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Soutenue le 6 décembre 2017
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Chapter 1

Introduction

In this thesis, we introduce new unconditionally secure cryptographic pro-
tocols, constructed and analyzed with techniques from Coding Theory. We
present here the context of our work and summarize our contributions.

1.1 Context

Historically, Cryptography originated from the need for private communica-
tion: since ancient times, the transmission of written messages has been vul-
nerable to eavesdropping; for instance, enemy forces could intercept a courier
carrying a message between two allied generals. Thus to protect sensitive in-
formation from such interception attacks, so-called encryption techniques were
developed.

An encryption scheme allows a sender to turn a message into a ciphertext,
which is transmitted to the intended receiver; the receiver then uses a secret
key to recover the original message from the ciphertext. The goal of the scheme
is to ensure that no information on the original message can be extracted
from the ciphertext without knowing the secret key; thus any eavesdropper
that intercepts the communication from sender to receiver would obtain no
information about the actual message.

Historical examples of encryption schemes are abundant, but encryption was
more empirical than scientific until the 1940s and the seminal work of Claude
E. Shannon [60, 61]. Shannon’s work provided a mathematical definition of
what it means for an encryption scheme to be secure, and established bounds
and possibility results for schemes that are secure according to his definition.
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Shannon’s notion of security is information-theoretic, meaning that it holds
regardless of the computing power of the eavesdropper; Shannon showed that
information-theoretic security can be achieved, but that it requires the secret
key to be as long as the secret message.

The starting point of another major transition in Cryptography is the 1970s
work of Diffie and Hellman, whose seminal paper [26] would inspire research on
new areas of Cryptography. Diffie and Hellman solved the seemingly impossi-
ble problem of key-agreement without a secure channel: namely, they showed
that it is possible for a sender and a receiver to agree on a secret key only
by communicating via a channel exposed to eavesdropping, if the eavesdrop-
per has limited computing power. Moreover, building upon earlier research
by Merkle, Diffie and Hellman proposed the concept of Public-Key Cryptog-
raphy;1 two notable examples of this concept are Public-Key Encryption and
Digital Signatures. In Public-Key Encryption, two keys are used, namely one
for encryption and one for decryption; the idea is to keep the decryption key
private, and to freely disseminate the encryption key, so that any user can
encrypt a message, but only the owner of the decryption key can decrypt it.
A public and a private key are also used in digital-signature schemes, where
only the owner of the private key can produce a valid signature for a message,
but anyone who knows the public key can check the validity of a signature;
thus any user can verify that an acquired message originated from the owner
of the private key and was not altered in the transmission.

The work of Diffie and Hellman attracted great interest, and research in Cryp-
tography started to expand to several new areas. A relevant example for
this dissertation is the study of more general private-communication scenar-
ios, where sender and receiver exchange messages not by means of a single
channel, but over a more complex communication infrastructure, e.g. a num-
ber of parallel channels or a communication network; furthermore, enhanced
variants of encryption (e.g. homomorphic encryption) have been introduced
and studied. Other important concepts within Cryptography, on the other
hand, are fundamentally different from encryption: this is the case, for in-
stance, of zero-knowledge protocols, that allow a “prover” to demonstrate to a
“verifier” that he knows a solution to a certain problem, without revealing any
information aside from the fact that he knows that solution. Another impor-
tant example is multi-party computation, where several mutually distrusting
parties wish to jointly perform some computation while keeping their inputs
private.

From a more general perspective, encryption and its variants aim at achieving
unilateral security, i.e. their goal is to protect a system or entity against an

1Allegedly, Ellis had already developed the idea in 1969, and Cocks designed an early
public-key encryption scheme in the early 1970s; however, since both were working with the
British intelligence agency GCHQ, their results remained classified until 1997.

2



external attacker. Zero-knowledge and multi-party computation, on the other
hand, are examples of techniques for multilateral security, meaning that they
aim at protecting the parties involved in the protocol from each other.

Another important distinction between cryptographic techniques is related to
the formalization of their security. Many schemes are provably secure under
the assumption that a computational problem is intractable; schemes of this
type are thus called computationally secure, and cannot be broken by attackers
with limited computing power (if the assumption they rely on is true). Con-
versely, schemes whose security does not rely on the assumed hardness of some
computational problem are called unconditionally or information-theoretically
secure; these schemes are further divided into statistically-secure ones, which
allow for a (small) error probability, and perfectly-secure ones, which tolerate
no error probability.

Cryptography is nowadays an inter-disciplinary field, intersecting mathemat-
ics, computer science and engineering. Notably, there has been a fruitful inter-
play between Cryptography and Coding Theory, a large and well-established
field that studies how to transmit data efficiently and reliably; in particular,
techniques for error-correction have found numerous applications in Cryptog-
raphy, and are used as building blocks for the new protocols that we discuss
in this dissertation.

We now give an overview of the areas of Cryptography that we contribute to.

Secret Sharing. An important topic within modern Cryptography is Se-
cret Sharing, introduced independently by Shamir [58] and Blakley [9] in 1979.
Most of the topics that we cover in this dissertation can be seen as generaliza-
tions and/or extensions of Secret Sharing.

In its basic form, a secret-sharing scheme takes as input a secret value s, and
produces n shares via a sharing algorithm; the shares are computed in such a
way that the secret s can be recovered from any large enough set of shares by
means of a reconstruction algorithm, while small enough sets of shares yield
no information at all on s – i.e., any secret is equally likely to have generated
the shares in such a set.

A notable secret-sharing scheme was presented by Shamir in his 1979 seminal
article, and is still a widely used ingredient for cryptographic constructions.
Shamir’s scheme is defined by fixing a threshold t < n; for a given secret (which
is assumed to lie in a finite field F), the sharing algorithm samples a uniformly
random polynomial P (x) ∈ F[x] of degree at most t with the property that
P (0) is equal to the secret. The shares are then defined as P (α1), . . . , P (αn),
for pairwise-distinct and non-zero αi ∈ F. Since P is uniquely determined by
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t+ 1 or more interpolation points, we have that sets of shares of size t+ 1 or
more allow the secret to be reconstructed; moreover, by arguing with Lagrange
interpolation theory, it is readily seen that sets of shares of size t or less yield
no information at all on the secret.

Secret Sharing has several direct applications. For instance, it can be used for
reliable and secure storage: if each share associated to a secret is stored in a
separate device, then the secret can be reconstructed even if some of the devices
are not available (as long as the remaining ones are in sufficient number), while
at the same time an attacker that breaks into a limited number of devices
would obtain no information on the secret. Or, a secret-sharing scheme can be
used for one-way reliable and secure communication: by sending each of the n
shares over a different channel to a receiver, it is guaranteed that the secret can
be received even if some of the channels fail to deliver their message, while an
attacker eavesdropping on some of the channels would obtain no information
at all on the secret.

Furthermore, secret-sharing schemes are used as building blocks in many areas
of Cryptography, such as multi-party computation [6, 13, 18], byzantine agree-
ment [56], threshold cryptography [25], access control [54], attribute-based
encryption [34, 72], and generalized oblivious transfer [59, 71].

In the vanilla version we discussed, Secret Sharing combines two properties,
namely recovery from erasures and privacy. Some “enhanced” variants of this
concept have been proposed and studied; in particular, we discuss in this
thesis Robust Secret Sharing, that combines recovery from errors and privacy.
More precisely, a secret-sharing scheme is called robust if its reconstruction
algorithm can recover the secret even if the share string contains errors –
i.e., even if some of the shares are incorrect; a small error probability in the
reconstruction process is generally allowed.2 Notice how Robust Secret Sharing
has thus direct application to the above “reliable and secure communication
setting”: if again each share associated to a secret message is sent over a
separate channel to a recipient, then the message can be received even if some
of the channels deliver an incorrect share, while an attacker eavesdropping on
some of the channels would obtain no information on the secret message.

We mention earlier in this introduction that Coding Theory has a record of
fruitful interplay with Cryptography; an important example in this interplay
involves Secret Sharing. Indeed, a central topic in Coding Theory is error- (and
erasure-) correction, namely the study of codes that can recover data from a
partially incorrect string of symbols (error correction) or from an incomplete
string (erasure correction); thus Coding Theory and Secret Sharing have a

2A variation called Verifiable Secret Sharing aims at providing security against malicious
execution of the sharing phase as well.
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similar flavor, as they share this goal of error- or erasure-correction, while
Secret Sharing also has a privacy requirement.

In fact, there is a one-to-one correspondence between secret-sharing schemes
and error-correcting codes3, first pointed out by Massey in 1995 [51]; thus any
error-correcting code yields a secret-sharing scheme, where the privacy prop-
erty of the latter can be expressed in terms of the underlying code. Subsequent
work on the topic [14] has established new ways of constructing secret-sharing
schemes from codes; by using algebraic-geometry codes, this has notably al-
lowed to construct secret-sharing schemes with high ratio between the secret
size and the share size.

Secure Message Transmission. Other areas of cryptography spawned as
twists on the original cryptographic scenario of private communication; one
such example was introduced by Dolev et al. [27] in 1992, and is called Secure
Message Transmission, shortened to SMT. SMT models a generalization of
the “reliable and secure communication” scenario that we discussed in the
previous paragraph, where a sender Alice is connected to a receiver Bob by
n parallel two-ways channels, and where an adversary Eve controls t of these
channels, meaning that she acquires all data that is transmitted over the t
channels and that she can overwrite it with data of her choice. The goal of an
SMT protocol is to allow Alice to communicate a secret message to Bob with
privacy and reliability, meaning that Eve should acquire no information on
the message, while Bob should be able to recover it completely in spite of the
errors introduced by Eve; in contrast to (Robust) Secret Sharing, two-ways
communication is generally allowed in SMT.

We stress the fact that traditionally, SMT protocols are required to achieve
perfect privacy, meaning that Eve should obtain no information at all on the
message, while reliability can either allow for some small error probability or be
perfect. In the latter case, we speak of Perfectly Secure Message Transmission
or PSMT.

Two factors influence whether PSMT is possible and how difficult it is to
achieve, namely the number t of channels controlled by Eve, and the number r
of transmission rounds, where a transmission round is a phase involving only
one-way communication (either from Alice to Bob, or from Bob to Alice).

For r = 1, i.e. when communication is only allowed from Alice to Bob, it
was showed in Dolev et al.’s original paper [27] that PSMT is possible if and
only if t < n/3; in fact, one-round SMT is nothing but a special instance of

3to be precise, the correspondence is between linear secret-sharing schemes and linear
error-correcting codes. A formal discussion of linearity would be beyond the scope of this
introduction; we point out, however, that linearity is an important property for many ap-
plications of Secret Sharing.
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Robust Secret Sharing, and thus schemes for the latter (e.g. Shamir’s scheme
together with error correction) can be used to achieve security in this regime
of parameters. It is also interesting to compare this setting to the classical
scenario of private communication over a single channel: the availability of
several channels enables to achieve perfect privacy and reliability without any
assumption on the computational power of the adversary, and without any
need for a priori agreement over a secret key.

When interaction is allowed, i.e. r ≥ 2, it was also shown in [27] that PSMT
can tolerate a greater number of corrupted channels, namely it is only re-
quired that t < n/2, although only an inefficient way to do this was proposed.
Subsequently, several works on the topic [57, 1, 68, 46, 45] shared the goal of
designing PSMT protocols with improved efficiency, trying to minimize the
amount of computation performed by users as well as the amount of required
communication; the most recent efforts focus on the hardest regime of pa-
rameters, namely allowing only r = 2 rounds of communication and setting
n = 2t+ 1.

Secure Network Coding. Techniques from Cryptography and Coding The-
ory also prove useful in more complex communication problems; a notable ex-
ample is communication over networks that are exposed to external attacks.
One can think of a network as a collection of wires and intermediate nodes that
connect some source nodes (with no incoming wires) to some sink nodes (with
no outbound wires); the source nodes produce some data and send it via the
outbound wires, and the sink nodes read the data received via the incoming
wires. In Network Routing, the intermediate nodes simply read the data re-
ceived via the incoming wires and forward it over outbound wires; in contrast
to this approach, Network Coding allows intermediate nodes to manipulate
the received data (namely, perform linear operations on it) and send the re-
sult over the outbound wires. The advantage of these operations is that they
increase the throughput of the network [2, 47, 43], reaching the best possible
value.

