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© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract We introduce a unifying model to study the impact of worst-case latency
deviations in non-atomic selfish routing games. In our model, latencies are subject to
(bounded) deviations which are taken into account by the players. The quality dete-
rioration caused by such deviations is assessed by the Deviation Ratio, i.e., the worst
case ratio of the cost of a Nash flow with respect to deviated latencies and the cost
of a Nash flow with respect to the unaltered latencies. This notion is inspired by
the Price of Risk Aversion recently studied by Nikolova and Stier-Moses (Nikolova
and Stier-Moses 2015). Here we generalize their model and results. In particular,
we derive tight bounds on the Deviation Ratio for multi-commodity instances with
a common source and arbitrary non-negative and non-decreasing latency functions.
These bounds exhibit a linear dependency on the size of the network (besides other
parameters). In contrast, we show that for general multi-commodity networks an
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exponential dependency is inevitable. We also improve recent smoothness results to
bound the Price of Risk Aversion.

Keywords Selfish routing · Perturbations · Deviation ratio · Price of risk aversion ·
Biased price of anarchy

1 Introduction

In the classical selfish routing game introduced by Wardrop [20], there is an
(infinitely) large population of (non-atomic) players who selfishly choose minimum
latency paths in a network with flow-dependent latency functions. An assumption
that is made in this model is that the latency functions are “exact” in the sense that
they represent the actual delays perceived by the players. Although being a mean-
ingful abstraction, which also facilitates the analysis of such games, this assumption
is overly simplistic in situations where latencies are subject to deviations (or pertur-
bations). For example, such deviations might be due to fluctuations in travel times,
latency uncertainties of players, approximate estimates of latencies, etc.

In this paper, we study how much the quality of a Nash flow deteriorates in the
worst case under bounded deviations of the latency functions. More precisely, given
an instance of the selfish routing game with latency functions (la)a∈A on the arcs, we
define the Deviation Ratio (DR) as the worst case ratio C(f δ)/C(f 0) of the social
cost of a Nash flow f δ with respect to deviated latency functions (la +δa)a∈A, where
(δa)a∈A are arbitrary deviation functions from a feasible set, and the social cost of a
Nash flow f 0 with respect to the unaltered latency functions (la)a∈A.

Here the social cost function C refers to the total average latency (without the
deviations). Our motivation for studying this social cost function is that a central
designer usually cares about the long-term performance of the system accounting
for the average latency (or pollution). On the other hand, the players typically do
not know the exact latencies and use estimates or include “safety margins” in their
planning. Similar viewpoints are adopted in [13, 16].

In order to model bounded deviations, we extend an idea previously put forward by
Bonifaci, Salek and Schäfer [2] in the context of the restricted network toll problem:
We assume that for every arc a ∈ A we are given (flow-dependent) lower and upper
bound restrictions θmin

a and θmax
a , respectively, and call a deviation δa feasible if

θmin
a (x) ≤ δa(x) ≤ θmax

a (x) for all x ≥ 0.
Our notion of the Deviation Ratio is inspired by and builds upon the Price of Risk

Aversion (PRA) recently introduced by Nikolova and Stier-Moses [16]. The authors
investigate selfish routing games with uncertain latencies by considering deviations
of the form δa = γ va , where γ ≥ 0 is the risk-aversion of the players and va is the
variance of some random variable with mean zero. They derive upper bounds on the
Price of Risk Aversion for single-commodity networks with arbitrary non-negative
and non-decreasing latency functions if the variance-to-mean-ratio va/ la of every
arc a ∈ A is bounded by some constant κ ≥ 0. It is not hard to see that their model
is a special case of our model if we choose θmin

a = 0 and θmax
a = γ κla (see Section 2

for more details).
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1.1 Our Contributions

Our contributions presented in this paper are as follows:

1. Upper bounds on the Deviation Ratio: We derive a general upper bound on the
Deviation Ratio for multi-commodity networks with a common source and arbi-
trary non-negative and non-decreasing latency functions (Theorem 1). Basically,
we show that the social cost of a Nash flow f δ with respect to feasible deviations
(δa)a∈A is at most the social cost of a Nash flow f 0 plus a term that depends on
the lower and upper bound restrictions θmin and θmax.

In order to prove this bound, we first generalize a result by Bonifaci et al. [2]
characterizing the inducibility of a fixed flow by δ-deviations to multi-commodity
networks with a common source (Theorem 2). This characterization naturally gives
rise to the concept of an alternating path, which also plays a crucial role in the work
by Nikolova and Stier-Moses [16].

We then study a specific class of latency deviations which we term (α, β)-
deviations. Here the latency restrictions are of the form θmin

a = αla and θmax
a = βla

with −1 < α ≤ 0 ≤ β. We show that for (α, β)-deviations the Deviation Ratio is at
most

1 + β − α

1 + α

⌈
n − 1

2

⌉
r, (1)

where n is the number of nodes of the network and r is the sum of the demands of the
commodities (Theorem 1). In particular, this reveals that the Deviation Ratio depends
linearly on the size of the underlying network (among other parameters).

By using this result, we obtain a bound on the Price of Risk Aversion (Theo-
rem 6) which generalizes the one in [16]. Nikolova and Stier-Moses [16] show that
the Price of Risk Aversion for single-commodity networks and non-negative risk-
aversion parameter γ is at most 1+ γ κ�(n − 1)/2�. (Here the demand is normalized
to one.) We obtain the same bound from (1) with α = 0 and β = γ κ . Our bound
generalizes their result in two ways: (i) it holds for multi-commodity networks with
a common source, and (ii) it also holds for negative risk-aversion parameters (cap-
turing risk-taking players). Further, we show that our result can be used to bound
the relative error in social cost of Nash flows incurred by small latency perturbations
(Theorem 7), which is of independent interest. To the best of our knowledge, this
notion has not been studied before in the literature.

2. Lower bounds on the Deviation Ratio: We prove that our bound on the Devia-
tion Ratio for (α, β)-deviations is best possible for multi-commodity networks
with a common source. We also show that it does not extend to general
multi-commodity networks.

More specifically, for single-commodity networks we show that our bound is tight
in all its parameters. Our lower bound construction holds for arbitrary n ∈ N and is
based on the generalized Braess graph [18] (Example 1). In particular, this also com-
plements a recent result by Lianeas, Nikolova and Stier-Moses [11] who show that
the upper bound on the Price of Risk Aversion in [16] is tight for single-commodity
networks with n = 2j nodes for all j ∈ N.
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Further, for multi-commodity networks with a common source we show that our
bound is tight in all parameters if n is odd, while a small gap remains if n is even
(Theorem 3).

Finally, for general multi-commodity networks we establish a lower bound show-
ing that the Deviation Ratio can be exponential in n (Theorem 4). In particular, this
shows that there is an exponential gap between the cases of multi-commodity net-
works with and without a common source. In our proof, we adapt a graph structure
used by Lin et al. [12] in their lower bound construction for the network design
problem on multi-commodity networks.

3. Smoothness bounds on the Biased Price of Anarchy: We improve (and slightly
generalize) recent smoothness bounds on the Price of Risk Aversion given by
Meir and Parkes [13] and independently by Lianeas et al. [11]. In particular, we
derive tight bounds for the Biased Price of Anarchy (BPoA) [13], i.e., the ratio
between the cost of a deviated Nash flow and the cost of a social optimum, for
arbitrary (0, β)-deviations (Theorem 5).1 Note that the Biased Price of Anarchy
yields an upper bound on the Deviation Ratio/Price of Risk Aversion.

It is interesting to note that the smoothness bounds on the Biased Price of Anarchy
[13] and the Price of Risk Aversion [11] are independent of the network structure,
but dependent on the class of latency functions. In contrast, our bound on the Devia-
tion Ratio holds for arbitrary non-negative and non-decreasing latency functions, but
depends on certain parameters of the network.2

4. Generalizations of our model. We also consider two natural generalizations of
our model for which we derive additional results. In our first generalization,
we consider general path deviations (which are not representable by arc devi-
ations). We give a smoothness bound on the Biased Price of Anarchy for this
setting. As a consequence, we obtain bounds on the Price of Risk Aversion
under the non-linear mean-std model [11, 16] (Theorem 10). In our second
generalization, we consider single-commodity instances with heterogeneous
players, i.e., where players have different attitudes towards general path devi-
ations. We show that our upper bound on the deviation ratio extends to this
setting for certain graph structures. In particular, for series-parallel graphs we
obtain a natural generalization of the bound in (1) for the heterogeneous player
case.

Our results also answer a question posed by Nikolova and Stier-Moses in
[16] regarding possible relations between their Price of Risk Aversion model, the
restricted network toll problem [2], and the network design problem [18]. In partic-
ular, our results show that the analysis in [16] is not inherent to the used variance
function, but rather depends on the restrictions imposed on the feasible deviations.

1We remark that for certain types of (0, β)-deviations, e.g., scaled marginal tolls, better bounds can be
obtained; see the section “Relations to network toll problems” in Appendix B for relevant literature.
2For example, there are parallel-arc networks for which the Biased Price of Anarchy is unbounded,
whereas the Deviation Ratio is a constant.
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1.2 Related Work

The modelling and study of uncertainties in routing games has received a lot of
attention in recent years. An extensive survey on this topic is given by Cominetti [5].

As mentioned above, our investigations are inspired by the study of the Price
of Risk Aversion by Nikolova and Stier-Moses [16]. They prove that for single-
commodity instances with non-negative and non-decreasing latency functions the
Price of Risk Aversion is at most 1 + γ κ�(n − 1)/2�. We generalize this result
to multi-commodity networks with a common source and to negative risk-aversion
parameters. We elaborate in more detail on the connections to their work in Section 2.

Meir and Parkes [13] and independently Lineas et al. [11] show that for non-
atomic network routing games with (1, μ)-smooth3 latency functions it holds that
PRA ≤ BPoA ≤ (1 + γ κ)/(1 − μ). An advantage of such bounds is that they
hold for general multi-commodity instances (but depend on the class of latency
functions). These bounds stand in contrast to the topological bounds obtained here
and by Nikolova and Stier-Moses [16] which hold for arbitrary non-negative and
non-decreasing latency functions (but depend on the size of the network).

Conceptually, our model is related to the restricted network toll problem by Boni-
faci et al. [2]. The authors study the problem of computing non-negative tolls that
have to obey some upper bound restrictions (θa)a∈A such that the cost of the result-
ing Nash flow is minimized. This is tantamount to computing best-case deviations in
our model with θmin

a = 0 and θmax
a = θa . In contrast, our focus here is on worst-case

deviations. As a side result, we prove that computing such worst-case deviations is
NP-hard, even for single-commodity instances with linear latencies (Theorem 12).
There are several papers that study the problem of imposing tolls on the arcs of a
network to reduce the cost of the resulting Nash flow. Such tolls can naturally be
interpreted as latency deviations. We elaborate in more detail on these connections in
Appendix B.

Other works also study the relative impact of instance alterations on the result-
ing Nash flows. For example, Roughgarden [18] studies the network design problem
of finding a subnetwork that minimizes the latency of all flow-carrying paths of the
resulting Nash flow. He introduces the Braess ratiowhich relates the common latency
of a Nash flow in the original graph to the common latency of a Nash flow in an (opti-
mal) subgraph. He shows that the trivial algorithm (which simply returns the original
network) gives an �n/2�-approximation algorithm for single-commodity networks
and that this is best possible (unless P = NP). Later, Lin et al. [12] show that this
algorithm can be exponentially bad for multi-commodity networks. The instances
that we use in our lower bound constructions are based on the ones used in [12, 18].

