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Abstract

We study relations between geometric embeddings of graphs and
the spectrum of associated matrices, focusing on outerplanar embed-
dings of graphs. For a simple connected graph G = (V,E), we define a
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“good”G-matrix as a V ×V matrix with negative entries corresponding
to adjacent nodes, zero entries corresponding to distinct nonadjacent
nodes, and exactly one negative eigenvalue. We give an algorithmic
proof of the fact that it G is a 2-connected graph, then either the
nullspace representation defined by any “good” G-matrix with corank
2 is an outerplanar embedding of G, or else there exists a “good” G-
matrix with corank 3.

1 Introduction

We study relations between geometric embeddings of graphs, the spectrum
of associated matrices and their signature, and topological properties of
associated cell complexes. We focus in particular on 1-dimensional and 2-
dimensional embeddings of graphs, in the hope that the techniques can be
extended to higher dimensions.

Spectral parameters of graphs. The basic connection between
graphs, matrices, and geometric embeddings considered in this paper can
be described as follows. We define a G-matrix for an undirected graph
G = (V,E) as a symmetric real-valued V ×V matrix that has a zero in posi-
tion (i, j) if i and j are distinct nonadjacent nodes. The matrix is well-signed
if Mij < 0 if i and j are distinct adjacent nodes. (There is no condition on
the diagonal entries.) If, in addition, M has exactly one negative eigen-
value, then let us call it good (for the purposes of this introduction). Let
κ(G) denote the largest d for which there exists a good G-matrix.

The parameter κ is closely tied to certain topological properties of the
graph. Combining results of [1], [2], [8], [5] and [9], one gets the following
facts:

If G is connected, then κ(G) ≤ 1 ⇔ G is a path,
If G is 2-connected, then κ(G) ≤ 2 ⇔ G is outerplanar,
If G is 3-connected, then κ(G) ≤ 3 ⇔ G is planar,
IfG is 4-connected, then κ(G) ≤ 4 ⇔ G is linklessly embeddable.

We study algorithmic aspects of the first two facts. Let us discuss here
the second, which says that if G is a 2-connected graph, then either it has an
embedding in the plane as an outerplanar map, or else there exists a good
G-matrix with corank 3 (and so the graph is not outerplanar). To construct
an outerplanar embedding, we use the nullspace of any good G-matrix with
corank 2.

Nullspace representations. To describe this construction, suppose
that a V × V matrix M has corank d. Let U ∈ R

d×n be a matrix whose
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rows form a basis of the nullspace of M . This matrix satisfies the equation

UM = 0, (1)

where U is a d×nmatrix of rank d andM is aG-matrix with corank d. Let ui
be the column of U corresponding to node i ∈ V . The mapping u : V → R

d

is called the nullspace representation of V defined by M . It is unique up
to linear transformations of Rd. (For the purist: the map V → ker(M)∗

is canonically defined; choosing the basis in ker(M) just identifies ker(M)
with R

d.)
If G = (V,E) is a graph and u : V → R

d is any map, we can extend it
to the edges by mapping the edge ij to the straight line segment between
ui and uj. If u is the nullspace representation of V defined by M , then this
extension gives the nullspace representation of G defined by M .

In this paper we give algorithmic proofs of two facts:

(1) If G is connected graph with κ(G) = 1, then the nullspace repre-
sentation defined by any well-signed G-matrix M with one negative
eigenvalue and with corank 1 yields an embedding of G in the line.

(2) If G is 2-connected and κ(G) = 2, then the nullspace representation
defined by any well-signed G-matrix M with one negative eigenvalue
and with corank 2 yields an outerplanar embedding of G.

The proofs are algorithmic in the sense that (say, in the case of (2)) for every
2-connected graph we either construct an outerplanar embedding or a good
G-matrix with corank 3 in polynomial time. The alternative proof that can
be derived from the results of [6] uses the minor-monotonicity of the Colin de
Verdière parameter (see below), and this way it involves repeated reference
to the Implicit Function Theorem, and does not seem to be implementable
in polynomial time. The word ”yields” above hides some issues concerning
normalization, to be discussed later.

Paper [6] also contains the analogous result for planar graphs, which was
extended in [7]:

(3) If G is 3-connected and κ(G) = 3, then the nullspace representation
defined by any well-signed G-matrix with one negative eigenvalue and
with corank 2 yields a representation of G as the skeleton of a convex
3-polytope.

Again, the proof uses the minor-monotonicity of the Colin de Verdière pa-
rameter and the Implicit Function Theorem, and thus it is not algorithmic.
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It would be interesting to see whether our approach can be extended to an
algorithmic proof for dimension 3. (While we focus on the case κ(G) = 2,
some of our results do bear upon higher dimensions, in particular the results
in Section 2.2 below.)

A further extension to dimension 4 would be particularly interesting,
since 4-connected linklessly embeddable graphs are characterized by the
property that κ(G) ≤ 4, but it is not known whether the nullspace rep-
resentation obtained from a good G-matrix of corank 4 yields a linkless
embedding of the graph.

