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Abstract: In this study we investigate a covariate-based stochastic approach to parameterize unresolved tur-
bulent processes within a standard model of the idealised, wind-driven ocean circulation. We focus on ver-
tical instead of horizontal coarse-graining, such that we avoid the subtle di�culties of horizontal coarse-
graining. The corresponding eddy forcing is uniquely de�ned and has a clear physical interpretation related
to baroclinic instability. We propose to emulate the baroclinic eddy forcing by sampling from the conditional
probability distribution functions of the eddy forcing obtained from the baroclinic reference model data.
These conditional probability distribution functions are approximated here by sampling uniformly from dis-
crete reference values. We analyze in detail the di�erent performances of the stochastic parameterization
dependent on whether the eddy forcing is conditioned on a suitable �ow-dependent covariate or on a time-
lagged covariate or on both. The results demonstrate that our non-Gaussian, non-linear methodology is able
to accurately reproduce the �rst four statistical moments and spatial/temporal correlations of the stream
function, energetics, and enstrophy of the reference baroclinic model.
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1 Introduction

1.1 Background and motivation

The large-scale ocean circulation is strongly in�uenced by mesoscale turbulent eddies [26, 37]. Baroclinic
instability is the primary generating mechanism for mesoscale eddies in oceanic �ows [38, 44, 46]. How ac-
curately the impact of baroclinic instability is represented in ocean models depends on the accuracy of the
baroclinic eddy forcing that appears in the equations of motion. Mesoscale ocean eddies exist on spatial
scales roughly between O(10 km) and O(100 km). Therefore, global climate models need grid resolutions
smaller than O(10 km) in their ocean component in order to directly resolve these turbulent motions. Due to
computational limitations, such high resolution is still infeasible in current climate models, and the e�ects
of turbulent eddies must be parameterized. Parameterizations here are understood to be parametric math-
ematical models to be applied to an ocean model with a spatial resolution that leaves eddy forcing partly
unresolved.
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Mesoscale eddy parameterizations are commonly formulated in a deterministic way, typically based on
the Gent–McWilliams (GM) parameterization [14, 15, 20, 49]. Deterministic eddy parameterizations represent
an approximation of the integrated e�ects of the unresolved processes in terms of the resolved scale �ow.
These parameterizations are motivated by the idea that the properties of the unresolved scale processes can
be uniquely represented by the resolved scale states. However, in practice, the resolved states are associated
withmany possible unresolved states [8, 17]. Therefore, deterministic parameterizations can, at best, provide
an ensemble-mean representation of the unresolved scale processes. To overcome the limitations of deter-
ministic parameterizations, atmospheric research has in recent years started to focus on stochastic param-
eterizations [8, 18, 36, 40]. Examples in an atmospheric context relevant to our work include Markov Chain
models to represent atmospheric convection [10, 12, 32]. Stochastic eddy parameterizations are a more recent
development in oceanic research. Grooms and Majda [24] developed a new approach combining elements
from superparameterization and stochastic parameterizations applicable to quasi-geostrophic turbulence.
Cooper and Zanna [9] posed a linear stochastic term that stochastically parameterizes transient eddies in an
idealized barotropic ocean gyre model. They suggested an e�cient search method along parameter space
that optimizes their parameters with respect to a reference climatological mean, variance, and decorrelation
time scales of the horizontal �ow velocities.

In the currentworkwe explore how to use the novel data-driven stochasticmethodology posed inVerheul
and Crommelin [47] for eddy parameterization. Themain assumption for our parameterization is that sample
data from a ‘high-resolution’ ocean model is available. We use this sample data to approximate conditional
probability distribution functions (CPDFs) for the mesoscale eddy forcing. By conditioning on appropriately
chosen covariates, i.e. model variables that correlate signi�cantly with themesoscale eddy forcing, we de�ne
a �ow-dependent parameterization that samples directly from the CPDFs. The main goal of this parameteri-
zation is to drive a reduced ocean model in such a way that the resulting stochastic model is able to emulate
the dynamics produced by the full model.

Typically, in such a reduced model the vertical discretization of the ‘high-resolution’ ocean model is pre-
served, and the horizontal grid resolution is reduced, see e.g. [6, 29, 41]. While such a horizontal coarse-
graining set-up preserves some of the properties induced by the vertical strati�cation, a clear de�nition of
the associated mesoscale eddy forcing is di�cult both numerically and physically. Numerically, one is faced
with nontrivial �ltering options [41, 48] that subtly change the de�nition of the eddy forcing. In turn, physi-
cal interpretations of such eddy forcings are non-transparent to a certain extent because horizontally coarse-
grained termsmix partly resolved processes of both barotropic and baroclinic nature. To avoid such concerns,
we focus instead on a ‘vertical coarse-graining’ set-upwhich preserves horizontal grid resolution, but reduces
the vertical discretization [21, 28]. This less common approach enables a clear and unambiguous de�nition
of the eddy forcing with the clear physical interpretation related solely to the baroclinic nature of the �ow.
The ‘vertical coarse-graining’ allows us to focus fully on the development of our stochastic methodology in
this spatially extended setting without being detracted by the aforementioned concerns.

In this study, we aim to drive a reduced ocean model with �ow-dependent as well as spatially and tem-
porally correlated stochastic forcing. Recent relatedwork using �ow-dependent stochastic parameterizations
include the following examples. Using the stochastic approach of [19], Kitsios et al. [33] parameterizes subgrid
eddy-eddy interactions as a combination of deterministic eddy viscosity and stochastic backscatter eddy vis-
cosity. Furthermore, in [33] they formulated scaling laws for the respective coe�cients dependent on the res-
olution, enstrophy �ux, Rossby radius, and energy range. Jansen and Held [29] modeled the amplitude of the
�ow-dependent energy source due to backscatter forcing with simple spatially uncorrelated Gaussian white
noise. By combining a standard hyperviscous closure with this stochastic term they successfully returned the
energy otherwise spuriously dissipated, as is typical for hyperviscous closures. Finally, some recent studies
have focused on increasing the e�ciency of superparameterization, an extremely expensive computational
approach to parameterization that embeds high-resolution simulations in grid cells of low-resolution large
scale simulations [22, 23, 31]. Majda and Grote [35] proposed a framework that models the small-scale dy-
namics with quasilinear stochastic partial di�erential equations, which was later implemented with success
in Grooms and Majda [25] for a one-dimensional turbulent system. However, the feedback to the large scales
was e�ectively non-stochastic in this implementation. Grooms and Majda [24] successfully used unidirec-
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tional plane waves in random directions for e�cient computation of the �ow-dependent Fourier integrals
that determine the stochastic feedback to the large scales.

Most relevant to our proposedmethodology are the studies by Berlo� [4, 6], and by Zanna and colleagues
[41, 52]. The goal in these studies is tomodel the spatio-temporal correlations of the ocean �ow, a goal that we
share here.Moreover, Zanna and colleagues employ a stochasticmethodology based on the use of a covariate,
again similar to what is proposed here. Regarding the former, Berlo� [6] showed that the temporal correla-
tions of a diagnosed eddy forcing can be reproduced by forcing a ‘non-eddy-resolving’ stationary double gyre
ocean model with a simple �ow-independent but spatially varying autoregressive process. This approach
showed good results in reproducing the desired statistics in the stochastic model, however it required many
parameters to be estimated. In Berlo� et al. [4] this methodology was extended tomodel spatio-temporal cor-
relations in a coupled ocean-atmosphere model. The low-frequency coupled variability in this system gave
novel non-stationary statistical properties of the reference ocean eddy forcing. These properties were mod-
eled in the stochastic forcing by introducing �ow-dependency in the variance of the forcing (dependent on
the baroclinicity of the ocean �ow).

In Porta Mana and Zanna [41] it was proposed to reproduce spatio-temporal correlations by sampling
from reference values of the eddy forcing. To achieve this, the CPDFs for the eddy forcing were approximated
with Gaussian distributions, conditioned on a suitable covariate. The stochastic and deterministic feedback
to a double gyre quasi-geostrophic ocean model using this covariate were explored in Zanna et al. [52]. This
parameterization drastically improved the mean state and variability of the ocean state. While similar in
design philosophy to our work here, we note some important di�erences.

Firstly, Zanna and colleagues [41, 52] develop theirmethodology in a set-up of horizontal coarse-graining,
with the related di�culties discussed earlier in this introduction. Secondly, the covariate speci�ed in [41, 52]
is based on temporal tendencies of the vorticity, however these tendencies are in turn dependent on the un-
resolved eddy forcing. To close the system, the temporal tendencies must be approximated. By contrast, in
the approach developed here we use resolved model variables and lagged self-conditioning to formulate our
parameterization. Thirdly, this lagged self-conditioning allows us to explicitly represent temporal correla-
tions in the parameterization. This feature is implicitly included only with respect to the sampling interval in
[41, 52]. Fourthly, whereas in [41, 52] the CPDFs for the eddy forcing are approximated with Gaussian distribu-
tions, we assume no underlying distribution. Instead, we sample directly from the CPDFs as described by the
sample data. Fifthly, and lastly, while the covariate used in [41, 52] is motivated physically as well as justi�ed
numerically, the parameterization concerns a single covariate. Therefore, all dynamical e�ects on the ocean
�ow are attributed to that one covariate. We aim to make the dynamical e�ects of our covariates intuitive
and transparent by using multiple simple covariates. This allows us to perform sensitivity analyses, as well
as compare between two-way coupled simulations with di�erent con�gurations to illustrate the di�erences
between covariates.

