌋+1
,1]. Clearly, φ(ξ0) = (c, b) and I(ξ0) =

⌊
c
b

⌋
bα +

(
c−

⌊
c
b

⌋
b
)α

. Since ξ0 ∈ C, the infimum of I

over C should be at most I(ξ0) i.e., I(ξ0) ≥ I ′(c, b).
To prove that ξ0 is the minimizer of I over C, we will show that I(ξ) ≥ I(ξ0) for any ξ =

∑∞
i=1 xi1[ui,1] ∈ C

by constructing ξ′ such that I(ξ) ≥ I(ξ′) while I(ξ′) = I(ξ0). There has to be an integer k such that

x′k ,
∑∞

i=k xi ≤ b. Let ξ1 ,
∑k

i=1 x
1
i1[ui,1] where x

1
i is the ith largest element of {x1, . . . , xk−1, x′k}. Then,

ξ1 ∈ C and I(ξ1) ≤ I(ξ) due to the sub-additivity of x 7→ xα. Now, given ξj =
∑k

i=1 x
j
i1[ui,1], we construct

ξj+1 as follows. Find the first l such that xjl < b. If xjl = 0 or xjl+1 = 0, set ξj+1 , ξj . Otherwise,

find the first m such that xjm+1 = 0 and merge the lth jump and the mth jump. More specifically, set

xj+1
l , xjl + xjm ∧ (b− xjl ), x

j+1
m , xjm − xjm ∧ (b− xjl ), x

j+1
i , xji for i 6= l,m, and ξj+1 ,

∑k
i=1 x

j+1
i 1[ui,1].

Note that xj+1
l + xj+1

m = xjl + xjm while either xj+1
l = b or xj+1

m = 0. That is, compared to ξj , ξj+1 has
either one less jump or one more jump with size b, while the total sum of the jump sizes and the maximum
jump size remain the same. From this observation and the concavity of x 7→ xα, it is straightforward to
check that I(ξj+1) ≤ I(ξj). By iterating this procedure k times, we arrive at ξ′ , ξk such that all the jump
sizes of ξ′ are b, or there is only one jump whose size is not b. From this, we see that ξk has to coincide with
ξ0. We conclude that I(ξ) ≥ I(ξ1) ≥ · · · ≥ I(ξk) = I(ξ′) = I(ξ0), proving that ξ0 is indeed a minimizer.
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Now we check that ΨI′(γ) , {(c, b) : I ′(c, b) ≤ γ} is compact for each γ ∈ [0,∞) so that I ′ is a good rate
function. It is clear that ΨI′(γ) is bounded. To see that ΨI′(γ) is closed, suppose that (c1, b1) /∈ ΨI′(γ). In

case 0 < b1 < c1, note that I
′ can be written as I ′(c, b) = bα

{(
c/b−⌊c/b⌋

)α
+ ⌊c/b⌋

}

, from which it is easy

to see that I ′ is continuous at such (c1, b1)’s. Therefore, one can find an open ball around (c1, b1) in such a
way that it doesn’t intersect with ΨI′(γ). By considering the cases c1 < b1, b1 = 0, b1 = c1 separately, the
rest of the cases are straightforward to check. We thus conclude that I ′ is a good rate function. Now we
can apply Corollary 3.1. Note that

inf
(x,y)∈[c,∞)×[0,b]

I ′(x, y) = inf
(x,y)∈(c,∞)×[0,b)

I ′(x, y) = I ′(c, b),

and hence,

lim sup
n→∞

logP
(

supt∈[0,1] X̄n(t) ≥ c, supt∈[0,1]
∣
∣X̄n(t)− X̄n(t−)

∣
∣ ≤ b

)

L(n)nα
=







⌊
c
b

⌋
bα +

(
c−

⌊
c
b

⌋
b
)α

if 0 < b ≤ c,

0 if b = c = 0,

∞ otherwise.

From the expression of the rate function, it can be inferred that the most likely way level c is reached is due
to
⌊
c
b

⌋
jumps of size b and one jump of size

(
c−

⌊
c
b

⌋
b
)
. If we compare this with the insights obtained from

the case of truncated regularly varying tails in Rhee et al. (2016), we see that the total number of jumps is
identical, but the size of the jumps are deterministic and non-identical, while in the regularly varying case,
they are identically distributed with Pareto distribution.

5 Multiple Server Queue

Let Q denote the queue length process of the GI/GI/d queueing system with d servers, i.i.d. inter-arrival
times with generic inter-arrival time A, and i.i.d. service times with generic service time S; we refer to
Gamarnik and Goldberg (2013) for a detailed model description. Our goal in this section is to identify
the limit behavior of P

(
Q(γn) > n

)
as n → ∞ in terms of the distributions of A and S, assuming

P (S > x) = exp{−L(x)xα}, α ∈ (0, 1). Set λ = 1/E[A] and µ = 1/E[S]. Let M be the renewal process
associated with A. That is,

M(t) = inf{s : A(s) > t},
and A(t) , A1+A2+ · · ·+A⌊t⌋ where A1, A2, . . . are iid copies of A. Similarly, let N (i) be a renewal process

associated with S for each i = 1, . . . , d. Let M̄n and N̄
(i)
n be scaled processes ofM and N (i) in D[0, γ]. That

is, M̄n(t) = M(nt)/n and N̄
(i)
n (t) = N (i)(nt)/n for t ≥ 0. Recall Theorem 3 of Gamarnik and Goldberg

(2013), which implies

P
(
Q(γn) > n

)
≤ P

(

sup
0≤s≤γ

(

M̄n(s)−
d∑

i=1

N̄ (i)
n (s)

)

≥ 1

)

(5.1)

for each γ > 0. It should be noted that in Gamarnik and Goldberg (2013), A1 and S
(i)
1 are defined to have

the residual distribution to make M and N (i) equilibrium renewal processes, but such assumptions are not

necessary for (5.1) itself. In view of this, a natural way to proceed is to establish LDPs for M̄n and N̄
(i)
n ’s.

Note, however, that M̄n and N̄
(i)
n ’s depend on random number of Aj ’s and S

(i)
j ’s, and hence may depend

on arbitrarily large number of Aj ’s and S
(i)
j ’s with strictly positive probabilities. This does not exactly
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correspond to the large deviations framework we developed in the earlier sections. To accommodate such
a context, we introduce the following maps. Fix γ > 0. Define for µ > 0, Ψµ : D[0, γ/µ] → D[0, γ] be

Ψµ(ξ)(t) , sup
s∈[0,t]

ξ(s),

and for each µ define a map Φµ : D[0, γ/µ] → D[0, γ] as

Φµ(ξ)(t) , ϕµ(ξ)(t) ∧ ψµ(ξ)(t),

where

ϕµ(ξ)(t) , inf{s ∈ [0, γ/µ] : ξ(s) > t} and ψµ(ξ)(t) ,
1

µ

(

γ +
[
t−Ψ(ξ)(γ/µ)

]

+

)

.

Here we denoted max{x, 0} with [x]+. In words, between the origin and the supremum of ξ, Φµ(ξ)(s) is
the first passage time of ξ crossing the level s; from there to the final point γ, Φµ(ξ) increases linearly from

γ/µ at rate 1/µ (instead of jumping to ∞ and staying there). Define Ān ∈ D[0, γ/EA] as Ān(t) , A(nt)/n

for t ∈ [0, γ/EA] and S̄
(i)
n ∈ D[0, γ/ES] as S̄

(i)
n (t) , S(i)(nt)/n = 1

n

∑⌊nt⌋
j=1 S

(i)
j for t ∈ [0, γ/ES]. We will

show that

• Ān and S̄
(i)
n satisfy certain LDPs (Proposition 5.1);

• ΦEA(·) and ΦES(·) are continuous functions, and hence, ΦEA(Ān) and ΦES(S̄
(i)
n ) satisfy the LDPs

deduced by a contraction principle (Proposition 5.3, 5.4);

• M̄n and N̄
(i)
n are equivalent to ΦEA(Ān) and ΦES(S̄

(i)
n ), respectively, in terms of their large deviations

(Proposition 5.2); so M̄n and N̄
(i)
n satisfy the same LDPs (Proposition 5.4);

• and hence, the log asymptotics of P(Q(γn) > n) can be bounded by the solution of a quasi-variational
problem characterized by the rate functions of such LDPs (Proposition 5.5);

and then solve the quasi-variational problem to establish the asymptotic bound.
Let D↑p[0, γ/µ] be the subspace of D[0, γ/µ] consisting of non-decreasing pure jump functions that assume

non-negative values at the origin, and define ζµ ∈ D[0, γ/µ] as ζµ(t) , µt. Let Dµ[0, γ/µ] , ζµ +D↑p[0, γ/µ].

Proposition 5.1. Ān satisfies the LDP on
(
D[0, γ/EA], dM ′1

)
with speed L(n)nα and rate function

I0(ξ) =

{

0 if ξ = ζEA,

∞ otherwise,

and S̄
(i)
n satisfies the LDP on

(
D[0, γ/ES], dM ′1

)
with speed L(n)nα and the rate function

Ii(ξ) =

{∑

t∈[0,γ/ES](ξ(t)− ξ(t−))α if ξ ∈ DES [0, γ/ES],

∞ otherwise.

Proof. Firstly, note that 1
n

∑⌊nt⌋
j=1 (Aj −EA · t) satisfies the LDP with the rate function

IA(ξ) =

{

0 if ξ = 0,

∞ otherwise,
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whereas 1
n

∑⌊nt⌋
j=1

(

S
(i)
j −ES · t

)

satisfies the LDP with the rate function

IS(i)(ξ) =

{∑

t∈[0,γ/ES](ξ(t)− ξ(t−))α if ξ ∈ D↑p[0, γ/ES],

∞ otherwise.

Consider the map Υµ :
(
D[0, γ/µ], TM ′1

)
→
(
D[0, γ/µ], TM ′1

)
where Υµ(ξ) , ξ + ζµ. We prove that ΥEA is

a continuous function w.r.t. the M ′1 topology. Suppose that, ξn → ξ in D[0, γ/EA] w.r.t. the M ′1 topology.
As a result, there exist parameterizations (un(s), tn(s)) of ξn and (u(s), t(s)) of ξ so that,

sup
t≤γ/EA

{|un(s)− u(s)|+ |tn(s)− t(s)|} → 0 as n→ ∞.

This implies that max{supt≤γ/EA |un(s) − u(s)|, supt≤γ/EA |tn(s) − t(s)|} → 0 as n → ∞. Observe that,
if (u(s), t(s)) is a parameterization for ξ, then (u(s) + EA · t(s), t(s)) is a parameterization for ΥEA(ξ).
Consequently,

sup
t≤γ/EA

{|un(s) +EA · tn(s)− u(s)−EA · t(s)|+ |tn(s)− t(s)|}

≤ sup
t≤γ/EA

{|un(s)− u(s)|}+ sup
t≤γ/EA

{(EA+ 1)|tn(s)− t(s)|} → 0.

Thus, ΥEA(ξn) → ΥEA(ξ) in the M ′1 topology, proving that the map is continuous. The same argument
holds for ΥES. By the contraction principle, Ān obeys the LDP with the rate function I0(ζ) , inf{IA(ξ) :
ξ ∈ D[0, γ/EA], ζ = ΥEA(ξ)}. Observe that IA(ξ) = ∞ for ξ 6= 0 therefore,

I0(ζ) =

{

0 if ζ = ΥEA(0) = ζEA,

∞ otherwise.

Similarly, IS(i)(ξ) = ∞ when ξ is not a non-decreasing pure jump function. Note that ξ ∈ D↑s implies that
ζ = ΥES(ξ) belongs to D

ES [0, γ/ES]. Taking into account the form of IS(i) and that Ii(ζ) , inf{IS(i)(ξ) :
ξ ∈ D[0, γ/ES], ζ = ΥES(ξ)}, we conclude

Ii(ζ) =

{∑

t∈[0,γ/ES](ζ(t) − ζ(t−))α for ζ ∈ DES [0, γ/ES],

∞ otherwise.

Proposition 5.2. M̄n and ΦEA(Ān) are exponentially equivalent in
(
D[0, γ], TM ′1

)
. N̄

(i)
n and ΦES(S̄

(i)
n )

are exponentially equivalent in
(
D[0, γ], TM ′1

)
for each i = 1, . . . , d.

Proof. We first claim that dM ′1(M̄n,ΦEA(Ān)) ≥ ǫ implies either

γ −Ψ(Ān)(γ/EA) ≥
EA

2
ǫ or sup

t∈[Ψ(Ān)(γ/EA), γ]

M̄n(t)− γ/EA ≥ ǫ/2.

To see this, suppose not. That is,

γ −Ψ(Ān)(γ/EA) <
EA

2
ǫ and sup

t∈[Ψ(Ān)(γ/EA), γ]

M̄n(t)− γ/EA < ǫ/2. (5.2)
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By the construction of Ān and M̄n we see that M̄n(t) ≥ γ/EA for t ≥ Ψ(Ān)(γ/EA). Therefore, the second
condition of (5.2) implies

sup
t∈[Ψ(Ān)(γ/EA), γ]

|M̄n(t)− γ/EA| < ǫ/2.

On the other hand, since the slope of ΦEA(Ān) is 1/EA on [Ψ(Ān)(γ/EA), γ], the first condition of (5.2)
implies that

sup
t∈[Ψ(Ān)(γ/EA), γ]

|ΦEA(Ān)(t)− γ/EA| < ǫ/2,

and hence,
sup

t∈[Ψ(Ān)(γ/EA), γ]

|ΦEA(Ān)(t)− M̄n(t)| < ǫ. (5.3)

Note also that by the construction of ΦEA, M̄n(t) and ΦEA(Ān)(t) coincide on t ∈ [0,Ψ(Ān)(γ/EA)). From
this along with (5.3), we see that

sup
t∈[0,γ]

|ΦEA(Ān)(t)− M̄n(t)| < ǫ,

which implies that dM ′1(ΦEA(Ān)(t), M̄n(t)) < ǫ. The claim is proved. Therefore,

lim sup
n→∞

logP
(

dM ′1(M̄n,ΦEA(Ān)) ≥ ǫ
)

L(n)nα

≤ lim sup
n→∞

log
{

P
(

γ −Ψ(Ān)(γ/EA) ≥ EA
2 ǫ
)

+P
(

supt∈[Ψ(Ān)(γ/EA),γ] M̄n(t)− γ/EA ≥ ǫ/2
)}

L(n)nα

≤ lim sup
n→∞

logP
(

γ −Ψ(Ān)(γ/EA) ≥ EA
2 ǫ
)

L(n)nα
∨ lim sup

n→∞

logP
(

supt∈[Ψ(Ān)(γ/EA),γ] M̄n(t)− γ/EA ≥ ǫ/2
)

L(n)nα
,

and we are done for the exponential equivalence between M̄n and ΦEA(Ān) if we prove that

lim sup
n→∞

logP
(

γ −Ψ(Ān)(γ/EA) ≥ EA
2 ǫ
)

L(n)nα
= −∞ (5.4)

and

lim sup
n→∞

logP
(

supt∈[Ψ(Ān)(γ/EA),γ] M̄n(t)− γ/EA ≥ ǫ/2
)

L(n)nα
= −∞. (5.5)

For (5.4), note that Ψ(Ān)(γ/EA) ≤ γ −EAǫ/2 implies that dM ′1 (Ān, ζEA) ≥ EAǫ/2, and hence,

lim sup
n→∞

logP
(

γ −Ψ(Ān)(γ/EA) ≥ EA
2 ǫ
)

L(n)nα
≤ lim sup

n→∞

logP
(

dM ′1(Ān, ζEA) ≥ EA
2 ǫ
)

L(n)nα

≤ − inf
ξ∈BM′

1
(ζEA;EA/2)c

I0(ξ) ≤ −∞,

where the second inequality is due to the LDP upper bound for Ān in Proposition 5.1. For (5.5), we arrive
at the same conclusion by considering the LDP for A(n·)/n on D[0, γ/ES + ǫ/2]. This concludes the proof

for the exponential equivalence between M̄n and ΦEA(Ān). The exponential equivalence between N̄
(i)
n and

ΦES(S̄
(i)
n ) is essentially identical with slight differences, and hence, omitted.
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Let DΦµ
, {ξ ∈ D[0, γ/µ] : Φµ(ξ)(γ)− Φµ(ξ)(γ−) > 0}.

Proposition 5.3. For each µ ∈ R, Φµ : (D[0, γ/µ], TM ′1 ) → (D[0, γ], TM ′1) is continuous on Dc

Φµ
.

Proof. Note that Φµ = Φµ ◦Ψ and Ψ is continuous, so we only need to check the continuity of Φµ over the
range of Ψ, in particular, non-decreasing functions. Let ξ be a non-decreasing function in D[0, γ/µ]. We
consider two cases separately: Φµ(ξ)(γ) > γ/µ and Φµ(ξ)(γ) ≤ γ/µ.