The Strong Arnold Hypothesis and the Colin de Verdière num-
ber. We conclude this introduction with a discussion of the connection
between the parameter κ(G) and the graph parameter µ(G) introduced by
Colin de Verdière [1]. This latter is defined similarly to κ as the maximum
corank of a good G-matrix M , where it is required, in addition, that M
has a nondegeneracy property called the Strong Arnold Property. There are
several equivalent forms of this property; let us formulate one that is related
to our considerations in the sense that it uses any nullspace representation
u defined by M : if a symmetric d× d matrix N satisfies uTi Nui = 0 for all
i ∈ V and uTi Nuj = 0 for each edge ij of G, then N = 0. In more geometric
terms this means that the nullspace representation of the graph defined by
M is not contained in any nontrivial homogeneous quadric.

The relationship between µ and κ is not completely clarified. Trivially
µ(G) ≤ κ(G). Equality does not hold in general: consider the graph Gl,m

made from an (l+m)-clique by removing the edges of an m-clique. If l ≥ 1
and m ≥ 3, then µ(Gl,m) = l + 1 whereas κ(Gl,m) = l +m− 2. (Note that
Gl,m is not l + 1-connected.)

Colin de Verdière’s parameter has several advantages over κ. First, it
is minor-monotone, while κ(G) is not minor-monotone, not even subgraph-
monotone: any path P satisfies κ(P ) ≤ 1, but a disjoint union of paths can
have arbitrarily large κ(G). Furthermore, the connection with topological
properties of graphs holds for µ without connectivity conditions:

µ(G) ≤ 1 ⇔ G is a disjoint union of paths,
µ(G) ≤ 2 ⇔ G is outerplanar,
µ(G) ≤ 3 ⇔ G is planar,
µ(G) ≤ 4 ⇔ G is linklessly embeddable in R

3.

Our use of κ is motivated by its easier definition and by the (slightly)
stronger, algorithmic results.

We see from the facts above that by requiring that G is µ(G)-connected,
we have µ(G) = κ(G) for µ(G) ≤ 4. In fact, it was shown by Van der
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Holst [3] that if G is 2-connected outerplanar or 3-connected planar, then
every good G-matrix has the Strong Arnold Property. This also holds true
for 4-connected linklessly embeddable graphs [9]. One may wonder whether
this remains true for µ(G)-connected graphs with larger µ(G). This would
imply that µ(G) = κ(G) for every µ(G)-connected graph.

2 G-matrices

2.1 Nullspace representations

Let us fix a connected graph G = (V,E) on node set V = [n], and an integer
d ≥ 1. We denote by W = W(G, d) the set of well-signed G-matrices with
corank at least d, and by W0 = W0(G, d), the set of well-signed G-matrices
with corank exactly d. We define W ′ = W ′(G, d) as the set of G-matrices in
W(G, d) with exactly one negative eigenvalue (of multiplicity 1). We denote
by Mu the linear space of G-matrices M with UM = 0, by Wu, the set of
well-signed G-matrices in Mu, and by W ′

u, the set of matrices in Wu with
exactly one negative eigenvalue.

We can always perform a linear transformation of Rd, i.e., replace U by
AU , where A is any nonsingular d×d matrix. In the case when corank(M) =
d (which will be the important case for us), the matrix U is determined by
M up to such a linear transformation of Rd.

Another simple transformation we use is “node scaling”: replacing U by
U ′ = UD and M by M ′ = D−1MD−1, where D is a nonsingular diagonal
matrix. Then M ′ is a G-matrix and U ′M ′ = 0. Through this transforma-
tion, we may assume that every nonzero vector ui has unit length. We call
such a representation normalized.

One of our main tools will be to describe more explicit solutions of the
basic equation (1) in dimensions 1 and 2. More precisely, given a graph
G = (V,E) and a representation U : V → R

2, our goal is to describe all
G-matrices M with UM = 0. Note that it suffices to find the off-diagonal
entries: if Mij is given for ij ∈ E in such a way that

∑

j∈N(i)

Mijuj ‖ ui, (2)

then there is a unique choice of diagonal entries Mii that gives a matrix with
UM = 0:

Mii = −
∑

j

Mij

uTj ui

uTi ui
. (3)

5



2.2 G-matrices and eigenvalues

In this section we consider eigenvalues of well-signed G-matrices; we consider
the connected graph G and the dimension parameter d fixed. We start with
a couple of simple observations.

Lemma 1 Let M be a well-signed G-matrix with corank d ≥ 1 and let

U ∈ R
d×n such that UM = 0 and rank(U) = d.

(a) If M is positive semidefinite, then d = 1, and all entries of U are

nonzero and have the same sign.

(b) If M has a negative eigenvalue, then the origin is an interior point

of the convex hull of the columns of U .

Proof. Let λ be the smallest eigenvalue of M . As G is connected, λ has
multiplicity one by the Perron–Frobenius theorem, and M has a positive
eigenvector v belonging to λ. If λ = 0, then this multiplicity is d = 1, and
U consists of a single row parallel to v. If λ < 0, then every row of U , being
in the nullspace of M , is orthogonal to v. Thus the entries of v provide
a representation of 0 as a convex combination of the columns of U with
positive coefficients. �

Lemma 2 If d ≥ 2, then the set W ′ is relatively closed in W, and W ′ ∩W0

is relatively open in W.

Proof. Let λi(M) denote the i-th smallest eigenvalue of the matrix M .
We claim that for any M ∈ W,

M ∈ W ′ ⇔ λ2(M) ≥ 0. (4)

Indeed, if M ∈ W ′, then trivially λ2(M) ≥ 0. Conversely, if λ2(M) ≥ 0,
then M has at most one negative eigenvalue. By Lemma 1(a), it has exactly
one, that is, M ∈ W ′. This proves (4). Since λ2(M) is a continuous function
of M , the first assertion of the lemma follows.