The presentation of this work is as follows: in the remainder of this section we present a formal prob-
lem description. In Section 2 we de�ne the physical ocean model. The stochastic model and methodology
are detailed in Section 3. Finally, di�erent choices for stochastic models and the accompanying results are
discussed in Sections 4 and 5, respectively.

1.2 Problem description.

An ocean-climate model consists of coupled partial di�erential equations (PDEs) resulting from a set of con-
servation laws [11, 38]. In an abstract description of an ocean model a state vector u is evolved over time in
response to some external forcing F, a linear operator Lu and some non-linear operator N(u). Without loss
of generality, we consider the state vector to consist of two orthogonalmodes u := (u0, u1). The coupled PDEs
with quadraticN can then be written as:

∂tu0 = F0 + L0u0 +N00(u0, u0) +N01(u0, u1)
∂tu1 = F1 + L1u1 +N11(u1, u1) +N10(u0, u1),
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where N00,N11 indicate the nonlinear self-interaction of each mode, and N01,N10 represent the nonlinear
coupling of the di�erent modes.

Next, we consider a reduced oceanmodel where only the variable u0 is evolved. To distinguish it from the
u0 in the coupledmodel above, we denote it as ũ0 in the reducedmodel in the following. Without parameter-
ization to compensate for the missing term N01, the dynamics of the reduced model can di�er signi�cantly
from the dynamics of u0 in the full, coupled model. The stochastic approach explored in this study aims to
remedy this shortcoming by driving the reduced model with a stochastic process R̃, i.e. to de�ne a stochastic
reduced model:

∂t ũ0 = F0 + L0ũ0 +N00(ũ0, ũ0) + R̃.

Themain objective of ourwork is to choose the stochastic process R̃, the so-called stochastic eddy forcing,
in such a way that both the long-term statistical behavior and the physical properties of ũ0 resemble those
of u0. Hence, the criteria that we use to assess the accuracy of our stochastic reproduction are the �eld’s �rst
four statistical sample moments, the autocorrelations, and spatial covariances and correlations, as well as
the energetics and enstrophy (see Section A.4 for formal de�nitions of these quantities).

2 Physical model
In this study, we consider a standard model of idealised ocean dynamics, namely, quasi-geostrophic (QG),
potential-vorticity (PV) equations in a classical double-gyre con�guration (see e.g. Vallis [46]). The �uid-
dynamicmodel describes idealised,wind-drivenmidlatitude ocean circulationwith prescribeddensity strati-
�cation in a�at-bottomsquare basinwithnorth-south and east-west boundaries.We employ a set-up inwhich
the vertical discretisation is done by projection onto the two leading vertical eigenmodes (see e.g. [16, 21, 28]),
i.e. the barotropic mode and the �rst baroclinic mode. The potential vorticity conservation for the barotropic
(baroclinic) mode stream function ψ0 (ψ1) with rigid lid vertical boundary conditions then reads:

∂tq0 + J(ψ0, q0) + R + β∂xψ0 = AH∇4ψ0 +
∂xτy − ∂yτx

ρH ,

∂tq1 + J(ψ1, q0) + J(ψ0, q1) + ϵ111J(ψ1, q1) + β∂xψ1 = AH∇4ψ1 +
γ(∂xτy − ∂yτx)

ρH ,
(2M)

where J(f , g) := (∂x f )(∂yg) − (∂y f )(∂xg), the relative PVs are given by q0 = ∇2ψ0 and q1 = ∇2ψ1 − λ−2ψ1,
respectively, and R is de�ned as:

R(x, y, t) := J(ψ1(x, y, t), q1(x, y, t)). (1)

The term R acts as the feedback of the baroclinic mode on the barotropic mode, and is interpreted as
baroclinic eddy forcing term in this study. In the following, we denote the 2-mode model with 2M, and we
refer to the �rst equation of 2Mwith a stochastic representation of R as the stochastic 1-modemodel (S1M, see
Section 3), and to the �rst equation of 2M with R set to zero as the deterministic 1-mode model (D1M):

∂tq0 + J(ψ0, q0) + β∂xψ0 = AH∇4ψ0 +
∂xτy − ∂yτx

ρH . (D1M)

The code for above deterministic models is part of OMUSE [39] and is available at the OMUSE project
website: https://bitbucket.org/omuse. In our numerical model simulations, the �ow is driven at the surface
by the asymmetric double-gyre zonal wind stress (as e.g. in [6]),

τx(y) = τ0
[
cos
(
2π(y − L/2)

L

)
+ 2 sin

(
π(y − L/2)

L

)]
, τy = 0 ,

where τ0 = 0.05 Nm−2, and L = 4000 km is the size of the square basin with 0 ≤ x, y ≤ L. The �rst
internal Rossby radius of deformation, λ, represents a length scale of baroclinic eddies and is set to λ = 50
km, a typical value for the midlatitude ocean circulation. We use an eddy-resolving horizontal resolution
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of 10 km in our numerical simulations with a correspondingly small lateral viscosity coe�cient, AH = 100
m2s−1, aswell as free-slip boundary conditions. Furthermore,weuse typical values for themeanoceandepth,
H = 4000 m, the mean density of sea water, ρ = 1000 kgm−3, and the meridional variation of the Coriolis
parameter, β = 1.8616 × 10−11m−1s−1. Finally, we consider the idealized case of constant strati�cation such
that ϵ111 = 0 and γ =

√
2 (see e.g. Hua and Haidvogel [28]). All numerical model simulations in this work

have a spin-up time of 30 years and an integration length of another 30 years. See Table 1 for an overview of
parameter values used in this study.

Figure 1 shows snapshots as well as the temporal averages µ(Hψ0) and standard deviations std(Hψ0) of
the barotropic stream function ψ0 in Sverdrup (1 Sv = 106 m3s−1) for 2M and D1M, respectively. The statistical
quantities are calculated from simulation results stored on a weekly basis. For both models the time-mean
�ow (see Figures 1b and 1e) consists of the southern (subtropical) and northern (subpolar) gyres that �ll about
2/3 and 1/3 of the basin, respectively,which is consistentwith thewind stress pattern. In the eastern part of the
basin the �ow is characterized by the linear Sverdrup balance which leads to essentially identical time-mean
�ow �elds for both 2M and D1M. Near the western boundary, on the other hand, narrow boundary currents
close the circulation and nonlinear terms are signi�cant. Themagnitude and themeridional extension of the
time-mean western boundary currents are signi�cantly larger for 2M than for D1M. In terms of �uctuations,
for both models the basin can be partitioned into the more energetic western boundary region, characterized
by strong vortices, and the less energetic eastern part, dominated by the planetary waves (see [7] for details).
However, in addition to the strengthened time-mean �ow, the variability is signi�cantly more pronounced as
well for 2M, as visible in both snapshots (Figures 1a and 1d) and standard deviation �elds (Figures 1c and 1f).
In particular, signi�cantly larger and stronger vortices are present at the western boundary. Variability is also
dominant in the rest of the basin, whereas for D1M the instantaneous �ow pattern in the eastern part largely
resembles the time-mean �ow pattern. Finally, Figures 2a and 2b show corresponding time series of kinetic
energy in joules (1 J = 1 kgm2s−2) and enstrophy in kgs−2 which again demonstrate larger mean values and
stronger variability for 2M than for D1M.
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Figure 1: Properties of ψ0 in 2M/D1M: (a)/(d) snapshot, (b)/(e) pointwise temporal mean, (c)/(f) pointwise temporal standard
deviation.
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We consider 2M as a minimal model that captures the main barotropic and baroclinic processes of in-
terest, as well as the interactions between these dynamical processes. Notwithstanding, it is clear that 2M
is strongly idealized, because of e.g. the assumption of QG dynamics, the idealized square basin geometry
and the coarse vertical discretization with only two vertical modes. The model could be made more realis-
tic, e.g. by increasing the number of vertical modes, by including a vertically dependent strati�cation, or
by applying di�erent boundary conditions. In particular, the relatively small eastward jet extension (related
to the boundary conditions and strati�cation, see Figure 1) is not very realistic. However, the model allows
for straightforward implementation of our stochastic modeling approach, as we discuss in the next section.
Therefore, we consider it an appropriate test model for the purposes of developing the stochastic methodol-
ogy from Verheul and Crommelin [47] in the setting of a spatially extended model.

As already mentioned in the introduction, in this study we focus on model reduction by vertical coarse-
graining instead of horizontal coarse-graining.Weaim to formulate a reducedmodel for the barotropic stream
function and vorticity, with a stochastic representation of the baroclinic feedback R. Here, it amounts to
reducing the number of degrees of freedom by a factor of 2, a modest reduction compared to what can be
achieved with the more commonly pursued horizontal coarse-graining. We point out that it is straightfor-
ward to generalize to a higher number of vertical modes, by changing the de�nition of R in (1) to the sum
of nonlinear feedback terms on the barotropic mode,∑i J(ψi , qi). For a recent investigation into the roles
of the di�erent individual baroclinic modes and their interaction, see Shevchenko and Berlo� [43]. In our
context the entire e�ect of baroclinicity is reduced to the one baroclinic eddy forcing of the barotropic mode
(for any number of baroclinic modes in the reference model). Consequently, our approach is formally unaf-
fected by more baroclinic modes in the reference model. Finally, Shevchenko and Berlo� [43] reports mainly
quantitative changes due to the inclusion of more baroclinic modes with the overall eddy e�ects remaining
qualitatively similar. We speculate that the same will hold for the baroclinic eddy forcing and its stochastic
parameterization.