Englert, Franke and Olbrich [7] study the sensitivity of Nash flows in non-atomic
network routing games. They investigate the relative change in social cost with
respect to two alterations: (i) when the demand is perturbed by an additive constant

3Meir and Parkes [13] define a function l to be (1, μ)-smooth if xl(y) ≤ μyl(y) + xl(x) for all x, y ≥ 0
(which is slightly different from Roughgarden’s original smoothness definition [19]). Lineas et al. [11]
only require local smoothness where y is taken fixed.
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ε > 0, and (ii) when an edge with only an ε-fraction of flow is removed. For single-
commodity instances with polynomial latency functions of degree at most p, they
show that the ratio of the social cost of a Nash flow in the original instance and the
social cost of a Nash flow in the instance with demand increased by ε > 0, is at most
(1 + ε)p. They also show that this bound is tight.

2 Preliminaries

In this section, we introduce our bounded deviation model for non-atomic network
routing games, define the Deviation Ratio and elaborate on some related notions. We
also derive some preliminary results that are used later.

2.1 Non-Atomic Network Routing Games

An instance of a non-atomic network routing game is given by a tuple I = (G =
(V , A), (la)a∈A, (si, ti)i∈[k], (ri)i∈[k]). Here, G = (V , A) is a directed graph with
node set V and arc set A ⊆ V × V , where each arc a ∈ A has a non-negative,
non-decreasing and continuous latency function la : R≥0 → R≥0. Each commodity
i ∈ [k] is associated with a source-destination pair (si, ti) and has a demand of
ri ∈ R>0. We assume without loss of generality that ti �= tj if i �= j for i, j ∈ [k].
If all commodities share a common source node, i.e., si = sj = s for all i, j ∈ [k],
we call I a common source multi-commodity instance (with source s). We assume
without loss of generality that 1 = r1 ≤ r2 ≤ · · · ≤ rk and define r = ∑

i∈[k] ri .
We denote by Pi the set of all simple (si , ti)-paths of commodity i ∈ [k] in G, and

we define P = ∪i∈[k]Pi . An outcome of the game is a feasible flow f : P → R≥0
such that

∑
P∈Pi

fP = ri for every i ∈ [k]. Given a flow f = (f i)i∈[k], we use f i
a to

denote the total flow on arc a ∈ A of commodity i ∈ [k], i.e., f i
a = ∑

P∈Pi :a∈P fP .
The total flow on arc a ∈ A is defined as fa = ∑

i∈[k] f i
a . The latency of a path

P ∈ P with respect to f is defined as lP (f ) := ∑
a∈P la(fa). The social cost C(f )

of a flow f is given by its total latency, i.e.,

C(f ) =
∑
P∈P

fP lP (f ) =
∑
a∈A

fala(fa).

A flow that minimizes C(·) is called (socially) optimal. We use A+
i = {a ∈ A : f i

a >

0} to refer to the support of f i for commodity i ∈ [k] and define A+ = ∪i∈[k]A+
i as

the support of f .

2.2 Bounded Deviation Model

We introduce our bounded deviation model for non-atomic network routing games.
For every arc a ∈ A, we have a continuous function δa : R≥0 → R modeling the
deviation on arc a, and we write δ = (δa)a∈A. Note that the deviation δa on arc a

can be positive or negative. We define the deviation of a path P ∈ P as δP (f ) =
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∑
a∈P δa(fa). The deviated latency on arc a ∈ A is given by la(fa) + δa(fa); simi-

larly, the deviated latency on path P ∈ P is given by lP (f )+δP (f ). We say that f is
δ-inducible if and only if it is aWardrop flow (or Nash flow) with respect to l+δ, i.e.,

∀i ∈ [k], ∀P ∈ Pi , fP > 0 : lP (f ) + δP (f ) ≤ lP ′(f ) + δP ′(f ) ∀P ′ ∈ Pi . (2)

If f is δ-inducible, we also write f = f δ . Note that a Nash flow f for the unaltered
latencies (la)a∈A is 0-inducible, i.e., f = f 0.

Let θmin = (θmin
a )a∈A and θmax = (θmax

a )a∈A be given threshold functions, where
for every a ∈ A, θmin

a : R≥0 → R is a continuous, non-increasing function and
θmax
a : R≥0 → R is a continuous, non-decreasing function. Further, we assume that

θmin
a (x) ≤ 0 ≤ θmax

a (x) for all x ≥ 0 and a ∈ A, and let θ = (θmin, θmax). We define

	(θ) = {(δa)a∈A | ∀a ∈ A : θmin
a (x) ≤ δa(x) ≤ θmax

a (x), ∀x ≥ 0}

as the set of feasible deviations. Note that 0 ∈ 	(θ) for all threshold functions θmin

and θmax. We say that δ ∈ 	(θ) is a θ -deviation. Furthermore, f is θ -inducible if
there exists a δ ∈ 	(θ) such that f is δ-inducible. For −1 < α ≤ 0 ≤ β, we call
δ ∈ 	(θ) an (α, β)-deviation if θmin = αl and θmax = βl, and also write θ = (α, β).

We make the following assumption:

Assumption 1 We assume that the function la + θmin
a is non-negative and non-

decreasing for every arc a ∈ A.

Intuitively, the non-negativity property ensures that the deviated latencies l + δ

remain non-negative for all feasible deviations δ ∈ 	(θ). The non-decreasingness
property is exploited in our upper bound proof on the Deviation Ratio. Note that
(α, β)-deviations naturally satisfy this assumption.

Throughout the paper, we (implicitly) only consider deviations δ for which a Nash
flow exists. The existence of such flows is always guaranteed under some mild condi-
tions on the threshold functions. As an example, we elaborate on the existence when
θmin = 0 and θmax

a is non-negative, non-decreasing and continuous for all a ∈ A. It
is not hard to see that for a deviated Nash flow f δ with δ ∈ 	(θ) there exists some
0 ≤ λa ≤ 1 for every arc a ∈ A such that δa(f

δ
a ) = λaθ

max
a (f δ

a ). In particular, this
means that the deviations δ′ defined as δ′

a = λaθ
max
a satisfies δ′ ∈ 	(θ) and also

induces f δ . Therefore it is sufficient to consider deviations of the form δa = λaθ
max
a ,

where 0 ≤ λa ≤ 1 for all a ∈ A. For such deviations, the deviated latency function
la + δa is non-negative, non-decreasing and continuous for every a ∈ A. It is well-
known that for these types of functions, the existence of a Nash flow is guaranteed
(see, e.g., Nisan et al. [17]).

The following lemma shows an equivalence between (α, β)-deviation s with−1 <

α ≤ 0 ≤ β and (0, β−α
1+α

)-deviations. In particular, it allows us to assume without loss
of generality that α = 0. The proof is given in Appendix A.

Lemma 1 Let −1 < α ≤ 0 ≤ β be fixed. Then f is inducible with an (α, β)-
deviation if and only if it is inducible with a (0, β−α

1+α
)-deviation.
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Our bounded deviation model naturally gives rise to optimization problems where
one wants to compute feasible deviations that minimize or maximize the social
cost of the resulting Nash flow. We elaborate in more detail on these problems in
Appendix B.

2.3 Deviation Ratio

Given an instance I and threshold functions θ = (θmin, θmax), we define the Devia-
tion Ratio as the worst-case ratio of the cost of a θ -inducible flow and the cost of a
0-inducible flow; more formally,

DR(I, θ) = sup
δ∈	(θ)

{
C(f δ)

C(f 0)
| f δ is δ-inducible

}
.

Intuitively, DR(I, θ) measures the worst-case deterioration of the social cost of
a Nash flow due to (feasible) latency deviations. Note that for a fixed deviation
δ ∈ 	(θ), there might be multiple Nash flows that are δ-inducible. Unless stated oth-
erwise, we adopt the convention that C(f δ) refers to the social cost of the worst Nash
flow that is δ-inducible.

2.4 Related Notions

Nikolova and Stier-Moses [16] (see also [11, 15]) consider non-atomic network rout-
ing games with uncertain latencies. Here the deviations correspond to variances
(va)a∈A of some random variable ζa (with expectation zero). The perceived latency
of a path P ∈ P with respect to a flow f is then defined as

q
γ

P (f ) = lP (f ) + γ vP (f ),

where γ ≥ 0 is a parameter representing the risk-aversion of the players. They
consider two different objectives as to how the deviation vP (f ) of a path P is defined:

1. mean-var objective: vP (f ) = ∑
a∈P va(fa)

2. mean-std objective: vP (f ) = (
∑

a∈P va(fa))
1
2 .

Note that for the mean-var objective there is an equivalent arc-based definition, where
the perceived latency of every arc a ∈ A is defined as q

γ
a (fa) = la(fa) + γ va(fa).

They define the Price of Risk Aversion [16] as the worst-case ratio C(x)/C(z),
where x is a risk-averse Nash flow with respect to qγ = l+γ v and z is a risk-neutral
Nash flow with respect to l.4

In their analysis, it is assumed that the variance-to-mean-ratio of every arc a ∈ A

under the risk-averse flow x is bounded by some constant κ ≥ 0, i.e., va(xa) ≤
κla(xa) for all a ∈ A. Under this assumption, they prove that the Price of Risk
Aversion PRA(I, γ, κ) of single-commodity instances I with non-negative and non-
decreasing latency functions is at most 1+ γ κ�(n − 1)/2�, where n is the number of
nodes.

4The existence of a risk-averse Nash flow is proven in [15].
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We now elaborate on the relation to our Deviation Ratio. The main technical dif-
ference is that in [16] the variance-to-mean ratio is only considered for the respective
flow values xa . Note however that if we write for every a ∈ A, va(xa) = λala(xa)

for some 0 ≤ λa ≤ κ , then the deviation function δa(y) = γ λala(y) has the property
that x = f δ is δ-inducible with δ ∈ 	(0, γ κ). It follows that for every instance I
and parameters γ , κ , PRA(I, γ, κ) ≤ DR(I, (0, γ κ)).

Another related notion is the Biased Price of Anarchy (BPoA) introduced by Meir
and Parkes [13]. Adapted to our setting, given an instance I and threshold functions
θ , the Biased Price of Anarchy is defined as BPoA(I, θ) = supδ∈	(θ) C(f δ)/C(f ∗),
where f ∗ is a socially optimal flow. Note that because C(f ∗) ≤ C(f ) for every
feasible flow f , we have DR(I, θ) ≤ BPoA(I, θ).

3 Upper Bounds on the Deviation Ratio

We derive an upper bound on the Deviation Ratio. All results in this section hold for
multi-commodity instances with a common source.

The following notion of alternating paths turns out to be crucial. It was first intro-
duced by Lin et al. [12] in the context of the network design problem (see [18]) and
is also used by Nikolova and Stier-Moses [16].

