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Abstract. Multi-agent algorithms aim to find the best response in
strategic interactions. While many state-of-the-art algorithms assume
repeated interaction with a fixed set of opponents (or even self-play), a
learner in the real world is more likely to encounter the same strategic
situation with changing counter-parties. This article presents a formal
model of such sequential interactions, and a corresponding algorithm
that combines the two established frameworks Pepper and Bayesian pol-
icy reuse. For each interaction, the algorithm faces a repeated stochastic
game with an unknown (small) number of repetitions against a random
opponent from a population, without observing the opponent’s identity.
Our algorithm is composed of two main steps: first it draws inspira-
tion from multiagent algorithms to obtain acting policies in stochastic
games, and second it computes a belief over the possible opponents that is
updated as the interaction occurs. This allows the agent to quickly select
the appropriate policy against the opponent. Our results show fast detec-
tion of the opponent from its behavior, obtaining higher average rewards
than the state-of-the-art baseline Pepper in repeated stochastic games.

Keywords: Stochastic games · Reinforcement learning
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1 Introduction

Learning to act in multiagent systems has received attention mainly from game
theory and reinforcement learning (RL). The former has proposed algorithms
that converge under different scenarios [14] and the latter has focused on acting
optimally in stochastic scenarios [12], typically with limited a priori information
about the interaction. Interactions among several agents are usually modelled
as a normal-form or stochastic game, and a wide variety of learning algorithms
targets this setting [7,9,13]. However, results are typically based on the assump-
tion of self-play (i.e., all participants use the same algorithm) and a long period
of repeated interactions. In contrast, we focus on sequential interactions, i.e.,
the agent is paired with stochastically drawn opponents, with whom the agent
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interacts in short periods while observing joint actions, but without observing
the opponent’s identity.

Recent works have proposed algorithms for learning in repeated stochastic
games [17,20], however, it is an open problem how to act quickly and optimally
when facing different opponents [20]. Recent work on Stochastic Bayesian Games
has compared several ways to incorporate observations into beliefs over oppo-
nent types when those types are re-drawn after every state transition [1]. In
contrast, we assume that opponents are redrawn for interactions over several
repeated stochastic games. The learning algorithm needs to optimally reuse pre-
viously learned information from distinct but similar interactions – a challenge
that has been largely studied by transfer learning (TL). TL has been applied
mostly in single-agent domains where information from learned source tasks can
be reused in a new target task [32]. Determining how two tasks are similar, what
information to be transferred and when it should be transferred are open prob-
lems in TL. Related to TL there are different areas that also share a connection
with the problem of how to efficiently reuse previously learned information, e.g.,
policy reuse [21], to avoid long learning times; ad-hoc coordination [4], to collab-
orate with unknown agents in multi-agent teams; and learning in non-stationary
environments [18] to adapt to changing conditions.

We contribute to the state of the art in two ways: First, by providing a more
natural formal model of sequential interactions and second with an algorithm
for quick detection of opponents in that setting. Our proposed algorithm Bayes-
Pepper builds on top of two previously successful frameworks:

– Pepper [15], a learning algorithm for repeated stochastic games, is used to
obtain policies on how to act against the possible opponents. Pepper uses the
paradigm of optimism in face uncertainty together with a joint action learner
to learn a policy in stochastic games.

– Bayesian Policy Reuse (BPR) [30] is used as a fast detection process to iden-
tify the opponent and select the appropriate acting policy. While previously
BPR has been evaluated in single-agent tasks [30] and repeated normal-form
games [25], this is the first time it is extended to stochastic games.

Our setting assumes a population of opponents that can be divided into
different groups. First, Bayes-Pepper needs to compute policies and models of
the opponents, which we assume happens at an offline phase. Second, in an
online phase a random process pairs the learning agent against the opponent
for a stochastic game.1 The learning agent has no control over this process and
does not observe the opponent identity. When the game finishes the learning
agent receives an observation (reward) and updates the belief accordingly. Sub-
sequently, the agent is paired with a new opponent. A formal definition of the
game is given in Sect. 3.3.

This paper is presented as follows: Sect. 2 presents the related work in transfer
learning, policy reuse and learning in non-stationary environments. Section 3
1 We present experiments with one opponent, however, our approach could be gener-

alized to more opponents taking the Cartesian product of all opponents as a single
one.