We start with the case Φµ(ξ)(γ) > γ/µ. Pick ǫ > 0 such that Φµ(ξ) > γ/µ+ 2ǫ and ξ(γ/µ) + 2ǫ < γ.
For such an ǫ, it is straightforward to check that dM ′1(ζ, ξ) < ǫ implies Φµ(ζ)(γ) > µ/γ and ζ never exceeds
γ on [0, γ/µ]. Therefore, the parametrizations of Φµ(ξ) and Φµ(ζ) consist of the parametrizations—with
the roles of space and time interchanged—of the original ξ and ζ concatenated with the linear part coming
from ψµ. More specifically, suppose that (x, t) ∈ Γ(ξ) and (y, r) ∈ Γ(ζ) are parametrizations of ξ and ζ. If
we define on s ∈ [0, 1],

x′(s) ,

{

t(2s) if s ≤ 1/2
1
µ

(
t′(s)−Ψ(ξ)(γ/µ) + γ

)
if s > 1/2

, t′(s) ,

{

x(2s) if s ≤ 1/2
(
γ −Ψ(ξ)(γ/µ)

)
(2s− 1) + Ψ(ξ)(γ/µ) if s > 1/2

and

y′(s) ,

{

r(2s) if s ≤ 1/2
1
µ

(
r′(s)−Ψ(ζ)(γ/µ) + γ

)
if s > 1/2

, r′(s) ,

{

y(2s) if s ≤ 1/2
(
γ −Ψ(ζ)(γ/µ)

)
(2s− 1) + Ψ(ζ)(γ/µ) if s > 1/2

,

then (x′, t′) ∈ Γ(Φµ(ξ)), (y
′, r′) ∈ Γ(Φµ(ζ)). Noting that

‖x′ − y′‖∞ + ‖t′ − r′‖∞
= sup

s∈[0,1/2]

|t(2s)− r(2s)| ∨ sup
s∈(1/2,1]

|x′(s)− y′(s)|+ sup
s∈[0,1/2]

|x(2s)− y(2s)| ∨ sup
s∈(1/2,1]

|t′(s)− r′(s)|

= ‖t− r‖∞ ∨ µ−1|Ψ(ζ)(γ/µ)−Ψ(ξ)(γ/µ)|+ ‖x− y‖∞ ∨ |Ψ(ζ)(γ/µ)−Ψ(ξ)(γ/µ)|
≤ µ−1‖t− r‖∞ ∨ ‖x− y‖∞ + ‖x− y‖∞ ≤ (1 + µ−1)(‖x− y‖∞ + ‖t− r‖∞),

and taking the infimum over all possible parametrizations, we conclude that dM ′1(Φµ(ξ),Φµ(ζ)) ≤ (1 +

µ−1)dM ′1(ξ, ζ) ≤ (1 + µ−1)ǫ, and hence, Φµ is continuous at ξ.
Turning to the case Φµ(ξ)(γ) ≤ γ/µ, let ǫ > 0 be given. Due to the assumption that Φµ(ξ) is continuous

at γ, there has to be a δ > 0 such that ϕµ(ξ)(γ) + ǫ < ϕµ(ξ)(γ − δ) ≤ ϕµ(ξ)(γ + δ) ≤ ϕµ(ξ)(γ) + ǫ. We will
prove that if dM ′1(ξ, ζ) < δ∧ǫ, then dM ′1(Φµ(ξ),Φµ(ζ)) ≤ 8ǫ. Since the case where Φµ(ζ)(γ) ≥ µ/γ is similar
to the above argument, we focus on the case Φµ(ζ)(γ) < µ/γ; that is, ζ also crosses level γ before γ/µ. Let

(x, t) ∈ Γ(ξ) and (y, r) ∈ Γ(ζ) be such that ‖x− y‖∞ + ‖t− r‖∞ < δ. Let sx , inf{s ≥ 0 : x(s) > γ} and
sy , inf{s ≥ 0 : y(s) > γ}. Then it is straightforward to check t(sx) = ϕµ(ξ)(γ) and r(sy) = ϕµ(ζ)(γ).

Of course, x(sx) = γ and y(sy) = γ. If we set x′(s) , t(s ∧ sx), t′(s) , x(s ∧ sx), and y′(s) , r(s ∧ sy),
r′(s) , y(s ∧ sy), then

‖x′ − y′‖∞ ≤ ‖t− r‖∞ + sup
s∈[sx∧sy,sx∨sy ]

{
|t(sx)− r(s)| ∨ |t(s)− r(sy)|

}

≤ ‖t− r‖∞ + sup
s∈[sx∧sy,sx∨sy ]

{(
|t(sx)− t(s)|+ |t(s)− r(s)|

)
∨
(
|t(s)− t(sy)|+ |t(sy)− r(sy)|

)}

≤ ‖t− r‖∞ +
(
|t(sx)− t(sy)|+ ‖t− r‖∞

)
∨
(
|t(sy)− t(sx)|+ ‖t− r‖∞

)

≤ 2‖t− r‖∞ + 2|t(sx)− t(sy)|.

Now we argue that t(sx)− ǫ ≤ t(sy) ≤ t(sx) + ǫ. To see this, note first that x(sy) < x(sx) + δ = γ + δ, and
hence,

t(sy) ≤ ϕµ(ξ)(x(sy)) ≤ ϕµ(ξ)(γ + δ) ≤ ϕµ(ξ)(γ) + ǫ = t(sx) + ǫ.
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On the other hand,
t(sx)− ǫ = ϕµ(ξ)(γ)− ǫ ≤ ϕµ(γ − δ) ≤ t(sy),

where the last inequality is from ξ(t(sy)) ≥ x(sy) > x(sx)− δ = γ − δ and the definition of ϕµ. Therefore,
‖x′ − y′‖∞ ≤ 2δ + 2ǫ < 4ǫ. Now we are left with showing that ‖t′ − r′‖∞ can be bounded in terms of ǫ.

‖t′ − r′‖∞ ≤ ‖x− y‖∞ + sup
s∈[sx∧sy,sx∨sy ]

{|x(sx)− y(s)| ∨ |x(s) − y(sy)|}

≤ ‖x− y‖∞ + sup
s∈[sx∧sy,sx∨sy ]

{(
|x(sx)− x(s)|+ |x(s) − y(s)|

)
∨
(
|x(s) − x(sy)|+ |x(sy)− y(sy)|

)}

≤ ‖x− y‖∞ +
(
|t(sx)− t(sy)|+ ‖x− y‖∞

)
∨
(
|x(sx)− x(sy)|+ ‖x− y‖∞

)

≤ 2‖x− y‖∞ + 2|x(sx)− x(sy)| = 2‖x− y‖∞ + 2|y(sy)− x(sy)| ≤ 4‖x− y‖∞ < 4ǫ.

Therefore, dM ′1
(
Φµ(ξ),Φµ(ζ)

)
≤ ‖x′ − y′‖∞ + ‖t′ − r′‖∞ < 8ǫ.

Let Čµ[0, γ] , {ζ ∈ C[0, γ] : ζ = ϕµ(ξ) for some ξ ∈ Dµ[0, γ/µ]} where C[0, γ] is the subspace of D[0, γ]

consisting of continuous paths, and define τs(ξ) , max
{

0, sup{t ∈ [0, γ] : ξ(t) = s} − inf{t ∈ [0, γ] : ξ(t) =

s}
}

.

Proposition 5.4. ΦEA(Ān) and M̄n satisfy the LDP with speed L(n)nα and the rate function

I ′0(ξ) ,

{

0 if ξ(t) = t/EA,

∞ otherwise,

and for i = 1, ..., d, ΦES(S̄
(i)
n ) and N̄

(i)
n satisfy the LDP with speed L(n)nα and the rate function

I ′i(ξ) ,

{∑

s∈[0,γ/ES] τs(ξ)
α if ξ ∈ Č1/ES [0, γ],

∞ otherwise.

Proof. Let Î ′0(ζ) , inf{I0(ξ) : ξ ∈ D[0, γ/EA], ζ = ΦEA(ξ)} and Î ′i(ζ) , inf{Ii(ξ) : ξ ∈ D[0, γ/ES], ζ =
ΦES(ξ)} for i = 1, . . . , d. From Proposition 5.1, 5.2, 5.3, and the extended contraction principle (p.367
of Puhalskii and Whitt, 1997, Theorem 2.1 of Puhalskii, 1995), it is enough to show that I ′i = Î ′i for
i = 0, . . . , d.

Starting with i = 0, note that I0(ξ) = ∞ if ξ 6= ζEA, and hence,

Î ′0(ζ) = inf{I0(ξ) : ξ ∈ D[0, γ/EA], ζ = ΦEA(ξ), ξ = ζEA} =

{

0 if ζ = ΦEA(ζEA)

∞ o.w.
. (5.6)

Also, since Ψ(ζEA)(γ/EA) = γ, ψEA(ζEA)(t) = 1
EA (γ + [t − γ]+) = γ/EA. Therefore, ΦEA(ζEA)(t) =

inf{s ∈ [0, γ/EA] : s > t/EA} ∧ (γ/EA) = (t/EA) ∧ (γ/EA) = t/EA for t ∈ [0, γ]. With (5.6), this implies
I ′0 = Î ′0.

Turning to i = 1, . . . , d, note first that since Ii(ξ) = ∞ for any ξ /∈ DES [0, γ/ES],

Î ′i(ζ) = inf{Ii(ξ) : ξ ∈ DES [0, γ/ES], ζ = ΦES(ξ)}.

Note also that ΦES can be simplified on DES [0, γ/ES]: it is easy to check that if ξ ∈ DES [0, γ/ES],
ψES(ξ)(t) = γ/ES and ϕES(ξ)(t) ≤ γ/ES for t ∈ [0, γ]. Therefore, ΦES(ξ) = ϕES(ξ), and hence,

Î ′i(ζ) = inf{Ii(ξ) : ξ ∈ DES [0, γ/ES], ζ = ϕES(ξ)}.
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Now if we define ̺ES : D[0, γ/ES] → D[0, γ/ES] as

̺ES(ξ)(t) ,

{

ξ(t) t ∈ [0, ϕES(ξ)(γ))

γ + (t− ϕES(ξ)(γ))ES t ∈ [ϕES(ξ)(γ), γ/ES]
,

then it is straightforward to check that Ii(ξ) ≥ Ii(̺ES(ξ)) and ϕES(ξ) = ϕES(̺ES(ξ)) whenever ξ ∈
DES [0, γ/ES]. Moreover, ̺ES(D

ES [0, γ/ES]) ⊆ DES [0, γ/ES]. From these observations, we see that

Î ′i(ζ) = inf{Ii(ξ) : ξ ∈ ̺ES(D
ES [0, γ/ES]), ζ = ϕES(ξ)}. (5.7)

Note that ξ ∈ ̺ES(D
ES [0, γ/ES]) and ζ = ϕES(ξ) implies that ζ ∈ Č1/ES [0, γ]. Therefore, in case ζ 6∈

Č1/ES [0, γ], no ξ ∈ D[0, γ/ES] satisfies the two conditions simultaneously, and hence,

Î ′i(ζ) = inf ∅ = ∞ = I ′i(ζ). (5.8)

Now we prove that Î ′i(ζ) = I ′i(ζ) for ζ ∈ Č1/ES [0, γ]. We claim that if ξ ∈ ̺ES(D
ES [0, γ/ES]),

τs(ϕES(ξ)) = ξ(s)− ξ(s−)

for all s ∈ [0, γ/ES]. The proof of this claim will be provided at the end of the proof of the current
proposition. Using this claim,

Îi(ζ) = inf
{
∑

s∈[0,γ/ES](ξ(s)− ξ(s−))α : ξ ∈ ̺ES(D
ES [0, γ/ES]), ζ = ϕES(ξ)

}

= inf
{
∑

s∈[0,γ/ES]τs(ϕES(ξ))
α : ξ ∈ ̺ES(D

ES [0, γ/ES]), ζ = ϕES(ξ)
}

= inf
{
∑

s∈[0,γ/ES]τs(ζ)
α : ξ ∈ ̺ES(D

ES [0, γ/ES]), ζ = ϕES(ξ)
}

.

Note also that ζ ∈ Č1/ES [0, γ] implies the existence of ξ such that ζ = ϕES(ξ) and ξ ∈ ̺ES(D
ES [0, γ/ES]).

To see why, note that there exists ξ′ ∈ DES [0, γ/ES] such that ζ = ϕES(ξ
′) due to the definition of

Č1/ES [0, γ]. Let ξ , ̺ES(ξ
′). Then, ζ = ϕES(ξ) and ξ ∈ ̺ES(D

ES [0, γ/ES]). From this observation, we
see that

{
∑

s∈[0,γ/ES]τs(ζ)
α : ξ ∈ ̺ES(D

ES [0, γ/ES]), ζ = ϕES(ξ)
}

=
{
∑

s∈[0,γ/ES]τs(ζ)
α
}

,

and hence,

Îi(ζ) =
∑

s∈[0,γ/ES]

τs(ζ)
α = I ′i(ζ) (5.9)

for ζ ∈ Č1/ES [0, γ]. From (5.8) and (5.9), we conclude that I ′i = Îi for i = 1, . . . , d.
Now we are done if we prove the claim. We consider the cases s > ϕES(ξ)(γ) and s ≤ ϕES(ξ)(γ)

separately. First, suppose that s > ϕES(ξ)(γ). Since ϕES(ξ) is non-decreasing, this means that ϕES(ξ)(t) <
s for all t ∈ [0, γ], and hence, {t ∈ [0, γ] : ϕES(t) = s} = ∅. Therefore,

τs(ϕES(ξ)) = 0 ∨
(
sup{t ∈ [0, γ] : ϕES(t) = s} − inf{t ∈ [0, γ] : ϕES(t) = s}

)
= 0 ∨ (−∞−∞) = 0.

On the other hand, since ξ is continuous on [ϕES(ξ)(γ), γ/ES] by its construction,

ξ(s)− ξ(s−) = 0.
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Therefore,
τs(ϕES(ξ)) = 0 = ξ(s)− ξ(s−)

for s > ϕES(ξ)(γ).
Now we turn to the case s ≤ ϕES(ξ)(γ). Since ϕES(ξ) is continuous, this implies that there exists

u ∈ [0, γ] such that ϕES(ξ)(u) = s. From the definition of ϕES(ξ)(u), it is straightforward to check that

u ∈ [ξ(s−), ξ(s)] ⇐⇒ s = ϕES(ξ)(u). (5.10)

Note that [ξ(s−), ξ(s)] ⊆ [0, γ] for s ≤ ϕES(ξ)(γ) due to the construction of ξ. Therefore, the above
equivalence (5.10) implies that [ξ(s−), ξ(s)] = {u ∈ [0, γ] : ϕES(ξ)(u) = s}, which in turn implies that
ξ(s−) = inf{u ∈ [0, γ] : ϕES(ξ)(u) = s} and ξ(s) = sup{u ∈ [0, γ] : ϕES(ξ)(u) = s}. We conclude that

τs(ϕES(ξ)) = ξ(s)− ξ(s−)

for s ≤ ϕES(ξ)(γ).

Now we are ready to characterize an asymptotic bound for P
(
Q(γn) > n

)
. Recall that τs(ξ) ,

max
{

0, sup{t ∈ [0, γ] : ξ(t) = s} − inf{t ∈ [0, γ] : ξ(t) = s}
}

.

Proposition 5.5.

lim sup
n→∞

1

L(n)nα
logP

(
Q(γn) > n

)
≤ −c∗

where c∗ is the solution of the following quasi-variational problem:

inf
ξ1,...,ξd

d∑

i=1

∑

s∈[0,γ/ES]

τs(ξi)
α (5.11)

subject to sup
0≤s≤γ

( s

EA
−

d∑

i=1

ξi(s)
)

≥ 1;

ξi ∈ Č
1/ES [0, γ] for i = 1, . . . , d.

Proof. Note first that for any ǫ > 0,

P

(

sup
0≤s≤γ

(

M̄n(s)−
d∑

i=1

N̄ (i)
n (s)

)

≥ 1

)

= P

(

sup
0≤s≤γ

(

M̄n(s)−
s

EA

)

+ sup
0≤s≤γ

( s

EA
−

d∑

i=1

N̄ (i)
n (s)

)

≥ 1

)

≤ P

(

sup
0≤s≤γ

(

M̄n(s)−
s

EA

)

≥ ǫ

)

+P

(

sup
0≤s≤γ

( s

EA
−

d∑

i=1

N̄ (i)
n (s)

)

≥ 1− ǫ

)

.

Since lim supn→∞
1

L(n)nα logP
(

sup0≤s≤γ

(

M̄n(s)− s
EA

)

≥ ǫ
)

= −∞,

lim sup
n→∞

P
(

sup0≤s≤γ

(

M̄n(s)−
∑d

i=1 N̄
(i)
n (s)

)

≥ 1
)

L(n)nα
= lim sup

n→∞

P
(

sup0≤s≤γ

(
s

EA −∑d
i=1 N̄

(i)
n (s)

)

≥ 1− ǫ
)

L(n)nα
.
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To bound the right hand side, we proceed to deriving an LDP for sup0≤s≤γ

(
s

EA −∑d
i=1 N̄

(i)
n (s)

)

. Due

to Proposition 5.4, (N̄
(i)
n , . . . , N̄

(d)
n ) satisfy the LDP in

∏d
i=1 D[0, γ] (w.r.t. the d-fold product topology of

TM ′1) with speed L(n)nα and rate function

I ′(ξ1, . . . , ξd) ,

d∑

i=1

I ′i(ξi).