Definition 1 (Alternating path [12, 16]) Let x and z be feasible flows. We partition
A = X ∪ Z, where Z = {a ∈ A : za ≥ xa and za > 0} and X = {a ∈ A : za <

xa or za = xa = 0}. We say that πi = (a1, . . . , ar ) is an alternating (s, ti)-path if the
arcs in πi ∩ Z are oriented in the direction of ti , and the arcs in πi ∩ X are oriented
in the direction of s.

An alternating path tree π is a tree, rooted at the common source s, which con-
tains an alternating (s, ti)-path πi for every commodity i. We show below that an
alternating path tree always exists for multi-commodity networks with a common
source.

The main theorem which we prove in this section is as follows:

Theorem 1 Let x be θ -inducible and let z be 0-inducible. Further, let A = X ∪ Z

be a partition of A as in Definition 1. Let π be an alternating path tree, where πi

denotes the alternating (s, ti)-path in π .

(i) Suppose θ = (θmin, θmax). Let Xi be a flow-carrying path of commodity i ∈ [k]
maximizing lP (x) over all P ∈ Pi .5 Then

C(x) ≤ C(z) +
∑
i∈[k]

ri

⎛
⎝ ∑

a∈Z∩πi

θmax
a (za) −

∑
a∈X∩πi

θmin
a (za)−

∑
a∈Xi

θmin
a (xa)

⎞
⎠ .

5Note that the values lP (x) + δP (x) are the same for all flow-carrying paths, but this is not necessarily
true for the values lP (x).



Theory Comput Syst

(ii) Suppose θ = (α, β) with −1 < α ≤ 0 ≤ β. Let ηi be the number of disjoint
segments of consecutive arcs in Z on the alternating (s, ti)-path πi for i ∈ [k].6
Then

C(x) ≤
⎛
⎝1 + β − α

1 + α

∑
i∈[k]

riηi

⎞
⎠ C(z) ≤

(
1 + β − α

1 + α
·
⌈

n − 1

2

⌉
r

)
C(z).

We give some interpretation: Theorem 1(i) relates the social cost of a θ -inducible
Nash flow x to the social cost of an original Nash flow z. More specifically, it shows
that C(x) − C(z) is at most

∑
i∈[k]

ri

⎛
⎝ ∑

a∈Z∩πi

θmax
a (za) −

∑
a∈X∩πi

θmin
a (za) −

∑
a∈Xi

θmin
a (xa)

⎞
⎠ ,

where Xi is a flow-carrying (s, ti)-path with respect to x and πi is an alternating
(s, ti)-path for commodity i. Intuitively, the contribution of commodity i to the above
term can be seen as the total θ -cost of sending ri units of flow along the directed
cycle Ci which we obtain from πi and Xi by reversing all arcs in X ∩ πi and Xi .
Here the θ -cost is defined as θmax

a (za) for a forward arc a ∈ Z ∩ πi , −θmin
a (za) for a

reversed arc a ∈ X ∩ πi , and −θmin
a (xa) for a reversed arc a ∈ Xi .

If we can bound the total θ -cost by λC(z) − μC(x) with λ ≥ 0 and μ > −1, then
we obtain an upper bound of (1 + λ)/(1 + μ) on the Deviation Ratio. In particular,
for (α, β)-deviations the θ -cost can naturally be related to the latencies. In this case,
we obtain the bound stated in Theorem 1(ii).

In order to prove Theorem 1 we proceed as follows: We first derive a characteriza-
tion of when a given flow f is θ -inducible (Theorem 2). As it turns out, this reduces
to a non-negative cycle condition in a suitably defined auxiliary graph Ĝ(f )with cost
function c. In particular, this non-negative cycle condition allows us to relate the cost
of a flow-carrying path Fi of f to arbitrary (s, ti)-paths and (ti , s)-paths in the auxil-
iary graph Ĝ(f ) (Lemma 2). We then turn to relating the social cost of a θ -inducible
flow x to the one of a 0-inducible flow z. We show that an alternating path tree π

with respect to x and z always exist (Lemma 3). With the help of this alternating tree
we can then relate the costs of (carefully chosen) flow-carrying paths under x and z

for each commodity. Basically, for each commodity i we bound the cost of a flow-
carrying path Xi of x by the cost of the alternating path πi (by applying Lemma 2 to
Xi and πi). The latter in turn can then be bounded by the cost of a flow-carrying path
Zi of z (by applying Lemma 2 to Zi and πi).

3.1 Characterization of θ -Inducible Flows

We provide a characterization of the inducibility of a given flow. Let f be a feasible
flow. We define an auxiliary graph Ĝ = Ĝ(f ) = (V , Â) with Â = A ∪ Ā, where
Ā = {(v, u) : a = (u, v) ∈ A+}, i.e., Â consists of the set of arcs in A, which we call

6Note that ηi ≤ �(n − 1)/2�.
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Fig. 1 The dashed arcs are the reversed arcs in Ĝ. The black bold arcs indicate the cycle B. We have
(h0, h1, h2, h3) = (1, 4, 6, 1). Note that, for example, it could be the case that P1 = P6 ∪ (b6, b1)

forward arcs, and the set Ā of arcs (v, u) with (u, v) ∈ A+, which we call reversed
arcs. Further, we define a cost function c : Â → R as follows:

ca =
{

l(u,v)(f(u,v)) + θmax
(u,v)(f(u,v)) if (u, v) ∈ A

−l(u,v)(f(u,v)) − θmin
(u,v)(f(u,v)) if (v, u) ∈ Ā.

(3)

The following theorem generalizes the characterization result for single-
commodity networks in [2] to multi-commodity networks with a common source.

Theorem 2 Let f be a feasible flow. f is θ -inducible if and only if Ĝ = Ĝ(f ) does
not contain a cycle of negative cost with respect to c.

Proof Suppose that f is an inducible flow and let δ be a vector of deviations
that induce f . Throughout the proof all latency, deviation and threshold functions
are evaluated with respect to f . For notational convenience, we omit the explicit
reference to f .

Let B̂ be a directed cycle in Ĝ. If B̂ only consists of forward arcs, then
∑

a∈B̂
(la +

θmax
a ) ≥ ∑

a∈B̂
(la + θmin

a ) ≥ 0, where the last inequality holds because of Assump-

tion 1. Next, suppose that there is a reversed arc a = (v, u) ∈ B̂ ∩ Ā. Then
(u, v) ∈ A+

i for some commodity i ∈ [k]. Let B = (b1, . . . , bq, b1) be the cycle
that we obtain from B̂ if all arcs (v, u) ∈ B̂ ∩ Ā are replaced by a = (u, v) ∈ A+
(note that B is contained in G and that it is not a directed cycle). For every arc
b = (bl, bl+1) ∈ B ∩ A+, there is a flow-carrying path Pl from s to bl for some
commodity i (here we use the fact that all commodities share the same source).7

Intuitively, the proof is as follows. For all nodes b ∈ V (B) with two incoming arcs
of B, we can can find two paths Q1 and Q2 leading to that node, using the paths Pl

and the cycle B (see also Fig. 1). Furthermore, one of those paths is flow-carrying
by construction. We then apply the Nash conditions to those flow-carrying paths

7Note that the paths Pl can overlap, use parts of B, or even be subpaths of each other.
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(exploiting the common source) and add up the resulting inequalities. The contribu-
tions of the paths Pl cancel out in the aggregated inequality, leading to the desired
result. We now give a formal proof.

Without loss of generality, we may assume that (b1, b2) ∈ A+. Let h1 ∈
{2, . . . , q + 1} be the smallest index for which (bh1 , bh1+1) ∈ A+ (here we
take bq+1 := b1 and Pq+1 := P1). Note that the concatenation of Ph1 and
(bh1 , bh1−1, . . . , b2) is a directed path from s to b2. Then we have

l(b1,b2) + δ(b1,b2) +
∑
a∈P1

(la + δa) ≤
h1∑

j=3

(l(bj ,bj−1) + δ(bj ,bj−1)) +
∑

a∈Ph1

(la + δa)

by using the fact that a subpath (s, . . . , u) of a shortest (s, ti)-path (s, . . . , u, . . . , ti)

is a shortest (s, u)-path if G does not contain negative cost cycles under the cost
function l + δ (which is true because of Assumption 1).

We can now repeat this procedure by letting h2 ∈ {h1 + 1, . . . , q + 1} be the
smallest index for which (bh2 , bh2+1) ∈ A+. We then have

l(bh1 ,bh1+1) + δ(bh1 ,bh1+1) +
∑

a∈Ph1

(la + δa)

≤
h2∑

j=h1+2

(l(bj ,bj−1) + δ(bj ,bj−1)) +
∑

a∈Ph2

(la + δa).

Continuing this procedure, we find a sequence 1 = h0 < h1 < · · · < hp = q + 1
such that, for every 0 ≤ w ≤ p − 1,

l(bhw ,bhw+1) + δ(bhw ,bhw+1) +
∑

a∈Phw

(la + δa)

≤
hw+1∑

j=hw+2

(l(bj ,bj−1) + δ(bj ,bj−1)) +
∑

a∈Phw+1

(la + δa). (4)

Note that p is the number of reversed arcs on the cycle B̂.
Summing up these inequalities for 0 ≤ w ≤ p − 1, we obtain∑

(v,u)∈B̂∩Ā

(l(u,v) + δ(u,v)) ≤
∑

a∈B̂∩A

(la + δa),

since all the contributions of the path Pl cancel out. Now using the definition of a
θ -deviation, we find∑

a∈B̂∩A

(la + θmax
a ) −

∑
(v,u)∈B̂∩Ā

(l(u,v) + θmin
(u,v))

≥
∑

a∈B̂∩A

(la + δa) −
∑

(v,u)∈B̂∩Ā

(l(u,v) + δ(u,v)) ≥ 0.

We have shown that B̂ has non-negative cost. Note that B̂ has zero cost if all the arcs
on the cycle are reversed.
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For the other direction of the proof, consider the setF(θ) of θ -deviations δ ∈ 	(θ)

that induce f = (f i
a )i∈[k],a∈A (see also [12, 18]):

F(θ) = { (δa)a∈A | πi,v − πi,u ≤ la + δa ∀a = (u, v) ∈ A, ∀i ∈ [k]
πi,v − πi,u = la + δa ∀a = (u, v) ∈ A+

i , ∀i ∈ [k]
δa ≥ θmin

a ∀a ∈ A

δa ≤ θmax
a ∀a ∈ A }. (5)

That is, f is θ -inducible if and only if the linear system defining F(θ) in (5) has
a feasible solution. Now suppose that Ĝ does not contain a cycle of negative cost.
Then we can determine the shortest path distance πu from s to every node u ∈ V .
We define πi,u := πu for all u ∈ V and i ∈ [k]. Furthermore, for a = (u, v) ∈ A, we
define δa := max{θmin

a , πv −πu−la}. We will now show that δ induces f by showing
that we have constructed a feasible solution for (5). First of all, for all i ∈ [k] and
a ∈ A \A+

i , we have δa ≥ πv −πu − la , which is equivalent to πi,v −πi,u ≤ la + δa .
Secondly, if a = (u, v) ∈ A+

i , then πu − πv ≤ −la − θmin
a (which we derive

using the reversed arc (v, u)). But this is equivalent to πi,v − πi,u − la ≥ θmin
a . We

can conclude that δa = πi,v − πi,u − la . Furthermore, we clearly have δa ≥ θmin
a .