We claim that if d ≥ 2, for any M ∈ W,

M ∈ W ′ ∩W0 ⇔ λd+2(M) > 0. (5)

Indeed, if M ∈ W ′ ∩ W0, then M has one negative eigenvalue and ex-
actly d zero eigenvalues, and so λd+2(M) > 0. Conversely, assume that
λd+2(M) > 0. Since M has at least d zero eigenvalues and at least one neg-
ative eigenvalue (by Lemma 1(a)), we must have equality in both bounds,
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which means that M ∈ W ′ ∩W0. This proves (5). Continuity of λd+2(M)
implies the second assertion. �

This last proposition implies that each nonempty connected subset of
W0 is either contained in W ′ or is disjoint from W ′. We formulate several
consequences of this fact.

Lemma 3 Suppose that G is 2-connected, and let M be a well-signed G-

matrix with one negative eigenvalue and with corank d = κ(G). Let u be the

nullspace representation defined by M , let v ∈ R
d, and let J := {i : ui = v}.

If |J | ≥ 2, then the origin 0 belongs to the convex hull of u(V \ J).

Proof. For i ∈ V , let ei be the i-th unit basis vector, and for i, j ∈ V , let
Dij be the matrix (ei − ej)(ei − ej)

T. Define

Mα := M + α
∑

ij∈E

i,j∈J

MijD
ij (α ∈ [0, 1]).

The definition of J implies that ker(M) ⊆ ker(Dij) for all i, j ∈ J , and hence
ker(M) ⊆ ker(Mα) for each α ∈ [0, 1]. So corank(Mα) ≥ corank(M) = κ(G)
for each α ∈ [0, 1]. Moreover, Mα is a well-signed G-matrix for each α ∈
[0, 1). Since M = M0 ∈ W ′, Lemma 2 implies that Mα ∈ W ′ for each
α ∈ [0, 1). By the continuity of eigenvalues, M1 has at most one negative
eigenvalue. Note that M1

ij = 0 for any two distinct i, j ∈ J .
Assume that 0 does not belong to the convex hull of {ui : i 6∈ J}. Then

there exists c ∈ R
κ(G) such that uTi c < 0 for each i 6∈ J . As 0 belongs

to interior of the convex hull of u(V ) by Lemma 1(b), this implies that
uTi c = vTc > 0 for each i ∈ J .

As |J | ≥ 2, the 2-connectivity of G implies that J contains two distinct
nodes, say nodes 1 and 2, that have neighbors outside J . Since ker(M) ⊆
ker(M1), we have

∑

j M
1
1juj = 0, and hence

M1
11u

T

1 c = −
∑

j 6=1

M1
1ju

T

j c = −
∑

j 6∈J
M1

1ju
T

j c.

As uT1 c > 0 and uTj c < 0 for j 6∈ J , and as M1
1j ≤ 0 for all j 6∈ J , and

M1
1j < 0 for at least one j 6∈ J , this implies M1

11 < 0. Similarly, M1
22 < 0.

As M1
12 = 0, the first two rows and columns of M ′ induce a negative definite

2× 2 submatrix of M1. This contradicts the fact that M1 has at most one
negative eigenvalue. �

For the next step we need a simple lemma from linear algebra.
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Lemma 4 Let A and M be symmetric n × n matrices. Assume that A is

0 outside a k × k principal submatrix, and let M0 be the complementary

(n− k)× (n− k) principal submatrix of M . Let a and b denote the number

of negative eigenvalues of A and M0, respectively. Then for some s > 0, the
matrix sM +A has at least a+ b negative eigenvalues.

Proof. We may assume A =
(

A0 0
0 0

)

and M =
(

M1 MT

2

M2 M0

)

, with A0 and

M1 having order k×k. By scaling the last n−k rows and columns of sM+A

by 1/
√
s, we get the matrix

(

sM1 +A0

√
sMT

2√
sM2 M0

)

. Letting s → 0, this tends

to B =
(

A0 0
0 M0

)

. Clearly, B has a + b negative eigenvalues, and by the

continuity of eigenvalues, the lemma follows. �

Lemma 5 Let M be a well-signed G-matrix with one negative eigenvalue

and with corank d = κ(G), let u be the nullspace representation defined by

M , and let C be a clique in G of size at most κ(G) such that the origin

belongs to the convex hull of u(C). Then G− C is disconnected.

Proof. We can write 0 =
∑

i aiui with ai ≥ 0,
∑

i ai = 1, and ai = 0 if
i 6∈ C. Let A be the matrix −aaT. Since a is nonzero, A has a negative
eigenvalue.

Since
∑

i aiui = 0, we have ker(M) ⊆ ker(M + sA) for each s. This
implies that corank(M + sA) ≥ corank(M) for each s. Moreover, M + sA is
a well-signed G-matrix for s ≥ 0. Hence, as M ∈ W ′, we know by Lemma 2
that M+sA ∈ W ′ for every s ≥ 0. In other words, M+sA has one negative
eigenvalue for every s ≥ 0.

LetM0 be the matrix obtained fromM by deleting the rows and columns
with index in C. Note that M0 has no negative eigenvalue: otherwise by
Lemma 4, M + sA has at least two negative eigenvalues for some s > 0, a
contradiction.