From the early 2000’s and the work of Cai and Yeung [10], researchers have
studied external attacks in this context, first focusing on attackers that eaves-
drop on some of the wires of the network [10, 30, 29, 62], and more recently
considering the case where attackers can also inject errors on some of the
wires [63]. An important point is that Secure Network Coding classically did
not study interactive scenarios, and thus assumed that data could only be
transmitted from the source nodes (i.e. from the senders) to the sink nodes
(i.e., the receivers).

In this dissertation, we show how techniques from Secure Message Transmis-
sion, which in turn rely on Coding Theory, can be used to provide security for
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network-coding scenarios where two-ways communication is allowed.

Multi-Party Computation. We conclude our survey by discussing a flour-
ishing subfield of Cryptography called Multi-Party Computation, first intro-
duced by Yao in 1982 [73] and shortened to MPC.

In MPC, n parties known as players hold private inputs x1, . . . , xn respectively
and aim at computing the value f(x1, . . . , xn) of a function f on their inputs,
while guaranteeing the correctness of the output and while keeping their inputs
private.

If we imagine that players can appeal to a trusted mediator, then the problem
can be easily solved: players would simply send their inputs to the mediator
via secure channels, the mediator would compute the value of f(x1, . . . , xn)
and communicate it back to all the players. The goal of an MPC protocol is
to allows players to achieve the same outcome without any external mediator.

In MPC, the adversary is internal (and we thus speak of multi-lateral security),
meaning that he gains control of some players who are then called corrupted.
The adversary can be passive, meaning that he only reads the data acquired
by corrupted parties, or active, meaning that he can decide the actions of
corrupted players.

Yao’s seminal paper [73] introduced the concept of MPC and presented a first
two-party protocol; subsequently, several theoretical possibility and impossi-
bility results were presented in the 1980s [32, 6, 13]. Informally stated, these
works proved the following crowning result: that if the adversary can only cor-
rupt a certain amount of the players, then every function (with finite domain
and finite image) can be securely computed.

The exact number of corrupted players that can be tolerated depends on the
capabilities of the adversary (active or passive) and on the required security
type. More precisely, n players can compute any function with computational
security as long as the adversary corrupts less than n/2 players, even if the
adversary is active. If computational intractability assumptions are not made,
then n players can compute any function with unconditional security as long
as less than n/2 players are corrupted by a passive adversary; and similarly,
n players can unconditionally-securely compute any function as long as less
than n/3 players are corrupted by an active adversary.

The result from [32] is possible thanks to the use of zero-knowledge, a cryp-
tographic primitive that has subsequently been widely used to build MPC
protocols. Zero-knowledge protocols were first introduced by Goldwasser et
al. [33], and, informally stated, allow a party (known as the prover) to demon-
strate to another party (known as the verifier) that he knows a solution to a

7



certain problem, without revealing any information aside from the fact that he
knows that solution. Typically, zero-knowledge protocols are used in MPC to
enable (and force) players to prove that they are behaving honestly, i.e. they
are following the instructions of the MPC protocol.

Another important step in the development of MPC protocols is the work of
Cramer et al. [18], which introduced a paradigm for the construction of MPC
protocol from secret-sharing schemes. This type of approach has been very
successful, and secret-sharing schemes (or, more precisely, linear schemes) are
nowadays one of the fundamental building blocks of Multi-Party Computation.

Since the possibility results mentioned above, a great effort has been made
in the cryptographic community to design efficient (and thus implementable)
MPC protocols. A promising example in this sense is the so-called “SPDZ”
protocol by Damg̊ard et al. [23, 22], which will be further discussed in this
thesis.

1.2 Thesis Outline and Contributions

The contributions of this thesis to the fields presented above are based on the
following publications:

• Ronald Cramer, Ivan Bjerre Damg̊ard, Nico Döttling, Serge Fehr, and
Gabriele Spini. Linear secret sharing schemes from error correcting codes
and universal hash functions. In Advances in Cryptology - EUROCRYPT
2015.

• Gabriele Spini and Gilles Zémor. Perfectly secure message transmission
in two rounds. In Theory of Cryptography - TCC 2016-B.

• Gabriele Spini and Gilles Zémor. Universally secure network coding with
feedback. In IEEE International Symposium on Information Theory -
ISIT 2016.

• Gabriele Spini and Serge Fehr. Cheater detection in SPDZ multiparty
computation. In Information Theoretic Security - 9th International Con-
ference - ICITS 2016.

Secret Sharing. Our first contribution to Secret Sharing establishes a new
connection between Secret Sharing and Coding Theory. Previous work on
this connection [51, 14] described both the secret and the shares in terms
of an error-correcting code; this approach has the downside that the privacy
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threshold of a secret-sharing scheme has to be estimated in terms of the dual
of the underlying code. This can be a serious drawback, since to obtain good
secret-sharing schemes one needs to design codes with good parameters and
good duals, which might not be achievable; for instance, currently known codes
with linear-time encoding and decoding have very bad dual codes, so that one
cannot directly transpose desirable properties from Coding Theory to their
analogues in Secret Sharing.

We circumvent this problem by establishing a new connection between secret-
sharing schemes and codes, where the shares are still described in terms of a
code, but the secret is now given by a function acting on the shares. This
allows us to estimate the privacy parameter in terms of the code and the
function, thus without analyzing the dual of the code. In this way, we can fully
harness the potential of recent code constructions, such as efficient encoding
and decoding or efficient list-decoding, to obtain improved schemes.

We present two applications of this connection. The first, more direct one is
to construct schemes with linear-time sharing and reconstruction (and with
“good” privacy and reconstruction threshold), which was an hitherto open
problem. This application uses universal hash functions, which provide par-
ticularly good bounds for the privacy parameter in our connection; further-
more, linear-time computable universal hash functions have been recently de-
scribed [28], so that we can combine them with linear-time encodable and
decodable codes and obtain the desired schemes with linear-time sharing and
reconstruction.

The second application addresses a classical goal of Robust Secret Sharing:
in the non-trivial regime of parameters, robustness can be achieved only by
allowing for a small error probability in the reconstruction process and by
adding extra “check” data to the shares, and several efforts aimed at optimizing
the trade-off between the error probability and the share size. Our construction
improves on previous work, and in fact reaches the optimal share size for
given error probability; furthermore, the sharing and robust-reconstruction of
a secret can be efficiently performed, namely in time polynomial in the secret
size and the number n of shares.

Our construction builds upon the above connection between secret-sharing
schemes and codes, and makes use of two main ingredients. The first one
consists of codes with good list-decodability properties, where loosely speaking,
list decoding is a form of error correction where on input an incorrect string
one tries to recover a list of possible original strings, and not a single one; the
second component consists of AMD codes, which can detect certain types of
manipulation on data. Intuitively, robust reconstruction is achieved by first
list-decoding the share string to obtain a list of possible secrets, and then use
the AMD code to detect and prune out incorrect secrets; by choosing recent
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construction of list-decodable codes and AMD codes with good properties,
we are able design two families of efficient robust-secret sharing schemes with
optimal share size.

Perfectly Secure Message Transmission and Secure Network Coding.
We design a protocol for Perfectly Secure Message Transmission that improves
on previous work in two main aspects: first, it follows a conceptually simpler
blueprint, making use of relatively straightforward coding-theoretic techniques;
and second, it achieves better complexity.

To be more precise, the protocol we introduce has a communication complexity
of O

(
n2 log n

)
and a transmission rate of O(n), where these two quantities are

defined as the total number of bits transmitted to communicate a single-bit
secret, and the ratio between the total number of bits transmitted and the bit-
size of the secret (for a secret of growing size), respectively. We thus improve
over the previous state-of-the-art protocol, due to Kurosawa and Suzuki [46,
45], which achieved a communication complexity of O

(
n3 log n

)
bits and a

transmission rate of O(n); the latter value is optimal.

Just as importantly, our solution is conceptually simpler than previous pro-
tocols. Our core idea combines two main components, namely “syndrome-
decoding” techniques from Coding Theory and some tools developed in pre-
vious work to identify the channels corrupted by Eve. Together, these two
components form a straightforward structure, in contrast to previous work on
PSMT which relied on early strategies that marked substantial progress at
the time but are now surpassed by more effective techniques. It is also worth
remarking that its simple core structure allows our protocol to be adapted to
a Secure Network Coding scenario, as we will discuss in the following lines.

Classically, only one-way communication (from source to sink nodes) has been
studied for Secure Network Coding; in this setting, security can be guaranteed
as long as the number of wires controlled by the attacker is less than one third
of the network connectivity, defined as the minimum number of wires whose
removal disconnect the source node from any sink node. We contribute to the
topic by presenting protocols where data can also be conveyed from sink nodes
to source nodes; with this feature, security is guaranteed against a stronger
adversary, namely the number of corrupted wires only needs to be smaller than
one half of the connectivity.

We adapt our techniques for PSMT to this setting; this is possible thanks to
the similarity between PSMT and Secure Network Coding. A full discussion
of this similarity would be beyond the scope of this introduction, but we give
here some intuition: focus for simplicity on a Secure Network Coding scenario
with a single source node (that we imagine controlled by Alice) and a single
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sink node (that we imagine controlled by Bob). If we then only look at the
input/output behaviour, this scenario can be seen as a generalization of PSMT
where the adversary Eve controls a “linear combination” of channels, instead
of a subset of channels, in the following sense. Recall that in the presence of
network coding, intermediate nodes in a network send linear combinations of
the received data over the outbound wires. This means that wires always carry
linear combinations of the input symbols, so that in particular the data eaves-
dropped by the attacker Eve has this “linear-combination” form; similarly, the
errors injected by Eve on the wires under her control propagate in the same
fashion through the network, so that Bob’s received data will be affected by
linear combination of the errors.

The techniques we introduced for PSMT can be easily adapted to this scenario
with enhanced capabilities of the adversary. More precisely, we first show a
direct adaptation of our PSMT protocol to the single-sender, single-receiver
network coding scenario, obtaining a protocol which is secure for a greater
number of corrupted wires compared to previous work, namely going from a
third of the connectivity to a half. Furthermore, we introduce a three-round
protocol, based on the same core ideas, that also works in a multi-cast scenario,
i.e. with several receivers or “Bobs”; once again, two-ways communication
allows us to achieve greater security compared to previous work, from a third
to a half of the connectivity.

Secure Multi-Party Computation. Our work on MPC concerns the so-
called SPDZ protocol (named after the initials of its authors) for Multi-Party
Computation [23, 22], a recent scheme with very good efficiency and thus
promising possibilities of becoming practical.

A drawback of the SPDZ scheme is that it does not provide any form of
dishonest player identification: as soon as cheating is detected, the protocol
simply aborts, leaving the honest players clueless about the identity of the
cheater. Thus an adversary can force the scheme to abort without having
to fear any consequences; this means that SPDZ is vulnerable to a denial-of-
service attack.

We contribute to the topic by providing SPDZ with a form of cheater detection,
without significantly increasing the running time of the scheme; the efficiency
of SPDZ is in fact one of its most important features.

We present an “improved version” of SPDZ with identifiable abort; more pre-
cisely, we achieve the following. In case no cheating takes place, the protocol
computes the right output value and has a complexity of the same magnitude
as the original SPDZ. In case cheating does take place, several situations may
occur, depending on the exact behaviour of the adversary. A first possible
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outcome is that the protocol is able to handle the cheating, i.e., it successfully
computes the output value; in this case, the protocol is slower by a factor 2 only
compared to the original SPDZ. The other possible outcome is that the pro-
tocol aborts, but identifies a dishonest player; here we distinguish two further
cases: identification without agreement, where each honest player identifies a
dishonest one, but there may be no consensus on the identity of the dishon-
est players; and identification with agreement, where all honest players agree
on the identity of at least a dishonest player. In the no-agreement case, our
protocol is slower by a factor 2 only, while in the in-agreement case, the pro-
tocol may be significantly slower, but since a dishonest player will be publicly
exposed, there is little incentive for the adversary to enforce this scenario.
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Chapter 2

Preliminaries

This chapter presents the fundamental building blocks upon which this the-
sis is built. We introduce basic notation in Section 2.1; Section 2.2 gives an
overview of Coding Theory, a central building block for this dissertation. In
Section 2.3, we give a brief overview of probability theory, adapting the dis-
cussion to our needs; in Section 2.4, we discuss how to model algorithms and
protocols. Finally, Section 2.5 discusses a key subject for this dissertation, Se-
cret Sharing, while Section 2.6 recalls the connection between Secret Sharing
and Coding Theory.