Lastly, for all a = (u, v) ∈ A we have πv − πu ≤ la + θmax
a which is equivalent to

πv − πu − la ≤ θmax
a . Combining this with the trivial inequality θmin

a ≤ θmax
a we can

conclude that δa ≤ θmax
a . This completes the proof.

The characterization of Theorem 2 applies if all commodities share a common
source. In fact, we can show that this characterization does not hold if this assumption
is dropped (see Appendix C).

By exploiting the non-negative cycle condition of Theorem 2, we can now estab-
lish the following bounds on the cost of a flow-carrying path Fi of a θ -inducible flow
f .

Lemma 2 Let f be θ -inducible and let Fi be a flow-carrying (s, ti)-path for com-
modity i ∈ [k] in G. Let χ and ψ be any (s, ti)-path and (ti , s)-path in Ĝ(f ),
respectively. Then∑

a∈Fi

la(fa) + θmin
a (fa) ≤

∑
a∈χ∩A

la(fa) + θmax
a (fa) −

∑
a∈χ∩Ā

la(fa) + θmin
a (fa)

∑
a∈Fi

la(fa) + θmax
a (fa) ≥

∑
a∈ψ∩Ā

la(fa) + θmin
a (fa) −

∑
a∈ψ∩A

la(fa) + θmax
a (fa).

We need the following proposition to prove Lemma 2.

Proposition 1 Let G = (V , A) be a non-empty, directed multigraph with the prop-
erty that δ−(v) = δ+(v) for all v ∈ V .8 Then G is the union of arc-disjoint

8We use the standard notation δ−(v) and δ+(v) to refer to the set of outgoing and incoming edges of a
node v, respectively.
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directed (simple) cycles C1, . . . , Cl for some l such that ∪l
j=1V (Cj ) = V and

∪l
j=1A(Cj ) = A.

Proof If G is non-empty then we can find a (simple) directed cycle C in G. Remov-
ing the arcs of this cycle leads to the graph G \ C := (V , A \ A(C)) that also
satisfies δ−(v) = δ+(v) for all v ∈ V (note that if there are multiple arcs between
two nodes, we only remove the copy on the cycle). By repeating this procedure until
G becomes empty, we decompose G into a series of arc-disjoint directed (simple)
cycles C1, . . . , Cl as claimed.

Proof (Lemma 2) Since Fi is a flow-carrying path, we know that for every a =
(u, v) ∈ Fi we have a reversed arc (v, u) ∈ Â in Ĝ. Let F̄i denote the reversed path
of Fi . Define Ĥ as the graph consisting of the (ti , s)-path F̄i and the (s, ti)-path χ ,
where we add a copy of an arc if it is used in both paths (i.e., Ĥ can be a multigraph).
Note that Ĥ satisfies the conditions of Proposition 1. Thus, Ĥ can be decomposed
into arc-disjoint directed cycles C1, . . . , Cl for some l. By Theorem 2, each such
cycle Cj has non-negative cost with respect to c (as defined in (3)). Thus, we have

c(Cj ) =
∑

a∈A∩Cj

(la(xa) + θmax
a (xa)) −

∑
a∈Ā∩Cj

(la(xa) + θmin
a (xa)) ≥ 0.

By adding these inequalities for all j = 1, . . . , l and rearranging terms, we obtain
the first inequality.

The second inequality is proven analogously (applying the same arguments to the
graph Ĥ consisting of paths Fi and ψ .)

3.2 Existence of Alternating Path Tree

Let x and z be feasible flows. Recall the definition of an alternating (s, ti)-path πi

(Definition 1). The following lemma establishes the existence of an alternating path
tree π , rooted at the common source s, which contains an alternating (s, ti)-path πi

for every commodity i ∈ [k]. It is a direct generalization of Lemma 4.6 in [12] and
Lemma 4.5 in [16].

Lemma 3 Let x and z be feasible flows and let A = X ∪ Z be a partition of A as in
Definition 1. Then there exists an alternating path tree.

Proof Let G′ = (V ′, A′) be the graph defined by V = V ∪{t} and A′ = A∪{(ti , t) :
i ∈ [k]}. Let x ′, z′ be the flows defined by

x′
a =

{
xa for a = (u, v) ∈ A

ri for a = (ti , t) with i ∈ [k],
z′
a =

{
za for a = (u, v) ∈ A

ri for a = (ti , t) with i ∈ [k].
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Then x′ and z′ are feasible (s, t)-flows in G′. We can write A = Z′ ∪ X′ with
Z′ = Z ∪ {(ti , t) : i ∈ [k]} and X′ having the same properties as Z and X in G

(which follows from x′
a = z′

a = ri > 0 for all a = (ti , t)).
We can now apply the same argument as in the proof of Lemma 4.5 in [16] of

which we will give a short summary (for sake of completeness). For any s-t cut
defined by S ∪ V ′ with s ∈ S we claim that we can cross S with an arc in Z′, or
a reversed arc in X′. Suppose that this would not be the case, i.e., all arcs into S

are in the set Z′ and all the outgoing arcs of S are in X′. Let xZ′ and zZ′ be the
total incoming flows from S, and xX′ and zX′ the total outgoing flows from S (for
flows x and z, respectively). From the definition of Z′ it follows that xZ′ ≤ zZ′ .
From conservation of flow it follows that xX′ − xZ′ = zX′ − zZ′ . Combining these
two observations, we find that xX′ ≤ zX′ . However, by definition of X′, we have
xX′ > zX′ (since we removed all arcs a with za = xa = 0). We find a contradiction.

Having proved the claim that we can always cross with an arc in Z′ or a reversed
arc in X′, we can now easily construct a spanning tree π ′ consisting of alternating
paths, by starting with the cut (S, G \ S) given by S = {s}.

Note that t cannot be an interior point of π ′, since t is only adjacent to incoming
arcs of the set Z′. This means that if we remove (tj , t) from π ′ (where j is the index
for which (tj , t) is in the tree π ′), we have found an alternating path tree π for the
graph G, under the flows x and z.

3.3 Proof of Theorem 1

We now have all the ingredients to prove Theorem 1.
Throughout this section, let x be a θ -inducible flow and let z be a 0-inducible. Let

π be an alternating path tree (which exists by Lemma 3). Without loss of generality
we may remove all arcs with za = xa = 0 (as they do not contribute to the social
cost). Note that if along the alternating (s, ti)-path πi we reverse the arcs ofZ then the
resulting path is a directed (ti , s)-path in Ĝ(z) (which we call the s-oriented version
of πi); similarly, if we reverse the arcs of X then the resulting path is an (s, ti)-path
in Ĝ(x) (which we call the ti-oriented version of πi).

We start with the proof of Theorem 1(i).

Proof (Theorem 1(i)) Let Xi be a flow-carrying path of commodity i ∈ [k] maximiz-
ing lP (x) over all P ∈ Pi . Note that by our choice of Xi , we have

C(x) =
∑
i∈[k]

∑
P∈Pi

xi
P lP (x) ≤

∑
i∈[k]

ri
∑
a∈Xi

la(xa).

Let Zi be an arbitrary flow-carrying path of commodity i ∈ [k] with respect to z.
We have

C(z) =
∑
i∈[k]

ri
∑
a∈Zi

la(za).

By applying the first inequality of Lemma 2 to the flow x in the graph Ĝ(x), where
we choose χ to be the ti-oriented version of πi , we obtain∑

a∈Xi

la(xa)+ θmin
a (xa) ≤

∑
a∈Z∩πi

la(xa)+ θmax
a (xa)−

∑
a∈X∩πi

la(xa)+ θmin
a (xa). (6)
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By applying the second inequality of Lemma 2 to the flow z in the graph Ĝ(z)with
θmax = θmin = 0, where we choose ψ to be the s-oriented version of πi , we obtain

∑
a∈Zi

la(za) ≥
∑

a∈Z∩πi

la(za) −
∑

a∈X∩πi

la(za). (7)

By combining these inequalities, we obtain

∑
a∈Xi

la(xa) + θmin
a (xa) ≤

∑
a∈Z∩πi

la(xa) + θmax
a (xa) −

∑
a∈X∩πi

la(xa) + θmin
a (xa)

≤
∑

a∈Z∩πi

la(za) + θmax
a (za) −

∑
a∈X∩πi

la(za) + θmin
a (za)

≤
∑
a∈Zi

la(za) +
∑

a∈Z∩πi

θmax
a (za) −

∑
a∈X∩πi

θmin
a (za).

Here the first inequality follows from (6). The second inequality holds because of
the definition of X and Z and the non-decreasingness of la + θmax

a and la + θmin
a

(Assumption 1) for every a ∈ A. The last inequality holds because of (7).
The claim now follows by multiplying the above inequality with ri and summing

over all commodities i ∈ [k].
We need the following proposition for the proof of Theorem 1(ii).

Proposition 2 Let z = f 0 be a Nash flow for a multi-commodity instance with a
common source. Let v ∈ V and let i, j ∈ [k] be two commodities for which there exist
flow-carrying (s, v)-paths P1 ∈ Pi and P2 ∈ Pj , respectively. Then there exists a
feasible Nash flow z̄ with z̄a = za for all a ∈ A such that both paths P1, P2 are flow-
carrying for commodity i, and both paths P1, P2 are flow-carrying for commodity j ,
i.e., we have z̄i

P1
, z̄i

P2
, z̄

j
P1

, z̄
j
P2

> 0.

Proof Intuitively, we shift an ε amount of flow of commodity i to path P2 and an ε

amount of flow of commodity j to path P1. Formally, choose ε > 0 small enough
such that zi

P1
− ε, z

j
P2

− ε > 0. We define

z̄l
P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zi
P1

− ε if P = P1 and l = i

z
j
P1

+ ε if P = P1 and l = j

zi
P2

+ ε if P = P2 and l = i

z
j
P2

− ε if P = P2 and l = j

and let all the other flow-carrying paths remain unchanged. It then immediately fol-
lows that za = z̄a for all a ∈ A, and in the resulting feasible flow z̄, both commodities
i and j are flow-carrying for both paths P1 and P2. The feasibility of z̄ follows
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because both commodities have the same source. Moreover, the common source also
implies that if z is a Nash flow, then z̄ is also a Nash flow (since commodity i implies
that lP1(z) ≤ lP2(z), and commodity j implies that lP2(z) ≤ lP1(z)).

We now give the proof of Theorem 1(ii).

Proof (Theorem 1(ii)) By Lemma 1 we can assume without loss of generality that
for every arc a ∈ A:

θmin
a = 0 and θmax

a = β − α

1 + α
la.

Fix a commodity i and consider the alternating (s, ti)-path πi . Let a segment of
π be a maximal sequence of consecutive arcs on πi which belong to Z. Suppose π

consists of ηi segments. Let Aij denote the j -th segment of πi .
Using Theorem 1(i) and the definition of Aij , we obtain

C(x) ≤ C(z) + β − α

1 + α

∑
i∈[k]

ri
∑

a∈Z∩πi

la(za)

≤ C(z) + β − α

1 + α

∑
i∈[k]

ri

⎛
⎝ηi · max

j=1,...,ηi

∑
a∈Aij

la(za)

⎞
⎠ .