More importantly, with vertical coarse-graining the full (baroclinic) model and the reduced model are
both discretized on the same horizontal grid, so that R purely represents the e�ects of baroclinic instability.
In this way, we avoid the conceptual di�culties of �ltering (coarse-graining) �elds that are discretized on
a lattice, as also discussed in the introduction. R has a clear physical interpretation and we do not have to
disentangle physical e�ects of unresolved processes from, e.g, grid transfer e�ects and reduced accuracy of
discretized di�erential operators.

2.1 Spatial structure and restriction of the eddy forcing

Figures 3a and 3b show the temporal average µ(R) and standard deviation std(R) of the eddy forcing R as
diagnosed from 2M. Both �elds exhibit the same order of magnitude and are essentially con�ned to a narrow
band at the western boundary. Within this region, µ(R) exhibits a dipole structure with negative values in the
southern half and positive values towards the north. The two local extrema in µ(R) correspond to two local
maxima in std(R).

The spatial structure of R suggests that it might be su�cient to model R within only a subdomain at
the western boundary instead of the entire basin. In order to test this, we performed a ‘truncated’ 2-mode
model simulation, T2M, which is identical to 2M except that R is set to zero outside the western boundary
regionWB = [10, 490] × [500, 3490] km. Figure 2 also shows the corresponding time series of enstrophy and
the kinetic energy for T2M. The mean levels as well as both the short and long-term variability of enstrophy
and kinetic energy are similar for T2M and 2M (the same holds when comparing the spatial �elds shown in
Figures 1a–1cwith correspondingT2M�elds, not shown)which indicates that T2Mand 2Messentially produce
the same �ow dynamics for our model set-up. Consequently, we will focus on modeling R restricted to WB in
the following; this has the practical advantage of reducing the volume of data that must be handled in our
stochastic modeling of R (see Section 3.4).
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Table 1: Parameter settings for all modal ocean numerical models (2M, D1M, S1M)

Parameter Explanation Value

α Robert–Asselin �lter parameter 0.1
β rate of Coriolis change 1.8616 × 10−11 m−1s−1

AH lateral viscosity coe�cient 102 m2s−1

ρ mean density 103 kgm−3

H ocean depth 4 × 103 m
τ0 magnitude of wind-forcing 5 × 10−2 Nm−2

ϵ111 triple interaction coe�cient 0
ϕ1(z = 0) surface eigenfunction

√
2

λ �rst Rossby radius of deformation 5 × 104 m
∆x horizontal grid spacing x-direction 104 m
∆y horizontal grid spacing y-direction 104 m
Lx horizontal domain size x-direction 4 × 106 m
Ly horizontal domain size y-direction 4 × 106 m
Nx number of grid points x-direction 401
Ny number of grid points y-direction 401
∆t integration time step 1.8 × 103 s
δt sampling interval 1.8 × 103 s
Tc conditioning interval 9.43488 × 108 s
Ts spin-up time 9.43488 × 108 s
T integration time 9.43488 × 108 s
NB number of bins per conditioning variable 5

3 Stochastic model
The goal of this work is to formulate a stochastic process R̃ that emulates the eddy forcing R (see (1)). Adding
this stochastic eddy forcing to D1M results in the stochastic 1-mode model (S1M):

∂t q̃0 + J(ψ̃0, q̃0) + R̃ + β∂xψ̃0 = AH∇4ψ̃0 +
∂xτy − ∂yτx

ρH . (S1M)

Recall that throughout this work we compare variables from deterministic models (e.g. ψ0) with their
counterparts in a stochastic model (e.g. ψ̃0), and we use the same symbols for both but emphasize the di�er-
ence with a tilde.

3.1 Conditioning procedure

To close the system S1M, a model that describes the temporal evolution of R̃ is needed. We model R̃ as a
stochastic process, following the approach discussed in Verheul and Crommelin [47]. This approach is a form
of resampling, in which R̃ is sampled uniformly from conditioned observed values of R. However, whereas
in [47] we considered a situation in which R was a scalar quantity, here we are dealing with a spatially ex-
tended system in which R is a two-dimensional �eld. Therefore, we extend the method from [47] to a multi-
dimensional setting, and apply it pointwise to sample the �eld R̃. In this extension, we preserve the modular
design philosophy behind the stochastic methodology, as well as the ability to represent non-linear and non-
Gaussian behavior.

Our stochastic methodology makes use of sample data (Ψ , Q, R) from the full model 2M. As follows from
(1), let us write Rn := J(ψ1(x, y, n∆t), q1(x, y, n∆t)) and R = (R0, . . . , RN) to denote the time series of R result-
ing from a 2M simulation. Let Rn(i, j) denote the eddy forcing value in grid point (i, j) at time n. The stochastic
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Figure 2: Comparison of scalar physical properties between the deterministic models: (a) enstrophy, (b) kinetic energy.
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Figure 3: Properties of R in the reference 2M: (a) pointwise temporal mean, (b) pointwise temporal standard deviation.

forcing R̃ in S1M is then sampled pointwise from sample data R conditioned on two types of covariates: time-
lagged R-values R̃n−lθ(i,j)(i, j) and a �ow-dependent model variable C(ψ̃n0)(i, j):

R̃n+1(i, j) ∼ Rn+1(i, j) | (Rn−lθ(i,j)(i, j) = R̃n−lθ(i,j)(i, j), C(ψn0)(i, j) = C(ψ̃n0)(i, j)), ∀i, j ∈ WB,

or for short:
R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n−lθ(i,j)(i, j), C(ψ̃n0)(i, j)), ∀i, j ∈ WB, (2)

where lθ(i, j) + 1 denotes the conditioning time lag for grid point (i, j) (see Section 3.2), and C(ψ̃n0)(i, j) is a
function of ψ̃n0 (see Section 3.3). Also, the stochastic forcing is generated only in the regionWBand considered
zero outside of this region (see Section 2.1).

Intuitively, the formulation in (2) says that the stochastic values are sampled from precisely those refer-
ence R-values that occurred in 2Mwhen certain model variables in 2Mmatched the values of the correspond-
ing variables in S1M. The distributions Rn+1(i, j) | (R̃n−lθ(i,j)(i, j), C(ψ̃n0)(i, j)) are usually not known, therefore
we approximate them with a simple binning method (see Section 3.4).

An important detail that we highlight is that the sampling interval used in the conditioning procedure
(2) equals the integration time step (half an hour, see Table 1). This allows our parameterization a level of
detail not usually seen in stochastic climate models, but this does come at a cost in the form of considerable
memory requirements.

Crucially, the temporal evolution of R̃ is governed by sampling from the CPDFs in (2). Obviously, the set of
conditioning model variables could be chosen arbitrarily large, making this methodology easily extendable.
But for the sake of simplicity, and the test cases we discuss here, we consider at most one of each covari-
ates: a single function C(ψ0) and a single lagged value of R. The set of conditioning variables is denoted
{Rn−lθ , C(ψ0))}. Di�erent choices for lθ(i, j) and C(ψn0)(i, j) give di�erent samplingmethods, and, in turn, dif-
ferent discrete stochastic processes R̃. These stochastic processes together with S1M de�ne several stochastic
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models. In the followingwediscuss several sets of conditioningmodel variables, andwedenote each stochas-
tic model by their variable choices, i.e. S1M-R[lθ] C. For example, if one chooses lθ(i, j) = 0, {C(ψn)(i, j)} = ∅,
then S1M-R[0] describes the 1-modemodel S1M forced by a simple time-correlated stochastic process (see (2)).

3.2 Time-lagged covariate

An important criterion for our stochastic simulations is the reproduction of the autocorrelations of ψ0 ex-
hibited in the full model 2M. To reproduce the temporal correlations of R we condition the CPDFs in (2) on
temporally lagged values of R, i.e. Rn−lθ(i,j) for some lθ(i, j) ≥ 0 (see (2)). The choice for lag times relates to an
interesting, but di�erent, question entirely: if one could sample the stochastic term R̃n+1 from the conditioned
probability distribution Rn+1 | R̃n , . . . , R̃n−L, how large does L need to be to accurately reproduce temporal
correlations shown in (Ψ , Q, R)? This question can be phrased intuitively as: how much information of the
history of the stochastic process is su�cient for our conditioning procedure.While this is an interesting prob-
lem, we consider this investigation outside of the scope of this paper, and take a heuristic approach.