2.1 General Notation

We denote by N, Z and R the set of non-negative integers, relative integers
and real numbers, respectively; given two real number a < b, we denote by
[a, b] the closed interval {x ∈ R : a ≤ x ≤ b}; A finite field with unspecified
cardinality is denoted by F; given a prime power q, we denote a finite field
with q elements by Fq.

Vectors are written in boldface; in expressions involving vectors and matrices,
vectors are considered to be row vectors unless otherwise stated. The logarithm
function log is assumed to be in base 2.

Given sets S1, . . . ,Sn and a subset of coordinates A ⊆ [n], we denote by SA the
set {(si)i∈A : si ∈ Si}. Furthermore, elements (si)i∈A are simply denoted by
sA, and πA : S1×· · ·×Sn → SA denotes the projection map (s1, . . . sn) 7→ sA.
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2.2 Error-Correcting Codes

Error-correcting codes are mathematical objects that are used to protect data
from erasures or errors. We focus on block codes, which will be a fundamen-
tal building block for several parts of this dissertation; with a slight abuse of
notation, we will refer to these codes simply as error-correcting codes, high-
lighting their purpose. The reader can refer to [49] for a detailed study of error
correction.

2.2.1 Basic Definitions and Properties

Let F be a non-empty set, and n > 0 be an integer; given two elements v,v′ ∈
Fn, we define their Hamming distance to be dH(v,v′) := |{i : vi 6= v′i}|; if F
has an abelian group structure (in additive notation), we can also define the
Hamming weight of an element v ∈ Fn to be wH(v) := |{i : vi 6= 0}|. Notice
that in this case, dH(v,v′) = wH(v − v′) = wH(v′ − v).

Definition 2.2.1 (Error-correcting Code). Let F be a finite set, and let
n > 0 be an integer; an error-correcting code of length n over F is a non-
empty subset C ⊆ Fn. F is called the alphabet of C, n is called its length, and
elements of C are called codewords; we will frequently call C simply a code, if
no confusion can arise.

The minimum distance of C is dmin(C) := min {dH(x,x′) : x 6= x′ ∈ C}; for
completeness, if |C| = 1 we set dmin(C) := n+ 1.

The minimum distance of a code determines how may erasures or errors the
code can correct, as we show in the following remark.

Remark 2.2.1. Let C be a code of length n and minimum distance d with
alphabet F ; we then have that C can correct d − 1 erasures and b(d − 1)/2c
errors, in the following sense.

Let x ∈ C be an arbitrary codeword; let y ∈ (F t {⊥})n be an n-tuple
obtained from x by replacing up to d − 1 of its symbols with erasure marks
⊥. Then x is uniquely determined by y, namely it is the only element in the
set {x′ ∈ C : dH(x′,y) ≤ d − 1}. In other words, n − d + 1 symbols of any
codeword of C uniquely determine it.

For what concerns error correction, let x ∈ C be an arbitrary codeword and
let y ∈ Fn be an n-tuple such that dH(x,y) ≤ b(d − 1)/2c. Then again, x is
uniquely determined by y, namely it is the only element in the set {x′ ∈ C :
dH(x′,y) ≤ b(d− 1)/2c}.
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Definition 2.2.2. Let C be a code; if its alphabet F is equal to a finite field
Fq and C is an Fq-subspace of Fnq , we say that C is an (Fq-) linear code.

We then combine three key parameters of C into a triplet [n, k, d], where

• n is, as stated, the length of the code;

• k is the dimension of C as an Fq-linear space;

• d is the minimum distance of C; notice that d = min {wH(x) : x ∈ C \ {0}}
(assuming |C| 6= {0}).

We sometimes use a variant of this notation and write [n, k, d]q, in order to
have the alphabet size as well in a unique expression. The rate of the code is
defined to be R := k/n.

Definition 2.2.3 (Parity-Check Matrix). Let C be a linear code of param-

eters [n, k, d]q. A parity-check matrix of C is any matrix H ∈ F(n−k)×n
q with

the property that

C =
{
x ∈ Fnq : HxT = 0

}
.

It is immediately seen that a parity-check matrix exists for any linear code;
furthermore, given a parity-check matrix H for C, we define its associated

syndrome map σ : Fnq → F(n−k)
q where σ(v) := HvT . Thus by definition,

C = kerσ.

Let us now discuss in some more detail the properties of erasure/error cor-
rection of codes. Let C be a code; for simplicity, assume it is linear, with
parameters [n, k, d]q. As a direct consequence of Remark 2.2.1, there exists a
function Decode : (Fqt{⊥})n → (Ct{⊥}) that can correct from d−1 erasures
and b(d− 1)/2c errors; this means that given any x ∈ C, if y ∈ (F t {⊥})n is
obtained from x by replacing up to d − 1 of its symbols with erasures marks
⊥, then Decode(y) = x, and similarly for errors.

Such a function Decode is usually called a decoding algorithm. An important
remark is that it is non-trivial to devise efficient decoding algorithms, namely
given an arbitrary code C there is no general method to compute Decode(y)
for an arbitrary y efficiently (i.e., in time polynomial in the block length –
see Section 2.4 for a discussion over complexity); it is thus a classical goal of
coding theory to design codes with efficient associated decoding algorithm.

Furthermore, given a linear code C of dimension k over Fq, we have that there
exists an isomorphism Encode : Fkq → C; Encode is then said to be an encoding
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algorithm. We stress the fact that the name “decoding function” or “decoding
algorithm” sometimes denotes Encode−1 ◦ Decode; it will always be clear in
this dissertation if we are referring to this function or simply to Decode.

We now recall the concept of dual code, which will be used to describe the
connection between codes and Secret Sharing.

Definition 2.2.4. Let C be a linear code of parameters [n, k, d] with alphabet
F. The dual code of C is the linear code of length n given by C⊥ := {y ∈ Fn :
yxT = 0 ∀x ∈ C}.

The parameters of C⊥ are sometimes denoted by [n, k⊥, d⊥]; it can be proved
that k + k⊥ = n.

We conclude this first part of the discussion on codes with the following defi-
nition:

Definition 2.2.5 (Folded Codes). Let Fq be a finite field and m > 0 be
an integer; then a code C with alphabet Fmq is said to be m-folded if it is an
Fq-linear space. m is then called the folding parameter of C.

We associate to a folded code C the parameters [n, k, d]qm , where n and d are
its block length and minimum distance, and k (unless otherwise specified) is
its dimension over Fq. The rate of the code is defined to be R := k/mn.

2.2.2 MDS Codes

We discuss the class of linear codes with maximum possible dimension and dis-
tance; the errors and erasures we focus on in this section are adversarial, mean-
ing that we do not assume that they are sampled according to some probability
distribution, rather we just suppose that they have bounded weight. Recall
that as seen in the previous subsection, the amount of erasures or errors of this
type that a code can correct are directly proportional to its minimum distance;
it is thus desirable to design codes with distance as large as possible.

On the other hand, it is also desirable to design codes that contain many
words, i.e., that have large dimension – a code that corrects from many errors
but contain only a single word is of little use.

We recall the following fundamental fact, that establishes a trade-off between
the minimum distance and the size of a code:

Theorem 2.2.1 (Singleton Bound). Let C be a code of length n over the
alphabet F ; then it holds that dmin(C) + log|F | |C| ≤ n+ 1.
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Proof. Let d := dmin(C); notice that d ≤ n unless |C| = 1, in which case the
statement holds. Thus assume that d ≤ n, and define C′ to be the punctured
code obtained from C by removing its first d− 1 symbols, i.e.

C′ :=
{

(xd, . . . ,xn) ∈ Fn−d+1 : ∃x1, . . . ,xd−1 s.t. (x1, . . . ,xd−1,xd, . . . ,xn) ∈ C
}
.

By definition of minimum distance, we have that |C′| = |C|. We thus have the
following inequalities:

|C| = |C′| ≤
∣∣Fn−d+1

∣∣ = |F |n−d+1.

The claim follows.

Definition 2.2.6 (MDS Codes). A code C is said to be Maximum Distance
Separable or MDS if it meets the Singleton bound.

For simplicity, we will only consider linear MDS codes in this dissertation;
hence a linear code C of parameters [n, k, d] is MDS if d+ k = n+ 1.

We recall the following important result for MDS codes:

Proposition 2.2.2. Let C be an MDS code of parameters [n, k, n − k + 1]q;
let B ⊆ [n] be a subset with |B| = k. Then B is an information set for C, i.e.
the projection map πB : C → FBq is one-to-one.

An important example of MDS code is given by the family of Reed-Solomon
codes, defined as follows:

Definition 2.2.7 (Reed-Solomon Codes). Let Fq be a finite field and n a
positive integer with n ≤ q; a Reed-Solomon code RS of length n over Fq is
defined as follows.

Fix a non-negative integer t ≤ n and n elements α1, . . . , αn ∈ Fq with αi 6= αj
for any i 6= j (notice that this is possible since n ≤ q); then let

RS := {(P (α1), . . . , P (αn)) : P (x) ∈ Fq[x], degP ≤ t} .
It is easily seen that RS is MDS with parameters [n, t+1, n−t] (simply observe
that the number of roots of a non-zero polynomial cannot exceed its degree).

An important property of Reed-Solomon codes is that they are decodable in
time polynomial in n and q.

Also notice that the construction of Reed-Solomon codes implies that if q ≥ n,
then MDS codes of parameters [n, k, n− k + 1]q exist for any k.
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2.3 Probability Theory

2.3.1 Modeling Non-Determinism

When using mathematics to analyze real-life scenarios, one may be confronted
with the task of modeling a statement which is inherently unpredictable, or
in other words, non-deterministic: such a statement cannot be described by
a “standard” mathematical statement, which is either true or false. Think
of the toy example of rolling a die: a statement such as “the outcome is an
even number” is not surely true or surely false, but rather can be either of
them with a certain probability; similarly, the outcome of the die roll is not a
fixed value, but may be one of several possible values that occur with certain
probabilities.

Probability theory is the branch of mathematics that models such non-deterministic
statements and values. It hence plays an important role in this dissertation,
where non-determinism is extensively used to provide security in a crypto-
graphic setting.

The standard formulation of probability theory is due to Kolmogorov. With
this approach, non-determinism is modeled by selecting a suitable probability
space that represents the source of randomness; non-deterministic statements
and values are then modeled in terms of the probability space.

We will adopt a more abstract point of view on probability theory, inspired by
the lecture notes of Terence Tao for his graduate course at UCLA [?]. With
this approach, a non-deterministic statement or value is modeled by a more
abstract object; in order to study the properties of this object, one can then
select a suitable representation for it, expressed in Kolmogorov’s formulation,
and refer to the formalism of standard probability theory.

In fact, this approach is used very often in cryptographic publications, although
it is only implicit; our aim is thus to give a firm mathematical ground to this
widely used convention.

The advantages of this abstract approach are particularly evident in case there
is no canonical representation for an abstract object, since the flexibility in se-
lecting and changing representations becomes very useful. Just as importantly,
defining the probabilistic models that we need becomes faster and more intu-
itive with the abstract approach. Indeed, defining the probability space to
model a non-deterministic statement can be quite arbitrary and cumbersome,
even if the high-level description of the statement is very intuitive. In this
sense, our abstract approach does not introduce any unnecessary complexity
when modeling non-determinism.
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2.3.2 Kolmogorov’s Probability Theory

We present here some basic notions of probability theory in the classical for-
mulation due to Kolmogorov; we restrict ourselves to finite probability theory,
as it is sufficient to cover the topics of this dissertation.