Now suppose that G − C is connected. As u(C) is linearly dependent
and |C| ≤ corank(M), ker(M) contains a nonzero vector x with xi = 0
for all i ∈ C. Then by the Perron–Frobenius theorem, corank(M0) = 1
and ker(M0) is spanned by a positive vector y. As G is connected, x is
orthogonal to the positive eigenvector belonging to the negative eigenvalue
of M . So x has both positive and negative entries. On the other hand,
x|V \C ∈ ker(M0), and so x|V \C must be a multiple of y, a contradiction. �

Taking C a singleton, we derive:
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Corollary 6 Let G be a 2-connected graph, let M ∈ W ′ have corank κ(G),
and let u be the nullspace representation defined by M . Then ui 6= 0 for all

i. Equivalently, the nullspace representation defined by M can be normalized

by node scaling.

3 1-dimensional nullspace representations

As a warmup, let us settle the case d = 1. For every connected graph
G = (V,E), it is easy to construct a singular G-matrix with exactly one
negative eigenvalue: start with any G-matrix, and subtract an appropriate
constant from the main diagonal. Our goal is to show that unless the graph is
a path and the nullspace representation is a monotone embedding in the line,
we can modify the matrix to get a G-matrix with one negative eigenvalue
and with corank at least 2.

3.1 Nullspace and neighborhoods

We start with noticing that given vector u ∈ R
V , it is easy to describe the

matrices in Wu. Indeed, consider any matrix M ∈ Mu. Then for every
node i with ui = 0, we have

∑

j∈N(i)

Mijuj =
∑

j

Mijuj = 0. (6)

Furthermore, for every node i with ui 6= 0, we have

Mii = − 1

ui

∑

j∈N(i)

Mijuj . (7)

Conversely, if we specify the off-diagonal entries of a G-matrix M so that
(6) is satisfied, then we can define Mii for nodes i ∈ supp(u) according to
(7), and for nodes i with with ui = 0 arbitrarily, we get a matrix in Mu.

As an application of this construction, we prove the following lemma.

Lemma 7 Let u ∈ R
V . Then Wu 6= ∅ if and only if for every node i with

ui = 0, either all its neighbors satisfy uj = 0, or it has neighbors both with

uj < 0 and uj > 0.

Proof. By the remark above, it suffices to specify negative numbers Mij

for the edges ij so that (6) is satisfied for each i with ui = 0. The edges
between two nodes with ui = 0 play no role, and so the conditions (6) can
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be considered separately. For a fixed i, the single linear equation for the
Mij can be satisfied by negative numbers if and only if the condition in the
lemma holds. �

We need the following fact about the neighbors of the other nodes.

Lemma 8 Let u ∈ R
V , M ∈ Wu, and suppose that M has a negative

eigenvalue λ < 0, with eigenvector π > 0. Then every node i with ui > 0
has a neighbor j for which uj/πj < ui/πi.

Proof. Suppose not. Then uj ≥ πjui/πi for every j ∈ N(i), and so

0 =
∑

j

Mijuj ≤ Miiui +
∑

j∈N(i)

Mij
πj
πi

ui =
ui
πi

(

∑

j

Mijπj

)

= λui < 0,

a contradiction. �

3.2 Auxiliary algorithms

No we turn to the algorithmic part, starting with some auxiliary algorithms.

Algorithm 1 (Interpolation)
Input: a vector u ∈ R

V and two matrices M ∈ W ′
u and M ′ ∈ Wu \W ′

u.
Output: a matrix M ′′ ∈ W ′

u with corank at least 2.

Consider the well-signed G-matrices M t = tM ′ + (1 − t)M (0 ≤ t ≤ 1).
As W ′ ∩W0 is open and closed in W0, there must be points t ∈ [0, 1] where
corank(M t) > 1. We can find these values t by considering any nonsingular
(n − 1) × (n − 1) submatrix of M , and the corresponding submatrix Bt of
M t. Then every value of t with corank(M t) > 1 is a root of the algebraic
equation det(Bt) = 0, so only these have to be inspected. The first such
point will give a matrix M t ∈ W ′

u with corank(M t) > 1.

Algorithm 2 (Double node)
Input: a vector u ∈ R

V , two nodes i and j with ui = uj = 0, and a
matrix M ∈ Wu.

Output: a matrix M ′ ∈ Wu with at least two negative eigenvalues.

Subtract t > 0 from both diagonal entries Mii and Mjj, to get a matrix
M ′. Trivially M ′ ∈ Wu. Furthermore, if t > 2max{|Mii|, |Mjj |, |Mij |},
then the submatrix of M ′ formed by rows and columns i and j has negative
trace and positive determinant, and so it has two negative eigenvalues. This
implies that M ′ has at least two negative eigenvalues.
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Algorithm 3 (Double cover)
Input: a vector u ∈ R

V , two edges ab and cd with ua, uc < 0 and
ub, ud > 0, and a matrix M ∈ Wu.

Output: a matrix M ′ ∈ Wu with at least two negative eigenvalues.

Assume that b 6= d (the case when a 6= c can be treated similarly). Define
the symmetric matrix Nab ∈ R

V×V by

(Nab)ij =























ub/ua, if {i, j} = {a, b},
−u2b/u

2
a, if i = j = a,

−1, if i = j = b,

0, otherwise,

and define N cd analogously. Then Nabu = N cdu = 0, and so M ′ =
M + tNab + tN cd ∈ Wu for every t > 0. Furthermore, if t >
2max{|Mbb|, |Mdd|, |Mbd|}, then M ′ has at least two negative eigenvalues
by the same argument as in Algorithm 2.