We condition the CPDFs in (2) on a single lagged R̃. We consider temporal decorrelation for each grid
point to be the time at which the autocorrelation function �rst drops below the threshold θ = e−1. Figure 4
shows that the decorrelation time of R varies widely over the grid, i.e. anywhere from a day near the western
boundary to 10 weeks around the eastward jet. Therefore, we expect the need to choose a pointwise lagged
time lθ in the conditioning procedure (2), i.e. to de�ne a spatially dependent lag time lθ(i, j). In Sections 4.1
and 4.3 we show results from stochastic simulations conditioning with lag times constant over the grid, as
well as with spatially varying lθ(i, j).
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Figure 4: Pointwise decorrelation time (in
days) of R over the regionWB.

3.3 Flow-dependent covariate

Ideally, one conditions the CPDFs in (2) on resolved covariates, i.e. resolved model variables (in both D1M
and 2M) that correlate strongly with the eddy forcing. The existence of suchmodel variables in anymultiscale
model is not guaranteed. However, several studies have investigated and proposed candidates in related cli-
matemodels (e.g. PortaMana and Zanna [41]). In this sectionwe choose a set of covariate candidates from the
di�erent terms constituting the PV budget. Expressing the eddy forcing R in 2M in terms of the other model
variables gives:

R = −∂t∇2ψ0 − J(ψ0, q0) − β∂xψ0 + AH∇4ψ0 +
∂xτy − ∂yτx

ρH . (3)

This means that the eddy forcing R is expressed directly as a linear combination of each of the terms in
the right-hand-side equation (3). However, unlike [41], we don’t consider ∂t∇2ψ0 as a covariate candidate,
because this is an unresolved term dependent on R itself. Each of the resolved terms in (3) are natural candi-
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dates for our covariate selection procedure. Therefore, we de�ne the set of covariate candidates V as:

V := {ψ0, q0, β∂xψ0, J(ψ0, q0), AH∇4ψ0,
∂xτy − ∂yτx

ρH }.

Weuse linear regression analysis and standard Pearson coe�cient plots to assess these candidate covari-
ates. For the regression analysis all model candidate variables in V are considered the regressors, and R the
response variable, respectively. The r2-value (not to be confused with the eddy forcing R) for a given linear
regression is a statistical quantity for the percentage of the response variable’s variability that is ‘explained’
by the covariates. While a high r2-value indicates a good regression �t, it by no means guarantees the best
covariate. Therefore, wemake the following observations associated with r2-values only to compare di�erent
sets of covariates, and not to ‘prove’ quality.

Our pointwise regression analysis shows that from all variables in the set V, it is the Jacobian J(ψ0, q0)
that explains most of the variability of R. This can be seen by comparing two di�erent regressions, �rst be-
tween the entire set V and R, second between J(ψ0, q0) and R. Figures 5a and 5b show the pointwise r2-values
for these two regressions. Comparing the two di�erent plots, one sees near identical r2-values. This strongly
indicates that the other candidates provide hardly any additional information for the regression. However,
while the Jacobian shows the highest r2-values, we note that it is far from a perfect predictor, as the central
and eastern regions of WB remain badly represented.

Let us next compare the point wise Pearson correlation coe�cients pX,Y = Cov(X, Y)(stdXstdY )−1, where
Cov(X, Y) denotes the covariance between X and Y, and stdX and stdY the standard deviations of X and
Y respectively. Comparing each candidate in V coupled with R, we con�rm the previous assessments that
J(ψn0 , qn0) correlates signi�cantly with R, see Figure 5c. The highest correlation found between the Jacobian
and R is locatedwithin the regionWBdescribed in Section 2.1. Other candidates in V show either signi�cantly
lower correlation to R or signi�cantly lower r2-values (not shown).

In addition to the statistical analysis above, our intuitive understanding for why the Jacobian is the
most suitable covariate is that the Jacobian is the only resolved scale-coupling term in (3), i.e. term that is
dependent on both small and large scale vortices. Therefore, despite the relatively low r2-values in large
parts of WB, J(ψ0, q0) is our choice for covariate out of the tested candidates, and we choose C(ψ̃n0)(i, j) :=
J(ψ̃n0(i, j), q̃n0(i, j)) in the following sections.
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Figure 5: Covariate selection criteria. r2-values for each grid point in [10, 490] × [500, 3490] km for pointwise regression analy-
sis: (a) with regressor J(ψ0 , q0), (b) with regressors V. (c) Pearson coe�cient J(ψ0 , q0) per grid point.

3.4 Sampling from empirical distribution

We choose the set of conditioning variables to contain either one or both of the time-lagged R-values
R̃n−lθ(i,j)(i, j) (see Section 3.2) and the Jacobian J(ψ̃n0(i, j), q̃n0(i, j)) (see Section 3.3). Following the set-up
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from Verheul and Crommelin [47], we apply an equidistant binning procedure to approximate the CPDFs in
conditioning procedure (2). We refer to uniformly drawing samples from these bins as sampling from the
empirical distribution. To establish the binning associated with the chosen covariates, the range between
the minimum andmaximum of each covariate is independently partitioned in NB equidistant intervals, with
the outer intervals considered half-open. This partitioning results in disjoint bins, each of which describes
a set of Rn+1(i, j)-values. Through this discretization, one obtains a mapping from conditioning variables to
sets of Rn+1(i, j)-values. See Appendix A.2 for further technical details on the binning procedure.

Because our stochastic sampling procedure (2) acts pointwise, excessive arti�cial spatial roughness can
arise in the generated �elds R̃. To prevent this phenomenon, we apply Gaussian spatial smoothing to the
stochastic �elds, as detailed in Appendix A.3. This is an ad hoc way to promote spatial smoothness, but one
we consider adequate for the scope of this work. We leave a more systematic way to generate smooth �elds
for a future study.

A limitation of discrete sampling methods is that there is no predetermined way of handling situations
in which the values of the conditioning variables are outside of the ranges exhibited in the sample data. We
refer to bins outside of the ranges of the sample data as empty bins. When conditioning on both covariates,
the bins are projected onto the linear trend Ĵ between Rn−lθ(i,j)(i, j) and J(ψn0(i, j), qn0(i, j)) to more e�ciently
use the available bins (see Appendix A.1).

Furthermore, during simulations of the S1M, the Jacobian is removed from the conditioning variables
whenever it goes outside the range in the sample data. The same is done at grid points where the correlation
between J and R is low in the sample data (see Figure 5c).

We point out the computational e�ciency of this sampling procedure. To evolve our stochastic model for
the eddy forcing over time, we only need to calculate from which bin to sample for each grid point, and then
draw a uniform random sample from that bin from memory. For comparison, in, for example, the approach
from Cooper and Zanna [9], also relying on availability of high-resolution data, a system of linear stochas-
tic ordinary di�erential equations (SDE) must be evolved at each model time step, involving six parameters
and two variables per model grid point (for the model grid used here, this would amount to an SDE with
320000 variables). Besides the computational cost of integrating the model in time, the cost of constructing
the stochastic eddy forcing model (i.e. the ‘training phase’) can be substantial. For our approach, it involves
simple binning of data, with negligible computational cost. By contrast, the approach from [9] requires an
expensive optimization procedure involving many reduced model runs.

3.5 Emulated stochastic eddy forcing

Similar to the investigations in [41], let us verify our stochastic methodology before coupling the stochastic
process for R back to the reduced barotropic model. We use the output from a 2M simulation (i.e. sample
data J and R) to generate a so-called o�ine ‘emulation’ of the stochastic process. For the purposes of such an
emulated process, let us choose l = 0:

R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n(i, j), J(ψ̃n0(i, j), q̃n0(i, j))), ∀i, j ∈ WB.

This stochastic term is then compared to the same reference eddy forcing sample data. While not directly
testing our ultimate goal of driving a reducedmodelwith stochastic forcing, this poses an interesting question
in itself: can our methodology reproduce the statistical properties of the reference eddy forcing when the
input to our conditional sampling method is known to be ‘correct’? Thus, this test should be considered a
veri�cation of the consistency of our procedure, rather than a validation. As intuition would suggest, even
this simple veri�cation can fail if, e.g, the number of bins is chosen too small or if the conditioning variables
are not e�ective predictors.

Individual snapshots over time of these emulated stochastic �elds show very little error. The long-term
statistics are shown in Figure 6, where one can see an accurately reproduced mean and standard deviation
for the spatially �ltered emulated stochastic forcing. We note that the spatial smoothing (see Section A.3)
decreases the standard deviation of R̃ somewhat, compared to R. This should not be surprising, given that
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the variability of R̃ is arti�cially smoothed out. However, based on our experiments, we consider the bene�t
from the spatial cohesion and smoothness of R̃ as a result of this spatial smoothing more signi�cant than the
disadvantage of its decreased standard deviation.
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Figure 6: Comparison between pointwise temporal mean (a)-(b) and standard deviation (c)-(d) for the reference R (a) and (c)
versus the �ltered emulated R̃ (b) and (d).

4 Results
The natural point of comparison between S1M and 2M is the evolution of the barotropic modes ψ̃0 and ψ0.
Therefore, we assess our stochastic parameterization by inspecting howwell ψ̃0 reproduces the physical and
statistical properties of ψ0 in the reference 2M. The speci�c quantities we compare are: the enstrophy, kinetic
energy, and energy transfer related to R (physical), and the statistical moments, and spatial and temporal
correlations (statistical). See Appendix A.4 for a reference of formal de�nitions for each of these.