Definition 2.3.1. A (finite) probability space consists of a pair (Ω, p), where
Ω is a finite, non-empty set called sample space, and p : Ω → [0, 1] is a
function called probability measure such that

∑
ω∈Ω

p(ω) = 1.

An event is a subset E of the probability space Ω; we extend the probability
measure p to events by setting

p(E) :=
∑
ω∈E

p(ω),

where by convention, p(∅) := 0.

In Kolmogorov’s formulation, an event is used to model a non-deterministic
statement; notice that standard (i.e., deterministic) statements can be seen as
events with probability 1 if true, or 0 if false.

Similarly, non-deterministic values are modeled by random variables, defined
as follows.

Definition 2.3.2. Let (Ω, p) be a probability space; a random variable over
(Ω, p) is defined to be a function X : Ω → X , where we may assume X to be
finite. With a slight abuse of notation, we will sometimes write X : (Ω, p) →
X .

Notice that any deterministic value x ∈ X can be seen as the random variable
(Ω, p)→ X , ω 7→ x.

We adopt the following convention. For x ∈ X , we denote by X = x the
event {ω ∈ Ω : X(ω) = x}; similarly, given a subset A ∈ X , we write X ∈ A
to denote the event {ω ∈ Ω : X(ω) ∈ A}, and for two random variables
X : (Ω, p) → X and Y : (Ω, p) → Y, we write X = Y to denote the event
{ω ∈ Ω : X(ω) = Y (ω)}, etc.

We recall the following important concepts:

Definition 2.3.3. Let (Ω, p) be a probability space, and let E and E′ be events
of Ω; we usually denote p(E ∩ E′) by p(E,E′). If p(E′) > 0, we define the
conditional probability of E given E′ to be
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p(E|E′) :=
p(E,E′)

p(E′)
.

Definition 2.3.4. Given a probability space (Ω, p) and two events E,E′ ⊆ Ω,
we say that E and E′ are independent if p(E,E′) = p(E) · p(E′). Notice that
in this case, if p(E′) > 0 then p(E|E′) = p(E).

Given two random variables X : (Ω, p) → X and Y : (Ω, p) → Y, we say that
X and Y are independent if the events X = x and Y = y are independent for
any x ∈ X and y ∈ Y. In this case, p(X = x|Y = y) = p(X = x).

Definition 2.3.5. Let X : (Ω, p)→ X be a random variable. The (probability)
distribution of X is defined to be the function DX : X → [0, 1] given by

DX(x) := p(X = x).

We say that a random variable X is uniformly distributed over X if DX(x) =
1/|X | for any x ∈ X .

Let X and Y be two random variables defined over the same probability space
(Ω, p), having range X and Y respectively. Then their cartesian product XY :
(Ω, p) → X × Y, ω 7→ (X(ω), Y (ω)) is a well-defined random variable; its
distribution DXY : (x, y) 7→ p(X = x, Y = y) is called the joint distribution
of X and Y . DX and DY are called marginal distributions in this setting;
notice that marginal distributions can be obtained from the joint one, e.g.
DX(x) =

∑
yDXY (x, y).

These concepts and notations naturally extend to the case of several random
variables.

Remark 2.3.1. Given a probability space (Ω, p), we have a one-to-one corre-
spondence between events E ⊆ Ω and boolean random variables XE : Ω →
{0, 1}: simply define XE(ω) = 1 if ω ∈ E, and 0 otherwise. This means that
we can view events as a special type of random variables (namely, those with
range equal to {0, 1}).

2.3.3 Abstract Probability Theory

We describe in this section a more abstract variant of probability theory; as
discussed in Section 2.3.1, this has the advantage of not relying on a fixed prob-
ability space, while at the same time the properties of Kolmogorov’s formalism
can be applied by selecting a suitable representation.

Given a finite set X , we would like to think of a non-deterministic value in X
as an abstract object defined only in terms of its distribution. To this end,
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consider the set of triplets (Ω, p,X) where (Ω, p) is a probability space and
X : (Ω, p) → X is a random variable; we then have that the binary relation
given by (Ω, p,X) ∼ (Ω′, p′, X ′) if DX = DX′ is an equivalence relation.

Definition 2.3.6. Given a finite, non-empty set X , we denote by RV(X ) the
set of equivalence classes under the relation ∼ described above; an abstract
random variable over X is then an equivalence class x ∈ RV(X ). We write
x ∈$ X .

A representation of x ∈ RV(X ) is then simply an element (Ω, p,X) of the
equivalence class x. The distribution Dx of x is defined to be the distribution
DX : X → [0, 1] of any representation (Ω, p,X) of x.

Hence we have that an abstract random variable x over X is uniquely deter-
mined by its distribution Dx; conversely, it can be easily seen that any function
D : X → [0, 1] with

∑
xD(x) = 1 is the distribution of an abstract random

variable over X . This means that we can view an abstract random variable as
an abstract object entirely defined by its distribution.

This implies that properties of random variables (in the Kolmogorov sense)
that are determined by their distributions are naturally inherited by abstract
random variables. For instance, an abstract random variable x ∈ RV(X ) is
naturally defined to be uniformly distributed if Dx(x̂) = 1/|X | for any x̂ ∈ X ;
or, given x ∈$ X and a representation (Ω, p,X) of x, expressions like p(X = x̂),
p(X ∈ A), etc. are well-defined and independent of the choice of X. Hence
we will typically write p(x = x̂), p(x ∈ A), etc. instead, implicitly assuming
that a suitable representation (Ω, p,X) has been selected; this also means that
the letter p appearing in these formulas does not necessarily refer to a specific
probability measure.

Remark 2.3.2. In line with Remark 2.3.1, non-deterministic statements can be
modeled as abstract random variables over {0, 1}.

These notions extend to the case of two or more random variables: given two
non-empty finite sets X ,Y, an abstract pair of random variables over X × Y
is naturally defined as an element (x, y) ∈ RV(X × Y). A representation
of (x, y) is by definition an element of the equivalence class; notice that we
can write it as a triplet

(
Ω, p, (X,Y )

)
where (Ω, p) is a probability space and

X : (Ω, p)→ X and Y : (Ω, p)→ Y are two random variables.

Again, we obtain a one-to-one correspondence between abstract pairs of ran-
dom variables over X × Y and joint distributions D : X × Y → [0, 1] by
selecting a representation

(
Ω, p, (X,Y )

)
of any (x, y) ∈ RV(X × Y) and as-

signing (x, y) 7→ DXY . Notice that the concept of independence is well-defined
for abstract random variables.

Remark 2.3.3. We stress the fact that there is a difference between an abstract
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pair of random variables (x, y) ∈$ X × Y and a pair of abstract random vari-
ables x ∈$ X , y ∈$ Y: in the latter case only the marginal distributions Dx

and Dy are specified, and no joint distribution D(x,y) is a priori defined. In
the latter case, we endow (x, y) with the so-called product distribution, namely
we consider the abstract pair of random variables (x, y) ∈$ X × Y defined by
D(x,y)(x̂, ŷ) = Dx(x̂) ·Dy(ŷ) for any x̂ ∈ X , ŷ ∈ Y.

Let x ∈ RV(X ) be an abstract random variable, and let f : X → Y be a
function, where we assume the set Y to be finite. The abstract random variable
f(x) over Y is then naturally defined to be the equivalence class (Ω, p, f ◦X),
where (Ω, p,X) is an arbitrary representation of x. Notice that the distribution
of f(x) is given by

Df(x)(ŷ) =
∑

x̂:f(x̂)=ŷ

Dx(x̂).

2.4 Modeling Algorithms and Protocols

The standard approach in Cryptography (and other areas of applied mathe-
matics) to formalize algorithms and protocols is to use Turing machines and
variants thereof. Informally speaking, a Turing machine is an abstract machine
that takes some input values, then manipulates symbols on an infinite tape
according to a set of instructions, and produces output values; in particular,
Turing machines let formally define the complexity of an algorithm.

We choose, however, a different approach, given that we are only interested in
the input/output behaviour of algorithms and protocols. More specifically, we
focus on information-theoretic security properties, i.e. which do not require
attackers to have limited computing power; complexity is thus not necessary
to formalize security (although we will take into account the efficiency of algo-
rithms). Under these considerations, using Turing machines would add extra
complexity without a real need for it.

We thus use a different approach, describing algorithms and protocols in terms
of (randomized) functions. We first focus on non-interactive algorithms - i.e.,
algorithms that are executed by a single party. These are formalized as follows.

Let X and Y be two finite, non-empty sets; a deterministic algorithm with
input space X and output space Y is a function Alg : X → Y. Similarly, a
randomized algorithm Alg with input space X and output space Y is a random
variable over the set of functions {f : X → Y}.

We usually write Alg : X →$ Y instead of Alg ∈$ {f : X → Y}; we will
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sometimes be flexible with the notation and simply speak of randomized func-
tions, if algorithmic aspects are not important. Moreover, we often describe a
randomized algorithm Alg : X →$ Y by simply defining the random variables
Alg(x) ∈$ Y for any x ∈ X ; Alg is then implicitly assumed to be given by the
product distribution.

Just as for arbitrary random variables, unless otherwise specified or clear from
the context we assume that any two randomized algorithm Alg, Alg′ are in-
dependent as a pair of random variables.

We now give an informal overview on interactive algorithms and protocols. Fix
an integer n > 0, denoting the number of interacting parties. As a first step,
an n-party interactive algorithm is defined to be an algorithm that exchanges
messages with n−1 other parties at given steps of the computation. A protocol
is then defined to be a collection of n interactive algorithms; the execution of a
protocol is the function obtained by “connecting” the n interactive algorithms
in the intuitive way. We will frequently describe protocols in “concrete” terms,
e.g. by using expressions like “party i receives xj from each party j, then
communicates the value of f(x1, . . . , xn) to all the parties”; it will always be
clear how these statements can be formalized in terms of interactive algorithms
and protocols as described above.

Finally, notice that in order to formalize the security of a protocol, one needs to
model the behaviour of an attacker: for multi-lateral security (cf. Chapter 1),
this is done by replacing the interactive algorithm Algi of any corrupted party
with another arbitrary algorithm Alg′i.

2.4.1 Complexity

As stated at the beginning of this section, complexity is not the main focus
of this dissertation; nevertheless, we do take into account the efficiency of the
algorithms and protocols that we design. We thus discuss in this section how
to analyze complexity, although we will not be completely formal.

Whenever we speak of the computational complexity of a (possibly random-
ized) algorithm Alg, we assume that a suitable computation model has been
fixed; statements on complexity will then be meaningful in this model. For
instance, when we speak of linear-time or polynomial-time algorithm (in a
given parameter), it is understood that these are meant in the Turing-machine
sense.

When making precise statement about complexity parameters, we generally
use a different computation model, known as the arithmetic-circuit model: we
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fix a finite field F (how to choose it will be clear from the context), then decom-
pose the algorithm Alg in a number of elementary operations (e.g. additions
and multiplications) over F; the complexity of Alg is then defined to be the
number of these elementary operations. In both cases, when measuring the
complexity of a randomized algorithm Alg, we always implicitly refer to its
worst-case complexity.

Finally, we focus on protocols. Since the execution of a protocol is an algo-
rithm, its (computational) complexity is well-defined; again, we will often be
flexible with the terminology and speak of the complexity of the protocol itself.

Also notice in this context, there are other important factors to measure the ef-
ficiency of a protocol, like the number of rounds and the amount of data that
parties need to communicate to each other (known as communication com-
plexity). The precise way to measure the communication complexity, however,
changes slightly for different fields, so we refer to the corresponding chapters
for a more accurate definition.