3.3 Embedding in the line

Now we come to the main algorithm for dimension 1.

Algorithm 4
Input: A connected graph G = (V,E).
Output: Either an embedding u : V → R of G (then G is a path), or a

well-signed G-matrix with one negative eigenvalue and corank at least 2.

Preparation. We find a matrix M ∈ W ′(G). This is easy by creating
any well-signed G-matrix and subtracting its second smallest eigenvalue from
the diagonal. We may assume that corank(M) = 1, else we are done.

Let u 6= 0 be a vector in the nullspace of M , and let π be an eigenvector
belonging to its negative eigenvalue. We apply node-scaling, and get that the
matrix M ′ = diag(π)Mdiag(π) is in W ′(G) and the vector w = (ui/πi : i ∈
V ) is in its nullspace. By Lemma 8, this means that if we replace M by M ′

and u by w, then we get a vector u ∈ R
n and a matrix M ∈ W ′

u such that
every node i with ui > 0 has a neighbor j with uj < ui, and every node i
with ui < 0 has a neighbor j with uj > ui.

Let us define a cell as an open interval between two consecutive points
ui. If every cell is covered by only one edge, then G is a path and u defines
an embedding of G in the line, and we are done. Else, let us find a cell (a, b)
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covered by at least two edges that is nearest the origin. Replacing u by −u
if necessary, we may assume that b > 0.

Main step. Below, we are going to maintain the following conditions.
We have a vector u ∈ R

V and a matrix M ∈ W ′
u; every node i with ui > 0

has a neighbor j with uj < ui; there is a cell (a, b) with b > 0 that is doubly
covered, and that is nearest the origin among such cells.

We have to distinguish some cases.
Case 1. If a < 0, then we use the Double Cover Algorithm 3 to find

a matrix M ′ ∈ Wu with two negative eigenvalues, and the Interpolation
Algorithm 1 returns a matrix with the desired properties.

Case 2. If a ≥ 0, then let up be the smallest nonnegative entry of u.

Case 2.1. Assume that up = 0. If there is a node j 6= p with uj = 0,
then run the Double Node algorithm 2 to get a matrix in Wu with at least
two negative eigenvalues, and we can finish by the Interpolation Algorithm
1 again. So we may assume that uj 6= 0 for j 6= p.

Let (0, c) be the cell incident with 0 (c > 0), and let M ′ be obtained from
M by replacing the (p, p) diagonal entry by 0, then M ′ ∈ Wu. It follows
by Lemma 1 that M ′ is not positive semidefinite. If M ′ has more than one
negative eigenvalue, then we can run the Interpolation Algorithm 1. So we
may assume that M ′ ∈ W ′

u.
For t ∈ (0, c), consider the G-matrices At defined for edges ij by

At
ij = At

ji =











Mij, if i, j 6= p,

uj
uj − t

Mpj, if i = p,

and on the diagonal by

At
ii = − 1

ui − t

∑

j∈N(i)

At
ij(uj − t).

Clearly, At is a well-signed G-matrix and At(u − t) = 0. This means that
At ∈ Wu−t. Lemma 1 implies that At has at least one negative eigenvalue.
Furthermore, if t → 0, then At

ij → Mij ; this is trivial except for i = j = p,
when, using that

∑

j∈N(p)Mpjuj = −Mppup = 0, we have

At
pp =

1

t

∑

j∈N(p)

Mpjuj = 0.

Thus At → M ′ as t → 0.
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If the matrix Ac/2 has one negative eigenvalue, then replace M by Ac/2

and u by u − c/2, and return to the Main Step. Note that the number of
nodes with ui ≥ 0 has decreased, while those with ui > 0 did not change.

If it has more than one, then consider the points t ∈ (0, c/2] where
corank(At) > 1 (such a value of t exists by Lemma 2). These values of t can
be found like in the Interpolation Algorithm 1. The smallest such value of
t gives At ∈ W ′(G) and corank(At) > 1, and we are done.

Case 2.2. Assume that up > 0. Let σ and τ denote the cells to the left
and to the right of up (so 0 ∈ σ). There is no other node q with uq = up
(since from both nodes, an edge would start to the left, whereas 0 is covered
only once). From up, there is an edge starting to the left, and also one to
the right (since by connectivity, there is an edge covering τ , and this must
start at p, since σ is covered only once). Therefore, Wu−up 6= ∅ by Lemma 7.
Following the proof of this Lemma, we can construct a matrix B ∈ Wu−up .

For t ∈ [0, up), consider the G-matrices Bt defined for edges ij by

Bt
ij = Bt

ji =







Bij, if i, j 6= p,
uj − up
uj − t

Bpj, if i = p,

and on the diagonal by

Bt
ii = − 1

ui − t

∑

j∈N(i)

Bt
ij(uj − t).

Clearly, Bt is a well-signed G-matrix and Bt(u − t) = 0. Furthermore,
Bt → B if t → up.

If B has one negative eigenvalue, then replace M by B and u by u− up,
and go to the Main Step. Note that the number of nodes with ui > 0 has
decreased, while those with ui ≥ 0 did not change.

If B0 has more than one negative eigenvalue, then we call the Interpola-
tion Algorithm 1, to get a matrix in W ′

u with corank at least 2. Finally, if
B has more than one negative eigenvalue and B0 has only one, then there
must be values of t such that corank(Bt) > 1. We can find these values just
as in the Interpolation Algorithm 1. For the smallest such value of t we have
Bt ∈ W ′(G) and corank(B) > 1, and we are done.