Let D↑[0, γ] denote the subspace of D[0, γ] consisting of non-decreasing functions. Since N̄
(i)
n ∈ D↑[0, γ]

with probability 1 for each i = 1, . . . , d, we can apply Lemma 4.1.5 (b) of Dembo and Zeitouni (2010) to

deduce the same LDP for (N̄
(i)
n , . . . , N̄

(d)
n ) in

∏d
i=1 D

↑[0, γ]. If we define f :
∏d

i=1 D
↑[0, γ] → D[0, γ] as

f(N̄ (1)
n , . . . , N̄ (d)

n ) , ξEA −
d∑

i=1

N̄ (i)
n

where ξEA(t) , t/EA, then f is continuous since all the jumps are in one direction, and hence, we can

apply the contraction principle to deduce the LDP for ξEA −∑d
i=1 N̄

(i)
n , which is controlled by the rate

function
I ′′(ζ) , inf

{(ξ1,...,ξd): ξEA−
∑

d
i=1 ξi=ζ}

I ′(ξ0, . . . , ξd).

Now, applying the contraction principle again with the supremum functional to ξEA −∑d
i=1 N̄

(i)
n , we get

the LDP for supt∈[0,γ]
(
ξEA −∑d

i=1 N̄
(i)
n (t)

)
, which is controlled by the rate function

I ′′′(x) = inf
{ζ: supt∈[0,γ] ζ(t)=x}

I ′′(ζ) = inf
{(ξ1,...,ξd): supt∈[0,γ](ξEA(t)−

∑
d
i=1 ξi(t))=x}

I ′(ξ0, . . . , ξd).

The conclusion of the proposition follows from considering the upper bound of this LDP for the closed set
[1,∞) and taking ǫ→ 0.

To show that the large deviations upper bound is tight, and to obtain more insight in the way the rare
event {Q(γn) > n} occurs, we now simply the expression of c∗ given in Proposition 5.5. To ease notation,
we assume from now on that E[S] = µ−1 = 1.

Proposition 5.6. If γ < 1/λ, c∗ = ∞. If γ ≥ 1/λ, c∗ can be computed via

min

d∑

i=1

xαi s.t. (5.12)

l (s;x) = λs−
d∑

i=1

(s− xi)
+ ≥ 1 for some s ∈ [0, γ].

x1, ..., xd ≥ 0 ,

which in turn equals

min{ inf
0<k≤⌊λ⌋:γ<1/(λ−k)

{

(d− k) γα + (1− γλ+ γk)
α
(k − ⌊λ⌋ ∧ ⌊λ− 1/γ⌋)1−α

}

(5.13)

⌊λ⌋∧⌊λ−1/γ⌋

min
l=0

{

(d− l)

(
1

λ− l

)α}

}.
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Proof. We want to show that c∗ is equal to

inf

d∑

i=1

∑

s∈[0,γ]

τs (ζi)
α

(5.14)

s.t.

sup
0≤s≤γ

{

λs−
d∑

i=1

ζi (s)

}

≥ 1

ζi = ϕµ (ξi) , ξi ∈ D
µ[0, γ/µ] for i ∈ 1, ..., d .

After a simple transformation, we might assume that µ = 1. For simplicity in the exposition we will assume
the existence of an optimizer. The argument that we present can be carried out with ε̄-optimizers. In the
end, the representation that we will provide will show the existence of an optimizer. First, we will argue that
without loss of generality we may assume that if (ζ1, ..., ζd) is an optimal solution then the corresponding
functions ξ1, ..., ξd have at most one jump which occurs at time zero. To see this suppose that (ζ1, ..., ζd)
is an optimal solution and consider the corresponding functions (ξ1, ..., ξd) such that ζi = ϕµ (ξi). By
feasibility, we must have that at least one of the ξi’s exhibit at least one jump in [0, γ]. Assume that ξi
exhibits two or more jumps and select two jump times, say 0 ≤ u0 < u1 ≤ γ, with corresponding jump sizes
x0 and x1, respectively. Let

ξ̄i (·) = ξi (·)− x1I[u1,γ] (·) + x1I[u0,γ] (·) ;
in simple words, ξ̄i (·) is obtained by merging the jump at time u1 with the jump at time u0. It is immediate
(since x0, x1 > 0) that for each t

ξ̄i (t) ≥ ξi (t)

and, therefore, letting ζ̄i = ϕµ

(
ξ̄i
)
we obtain (directly from the definition of the functional ζ̄i as a generalized

inverse) that for every s
ζ̄i (s) ≤ ζi (s) .

Therefore, we conclude that the collection ζ1, ..., ζ̄i, ...ζd is feasible. Moreover, since

∑

s∈[0,γ]

τs
(
ζ̄i
)α

=
∑

s∈[0,γ]

τs (ζi)
α
+ (x0 + x1)

β − xβ0 − xβ1

and, by strict concavity,
(x0 + x1)

β
< xβ0 + xβ1 ,

we conclude that ζ1, ..., ζ̄i, ..., ζd improves the objective function, thus violating the optimality of ζ1, ..., ζd.
So, we may assume that ξi (·) has a single jump of size xi > 0 at some time ui and therefore

ζi (s) = min (s, ui) + (s− xi − ui)
+
. (5.15)

Now, define t = inf{s ∈ [0, γ] : λs−∑d
i=1 ζi (s) ≥ 1}, then

λt−
d∑

i=1

ζi (t) = 1 (5.16)

and we must have that t ≥ xi+ui; otherwise, if xi+ui > t then we might reduce the value of the objective
function while preserving feasibility (this can be seen from the form of ζi (·)), thus contradicting optimality.
Now, suppose that ui > 0, choose ε ∈ (0,min(ui, xi)) and define

ξ̄i (s) = ξi (s)− xiI[ui,γ] (s) + xiI[ui−ε,γ] (s) .
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In simple words, we just moved the first jump slightly earlier (by an amount ε). Once again, let
ζ̄i = ϕµ

(
ξ̄i
)
, and we have that

ζ̄i (s) = min (s, ui − ε) + (s− xi − ui + ε)
+ ≤ ζi (s) .

Therefore, we preserve feasibility without altering the objective function. As a consequence, we may assume
that ui = 0 and using expression (5.15) we then obtain that (5.11) takes the form

min
d∑

i=1

xαi s.t. (5.17)

l (s;x) = λs−
d∑

i=1

(s− xi)
+ ≥ b for some s ∈ [0, γ],

x1, ..., xd ≥ 0 .

Let x = (x1, ..., xd) be any optimal solution, we may assume without loss of generality that 0 ≤ x1 ≤
... ≤ xd. We claim that x satisfies the following features. First, xd ≤ γ, this is immediate from the fact
that we are minimizing over the xi’s and if xd > γ we can reduce the value of xd without affecting the
feasibility of x, thereby improving the value of (5.17). The same reasoning allows us to conclude that
inf{s : l (s;x) ≥ 1} = xd. Consequently, letting xi = a1 + ...+ ai, (5.17) is equivalent to

min

m∑

i=1





i∑

j=1

aj





α

s.t.

λ (a1 + ....+ ad)−
d∑

i=1

(a1 + ....+ ad −
i∑

j=1

a1) ≥ 1

a1 + ....+ ad ≤ γ , a1, ..., ad ≥ 0.

This problem can be simplified to

min

m∑

i=1





i∑

j=1

aj





α

s.t.

λa1 + (λ− 1) a2 + ...+ (λ− d+ 1) ad ≥ 1

a1 + ....+ ad ≤ γ , a1, ..., ad ≥ 0.

In turn, we know that 0 < λ < d, then it suffices to consider

min

⌊λ⌋
∑

i=1





i∑

j=1

aj





α

+ (d− ⌊λ⌋)





⌊λ⌋+1
∑

j=1

aj





α

s.t. (5.18)

λa1 + (λ− 1) a2 + ...+ (λ− ⌊λ⌋) a⌊λ⌋+1 = 1 (5.19)

a1 + ....+ a⌊λ⌋+1 ≤ γ , (5.20)

a1, ..., a⌊λ⌋+1 ≥ 0 , (5.21)

because (λ−m) < 0 implies aλ−m+1 = 0 (otherwise we can reduce the value of the objective function).
We first consider the case λ > ⌊λ⌋. Moreover, observe that if γ ≥ 1/(λ − ⌊λ⌋)) then any solution

satisfying (5.19) and (5.21) automatically satisfies (5.20), so we can ignore the constraint (5.20) if assume
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that γ ≥ 1/(λ − ⌊λ⌋). If λ is an integer we will simply conclude that a⌊λ⌋+1 = 0 and if we only assume
γ > 1/λ we will need to evaluate certain extreme points, as we shall explain later.

Now, the objective function is clearly concave and lower bounded inside the feasible region, which in turn
is a compact polyhedron. Therefore, the optimizer is achieved at some extreme point in the feasible region
(see Rockafellar (1970)). Under our simplifying assumptions, we only need to characterize the extreme
points of (5.19), (5.21), which are given by ai = 1/(λ− i+ 1) for i = 1, ..., ⌊λ⌋+ 1.

So, the solution, assuming that γ ≥ 1/ (λ− ⌊λ⌋), is given by

min{daα1 , (d− 1)aα2 , ..., (d− ⌊λ⌋) aα⌊λ⌋+1}

=
⌊λ⌋+1

min
i=1

{

(d− i+ 1)

(
1

λ− i+ 1

)α}

.

In the general case, that is, assuming γ > λ−1 and also allowing the possibility that λ = ⌊λ⌋, our
goal is to show that the additional extreme points which arise by considering the inclusion of (5.20) might
potentially give rise to solutions in which large service requirements are not equal across all the servers. We
wish to identify the extreme points of (5.19), (5.20), (5.21) which we represent as

λa1 + (λ− 1) a2 + ...+ (λ− ⌊λ⌋) a⌊λ⌋+1 = 1 ,

a0 + a1 + ...+ a⌊λ⌋+1 = γ ,

a0, a1, ..., a⌊λ⌋+1 ≥ 0 .

Note the introduction of the slack variable a0 ≥ 0. From elementary results in polyhedral combinatorics, we
know that extreme points correspond to basic feasible solutions. Choosing ai+1 = 1/(λ−i) and a0 = γ−ai+1

recover basic solutions which correspond to the extreme points identified earlier, when we ignored (5.20).
If λ = ⌊λ⌋ we must have, as indicated earlier, that a⌊λ⌋+1 = 0; so we can safely assume that λ− i > 0. We
observe that γ ≥ 1/(λ− i) implies that ai+1 = 1/(λ− i) and aj = 0 for j 6= i+1 is a basic feasible solution
for the full system (i.e. including (5.20)). Additional basic solutions (not necessarily feasible) are obtained
by solving (assuming that 0 ≤ l < k < λ)

1 = (λ− k) ak+1 + (λ− l)al+1,

γ = ak+1 + al+1.

This system of equations always has a unique solution because the equations are linearly independent if
l 6= k. The previous pair of equations imply that

λγ − 1 = kak+1 + lal+1.

Therefore, we obtain the solution (āk+1, āl+1) is given by

(k − l) āk+1 = (λ− l) γ − 1,

(k − l) āl+1 = 1− γ (λ− k) .

So, for the solution to be both basic and feasible we must have that 1/ (λ− l) ≤ γ ≤ 1/ (λ− k) (with
strict inequality holding on one side).

If we evaluate the solution ak+1 = āk+1, al+1 = āl+1, ai+1 = 0 for i /∈ {k, l} in the objective function
we obtain

⌊λ⌋
∑

i=1





i∑

j=1

aj





α

+ (d− ⌊λ⌋)





⌊λ⌋+1
∑

j=1

aj





α

= āαl+1 (k − l) + (⌊λ⌋ − k) (āk+1 + āl+1)
α
+ (d− ⌊λ⌋) (āk+1 + āl+1)

α

= āαl+1 (k − l) + (d− k) (āk+1 + āl+1)
α
.
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Note that in the case γ = 1/ (λ− k) we have that ak+1 = 1/ (λ− k) and ai = 0 for i 6= k + 1 is a feasible
extreme point with better performance than the solution involving āk+1 and āl+1,

āαl+1 (k − l) + (d− k) (āk+1 + āl+1)
α
> (d− k) aαk+1.

Consequently, we may consider only cases 1/ (λ− l) ≤ γ < 1/ (λ− k) and we conclude that the general
solution is given by

min{ min
0<k≤⌊λ⌋:γ<1/(λ−k)

{

(d− k) γα + (1− γ (λ− k))
α

min
0≤l<⌊λ⌋:1/(λ−l)≤γ

(
1

k − l

)α

(k − l)

}

,

⌊λ⌋∧⌊λ−1/γ⌋

min
l=0

{

(d− l)

(
1

λ− l

)α}

}.

Simplifying, we obtain (5.13).

We conclude with some comments that are meant to provide some physical insight, and highlight
differences with the case of regularly varying job sizes.

If γ < 1/λ, no finite number of large jobs suffice, and we conjecture that the large deviations behavior
is driven by a combination of light and heavy tailed phenomena in which the light tailed dynamics in-
volve pushing the arrival rate by exponential tilting to the critical value 1/γ, followed by the heavy-tailed
contribution evaluated as we explain in the following development.

If γ > 1/λ the following features are contrasting with the case of regularly varying service-time tails:

1. The large deviations behavior is not driven by the smallest number of jumps which drives the queueing
system to instability (i.e. ⌈d− λ⌉). In other words, in the Weibull setting, it might be cheaper to
block more servers.

2. The amount by which the servers are blocked may not be the same among all of the servers which
are blocked.

To illustrate the first point, assume γ > b/ (λ− ⌊λ⌋), in which case

⌊λ⌋ ≤ ⌊λ− b/γ⌋ ,

and the optimal solution of c∗ reduces to

⌊λ⌋

min
l=0

{

(d− l)

(
b

λ− l

)α}

.

Let us use l∗ to denote an optimizer for the previous expression; intuitively, d − l∗ represents the optimal
number of servers to be blocked (observe that d − ⌊λ⌋ = ⌈d− λ⌉ corresponds to the number of servers
blocked in the regularly varying case). Note that if we define

f (t) = (d− t) (λ− t)
−α

,

for t ∈ [0, ⌊λ⌋], then the derivative ḟ (·) satisfies

ḟ (t) = α (d− t) (λ− t)
−α−1 − (λ− t)

−α
.

Hence,

ḟ (t) < 0 ⇐⇒ t <
(λ− αd)

(1− α)
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and

ḟ (t) > 0 ⇐⇒ t >
(λ− αd)

(1− α)
,

with ḟ (t) = 0 if and only if t = (λ− αd) / (1− α). This observation allows to conclude that whenever
γ > b/ (λ− ⌊λ⌋) we can distinguish two cases. The first one occurs if

⌊λ⌋ ≤ (λ− αd)

(1− α)
,

in which case l∗ = ⌊λ⌋ (this case is qualitatively consistent with the way in which large deviations occur in
the regularly varying case). On the other hand, if

⌊λ⌋ > (λ− αd)

(1− α)
,

then we must have that l∗

l∗ =

⌊
(λ− αd)

(1− α)

⌋

or l∗ =

⌈
(λ− αd)

(1− α)

⌉

,

this case is the one which we highlighted in feature i) in which we may obtain d− l∗ > ⌈d− λ⌉ and therefore
more servers are blocked relative to the large deviations behavior observed in the regularly varying case.
Still, however, the blocked servers are symmetric in the sense that they are treated in exactly the same way.

In contrast, the second feature indicates that the most likely path to overflow may be obtained by
blocking not only a specific amount to drive the system to instability, but also by blocking the corresponding
servers by different loads in the large deviations scaling. To appreciate this we must assume that λ−1 <
γ ≤ 1/ (λ− ⌊λ⌋).

In this case, the contribution of the infimum in (5.13) becomes relevant. In order to see that we can
obtain mixed solutions, it suffices to consider the case d = 2, and 1 < λ < 2 and

1/λ < γ < 1/(λ− 1).

Moreover, select γ = 1/(λ− 1)− δ and λ = 2− δ3 for δ > 0 sufficiently small, then

γα + (1− γ (λ− 1))
α
= 1− δα+ δα + o

(
δ2
)
≤ 21−α,

concluding that

γα + (1− γ (λ− 1))α < 2

(
1

λ

)α

for δ small enough and therefore we can have mixed solutions.
For example, consider the case d = 2, λ = 1.49, α = 0.1 and γ = 1

λ−1 − 0.1. For these values,

γα1 +(1− γ1 (λ− 1))
α
< 2

(
1
λ

)α
, and the most likely scenario leading to a large queue length is two big jobs

arriving at the beginning and blocking both servers with different loads. On the other hand, if γ = 1
λ−1 the

most likely scenario is a single big job blocking one server. These two scenarios are illustrated in Figure 1.
We conclude this section with a sketch of the proof for the matching lower bound in case γ > 1/λ.