4.1 One-way coupling

Here, we consider a �ow-independent sampling method, i.e. we consider only the time-lagged eddy forcing
Rn−lθ(i,j) as covariate and condition one-dimensionally: Rn+1 | R̃n−lθ(i,j). Let us start with a spatially constant
lθ(i, j) = l:

R̃n+1(i, j) ∼ Rn+1(i, j) | R̃n−l(i, j) ∀i, j ∈ WB. (R[l])

While we will use such simulations to highlight the reasons that spatially dependent lag times are de-
sired, they also result in some interesting observations. Let us discuss these results for three di�erent choices
for l (recall the choice for half an hour integration time-step, see Section 2): half an hour (S1M-R[12h]), a day
(S1M-R[1d]), and three days (S1M-R[3d]).

These three reduced model simulations reproduce the mean barotropic stream function very well (not
shown), with somewhat better results for longer time lags. The standard deviation of these barotropic stream
functions (not shown) are a major improvement over D1M (Figure 1f), but are still signi�cantly smaller than
in 2M (Figure 1c). Figure 7a shows that the mean enstrophy (A.10) is also reproduced accurately for each of
the lag time choices with a maximal error of 11% for S1M-R[3d] and an error of only 0.9% for S1M-R[1d].
For each of the lag options the enstrophy’s variability is slightly overestimated compared to the 2M reference
diagnostics. Both the kinetic energy (A.11) and the energy exchange term in watts (1W = 1 Js−1, A.12) are
signi�cantly underestimated compared to 2M, as shown in Figures 7b and 7c, respectively. The mean kinetic
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energies in Figure 7b deviate between 20% and 30% from 2M, in addition to showing long excursions from
their means, unlike what the reference diagnostic exhibits. The energy transfer means deviate between 2%
(for S1M-R[1d]) and 29% (for S1M-R[3d]), but show standard deviations that are between 18% and 26.7%
o� from the reference values. However, we do consider these results to be remarkably good, considering the
straightforward methodology that generated them.
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Figure 7: Comparison of scalar physical properties between 2M and S1M-R[l] for di�erent lags l: (a) enstrophy, (b) kinetic en-
ergy, (c) energy exchange term.

Figure 8 shows that similar plots result from spatially dependent lag times lθ(i, j) (chosen equal to the
time at which the autocorrelation function (ACF, A.9) �rst crosses some threshold θ):

R̃n+1(i, j) ∼ Rn+1(i, j) | R̃n−lθ(i,j)(i, j) ∀i, j ∈ WB. (R[lθ])

.
All means and deviations of the stochastic barotropic stream function improve signi�cantly, a trend illus-

trated in Table 2. The temporal means of the kinetic energy plots in Figure 8b improve compared to Figure 7b
to an error between 9% and 16%. Aside from this result, Figure 8 indicates that spatially dependent lag times
in S1M-R[lθ] fail to signi�cantly improve the diagnostic physical results. However, these results instead illus-
trate the limitations of �ow-independent conditioning methods R[l] and R[lθ], as supported by later results
in Section 4.3.

To illustrate the reproduction of temporal correlations with a scalar quantity we �rst consider the ACFs in
the two grid points [200, 2390] km and [440, 3190] km in two di�erent dynamical areas in region WB. The
ACF plots in Figures 11 and 12 show that, unlike the energetics and enstrophy, a signi�cant improvement can
be seen when comparing the S1M-R[l] simulations (Figure 11) with the S1M-R[lθ] simulations (Figure 12). This
should not be surprising given that the constant lag times chosen are shorter than the lθ(i, j)-values, even for
θ = 0.9. This means that the information added to the stochastic process by the process history is relatively
insigni�cant, i.e. the lagged R-values are not signi�cantly decorrelated.

The spatial covariances here are represented by the covariances between ψ̃0 in a central grid point and
its surrounding grid points (we again choose both [200, 2390] km and [440, 3190] km as the two example
points). Figures 10c and 10d show that the S1M-R[12h] very accurately reproduces the spatial structure of the
reference covariances in Figures 10g and 10h, unlike the D1M covariances in Figures 10a and 10b. Note the
signi�cantly smaller magnitude for the barotropic references in Figures 10a and 10b, illustrating the strong
improvement by eachof the stochastic simulations overD1M.Quantitatively, however, the spatial covariances
in these grid points (Figures 10c and 10d) are signi�cantly underestimated compared to Figures 10g and 10h.
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Figure 8: Comparison of scalar physical properties between 2M and S1M-R[lθ] for di�erent spatial lag patterns lθ: (a) enstro-
phy, (b) kinetic energy, (c) energy exchange term.

4.2 Two-way coupling: single conditioning variable

The results fromSection 4.1 already showpromise for the suggestedmethodology, but could use improvement
when it comes to the scalar physical quantities and spatial covariances, see Figures 10c and 10d. We expect
both aspects to improve by conditioning on the Jacobian, which simultaneously adds �ow-dependency and
implicitly represented spatial correlations to neighboring grid points (as discussed in Section 3.3):

R̃n+1(i, j) ∼ Rn+1(i, j) | J(ψ̃n0(i, j), q̃n0(i, j)) ∀i, j ∈ WB. (J)

Similar to the results in the previous section, S1M-J reproduces themean barotropic stream function very
well (not shown). However, it also signi�cantly overestimates the standard deviation (not shown). Figure
9 shows that the comparisons to the �ow-independent methods in Section 4.1 are unfavorable. The S1M-J
simulation severely overestimates all of the previously considered physical quantities.
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Figure 9: Comparison of scalar physical properties between 2M and S1M-J: (a) enstrophy, (b) kinetic energy, (c) energy ex-
change term (with wider range on y-axis).

Comparing theACF plots of ψ̃0 between S1M-J and S1M-R[l]/R[lθ] simulations tells a similar story. Figures
11 and 12 show that the ACFs are reproducedmuchmore accurately when conditioning on time lagged values
for R. This di�erence is to be expected, given that the �ow-dependent conditioning (J) does not involve the
process’ history.

In contrast to the covariance plots for D1M (Figures 10a and 10b), the covariance plots for S1M-J (Figures
10e and 10f) show the same spatial structure of the covariances shown for 2M (Figures 10g and 10h). How-
ever, whereas the covariances for S1M-R[12h] are signi�cantly underestimated, the covariances for S1M-J are
signi�cantly overestimated.
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Figure 10: Covariance plots for ψ0 between grid point [200, 2390] km/[440, 3190] km and neighbouring grid points (see (A.13))
for each of the following models: (a)/(e) D1M, (b)/(f) S1M-R[ 12h], (c)/(g) S1M-J, (d)/(h) 2M.
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Figure 11: Comparison of ACFs of ψ0 between D1M, 2M, S1M-J, and S1M-R[l] for di�erent lags l for grid point: (a)
[200, 2390] km, (b) [440, 3190] km.
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Figure 12: Comparison of ACFs of ψ0 between D1M, 2M, and S1M-R[lθ] for di�erent lag patterns lθ for grid point: (a)
[200, 2390] km, (b) [440, 3190] km.

The overall conclusion from these tests is then that the Jacobian leads to overestimated amplitudes for
most considered diagnostic criteria, i.e. enstrophy, energetics, spatial covariances, and standard deviation
of ψ0 (see Table 2), whereas the autocorrelations are underestimated. This further emphasizes our assess-
ment that the Jacobian is far from a perfect predictor (as brie�y discussed in Section 3.3). However, this �ow-
dependent spatially correlated driving force, albeit too erratic as sole conditioning variable, can improve the
previously discussed �ow-independent results.

4.3 Two-way coupling: double conditioning variables

By combining the aspects of the tests described inSections 4.1 and4.2, one arrives at the two-fold conditioning
procedure, as described in (2),where C(ψn0)(i, j) = Ĵ(ψn0(i, j), qn0(i, j)) (̂J denotes the linearly �tted J, see Section
A.1). Similar to the tests in Section 4.1, let us �rst consider the simulations that condition on lagged R-values
with constant lag l:

R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n−l(i, j), Ĵ(ψ̃n0(i, j), q̃n0(i, j))), ∀i, j ∈ WB. (R[l] Ĵ)

Themotivation for the samplingmethod (R[l] Ĵ) is to combine the bene�ts of both conditioning variables,
i.e. the spatial structure of the Jacobian, and temporal correlations from lagged R-values, respectively.

Similar to previous simulations, all the tested simulations reproduce themeanbarotropic stream function
excellently (not shown), but theS1M-R[4h] Ĵ andS1M-R[3d] Ĵ simulationsoverestimate the standarddeviation
(not shown). While an immediate improvement over the S1M-R[l] simulations in Section 4.1 can be seen, the
results with the S1M-R[l]J model are quite sensitive to the choice of l. This is illustrated in Figure 13, where
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physical results from a S1M-R[4h] Ĵ simulation are shown in addition to the same lag-time choices discussed
in Section 4.1. In Figure 13 the enstrophy and energetics are plotted for the various spatially constant lag times.
On theonehand, the simulations S1M-R[12h] Ĵ andS1M-R[1d] Ĵ result inmajor improvements over thephysical
diagnostics resulting fromS1M-R[l] (Figure 7) andS1M-J (Figure 9). Speci�cally, themeanof the kinetic energy
only deviates 2.9% and 1.7% from 2M’s reference for S1M-R[12h] Ĵ and S1M-R[1d] Ĵ, respectively. On the other
hand, the S1M-R[4h] Ĵ model performs overall worse than S1M-R[l] (Figure 8).
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Figure 13: Comparison of scalar physical properties between 2M and S1M-R[l] Ĵ for di�erent lags l: (a) enstrophy, (b) kinetic
energy (with wider range on y-axis), (c) energy exchange term.