Note that the claim follows if we can prove that
∑

a∈Aij
la(za) ≤ C(z) for all j =

1, . . . , ηi and i ∈ [k].
Fix a segment Aij . Below we argue that there always exists a commodity w ∈ [k]

(possibly w �= i) such that every a ∈ Aij is flow-carrying for commodity w, i.e.,
zw
a > 0 for every a ∈ Aij . By choosing a suitable path decomposition of z for
commodity w, we can thus assume that Aij is contained in some flow-carrying path
P ∈ Pw and thus

∑
a∈Aij

la(za) ≤ lP (z). Recall that C(z) = ∑
i∈[k] ri lZi

(z), where
Zi ∈ Pi is an arbitrary flow-carrying path for commodity i ∈ [k]. By exploiting that
ri ≥ 1 for every i ∈ [k], we obtain

∑
a∈Aij

la(za) ≤ lP (z) ≤
∑
i∈[k]

ri lZi
(z) = C(z).

We now prove that there always exists a commodity w as claimed above. Suppose
there are two consecutive edges a1 = (u, v) and a2 = (v, w) in Aij that are flow-
carrying for commodities w1 and w2 in z, respectively. Then there are two (s, v)-
paths W1 and W2 which are flow-carrying with respect to commodities w1 and w2,
respectively. The existence of W1 is clear. The existence of W2 follows from flow-
conservation applied to commodity w2 (because some positive amount of flow leaves
node v). But then, by Proposition 2, we may assume that a1 is also flow-carrying for
commodity w2. By applying this argument repeatedly, starting with the last two arcs
on Aij and proceeding towards the front, we can show that there is a commodity for
which the whole segment Aij is flow-carrying.
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Fig. 2 The fifth Braess graph with (l5a , δ5a) on the arcs as defined in Example 1. The bold arcs indicate the
alternating path π1

4 Lower Bounds on the Deviation Ratio for (α, β)-Deviations

In this section, we provide lower bounds on the Deviation Ratio for (α, β)-deviations.
We first consider single-commodity instances and prove that the bound given in The-
orem 1 is tight in all its parameters. We then extend this result to instances with a
common source. In contrast, for general multi-commodity instances the situation is
much worse. In particular, we establish an exponential lower bound on the Deviation
Ratio.

4.1 Single-Commodity Instances

Our instance is based on the generalized Braess graph [18]. The m-th Braess graph
Gm = (V m, Am) is defined by V m = {s, v1, . . . , vm−1, w1, . . . , wm−1, t} and Am

as the union of three sets: Em
1 = {(s, vj ), (vj , wj ), (wj , t) : 1 ≤ j ≤ m − 1},

Em
2 = {(vj , wj−1) : 2 ≤ j ≤ m} and Em

3 = {(v1, t) ∪ {(s, wm−1}}. See
Fig. 2 for an example. The rough idea behind the lower bound construction is
that in the unaltered Nash flow all players spread out evenly over the m paths
not involving the arcs of the form (vi, wi). However, as a result of introduc-
ing deviations on the arcs of the form (vi, wi−1) the players switch to the paths
involving the arcs (vi, wi), but this increases the latencies on all arcs adjacent to
s and t .

Example 1 By Lemma 1, we can assume without loss of generality that α = 0. Let
β ≥ 0 be a fixed constant and let n = 2m ≥ 4 ∈ N.9 Let Gm be the m-th Braess

9Note that the value �(n − 1)/2� is the same for n ∈ {2m, 2m + 1} with m ∈ N. The example shows
tightness for n = 2m. The tightness for n = 2m + 1 then follows trivially by adding a dummy node.
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graph. Furthermore, let ym : R≥0 → R≥0 be a non-decreasing, continuous function10

with ym(1/m) = 0 and ym(1/(m − 1)) = β. We define

lma (g) =
⎧⎨
⎩

(m − j) · ym(g) for a ∈ {(s, vj ) : 1 ≤ j ≤ m − 1}
j · ym(g) for a ∈ {(wj , t) : 1 ≤ j ≤ m − 1}
1 otherwise.

Furthermore, we define δm
a (g) = β for a ∈ Em

2 , and δm
a (g) = 0 otherwise. Note that

0 ≤ δm
a (g) ≤ βlma (g) for all a ∈ A and g ≥ 0 (see Fig. 2).

A Nash flow z = f 0 is given by routing 1/m units of flow over the paths
(s, wm−1, t), (s, v1, t) and the paths in {(s, vj , wj−1, t) : 2 ≤ j ≤ m − 1}. Note that
all these paths have latency one, and the path (s, vj , wj , t), for some 1 ≤ m ≤ j ,
also has latency one. We conclude that C(z) = 1.

A Nash flow x = f δ , with δ as defined above, is given by routing 1/(m− 1) units
of flow over the paths in {(s, vj , wj , t) : 1 ≤ j ≤ m − 1}. Each such path P then
has a latency of lP (x) = 1 + βm. It follows that C(x) = 1 + βm. Note that the
deviated latency of path P is qP (x) = 1+ βm because all deviations along this path
are zero. Each path P ′ = (s, vj , wj−1, t), for 2 ≤ j ≤ m − 1, has a deviated latency
of qP ′(x) = 1 + β + (m − 1)ym(1/(m − 1)) = 1 + β + (m − 1)β = 1 + βm. The
same argument holds for the paths (s, wm−1, t) and (s, v1, t). We conclude that x is
δ-inducible. It follows that C(x)/C(z) = 1 + βm = 1 + βn/2.

4.2 Common-Source Instances

By adapting the construction in Example 1, we obtain the following result.

Theorem 3 There exist common source two-commodity instances I such that

DR(I, (α, β)) ≥

⎧⎪⎪⎨
⎪⎪⎩
1 + β − α

1 + α
· n − 1

2
r for n = 2m + 1 ∈ N≥5

1 + β − α

1 + α
·
[(n

2
− 1

)
r + 1

]
for n = 2m ∈ N≥4.

Proof We first prove the claim for n odd. Let r ∈ R≥1 and n = 2m + 1 ∈ N≥5. We
modify the graph Gm by adding one extra node t2 (the node t will be referred to as t1
from here on). We add the arcs (s, t2) and (t2, t1) (see the dotted arcs in Fig. 2). We
take one commodity with sink t1 and r1 = 1, and one commodity with sink t2 and
demand r2 = r − 1. Note that the latter commodity only has one (s, t2)-path.

The pairs (lma (g), δm
a (g)), for all a except (s, t2) and (t2, t1), are defined as in

Example 1, but with y a non-decreasing, non-negative, continuous function satisfying
ym(1/m) = 0 and ym((1 − εm)/(m − 1)) = β, where we choose 0 < εm < 1/m so
that 1/m < (1−εm)/(m−1). For a = (s, t2), we take (lma (g), δm

a (g)) = (y∗
m(x′), 0),

where y∗ is a non-decreasing, non-negative, continuous function satisfying y∗
m(r −

10For example ym(g) = m(m − 1)β max{0, (g − 1
m

)}. That is, we define ym to be zero for 0 ≤ g ≤ 1/m

and we let it increase with constant rate to β in 1/(m − 1).
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Fig. 3 The fifth (odd) Braess graph with (l5a , δ5a) on the arcs as defined above, where t = t1. The thick
edges indicate the alternating path π1

1) = 0 and y∗
m(r − 1 + εm) = β. For a = (t2, t1) we take (lma (g), δm

a (g)) = (1, 0).
See Fig. 3 for an example.

A Nash flow z for this instance is given by routing 1/m units of flow over the paths
(s, wm−1, t1), (s, v1, t1) and the paths in {(s, vj , wj−1, t1) : 2 ≤ j ≤ m − 1} for the
first commodity, and r − 1 units of flow over (s, t2) for the second commodity. This
claim is true since all the paths for the first commodity have latency one, as well as
the paths (s, vj , wj , t), for 1 ≤ m ≤ j . This is also true for (s, t2, t1). The latency
for the other commodity is zero. We may conclude that C(z) = 1.

A Nash flow x under deviation δ, as defined here, is given by, for the first com-
modity, routing (1 − εm)/(m − 1) units of flow over the paths in {(s, vj , wj , t) :
1 ≤ j ≤ m − 1}, and εm units of flow over the path (s, t2, t1). Note that the per-
ceived latency on all these paths p is qP (x) = 1 + βm (which is also the true
latency, since all the deviations are zero on the arcs of these paths). Using the same
reasoning as in Example 1 it can be seen that the perceived latency on the paths
P ′ = (s, vj , wj−1, t), for 2 ≤ j ≤ m − 1, is also qP ′(x) = 1 + βm, from
which we may conclude that x is indeed a Nash flow under the deviation δ. We have
C(x) = 1 + βm + (r − 1)βm = 1 + βrm, since for the first commodity the (true)
latency along every path is 1 + βm, and for the other commodity the latency along
(s, t2) is βm.

We next prove the claim for n even. Let r ∈ R≥1 and n = 2m ∈ N≥4. We use the
same Braess graphs as in Example 1, without modifications. We introduce another
commodity with demand r2 = r − 1, for which we choose t2 = v1. We replace
the pair ((m − 1)ym(x′), 0) on a = (s, v1) by the pair ((m − 1)y ′

m(g), 0) where y′
m
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satisfies y′
m(1/m + r − 1) = 0 and y ′

m(1/(m − 1) + r − 1) = β. Note that the
flows x and z, as defined in Example 1 with the extension that the second commodity
uses the arc (s, v1) in both cases, still form feasible Nash flows for their respective
deviations. We obtain

C(x) =
∑

i

∑
q∈Pi

xi
q lq(x) = 1 + βm + (r − 1)(m − 1)β

= 1 + βm + β(r − 1)(m − 1) = (1 + βrm) − β(r − 1).

This completes the proof.

Remark 1 For two-commodity instances with n even, we can actually improve the
upper bound in Theorem 1 to the lower bound stated in Theorem 3: Suppose the upper
bound of Theorem 1 is tight. Then we need to have η1 = η2 = n/2. This means that
the alternating path tree is actually a path, in the sense that all nodes are adjacent to
at most two arcs of the alternating path tree, that alternates between arcs in X and
Z, starting and ending with an arc in Z (see Fig. 2). However, because t1 �= t2 this
means that at least one of the two commodities has no more than n/2 − 1 arcs in Z,
which is a contradiction.

4.3 Multi-Commodity Instances

For general multi-commodity instances we establish the following exponential lower
bound on the Deviation Ratio. In particular, this proves that there is an exponential
gap between the cases of multi-commodity networks with and without a common
source.

Theorem 4 For every p = 2q + 1 ∈ N, there exists a two-commodity instance I
whose size is polynomially bounded in p such that

DR(I, (α, β)) ≥ 1 + βFp+1 ≈ 1 + 0.45β · φp+1,

where Fp is the p-th Fibonacci number and φ ≈ 1.618 is the golden ratio.

The instance used in the proof of Theorem 4 is based on the following graph
introduced by Lin et al. [12].