Considering the obvious coupling between Q and (M,N (1), · · · , N (d)), one can see thatM(s)−∑d
i=1N

(i)(s)
can be interpreted as (a lower bound of) the length of an imaginary queue at time s where the servers can
start working on the jobs that have not arrived yet. Therefore, P(Q((a + s)n) > bn) ≥ P(Q((a + s)n) >

bn|Q(a) = 0) ≥ P(M̄n(s) −
∑d

i=1 N̄
(i)
n (s) > b) for any a, b ≥ 0. Let s∗ be the level crossing time of the
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t

Q(t)

1

0 γ2γ1

Figure 1: Most likely path for the queue build-up upto times γ1 = 1
λ−1 − 0.1 and γ2 = 1

λ−1 where the
number of servers is d = 2, the arrival rate is λ = 1.49, and the Weibull shape parameter of the service
time is α = 0.1.

optimal solution of (5.11). Then, for any ǫ > 0,

P(Q(γn) > n) ≥ P
(

M̄n(s
∗)−

d∑

i=1

N̄ (i)
n (s∗) > b

)

≥ P
(

M̄n(s
∗)− s∗/EA > −ǫ and s∗/EA−

d∑

i=1

N̄ (i)
n (s∗) > b+ ǫ

)

≥ P
(

s∗/EA−
d∑

i=1

N̄ (i)
n (s∗) > b+ ǫ

)

−P
(

M̄n(s
∗)− s∗/EA ≤ −ǫ

)

Since P(M̄n(s
∗)− s∗/EA ≤ −ǫ) decays exponentially fast w.r.t. n,

lim inf
n→∞

logP(Q(γn) > n)

L(n)nα
≥ lim inf

n→∞

logP(s∗/EA−∑d
i=1 N̄

(i)
n (s∗) > b+ ǫ)

L(n)nα
≥ − inf

(ξ1,...,ξd)∈A◦
I ′(ξ1, . . . , ξd)

where A = {(ξ1, . . . , ξd) : s∗/EA−
∑d

i=1 ξ(s
∗) > b+ǫ}. Note that the optimizer (ξ∗1 , . . . , ξ

∗
d) of (5.11) satisfies

s∗/EA−∑d
i=1 ξ(s

∗) ≥ b. Consider (ξ′1, . . . , ξ
′
d) obtained by increasing one of the job size of (ξ∗1 , . . . , ξ

∗
d) by

δ > 0. One can always find a small enough such δ since γ > 1/λ. Note that there exists ǫ > 0 such that

s′/EA−∑d
i=1 ξ(s

′) > b+ ǫ. Therefore,

lim inf
n→∞

logP(Q(γn) > n)

L(n)nα
≥ −I ′(ξ′1, . . . , ξ′d) ≥ −c∗ − δα

where the second inequality is from the subadditivity of x 7→ xα. Since δ can be chosen arbitrarily small,
letting δ → 0, we arrive at the matching lower bound.
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6 Proofs

6.1 Lower semi-continuity of I and I
d

Recall the definition of I in (2.2) and Id in (2.9).

Lemma 6.1. I and Id are lower semi-continuous, and hence, rate functions.

Proof. We start with I. To show that the sub-level sets ΨI(γ) are closed for each γ <∞, let ξ be any given
path that does not belong to ΨI(γ). We will show that there exists an ǫ > 0 such that dJ1(ξ,ΨI(γ)) ≥ ǫ.
Note that ΨI(γ)

c = (A ∩B ∩C ∩D)c = (Ac) ∪ (A ∩Bc) ∪ (A ∩B ∩ Cc) ∪ (A ∩B ∩C ∩Dc) where

A = {ξ ∈ D : ξ(0) = 0 and ξ(1) = ξ(1−)}, B = {ξ ∈ D : ξ is non-decreasing},
C = {ξ ∈ D : ξ is a pure jump function}, D = {ξ ∈ D :

∑

t∈[0,1](ξ(t) − ξ(t−))α ≤ γ}.

For ξ ∈ Ac, we will show that dJ1(ξ,ΨI(γ)) ≥ δ where δ = 1
2 max{|ξ(0)|, |ξ(1) − ξ(1−)|}. Suppose not

so that there exists ζ ∈ ΨI(γ) such that dJ1(ξ, ζ) < δ. Then |ζ(0)| ≥ |ξ(0)| − 2δ and |ζ(1) − ζ(1−)| >
|ξ(1) − ξ(1−)| − 2δ. That is, max{|ζ(0)|, |ζ(1) − ζ(1−)|} > max{|ξ(0)| − 2δ, |ξ(1) − ξ(1−)| − 2δ} = 0.
Therefore, ζ ∈ Ac, and hence, I(ζ) = ∞, which contradicts to that ζ ∈ ΨI(γ).

If ξ ∈ A ∩ Bc, there are Ts < Tt such that c , ξ(Ts) − ξ(Tt) > 0. We claim that dJ1(ξ, ζ) ≥ c if
ζ ∈ ΨI(γ). Suppose that this is not the case and there exists ζ ∈ ΨI(γ) such that dJ1(ξ, ζ) < c/2. Let
λ be a non-decreasing homeomorphism λ : [0, 1] → [0, 1] such that ‖ζ ◦ λ − ξ‖∞ < c/2, in particular,
ζ ◦ λ(Ts) > ξ(Ts) − c/2 and ζ ◦ λ(Tt) < ξ(Tt) + c/2. Subtracting the latter inequality from the former, we
get ζ ◦ λ(Ts) − ζ ◦ λ(Tt) > ξ(Ts) − ξ(Tt) − c = 0. That is, ζ is not non-decreasing, which is contradictory
to the assumption ζ ∈ ΨI(γ). Therefore, the claim has to be the case.

If ξ ∈ A∩B ∩Cc, there exists an interval [Ts, Tt] so that ξ is continuous and c , ξ(Tt)− ξ(Ts) > 0. Pick
δ small enough so that (c− 2δ)(2δ)α−1 > γ. We will show that dJ1(ξ,ΨI(γ)) ≥ δ. Suppose that ζ ∈ ΨI(γ)
and dJ1(ζ, ξ) < δ, and let λ be a non-decreasing homeomorphism such that ‖ζ ◦ λ − ξ‖∞ < δ. Note that
this implies that each of the jump sizes of ζ ◦ λ in [Ts, Tt] has to be less than 2δ. On the other hand,
ζ ◦ λ(Tt) ≥ ξ(Tt) − δ and ζ ◦ λ(Ts) ≤ ξ(Ts) + δ, which in turn implies that ζ ◦ λ(Tt) − ζ ◦ λ(Ts) ≥ c− 2δ.
Since ζ ◦ λ is a non-decreasing pure jump function,

c− 2δ ≤ ζ ◦ λ(Tt)− ζ ◦ λ(Ts) =
∑

t∈(Ts,Tt]

(
ζ ◦ λ(t)− ζ ◦ λ(t−)

)

=
∑

t∈(Ts,Tt]

(
ζ ◦ λ(t) − ζ ◦ λ(t−)

)α(
ζ ◦ λ(t) − ζ ◦ λ(t−)

)1−α ≤
∑

t∈(Ts,Tt]

(
ζ ◦ λ(t) − ζ ◦ λ(t−)

)α
(2δ)1−α.

That is,
∑

t∈(Ts,Tt]

(
ζ ◦ λ(t)− ζ ◦ λ(t−)

)α ≥ (2δ)α−1(c− 2δ) > γ, which is contradictory to our assumption

that ζ ∈ ΨI(γ). Therefore, dJ1(ξ,ΨI(γ)) ≥ δ.
Finally, let ξ ∈ A∩B∩C∩Dc. This implies that ξ admits the following representation: ξ =

∑∞
i=1 xi1[ui,1]

where ui’s are all distinct in (0, 1) and
∑∞

i=1 x
α
i > γ. Choose k large enough and δ small enough so that

∑k
i=1(xi− 2δ)α > γ. We will show that dJ1(ξ,ΨI(γ)) ≥ δ. Suppose that this is not the case. That is, there

exists ζ ∈ ΨI(γ) so that dJ1(ξ, ζ) < δ. Let λ be a non-decreasing homeomorphism such that ‖ζ◦λ−ξ‖∞ < δ.
Thus for each i ∈ {1, . . . , k}, ζ ◦ λ(ui)− ζ ◦ λ(ui−) ≥ ξ(ui)− ξ(ui−)− 2δ = xi − 2δ, and hence,

I(ζ) =
∑

t∈[0,1]

(ζ ◦ λ(ti)− ζ ◦ λ(ti−))α ≥
k∑

i=1

(ζ ◦ λ(ui)− ζ ◦ λ(ui−)) ≥
k∑

i=1

(xi − 2δ)α > γ,

which contradicts to the assumption that ζ ∈ ΨI(γ).
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6.2 Proof of Proposition 2.1

Proof of Proposition 2.1. We start with the extended large deviation upper bound. For any measurable set
A,

P (Xn ∈ A) = P
(
Xn ∈ A, d(Xn, Y

k
n ) ≤ ǫ

)
+P

(
Xn ∈ A, d(Xn, Y

k
n ) > ǫ

)

≤ P
(
Y k
n ∈ Aǫ

)

︸ ︷︷ ︸

,(I)

+P
(
d(Xn, Y

k
n ) > ǫ

)

︸ ︷︷ ︸

,(II)

. (6.1)

From the principle of the largest term and (i),

lim sup
n→∞

logP(X̄n ∈ A)

an
≤ max

{

− inf
x∈Aǫ

Ik(x), lim sup
n→∞

1

an
logP

(
d(Xn, Y

k
n ) > ǫ

)
}

.

Now letting k → ∞ and then ǫ→ 0, (ii) and (iv) lead to

lim sup
n→∞

1

an
logP

(
X̄n ∈ A

)
≤ − lim

ǫ→0
inf

x∈Aǫ
I(x),

which is the upper bound of the extended LDP.
Turning to the lower bound, note that the lower bound is trivial if infx∈A◦ I(x) = ∞. Therefore, we

focus on the case infx∈A◦ I(x) < ∞. Consider an arbitrary but fixed δ ∈ (0, 1). In view of (iii) and (iv),
one can pick ǫ > 0 and k ≥ 1 in such a way that

− inf
x∈A◦

I(x) ≤ − inf
x∈A−ǫ

Ik(x) + δ and lim sup
n→∞

logP
(
d(Xn, Y

k
n ) > ǫ

)

an
≤ − inf

x∈A◦
I(x) − 1. (6.2)

Hence

lim sup
n→∞

logP
(
d(Xn, Y

k
n ) > ǫ

)

an
≤ − inf

x∈A−ǫ
Ik(x) + δ − 1. (6.3)

We first claim that
P

(
d(Xn,Y

k
n )>ǫ

)

P

(
Y k
n ∈A

−ǫ

) → 0 as n→ ∞. To prove the claim, we observe that

P
(
d(Xn, Y

k
n ) > ǫ

)

P
(
Y k
n ∈ A−ǫ

) =
exp

(
logP

(
d(Xn, Y

k
n ) > ǫ

))

exp
(
logP

(
Y k
n ∈ A−ǫ

))

=

{

exp

(

logP
(
d(Xn, Y

k
n ) > ǫ

)

an
− logP

(
Y k
n ∈ A−ǫ

)

an

)}an

. (6.4)

From the lower bound of the LDP for Y k
n ,

lim sup
n→∞

− logP
(
Y k
n ∈ A−ǫ

)

an
≤ inf

ξ∈A−ǫ
Ik(ξ).

This along with (6.3) implies that lim supn→∞ exp

(
logP

(
d(Xn,Y

k
n )>ǫ

)

an
− logP

(
Y k
n ∈A

−ǫ
)

an

)

≤ eδ−1 < 1, which
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in turn proves the claim in view of (6.4). Using the claim and the first inequality of (6.2),

lim inf
n→∞

1

an
logP (Xn ∈ A) ≥ lim inf

n→∞

1

an
logP

(
Y k
n ∈ A−ǫ, d(Xn, Y

k
n ) ≤ ǫ

)

≥ lim inf
n→∞

1

an
log
(

P
(
Y k
n ∈ A−ǫ)−P(d(Xn, Y

k
n ) > ǫ

))

= lim inf
n→∞

1

an
log

(

P
(
Y k
n ∈ A−ǫ

)

(

1− P
(
d(Xn, Y

k
n ) > ǫ

)

P
(
Y k
n ∈ A−ǫ

)

))

= lim inf
n→∞

1

an
logP

(
Y k
n ∈ A−ǫ

)
≥ − inf

x∈A−ǫ
Ik(x) ≥ − inf

x∈A
I(x)− δ.

Since δ was arbitrary in (0, 1), the lower bound is proved by letting δ → 0.

6.3 Proof of Lemma 2.1

We prove Lemma 2.1 in several steps. Before we proceed, we introduce some notation and recall a distri-
butional representation of the compound Poisson processes Yn. It is straightforward to check that

∫

x≥1

xN([0, n·]× dx)
D
=

Ñn∑

l=1

Q←n (Γl)1[Ul,1](·),

where Γl = E1 + E2 + ... + El; Ei’s are i.i.d. and standard exponential random variables; Ul’s are i.i.d.
and uniform variables in [0, 1]; Ñn = Nn

(
[0, 1]× [1,∞)

)
; Nn =

∑∞
l=1 δ(Ul,Q←n (Γl)), where δ(x,y) is the Dirac

measure concentrated on (x, y); Qn(x) , nν[x,∞), and Q←n (y) , inf{s > 0 : nν[s,∞) < y}. It should be
noted that Ñn is the number of Γl’s such that Γl ≤ nν1, where ν1 , ν[1,∞), and hence, Ñn ∼ Poisson(nν1).
From this, we observe that J̄k

n has another distributional representation:

J̄k
n
D
=

1

n

k∑

i=1

Q←n (Γi)1[Ui,1]

︸ ︷︷ ︸

,Ĵ
6k
n

− 1

n
1{Ñn < k}

k∑

i=Ñn+1

Q←n (Γi)1[Ui,1]

︸ ︷︷ ︸

,J̌6k
n

.

Roughly speaking, (Q←n (Γ1)/n, . . . , Q
←
n (Γk)/n) represents the k largest jump sizes of Ȳn, and Ĵ6k

n can
be regarded as the process obtained by keeping only k largest jumps of Ȳn while disregarding the rest.
Lemma 6.2 and Corollary 6.1 prove an LDP for (Q←n (Γ1)/n, . . . , Q

←
n (Γk)/n, U1, . . . , Uk). Consequently,

Lemma 6.3 yields a sample path LDP for Ĵ6k
n . Finally, Lemma 2.1 is proved by showing that J̄k

n satisfies
the same LDP as the one satisfied by Ĵ6k

n .

Lemma 6.2.
(

Q←n (Γ1)/n,Q
←
n (Γ2)/n, ...., Q

←
n (Γk)/n

)

satisfies a large deviation principle in Rk
+ with nor-

malization L(n)nα, and with good rate function

Ǐk(x1, ...xk) =

{∑k
i=1 x

α
i if x1 ≥ x2 ≥ · · · ≥ xk ≥ 0

∞, o.w.
. (6.5)

Proof. It is straightforward to check that Ǐk is a good rate function. For each f ∈ Cb(Rk
+), let

Λ∗f , lim
n→∞

1

L(n)nα
log

(

EeL(n)nαf
(
Q←n (Γ1)/n,Q

←
n (Γ2)/n,..., Q

←
n (Γk)/n

))

. (6.6)
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Applying Bryc’s inverse Varadhan lemma (see e.g. Theorem 4.4.13 of Dembo and Zeitouni, 2010), we can
show that (Q←n (Γ1)/n, . . . , Q

←
n (Γk)/n) satisfies a large deviation principle with speed L(n)nα and good rate

function Ǐk(x) if
Λ∗f = sup

x∈Rk
+

{f(x)− Ǐk(x)} (6.7)

for every f ∈ Cb(Rk
+).