Towards a Fast Detection of Opponents in Repeated Stochastic Games 241

describe the formal models of reinforcement learning and game theory. Section 4
presents the proposed Bayes-Pepper algorithm. Section 5 presents experimental
results in repeated stochastic games. Section 6 provides a discussion considering
the results and provides directions for future research. Finally, Sect. 7 summarizes
the conclusions of this work.

2 Related Work

This article tackles the problem of finding a best response when being repeatedly
paired with unknown opponents from an unknown population with known types.
We propose an algorithm that aims to identify opponents while best-responding
in face of residual uncertainty. Our setting and approach shares similarities to
transfer learning, policy reuse and ad-hoc coordination which we review in this
section.

Transfer learning was first used in machine learning to transfer between
learning tasks in a supervised learning scenario. Recently, TL has gained atten-
tion in the RL community in particular in single-agent scenarios. An ideal fully
autonomous RL transfer agent needs to complete three phases [32]:

– Given a target task, select an appropriate set of source tasks from which to
transfer.

– Learn how the source task(s) and target task are related.
– Transfer knowledge from the source task(s) to the target task.

There are different evaluation metrics for TL algorithms (e.g., jumpstart,
asymptotic performance, total rewards, among others) and even though these
three steps are usually connected, TL has focused on them independently. For
example, for the transfer step different ideas have been evaluated, e.g., models,
instances and policies.

One approach that transfers instances from similar tasks was proposed by
Lazaric et al. [29]. They proposed a measure to identify which source tasks are
more likely to have samples similar to those in the target task, namely task
compliance. Moreover, to select which instances to transfer from a task they
propose the relevance measure. However, the approach was proposed for single-
agent domains with continuous state and action spaces, and does not naturally
transfer to our setting. Closer to our approach, Boutsioukis et al. [8] proposed
TL by extending the Q-learning reuse algorithm [31] to multiagent scenarios.
In contrast to our ambition of transfer from interactions against different oppo-
nents, their goal is to transfer information learned from a task with n agents
to a different task with m �= n agents. In particular, they propose an inter-task
transfer approach (i.e., the state and action spaces are not the same in the tar-
get and source tasks) and the evaluation was performed on the predator-prey
domain transferring information tasks learned with different number of preda-
tors (agents). Policy reuse techniques are another area with a similar spirit since
these approaches assume to start with a set of policies to use, and the problem
is to select among them when facing a new task. Fernandez and Veloso [21] use
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policy reuse as a probabilistic bias when learning new, similar tasks in single
agent domains. Bayesian Policy Reuse (BPR) [30] assumes prior knowledge of
the performance of different policies over different tasks. BPR computes a belief
over the possible tasks which is updated at every interaction and is used to
select the policy that maximises the expected reward given the current belief.
Bayesian reasoning has also been used in RL to learn when there is a group of
related tasks with similar structure. Lazaric and Ghavamzadeh [28] proposed an
algorithm assuming tasks have common state and action spaces and their value
functions are sampled from a common prior. In contrast, our approach extends
the BPR algorithm (see Sect. 3.2) to identify opponents rather than tasks, and
combines it with a multiagent learning algorithm.

Ad-hoc coordination is another related problem where an agent needs to
coordinate with an unknown agent but when a set of previous models is known.
In this setting, Barrett et al. [4] proposed the PLASTIC algorithm that learns
how to cooperate with other teammates based on a collection of policies to
select from, which is similar to our approach. The algorithm selects at each
interaction the most likely teammate type and acts following the corresponding
policy. However, this approach does not consider changing agents over the course
of interactions as we do.

Learning in non-stationary environments is another related area since these
approaches explicitly model changes in the environment. Their goal is to learn an
optimal policy and at the same time detect when the environment has changed to
a different one, updating the acting policy accordingly. One algorithm designed
for single agent tasks with a changing environment is the Reinforcement Learning
with Context detection (RL-CD) [18]. RL-CD learns a model of the specific task
and assumes an environment that changes infrequently among different contexts.
To detect a new context RL-CD computes a quality measure of the learned
models. Hernandez-Leal et al. [23,26] addressed a similar problem in two-player
repeated normal-form games. In this case, the opponent has different stationary
strategies to select from and the learning agent needs to learn online how to
act optimally against each strategy while detecting when the opponent changes
to a different one. Since the opponent might reuse one previous strategy at a
later stage of the interaction the learning agent should keep previous models
and policies in order to quickly detect them [25]. While this might be the closest
state of the art, these approaches do not consider repeated stochastic games.