Definition 2 ([12]) For p = 2q + 1 ∈ N, the graph Gp = (V p, Ap) is defined by

V p = {s1, s2, t1, t2, e, w0, . . . , wp, v1, . . . , vp},

and Ap = A(P
p

1 ) ∪ A(P
p

2 ) ∪ A
p

1 ∪ A
p

2 ∪ {s1, w0} where

P
p

1 = (s1, e, w1, v1, v2, . . . , vp, t1) and P
p

2 = (s2, w0, w1, . . . , w7, t2)
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Fig. 4 The graph Gp for p = 7 (this is a reproduction of Figure 4 in [12]). The arc a = (s1, e) has
δa = β, whereas all the other arcs have δa = 0

are the horizontal (s1, t1)-path and vertical (s2, t2)-path, respectively; see Fig. 4.
Further,

A
p

1 = {(s2, vi) : i = 1, 3, 5, 7, . . . , p − 2} ∪ {(e, wi) : i = 2, 4, 6, 8, . . . , p − 1}
and

A
p

2 = {(wi, vi) : i = 3, 5, 7, . . . , p} ∪ {(vi, wi) : i = 2, 4, 6, 8, . . . , p − 1}.
Lastly, the paths Ti are denoted by

Ti =
⎧⎨
⎩

(s1, w0, w1, v1, . . . , vp, t1) i = 0
(s1, e, wi, wi+1, vi+1, . . . , vp, t1) i = 2, 4, 6, . . . , p − 1
(s2, v1, vi+1, wi+1, . . . , wp, t2) i = 1, 3, 5, . . . , p.

These paths can be seen as ‘shortcuts’ for the paths P1 and P2.
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Proof (Theorem 4) We consider instances (Gp, lp, δp, rp)p=1,3,5,7,... with Gp as in
Definition 2. It is not hard to see that |V p|, |Ap| ∈ O(p). The latency functions lp

are given as follows:

l
p
a (x′) =

⎧⎪⎪⎨
⎪⎪⎩

βgi
δ(x

′) for a ∈ {(vi, vi+1) : i = 1, 3, 5, . . . , p − 2}
βgi

δ(x
′) for a ∈ {(wi, wi+1) : i = 0, 2, 4, 6, . . . , p − 1}

1 for a ∈ {(s1, e), (s1, w0)}
0 otherwise.

Here

gi
δ(x

′) =
⎧⎨
⎩
0 x′ ≤ 1
hi

δ(x
′) 1 ≤ x′ ≤ 1 + δ

Fi x′ ≥ 1 + δ,

where Fi is the i-th Fibonacci number, and hi
δ(x

′) is some non-decreasing, non-
negative, continuous function satisfying hi

δ(1) = 0 and hi
δ(1+δ) = Fi (so that gi

δ(x
′)

is also non-decreasing, non-negative and continuous). Furthermore, we take δa = β

for a = (s1, e) and δa = 0 for all a ∈ A \ {(s1, e)}. Finally, we have r
p

1 = r
p

2 = 1.
Let z be defined by sending one unit of flow over the paths P1 and P2. We claim

that z is a Nash flow with respect to the latencies lp and C(z) = 1. By construction,
the latency along the path P1 is lP1(z) = 1. It is not hard to see that any (s1, t1)-path
has latency greater or equal than one (because every path for commodity 1 uses either
(s1, e) or (s1, w0)). For commodity 2 the latency along P2 is lP2(z) = 0, which is
clearly a shortest path. This proves that z is a Nash flow. Further, C(z) = 1.

We use Lemma 4 (given below) to describe a Nash flow x with respect to the
deviated latencies lp +δp. It follows that C(x) = C(x)/C(z) ≥ 1+βFp−1+βFp =
1 + βFp+1. This concludes the proof (since Fp ≈ c · φp where c ≈ 0.4472 and
φ ≈ 1.618).

The following lemma is similar to Lemma 5.4, Lemma 5.5 and Lemma 5.6 in [12].

Lemma 4 There exists a δ > 0 and a feasible flow x satisfying the following
properties:

(i) xa ≥ 1+ δ for all a ∈ {(vi, vi+1) : i = 1, 3, 5, . . . , p − 2} ∪ {(wi, wi+1) : i =
0, 2, 4, 6, . . . , p − 1}.

(ii) lP (x) ≥ 1 + βFp−1 for all P ∈ P1, with equality if and only if P = Ti for
some i = 2, 4, 6, . . . , p − 1.

(iii) lP (x) ≥ βFp for all P ∈ P2, with equality if and only if P = Ti for some
i = 1, 3, 5, . . . , p.

(iv) x is a Nash flow under the perceived latencies lp + δp.

Proof The statements (i)–(iii) follow from Lemmas 5.4, 5.5 and 5.6 in [12]. The last
statement is clearly true for commodity 2 (since this commodity is not affected by
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the deviation on arc (s1, e)). For commodity 1, all the flow-carrying paths Ti have a
perceived latency of QTi

(x) = 1 + β(Fp + 1), and the perceived latency along any
other (s1, t1)-path is greater or equal than that. The actual latencies along these paths
are lTi

(x) = 1 + βFp−1 for i = 2, 4, 6, . . . , p − 1, and lT0(x) = 1 + β(Fp−1 + 1).

5 Smoothness Bounds on the Biased Price of Anarchy

We derive tight smoothness bounds on the Biased Price of Anarchy for (0, β)-
deviations. Our approach is a generalization of the framework of Correa, Schulz and
Stier-Moses [6] (which we obtain for β = 0).

Let L be a given set of latency functions and β ≥ 0 fixed. For l ∈ L, define

μ̂(l, β) = sup
x,z≥0

{
z[l(x) − (1 + β)l(z)]

xl(x)

}
and μ̂(L, β) = sup

l∈L
μ̂(L, β). (8)

Theorem 5 LetL be a set of non-negative, non-decreasing and continuous functions.
Let I be a general multi-commodity instance with (la)a∈A ∈ LA. Let x be δ-inducible
for some (0, β)-deviation δ and let z be an arbitrary feasible flow. If μ̂(L, β) < 1,
then

C(x) ≤ 1 + β

1 − μ̂(L, β)
C(z).

Moreover, this bound is tight if L contains all constant functions and is closed under
scalar multiplication, i.e., for every l ∈ L and γ ≥ 0, γ l ∈ L.

Proof We use a similar approach as Correa et al. [6]. Since x is a deviated Nash flow
with respect to l + δ, the following variational inequality holds:

∑
a∈A

xa(la(xa) + δa(xa)) ≤
∑
a∈A

za(la(xa) + δa(xa)).

We have

C(x) =
∑
a∈A

xala(xa) ≤
∑
a∈A

zala(xa) + (za − xa)δa(xa)

≤
∑

xa>za

zala(xa) +
∑

za≥xa

za(la(xa) + δa(xa))

≤
∑

xa>za

zala(xa) + (1 + β)
∑

za≥xa

zala(xa)

≤
∑

xa>za

zala(xa) + (1 + β)
∑

za≥xa

zala(za),

where the third inequality holds because δ is a (0, β)-deviation and the last inequality
holds because the latency functions are non-decreasing.
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Fig. 5 Example used in the
proof of Theorem 5. The arcs
are labeled by their respective
(la, δa) functions. Note that
δ ∈ 	(0, β)

We obtain

C(x) ≤
∑

xa>za

zala(xa) + (1 + β)
∑

za≥xa

zala(za)

=
∑

xa>za

za[la(xa) − (1 + β)la(za) + (1 + β)la(za)] + (1 + β)
∑

za≥xa

zala(za)

= (1 + β)C(z) +
∑

xa>za

za[la(xa) − (1 + β)la(za)]

≤ (1 + β)C(z) + μ̂(L, β)
∑

xa>za

xala(xa)

≤ (1 + β)C(z) + μ̂(L, β)C(x).

Thus, for μ̂(L, β) < 1, we obtain C(x) ≤ (1 + β)/(1 − μ̂(L, β))C(z).
We will now prove the tightness of the obtained bound if L contains all constant

functions and is closed under scalar multiplication. For arbitrary c ∈ L and demand
r , consider the parallel-arc instance in Fig. 5.

Clearly, a deviated Nash flow is given by x = (x1, x2) = (r, 0), since then l1(x1)+
δ1(x1) = l2(x2) + δ2(x2) = (1 + β)/r . We have C(x) = (1 + β).

For a feasbile flow z = (ε, r − ε). We have

C(z) = (1 + β)εc(ε) + (r − ε)c(r)

rc(r)
= rc(r) − ε[c(r) − (1 + β)c(ε)]

rc(r)

which implies that, with z∗ a socially optimal flow,

C(x)

C(z∗)
≥ C(x)

C(z)
= (1 + β)

(
1 − ε[c(r) − (1 + β)c(ε)]

r · c(r)

)−1

.

In order to claim tightness we can choose c ∈ L, and r ≥ ε ≥ 0, arbitrary close to
μ̂(L, β).

6 Applications

We use our results on the Deviation Ratio and the Biased Price of Anarchy obtained
in the previous sections to derive several new results below.
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6.1 Price of Risk Aversion

We obtain the following bound on the Price of Risk Aversion for multi-commodity
networks with a common source.

Theorem 6 The Price of Risk Aversion for a common source multi-commodity
instance I with non-negative and non-decreasing latency functions, variance-to-
mean-ratio κ > 0 and risk-aversion parameter γ ≥ −1/κ is at most

PRA(I, γ, κ) ≤
{
1 − γ κ/(1 + γ κ)�(n − 1)/2�r for − 1/κ < γ ≤ 0
1 + γ κ�(n − 1)/2�r for γ ≥ 0.

Moreover, these bounds are tight in all its parameters if n = 2m+ 1 and almost tight
if n = 2m. In particular, for single-commodity instances we obtain tightness for all
n ∈ N.

Note that Theorem 6 generalizes the result in [16] to multi-commodity net-
works with a common source and to negative risk-aversion parameters. Further, it
establishes that the bound is tight in all its parameters.

Proof (Theorem 6) Recall from the discussion in Section 2 that the deviations δa =
γ va can be interpreted as θ -deviations with

θmin
a =

{
0 if γ ≥ 0
γ κla if − 1/κ < γ ≤ 0

and θmax
a =

{
γ κla if γ ≥ 0
0 if − 1/κ < γ ≤ 0.

Here, the restriction γ > −1/κ is necessary to satisfy Assumption 1. The theorem
now follows directly from Theorem 1, Example 1 and Theorem 3.

6.2 Stability of Nash Flows Under Small Perturbations

We next show that our results can be used to bound the relative error in social cost
incurred by small latency perturbations.

We introduce some more notation. We say that (l̃a)a∈A are ε-perturbed latency
functions with respect to (la)a∈A if

sup
a∈A, x≥0

∣∣∣∣∣
la(x) − l̃a(x)

la(x)

∣∣∣∣∣ ≤ ε

for some small ε > 0. We are interested in bounding the relative error in social cost
due to ε-perturbations of the latency functions. More precisely, the relative error in
social cost is defined as the ratio

C(f̃ ) − C(f )

C(f )
,

where f is a Nash flow with respect to (la)a∈A and f̃ is a Nash flow with respect to
ε-perturbed latency functions (l̃a)a∈A. To the best of our knowledge, this notion has
not been studied in the literature before.
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The theorem below establishes an upper bound on the relative error in social cost.
In particular, for small ε-perturbations the theorem implies that the relative error is
asymptotically O(εrn).

Theorem 7 Let I be a common source multi-commodity instance with non-negative
and non-decreasing latency functions (la)a∈A. Let f be a Nash flow with respect
to (la)a∈A and let f̃ be a Nash flow with respect to ε-perturbed latency functions
(l̃a)a∈A for some 0 < ε < 1. Then the relative error in social cost satisfies

C(f̃ ) − C(f )

C(f )
≤ 2ε

1 − ε
·
⌈

n − 1

2

⌉
r.