2.5 Secret Sharing

Secret Sharing was introduced independently by Shamir [58] and Blakley [9]
in 1979. In its basic form, a secret-sharing scheme takes as input an element
s, called the secret, and produces as outputs n elements called shares via a
sharing algorithm; the goal of the scheme is to ensure that some “privileged”
subsets of the shares allow s to be recovered by means of a reconstruction
algorithm, while other “rejected” subsets should yield no information at all
on s – i.e., any secret should equally likely to have generated the shares in
a rejected set. We focus here on the case where “privileged” sets are large
enough sets, and “rejected” sets are small enough sets.

In [58], the following direct application of Secret Sharing to a real-world sce-
nario was suggested: in order to store securely and reliably a secret value, a
secret-sharing scheme is used to produce associated shares, where each share
is subsequently stored in a separate device. Thus the secret value can be later
reconstructed even if some of the devices are no longer available (as long as the
remaining ones are in sufficient number, i.e. form a “privileged” set), while at
the same time an attacker that breaks into a limited number of devices would
obtain no information at all on the secret (since he would only collect shares
in a “rejected” set).

Another possible application is to one-way secure and reliable communication
of a secret message: assume that a sender can communicate with a receiver via
several distinct channels; then to communicate a secret message, the sender
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can use a secret-sharing scheme to produce associated shares, where each share
is subsequently sent to the receiver over a distinct channel. It is thus guar-
anteed that the secret can be received even if some of the channels fail to
deliver the message (the receiver would simply reconstruct the secret from the
received shares, assuming these are in sufficient number), while an attacker
eavesdropping on some of the channels would obtain no information at all on
the secret message. This last application is especially relevant for this disser-
tation, since it allows us to cast the new constructions of Chapters 3 and 4
within a common framework.

Furthermore, Secret Sharing has become a fundamental cryptographic prim-
itive since its introduction; for instance, secret-sharing schemes form build-
ing blocks for multi-party computation [6, 13, 18], byzantine agreement [56],
threshold cryptography [25], access control [54], attribute-based encryption [34,
72], and generalized oblivious transfer [59, 71].

2.5.1 Basic Definitions and Properties

We formally introduce Secret Sharing in this section. We present secret-sharing
schemes in two flavors; this gives us the flexibility to discuss new schemes in
the most natural and convenient formulation. The two concepts are basically
equivalent, namely there is a natural one-to-one correspondence between the
two families of schemes; however, this correspondence does not, in general,
preserve the efficiency of corresponding schemes.

Secret Sharing. We first introduce Secret Sharing in a flavor that matches
the intuition given at the beginning of the section. We begin with the following
basic definition:

Definition 2.5.1 (Secret-Sharing Scheme). Let n ≥ 1 be an integer, and
S0,S1, . . . ,Sn be non-empty, finite sets; an n-players Secret-Sharing Scheme
SSS is given by a randomized sharing algorithm Share : S0 →$ S1 × · · · × Sn
and a deterministic reconstruction algorithm Reconstruct :

(
S1t{⊥}

)
×· · ·×(

Sn t {⊥}
)
→ S0 t {⊥} with the property that Reconstruct(Share(s)) = s

with probability 1 for any s ∈ S0.

The set S0 is called the secret space of SSS, while the sets S1, . . . ,Sn form the
share spaces.

Two families of subsets are associated to each secret-sharing scheme, namely
its adversary structure (the sets of shares that yield no information on the
secret) and its access structure (the sets of shares which allow the secret to be
recovered). We do not formalize these notions in full generality: as said above,
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we focus instead on “threshold” structures, meaning that small enough sets
of shares belong to the adversary structure, while large enough sets sit in the
access structure. We describe this setting by means of the privacy threshold
and the reconstruction threshold of a scheme:

Definition 2.5.2. Given an n-player Secret-Sharing Scheme SSS and two inte-
gers t, r with 0 ≤ t < r ≤ n, we say that SSS has t-privacy and r-reconstruction
if the following respective conditions hold:

• t-privacy: for any A ⊆ [n] with 1 ≤ |A| ≤ t, the distribution of Share(s)A
does not depend on the choice of s ∈ S0 (where Share(s)A = πA(Share(s))).

• r-reconstruction: for any B ⊆ [n] with |B| ≥ r and for any s ∈ S0,
it holds for s = Share(s) that Reconstruct(s̃) = s with probability 1,
where s̃ is such that s̃B = sB and s̃i = ⊥ for any i /∈ B.

If r = t + 1, we say that SSS is a threshold scheme; otherwise, it is called a
ramp scheme.

The notion of t-privacy naturally extends to a randomized secret: for any
random variable x ∈$ S0 independent of Share, we have that x and ShareA(x)
are independent (as random variables) for any A ⊆ [n] with |A| ≤ t.

Randomized Secret Sharing. According to Definition 2.5.1, the sharing
algorithms of a secret-sharing scheme takes the secret as input and outputs the
corresponding shares. We discuss here a variant where the secret is randomly
chosen and output by the scheme; this formulation is conceptually simpler, and
some of the schemes we discuss are more naturally expressed in these terms.

Definition 2.5.3 (Randomized Secret Sharing). Let n ≥ 1 be an integer,
and S0,S1, . . . ,Sn be non-empty, finite sets; an n-players Randomized Secret-
Sharing Scheme is given by an (n + 1)-tuple of random variables (s, s) ∈$

S0×(S1×· · ·×Sn) and a deterministic algorithm Reconstruct :
(
S1t{⊥}

)
×

· · · ×
(
Sn t {⊥}

)
→ S0 t {⊥}, with the following two properties:

• s is uniformly distributed over S0;

• s = Reconstruct(s) with probability 1.

We will often be flexible with the notation and identify a randomized scheme
with the n-tuple (s, s), leaving the reconstruction algorithm implicit.

Furthermore, in case (s, s) is uniformly distributed over a set C (which will
often be the case throughout this thesis), we then identify the secret-sharing
scheme with C.
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We will sometimes call non-randomized a secret-sharing scheme according to
Definition 2.5.1, if it is necessary to distinguish the two.

The notions of privacy and reconstruction naturally translate to randomized
secret-sharing schemes as follows:

Definition 2.5.4. Let SSS be an n-player Randomized Secret-Sharing Scheme
given by random variables (s, s) ∈$ S0× (S1×· · ·×Sn); given two integers t, r
with 0 ≤ t < r ≤ n, we say that SSS has t-privacy if s and sA are independent
for any A ⊆ [n] with 1 ≤ |A| ≤ t, and that it has r-reconstruction if it holds
that Reconstruct(s̃) = s with probability 1 for any B ⊆ [n] with |B| ≥ r, where
s̃ is obtained from s by replacing each si for i /∈ B with ⊥.

There is an obvious one-to-one correspondence between randomized and non-
randomized schemes, given by assigning to a non-randomized scheme SSS with
algorithms (Share, Reconstruct) the random variable (s, Share(s)) where s ∈$

S0 is uniformly distributed and independent of Share; the reconstruction al-
gorithm is still Reconstruct.

It is easily seen that the privacy and reconstruction thresholds are preserved
by this correspondence; we can thus see the two definitions of secret sharing
as two flavors of the same notion. Nevertheless, we stress once again the fact
that this correspondence does not necessarily preserves efficiency: thus the two
definitions are not entirely equivalent when it comes to implementing them.

Two examples of secret-sharing schemes. We first discuss the straight-
forward n-out-of-n scheme, where n is a positive integer. Let S be a finite
abelian group, with additive notation; S will serve as secret space and share
space. The randomized version of the scheme is given by the random variable(∑

i=1,...,n si, (s1, . . . , sn)
)

where (s1, . . . , sn) ∈$ Sn is uniformly distributed.

The reconstruction algorithm simply adds the n shares; the non-randomized
version of the scheme is given by the sharing algorithm Share, where Share(s) =
(s1, . . . , sn) is a random vector with the property that

∑
i si = s, and by the

same reconstruction algorithm.

It is immediately seen that the scheme has (n−1)-privacy and n-reconstruction,
hence justifying the name.

Another important and widely used example is Shamir’s scheme [58], based on
polynomial evaluation, which can be seen as a Reed-Solomon code adapted for
Secret Sharing. The scheme is defined by first selecting a finite field Fq with
q ≥ n + 1, a privacy threshold t ≤ n and n + 1 elements (α0, α1, . . . , αn) ∈
Fn+1
q with αi 6= αj for any i 6= j. The two variants (non-randomized and

randomized) of the scheme are then given as follows:
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• The non-randomized scheme has sharing algorithm Share : Fq →$ Fnq
given as follows: for any s ∈ Fq, Share(s) is computed by first sampling a
uniformly random polynomial in {P (x) ∈ Fq[x] : degP ≤ t, P (α0) = s},
then setting Share(s) := (P (α1), . . . , P (αn)).

The reconstruction algorithm works as follows: on input x̃ ∈ (Fqt{⊥})n,
Reconstruct first computes a polynomial P (x) ∈ Fq[x] with degP ≤ t
and P (αi) = x̃i for any i : x̃i 6= ⊥, then outputs P (α0).

• The randomized scheme is given the following Reed-Solomon code:
{(P (α0), P (α1), . . . , P (αn)) : P ∈ Fq[x], degP ≤ t} ⊆ Fq×Fnq , with the
same reconstruction algorithm of the non-randomized scheme.

It is easily seen that the scheme has t-privacy and (t+1)-reconstruction (simply
observe that the number of roots of a polynomial cannot exceed its degree).

2.6 Linear Secret Sharing and Error-Correcting
Codes: Massey’s Paradigm

In the examples we gave above, we pointed out that Shamir’s scheme can
be seen as a cryptographic variant of Reed-Solomon codes. More generally,
notice that error-correcting codes and secret-sharing schemes share the goal
of recovering data from a partially incomplete input; we speak of erasure-
correction for codes and of (r-) reconstruction for secret-sharing schemes. In
fact, there is a rich and fruitful interplay between Secret Sharing and Coding
Theory [51, 19, 14, 69]. As a first step to discuss the connection between
the two fields, we recall the concept of linear secret-sharing scheme, which
also serves as a building block for other primitives such as Secure Multi-Party
Computation. For the rest of this section, we focus on randomized schemes.

Definition 2.6.1. Let F be a finite field and let S0,S1, . . . ,Sn be F-vector
spaces. A randomized secret-sharing scheme (s, s) ∈$ S0 × (S1 × · · · × Sn)
is said to be F-linear if the set C(s,s) :=

{
(ŝ, ŝ) : p

(
(s, s) = (ŝ, ŝ)

)
> 0
}

is an
F-subspace of S0 × (S1 × · · · × Sn).

Thus to every F-linear secret sharing scheme (s, s) is associated an F-linear
code C(s,s). Massey [51] pointed out that the converse is also true: namely, any
linear code satisfying certain non-degeneracy conditions gives rise to a secret-
sharing scheme; recall that we typically identify a randomized scheme (s, s)
uniformly distributed over a set C with the set C itself (cf. Definition 2.5.3).

Lemma 2.6.1. Let C be a linear code of length n+1 over a finite field F; then
C is a linear, randomized secret-sharing scheme if the following two conditions
are met:
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(i) π0(C) 6= {0}.

(ii) If (x0, 0, . . . , 0) ∈ C, then x0 = 0 as well.

Proof. Since the projection π0 is a linear map into F and is not identically zero
by condition (i), then it is regular, i.e. every element in F has the same number
of pre-images under π0; this means that s is uniformly distributed over F.

The reconstruction algorithm Reconstruct recovers the codeword x ∈ C
that matches the input symbols, and outputs x0; condition (ii) ensures that
Reconstruct is well-defined, given that C is linear. Finally, the secret-sharing
scheme obtained in this way is linear by definition.

While this connection may seem a posteriori straightforward, it is not straight-
forward to see how the parameters of the code translate to parameters of the
corresponding secret-sharing scheme. We give here only a brief overview of
Massey’s analysis; the reader can refer to [19] for a more accurate and insight-
ful discussion.

Let thus C be a linear code of parameters [n + 1,K,D] over a field F. Then
the reconstruction threshold of the secret-sharing scheme obtained from C is
upper-bounded by (n+1)−D+1 (this can be easily proved by arguing over the
minimum distance of C); on the other hand, computing (or lower-bounding)
the privacy threshold of the scheme requires working with the dual code C⊥,
as showed in the following lemma.