To prove (6.7), fix f ∈ Cb(R
k
+) and let M be a constant such that |f(x)| ≤ M for all x ∈ R

k
+. We

first claim that the supremum of Λf , f − Ǐk is attained. Pick a constant R so that Rα > 2M and let

AR , {(x1, . . . , xk) ∈ R
k
+ : R ≥ x1 ≥ · · · ≥ xk}. Since Λf is continuous on AR, which is compact, there

exists a maximizer x̂ , (x̂1, . . . , x̂k) of Λf on AR. It turns out that x̂ is a global maximizer of Λf . To see
this, note that on AR,

sup
x∈AR

{f(x)− Ǐk(x)} ≥ inf
x∈AR

f(x)− inf
x∈AR

Ǐk(x) = inf
x∈AR

{f(x)} ≥ −M.

while
sup

x∈Rk
+\AR

{f(x)− Ǐk(x)} < sup
x∈Rk

+\AR

{f(x)− 2M} ≤ −M

since Ǐk(x1, . . . , xk) > 2M on Rk
+ \ AR. Therefore, supx∈Rk

+
Λf (x) = supx∈AR

Λf (x), showing that x̂ is

indeed a global maximizer. Now, it is enough to prove that

Λf(x̂) ≤ lim inf
n→∞

1

L(n)nα
logΥf(n) and lim sup

n→∞

1

L(n)nα
logΥf(n) ≤ Λf (x̂), (6.8)

where

Υf(n) ,

∫

R
k
+

eL(n)nαf
(
Q←n (y1)/n,...,Q

←
n (y1+···+yk)/n

)

e−
∑k

i=1 yi dy1 . . . dyk.

We start with the lower bound—i.e., the first inequality of (6.8). Fix an arbitrary ǫ > 0. Since Λf is

continuous on A∞ , {(x1, . . . , xk) ∈ Rk
+ : x1 ≥ · · · ≥ xk}, there exists δ > 0 such that x ∈ B(x̂; 2

√
kδ) ∩

A∞ implies Λf(x) ≥ Λf (x̂) − ǫ. Since
∏k

j=1[x̂j + δ, x̂j + 2δ] ⊆ B(x̂; 2
√
kδ) and Q←n (·) is non-increasing,

Q←n
(∑j

i=1 yi
)
/n ∈ [x̂j + δ, x̂j + 2δ] for all j = 1, . . . , k implies

Λf (Q
←
n (y1)/n, ..., Q

←
n (y1 + · · ·+ yk)/n) ≥ Λf (x̂)− ǫ. (6.9)

That is, if we define Dj
n(= D

y1,...,yj−1
n ) as

Dj
n , {yj ∈ R+ : Q←n

(∑j
i=1 yi

)
/n ∈ [x̂j + δ, x̂j + 2δ]},
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then (6.9) holds for (y1, . . . , yk)’s such that yj ∈ Dj
n for j = 1, . . . , k. Therefore,

Υf (n) =

∫

R
k
+

eL(n)nαΛf

(
Q←n (y1)/n,...,Q

←
n (y1+···+yk)/n

)
+L(n)

∑k
i=1 Q←n (

∑i
j=1 yj)

α−
∑k

i=1 yi dy1 . . . dyk

≥
∫

D1
n

· · ·
∫

Dk
n

eL(n)nαΛf

(
Q←n (y1)/n,...,Q

←
n (y1+···+yk)/n

)
+L(n)

∑k
i=1 Q←n (

∑i
j=1 yj)

α−
∑k

i=1 yidyk . . . dy1

≥
∫

D1
n

· · ·
∫

Dk
n

eL(n)nα
(
Λf (x̂1,...,x̂k)−ǫ

)

eL(n)
∑k

i=1 Q←n (
∑i

j=1 yj)
α−

∑k
i=1 yidyk . . . dy1

≥
∫

D1
n

· · ·
∫

Dk
n

eL(n)nα
(
Λf (x̂1,...,x̂k)−ǫ

)

eL(n)
∑k

i=1

(
n(x̂i+δ)

)α
−
∑k

i=1 yidyk . . . dy1

= eL(n)nα
(
Λf (x̂1,...,x̂k)−ǫ

)

︸ ︷︷ ︸

,(I)n

eL(n)
∑k

i=1

(
n(x̂i+δ)

)α

︸ ︷︷ ︸

,(II)n

∫

D1
n

· · ·
∫

Dk
n

e−
∑k

i=1 yidyk . . . dy1

︸ ︷︷ ︸

,(III)n

(6.10)

where the first equality is obtained by adding and subtracting L(n)
∑k

i=1Q
←
n (
∑i

j=1 yj)
α to the exponent

of the integrand. Note that by the construction of Dj
n’s,

Qn

(
n(x̂j + 2δ)

)
≤ y1 + · · ·+ yj ≤ Qn

(
n(x̂j + δ)

)

on the domain of the integral in (III)n, and hence,

(III)n ≥ e−Qn(n(x̂k+δ))
k∏

i=1

(

Qn

(
n(x̂i + δ)

)
−Qn

(
n(x̂i + 2δ)

))

. (6.11)

Since Qn

(
n(x̂k + δ)

)
→ 0 and L (n(x̂i + δ))nα(x̂i + δ)α − L (n(x̂i + 2δ))nα(x̂i + 2δ)α → −∞ for each i,

lim inf
n→∞

1

L(n)nα
log (III)n

≥ lim inf
n→∞

1

L(n)nα

(

−Qn

(
n(x̂k + δ)

))

+

k∑

i=1

lim inf
n→∞

1

L(n)nα
log
(

Qn

(
n(x̂i + δ)

)
−Qn

(
n(x̂i + 2δ)

))

=

k∑

i=1

lim inf
n→∞

1

L(n)nα
log
(

ne−L(n(x̂i+δ))nα(x̂i+δ)α
(

1− eL(n(x̂i+δ))nα(x̂i+δ)α−L(n(x̂i+2δ))nα(x̂i+2δ)α
))

=
k∑

i=1

lim inf
n→∞

(

−L (n(x̂i + δ))nα(x̂i + δ)α

L(n)nα
+

log
(
1− eL(n(x̂i+δ))nα(x̂i+δ)α−L(n(x̂i+2δ))nα(x̂i+2δ)α

)

L(n)nα

)

= −
k∑

i=1

(x̂i + δ)α. (6.12)

This along with

lim inf
n→∞

1

nαL(n)
log (I)n = lim inf

n→∞

1

nαL(n)
log
(

en
αL(n)

(
Λf (x̂1,...,x̂k)−ǫ

))

= Λf(x̂1, . . . , x̂k)− ǫ

and

lim inf
n→∞

1

nαL(n)
log (II)n = lim inf

n→∞

1

nαL(n)
log
(
eL(n)

∑k
i=1(n(x̂i+δ))α

)
=

k∑

i=1

(x̂i + δ)α,
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we arrive atwhich implies

Λf (x̂)− ǫ ≤ lim inf
n→∞

1

L(n)nα
Υf(n). (6.13)

Letting ǫ→ 0, we obtain the lower bound of (6.8).
Turning to the upper bound, consider

DR,n , {(y1, y2, . . . , yk) : Q←n (y1)/n ≤ R},

and decompose Υf (n) into two parts:

Υf(n) =

∫

DR,n

eL(n)nαf
(
Q←n (x1)/n,...,Q

←
n (x1+···+xk)/n

)

e−
∑k

i=1 xidx1 . . . dxk

+

∫

Dc
R,n

eL(n)nαf
(
Q←n (x1)/n,...,Q

←
n (x1+···+xk)/n

)

e−
∑k

i=1 xidx1 . . . dxk.

We first evaluate the integral over Dc
R,n. Since |f | ≤M ,

∫

Dc
R,n

eL(n)nαf
(
Q←n (x1)/n,...,Q

←
n (x1+···+xk)/n

)

e−
∑k

i=1 xidx1 . . . dxk

=

∫

eL(n)nαf
(
Q←n (x1)/n,...,Q

←
n (x1+···+xk)/n

)

e−
∑k

i=1 xi
1{Q←n (x1)/n>R}dx1 . . . dxk

=

∫

eL(n)nαf
(
Q←n (x1)/n,...,Q

←
n (x1+···+xk)/n

)

e−
∑k

i=1 xi
1{x1≤Qn(nR)}dx1 . . . dxk

≤
∫

eL(n)nαMe−
∑k

i=1 xi
1{x1≤Qn(nR)}dx1 . . . dxk ≤ eL(n)nαM

(
1− e−Qn(nR)

)

≤ eL(n)nαMQn(nR). (6.14)

Turning to the integral over DR,n, fix ǫ > 0 and pick {x̌(1), . . . , x̌(m)} ⊂ Rk
+ in such a way that

{
∏k

j=1[x̌
(l)
j − ǫ, x̌

(l)
j + ǫ]

}

l=1,...,m
covers AR. Set

HR,n,l ,

{

(y1, . . . , yk) ∈ R
k
+ : Q←n (y1)/n ∈

[
x̌
(l)
1 − ǫ, x̌

(l)
1 + ǫ

]
, . . . , Q←n (y1+ . . .+ yk)/n ∈

[
x̌
(l)
k − ǫ, x̌

(l)
k + ǫ

]}

.

Then DR,n ⊆ ⋃m
l=1HR,n,l, and hence,

∫

DR,n

eL(n)nαf
(
Q←n (y1)/n,...,Q

←
n (y1+···+yk)/n

)

e−
∑k

i=1 yidy1 · · · dyk

≤
m∑

l=1

∫

HR,n,l

eL(n)nαf
(
Q←n (y1)/n,...,Q

←
n (y1+...+yk)/n

)

e−
∑k

i=1 yidy1 · · · dyk

=

m∑

l=1

∫

HR,n,l

eL(n)nαΛf

(
Q←n (y1)/n,...,Q

←
n (y1+···+yk)/n

)

eL(n)
∑k

i=1 Q←n (
∑i

j=1 yj)
α−

∑k
i=1 yidy1..dyk

≤
m∑

l=1

∫

HR,n,l

eL(n)nαΛf (x̂1,x̂2,...,x̂k)eL(n)
∑k

i=1 Q←n (
∑i

j=1 yj)
α−

∑k
i=1 yi dy1 · · · dyk

=

m∑

l=1

eL(n)nαΛf (x̂1,x̂2,...x̂k)

∫

HR,n,l

eL(n)
∑k

i=1 Q←n (
∑i

j=1 yj)
α−

∑k
i=1 yi dy1 · · · dyk

︸ ︷︷ ︸

,H(R,n,l)

, (6.15)
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where the first equality is obtained by adding and subtracting L(n)
∑k

i=1Q
←
n (
∑i

j=1 yj)
α to the exponent

of the integrand. Since

Q←n (
∑i

j=1yj)/n ∈
[
x̌
(l)
i − ǫ, x̌

(l)
i + ǫ

]
=⇒ Qn

(
n(x̌

(l)
i + ǫ)

)
≤∑i

j=1yj ≤ Qn

(
n(x̌

(l)
i − ǫ)

)
,

we can bound the integral in (6.15) as follows:

∫

HR,n,l

eL(n)
∑k

i=1 Q←n (
∑i

j=1yj)
α−

∑k
i=1 yi dy1 · · · , dyk

≤
∫

HR,n,l

eL(n)
∑k

i=1

(
n(x̌

(l)
i −ǫ)

)α
−
∑k

i=1 yi dy1 . . . dyk

≤
∫

HR,n,l

eL(n)
∑k

i=1

(
n(x̌

(l)
i −ǫ)

)α
−Qn

(
n(x̌

(l)
k

+ǫ)
)

dy1 . . . dyk

= eL(n)
∑k

i=1

(
n(x̌

(l)
i −ǫ)

)α
−Qn

(
n(x̌

(l)
k

+ǫ)
) ∫

HR,n,l

dy1 . . . dyk

= eL(n)nα ∑k
i=1(x̌

(l)
i −ǫ)

α−Qn

(
n(x̌

(l)
k

+ǫ)
) k∏

i=1

(

Qn

(
n(x̌

(l)
i − ǫ)

)
−Qn

(
n(x̌

(l)
i + ǫ)

))

. (6.16)

With (6.15) and (6.16), a straightforward calculation as in the lower bound leads to

lim sup
n→∞

1

L(n)nα
logH(R, n, l)

≤ lim sup
n→∞

1

L(n)nα
log
(

eL(n)nαΛf (x̂1,x̂2,...x̂k)
)

+ lim sup
n→∞

1

L(n)nα
log

(

eL(n)nα ∑k
i=1(x̂

(l)
i −ǫ)

α−Qn

(
n(x̂

(l)
k

+ǫ)
))

+
k∑

i=1

lim sup
n→∞

1

L(n)nα
log
(

Qn

(
n(x̂

(l)
i − ǫ)

)
−Qn

(
n(x̂

(l)
i + ǫ)

))

= Λf (x̂1, . . . , x̂k).

Therefore,

lim sup
n→∞

1

L(n)nα
logΥf (n) = lim sup

n→∞

1

L(n)nα
log
(

eL(n)nαMQn(nR)
)

∨max

{

lim sup
n→∞

1

L(n)nα
logH(R, n, l)

}

≤ (M −Rα) ∨ Λf (x̂1, . . . , x̂k) = (M −Rα) ∨ sup
x∈Rk

+

{f(x)− Ǐk(x)}.

Since R was arbitrary, we can send R → ∞ to arrive at the desired upper bound of (6.8).

The following corollary is immediate from Lemma 6.2 and Theorem 4.14 of Ganesh et al. (2004).

Corollary 6.1. (Q←n (Γ1)/n, . . . , Q
←
n (Γk)/n, U1, . . . , Uk) satisfies a large deviation principle in Rk

+ × [0, 1]k

with speed L(n)nα and the good rate function

Îk(x1, . . . , xk, u1, . . . , uk) ,

{∑k
i=1 x

α
i if x1 ≥ x2 ≥ · · · ≥ xk and u1, . . . , uk ∈ [0, 1],

∞, otherwise.
(6.17)

Recall that Ĵ6k
n = 1

n

∑k
i=1Q

←
n (Γi)1[Ui,1] and the rate function Ik defined in (2.5). We next prove a

sample path LDP for Ĵ6k
n .
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Lemma 6.3. Ĵ6k
n satisfies the LDP in (D, TJ1) with speed L(n)nα and the rate function Ik.

Proof. First, we note that Ik is indeed a rate function since the sublevel sets of Ik equal the intersection
between the sublevel sets of I and a closed set D6k, and I is a rate function (Lemma 6.1).

Next, we prove the LDP in D6k w.r.t. the relative topology induced by TJ1 . (Note that Ik is a rate

function in D6k as well.) Set Tk(x, u) ,
∑k

i=1 xi1[ui,1]. Since

inf
(x,u)∈T−1

k
(ξ)
Îk(x, u) = Ik(ξ)

for ξ ∈ D6k, the LDP in D6k is established once we show that for any closed set F ⊆ D6k,

lim sup
n→∞

1

L(n)nα
logP

(

Ĵ6k
n ∈ F

)

≤ − inf
(x,u)∈T−1

k
(F )

Îk(x, u), (6.18)

and for any open set G ⊆ D6k,

− inf
(x,u)∈T−1

k
(G)

Îk(x, u) ≤ lim inf
n→∞

1

L(n)nα
logP

(

Ĵ6k
n ∈ G

)

. (6.19)

We start with the upper bound. Note that

lim sup
n→∞

1

L(n)nα
logP

(

Ĵ6k
n ∈ F

)

= lim sup
n→∞

1

L(n)nα
logP

((
Q←n (Γ1), . . . , Q

←
n (Γk), U1, . . . , Uk

)
∈ T−1k (F )

)

≤ lim sup
n→∞

1

L(n)nα
logP

((
Q←n (Γ1), . . . , Q

←
n (Γk), U1, . . . , Uk

)
∈ T−1k (F )

−
)

≤ − inf
(x1,...,xk,u1,...,uk)∈T

−1
k

(F )−
Îk(x1, . . . , xk, u1, . . . , uk).

In view of (6.18), it is therefore enough for the upper bound to show that

inf
(x,u)∈T−1

k
(F )

Îk(x, u) ≤ inf
(x,u)∈T−1

k
(F )−

Îk(x, u).

To prove this, we proceed with proof by contradiction. Suppose that

c , inf
(x,u)∈T−1

k
(F )

Îk(x, u) > inf
(x,u)∈T−1

k
(F )−

Îk(x, u). (6.20)

Pick an ǫ > 0 in such a way that inf(x,u)∈T−1
k

(F )− Îk(x, u) < c − 2ǫ. Then there exists (x∗, u∗) ∈ T−1k (F )−

such that Îk(x
∗, u∗) < c−2ǫ. Let Īk(x1, . . . , xk, u1, . . . , uk) ,

∑k
i=1 x

α
i . Since Īk is continuous, one can find

(x′, u′) = (x′1, . . . , x
′
k, u
′
1, . . . , u

′
k) ∈ T−1k (F ) sufficiently close to (x∗, u∗) so that Īk(x

′, u′) < c− ǫ. Note that

for any permutation p : {1, . . . , k} → {1, . . . , k}, (x′′, u′′) , (x′p(1), . . . , x
′
p(k), u

′
p(1), . . . , u

′
p(k)) also belongs

to T−1k (F ) and Īk(x
′′, u′′) = Īk(x

′, u′) due to the symmetric structure of Tk and Īk. If we pick p so that

x′p(1) ≥ · · · ≥ x′p(k), then Îk(x
′′, u′′) = Īk(x

′, u′) < c − ǫ ≤ inf(x,u)∈T−1
k

(F ) Îk(x, u), which contradicts to

(x′′, u′′) ∈ T−1k (F ). Therefore, (6.20) cannot be the case, which proves the upper bound.
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Turning to the lower bound, consider an open set G ⊆ D6k.

lim inf
n→∞

1

L(n)nα
logP

(

Ĵ6k
n ∈ G

)

= lim inf
n→∞

1

L(n)nα
logP

((
Q←n (Γ1), . . . , Q

←
n (Γk), U1, . . . , Uk

)
∈ T−1k (G)

)

≥ lim inf
n→∞

1

L(n)nα
logP

((
Q←n (Γ1), . . . , Q

←
n (Γk), U1, . . . , Uk

)
∈ T−1k (G)◦

)

≥ − inf
(x1,...,xk,u1,...,uk)∈T

−1
k

(G)◦
Îk(x1, . . . , xk, u1, . . . , uk).