Experimental evidence suggests that people learn heuristics which later are
transferred across different games [5]. Based on these results there is another
category of algorithms that aims to learn in one game and to generalize how to
act in a different game (known as general game playing). Banerjee and Stone [3]
proposed a transfer approach in two-player, alternate move, complete informa-
tion games facing stationary opponents. The idea is to learn general features
that can be reused across games, for example, they learned from played games
on Tic-tac-toe and transferred information to a more complex game (Othello).

In contrast with previous approaches we focus on two-player repeated sto-
chastic games. An agent faces an opponent whose identity is unknown to the
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agent and where every few interactions a random process selects a new oppo-
nent from the population (the agent does not know when these changes happen).

3 Preliminaries

In this section, first we review the formal model of reinforcement learning. Then,
we describe the Bayesian policy reuse framework [30]. Later, we present our
sequential interactions model in the context of stochastic games. Finally, we
describe Pepper [15] which inspires our proposed Bayes-Pepper algorithm.

3.1 Reinforcement Learning

Reinforcement learning (RL) is one important area of machine learning that
formalizes the interaction of an agent with its environment, e.g., using a Markov
decision process (MDP). An MDP is defined by the tuple 〈S,A,R, T 〉 represents
the world divided up into a finite set of possible states. A represents a finite set
of available actions. The transition function T : S ×A → Δ(S) maps each state-
action pair to a probability distribution over the possible successor states, where
Δ(S) denotes the set of all probability distributions over S. Thus, for each s, s′ ∈
S and a ∈ A, the function T determines the probability of a transition from state
s to state s′ after executing action a. The reward function R : S × A × S → R

defines the immediate and possibly stochastic reward that an agent would receive
for being in state s, executing action a and transitioning to state s′.

MDPs are adequate models to obtain optimal decisions in single agent envi-
ronments. Solving an MDP will yield a policy π : S → A, which is a mapping
from states to actions. An optimal policy π∗ is the one that maximises the
expected discounted reward. There are different techniques for solving MDPs
assuming a complete description of all its elements. One of the most common
techniques is the value iteration algorithm [6] which is based on the Bellman
equation:

V π(s) =
∑

a∈A

π(s, a)
∑

s′∈S

T (s, a, s′)[R(s, a, s′) + γV π(s′)],

with γ ∈ [0, 1). This equation expresses the value of a state which can be used
to obtain the optimal policy π∗ = arg maxπ V π(s), i.e., the one that maximises
that value function, and the optimal value function V ∗(s).

V ∗(s) = max
π

V π(s) ∀s ∈ S.

Value iteration requires complete and accurate representation of states,
actions, rewards and transitions. However, this may be difficult to obtain in
many domains. For this reason, RL algorithms learn from experience without
having a complete description of the MDP a priori. In contrast, an RL agent
interacts with the environment in discrete time-steps. At each time, the agent
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chooses an action from the set of actions available, which is subsequently exe-
cuted in the environment. The environment moves to a new state and the reward
associated with the transition is emitted. The goal of a RL agent is to maximise
the expected reward. In this type of learning the learner is not told which actions
to take, but instead must discover which actions yield the best reward by trial
and error.

Q-learning [33] is one well known algorithm for RL. It has been devised for
stationary, single-agent, fully observable environments with discrete actions. In
its general form, a Q-learning agent can be in any state s ∈ S and can choose an
action a ∈ A. It keeps a data structure Q̂(s, a) that represents the estimate of
its expected payoff starting in state s, taking action a. Each entry Q̂(s, a) is an
estimate of the corresponding optimal Q∗ function that maps state-action pairs
to the discounted sum of future rewards when starting with the given action and
following the optimal policy thereafter. Each time the agent makes a transition
from a state s to a state s′ via action a receiving payoff r, the Q table is updated
as follows:

Q̂(s, a) = Q̂(s, a) + α[(r + γ max
b

Q̂(s′, b)) − Q̂(s, a)]

with the learning rate α and the discount factor γ ∈ [0, 1] being parameters of
the algorithm, with α typically decreasing over the course of many iterations.
Q-learning is proved to converge towards Q∗ if each state-action pair is visited
infinitely often under specific parameters [33].