Lemma 2.6.2. Given a linear code C of length n + 1, let C⊥ be its dual; let
w := min{wH(y) : y ∈ C⊥,y0 6= 0}, and assume that w ≥ 2. We then have
that the secret-sharing scheme induced from C has t = (w − 2)-privacy, where
this bound is tight. In particular, we have that t ≥ dmin(C⊥) − 2; further, for
any secret s ∈ F we have that any set of dmin(C⊥)− 2 shares associated to s is

uniformly distributed in Fdmin(C⊥)−2.

Proof. We only give a sketch of the proof. Fix an arbitrary B ⊆ [n] with
|B| = n − w + 2 and let A := [n] \ B (thus A is an arbitrary subset of [n]
of cardinality w − 2). We then have that there exists a codeword x̂ ∈ C
with x̂0 = 1 and x̂A = 0: this can be proved by observing that the map
ρ : πB(C⊥) → F, yB 7→ y0 is well-defined (notice that since |B| = n − w + 2,
for any y ∈ C⊥, if yB = 0 then y0 = 0 as well), and then constructing ŷ from
the coefficients of the linear form ρ (extended to FB).

Thus for any A ⊆ [n] with |A| = w − 2 there exists a codeword x̂ ∈ C with
x̂0 = 1 and x̂A = 0. This means that the map C → F×πA(C), x 7→ (x0,xA)
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is surjective: indeed, notice that a preimage of (s,xA) is given by x+(s−x0)·x̂.

By the linearity of this map, it can then be easily argued that for a random
x ∈$ C, x0 and xA are independently distributed: thus the scheme has (w−2)-
privacy.

To see that the bound is tight, observe that by definition of w there exists
ŷ ∈ C⊥ and B ⊆ [n], |B| = w − 1 with ŷ0 6= 0 and ŷB̄ = 0. Now since ŷ ∈ C⊥,
we have that xŷT = 0 for any x ∈ C, which means that x0 = −(xBŷ

T
B )/ŷ0;

thus the w − 1 symbols of x in B uniquely determine x0, so that there is no
(w − 1)-privacy.

For what concerns our last claim, let A′ be a subset of {1, . . . , n} of cardinality
dmin(C⊥) − 2; thanks to the linearity of π0 and πA′ , it suffices to prove that
the projection map πA′ is surjective on {x ∈ C : x0 = s} for any secret s ∈ F.

To this end, let A′′ := {0} ∪ A′; we show that the projection map πA′′ :
C → FA′′ is surjective, which implies the claim. Indeed, let G := (x(j) : j =
1, . . . ,dim(C)) be a generator matrix of C, and let GA′′ be the submatrix of
G with column indexes in A′′. Since |A′′| = dmin(C⊥) − 1, we have that if
GA′′ ·yTA′′ = 0, then yA′′ = 0: indeed, by adding 0 on the coordinates outside
A′′ we can complete yA′′ to y ∈ C⊥ with wH(y) = wH(yA′′). This means that
ker(GA′′) = {0}; by the rank-nullity theorem, this implies that the rows of
GA′′ span the whole FA′′ , which concludes the proof.

A similar tight bound can be computed for the reconstruction threshold,
though discussing it would be beyond the scope of this dissertation. Also
notice that in case C is an MDS code of parameters [n + 1, t + 1, n − t + 1],
then the corresponding scheme has t-privacy and (t + 1)-reconstruction: this
can be easily proved by working with information sets of C.

This connection has the following downside: computing the parameter w of
Lemma 2.6.2 is often not possible, and the dual distance dmin(C⊥) is used
instead as a lower bound. Thus codes are needed that have at the same
time good distance (to control reconstruction) and good dual distance (to
control privacy), and this can be problematic. We further discuss this issue in
Chapter 3, motivating our search for a new connection between Secret Sharing
and Error-Correcting Codes.
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Chapter 3

New Constructions of
Secret-Sharing Schemes
from Error-Correcting
Codes

We present in this chapter our contributions to the field of Secret Sharing.
We start by establishing a new connection between Secret Sharing and Error-
Correcting Codes, that allows for a better control of the privacy and recon-
struction thresholds compared to previous work.

We then show two applications of this connection: the first and more direct
one is discussed in Section 3.2, and yields a family of secret-sharing schemes
with linear-time sharing and reconstruction.

The second application is presented in Section 3.3; we use our new connection
as a starting point to construct robust secret-sharing schemes, making use of
highly list-decodable codes and AMD codes. We show how in this way we can
obtain robust secret-sharing schemes with optimal overhead.

The content of this chapter is based on the article [20], written with Ronald
Cramer, Ivan Damg̊ard, Nico Döttling and Serge Fehr.
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3.1 A New Connection between Secret Sharing
and Error-Correcting Codes

As we have discussed in Chapter 2, Section 2.6, linear secret-sharing schemes
and linear error-correcting codes are tightly connected, namely Massey pointed
out that there is a natural one-to-one correspondence between them (albeit
some degenerate codes have to be excluded).

In the same section, we remarked that the key point of Massey’s analysis is
that it allows us to compute (or estimate) fundamental properties of a secret-
sharing scheme in terms of the underlying code and of its dual. We now recall
how this estimation works, and point out its shortcomings.

A linear code C of length n + 1 over a field F is a secret-sharing scheme if
two non-degeneracy conditions on C are met (we implicitly consider a random
variable (s, s) ∈ Fn+1 uniformly distributed over C). Massey’s analysis allows
us to compute the privacy and reconstruction thresholds in terms of param-
eters of C and of its dual code C⊥; tight values can be obtained in this way,
but bounds (not necessarily tight) are easier to compute: namely, the recon-
struction threshold r satisfies r ≤ n− dmin(C) + 2, while the privacy threshold
t satisfies1 t ≥ dmin(C⊥)− 2.

Hence to estimate the privacy and reconstruction parameters in this way, one
needs to control both the code C and its dual, which can sometimes be trou-
blesome. For instance, if we want to use Massey’s paradigm to construct a
family of secret-sharing schemes with linear-time sharing and reconstruction,
we need a family of linear-time encodable and decodable codes; however, cur-
rently known codes with these properties have very bad dual codes, so that
the bound on the privacy is too low to be useful.

We circumvent this problem by establishing a new connection between linear
secret-sharing schemes and linear codes; the key point of this alternative con-
nection is that it de-couples the privacy threshold of a scheme from the dual of
the underlying code, hence allowing to compute better bounds for the former.

Intuitively, our connection differs from Massey’s for the following reason: in
Massey’s, both the shares and the secret of a secret-sharing scheme are seen
as the symbols of a codeword in a certain code; on the other hand, in our
construction the shares are still given by symbols of a codeword, but the secret
is given by an arbitrary function acting on the codeword.

We formalize this in the following definition; here, the “decoding algorithm”
of a code C that we make use of takes as input a word y ∈ (Fm t {⊥})n, and

1Here, we implicitly assume that dmin(C), dmin(C⊥) ≥ 2.
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outputs a codeword x ∈ C with dH(x,y) < dmin(C). If such a codeword does
not exist or is not unique, the algorithm outputs an error message ⊥.

Definition 3.1.1 (Secret Sharing from Codes). Let C be a (folded) F-
linear code of length n with decoding algorithm Decode, and let f : C → S0

be a surjective linear map, where S0 6= {0} is a finite-dimensional F-vector
space. The associated secret-sharing scheme SSS(C,f) is then given by

• Share : S0 →$ C, where Share(s) is uniformly distributed over
f−1(s) for any s ∈ S0;

• Reconstruct : (Fm t {⊥})n → S0 t {⊥} where Reconstruct(y) :=
f(Decode(y)).

Similarly, the associated randomized secret-sharing scheme RanSSS(C,f) is
given by the space

{(f(x),x) : x ∈ C}

where the reconstruction algorithm Reconstruct is the same as above.

It is immediately seen that the schemes obtained in this way are F-linear.

Our new connection and Massey’s are related in the following way: if C′ is the
code of length n + 1 in Massey’s connection, then the code C of our’s is the
punctured code

C := {x ∈ Fnq : ∃x ∈ F with (x,x) ∈ C′}.

and the reconstruction map f : C → F is simply given by x 7→ x : (x,x) ∈ C′.

Remark 3.1.1. Let SSS and RanSSS be the secret-sharing schemes obtained
from a code C and a function f as in Definition 3.1.1. We then have that
sharing a random secret via SSS yields the same distribution as RanSSS: indeed,
notice that since Share(ŝ) is uniformly distributed over f−1(ŝ) for any ŝ, the
claim holds if we show that f(x) and Share(s) are uniformly distributed in
S0 and C, respectively. Now since f is linear and surjective, then it is also
regular, i.e. every element in the codomain of f has a constant number of
preimages under f , so that the claim follows. In particular, the privacy and
reconstruction thresholds of SSS and RanSSS coincide.
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The interesting point of this connection is computing the privacy and recon-
struction thresholds of a secret-sharing scheme in terms of the underlying
code and surjective function. We discuss privacy and reconstruction sepa-
rately; thanks to the above remark, it suffices to compute the thresholds for
the randomized scheme.

Proposition 3.1.1 (Reconstruction Threshold). Given positive integers n
and r ≤ n, let C be a (folded) linear code of length n over F and let f : C → S0

be a surjective, F-linear function.

Assume that C can be corrected from n− r erasures; we then have the secret-
sharing schemes SSS(C,h) and RanSSS(C,h) obtained as in Definition 3.1.1 have
r-reconstruction.

Proof. We prove the statement for RanSSS(C,h). Let x denote the random
variable uniformly distributed over C; fix a subset B ⊆ [n] with |B| ≥ r, and
let x̃ ∈$ (Fm t {⊥})n be defined by x̃B := xB, x̃i := ⊥ for any i /∈ B.

Since C can be corrected from n − r erasures, we have that Decode(x̃) = x
with probability 1; hence f(Decode(x̃)) = f(x) with probability 1, so that the
claim is proved.

Next, we focus on the privacy threshold, which now no longer depends on
the dual of the code C; the following characterization was first given as Theo-
rem 10 of [14], where it was used to prove the existence of ramp schemes with
high information rate (i.e., high ratio between secret size and share size). We
rephrase it here to match our formulation.

Proposition 3.1.2 (Privacy Threshold). Let C be a (folded) linear code of
length n over F and let f : C → S0 be a surjective, F-linear function.

Let 0 < t < n be an integer; then the secret-sharing schemes SSS(C,h) and
RanSSS(C,h) obtained from C and f have t-privacy if and only if f(ker(πA)) =
S0 for any A ⊆ [n] with |A| = t, where πA denotes the projection map from C
to FA.

Proof. We prove the statement for SSS(C,h). Fix an arbitrary A ⊆ [n] with
|A| = t; clearly, the claim holds if we prove the following equivalence:

πA(f−1(s)) = πA(f−1(0)) for any s ∈ S0

m
there exists x ∈ f−1(s) with πA(x) = 0 for any s ∈ S0.
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Now fix an arbitrary s ∈ S0; observe that for any s ∈ S0 we can write f−1(s) =
x′+ker f where x′ is any fixed element of f−1(s); thus πA(f−1(s)) = πA(x′)+
πA(ker f), so that

πA(f−1(s)) = πA(f−1(0))

m
there exists x′ ∈ f−1(s) with πA(x′) = 0.

The claim follows.

As a concluding remark for this section, notice that a downside of our con-
nection is that it provides no obvious way to construct multiplicative secret-
sharing schemes, where a secret-sharing scheme is called multiplicative if there
exists a vector v such that for any two share vectors s and s′ associated to
secrets s, s′ respectively, it holds that ss′ = v(s ? s′)T , where ? denotes the
component-wise product. Multiplicativity is an important property because it
allows us to use secret-sharing schemes to construct protocols for Multi-Party
Computation [18, 14]; it is thus an interesting open problem to modify our
construction paradigm so that it yields multiplicative schemes.