In view of (6.19), we are done if we prove that

inf
(x,u)∈T−1

k
(G)◦

Îk(x, u) ≤ inf
(x,u)∈T−1

k
(G)

Îk(x, u). (6.21)

Let (x, u) be an arbitrary point in T−1k (G) so that Tk(x, u) ∈ G. We will show that there exists (x∗, u∗) ∈
T−1k (G)◦ such that Ik(x

∗, u∗) ≤ Ik(x, u). Note first that if ui ∈ {0, 1} for some i, then xi has to be 0 since
G ⊆ D6k. This means that we can replace ui with an arbitrary number in (0, 1) without changing the value
of Ik and Tk. Therefore, we assume w.l.o.g. that ui > 0 for each i = 1, . . . , k. Now, suppose that ui = uj
for some i 6= j. Then one can find (x′, u′) such that Tk(x

′, u′) = Tk(x, u) by setting

(x′, u′) , (x1, . . . , xi + xj
︸ ︷︷ ︸

ith coordinate

, . . . , 0j
︸︷︷︸

jth coordinate

, . . . , xk, u1, . . . , uij
︸︷︷︸

k+ith coordinate

, . . . , u′j
︸︷︷︸

k+jthcoordinate

, . . . , uk),

where u′j is an arbitrary number in (0, 1); in particular, we can choose u′j so that u′j 6= ul for l = 1, . . . , k.

It is easy to see that Īk(x
′, u′) ≤ Îk(x, u). Now one can permute the coordinates of (x′, u′) as in the upper

bound to find (x′′, u′′) such that Tk(x
′′, u′′) = Tk(x, u) and Îk(x

′′, u′′) ≤ Îk(x, u). Iterating this procedure
until there is no i 6= j for which ui = uj , we can find (x∗, u∗) such that Tk(x

∗, u∗) = Tk(x, u), u
∗
i ’s are all

distinct in (0, 1), and Ik(x
∗, u∗) ≤ Ik(x, u). Note that since Tk is continuous at (x∗, u∗), Tk(x

∗, u∗) ∈ G,
and G is open, we conclude that (x∗, u∗) ∈ T−1k (G)◦. Therefore,

inf
(x,u)∈T−1

k
(G)◦

Ik(x, u) ≤ Ik(x, u).

Since (x, u) was arbitrarily chosen in T−1k (G), (6.21) is proved. Along with the upper bound, this proves

the LDP in D6k. Finally, since D6k is a closed subset of D, P(Ĵ6k
n /∈ D6k) = 0, and Ik = ∞ on D \ D6k,

Lemma 4.1.5 of Dembo and Zeitouni (2010) applies proving the desired LDP in D.

Now we are ready to prove Lemma 2.1.

Proof of Lemma 2.1. Recall that

J̄k
n
D
=

1

n

k∑

i=1

Q←n (Γi)1[Ui,1]

︸ ︷︷ ︸

=Ĵ6k
n

− 1

n
1{Ñn < k}

k∑

i=Ñn+1

Q←n (Γi)1[Ui,1]

︸ ︷︷ ︸

=J̌6k
n

.

Let F be a closed set and note that

P(J̄k
n ∈ F ) = P(Ĵ6k

n − J̌6k
n ∈ F ) ≤ P

(
Ĵ6k
n − J̌6k

n ∈ F,1{N(n) < k} = 0
)
+P

(
1{N(n) < k} 6= 0

)

≤ P(Ĵ6k
n ∈ F ) +P(N(n) < k).
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From Lemma 6.3,

lim sup
n→∞

logP(J̄k
n ∈ F )

L(n)nα
≤ lim sup

n→∞

logP(Ĵ6k
n ∈ F )

L(n)nα
∨ lim sup

n→∞

logP(N(n) < k)

L(n)nα

≤ − inf
ξ∈F

Ik(ξ),

since lim supn→∞
1

L(n)nα logP(N(n) < k) = −∞.

Turning to the lower bound, let G be an open set. Since the lower bound is trivial in case infx∈G Ik(x) =
∞, we focus on the case infx∈G Ik(x) <∞. In this case,

lim inf
n→∞

logP(J̄k
n ∈ G)

L(n)nα
≥ lim inf

n→∞

logP(J̄k
n ∈ G, N(n) ≥ k)

L(n)nα
= lim inf

n→∞

logP(Ĵ6k
n ∈ G, N(n) ≥ k)

L(n)nα

≥ lim inf
n→∞

1

L(n)nα
log
(

P(Ĵ6k
n ∈ G)−P(N(n) < k)

)

= lim inf
n→∞

1

L(n)nα
log

(

P(Ĵ6k
n ∈ G)

(

1− P(N(n) < k)

P(Ĵ6k
n ∈ G)

))

= lim inf
n→∞

1

L(n)nα

{

log
(

P(Ĵ6k
n ∈ G)

)

+ log

(

1− P(N(n) < k)

P(Ĵ6k
n ∈ G)

)}

= lim inf
n→∞

1

L(n)nα
logP(Ĵ6k

n ∈ G) ≥ − inf
ξ∈G

Ik(ξ).

The last equality holds since

lim
n→∞

P(N(n) < k)

P(Ĵ6k
n ∈ G)

= lim
n→∞

{

exp

(

logP(N(n) < k)

L(n)nα
− logP(Ĵ6k

n ∈ G)

L(n)nα

)}L(n)nα

= 0 (6.22)

which in turn follows from

lim sup
n→∞

1

L(n)nα
logP(N(n) < k) = −∞ and lim sup

n→∞

−1

L(n)nα
logP(Ĵ6k

n ∈ G) ≤ inf
x∈G

Ik(x) <∞.

6.4 Proof of Lemma 2.2

Proof of Lemma 2.2. Since the inequality is obvious if infξ∈D I(ξ) = ∞, we assume that infξ∈D I(ξ) < ∞.
Then, there exists a ξ0 ∈ G such that I(ξ0) ≤ I(G) + δ. Since G is open, we can pick ǫ > 0 such that
BJ1(ξ0; 2ǫ) ⊆ A, and hence, BJ1(ξ0; ǫ) ⊆ G−ǫ. Note that since I(ξ0) < ∞, ξ0 has the representation
ξ0 =

∑∞
i=1 xi1[ui,1] where xi ≥ 0 for all i = 1, 2, . . ., and ui’s all distinct in (0, 1). Note also that since

I(ξ0) =
∑∞

i=1 x
α
i < ∞ with α < 1,

∑∞
i=1 xi has to be finite as well. There exists K such that k ≥ K

implies
∑∞

i=k+1 xi < ǫ. If we fix k ≥ K and let ξ1 ,
∑k

i=1 xi1[ui,1], then Ik(ξ1) ≤ I(ξ0) while dJ1(ξ0, ξ1) ≤
‖ξ0 − ξ1‖∞ <

∑∞
i=k+1 xi < ǫ. That is, ξ1 ∈ BJ1(ξ0; ǫ) ⊆ A−ǫ. Therefore, infξ∈A−ǫ Ik(ξ) ≤ I(ξ1) ≤ I(ξ0) ≤

infξ∈A I(ξ) + δ.

6.5 Proof of Lemma 2.3

In our proof of Lemma 2.3, the following lemmas—Lemma 6.4 and Lemma 6.5 play key roles.
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Lemma 6.4. Let β > α. For each ǫ > δ > 0,

lim sup
n→∞

1

L(n)nα
logP

(

max
1≤j≤2n

j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ

)

≤ −(ǫ/3)α(ǫ/δ)1−β . (6.23)

Proof. We refine an argument developed in Jelenković and Momčilović (2003). Note that for any s > 0
such that 1/s ≤ nδ,

EesZ1{Z≤nδ} = EesZ1{Z≤nδ}
1{Z≥ 1

s
} + EesZ1{Z≤nδ}

1{Z< 1
s
} = (I) + (II), (6.24)

and

(I) =

∫

[1/s,nδ]

esydP(Z ≤ y) +

∫

(nδ,∞)

dP(Z ≤ y)

=
[

esyP(Z ≤ y)
](nδ)+

(1/s)−
− s

∫

[1/s,nδ]

esyP(Z ≤ y)dy +P(Z > nδ)

= esnδP(Z ≤ nδ)− eP(Z < 1/s)− s

∫

[1/s,nδ]

esydy + s

∫

[1/s,nδ]

esyP(Z > y)dy +P(Z > nδ)

= esnδP(Z ≤ nδ)− eP(Z < 1/s)− esnδ + e + s

∫

[1/s,nδ]

esyP(Z > y)dy +P(Z > nδ)

= −esnδP(Z > nδ) + eP(Z ≥ 1/s) + s

∫

[1/s,nδ]

esyP(Z > y)dy +P(Z > nδ)

≤ s

∫

[1/s,nδ]

esyP(Z > y)dy + eP(Z ≥ 1/s) +P(Z > nδ)

≤ s

∫

[1/s,nδ]

esyP(Z > y)dy + s2(e + 1)EZ2 (6.25)

where the last inequality is from P(Z ≥ nδ) ≤ P(Z ≥ 1/s) ≤ s2 EZ2; while

(II) ≤
∫ 1/s

0

esydP(Z ≤ y) ≤
∫ 1/s

0

(1 + sy + (sy)2)dP(Z ≤ y) ≤ 1 + sEZ + s2 EZ2. (6.26)

Therefore, from (6.24), (6.25) and (6.26), if 1/s ≤ nδ,

EesZ1{Z≤nδ} ≤ s

∫ nδ

1
s

esyP (Z > y) dy + 1 + sEZ + s2(e + 2)EZ2

= s

∫ nδ

1
s

esy−q(y)dy + 1 + sEZ + s2(e+ 2)EZ2

≤ snδ
(

esnδ−q(nδ) + e1−q(
1
s
)
)

+ 1 + sEZ + s2(e+ 2)EZ2 (6.27)

where q(x) , − logP(X > x) = L(x)xα and the last inequality is since esy−q(y) is increasing due to the
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assumption that L(y)yα−1 is non-increasing. Now, from the Markov inequality,

P

(
j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ

)

≤ P

(

exp

(

s

j
∑

i=1

Zi1{Zi≤nδ}

)

> exp
(
s(nǫ+ jEZ)

)

)

≤ exp
{
−s
(
nǫ+ jEZ

)
+ j log

(
EesZ1{Z≤nδ}

)}

≤ exp
{

−s(nǫ+ jEZ) + j
(

snδ
(

esnδ−q(nδ) + e1−q(
1
s
)
)

+ sEZ + s2(e+ 2)EZ2
)}

= exp
{

−snǫ+ jsnδ
(

esnδ−q(nδ) + e1−q(
1
s
)
)

+ js2(e + 2)EZ2
}

≤ exp
{

−snǫ+ 2n2sδ
(

esnδ−q(nδ) + e1−q(
1
s
)
)

+ 2ns2(e+ 2)EZ2
}

(6.28)

for j ≤ 2n, where the third inequality is from (6.27) and the generic inequality log(x + 1) ≤ x. Fix

γ ∈ (0, (ǫ/δ)1−β) and and set s = γq(nǫ)
nǫ . From now on, we only consider sufficiently large n’s such that

1/s < nδ. To establish an upper bound for (6.28), we next examine esnδ−q(nδ) and e1−q(
1
s
). Note that

q(nǫ) ≤ q(nδ)(ǫ/δ)β for sufficiently large n’s. Therefore,

snδ − q(nδ) =
γq(nǫ)

nǫ
nδ − q(nδ) ≤ γq(nδ)(ǫ/δ)β−1 − q(nδ) = −q(nδ)

(
1− γ(δ/ǫ)1−β

)
< 0,

and hence,

esnδ−q(nδ) ≤ e−q(nδ)(1−γ(δ/ǫ)
1−β). (6.29)

For e1−q(
1
s
), note that 1− q(1/s) ≤ 1− γ−βq(nǫ)1−β since q(nǫ) ≤ Q (1/s)γβq(nǫ)β. Therefore,

e1−q(
1
s
) ≤ e1−γ

−βq(nǫ)1−β

. (6.30)

Plugging s into (6.28) along with (6.29) and (6.30),

max
0≤j≤2n

P

(
j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ

)

≤ exp

{

−γq(nǫ) + 2γδnq(nǫ)

ǫ

(

e−q(nδ)(1−γ(δ/ǫ)
1−β) + e1−γ

−βq(nǫ)1−β
)

+
2γ2(e+ 2)EZ2

ǫ2
q(nǫ)2

n

}

.

Since

lim sup
n→∞

1

L(n)nα

2γδnq(nǫ)

ǫ

(

e−q(nδ)(1−γ(δ/ǫ)
1−β) + e1−γ

−βq(nǫ)1−β
)

= 0,

and

lim sup
n→∞

1

L(n)nα

2γ2(e + 2)EZ2

ǫ2
q(nǫ)2

n
= 0,

we conclude that

lim sup
n→∞

1

L(n)nα
log max

0≤j≤2n
P

(
j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ

)

= lim sup
n→∞

−γq(nǫ)
L(n)nα

= −ǫαγ.
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From Etemadi’s inequality,

lim sup
n→∞

1

L(n)nα
logP

(

max
0≤j≤2n

j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> 3nǫ

)

≤ lim sup
n→∞

1

L(n)nα
log

{

3 max
0≤j≤2n

P

(
j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ

)}

= −ǫαγ.

Since this is true for arbitrary γ’s such that γ ∈ (0, (ǫ/δ)1−β), we arrive at the conclusion of the lemma.

Lemma 6.5. For every ǫ, δ > 0,

lim sup
n→∞

1

L(n)nα
logP

(

sup
1≤j≤2n

j
∑

i=1

(
EZ − Zi1{Zi≤nδ}

)
> nǫ

)

= −∞.

Proof. Note first that there is n0 such that E
(
Zi1{Zi>nδ}

)
≤ ǫ

3 for n ≥ n0. For n ≥ n0 and j ≤ 2n,

P

(
j
∑

i=1

(
EZ − Zi1{Zi≤nδ}

)
> nǫ

)

= P

(
j
∑

i=1

(
EZ1{Z≤nδ} − Zi1{Zi≤nδ}

)
> nǫ− jEZ1{Z>nδ}

)

≤ P

(
j
∑

i=1

(
EZ1{Z≤nδ} − Zi1{Zi≤nδ}

)
> nǫ− jǫ/3

)

≤ P

(
j
∑

i=1

(
EZ1{Z≤nδ} − Zi1{Zi≤nδ}

)
>
nǫ

3

)

.

Let Y
(n)
i , E(Zi1{Zi≤nδ})− Zi1{Zi≤nδ}, then EY

(n)
i = 0, var Y

(n)
i ≤ EZ2, and Y

(n)
i ≤ EZ almost surely.

Note that from Bennet’s inequality,

P

(
j
∑

i=1

(
EZ1{Zi≤nδ} − Zi1{Zi≤nδ}

)
>
nǫ

3

)

≤ exp

[

− jvarY
(n)

(EZ)2

{(

1 +
nǫEZ

3j var Y (n)

)

log

(

1 +
nǫEZ

3j var Y (n)

)

−
(

nǫEZ

3j var Y (n)

)}]

≤ exp

[

− jvarY
(n)

(EZ)2

{(
nǫEZ

3j var Y (n)

)

log

(

1 +
nǫEZ

3j var Y (n)

)

−
(

nǫEZ

3j var Y (n)

)}]

≤ exp

[

−
{( nǫ

3EZ

)

log

(

1 +
nǫEZ

3j varY (n)

)

−
( nǫ

3EZ

)}]

≤ exp

[

−n
{( ǫ

3EZ

)

log

(

1 +
ǫEZ

6EZ2

)

−
( ǫ

3EZ

)}]

for j ≤ 2n. Therefore, for n ≥ n0 and j ≤ 2n,

P

(
j
∑

i=1

(
EZ − Zi1{Zi≤nδ}

)
> nǫ

)

≤ exp

[

−n
{( ǫ

3EZ

)

log

(

1 +
ǫEZ

6EZ2

)

−
( ǫ

3EZ

)}]

.
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Now, from Etemadi’s inequality,

lim sup
n→∞

1

L(n)nα
logP

(

sup
1≤j≤2n

j
∑

i=1

(
EZ − Zi1{Zi≤nδ}

)
> 3nǫ

)

≤ lim sup
n→∞

1

L(n)nα
log

{

3 max
1≤j≤2n

P

(
j
∑

i=1

(
EZ − Zi1{Zi≤nδ}

)
> nǫ

)}

≤ lim sup
n→∞

1

L(n)nα
log

{

3 exp

[

−n
{( ǫ

3EZ

)

log

(

1 +
ǫEZ

6EZ2

)

−
( ǫ

3EZ

)}]}

= −∞.