3.2 Bayesian Policy Reuse

Bayesian policy reuse is a framework to quickly determine the best policy to
select when faced with an unknown task. Formally, a task is defined as an MDP.
A policy is a function π(s) that specifies an appropriate action a for each state
s. The return, or utility, generated from running the policy π in an interaction
of a task instance is the accumulated reward, Uπ =

∑k
i=0 ri, with k being the

length of the interaction and ri being the reward received at step i.
Let an agent be equipped with a policy library Π for tasks in a domain. The

agent is presented with an unknown task which must be solved within a limited
and small number of trials. At the beginning of each trial episode, the agent can
select one policy from π ∈ Π to execute. The goal of the agent is thus to select
policies to minimize the total regret incurred in the limited task duration with
respect to the performance of the best alternative from Π in hindsight.

BPR assumes knowledge of performance models describing how policies
behave on different tasks. A performance model, P (U |τ, π), is a probability dis-
tribution over the utility using π on a task τ . A signal σ is any information that
is correlated with the performance of a policy and that is provided to the agent
in an online execution of the policy on a task (e.g., immediate rewards). For
a set of tasks T and a new instance τ� the belief β is a probability distribu-
tion over T that measures to what extent τ� matches the known tasks in their
observation signals σ. The belief is initialized with a prior probability. After each
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execution on the unknown task the environment provides an observation signal
to the agent, which is used to update beliefs according to Bayes’ rule:

βk(τ) =
Pr(σk|τ, πk)βk−1(τ)∑

τ ′∈T Pr(σk|τ ′, πk)βk−1(τ ′).
(1)

Different mechanisms can be used to select a policy to execute. An always
greedy policy selection mechanism would fail to explore, resulting in not reaching
the global maximum. On the other hand a totally exploratory policy selection
mechanism would not make an effort to improve performance. We thus require a
balance, for which different policy selection heuristics have been proposed [30].
A policy selection heuristic V is a function that estimates a value for each policy
through the extent to which it balances exploration with a limited degree of
look-ahead for exploitation.

The probability of improvement heuristic for policy selection [30] considers
the probability with which a specific policy can achieve a hypothesized increase
in performance over the current best estimate. Assume that U+ ∈ R is some
utility which is larger than the best estimate under the current belief,

Û = max
π∈Π

∑

τ∈T
β(τ)E[U |τ, π].

The heuristic thus chooses the policy

arg max
π∈Π

∑

τ∈T
β(τ) Pr(U+|τ, π),

where U+ > Û .

3.3 Games

In contrast to classical RL, which considers one single agent in a stationary
environment, Game theory studies rational decision making when several agents
interact [22]. The core concept of a Game captures the strategic conflict of
interest in a mathematical model. Note that different areas provide different
terminology. Therefore, we will use the terms player and agent interchangeably;
similarly for reward and payoff. Finally, we will refer to other agents in the
environment as opponents irrespective of the domain’s or agent’s cooperative or
adversarial nature.

A stochastic game with two players i and −i consists of a set of stage games
S (also known as states). In each state s players choose an action from the set
a ∈ A(s). A game begins in a state sb ∈ S. A joint action a = (ai, a−i) is
played at state s and player i receives an immediate reward ri(s,a), the world
transitions into a new state s′ according to the transition model T (s, s′,a). When
a goal state sg ∈ S is encountered the game finishes, and the accumulated reward
during the game is called an episodic reward.
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We formalize Sequential Interactions (SI) as a specific variation of repeated
stochastic games, where at each episode k ∈ {1, 2, . . . ,K} a process draws a
set of players Pk ⊂ I from the population of individuals I to play a finite sto-
chastic game that yields a reward (accumulated over the game) to each player.
After the stochastic game terminates, the subsequent interaction commences.
We specifically discuss the setting where the selection process is stochastic (as
opposed to being a strategic choice by the agents), and the population comprises
an unknown distribution over types of strategies. While in the general case these
types may be unknown, our new algorithm assumes access to a priori interac-
tions with each (proto-) type. We consider Pk and opponent rewards within the
stochastic game to be unobservable, while the joint actions are observable.