Proof Note that the ε-perturbation l − l̃ can be seen as a (−ε, ε)-deviation. Using
Theorem 1, we obtain

C(f̃ )

C(f )
≤ 1 + 2ε

1 − ε
·
⌈

n − 1

2

⌉
r.

The claim follows.

6.3 Biased Price of Anarchy

Our smoothness bound on the Biased Price of Anarchy derived in Theorem 5
improves upon the bounds of (1 + β)/(1 − μ) recently obtained by Meir and Parkes
[13] and Lineas et al. [11] for (1, μ)-smooth latency functions. To see this, note that
the bound stated in Theorem 5 is not worse than the bound (1+ β)/(1− μ) because
for (1, μ)-smooth latency functions it holds that

μ̂(L, β) ≤ μ̂(L, 0) ≤ μ.

As a direct consequence, we also obtain better smoothness bounds on the Price of
Risk Aversion.

We exemplify the increased strength of our general smoothness bound by deriving
a closed form expression on the Biased Price of Anarchy for affine latency functions.

Theorem 8 Let I be a general multi-commodity instance with affine latency
functions (la)a∈A. Then

BPoA(I, β) ≤ (1 + β)2

3
4 + β

.

Note that the upper bound of 4(1+β)/3 on the Biased Price of Anarchy for affine
latency functions given in [11, 13] is inferior to our bound.

Proof (Theorem 8) Let L be the set of all affine latency functions with non-negative
coefficients. The claim follows from Theorem 5 by showing that μ̂(L, β) = 1

4(1+β)
.
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Let la(y) = cay + da be an arbitrary affine latency function with ca, da ≥ 0. We
need to show that

za[caxa + da − (1 + β)(caza + da)] ≤ 1

4(1 + β)
xa[caxa + da],

or, equivalently,

ca[zaxa − (1+β)z2a]+da[za − za(1+β)] ≤ ca

[
1

4(1 + β)
x2
a

]
+da

[
1

4(1 + β)
xa

]
.

It suffices to show that

zaxa − (1 + β)z2a ≤ 1

4(1 + β)
x2
a and za − za(1 + β) ≤ 1

4(1 + β)
xa.

The second inequality is always true, using the non-negativity of za, xa and β. For
the first inequality, we have

0 ≤
(xa

2
− (1 + β)za

)2 = (1 + β)2z2a + x2
a

4
− (1 + β)xaza,

which implies that

[1 + β]
(
xaza − (1 + β)z2a

)
≤ x2

a

4
.

Dividing this inequality by (1+β) gives the desired result. Further, we have tightness
for (xa, za) = (1, 1

2(1+β)
).

6.4 Absolute Gap Between the BPoA and the Deviation Ratio

Finally, we derive an upper bound on the absolute gap between the Biased Price of
Anarchy and the Deviation Ratio.

Theorem 9 Let L be a set of non-negative, non-decreasing and continuous functions
(containing constants and closed under scalar multiplication). Let G be the set of all
instances with (la)a∈A ∈ LA. If μ̂(L, β) < 1, then

|BPoA(G, (0, β)) − DR(G, (0, β))| ≤ (1 + β)
μ̂(L, β)

1 − μ̂(L, β)
.

For example, for affine latencies we have μ̂(L, β) = 1
4(1+β)

as shown in the proof
of Theorem 8. As a result,

|BPoA(G, (0, β)) − DR(G, (0, β))| ≤ 1 + β

3 + 4β
≤ 1

3

for all β ≥ 0, i.e., the gap is bounded by a constant. In particular, this suggests that for
large β the Biased Price of Anarchy provides a good approximation for the Deviation
Ratio (or the Price of Risk Aversion). Note that this does not follow from the bound
4(1 + β)/3 for affine latencies obtained in [11, 13].

Proof (Theorem 9) Consider the instance dedicated in Fig. 5. No matter how the flow
splits over the two arcs in the unaltered Nash flow z with respect to δ = 0, we always
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have C(z) = 1. Further, as argued in the proof of Theorem 5, the deviated Nash flow
x has social cost C(x) = 1 + β. Thus,

C(x)

C(z)
= 1 + β ≤ DR(G, (0, β)) ≤ BPoA(G, (0, β)) ≤ 1 + β

1 − μ̂(L, β)
.

This implies that

|BPoA(G, (0, β)) − DR(G, (0, β))| ≤ 1 + β

1 − μ̂(L, β)
− (1 + β)

= (1 + β)

(
1

1 − μ̂(L, β)
− 1

)
.

7 Generalizations of our Model

In this section, we consider two natural generalizations of our model and derive some
additional results. In the first generalization, we consider general path deviations
which are more expressive than the arc deviations studied above. In the second gen-
eralization, we consider heterogenous players where players have different attitudes
towards general path deviations.

7.1 General Path Deviations

We consider general path deviations which are not necessarily decomposable into
arc deviations. The main motivation for investigating such deviations is that we can
apply such bounds to the mean-std objective of the Price of Risk Aversion model by
Nikolova and Stier-Moses [16] (see Section 2).

First, we need to adjust some definitions of Section 2. Throughout this section,
we assume that we are given non-positive and non-negative, respectively, continuous
threshold functions θmin = (

θmin
P

)
P∈P and θmax = (

θmax
P

)
P∈P . The set of feasible

path deviations is defined as

	(θ) = {(δP )P∈P | θmin
P (f ) ≤ δP (f ) ≤ θmax

P (f ) for all feasible flows f }.
In particular, (α, β)-path deviations are deviations δ ∈ 	(θ) with θmin

P = αlP and
θmax
P = βlP for all P ∈ P . Given (α, β)-path deviations δ, a flow f is δ-inducible if

f is a Nash flow with respect to l + δ (as defined in (2)).
We obtain the following theorem for general (0, β)-path deviations.

Theorem 10 Let I be a general multi-commodity instance with (la)a∈A ∈ LA. Let x
be δ-inducible with respect to some (0, β)-path deviation δ and let z be an arbitrary
feasible flow. If μ̂(L, 0) < 1/(1 + β), then

C(x) ≤ 1 + β

1 − (1 + β)μ̂(L, 0)
C(z).
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Proof We know that the flow x satisfies the variational inequality

∑
P∈P

xP [lP (x) + δP (x)] ≤
∑
P∈P

zP [lP (x) + δP (x)].

It follows that

C(x) ≤
∑
P∈P

xP [lP (x) + δP (x)] ≤
∑
P∈P

zP [lP (x) + δP (x)] ≤ (1 + β)
∑
P∈P

zP lP (x)

using the non-negativity of the flow and the deviations. Using the definition of the
smoothness parameter μ̂ := μ̂(L, 0) in (8), we find that

∑
P∈P

zP lP (x) =
∑
a∈A

zala(xa) ≤
∑
a∈A

zala(za) +
∑
a∈A

μ̂xala(xa) = C(z) + μ̂C(x).

The claim follows by rearranging terms and exploiting that μ̂ < 1/(1 + β).

As a final observation, we draw a connection between general (α, β)-path devi-
ations and approximate Nash flows. Suppose f is δ-inducible with respect to some
(α, β)-path deviation δ. The Nash flow conditions in (2) then imply that for every
commodity i ∈ [k] and for every path P ∈ Pi with fP > 0, we have

(1 + α)lP (f ) ≤ lP (f ) + δP (f ) ≤ lP ′(f ) + δP ′(f ) ≤ (1 + β)lP ′(f ) ∀P ′ ∈ Pi .

In particular, the above inequalities imply that f is an (1 + β)/(1 + α)-approximate
Nash flow (see [4]). As a consequence, the bounds by Christodoulou et al. [4] on
the Price of Anarchy for approximate Nash flows in non-atomic routing games with
polynomial latency functions, yield upper bounds on the BPoA and DR of instances
with polynomial latency functions.

7.2 Heterogeneous Players

As a second generalization, we consider a heterogeneous population of players
in which different fractions of players have different attitudes towards the path
deviations (as introduced above).

We consider k different player types in a single-commodity network (i.e., all
player types share the same source and destination). For each type i ∈ [k] we have
a demand ri and an attitude τi towards the deviations. We assume without loss of
generality that the demands are normalized such that

∑
i∈[k] ri = 1.

In this context, a feasible flow f = (f i
P )i∈[k],P∈P is δ-inducible if:

∀i ∈ [k], ∀P ∈ P, f i
P > 0 : lP (f ) + τiδP (f ) ≤ lP ′(f ) + τiδP ′(f ) ∀P ′ ∈ P .

We show in the next theorem that the deviation ratio is upper bounded by a func-
tion that is linear in the weighted average of the sensitivities of the different player
types with respect to the deviations.
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Theorem 11 Let I be a single-commodity instance. Let x be δ-inducible with respect
to some (0, β)-path deviation δ and let z be a 0-inducible Nash flow. If there is an
alternating (s, t)-path π consisting only of arcs in Z, then

C(x) ≤
⎛
⎝1 + β

∑
i∈[k]

τiri

⎞
⎠ C(z).

Note that the condition of the alternating path π to consist of arcs in Z only is
equivalent to having η = 1, i.e., π is an actual (s, t)-path in the underlying graph.
In particular, this condition is satisfied for series-parallel graphs (see, e.g., Corol-
lary 4.8 [16]). This implies that the bound derived above holds for all instances with
series-parallel graphs. It would be interesting to see if this bound extends to arbi-
trary alternating paths. In a recent work [10], we further improved upon the result of
Theorem 11.

In the proof below, we use some ideas that have been used in the proof of Lemma
4 [11].

Proof (Theorem 11) For i ∈ [k], let P̄i be a path maximizing lP (x) over all flow-
carrying paths P ∈ P of type i. We have

lP̄i
(x) ≤ lP̄i

(x)+τiδP̄i
(x) ≤ lπ (x)+τiδπ (x) ≤ (1+βτi)lπ (x) = (1+βτi)

∑
a∈π

la(xa).

Note that by definition of the alternating path π , we have xa ≤ za for all a ∈ π .
Continuing with the estimate, we find lP̄i

(x) ≤ (1 + βτi)
∑

a∈π la(za) and thus

C(x) ≤
∑
i∈[k]

ri lP̄i
(x) ≤

∑
i∈[k]

ri

(
(1 + βτi)

∑
a∈π

la(za)

)
.

Note that we can write C(z) = ∑
a∈π la(za) because there exists a flow-

decomposition of z in which π is flow-carrying (here we use za > 0 for all a ∈ π ).
We thus obtain

C(x) ≤
∑
i∈[k]

ri

(
(1 + βτi)

∑
a∈π

la(za)

)
=

⎛
⎝∑

i∈[k]
ri(1 + βτi)

⎞
⎠ C(z).

The claim follows because
∑

i∈[k] ri = 1.

8 Conclusions

We introduced a unifying model to study the impact of (bounded) worst-case latency
deviations in non-atomic selfish routing games. We demonstrated that the Deviation
Ratio is a useful measure to assess the cost deterioration caused by such deviations.
Among potentially other applications, we showed that the Deviation Ratio provides
bounds on the Price of Risk Aversion and the relative error in social cost if the latency
functions are subject to small perturbations.
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Our approach to bound the Deviation Ratio is quite generic and, albeit consider-
ing a rather general setting, enables us to obtain tight bounds. We believe that this
approach will turn out to be useful to derive bounds on the Deviation Ratio of other
games (e.g., network cost sharing games).