3.2 A First Application: Linear-Time Sharing
and Reconstruction via Linear Universal Hash
Functions

We present a first application of the connection discussed in the previous sec-
tion, using universal hash functions and linear-time encodable and decodable
codes. With some twist on the construction, this yields a family of linear
secret-sharing schemes with linear-time sharing and reconstruction.

3.2.1 Universal Hash Functions

We describe in this section universal hash functions, an important tool in
information-theoretic cryptography; these will be used together wit suitable
codes to construct a family of secret-sharing schemes according to Defini-
tion 3.1.1.
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Definition 3.2.1 (Universal Hash Functions). Let X and Y be finite, non-
empty sets, let H be a set of functions X → Y; denote by h : X →$ Y the
randomized function given by the uniform distribution over H. We say that H
is a family of universal hash functions if for any x 6= x′ ∈ X we have that

p(h(x) = h(x′)) ≤ 1

|Y|
.

For families H of Fq-linear functions, meaning that both X and Y are Fq-
vector spaces and each ĥ ∈ H is a Fq-linear mapping, Definition 3.2.1 can be
rephrased as follows: H is a family of universal hash functions if and only if
for any x ∈ X \ {0} we have that

p(h(x) = 0) ≤ q− dimY .

We then naturally refer to H as a family of linear universal hash functions.

There are various efficient families of linear universal hash functions, such ran-
dom matrices or random Toeplitz matrices (see e.g. [50]). Druk and Ishai [28]
constructed a linear time computable family of linear universal hash functions,
c.f. Section 3.2.3.

An important property of linear universal hash functions is that they are sur-
jective on subspaces with high probability; in order to formally state and prove
this result, we will need some further tools from probability theory.

First, the binary entropy function H : [0, 1/2]→ [0, 1] is defined by H(0) := 0
and H(x) := −x · log(x)−(1−x) · log(1−x) for x ∈ (0, 1/2]. For 0 ≤ t/n ≤ 1/2
we can upper bound binomial coefficients by

(
n
t

)
≤ 2H(t/n)·n, for a proof see

e.g. [53]. We will also use the Markov inequality (see also [53]):

Lemma 3.2.1 (Markov Inequality). Let x ∈$ X be a (finite) random vari-
able where X ⊆ R≥0. Then it holds for every x̂ > 0 that

p(x ≥ x̂) ≤ E[x]

x̂

where E[x] :=
∑
x̂∈X x̂ · p(x = x̂).

Corollary 3.2.2. Let x ∈$ X be an abstract random variable with X ⊆ R≥0

such that x assumes its minimum at x0 and its second smallest value at x1 >
x0. Then it holds that

E[x] ≥ x0 + (x1 − x0) · p(x 6= x0).
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Proof. Since x assumes its minimum at x0 it holds that x−x0 is non-negative.
By the Markov inequality it holds that

p(x 6= x0) = p(x ≥ x1) = p(x− x0 ≥ x1 − x0) ≤ E[x]− x0

x1 − x0
,

as E[x−x0] = E[x]−x0 (by linearity of expectation - see [53]). Thus the claim
follows.

We can now prove the following result on the surjectivity of hash functions:

Proposition 3.2.3. Let k, l, r be positive integers; let H be a family of linear
universal hash functions Fkq → Flq. Denote by h : Fkq →$ Flq the randomized

function with uniform distribution over H, and let V be a subspace of Fkq of
dimension r. We then have that

p(h(V ) 6= Flq) ≤
1

qr−l

i.e., h is surjective over V except with probability at most 1/qr−l.

Proof. For any linear function ĥ ∈ H, it holds that ĥ(V ) = Flq if and only if

dim(V ∩ ker(ĥ)) = dim(V )− l, which is equivalent to |V ∩ ker(ĥ)| = |V |
ql

. Now

define the random variable x = |V ∩ ker(h)| (depending on h). By the above
it holds that h is surjective on V if and only if x = |V |/ql. For each v ∈ V ,
define the random variable

xv =

{
1 if h(v) = 0

0 otherwise

Clearly, it holds that x =
∑

v∈V xv. Since x0 = 1, we have that x = 1 +∑
v∈V \{0} xv. Moreover, x assumes its minimum at |V |

ql
and its second smallest

value at |V |
ql−1 . We will now compute the expectation

∑
x̂ x̂ · p(x = x̂) of x. For

each v ∈ V \ {0} it holds that

E[xv] = p(h(v) = 0) ≤ q−l,

as H is a family of universal hash functions. By linearity of expectation, it
holds that
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E[x] = 1 +
∑

v∈V \{0}

E[xv] = 1 +
|V | − 1

ql
.

By Corollary 3.2.2 and the fact that |V | ≥ qr it holds that

p

(
x 6= |V |

ql

)
≤

1 + |V |−1
ql
− |V |

ql

|V |
ql−1 − |V |ql

=
ql − 1

|V | · (q − 1)

≤ ql

|V |
≤ q−(r−l).

Consequently, it holds that h(V ) = Flq, except with probability q−(k−l).

By applying a union bound, we get the following corollary:

Corollary 3.2.4. Let k, l, r be positive integers, let H be a family of linear
universal hash functions Fkq → Flq and V be a collection of subspaces of Fkq , each

of dimension at least r; let h : Fkq →$ Flq be given by the uniform distribution

over H. Then it holds that h(V ) = Flq for all V ∈ V (i.e. h is surjective on all

subspaces in V ), except with probability at most |V| · q−(r−l).

3.2.2 A New Scheme from Codes and Universal Hash
Functions

In this section we implement the connection of Definition 3.1.1 to obtain a
secret-sharing scheme from linear codes and universal hash functions. Notice
however that we make use of a slight variation of the concept, by means of the
encoding and decoding algorithms Enc and Dec of the code C as well. Here,
Enc : Fkq → C simply realizes the isomorphism between the two spaces, while

Dec : (Fmq t {⊥})n → Fkq t {⊥} first decodes (if possible) the input y from
errors or erasures to obtain a codeword x ∈ C, and then inverts Enc to obtain
a vector in Fkq .

In this whole section, whenever we speak of a family of linear universal hash
functions Fkq → Flq, we assume that q, k and l are fixed, i.e. they are the same
for each function in the family.
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Construction 3.2.1. Let C be an m-folded, Fq-linear code of parameters
[n, k, d], endowed with encoding and decoding algorithms Enc : Fkq → C
and Dec : (Fm t {⊥})n → Fkq t {⊥}. Further, let H be a family of linear

universal hash functions Fkq → Flq; fix an arbitrary h ∈ H.

We can then connect C and h : C → Flq to obtain a secret-sharing scheme
SSS = SSS(C,h) following Definition 3.1.1, namely SSS is given by the
following sharing and reconstruction algorithms:

• Share : Flq →$ C where Share(s) is uniformly distributed over
Enc(h−1(s));

• Reconstruct :
(
Fmq t {⊥}

)n → Flq t {⊥} where Reconstruct(y) :=
h(Dec(y)).

Similarly, we obtain the randomized secret-sharing scheme RanSSS given
by the set

{
(h(z), Enc(z)) ∈$ Flq × C : z ∈$ Fkq

}
, and with the same recon-

struction algorithm.

We can compute the parameters of these secret-sharing schemes in terms of
the underlying codes and hash functions, using Propositions 3.1.1 and 3.1.2:

Lemma 3.2.5. Let C be an m-folded linear code of parameters [n, k, d] and
H a family of linear universal hash functions as in Construction 3.2.1. Let
R := k

mn be the rate of C, let ρ := l
nm and let τ > 0 and η > 0 be real

constants; assume that R ≥ ρ+ η + τ +H(τ)/(m · log(q)).

Then for every h ∈ H, the scheme SSS := SSS(C,h) given by Construction 3.2.1
has (n − d + 1)-reconstruction. Furthermore, there exists a function h ∈ H
such that SSS(C,h) has τn privacy; such a function can be chosen randomly
with success probability 1− q−ηnm.

Proof. Reconstruction is an immediate consequence of Proposition 3.1.1, since
C can correct from d− 1 erasures.

For privacy, notice that for each set A ⊆ {1, . . . , n} of size at most t := τn,
it holds that ker(πA) ⊆ C is a subspace of dimension at least k − mt, as
C has dimension k and the image of πA has dimension at most mt. Thus,
Dec(ker(πA)) ⊆ Fkq also has dimension at least k −mt, as Dec is an isomor-
phism. Consequently V = {Dec(ker(πA)) : A ∈ {1, . . . , n}, |A| = t} is a
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collection of subspaces of dimension at least k −mt. Moreover, as A is taken
over all subsets of {1, . . . , n} of size t, it holds that

|V| ≤
(
n

t

)
≤ 2H(t/n)·n = 2H(τ)·n = q

H(τ)
m log(q)

·mn.

By Proposition 3.1.2, SSS has t-privacy if it holds that h(V ) = Flq for each

V ∈ V. By Corollary 3.2.4, it holds for all V ∈ V that h(V ) = Flq, except with
probability

|V| · q−(k−mt−l) ≤ q−(k−mt−l− H(τ)
m log(q)

·mn) = q−(R−τ−ρ− H(τ)
m log(q)

)·mn ≤ q−ηmn,

as R ≥ ρ+η+ τ +H(τ)/(m · log(q)), where with a slight abuse of notation, we
still denote by h the randomized function given by the uniform distribution
overH. Thus, SSS has t-privacy, except with probability q−ηmn over the choice
of h. This concludes the proof.

In the next section we show that, with some tweaking, Construction 3.2.1
allows us to define a family of linear secret-sharing schemes with linear-time
sharing and reconstruction.

3.2.3 A Linear-Time Family of Secret-Sharing Schemes

The goal of this section is to instantiate Construction 3.2.1 to obtain a family
of secret-sharing schemes with linear-time sharing and reconstruction. Some
tweaking of the original construction will be necessary to achieve the goal.

We start by recalling the existence of linear-time computable universal hash
functions and linear-time encodable and decodable codes. Ishai et al. [39]
construct a family of F2-linear universal hash functions which can be computed
in linear time; this result has recently been generalized by Druk and Ishai [28]
to any finite field.

Theorem 3.2.6 (Druk and Ishai [28]). For every integers 0 < l < k, there
exists a family of F2-linear universal hash functions H mapping Fk2 to Fl2 which
can be computed in time linear in k.

We give here some intuition on how the above family is constructed for given l
and k. The process works in three phases: first, a linear-time encodable code
C is selected; on input x ∈ Fk, the first step requires computing y := Enc(x),
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where Enc denotes the encoding function of C. We stress the fact that C may
have have alphabet size greater than 2, allowing it to have a relative minimum
distance bigger than 1/2. For the second step, an independent linear universal
hash function hi is applied to each yi, resulting in y′; there are no requirements
on the efficiency of the (hi), but it is assumed that each hi has constant size,
so that the second step can still be performed in linear time. Finally, a linear-
time encodable code C′ with good minimal distance is selected; if v 7→ GvT

denotes the encoding function of C′, we then define the final output to be
y′′ := GT (y′)T . It can be proved that this last step can also be performed
in linear time, so that the overall mapping can indeed be computed in linear
time. Notice that C and C′ are fixed, so that a specific function in the family
is specified by the choice of the (hi).

Informally stated, this construction yields a family of universal hash functions
for the following reason. Let x be a non-zero input; then y = Enc(x) is non-
zero at many coordinates, since C has large minimum distance. In turn, this
means that y′ is non-zero at these coordinates with high probability; finally,
it can be showed that this implies that y′′ = GT (y′)T is non-zero tout court
with high probability (we say that v 7→ GTvT is an extractor for bit-fixing
sources), which proves the claim.

There is a large corpus of work dealing with linear-time encodable codes, start-
ing with the seminal work of Spielman [64]. To the best of our knowledge, the
currently best known parameters can be obtained using a family of codes by
Guruswami and Indyk [36].

Theorem 3.2.7 (Guruswami-Indyk [36]). For every real number R > 0
and every sufficiently small ε ∈ R>0 (depending on R) there exists an infinite

family of m-folded F2-linear codes {Cn} of rate R, where m = O
(

log(1/ε)
ε4R

)
for

ε → 0, such that the codes from the family can be encoded in linear time and
also decoded in linear time from an 1−R− ε fraction of erasures.