The sensitivity discussed above stems from the choice for a constant lag l because, as discussed in Section
3.2, decorrelation times of R varywidely between grid points. Instead of using the spatially constant lag times,
we use spatially variable lag times based on the decorrelation time scales of the eddy forcing R(i, j). As in
Section 4.1, this spatially variable lθ(i, j) is chosen equal to the time lag atwhich theACF for R(i, j)�rst crosses
some threshold θ:

R̃n+1(i, j) ∼ Rn+1(i, j) | (R̃n−lθ(i,j)(i, j), Ĵ(ψ̃n0(i, j), q̃n0(i, j))), ∀i, j ∈ WB. (R[lθ] Ĵ)

The results for S1M-R[lθ] Ĵ are shown in Figure 14, for several values of θ. With θ = 0.9, enstrophy and
energy exchange are too high. We hypothesize that with θ = 0.9, the lagged R-values are still very strongly
correlated, so that they add little information and the conditioning is dominated by the Jacobian. As a result,
S1M-R[l0.9] Ĵ su�ers from similar errors as S1M-J (see Section 4.2).

The results with θ = 0.7 and θ = e−1 are overall very good, with diagnostics in Figure 14 close to those of
the reference model 2M. We focus here on S1M-R[l0.7] Ĵ, however results for S1M-R[le−1 ] Ĵ are highly compa-
rable. For θ = 0.7 the mean of the enstrophy, kinetic energy, and energy exchange terms are all reproduced
excellently, with an error of 3.5%, 0.9%, and 9.2%, respectively. Additionally, the standard deviation of the
energy exchange term is also within 4.7% of the reference, proving another signi�cant improvement over the
previously tested approaches.

We note that the standard deviation of the kinetic energy is too high for all S1M-R[lθ] Ĵ. This is caused
by the limited spatial dependency in our sampling method (R[lθ] Ĵ), which can lead to forcing �elds that are
spatially less smooth than in the 2M referencemodel. This increased spatial roughness a�ects local gradients
and thereby the kinetic energy (see (A.11)). Despite this shortcoming, S1M-R[l0.7] Ĵ performs well by all other
criteria.

Bypreserving the temporal informationprovidedby the laggedR-values, theACFs for 2M in [200, 2390] km
and [440, 3190] km are reproduced almost exactly, as shown in Figure 15. This drastically improves on the
autocorrelations reproduced by S1M-J and S1M-R[l] (Figure 11), and equals the best results obtained with
pure temporal stochastic parameterizations S1M-R[lθ] (Figure 12).

Let us next consider ACFs more comprehensively by focusing on the entire WB region. Consider the ex-
ponential decorrelation time scales, i.e. the time lag at which the ACF for the barotropic stream function �rst
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Figure 14: Comparison of scalar physical properties between 2M and S1M-R[lθ] Ĵ for di�erent spatial lag patterns lθ: (a) enstro-
phy, (b) kinetic energy, (c) energy exchange term.
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Figure 15: Comparison of the ACFs of ψ0 between the two grid
points [200, 2390] km (line and crosses) and [440, 3190] km
(dashed and circles) between 2M and S1M-R[l0.7] Ĵ

dips below e−1, pointwise over the whole western boundary region (WB). Figure 16 shows the drastic di�er-
ences of exponential decorrelation time scales between D1M and 2M; the signi�cantly weaker vortices near
the western boundary present in D1M cause much longer decorrelation time scales across the WB region.
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Figure 16: Pointwise exponential decorrelation time (in days) of ψ0 in each of the following models: (a) D1M, (b) 2M.

Consistent with the ACFs in Figures 11a and 11b, S1M-J preserves little of the temporal history (Figure
17a), as its ACFs decorrelate much faster over the whole WB region. However, this result already presents a
strong improvement over decorrelation time scales exhibited in D1M (Figure 16a). Signi�cant improvements
come once againwhenwe observe the results for simulations that condition on lagged R-values: qualitatively
similar patterns for bothS1M-R[12h] (Figure 17b) andS1M-R[l0.7] Ĵ (Figure 17c). Thesepatterns approximate the
reference 2M (Figure 16b) very well. None of the tested simulations are able to adequately reproduce the high
decorrelation time scales in the [10, 40]×[1800, 2300] km region. Thismay be caused by boundary e�ects, or
by the dynamic complexities of the gyre’s detachment point at this location. We do, however, emphasize that
the main outcome from these results is that our goal of improving the stochastic model for R̃ by combining
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spatial and temporal information (through conditioning on J and R[lθ], respectively) is accomplished with
the spatially dependent sampling method (R[lθ] Ĵ).
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Figure 17: Pointwise exponential decorrelation time (in days) of ψ̃0 in each of the following models: (a) S1M-J, (b) S1M-R[ 12h],
(c) S1M-R[l0.7] Ĵ.

Table 2 shows the expectation andmaximumof the absolute errors ϵi over the grid for the �rst four statis-
ticalmoments, e.g. ϵ1 = µ(Hψ0)−µ(Hψ̃0). Multiple errors for S1M-R[12h] Ĵ are higher than their corresponding
values for either S1M-R[12h] or S1M-J, illustrating the previously discussed di�culties with spatially constant
lag times. However, the S1M-R[l0.7] Ĵ simulation does not solve this completely, as the error ϵ1 is shown to
be worse than for S1M-R[l0.7]. One sees that adding conditioning variables for our discrete sampling method
does not guarantee a universal improvement to the statistical quantities, because the added conditioning
variable J does correlate strongly with the eddy forcing in only part of the WB region. Aside from the �rst sta-
tistical moment, the S1M-R[l0.7] Ĵ simulation gives the best overall results for the statistical moments, con-
sistent with our motivations and results, described earlier in this section. The most drastic improvements
with respect to the D1M are found in the errors of the standard deviation, reducing the error by an order of
magnitude. Crucially, these results are further emboldened by observing the spatial �elds of the statistical
moments of ψ̃0. Figures 18a and 18b show that the reference mean and standard deviation of ψ0 (Figures 1b
and 1c) are indeed extremely well reproduced by S1M-R[l0.7] Ĵ.
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Figure 18: Pointwise temporal statistical moments of ψ̃0 in S1M-R[l0.7] Ĵ: (a) mean, (b) standard deviation.

Figure 19 shows that, besides improving the energetics and statistical moments of the system, S1M-
R[l0.7] Ĵ is also able to reproduce spatial covariances present in 2M, as can be seen by comparing Figure
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Table 2:Mean and maximum absolute errors of the �rst four statistical moments ϵs of the barotropic stream functions of
stochastic simulations with di�erent sets of conditioning variables.

IE max IE max IE max IE max
conditioning ϵ1 (10−1 Sv) ϵ1 (101 Sv) ϵ2 (Sv) ϵ2 (101 Sv) ϵ3 (10−2) ϵ3 ϵ4 (10−1) ϵ4 (101)

D1M 3.33 2.82 8.19 3.33 7.16 3.31 3.81 3.00

S1M-R[12h] 1.95 1.18 2.80 1.20 5.56 3.15 2.12 3.04
S1M-R[l0.7] 1.42 0.71 1.00 0.97 5.24 3.22 2.73 3.02
S1M-J 2.05 1.03 5.50 1.81 6.13 4.38 2.40 3.01
S1M-R[12h] Ĵ 1.75 0.95 0.77 1.39 6.02 2.83 2.02 3.01
S1M-R[l0.7] Ĵ 1.64 0.83 0.72 0.77 5.45 2.94 1.92 2.97

19 with Figures 10g and 10h. This is a signi�cant improvement over both S1M-R[12h] (Figures 10c and 10d)
and S1M-J (Figures 10e and 10f). Given that both S1M-R[12h] and S1M-J reproduced the spatial patterns of
the covariances qualitatively well, this quantitative improvement is most likely due to the more accurately
reproduced standard deviation of the barotropic stream �eld (see Table 2).
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Figure 19: Covariance plots for ψ0 for S1M-R[l0.7] Ĵ between grid point [200, 2390] km/[440, 3190] km) in (a)/(b) and neigh-
bouring grid points.

To support these claims, let us investigate spatial correlationsover the region [10, 690]×[1700, 3200] km,
i.e. the region of the domain where the standard deviation of the barotropic stream is signi�cant (see Figure
1c). Similar to the spatial covariances, for each grid point in the region we compute the correlations between
ψ0 in this central grid point and its surrounding grid points, see (A.14). Contrasted with the reference cor-
relations in 2M, the mean absolute correlation errors in grid point (i, j) for a stochastic model are given by:

g(i, j) = P(i, j)−1
∑
i′ ,j′>0

i−20≤i′≤i+20
j−20≤j′≤j+20

|Corr(ψ0(i, j), ψ0(i′, j′)) − Corr(ψ̃0(i, j), ψ̃0(i′, j′)) |, (4)

where P(i, j) denotes the number of grid points (i′, j′) over which the summation in (4) runs (the summation
cannot run over grid points that exceed the boundaries of the full domain), and ψ0 and ψ̃0 are the barotropic
stream functions of 2M and of the stochastic model, respectively.