In general, studying the impact of (bounded) worst-case deviations of the input
data of more general classes of games (e.g., congestion games) is an interesting and
challenging direction for future work.

Appendix A: Proof of Lemma 1

Lemma 1 Let −1 < α ≤ 0 ≤ β be fixed. Then f is inducible with an (α, β)-
deviation if and only if it is inducible with a (0, β−α

1+α
)-deviation.

Proof Let f be δ-inducible for some αl ≤ δ ≤ βl, and for a ∈ A, write δa(fa) =
dala(fa). Without loss of generality we may assume that δa(x) = dala(x) (since by
definition dala(x) also induces f ). From the equilibrium conditions (2), we know that

∀i ∈ [k], ∀P ∈ Pi , fP > 0 :
∑
a∈P

la(fa)+δa(fa) ≤
∑
a∈P ′

la(fa)+δa(fa) ∀P ′ ∈ Pi .

This is equivalent to ∀i ∈ [k], ∀P ∈ Pi , fP > 0 :
∑
a∈P

(
1 + da − α

1 + α

)
la(fa) ≤

∑
a∈P ′

(
1 + da − α

1 + α

)
la(fa) ∀P ′ ∈ Pi

which can be seen by writing

la(fa) + δa(fa) = (1 + da)la(fa) = (1 + α + da − α)la(fa),

and then dividing the inequality by 1 + α. We then see that δ′, defined by δ′
a(x) =

da−α
1+α

la(x) for all a ∈ A and x ≥ 0, also induces f since

αla(x) ≤ dala(x) ≤ βla(x) ⇔ 0 ≤ da − α

1 + α
la(x) ≤ β − α

1 + α
la(x).

Appendix B: Computing Optimal Deviations

The bounded deviation model introduced in Section 2.2 naturally gives rise to the
following two optimization problems:11

1. Best deviation problem: compute a deviation δ∗ ∈ 	(θ) such that

δ∗ = arg inf
δ∈	(θ)

inf{C(f δ) | f δ is δ-inducible}.

11We assume that the infimum and supremum are attained in the set 	(θ); in particular, this is true for
(α, β)-deviations.
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2. Worst deviation problem: compute a deviation δ∗ ∈ 	(θ) such that

δ∗ = arg sup
δ∈	(θ)

sup{C(f δ) | f δ is δ-inducible}.

Recall that the social cost function C only takes into account the latencies but not
the deviations. A somewhat subtle point here is that for a fixed deviation δ ∈ 	(θ),
the social cost of a δ-inducible flow might not be unique. In particular, in the best
deviation problem we seek a feasible deviation δ such that the social cost of the best
Nash flow that is δ-inducible is minimized (similar as in [2]). In contrast, in the worst
deviation problem we want to determine a feasible deviation δ such that the social
cost of the worst Nash flow that is δ-inducible is maximized.

Below we elaborate on relations between the best deviation problem and various
network toll problems. As a side result, we also show that the worst deviation problem
is NP-hard, even for single-commodity instances with linear latencies (Theorem 12).

B.1 Relations to Network Toll Problems

The best deviation problem is a direct generalization of the restricted network toll
problem introduced by Bonifaci et al. [2]. We obtain this model for θmin = 0. The
deviations are interpreted as non-negative tolls on the arcs. The objective minimized
in [2] is measured against the social optimum, i.e., the authors are interested in
the ratio C(f δ)/C(f ∗), where f ∗ is an optimal flow for the instance I. Also, our
definition of (0, β)-deviations is equivalent to the definition of β-restricted tolls in
[2].

The work by Fotakis et al. [8] can technically be seen as a variant of the restricted
network toll problem in which the tolls are interpreted as risk-averse behavior of
players. Here, we have θmin

a = 0 and θmax
a = γ la for all a ∈ A. The authors consider

deviations of the form δa(x) = γala(x) for 0 ≤ γa ≤ γ for all a ∈ A. In particular,
deviations of this form induce an approximate Nash flow as studied by Christodoulou
et al. [4]. For example, if all latency functions in the network are polynomials of
degree at most d, then we obtain a γ d-approximate Nash flow.

Hoefer et al. [9] consider the taxing subnetwork problem, which is a special case
of the restricted network toll problem. Here only a designated subset of the arcs can
be tolled, which is equivalent to θmin

a = 0 and θmax
a ∈ {0, ∞} for all a ∈ A. They

show that best deviation problem is NP-complete, even for two commodities. To the
best of our knowledge, the single-commodity case is still an open problem. On the
positive side, Hoefer et al. [9] and Bonifaci et al. [2] give polynomial time algorithms
for parallel-arc networks, solving the best deviation problem for their respective
definitions of the threshold functions.

Beckmann et al. [1] proved that the social optimum can be induced as a Nash flow
using marginal tolls, that is, by setting δa(x) = x · l′a(x), where l′a(x) is the derivative
of la(x) (assuming the existence of l′a). In particular, if these tolls are feasible, i.e.,
δ ∈ 	(θ), then δ is an optimal solution for the best deviation problem.

There are several models that study deviations in the form of scaled marginal tolls,
i.e., deviations defined by δa(x) = ρxl′a(x) for some ρ ∈ R. We elaborate on two
such models in more detail:
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In the standard non-atomic routing model it is assumed that players are completely
selfish in the sense that they want to minimize their own latencies. However, more
recently researchers also considered settings where players are (partially) altruis-
tic. Chen et al. [3], for example, model such altruistic behavior by including scaled
marginal tolls in the objective of the players. In particular, they study scaled marginal
tolls with −1 ≤ ρ ≤ 1.

Meir and Parkes [13] also study deviations in the form of scaled marginal tolls,
which are interpreted as behavioral biases towards the marginal tolls. A conceptual
difference here is that the parameter ρ is chosen by the players, instead of the system
designer (as, for example, in the restricted network toll model). Here, the authors
are also interested in the case ρ ≥ 1 (which is less relevant in the other models).
The authors also study this model in [14], where these deviations are interpreted as
distance-based strict uncertainty.

B.2 Hardness of the Worst Deviation Problem

As a side-result, we prove that the problem of determining worst-case deviations is
NP-hard.

Theorem 12 It is NP-hard to compute deviations δ ∈ 	(θ) such that C(f δ) is
maximized, even for single-commodity networks with linear latencies.

Proof We give a reduction from the DIRECTED HAMILTONIAN s, t -PATH problem:
We are given a directed graph G = (V , A), and fixed s, t ∈ V , and the goal is to
decide whether or not there exists a simple directed s, t-path in G that visits every
node exactly once. Let J be an instance of DIRECTED HAMILTONIAN s, t -PATH
problem.

Now, define an instance I of the bounded deviation model on the graph G by
taking la(x) = x for all a ∈ A, θmin

a = 0 for all a ∈ A, and θmax
a = n − 1 for all

a ∈ A. Furthermore, take r = 1.
We claim that G has a Hamiltonian path from s to t if and only if there is a deviation
δ ∈ 	(θ) such that C(f δ) ≥ n − 1. First, let G have a Hamiltonian path P from s to
t , and define δ by δa = 0 if a ∈ P , and δa = n − 1 otherwise. We then have that f δ

is given by f δ
a = 1 if a ∈ P and f δ

a = 0 otherwise, since the perceived latency along
P is then equal to lP (f δ) = n − 1, and any other path P ′ uses at least one different
arc a′ /∈ P , which gives us that

lP ′(f δ) + δP ′(f δ) ≥ la′(f δ) + δa′(f δ) ≥ n − 1 = lP (f δ) + δP (f δ).

Note that f δ is the unique Nash flow in this case (since all the perceived latencies
la + δa are strictly increasing).

Conversely, suppose there is a δ ∈ 	(θ) such that C(f δ) ≥ n−1. For any feasible
flow g we have that lP (g) ≤ n − 1, with strict inequality if f δ

P < 1 (since then there
will be at least one arc a ∈ P with f δ

a < 1). This means that

C(g) =
∑
P∈P

gP lP (g) ≤
∑
P∈P

gP (n − 1) = n − 1,
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Fig. 6 All the values of la, θmin
a and θmax

a that are not explicitly stated are zero

using that r = 1. Again, we have strict inequality if 0 < gP < 1 for some path P , i.e.,
if not all players use the same path. This means that for f δ there is at most one path
P ∗ with f δ

P ∗ > 0, which then implies that f δ
P ∗ = 1. Furthermore, we can conclude

that |A(P ∗)| = lP ∗(f δ) = C(f δ) = n − 1, which implies that P ∗ is a Hamiltonian
path from s to t , since it is a simple path by assumption.

Appendix C: Necessity of Common Source Assumption in Theorem 2

The example below shows that Theorem 2 does not hold if the assumption that all
commodities share a common source is dropped.

Example 2 Consider the graph G = (V , A) in Fig. 6 and suppose that r1 = r2 = 1.
Then the flow f that routes one unit of flow over both paths (s1, v1, 1, 2, t1) and
(s2, v2, 3, 4, t2) is feasible and inducible (take δ = 0). However, looking at the graph
Ĝ(f ), we obtain a negative cost cycle (1, 4, 3, 2, 1) (by using the reversed arcs of
(1, 2) and (3, 4)).
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2. Bonifaci, V., Salek, M., Schäfer, G.: On the efficiency of restricted tolls in network routing games.
Lecture Notes in Computer Science (2011)

3. Chen, P.-A., Kempe, D.: Altruism, selfishness, and spite in traffic routing. In: Proceedings of the 9th
ACM conference on electronic commerce, pp. 140–149. ACM (2008)

4. Christodoulou, G., Koutsoupias, E., Spirakis, P.G.: On the performance of approximate equilibria in
congestion games. Algorithmica 61(1), 116–140 (2011)

5. Cominetti, R.: Equilibrium routing under uncertainty. Math. Program. 151(1), 117–151 (2015)
6. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price of anarchy in

nonatomic congestion games. Games and Economic Behavior 64(2), 457–469 (2008). Special Issue
in Honor of Michael B. Maschler

7. Englert, M., Franke, T., Olbrich, L.: Sensitivity of Wardrop Equilibria, pp. 158–169. Springer, Berlin
(2008)

8. Fotakis, D., Kalimeris, D., Lianeas, T.: Improving selfish routing for risk-averse players. In: Proceed-
ings of Web and Internet Economics - 11th International Conference, WINE 2015, Amsterdam, the
netherlands, december 9–12, 2015, pp. 328–342 (2015)



Theory Comput Syst

9. Hoefer, M., Olbrich, L., Skopalik, A.: Taxing subnetworks. In: Papadimitriou, C.H., Zhang, S. (eds.)
WINE, volume 5385 of Lecture Notes in Computer Science, pp. 286–294. Springer (2008)

10. Kleer, P., Schäfer, G.: Path Deviations Outperform Approximate Stability in Heterogeneous Conges-
tion Games, pp. 212–224. Springer International Publishing Cham, Berlin (2017)

11. Lianeas, T., Nikolova, E., Stier-Moses, N.E.: Asymptotically tight bounds for inefficiency in risk-
averse selfish routing. CoRR, arXiv:1510.02067 (2015)
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