Replacing ǫ with ǫ/3, we arrive at the conclusion of the lemma.

Now we are ready to prove Lemma 2.3.

Proof of Lemma 2.3.

P
(
‖K̄k

n‖∞ > ǫ
)

≤ P
(
‖K̄k

n‖∞ > ǫ,N(nt) ≥ k
)
+P

(
‖K̄k

n‖∞ > ǫ,N(nt) < k
)

≤ P
(

‖K̄k
n‖∞ > ǫ, N(nt) ≥ k, ZR−1

n (k) ≤ nδ
)

+P
(

‖K̄k
n‖∞ > ǫ, N(nt) ≥ k, ZR−1

n (k) > nδ
)

+P (N(nt) < k)

≤ P
(

‖K̄k
n‖∞ > ǫ, N(nt) ≥ k, ZR−1

n (k) ≤ nδ
)

+P
(

N(nt) ≥ k, ZR−1
n (k) > nδ

)

+P (N(nt) < k) . (6.31)

An explicit upper bound for the second term can be obtained:

P
(

N(nt) ≥ k, ZR−1
n (k) > nδ

)

≤ P (Q←n (Γk) > nδ) = P (Γk ≤ Qn(nδ)) =

∫ Qn(nδ)

0

1

k!
tk−1e−tdt

=

∫ nv[nδ,∞)

0

1

k!
tk−1e−tdt ≤

∫ nv(nδ,∞)

0

tk−1dt =
1

k
nke−kL(nδ)nαδα .

Therefore,

lim sup
n→∞

1

L(n)nα
logP (Q←n (Γk) > nδ) ≤ −kδα. (6.32)

Turning to the first term of (6.31), we consider the following decomposition:

P
(

‖K̄k
n‖∞ > ǫ, N(nt) ≥ k, ZR−1

n (k) ≤ nδ
)

= P

(

N(nt) ≥ k, ZR−1
n (k) ≤ nδ, sup

t∈[0,1]

K̄k
n(t) > ǫ

)

︸ ︷︷ ︸

,(i)

+P

(

N(nt) ≥ k, ZR−1
n (k) ≤ nδ, sup

t∈[0,1]

−K̄k
n(t) > ǫ

)

︸ ︷︷ ︸

,(ii)

.
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Since ZR−1
n (k) ≤ nδ implies 1{Rn(i)>k} ≤ 1{Zi≤nδ},

(i) ≤ P



 sup
t∈[0,1]

N(nt)
∑

i=1

(
Zi1{Rn(i)>k} −EZ

)
> nǫ, N(nt) ≥ k, ZR−1

n (k) ≤ nδ





≤ P



 sup
t∈[0,1]

N(nt)
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ



 = P

(

sup
0≤j≤N(n)

j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ

)

≤ P

(

sup
0≤j≤2n

j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ,N(n) < 2n

)

+P
(
N(n) ≥ 2n

)

≤ P

(

sup
0≤j≤2n

j
∑

i=1

(
Zi1{Zi≤nδ} −EZ

)
> nǫ

)

+P
(
N(n) ≥ 2n

)
.

From Lemma 6.4 and the fact that the second term decays at an exponential rate,

lim sup
n→∞

1

L(n)nα
P

(

ZR−1
n (k) ≤ nδ, sup

t∈[0,1]

K̄k
n(t) > ǫ

)

≤ −(ǫ/3)α(ǫ/δ)1−β . (6.33)

Turning to (ii),

(ii) ≤ P



 sup
t∈[0,1]

N(nt)
∑

i=1

(
EZ − Zi1{Rn(i)>k}

)
> nǫ





= P



 sup
t∈[0,1]

N(nt)
∑

i=1

(

EZ − Zi1{Zi≤nδ} + Zi

(
1{Zi≤nδ} − 1{Rn(i)>k}

) )

> nǫ





≤ P



 sup
t∈[0,1]

N(nt)
∑

i=1

(

EZ − Zi1{Zi≤nδ} + Zi1{Zi≤nδ}∩{Rn(i)≤k}

)

> nǫ





≤ P



 sup
t∈[0,1]

N(nt)
∑

i=1

(

EZ − Zi1{Zi≤nδ}

)

+ knδ > nǫ



 = P



 sup
t∈[0,1]

N(nt)
∑

i=1

(

EZ − Zi1{Zi≤nδ}

)

> n(ǫ− kδ)





≤ P

(

sup
0≤j≤2n

j
∑

i=1

(

EZ − Zi1{Zi≤nδ}

)

> n(ǫ− kδ), N(nt) < 2n

)

+P(N(nt) ≥ 2n)

≤ P

(

sup
0≤j≤2n

j
∑

i=1

(

EZ − Zi1{Zi≤nδ}

)

> n(ǫ− kδ)

)

+P(N(nt) ≥ 2n).

Applying Lemma 6.5 to the first term and noticing that the second term vanishes at an exponential rate,
we conclude that for δ and k such that kδ < ǫ

lim sup
n→∞

1

L(n)nα
logP

(

ZR−1
n (k) ≤ nδ, sup

t∈[0,1]

−K̄k
n(t) > ǫ

)

= −∞. (6.34)

From (6.33) and (6.34),

lim sup
n→∞

1

L(n)nα
P
(

ZR−1
n (k) ≤ nδ, ‖K̄k

n‖∞ > ǫ
)

≤ −(ǫ/3)α(ǫ/δ)1−β . (6.35)
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This together with (6.31) and (6.32),

lim sup
n→∞

1

L(n)nα
P
(
‖K̄k

n‖∞ > ǫ
)
≤ max{−(ǫ/3)α(ǫ/δ)1−β , −kδα}

for any δ and k such that kδ < ǫ. Choosing, for example, δ = ǫ
2k and letting k → ∞, we arrive at the

conclusion of the lemma.

6.6 Proof of Theorem 2.3

We follow a similar program as in Section 2.1 and the earlier subsections of this Section. Let Q̄
(i)
n (j) ,

Q←n (Γ
(i)
j )/n where Q←n (t) = inf{s > 0 : nν[s,∞) < t} and Γ

(i)
l = E

(i)
1 + · · · + E

(i)
l where E

(i)
j ’s are

independent standard exponential random variables. Let U
(i)
j be independent uniform random variables in

[0,1] and Z
(i)
n ,

(
Q̄

(i)
n (1), . . . , Q̄

(i)
n (k), U

(i)
1 , . . . , U

(i)
k

)
. The following corollary is an immediate consequence

of Corollary 6.1 and Theorem 4.14 of Ganesh et al. (2004).

Corollary 6.2.
(
Z

(1)
n , . . . , Z

(d)
n

)
satisfies the LDP in

∏d
i=1

(
Rk

+×[0, 1]k
)
with the rate function Îdk (z

(1), . . . , z(d)) ,
∑d

j=1 Îk(z
(j)) where z(j) = (x

(j)
1 , . . . , x

(j)
k , u

(j)
1 , . . . , u

(j)
k ) for each j ∈ {1, . . . , d}.

Let Ĵ
6k (i)
n ,

∑k
j=1 Q̄

(i)
n (j)1

[U
(i)
j ,1]

.

Lemma 6.6.
(
Ĵ
6k (1)
n , . . . , Ĵ

6k (d)
n

)
satisfies the LDP in

∏d
i=1D ([0, 1],R) with speed L(n)nα and the rate

function

Idk (ξ1, ...ξd) ,
d∑

i=1

Ik(ξi) =

{∑d
i=1

∑

t:ξi(t) 6=ξi(t−)
(ξi(t)− ξi(t−))

α
if ξi ∈ D6k for i = 1, . . . , d,

∞ otherwise.

Proof. Since Iki
is lower semi-continuous in

∏d
i=1 D([0, 1],R) for each i, Ik1,...,kd

is a sum of lower semi-
continuous functions, and hence, is lower semi-continuous itself. The rest of the proof for the LDP upper
bound and the lower bounds mirrors that of one dimensional case (Lemma 6.3) closely, and hence, omitted.

Proof of Lemma 2.4. Again, we consider the same distributional relation for each coordinate as in the
1-dimensional case:

J̄k (i)
n

D
=

1

n

k∑

j=1

Q(i)
n (j)1[Uj ,1]

︸ ︷︷ ︸

=Ĵ
6k (i)
n

− 1

n
1{Ñ (i)

n < k}
k∑

j=Ñ
(i)
n +1

Q(i)
n (j)1[Uj ,1]

︸ ︷︷ ︸

=J̌
6k (i)
n

.

Let F be a closed set and write

P((J̄k (1)
n , . . . , J̄k (d)

n ) ∈ F ) ≤ P
(

(Ĵ6k (1)
n , . . . , Ĵ6k (d)

n ) ∈ F,
∑d

i=11{Ñ (i)
n < k} = 0

)

+
d∑

i=1

P
(
1{N (i)

n < k} 6= 0
)

≤ P
(

(Ĵ6k (1)
n , . . . , Ĵ6k (d)

n ) ∈ F
)

+

d∑

i=1

P
(
1{N (i)

n < k} 6= 0
)
.
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From Lemma 6.6 and the principle of the largest term,

lim sup
n→∞

logP
(
(J̄

k (1)
n , . . . , J̄

k (d)
n ) ∈ F

)

L(n)nα
≤ lim sup

n→∞

logP
(
(Ĵ

6k (1)
n , . . . , Ĵ

6k (d)
n ) ∈ F

)

L(n)nα
∨ max

i=1,...,d
lim sup
n→∞

logP
(
Ñ

(i)
n < k

)

L(n)nα

≤ − inf
(ξ1,...,ξd)∈F

Idk (ξ1, . . . , ξd).

Turning to the lower bound, let G be an open set. Since the lower bound is trivial in case infx∈G Ik(x) = ∞,
we focus on the case infx∈G Ik(x) <∞. In this case, from the similar reasoning as for (6.22),

lim inf
n→∞

logP((J̄
k (1)
n , . . . , J̄

k (d)
n ) ∈ G)

L(n)nα
≥ lim inf

n→∞

logP
(
(J̄

k (1)
n , . . . , J̄

k (d)
n ) ∈ G,

∑d
i=1 1{Ñ

(i)
n ≥ k} = 0

)

L(n)nα

= lim inf
n→∞

logP
(
(Ĵ

6k (1)
n , . . . , Ĵ

6k (d)
n ) ∈ G,

∑d
i=1 1{Ñ

(i)
n ≥ k} = 0

)

L(n)nα

≥ lim inf
n→∞

1

L(n)nα
log
(

P
(
(Ĵ6k (1)

n , . . . , Ĵ6k (d)
n ) ∈ G

)
− dP(Ñ (1)

n < k)
)

= lim inf
n→∞

1

L(n)nα
logP

(
(Ĵ6k (1)

n , . . . , Ĵ6k (d)
n ) ∈ G

)

≥ − inf
(ξ1,...,ξd)∈G

Idk (ξ1, . . . , ξd).

The proof of Lemma 2.5 is completely analogous to the one-dimensional case, and therefore omitted.

A M
′
1 topology and goodness of the rate function

Let D̃[0, 1] be the space of functions from [0, 1] to R such that the left limit exists at each t ∈ (0, 1], the
right limit exists at each t ∈ [0, 1), and

ξ(t) ∈ [ξ(t−) ∧ ξ(t+), ξ(t−) ∨ ξ(t+)] (A.1)

for each t ∈ [0, 1] where we interpret ξ(0−) as 0 and ξ(1+) as ξ(1).

Definition 1. For ξ ∈ D̃, define the extended completed graph Γ′(ξ) of ξ as

Γ′(ξ) , {(u, t) ∈ R× [0, 1] : u ∈ [ξ(t−) ∧ ξ(t+), ξ(t−) ∨ ξ(t+)]}

where ξ(0−) , 0 and ξ(1+) , ξ(1). Define an order on the graph Γ′(ξ) by setting (u1, t1) < (u2, t2) if either

• t1 < t2; or

• t1 = t2 and |ξ(t1−)− u1| < |ξ(t2−)− u2|.

We call a continuous nondecreasing function (u, t) =
(
(u(s), t(s)), s ∈ [0, 1]

)
from [0, 1] to R × [0, 1] a

parametrization of Γ′(ξ)—or a parametrization of ξ—if Γ′(ξ) = {(u(s), t(s)) : s ∈ [0, 1]}.

Definition 2. Define the M ′1 metric on D as follows

dM ′1(ξ, ζ) , inf
(u,t)∈Γ′(ξ)
(v,r)∈Γ′(ζ)

{‖u− v‖∞ + ‖t− r‖∞}.
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Let D↑ , {ξ ∈ D : ξ is nondecreasing and ξ(0) ≥ 0}.

Proposition A.1. Suppose that ξ̂0 ∈ D̃ with ξ̂0(0) ≥ 0 and ξn ∈ D↑ for each n ≥ 1. If T , {t ∈ [0, 1] :

ξn(t) → ξ̂0(t)} is dense on [0, 1] and 1 ∈ T , then ξn
M ′1→ ξ0 ∈ D↑ where ξ0(t) , lims↓t ξ̂0(s) for t ∈ [0, 1) and

ξ0(1) , ξ̂0(1).

Proof. It is easy to check that ξ̂0 has to be non-negative and non-decreasing, and for such ξ̂0, ξ0 should
be in D

↑. Let (x, t) be a parametrization of Γ′(ξ̂0), and let ǫ > 0 be given. Note that Γ′(ξ0) and Γ′(ξ̂0)
coincide. Therefore, the proposition is proved if we show that there exists an integer N0 such that for each
n ≥ N0, Γ

′(ξn) can be parametrized by some (y, r) such that

‖x− y‖∞ + ‖t− r‖∞ ≤ ǫ. (A.2)

We start with making an observation that one can always construct a finite number of points S =
{si}i=0,1,...,m ⊆ [0, 1] such that

(S1) 0 = s0 < s1 < · · · < sm = 1

(S2) t(si)− t(si−1) < ǫ/4 for i = 1, . . . ,m

(S3) x(si)− x(si−1) < ǫ/8 for i = 1, . . . ,m

(S4) if t(sk−1) < t(sk) < t(sk+1) then t(sk) ∈ T

(S5) if t(sk−1) < t(sk) = t(sk+1), then t(sk−1) ∈ T ; if, in addition, k − 1 > 0, then t(sk−2) < t(sk−1)

(S6) if t(sk−1) = t(sk) < t(sk+1), then t(sk+1) ∈ T ; if, in addition, k + 1 < m, then t(sk+1) < t(sk+2)

One way to construct such a set is to start with S such that (S1), (S2), and (S3) are satisfied. This is
always possible because x and t are continuous and non-decreasing. Suppose that (S4) is violated for some
three consecutive points in S, say sk−1, sk, sk+1. We argue that it is always possible to eliminate this
violation by either adding an additional point ŝk or moving sk slightly. More specifically, if there exists
ŝk ∈ (sk−1, sk+1) \ {sk} such that t(ŝk) = t(sk), add ŝk to S. If there is no such ŝk, t(·) has to be strictly
increasing at sk, and hence, from the continuity of x and t along with the fact that T is dense, we can
deduce that there has to be s̃k ∈ (sk−1, sk+1) such that t(s̃k) ∈ T and |t(s̃k) − t(sk)| and |x(s̃k) − x(sk)|
are small enough so that (S2) and (S3) are still satisfied when we replace sk with s̃k in S. Iterating this
procedure, we can construct S so that (S1)-(S4) are satisfied. Now turning to (S5), suppose that it is
violated for three consecutive points sk−1, sk, sk+1 in S. Since T is dense and t is continuous, one can
find ŝk between sk−1 and sk such that t(sk−1) < t(ŝk) < t(sk) and t(ŝk) ∈ T . Note that after adding
ŝk to S, (S2), (S3), and (S4) should still hold while the number of triplets that violate (S5) is reduced
by one. Repeating this procedure for each triplet that violates (S5), one can construct a new S which
satisfies (S1)-(S5). One can also check that the same procedure for the triplets that violate (S6) can
reduce the number of triplets that violate (S6) while not introducing any new violation for (S2), (S3),
(S4), and (S5). Therefore, S can be augmented so that the resulting finite set satisfies (S6) as well. Set
Ŝ , {si ∈ S : t(si) ∈ T, t(si−1) < t(si) in case i > 0, t(si) < t(si+1) in case i < m} and letN0 be such that

n ≥ N0 implies |ξn(t(si))− ξ̂0(t(si))| < ǫ/8 for all si ∈ Ŝ. Now we will fix n ≥ N0 and proceed to showing
that we can re-parametrize an arbitrary parametrization (y′, r′) of Γ(ξn) to obtain a new parametrization
(y, r) such that (A.2) is satisfied. Let (y′, r′) be an arbitrary parametrization of Γ(ξn). For each i such that
si ∈ Ŝ, let s′i , max{s ≥ 0 : r′(s) = t(si)} so that r′(s′i) = t(si) and ξn(r

′(s′i)) = y′(s′i). For i’s such that

si ∈ S \ Ŝ, note that there are three possible cases: t(si) ∈ (0, 1), t(si) = 0, and t(si) = 1. Since the other
cases can be handled in similar (but simpler) manners, we focus on the case t(si) ∈ (0, 1). In this case, one
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can check that there exist k and j such that k ≤ i ≤ k + j, t(sk−1) < t(sk) = t(sk+j) < t(sk+j+1), and

sk−1, sk+j+1 ∈ Ŝ. Here we assume that k > 1; the case k = 1 is essentially identical but simpler—hence

omitted. Note that from the monotonicity of ξ̂0 and (A.1),

x(sk−2) ≤ ξ̂0(t(sk−2)+) ≤ ξ̂0(t(sk−1)−) ≤ ξ̂0(t(sk−1)) ≤ ξ̂0(t(sk−1)+) ≤ ξ̂0(t(sk)−) ≤ x(sk),

i.e., ξ̂0(t(sk−1)) ∈ [x(sk−2), x(sk)], which along with (S3) implies |ξ̂0(t(sk−1))− x(sk−1)| < ǫ/8. From this,
(S5), and the constructions of s′k−1 and N0,

|y′(s′k−1)− x(sk−1)| = |ξn(r′(s′k−1))− x(sk−1)|
= |ξn(r′(s′k−1))− ξ̂0(t(sk−1))|+ |ξ̂0(t(sk−1))− x(sk−1)|
= |ξn(t(sk−1))− ξ̂0(t(sk−1))|+ |ξ̂0(t(sk−1))− x(sk−1)| < ǫ/4.