These mean absolute correlation errors are shown in Figure 20 for each of the highlighted test models.
The �gure shows that the two grid points chosen to illustrate the covariances in Figure 10 are representative
for the globally reproduced correlations. Importantly, Figure 20 shows that all stochastic models improve sig-
ni�cantly on the spatial correlations as reproduced by the barotropic reference D1M. Additionally, one sees
that, besides overestimating the magnitude of the covariances (Figures 10e and 10f), S1M-J (Figure 20b) re-
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produces the spatial patterns of the correlations with less accuracy than both S1M-R[12h] (Figure 20c) and
S1M-R[l0.7] Ĵ (Figure 20d). These latter two reproduce the spatial correlations of the reference 2M with a sim-
ilarly high accuracy. This indeed indicates that the improvements to the spatial covariances by S1M-R[l0.7] Ĵ
(Figures 19a and 19b) are due to the standard deviation of the �ow being better resolved, and is less likely
attributed to the spatial correlations.
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Figure 20: Mean absolute correlation error (4) of ψ̃0 in each of the following models: (a) D1M, (b) S1M-J, (c) S1M-R[ 12h], (d) S1M-
R[l0.7] Ĵ.

Concluding, we have successfully introduced �ow-dependency into the stochastic parameterization. In
many respects the �ow-independent parameterization S1M-R[l0.7], discussed in Section 4.1, already shows
promising results. By introducing the Jacobian into the conditioning S1M-R[l0.7] Ĵ we have further improved
almost all of the considered physical and statistical criteria posed in Section 1.2.

5 Summary and discussion
In this study we investigated a covariate-based stochastic approach to parameterize unresolved processes
within a standard model of the idealised, wind-driven ocean circulation. We considered the reduction of the
reference 2-mode baroclinicmodel (2M) to a 1-mode barotropicmodel (D1M). The reduced D1M lacks the baro-
clinic feedback given by the baroclinic eddy forcing R. We developed a stochastic model for R, and coupled it
to the 1-mode model to obtain a stochastic 1-mode barotropic model (S1M). With a suitable stochastic model
for R, S1M is able to mimic the behavior of the barotropic mode in the reference 2M closely.

We focused on vertical instead of horizontal coarse-graining, such that all considered models (2M, D1M,
S1M) are discretized on the same high-resolution horizontal grid. Hereby, we avoid the subtle di�culties of
horizontal coarse-graining (e.g. choices of �lter and grid transformation), and can fully focus on the stochas-
tic model formulation. The corresponding eddy forcing R is uniquely de�ned and has a clear physical inter-
pretation solely related to the baroclinic nature of the �ow.

The stochastic parameterization of the eddy forcing R is based on a covariate-approach recently devel-
oped in Verheul and Crommelin [47] within a scalar set-up. Here we construct a pointwise spatial extension
of the covariate-approach such that it can be applied to a spatially extended ocean model. More precisely,
in S1M the eddy forcing R is modeled as a spatially extended stochastic process R̃. Sample data from a 2M
reference simulation for both the eddy forcing R and the resolved model variables is assumed to be given for
our approach. The stochastic term R̃ is sampled uniformly from conditional probability distribution functions
(CPDFs) approximated over the available sample data, i.e. sampled from the so-called conditional empirical
distributions. The CPDFs are approximated with a simple binning procedure. R̃ is then conditioned on both
the most suitable �ow-dependent covariate, which turned out to be the resolved nonlinear advection �eld,
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and past states of R̃ itself, inducing adequate temporal correlations. For our speci�c oceanmodel, the volume
of employed data could be signi�cantly reduced by limiting the stochastic forcing to the western boundary
sub-region of the grid, which in diagnostic tests proved to reproduce the �ow dynamics of 2M.

In order to evaluate the performance of the stochastic parameterization, we compared the reference and
reduced stochastic models (i.e. 2M and S1M) with respect to a range of physical and statistical criteria. These
criteria are the �rst four statistical moments, the autocorrelation function, spatial covariances and correla-
tions of the stream function, kinetic energy, energy conversion, and the enstrophy.

The results show that the �ow-dependent covariate and the past states of R̃ each contribute in their own
way to the stochastic model. Conditioning on the past states of R̃ introduces temporal consistency (Section
4.1). The �ow-dependent covariate introduced an energetic driving force and improved the spatial cohesion
of the system, but by itself is an insu�cient predictor for the eddy forcing (Section 4.2).

Conditioning both on the �ow-dependent covariate and on past R̃-values resulted in a good model for
R, so that S1M reproduced many characteristics of the 2M reference model very well (Section 4.3). In order to
achieve this it turned out to be crucial to account for the spatial dependence of the decorrelation time scale
of R.

Overall our �nal results with S1M show a large improvement over D1M, as well as very close similarity to
the reference 2M. Additionally, the results provide further proof of concept of ourmethodology, extending the
approach from Verheul and Crommelin [47] to a spatially extended setting. Because the empirical distribu-
tion is discrete and needs only one sample point per bin to sample from, it is amethod robust to small sample
sets. However, practical limitations can pose challenges, because of large amount of data involved for spa-
tially extended systems. This led us to develop straightforward methods to use sample data more e�ectively,
as well as to rethink ways to handle sparsely populated bins (Section 3.4). With a large amount of data, e�-
cient storage and access of the data becomesmore important for ourmethodology. In this study, optimization
ofmemory usage and data storagewas not our priority, however we point out that several straightforward op-
timizations are possible for our approach, e.g. reduced sampling interval, fast database-based lookup tables,
and interpolated sample data.We leave these for future study. Furthermore, we emphasize the computational
e�ciency of themethodology developed here, as ourmethodology requires only straightforward calculations
to determine what piece of memory to read out, i.e. what bin to sample from.

In futureworkwe intend to exploremethods to remedy these limitations. Theapproachproposedhere can
be further extended to improve the representation of spatial structures and correlations in the parameterized
eddy forcing �elds by, e.g, exploring additional types of �ow-dependent covariates (e.g. based on energetics).
A more thorough sensitivity analysis of the conditioning time lags of R̃ would also be helpful and insightful
for the covariate selection. Furthermore, we are interested in exploring continuous approximation methods
for the CPDFs, as well as other continuous stochastic parameterizations.
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A Appendix

A.1 Linear �t details

The conditioning procedure as de�ned in Section 3.1 is de�ned pointwise over the grid, therefore the number
of sample points for each approximated CPDF in (2) is limited by the length of the time series (Tc/δt, see Table
1). This proved somewhat problematic in our experiments, because a straightforward equidistant binning (see
Appendix A.2) did not always result in su�ciently �lled bins in the case where (2) is conditioned on both the
covariate J(ψ̃n0 , q̃n0) and the time lagged R̃n−lθ(i,j). Therefore, in the casewherewe condition onboth,weproject
the binning on the linear trend between J(ψ̃n0 , q̃n0) and R̃n−lθ(i,j). This linear �t allows us tomakemore e�cient
use of the number of bins, i.e. to more evenly partition the sample data over the number of bins.

Let us de�ne:
J(ψ0(i, j), q0(i, j)) = k(i, j) + m(i, j)R(i, j), (A.1)

to be the linear trend between J(ψ0(i, j), q0(i, j)) and R(i, j) (see (1)), where [k(i, j),m(i, j)] = (XTX)−1XTy,
and X(i, j) = [1, (R)T ] a (T/δt × 2)-tensor, and y(i, j) = (J)T a (T/δt × 1)-columnvector. Then, by subtracting
this linear trend from the Jacobian values we get:

Ĵ(ψ0(i, j), q0(i, j)) = J(ψ0(i, j), q0(i, j)) − J(ψ0(i, j), q0(i, j)),

and using the conditioning set {R̃n−lθ(i,j)(i, j), Ĵ(ψ̃n0(i, j), q̃n0(i, j))} results in the linearly �tted sampling proce-
dure:

R̃n+1(i, j) ∼ Rn+1(i, j) | R̃n−lθ(i,j)(i, j), (̂J(ψ̃n0(i, j), q̃n0(i, j)) for i ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny} (A.2)
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A.2 Empirical distribution details

Here we elaborate on the general description of the empirical distribution that is found in Section 3.4. The
equidistant binningmethod independently partitions the range between theminimumandmaximumof each
of the covariates into NB intervals αb. Each of the intervals αb describes a set ρb of Rn+1-values. Let U(A)
denote a uniform distribution over the elements of the set A, i.e. if a′ ∼ U(A) then ∀a ∈ A : P(a′ = a) = |A|−1.
The conditional sampling method (2) is then approximated by the empirical approach:

R̃n+1(i, j) ∼ U(ρb(i, j)), where b : (R̃n(i, j), Ĵ(ψ̃n0(i, j), q̃n0(i, j)) ∈ αb(i, j). (A.3)

This empirical approach is a prototypical example of a discrete sampling method. An obvious limitation
of such methods is that they can exclusively sample from observed sample values. Therefore, the stochastic
model has no predeterminedway of handling situations in which the values of the conditioning variables are
outside of the ranges exhibited in the sample data. With respect to the equidistant binning procedure, see
Section 3.4, this situationmanifests as empty bins, i.e. a bin αb(i, j) for which ρb(i, j) is empty. The likelihood
of the conditioning variable’s values to arrive at an empty bin is predominantly determined by three factors:
the number of conditioning variables D, the number of bins per conditioning variable NB, and the limitations
on the amount of sample data. With each of the aforementioned factors, this is a non-trivial issue. We solve
this problem by linking each of the empty bins to a nonempty bin in the training phase of the simulation.
Because the covariate Ĵ(ψ0, q0) is least likely to hold predictive qualities for the sampling procedure (as ex-
plained in Section 3.4), the predictive quality of this covariate is considered negligible in empty bins. And
thus, the conditioning in empty bins is considered 1-dimensional, i.e. in empty bins we condition only on
Rn−l(i,j), which is, by construction, guaranteed to be in range of sample data.