3.4 Pepper

Pepper [15] (potential exploration with pseudo stationary restarts) was proposed
as a framework to extend algorithms for learning in repeated normal-form games
to repeated stochastic games. Pepper assumes it can observe its own immedi-
ate reward but not the opponents’, and also assumes the maximum possible
reward Rmax known for each episode. It uses the principle of optimism in face
of uncertainty [10] and combines it with a learning algorithm. Pepper computes
the expected future rewards for a joint action a being in state s as:

R(s,a) = r(s,a) +
∑

s′∈S

T (s, s′,a)V (s′) (2)

where V (s′) is the expected future rewards of being in state s′. Note that given
r(·), T (·) and V (·), value iteration can be used to compute Eq. 2, and r and T can
be learned from observations. Moreover, Pepper is initialized under the assump-
tion that all states result in maximal reward. However, there is still the problem
of updating V (s′) throughout the interaction. Pepper proposes a mechanism for
estimating future rewards combining off-policy (e.g., Q-learning) and on-policy
methods for estimating V (s), i.e., an on-policy estimation based on the observed
distribution of joint actions, using n(s), n(s,a) for the number of visits to state
s and the number of times joint action a was chosen in that state respectively:

V on(s) =
∑

a∈A(s)

n(s,a)
n(s)

R(s,a)

and a combined estimation

V (s) = λ(s)V̂ (s) + (1 − λ(s))V on(s).

Where V̂ (s) represents an optimistic approximation given by

V̂ (s) = max(V off(s), V on(s)),
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and where λ ∈ [0, 1] represents a stationarity measure initialized to one but
approaching zero when the agent gets more experience.2 Pepper uses the concept
of non-pseudo stationary restarts, i.e., when R(s) is observed to not be pseudo
stationary λ(s) resets to one. Let n′(s) be the number of visits to state s since
R(s) was last observed to not be pseudo-stationary, then:

λ(s) = max
(

0,
C − n′(s)

C

)

with C ∈ N
+.

Algorithm 1. Pepper algorithmic framework
Input: States S, maximum possible reward Rmax

1 Initialize V (·) with Rmax

2 Random initial policy π
3 for each episode of the stochastic game do
4 Update R(·); Eq. 2
5 Update policy π
6 Observe state
7 while state is not goal do
8 Select action a
9 Observe state

10 Receive observation r
11 if enough visits to (s,a) then
12 Update rewards, V (·), transitions
13 Update R(·); Eq. 2
14 Update policy π

The Pepper framework is described in Algorithm 1 where different policy
selection approaches can be plugged in to compute π. For example, using

π = (arg max
a

R(s,a))i

seems suitable for a friendly opponent, while

π = arg max
ai

min
a−i

R(s,a)

is a minimax approach that suits other types of opponents.
Next, we present our Bayes-Pepper approach which uses Pepper in an offline

phase to obtain policies. During the online phase it computes a belief over the
possible opponents to tackle the uncertainty over the opponent’s identity in a
sequential interaction.
2 Recall that R(s, a) is initialized to Rmax so it is likely to decrease in early episodes,

but eventually will become pseudo-stationary.
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4 Bayes-Pepper

Bayes-Pepper is composed mainly of two phases which are depicted in Fig. 1.

Fig. 1. Bayes-Pepper algorithm: (a) in an offline phase, Pepper is used to generate
policies against each opponent and (b) performance models and transition models are
generated from the learned policies. (c) In the online phase (i.e., sequential interactions)
we assume a population of agents and a random process that matches the Bayes-Pepper
agent and one opponent. Bayes-Pepper selects a policy π to act, in a stochastic game
(SG) the agent computes an intra-belief which might override the selected policy; when
the game finishes Bayes-Pepper receives an observation σ that is used to update its
belief.

– An offline phase where Bayes-Pepper generates policies, transition and perfor-
mance models (see Sect. 4.1). Here, the agent observes the opponent’s identity.