13



4 2-dimensional nullspace representations

4.1 G-matrices and circulations

Our goal in this section is to provide a characterization of G-matrices and
their nullspace representations in dimension 2.

A circulation on an undirected simple graph G is a real function f : V×V
such that is supported on adjacent pairs, is skew symmetric and satisfies the
flow conditions:

f(i, j) = 0 (ij /∈ E), f(i, j) = −f(j, i) (ij ∈ E),
∑

j

f(i, j) = 0 (i ∈ V ).

If we fix an orientation of the graph, then it suffices to specify the values
of f on the oriented edges; the values on the reversed edges follow by skew
symmetry. A positive circulation on an oriented graph (V,A) is a circulation
on the underlying undirected graph that takes positive values on the arcs in
A.

For any representation u : V → R
k, we define its area-matrix as the

(skew-symmetric) matrix T = T (u) by Tij := det(ui, uj). This number is
the signed area of the parallelogram spanned by ui and uj , and it can also
be described as Tij = uTi u

′
j, where u′j is the vector obtained by rotating uj

counterclockwise over 90◦.
Given a graph G and a representation u : V → R

2 by nonzero vectors,
we define a directed graph (V,Au) and an undirected graph (V,Eu) by

Au : = {(i, j) ∈ V × V | ij ∈ E,T (u)ij > 0}
Eu : = {ij ∈ E | T (u)ij = 0}.

So E is partitioned into Au and Eu, where (V,Au) is an oriented graph in
which each edge is oriented counterclockwise as seen from the origin. The
graph (V,Eu) consists of edges that are contained in a line through the
origin.

Given a representation u : V → R
2, a circulation f on (V,Au) and a

function g : Eu → R, we define a G-matrix M(u, f, g) by

M(u, f, g)ij =

{

−fij/Tij , if ij ∈ Au,

g(ij), if ij ∈ Eu.

We define the diagonal entries by (3), and let the other entries be 0.

14



Lemma 9 Let G = (V,E) be a graph, let u : V → R
2 be a representation

of V by nonzero vectors. Then

Mu =
{

M(u, f, g) : f is a circulation on (V,Au) and g : Eu → R
}

.

Proof. First, we prove that M(u, f, g) ∈ Mu for every circulation on
(V,Au) and every g : Eu → R. Using that M(u, f, g) = M(u, f, 0) +
M(u, 0, g), it suffices to prove that M(u, f, g) ∈ Mu if either g = 0 or h = 0.
If M = M(u, f, 0), then using that f is a circulation, we have

(

∑

j

Mijuj

)

T

u′i =
∑

j

fij = 0.

This means that
∑

j Miju
T

j is orthogonal to u′i, and so parallel to ui. As
remarked above, this means that M(u, f, 0) ∈ Mu. If M = M(u, 0, g), then
for every i ∈ V ,

∑

j∈N(i)

Mijuj =
∑

j: ij∈Eu

g(ij)uj

This vector is clearly parallel to ui, proving that M(u, 0, g) ∈ Mu.
Second, given a matrix M ∈ Mu, define fij = −TijMij for ij ∈ Au and

gij = Mij for ij ∈ Eu. Then f is a circulation. Indeed, for i ∈ V ,

∑

ij∈Au

fij = −
∑

ij∈Au

Miju
T

j u
′
i = −

∑

j∈V
Miju

T

j u
′
i =

(

−
∑

j∈V
Mijuj

)

T

u′i = 0.

Furthermore, M(u, f, g) = M by simple computation. �

Note that the G-matrix M(u, f, g) is well-signed if and only if f is a
positive circulation on (V,Au) and g < 0. Thus,

Corollary 10 Let G = (V,E) be a graph, let u : V → R
2 be a representa-

tion of V by nonzero vectors. Then

Wu =
{

M(u, f, g) : f is a positive circulation on (V,Au),

g : Eu → R, g < 0
}

.

In particular, it follows that Wu 6= ∅ if and only if Au carries a positive
circulation. This happens if and only if each arc in Au is contained in a
directed cycle in Au; that is, if and only if each component of the directed
graph (V,Au) is strongly connected.
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The signature of eigenvalues of M(u, f, g) is a more difficult question,
but we can say something about M(u, 0, g) if g < 0. Let H be a connected
component of the graph (V,Eu), and let MH be the submatrix of M(u, 0, g)
formed by the rows and columns whose index belongs to V (H). Then MH

is a well-signed H-matrix. The vectors ui representing nodes i ∈ V (H) are
contained in a single line through the origin. Lemma 1 implies that MH has
at least one negative eigenvalue unless u(V (H)) is contained in a semiline
starting at the origin. Let us call such a component degenerate. Then we
can state:

Lemma 11 Let u : V → R
2 be a representation of V with nonzero vectors,

and let g : Eu → R be a function with negative values. Then the number of

negative eigenvalues of M(u, 0, g) is at least the number of non-degenerate

components of (V,Eu).

4.2 Shifting the origin

For a representation (u1, . . . , un) in R
2 and p ∈ R

2, let us write u−p for the
representation (u1 − p, . . . , un − p).