Following the same line of reasoning, we can show that |y′(s′k+j+1)− x(sk+j+1)| < ǫ/4. Noting that both x
and y′ are nondecreasing, there have to exist s′k, s

′
k+1, . . . , s

′
k+j such that s′k−1 < s′k < · · · < s′k+j < s′k+j+1

and |y′(s′l)− x(sl)| < ǫ/4 for l = k, k + 1, . . . , k + j. Note also that from (S2),

t(sl)−ǫ/4 = t(sk)−ǫ/4 < t(sk−1) = r′(s′k−1) ≤ r′(s′l) ≤ r′(s′k+j+1) = t(sk+j+1) < t(sk+j)+ǫ/4 = t(sl)+ǫ/4,

and hence, |r′(s′l)− t(sl)| < ǫ/4 for l = k, . . . , k + j as well. Repeating this procedure for the i’s for which
s′i is not designated until there is no such i’s are left, we can construct s′1, . . . , s

′
m in such a way that

|y′(s′i)− x(si)| < ǫ/4 and |r′(s′i)− t(si)| < ǫ/4

for all i’s. Now, define a (piecewise linear) map λ : [0, 1] → [0, 1] by setting λ(si) = s′i at each si’s and
interpolating (si, s

′
i)’s in between. Then, y , y′ ◦ λ and r , r′ ◦ λ consist a parametrization (y, r) of Γ(ξn)

such that |x(si) − y(si)| < ǫ/4 and |t(si) − r(si)| < ǫ/4 for each i = 1, . . . ,m. Due to the monotonicity of
x, y, t, and r along with (S2) and (S3), we conclude that ‖y − x‖∞ < ǫ/2 and ‖t − r‖∞ < ǫ/2, proving
(A.2).

Proposition A.2. Let K be a subset of D↑. If M , supξ∈K ‖ξ‖∞ <∞ then K is relatively compact w.r.t.
the M ′1 topology.

Proof. Let {ξn}n=1,2,... be a sequence in K. We will prove that there exists a subsequence {ξnk
}k=1,2,... and

ξ0 ∈ D such that ξnk

M ′1→ ξ0 as k → ∞. Let T , {tn}n=1,2,... be a dense subset of [0, 1] such that 1 ∈ T . By

the assumption, supn=1,2,... |ξn(t1)| < M , and hence there is a subsequence {n(1)
k }k=1,2,... of {1, 2, . . .} such

that ξ
n
(1)
k

(t1) converges to a real number x1 ∈ [−M,M ]. For each i ≥ 1, given {n(i)
k }, one can find a further

subsequence {n(i+1)
k }k=1,2,... of {n(i)

k }k=1,2,... in such a way that ξ
n
(i+1)
k

(ti+1) converges to a real number

xi+1. Let nk , n
(k)
k for each k = 1, 2, . . .. Then, ξnk

(ti) → xi as k → ∞ for each i = 1, 2, . . .. Define a

function ξ̂0 : T → R on T so that ξ̂0(ti) = xi. We claim that ξ̂0 has left limit everywhere; more precisely,

we claim that for each s ∈ (0, 1], if a sequence {sn} ⊆ T ∩ [0, s) is such that sn → s as n→ ∞, then ξ̂0(sn)

converges as n→ ∞. (With a similar argument, one can show that ξ̂0 has right limit everywhere—i.e., for

each s ∈ [0, 1), if a sequence {sn} ⊆ T ∩ (s, 1] is such that sn → s as n → ∞, then ξ̂0(sn) converges as
n → ∞.) To prove this claim, we proceed with proof by contradiction; suppose that the conclusion of the

claim is not true—i.e., ξ̂0(sn) is not convergent. Then, there exist a ǫ > 0 and a subsequence rn of sn such
that

|ξ̂0(rn+1)− ξ̂0(rn)| > ǫ. (A.3)

Note that since ξ̂0 is a pointwise limit of nondecreasing functions {ξnk
} (restricted on T ),
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• ξ̂0 is also nondecreasing on T , (monotonicity)

• supt∈T |ξ̂0(t)| < M . (boundedness)

However, these two are contradictory to each other since the monotonicity together with (A.3) implies

ξ̂0(rN0+j) > ξ̂0(rN0) + jǫ, which leads to the contradiction to the boundedness for a large enough j. This
proves the claim.

Note that the above claim means that ξ̂0 has both left and right limit at each point of T ∩ (0, 1), and
due to the monotonicity, the function value has to be between the left limit and the right limit. Since T
is dense in [0, 1], we can extend ξ̂ from T to [0, 1] by setting ξ̂0(t) , limti→t

ti>t
ξ̂0(ti) for t ∈ [0, 1] \ T . Note

that such ξ̂0 is an element of D̃ and satisfies the conditions of Proposition A.1. We therefore conclude that
ξnk

→ ξ0 ∈ D
↑ in M ′1 as k → ∞, where ξ0(t) , lims↓t ξ̂0(s) for t ∈ [0, 1) and ξ0(1) , ξ̂0(1). This proves

that K is indeed relatively compact.

Recall that our rate function for one-sided compound poisson processes is as follows:

IM ′1 (ξ) =

{∑

t∈[0,1]

(
ξ(t)− ξ(t−)

)α
if ξ is a non-decreasing pure jump function with ξ(0) ≥ 0,

∞ otherwise.

Proposition A.3. IM ′1 is a good rate function w.r.t. the M ′1 topology.

Proof. In view of Proposition A.2, it is enough to show that the sublevel sets of IM ′1 are closed. Let a be

an arbitrary finite constant, and consider the sublevel set ΨIM′
1
(a) , {ξ ∈ D : IM ′1(ξ) ≤ a}. Let ξc ∈ D

be any given path that does not belong to ΨIM′
1
(a). We will show that there exists ǫ > 0 such that

dM ′1
(
ξc,ΨIM′

1
(a)
)
≥ ǫ. Note that ΨIM′

1
(a)c = A ∪B ∪ C ∪D where

A = {ξ ∈ D : ξ(0) < 0},
B = {ξ ∈ D : ξ is not a non-decreasing function},
C = {ξ ∈ D : ξ is non-decreasing but not a pure jump function},
D = {ξ ∈ D : ξ is a non-decreasing pure jump function with ξ(0) ≥ 0 and

∑

t∈[0,1]

(
ξ(t)− ξ(t−)

)α
> a}.

In each case, we will show that ξc is bounded away from ΨIM′
1
(a). In case ξc ∈ A, note that for any

parametrization (x, t) of ξc, there has to be s∗ ∈ [0, 1] such that x(s∗) = ξc(0) < 0. On the other hand,
y(s) ≥ 0 for all s ∈ [0, 1] for any parametrization (y, r) of ζ such that ζ ∈ ΨI(a), and hence, ‖x−y‖∞ ≥ ξc(0).
Therefore,

dM ′1(ξ
c, ζ) ≥ inf

(x,t)∈Γ(ξc)
(y,r)∈Γ(ζ)

‖x− y‖∞ ≥ |ξc(0)|.

Since ζ was an arbitrary element of ΨIM′
1
(a), we conclude that dM ′1(ξ

c,ΨI(a)) ≥ ǫ with ǫ = |ξc(0)|.
It is straightforward with similar argument to show that any ξc ∈ B is bounded away from ΨI(a)

c.
If ξc ∈ C, there has to be Ts and Tt such that 0 ≤ Ts < Tt ≤ 1, ξc is continuous on [Ts, Tt], and

c , ξc(Tt)− ξc(Ts) > 0. Pick a small enough ǫ ∈ (0, 1) so that

(4ǫ)α−1(c− 5ǫ) > a. (A.4)

Note that since ξc is uniformly continuous on [Ts, Tt], there exists δ > 0 such that |ξc(t) − ξc(s)| < ǫ if
|t− s| ≤ δ. In particular, we pick δ so that δ < ǫ and Ts + δ < Tt − δ. We claim that

dM ′1(ΨIM′
1
(a), ξc) ≥ δ.
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Suppose not. That is, there exists ζ ∈ ΨIM′
1
(a) such that dM ′1(ζ, ξ

c) < δ. Let (x, t) ∈ Γ(ξc) and (y, r) ∈ Γ(ζ)

be the parametrizations of ξc and ζ, respectively, such that ‖x−y‖∞+‖t−r‖∞ < δ. Since IM ′1 (ζ) ≤ a <∞,
one can find a finite set K ⊆ {t ∈ [0, 1] : ζ(t) − ζ(t−) > 0} of jump times of ζ in such a way that
∑

t/∈K

(
ζ(t) − ζ(t−)

)α
< ǫ. Note that since ǫ ∈ (0, 1), this implies that

∑

t/∈K

(
ζ(t) − ζ(t−)

)
< ǫ. Let

T1, . . . , Tk denote (the totality of) the jump times of ζ in K ∩ (Ts + δ, Tt − δ], and let T0 , Ts + δ and
Tk+1 , Tt − δ. That is, {T1, . . . , Tk} = K ∩ (Ts + δ, Tt − δ] = K ∩ (T0, Tk+1]. Note that

• There exist s0 and sk+1 in [0, 1] such that

y(s0) = ζ(T0), r(s0) = T0, y(sk+1) = ζ(Tk+1), r(sk+1) = Tk+1.

• For each i = 1, . . . , k, there exists s+i and s−i such that

r(s+i ) = r(s−i ) = Ti, y(s+i ) = ζ(Ti), y(s−i ) = ζ(Ti−).

Since t(sk+1) ∈ [r(sk+1)− δ, r(sk+1) + δ] ⊆ [Ts, Tt], and ξ
c is continuous on [Ts, Tt] and non-decreasing,

y(sk+1) ≥ x(sk+1)−δ = ξc(t(sk+1))−δ ≥ ξc(r(sk+1)−δ)−δ = ξc(Tk+1−δ)−δ ≥ ξc(Tk+1)−ǫ−δ ≥ ξc(Tk+1)−2ǫ.

Similarly,

y(s0) ≤ x(s0) + δ = ξc(t(s0)) + δ ≤ ξc(r(s0) + δ) + δ = ξc(T0 + δ) + δ ≤ ξc(T0) + ǫ+ δ ≤ ξc(T0) + 2ǫ.

Subtracting the two equations,

y(sk+1)− y(s0) ≥ ξc(Tk+1)− ξc(T0)− 4ǫ = c− 4ǫ.

Note that

k∑

i=1

(
ζ(Ti)− ζ(Ti−)

)
= ζ(Tk+1)− ζ(T0)−

∑

t∈(T0,Tk+1]∩Kc

(ζ(t) − ζ(t−)) ≥ ζ(Tk+1)− ζ(T0)− ǫ

= y(sk+1)− y(s0)− ǫ ≥ c− 5ǫ. (A.5)

On the other hand,

y(s+i )− y(s−i ) ≤ (x(s+i ) + δ)− (x(s−i )− δ) = x(s+i )− x(s−i ) + 2δ ≤ ξc(t(s+i ))− ξc(t(s−i )) + 2δ

≤ ξc(r(s+i ) + δ)− ξc(r(s−i )− δ) + 2δ ≤ ξc(Ti + δ)− ξc(Ti − δ) + 2δ ≤ 2ǫ+ 2δ ≤ 4ǫ.

That is, (ζ(Ti)− ζ(Ti−))α−1 = (y(s+i )− y(s−i ))
α−1 ≥ (4ǫ)α−1. Combining this with (A.5),

IM ′1 (ζ) ≥
k∑

i=1

(
ζ(Ti)− ζ(Ti−)

)α
=

k∑

i=1

(
ζ(Ti)− ζ(Ti−)

)(
ζ(Ti)− ζ(Ti−)

)α−1 ≥ (c− 5ǫ)(4ǫ)α−1 > a,

which is contradictory to the assumption that ζ ∈ ΨIM′
1
(a). Therefore, the claim that ξc is bounded away

from ΨIM′
1
(a) by δ is proved.

Finally, suppose that ξc ∈ D. That is, there exists {(zi, ui) ∈ R+ × [0, 1]}i=1,... such that ξc =
∑∞

i=1 zi1[ui,1] where ui’s are all distinct and
∑∞

i=1 z
α
i > a. Pick sufficiently large k and sufficiently small

δ > 0 such that
∑k

i=1(zi − 2δ)α > a and ui+1 − ui > 2δ for i = 1, . . . , k − 1. We claim that dM ′1(ζ, ξ
c) ≥ δ

for any ζ ∈ ΨIM′
1
(a). Suppose not and there is ζ ∈ ΨIM′

1
(a) such that ‖x − y‖∞ + ‖t− r‖∞ < δ for some
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parametrizations (x, t) ∈ Γ(ξc) and (y, r) ∈ Γ(ζ). Note first that there are s+i ’s and s
−
i ’s for each i = 1, . . . , k

such that t(s−i ) = t(s+i ) = ui, x(s
−
i ) = ξc(ui−), and x(s+i ) = ξc(ui). Since y(s

+
i ) ≥ x(s+i )− δ = ξc(ui) − δ

and y(s−i ) ≤ x(s−i ) + δ = ξc(ui−) + δ,

ζ(r(s+i ))− ζ(r(s−i )) ≥ y(s+i )− y(s−i ) ≥ ξc(ui)− ξc(u−i )− 2δ = zi − 2δ.

Note that by construction, r(s+i ) < t(s+i ) + δ = ui + δ < ui+1 − δ = t(s−i+1) − δ < r(s−i+1) for each
i = 1, . . . , k − 1, and hence, along with the subadditivity of x 7→ xα,

IM ′1(ζ) =
∑

t∈[0,1]

(ζ(t) − ζ(t−)
)α ≥

k∑

i=1

[ζ(r(s+i ))− ζ(r(s−i ))]
α ≥

k∑

i=1

(zi − 2δ)α > a,

which is contradictory to the assumption ζ ∈ ΨIM′1
(a).

References

Asmussen, S. and Pihlsg̊ard, M. (2005). Performance analysis with truncated heavy-tailed distributions.
Methodol. Comput. Appl. Probab., 7(4):439–457.

Blanchet, J., Glynn, P., and Meyn, S. (2011). Large deviations for the empirical mean of an m/m/1 queue.
Queueing Systems: Theory and Applications, 73(4):425–446.

Borovkov, A. A. and Borovkov, K. A. (2008). Asymptotic analysis of random walks: Heavy-tailed distribu-
tions. Number 118. Cambridge University Press.

Borovkov, A. A. and Mogulskii, A. A. (2010). On large deviation principles in metric spaces. Siberian
Mathematical Journal, 51(6):989–1003.

Dembo, A. and Zeitouni, O. (2009). Large deviations techniques and applications, volume 38. Springer
Science & Business Media.

Dembo, A. and Zeitouni, O. (2010). Large deviations techniques and applications. Springer-Verlag, Berlin.

Denisov, D., Dieker, A., and Shneer, V. (2008). Large deviations for random walks under subexponentiality:
the big-jump domain. The Annals of Probability, 36(5):1946–1991.

Donsker, M. and Varadhan, S. (1976). Asymptotic evaluation of certain markov process expectations for
large timeiii. Comm. in Pure and Applied Math., 29(4):389–461.

Duffy, K. R. and Sapozhnikov, A. (2008). The large deviation principle for the on-off Weibull sojourn
process. J. Appl. Probab., 45(1):107–117.
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