– An online phase where a belief based approach is used to detect the oppo-
nent’s identity and act with the corresponding policy. Here, the agent observes
states and actions at every step of the game but only observes the accumu-
lated reward when a stochastic game finishes. The belief is updated at every
stochastic game (see Sect. 4.2) and at every state in a stochastic game (see
Sect. 4.3).

Next, we describe these two phases in more detail.

4.1 Policy and Models Generation

Bayes-Pepper needs to generate policies and models for each opponent. Bayes-
Pepper assumes an offline learning phase (see Algorithm 2) in which Pepper
algorithm is used to obtain a policy for every opponent (lines 3–5). Then, per-
formance models are obtained by generating list of rewards for each opponent
and policy, and fitting the generated data into a distribution (in our experi-
ments we used Gaussian distribution). The generated set of performance models
can be seen as a matrix of probability distributions, see Fig. 1(b). Similarly, a
list of state-action pairs is generated and fitted to a multinomial distribution
to generate a transition model (lines 6–10), used in the intra-game belief, see
Fig. 1(c).



Towards a Fast Detection of Opponents in Repeated Stochastic Games 249

Algorithm 2. Bayes-Pepper models and policy generation
1 Π = ∅
2 for every opponent τ ∈ T do
3 Opponent τ is announced
4 Bayes-Pepper learns a policy πnew facing τ
5 Π = Π ∪ πnew

6 for every opponent τ ∈ T do
7 for every π ∈ Π do
8 Get list of rewards r and [s,a] pairs using π against τ
9 Fit r to a distribution to obtain Pr(U |τ, π)

10 Fit [s,a] to a distribution to obtain Pr(M |τ, π)

Algorithm 3. Bayes-Pepper detection algorithm
Input: Policy library Π, prior probabilities Pr(T ), performance models

Pr(U |T , Π), transition models Pr(M |T , Π), episodes K, exploration
heuristic V

1 Initialize beliefs β0(T ) = Pr(T )
2 for episodes k = 1, . . . , K do

3 Compute vπ = V(π, βk−1) for all π ∈ Π

4 πk = argmaxπ∈Πvπ

5 Start game with policy πk and use intra-game belief (ζ) together with
Pr(M |T , Π) (see Sect. 4.3)

6 Obtain observation signal σk (e.g., episodic reward)

7 Update belief βk(τ) = Pr(σk|τ,πk)βk−1(τ)
∑

τ′∈T Pr(σk|τ ′,πk)βk−1(τ ′)

4.2 Opponent Detection Based on Rewards

Once Bayes-Pepper has a set of policies Π and its associated models it can
act in an online mode. The steps of Bayes-Pepper online detection phase are
described in Algorithm 3. Bayes-Pepper starts with a set of policies Π, prior
probabilities over the opponents Pr(T ), performance models Pr(U |T ,Π) and
transition models Pr(M |T ,Π). Bayes-Pepper initializes the belief with the prior
probabilities Pr(T ) (line 1). Then, for each episode of the sequential interaction
a loop performs the following steps:

– select a policy to execute (according to the belief β and exploration heuristic V)
(lines 3–4),

– use the selected policy on the stochastic game (line 5),
– receive an observation signal σ, this is, the accumulated reward of the played

game (line 6),
– update the belief with the observation using Eq. 1 (line 7).

Since we assume that only the accumulated reward for the game is observed
when the game finishes, a basic approach is to select a policy to play for the entire
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stochastic game. However, this might result in suboptimal results, for example
when the opponent changes in the next interaction (as experimentally shown
in Sect. 5.3). To overcome this issue, we propose to update the belief during a
stochastic game using the state-action pairs (which are always observable). This
information is also a signal of the opponent behavior and the process is similar
to the one described previously.

4.3 Intra-game Belief Detection

Let ζ�(τ) be the intra-game belief which is initialized with the belief β(τ). The
intra-game belief is updated in a similar way using Eq. 1 with two minor dif-
ferences, the observation σ is the observed frequency over state-action pairs (or
states) and the transition models P (M |T ,Π) are used to obtain the likelihood
of a given observation.