A.3 Spatial smoothing

With the pointwise conditioning procedure (see Section 3.1) the spatial correlations of R are only modeled
implicitly by conditioning on the Jacobian term J(ψ0, q0). As discussed in Section 1, �nding more rigorous
ways to explicitly reproduce spatial correlations will stay a topic for an immediate future project. We use a
more heuristic method to introduce spatial smoothness and remedy the spatially uncorrelated �elds here.
Namely, we use a truncated Gaussian smoothing �lter G(x, y):

G′(x, y) = 1√
2πσ

e−
(x−µ)2+(y−µ)2

2σ2 , G(x, y) = G′(x, y)∑
x,y G′(x, y) , (A.4)

where we choose a basic 3 × 3 �lter G(x, y) with µ = 0 and σ = 0.5, where x, y ∈ {−1, 0, 1}. Ilustrating
snapshots are shown in Figure 21, where one can see the spatially smoothed snapshot more closely resem-
bling the resolved R, both in structure and spatial smoothness.

As previously mentioned, this smoothing is an added heuristic method to strengthen the spatial correla-
tions between neighboring grid points. But more importantly, because the stochastic procedure, as de�ned
in (2), works completely pointwise over the grid, this Gaussian �lter will smooth out unwanted spatial rough-
ness. Otherwise, the spatial roughness would arti�cially ‘add energy’ into the system, spuriously exciting the
system beyond realistic goals.
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Figure 21: A comparison between snapshots of the resolved R (left), the un�ltered emulated stochastic forcing (middle), and
the �ltered emulated stochastic forcing (right).

A.4 De�nitions of diagnostic criteria

• The �rst four statistical sample moments: mean, standard deviation, skewness, and kurtosis over the
model variables ψ0 (pointwise in physical space):

µ(ψ0) = IE(ψi0) (A.5)

std(ψ0) =
(
IE((ψi0)2) − (IE(ψi0))2

)1/2
(A.6)

γ(ψ0) = IE
[
(ψi0 − IE(ψi0))3

]
(Var(ψi0))−3/2 (A.7)

Kurt(ψ0) = IE
[
(ψi0 − IE(ψi0))4

]
(Var(ψi0))−2 (A.8)

• The autocorrelation function (ACF) with time lag l over the model variable ψ0:

ACFl(ψ0) = IE
[
(ψi0 − IE(ψi0))(ψi+l0 − IE(ψi0))

]
(Var(ψi0))−1 (A.9)

• Themean, standard deviation, and the variability (both short-term and long-term variability) of the time-
dependent scalar quantities enstrophyE, kinetic energyKE, and energy exchange/transfer EE as horizon-
tally integrated over grid A:

E = ρH2

ˆ
A
q20, (A.10)

KE = − ρH2

ˆ
A
(∇ψ0)2, (A.11)

EE = ρH
ˆ
A
ψ0 J(ψ1, q1). (A.12)

• The covariance Cov(ψ0) between grid points (i, j) and (i′, j′) for model variable ψ0:

Cov(ψ0(i, j), ψ0(i′, j′)) = IE([ψ0(i, j) − IE(ψ0(i, j))][ψ0(i′, j′) − IE(ψ0(i′, j′))]) (A.13)

• Similar to the covariance above, the correlation Corr(ψ0) between grid points (i, j) and (i′, j′) for model
variable ψ0:

Corr(ψ0(i, j), ψ0(i′, j′)) =
Cov(ψ0(i, j), ψ0(i′, j′))

std(ψ0(i, j))std(ψ0(i′, j′))
(A.14)
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A.5 Numerical integration details

The numerical implementation uses the standard centered di�erence scheme (∆x)−n δnx f (x, y, t) of order
O((∆x)2) to approximate the n-th order spatial derivatives [45] in 2M, where:

δnx f (x, y, t) =



n∑
i=0

(−1)i
(
n
i

)
f (x +

(n
2 − i

)
∆x, y, t) if n even,

n∑
i=0

(−1)i
(
n
i

)
1
2

[
f (x +

(
n + 1
2 − i

)
∆x, y, t) + f (x +

(
n − 1
2 − i

)
∆x, y, t)

]
if n odd,

(A.15)
and analogously for partial derivatives to y.

We choose the Arakawa stencil J1 = 1
3 (J++ + J+× + J×+) to discretize the Jacobian terms for its conserva-

tion properties, this Arakawa scheme satis�es �nite di�erence analogs of energy and mean squared vorticity
conservation laws [1].

To integrate D1M, 2M, and S1M over time, let us consider the second-order centered-di�erence leapfrog
scheme [13, 27, 30], which is used widely in weather and climate models. The leapfrog time stepping method
admits a well-documented spurious computational mode that manifests as spurious oscillations between
even and odd time steps that amplify during nonlinear simulations [13, 34, 51]. This phenomenon is referred
to as time-splitting. The Robert–Asselin �lter [2, 42] is an oft-used time-�ltering solution (for a list of exam-
ples in climate models see, e.g, Williams [50]) that dampens this computational mode and thus controls the
time-splitting instability. The combination of the leapfrog schemewith the Robert–Asselin �lter results in the
Asselin-leapfrog scheme:

ψn+1 = ψn−1 + 2∆t F(ψn), (A.16)

where F(ψ) denotes the right-hand side terms in the PDE governing the temporal evolution of ψ, and the bar
notation in (A.16) denotes the Robert–Asselin time-�lter:

ψn = ψn + α(ψn−1 − 2ψn + ψn+1), (A.17)

where the parameter α denotes the Robert–Asselin �lter strength.
We further impose the free-slip condition n⊥ · (∇◦∇)ψm = 0 along the lateral boundaries, where n⊥ de-

notes the horizontal unit vector normal to the boundary, and ◦ is the Hadamard product, de�ned for matrices
A and B with same dimensions by (A ◦ B)ij = (A)ij(B)ij.

All our choices for model parameters are shown in Table 1. The discussed discretization methods result
in the following discretized integration scheme for the 2-mode referemce model 2M:

ψn+10 = ψn−10 + 2∆t S0(ψn0 , ψn1), ψn+11 = ψn−11 + 2∆t S1(ψn0 , ψn1),

where∇2S0(ψn0 , ψn1) = − J(ψn0 , qn0) − Rn − β∂xψn0 + AH∇4ψn−10 + ∂xτ
y − ∂yτx
ρH

where∇2S1(ψn0 , ψn1) = − J(ψn1 , qn0) − J(ψn0 , qn1) − ϵ111J(ψn1 , qn1) − β∂xψn1+

AH∇4ψn−11 + ϕ
n
1(z = 0)(∂xτy − ∂yτx)

ρH ,

(A.18)

where numerical solutions to the Poisson’s equations for∇2Sm are found with the Intel MKL Poisson solver.
The viscosity terms above are taken from the previous time-step for numerical stability purposes.

The discretized 2M (A.18) is initialized with the conditions ψn=−10 = ψn=−11 = ψn=00 = ψn=01 = 0 and q00 =
q01 = 0. To equilibrate any baroclinic simulation starting from rest, a su�cient spin-up period needs to be
performed. For all our experiments, we choose a 30 year spin-up time. The integration time-step ∆t is chosen
to be half an hour for both the barotropic and baroclinic models, these choices are made to �nd comparison
with similar set ups (e.g. [3, 5, 41]).
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Applying the pointwise sampling method (2) to evolve R̃ over time, and numerically integrating S1M re-
sults in the following numerical integration scheme for the discretized stochastic 1-mode model:

ψ̃n+10 = ψ̃
n−1
0 + 2∆t S(ψ̃n0), R̃n+1 ∼ Rn+1 | (Rn−lθ , C(ψ0))) = (R̃n−lθ , C(ψ̃0))

with∇2S(ψ̃n0) = −J(ψ̃n0 , q̃n0) − R̃n − β∂xψ̃n0 + AH∇4ψ̃n−10 + ∂xτ
y − ∂yτx
ρH ,

(A.19)

where the initial conditions are chosen to start from an equilibrated baroclinic state before starting the 30
years spin-up for the stochastic simulation: ψ̃

−1
0 = ψM−1

0 , ψ̃
−1
1 = ψM−1

1 , ψ̃0
0 = ψM0 , ψ̃0

1 = ψM1 and q̃00 = qM0 ,
q̃01 = qM1 .
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