Consider the cell complex made by the (two-way infinite) lines through
distinct points ui and uj with ij ∈ E. The 1- and 2-dimensional cells are
called 1-cells and 2-cells, respectively. Two cells c and d are incident if
d ⊆ c \ c or c ⊆ d \ d.

Two points p and q belong to the same cell if and only if Au−p = Au−q

and Eu−p = Eu−q. Hence, for any cell c, we can write Ac and Ec for
Au−p and Eu−p, where p is an arbitrary element of c. For any cell c, set
Wc :=

⋃

p∈cWu−p. It follows by Lemma 9 that if Wc 6= ∅, then Wu−p 6= ∅ for
every p ∈ c. It also follows that Wc is connected for each cell c, as it is the
range of the continuous function M(u−p, f, g) on the connected topological
space of triples (p, f, g) where p ∈ c, f is a positive circulation on Ac, and g
is a negative function on Ec.

The following lemma is an essential tool in the proof.

Lemma 12 Let c be a cell with Wc 6= ∅ and let q ∈ c. Then M(u−q, 0, g) ∈
Wc for some negative function g on Eu−q.

Proof. Choose any p ∈ c. Note that q ∈ c implies that Eu−p ⊆ Eu−q. Let
M ∈ Wu−p, then by Lemma 9 we can write M = M(u− p, h, g′) with some
positive circulation h on Au−p and negative function g′ on Eu−p. Define
g(ij) = Mij for ij ∈ Eu−q. For α ∈ (0, 1], define pα = (1 − α)q + αp, and
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consider the G-matrices Mα = M(u − pα, αh, g
′). Clearly Mα ∈ Wc. It

suffices to prove that

Mα → M(u− q, 0, g) (α → 0). (8)

Consider any position (i, j) with i 6= j. If ij ∈ Eu−p, then the (i, j) ma-
trix entries in Mα and M(u− q, 0, g) are both equal to g′(ij), independently
of α. If ij 6∈ Eu−p, then for each α ∈ (0, 1] we have ij 6∈ Eu−αp, and

(Mα)ij =
−αhij

T (u− pα)ij
. (9)

If ij ∈ Eu−q \ Eu−p, then there is a line through ui, uj , and q. Hence
T (u− pα)ij = αT (u− p)ij for each α ∈ (0, 1], and so

(Mα)ij =
−hij

T (u− p)ij
= Mij .

If ij 6∈ Eu−q, then (9) implies that (Mα)ij → 0 as α → 0, since limα→0 T (u−
pα)ij = T (u− q)ij 6= 1.

So (8) holds on all off-diagonal positions. By (3), it holds for the diagonal
entries as well. �

Corollary 13 Let c be a cell with Wc 6= ∅ and q ∈ c. Then for every matrix

M ∈ Wu−q there is a matrix M ′ ∈ Wu−q ∩Wc that differs from M only on

entries corresponding to edges in Eu−q and on the diagonal entries.

Proof. By Lemma 9 we can write M = M(u− q, f, g) with some positive
circulation f on Au−q and negative function g on Eu−q. By Lemma 12,
there is a negative function g′ on Eu−q such that M(u − q, 0, g′) ∈ Wc.
There are points pk ∈ c and matrices Mk ∈ Wu−pk such that Mk → M(u−
q, 0, g′) as k → ∞. Then Mk + M(u − pk, f, 0) belongs to Wu−pk and
Mk + M(u − pk, f, 0) → M(u − q, 0, g′) + M(u − q, f, 0) = M(u − q, f, g′)
as k → ∞, showing that M ′ = M(u− q, f, g′) belongs to Wc. Furthermore,
M − M ′ = M(u − q, 0, g − g′) is nonzero on entries in Eu−q and on the
diagonal entries only. �

Corollary 14 If c and d are incident cells, then Wc ∪Wd is connected.

Proof. We may assume that d ⊆ c \ c, and that both Wc and Wd are
nonempty (otherwise the assertion follows from the connectivity of Wc and
Wd).
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Choose q ∈ d. Since Wd 6= ∅, Corollary 13 implies that Wd and Wc

intersect, and by the connectivity of Wc and Wd, this implies that Wc ∪Wd

is connected. �

Call a segment σ in the plane separating, if σ connects points ua and ub
for some a, b ∈ V , with the property that V \ {a, b} can be partitioned into
two nonempty sets X and Y such that no edge of G connects X and Y and
such that the sets {ui | i ∈ X} and {ui | i ∈ Y } are on distinct sides of the
line through σ. Note that this implies that σ is a 1-cell.

Lemma 15 Let G be a connected graph, and let σ be a separating segment

connecting ui and uj, with incident 2-cells R and Q. If Wσ ∪WR 6= ∅, then
AQ contains a directed circuit traversing ij.

Proof. We may assume that σ connects u1 and u2, and that edge 12 of G
is oriented from 1 to 2 in AQ. Let ℓ be the line through σ, and let H and H ′

be the open halfplanes with boundary ℓ containing Q and R, respectively.
Choose p ∈ σ ∪ R with Wu−p 6= ∅. Note that AQ and Au−p differ only

for edge 12. Any edge ij 6= 12 has the same orientation in AQ as in Au−p.
Since H contains points ui, since G is connected, and since ℓ crosses no

uiuj with ij ∈ E, G has an edge 1k or 2k with uk ∈ H. By symmetry, we
can assume that 2k is an edge. Then in Au−p, edge 2k is oriented from 2
to k. As Wu−p 6= ∅, Au−p has a positive circulation. So Au−p contains a
directed circuit D containing 2k. The edge preceding 2k, say j2, must have
uj ∈ H ′, as p belongs to σ ∪ R. Therefore, since {1, 2} separates nodes k
and j, D traverses node 1. So the directed path in D from 2 to 1 together
with the edge 12 forms the required directed circuit C in Au−q. �

Corollary 16 Let G be a connected graph, let σ be a separating segment,

and let R be a 2-cell incident with σ. Then Wσ 6= ∅ if and only if WR 6= ∅.