Since the observed frequency might change more in early stages of the game
we consider weighted approach, initially giving more weight to β and with each
experience giving more weight to ζ as follows:

ζ�(τ) = wβ(τ) + (1 − w)ζ�−1(τ) (3)

with w = 1 initially and w = w · ηt, with η = [0, 1) and t the number of
experienced steps in the current stochastic game. Computing this updated belief
might override the policy that was selected initially which is useful to avoid using
a suboptimal policy for a complete stochastic game.

5 Experiments

In this section we present results on a stochastic game represented as a grid
world. We performed experiments comparing our approach Bayes-Pepper with
Pepper [15] and an Omniscient agent that knows the opponent’s identities and
plays optimal policies against them. First, we define the setting, then we present
results of Bayes-Pepper against stochastic opponents, and finally, we present
results in sequential interactions against switching opponents.

5.1 Setting

Figure 2 depicts a graphical representation of the stochastic game used in the
experiments. There are two players, the learning agent (A) and the opponent (O).
The starting positions are marked with their initial. The learning agent receives
a reward when it reaches a goal state rA or RA, with ra < RA. The agents can
move upwards or horizontally, and the opponent has the possibility to stay in
the same state; the learning agent moves always to the right and the opponent
to the left; to avoid agents getting trapped the grid is a toroidal world. With
every step that does not transition to a goal state the learning agent receives a
penalty pmin. In case of collision the learning agent receives high penalty pmax

with pmin < pmax.
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Fig. 2. A stochastic game with two players, the learning agent (A) and one opponent
(O). The learning agent receives a reward when it reaches a goal state marked with rA

or RA with ra < RA. In case of collision the opponent has priority over the state.

Note that the opponent directly influences the possible reward the learning
agent can obtain. For example, since the opponent is closer to RA it can block
its way to the learning agent, in which case the best option would be to go for
rA.

For the experiments we set rA = 5, RA = 17, pmin = −1, pmax = −5. We
tested against two types of stochastic opponents:

– A defecting opponent, OppD, that aims to block the way to RA. It stays in
the blocking position with probability 0.8.

– A cooperative opponent, OppC , that ignores the learning agent’s actions and
moves upwards with probability 0.2, and left otherwise.

The optimal policy against OppD is to go directly to rA obtaining an accu-
mulated reward of 3. In contrast, when facing OppC the agent should go for RA

obtaining an accumulated reward of 14.

5.2 Opponent Detection

In this experiment we evaluated how quickly Bayes-Pepper responds without
knowing the opponent’s identity in comparison with the learning process of Pep-
per. In this case, Bayes-Pepper starts with the policies against OppC and OppD

and with a uniform prior over them.
Figure 3 depicts the average episodic rewards against the two types obtained

over 10 independent trials facing the same type during the interaction. From the
results we observe that Bayes-Pepper obtains higher rewards from the begin-
ning of the interaction due to its fast detection. In contrast, Pepper takes
more episodes to learn the appropriate policy. Table 1 shows average rewards
where it can be seen that Bayes-Pepper obtained similar rewards to those of the
Omniscient agent.

5.3 Switching Opponents

Now, we compare against switching opponents in sequential interactions, this
is, during a repeated interaction of 150 games where the opponent changes
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Fig. 3. Comparison of Bayes-Pepper and Pepper against two stochastic opponents in a
repeated SG for 150 episodes. Bayes-Pepper obtains rewards close to the best response
faster than Pepper.

Table 1. Comparison of average rewards with std. dev. (±) obtained in 10 trials.

Bayes-Pepper Pepper Omniscient

OppC 11.19 ± 5.30 8.26 ± 8.80 12.40 ± 2.30

OppD 2.87 ± 4.05 0.87 ± 8.87 3.02 ± 2.97

Switching 5.44 ± 6.74 2.33 ± 8.01 8.48 ± 5.21

frequently and the learning agent does not know when the switches happen.
To model switching opponents an opponent is selected randomly and is paired
with the learning agent for a random number of games (uniformly from 5 to 10
repetitions).

Figure 4 depicts the average (a) episodic and (b) cumulative rewards of the
compared approaches, and Table 1 shows the average episodic rewards for the
150 games. From the results we note that Bayes-Pepper obtained higher cumula-
tive rewards than Pepper. This happens because Bayes-Pepper knows how to act
optimally against every opponent, however, it needs to identify it. In contrast,
Pepper learns how to optimize against the mixed behaviour of the two types.
Note that in many cases when an opponent changed Bayes-Pepper was capa-
ble of obtaining competitive scores, this happens mainly due to the intra-game
detection, since it triggers a change to a different policy when the transitions
are not consistent with the learned model. In contrast, even when Pepper is
learning within stochastic games and is able to update its policy it obtains sub-
optimal results, because it fails to obtain the reward RA against the cooperative
opponent.
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Fig. 4. Bayes-Pepper, Pepper and the Omniscient agent against switching opponents
in a repeated interaction of 150 episodes. Average (a) episodic and (b) cumulative
rewards. (c) Cumulative rewards of Bayes-Pepper and policies learned with Pepper.
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Table 2. Average rewards with std. dev. (±) for the compared approaches against
switching opponents (average of 10 trials).

Bayes-Pepper πPepper
C πPepper

D πPepper
CD

5.44 ± 6.74 0.46 ± 18.01 2.38 ± 4.21 3.02 ± 2.75

We note that the comparison of Bayes-Pepper against Pepper might not be
fair since Bayes-Pepper has already policies to start. With this in mind, we
also evaluated three baselines using policies learned by Pepper against switching
opponents: the policies learned against a single types πPepper

C , πPepper
D and one

policy learned after facing the two opponents sequentially πPepper
CD , in this case

there is no learning during the interaction.
Table 2 shows average rewards over the 150 games and Fig. 4(c) depicts cumu-

lative rewards of the compared approaches against the same switching opponents.
Results show that Bayes-Pepper obtains better scores than the rest. On the one
side πPepper

D is a cautious policy which never takes advantage of a cooperative
opponent, on the other side πPepper

C quickly obtains the best scores against a
cooperative opponent but also gets highly penalized against a defecting oppo-
nent. πPepper

CD obtains better scores than the previous two but is not as good as
Bayes-Pepper.

6 Discussion

We presented experiments with Bayes-Pepper against switching opponents in
repeated stochastic games. The results suggest that our approach is capable
of detecting the opponent type and act with the corresponding policy. Bayes-
Pepper’s main advantage is its quick detection in the online phase. However,
its main limitation is the offline learning phase to obtain acting policies and
models. To overcome this limitation we foresee different directions in which this
work could be extended:

– State abstraction. CQ-learning has been used to reduce the state space rep-
resentation in multi-agent systems by allowing a minimal state space repre-
sentation and only expanding for conflicting states [19]. This same idea could
be extended to our setting by having general policies and only update partial
policies for some dangerous states.

– Lifelong learning [11] is another paradigm related to TL where information
obtained from other sources should increase the performance on the target
tasks and on the previous source tasks (reverse transfer). Currently, the offline
learning phase is independent from the online detection phase, however, it
would be interesting to use the information obtained in the online phase to
update the policies and models learned in the offline phase.

– Multi-armed bandits [2] are a common formalism for selecting among different
actions and this approach has been extended to select among experts [16].
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Contextual multi-armed bandits are an extension in which the player also
observes context information which can be used to determine the selection
process [27]. How to incorporate contextual information in our setting is
another challenge to address in future work.

7 Conclusions

Many learning algorithms for multiagent systems assume self-play or stationary
opponents. We focus on the scenario of repeated stochastic games but with the
difference of assuming a population of opponents and a stochastic process that at
every game matches the learning agent with an opponent. Our first contribution
is to provide a formal model of this setting, namely, sequential interactions. Our
second contribution is an algorithm for quick detection of opponents in repeated
stochastic games. Our proposed Bayes-Pepper algorithm draws inspiration from
multiagent learning algorithms and policy reuse approaches to detect opponents.
One advantage is that Bayes-Pepper is capable of detecting the opponent and
responding with the appropriate policy faster than other learning algorithms
for repeated stochastic games. The main limitation is the need of an offline
learning phase where the policies and models can be obtained. As future work
we propose to not only reuse policies but also transfer information from models
and policies when facing unknown opponents, and eventually learning the set
of opponent strategies in the population online, as existing preliminary work in
this direction [24].
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