Proof. Let σ connect u1 and u2. If Wσ 6= ∅, then Aσ has a positive
circulation f ′. By Lemma 15, AR contains a directed circuit C traversing
12. Let f be the incidence vector of C. Then f ′ + f is a positive circulation
on AR. So WR 6= ∅.

Conversely, if WR 6= ∅, then AR has a positive circulation f . By Lemma
15, AR contains a directed cycle through the arc 21, which gives a directed
path P from 1 to 2 not using 12. It follows that by rerouting f(1, 2) over P ,
we obtain a positive circulation on Aσ, showing that Wσ 6= ∅. �
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4.3 Outerplanar nullspace embeddings

Let G = (V,E) be a graph. A mapping u : V → R
2 is called outerplanar

if its extension to the edges gives an embedding of G in the plane, and each
ui is incident with the unbounded face of this embedding.

Theorem 17 Let G be a 2-connected graph with κ(G) = 2. Then the nor-

malized nullspace representation defined by any well-signed G-matrix with

one negative eigenvalue and with corank 2 is an outerplanar embedding of

G.

Proof. Let u be such a normalized nullspace representation (this exists by
Corollary 6). LetK be the convex hull of u(V ). Since all ui have unit length,
each ui is a vertex of K. We define a diagonal as the line segment connecting
points ui 6= uj , where ij ∈ E. We don’t know at this point that the points
ui are different and that diagonals do not cross; so the same diagonal may
represent several edges of G, and may consist of several 1-cells.

Let P denote the set of points p ∈ R
2 \ u(V ) with W ′

u−p 6= ∅. Clearly,
the origin belongs to P . Lemma 1(b) implies that

Claim 1 P is contained in the interior of K.

(It will follow below that P is equal to the interior of K.)
Consider again the cell complex into which the diagonals cut K. By the

connectivity of the sets Wc and by Lemma 2, P is a union of cells.

Claim 2 P cannot contain a point ui = uj for two distinct nodes i and j.

Indeed, since ui = uj is a vertex of the convex hull of u(V ), we can choose
p ∈ P close enough to v so that it is not in the convex hull of u(V ) \ {v}.
This, however, contradicts Lemma 3.

Claim 3 No point p ∈ P \ u(V ) is contained in two different diagonals.

Indeed, consider any cell c ⊆ P with p ∈ c. Since Wc 6= ∅, Lemma
12 implies that there is a negative function g on Eu−p such that M(u −
p, 0, g) ∈ Wc. As all matrices in Wc have exactly one negative eigenvalue,
M(u− p, 0, g) has at most one negative eigenvalue. Lemma 11 implies that
(V,Eu−p) has at most one non-degenerate component. But every diagonal
containing p is contained in a non-degenerate component of (V,Eu−p), and
these components are different for different diagonals, so p can be contained
in at most one diagonal. This proves Claim 3.
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It is easy to complete the proof now. Clearly, P is bounded by one
or more polygons. Let p be a vertex of P , and assume that p /∈ u(V ).
Then p belongs to two diagonals (defining the edges of P incident with p),
contradicting Claim 3. Thus all vertices of P are contained in u(V ). This
implies that P is a convex polygon spanned by an appropriate subset of
u(V ).

To show that P = K, assume that the boundary of P has an edge σ
contained in the interior of K and let R ⊆ P be a 2-cell incident with σ,
and let Q be the 2-cell incident with σ on the other side. Clearly, WR 6= ∅,
and by Corollary 16, Wσ 6= ∅ and by the same Corollary, WQ 6= ∅. The
sets Wσ ∪WR and Wσ ∪WQ are connected by Corollary 14, and hence so
is Wσ ∪WR ∪WQ. We also know that W ′ ∩WR 6= ∅. Since W ′ is open and
closed in W (Lemma 2, note that in this case W ′ = W ′ ∩W0 as κ(G) = 2),
we conclude that W ′ ∩ WQ 6= ∅, i.e., Q ⊆ P . But this contradicts the
definition of σ.

Thus P is equal to the interior of K. Claim 2 implies that the points ui
are all different, and Claim 3 implies that the diagonals do not cross.

4.4 Algorithm

The considerations in this section give rise to a polynomial algorithm achiev-
ing the following.

Algorithm 5
Input: A 2-connected graph G = (V,E).
Output: Either an outerplanar embedding u : V → R

2 of G, or a well-
signed G-matrix with one negative eigenvalue and corank at least 3.

The algorithm progresses along the same lines as the algorithm in Section
3.3, with auxiliary algorithms analogous to those in Section 3.2. We omit
the details.

Remark 18 Suppose that the input to our algorithm is a 3-connected pla-
nar graph. Then the algorithm outputs a well-signed G-matrix with one
negative eigenvalue and corank at least 3. Computing the nullspace repre-
sentation defined by this matrix, and performing node-scaling as described
in [7], we get a representation of G as the skeleton of a 3-polytope.
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