We will now instantiate the the randomized secret-sharing scheme RanSSS(C,h)

of Construction 3.2.1 with the codes from Theorem 3.2.7 and universal hash
functions from Theorem 3.2.6.

Lemma 3.2.8. For all real constants 0 < τ < σ < 1 there exists an infinite
family of F2-linear randomized secret-sharing schemes {RanSSSn} with τn-
privacy and σn-reconstruction.The shares of RanSSSn have size m bits, where
m > 0 is a constant integer; furthermore, the random shares and associated
secret of RanSSSn can be computed in time linear in n, and reconstructing from
σn shares can also be performed in linear time.

Such a scheme RanSSSn can be constructed randomly with success probability
1− 2−ηmn (for some real constant η > 0 depending on τ and σ).
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Proof. We will instantiate the randomized secret sharing scheme RanSSS(C,h)

from Construction 3.2.1 with a linear code Cn from the family {Cn} of F2-linear
codes from Theorem 3.2.7 and a function h from the family H of F2-linear
universal hash functions from Theorem 3.2.6. We now show how to choose the
parameters for this instantiation.

By Lemma 3.2.5, in order to obtain a secret-sharing scheme with τn privacy,
we need to select an m-folded code Cn from the above family of length n and
rate R such that R ≥ ρ + η + τ + H(τ)/m for arbitrarily small constants η
and ρ. Moreover, as by Proposition 3.1.1 we need to be able to correct a 1−σ
fraction of erasures to have σn reconstruction, we need to choose Cn such that
1− σ ≤ 1−R− ε, equivalently R ≤ σ − ε. Both constraints together yield

σ − τ − ρ ≥ ε+ η +
H(τ)

m
. (3.1)

Since σ > τ and since we can take ρ to be smaller than σ − τ , the left-
hand side of Inequality 3.1 is a constant greater than 0. It is clear from
Theorem 3.2.7 that we can choose the folding parameter m as an arbitrarily

large constant, thereby also decreasing ε. Consequently, the terms ε and H(τ)
m

become arbitrarily small and we can choose sufficiently small η, ρ > 0 such that
the inequality is satisfied. Setting R := σ − ε we found admissible constants
R,m, η, ε > 0 such that R ≥ ρ+η+τ+H(τ)/m. Now let Cn be a code of length
n from the above family that matches these constants. By Theorem 3.2.7 such
a code exists for all constants R,m, ε > 0. Now let H be a the family of
universal hash functions mapping FRmn2 to Fρmn2 obtained by Theorem 3.2.6.
By Lemma 3.2.5, choosing the universal hash function h randomly from H
yields that LSSSC,h has τ -privacy, except with probability 2−ηmn.

Finally, the claim on the efficiency is easily seen to be true by definition of
RanSSSn.

The above lemma shows that Construction 3.2.1 immediately yields a ran-
domized secret-sharing scheme with liner-time sharing and reconstruction, by
simply choosing linear-time computable hash functions and linear-time en-
codable and decodable codes. Unfortunately, this straightforward approach
does not yield the same result for the non-randomized secret-sharing scheme
of Construction 3.2.1: indeed, the associated sharing function Share requires
computing the inverse function h−1, which may not be realizable in linear
time.

We circumvent the problem as follows: to share an arbitrary secret s, we first
compute random shares and associated secret (z, z) with a randomized scheme
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RanSSS. We then one-time pad s with z, and “disperse” the padded element
s+ z (i.e., share s+ z among the players by means of a suitable code, with no
privacy assumptions). This technique bears resemblance to the construction
of Krawczyk [44]; however, while in [44] the information dispersal is applied
to reduce the share size, we use this technique to preserve the linear-time
computability of the sharing algorithm.

Formally, the scheme is defined as follows:

Construction 3.2.2. Let C′ be an m′-folded, Fq-linear code of parameters
[n, l, d], endowed with encoding and decoding algorithms Enc : Flq → C′

and Dec : (Fm′q t {⊥})n → Flq t {⊥}; let RanSSS be a random secret-

sharing scheme given by the random variables (z × z) ∈$ Flq × Fn, with
reconstruction algorithm RanRec.

We then obtain a linear secret-sharing scheme SSS = SSS(C′,RanSSS) with
sharing and reconstruction algorithms given as follows:

• Share : Flq →$ (Fm′q × F )n where Share(s) :=
(
Enc
(
s+ z

)
, z
)
;

• Reconstruct : (Fm′q ×Ft{⊥})n → Flqt{⊥} where for (x̃i, z̃i)i=1,...,n,
Reconstruct first computes x̃ := Dec(x̃) and z̃ := RanRec(z̃); if
x̃ = ⊥ or z̃ = ⊥, Reconstruct then outputs ⊥ as well, otherwise it
outputs x̃− z̃.

Notice that if RanSSS is Fq-linear, then so is SSS. We analyze the privacy and
reconstruction thresholds in the following lemma:

Lemma 3.2.9. In the setting of Construction 3.2.2, assume that RanSSS has
t-privacy and r-reconstruction, and that its random shares and associated se-
cret can be computed in linear time; Assume further that C′ is linear-time
encodable and that it can be decoded from n−r erasures. Then the scheme SSS

also has t-privacy and r-reconstruction, and can share an arbitrary secret in
linear time. Furthermore, if the reconstruction algorithm RanRec of RanSSS is
linear-time computable, and if C′ can be decoded from n− r erasures in linear
time, then the reconstruction algorithm Reconstruct can also be computed in
linear time.

Proof. Linear-time computability of the sharing function of SSS follows straight-
forwardly from the linear-time computability of the random shares and secret
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of RanSSS and of the encoding function of C′; similarly, the linear-time com-
putability of Reconstruct follows from the properties of RanSSS and C′.

To see that SSS has t-privacy, fix an arbitrary subset A ⊆ [n] with |A| ≤ t. We
then need to prove that the distribution of (Enc(s+ z)A, zA) does not depend
on the choice of s ∈ Flq; clearly, it suffices to show that the distribution of (s+

z, zA) does not depend on the choice of s ∈ Flq. Since z is uniformly random,
and since RanSSS has t-privacy, we have that z and zA are independent, so
that the claim holds.

Finally, for r-reconstruction, let B ⊆ [n] with |B| ≥ r; fix s ∈ S0, and let
(x̃i, z̃i)i=1,...,n where x̃i = z̃i := ⊥ for any i /∈ B, x̃B := (Enc(s + z)B), and
z̃B := zB. We then have that Dec(x̃) = (s + z) with probability 1 (since
C′ can decode from n − r erasures) and z = RanRec(z̃) (since RanSSS has
r-reconstruction); the claim follows.

Finally, plugging the randomized secret sharing scheme RanSSSn obtained in
Lemma 3.2.8 into Construction 3.2.2, we obtain the main result for this section.
For the sake of simplicity, as code C′ in Construction 3.2.2 we can choose the
same code C as in Lemma 3.2.8.We thus obtain the following theorem; its proof
is straightforward in view of Lemma 3.2.9 above.

Theorem 3.2.10. For all real constants 0 < τ < σ < 1 there exists an
infinite family of F2-linear secret scheme {SSSn} with τn-privacy and σn-
reconstruction. The shares of SSSn have size m, where m > 0 is an inte-
ger constant; SSSn can share and reconstruct an arbitrary secret in linear
time. Moreover, such a scheme SSSn can be constructed randomly with success-
probability 1 − 2−ηmn (for some real constant η > 0 depending on τ , σ and
ρ).

3.3 The Second Application: Robust Secret Shar-
ing via List-Decodable Codes and AMD Codes

The second application of our connection involves Robust Secret Sharing, a
variant of Secret Sharing with the additional goal to reconstruct the secret
even in the presence of incorrect shares; we show how to obtain robust secret-
sharing schemes by connecting highly list-decodable codes with AMD codes.
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3.3.1 Robust Secret Sharing

We recall here the concept of Robust Secret Sharing; we review the different
variations of the topic that have been studied, and we express the goals of our
contribution.

In a nutshell, standard Secret Sharing combines two properties, namely pri-
vacy and reconstruction, where reconstruction can be seen as recovery from
erasures. Robust Secret Sharing combines two properties, namely privacy and
recovery from errors: a secret-sharing scheme is robust if its reconstruction
algorithm can recover the secret even if some of the shares are incorrect. This
intuition is formalized in the following definition; notice that we speak of a
tampering function Tamper : x 7→ y over A ⊆ [n]: by this we mean that
Tamper(x) only depends on (xi : i ∈ A) and that it acts as the identity on the
coordinates outside A.

Definition 3.3.1. Let SSS be a secret-sharing scheme with sharing algorithm
Share : S0 →$ S1 × · · · × Sn and reconstruction algorithm RobustRec : (S1 t
{⊥}) × · · · × (Sn t {⊥}) → S0 t {⊥}. Given a positive integer t and a real
number ε > 0, we say that SSS is (t, ε)-robust if the following property holds
for any secret s ∈ S0, any subset A ⊆ [n] with |A| ≤ t and any tampering
function Tamper : S1×· · ·×Sn → S1×· · ·×Sn over A. If x = Share(s), then
RobustRec(Tamper(x)) = s except with probability at most ε.

A (t, ε)-robust scheme is typically required to have t-privacy as well. We further
define the overhead2 of the scheme to be maxi≥1 log |Si| − log |S0|.

Whether Robust Secret Sharing is possible or not depends on the ratio between
the number t of incorrect shares and the total number n of shares: if t < n/3,
then standard error correction applied to Shamir’s scheme (cf. Section 2.5.1)
provides robustness for free; on the other hand, if t ≥ n/2 then it is easily seen
that Robust Secret Sharing cannot be achieved.

The interesting range is thus n/3 ≤ t < n/2; here, robust secret sharing is
possible, but we have to allow for a small error probability and additional
“checking data” needs to be appended to the actual shares. A typical goal is
to optimize the tradeoff between the error probability and the increase in the
share size.

Cramer, Damg̊ard and Fehr [17] gave a construction of a robust secret shar-
ing scheme based on so-called Algebraic Manipulation Detection (AMD) codes
(even though the terms robust secret-sharing and AMD codes were not used

2We remark that the notion of overhead is meaningful, a priori, only for threshold
schemes, since for ramp schemes it is actually possible to have a share size smaller than
the secret size.

45



there). Roughly speaking, an AMD code enables to detect certain manipu-
lations – namely algebraic manipulations – of encoded messages. The robust
secret-sharing scheme then simply works by sharing an AMD encoding of the
secret (using a linear secret sharing scheme), and the robust reconstruction
is done by going through all sets of possibly honest players, reconstruct from
their shares, and verify correctness of the reconstructed AMD encoding. By
making the AMD codeword large enough, resulting in an overhead in the share
size of O(κ+ n), this procedure finds the correct secret except with probabil-
ity 2−κ. An obvious downside of this scheme is that the robust reconstruction
procedure is not efficient, as there is an exponential number of sets of possibly
honest players to be considered.

In [12], based on very different techniques, Cevallos, Fehr, Ostrovsky and Ra-
bani proposed a robust secret-sharing scheme with similar parameters: over-
head O(κ+n log n) for an error probability of 2−κ, but which offers an efficient
robust reconstruction. Both these schemes work for any fraction t/n < 1

2 , and
neither becomes significantly better in terms of this error probability versus
the size of the checking data if we bound t/n away from 1

2 by a small constant.

Based on the paradigm of Definition 3.1.1 for building secret-sharing schemes,
we construct a new robust secret sharing scheme. Our construction works
when t/n is bounded away from 1

2 by an arbitrary small positive constant.

Our construction can be seen as an efficient variant of the approach from [17]:
we secret-share an AMD codeword, but this time choosing the underlying code
C to be one that allows efficient list decoding. This means that we can consider
the contributed shares as a codeword with errors and apply the list decoding
algorithm. This will return a small (i.e., polynomial-sized) list of possible
codewords from C, each of these will suggest a possible AMD codeword. Thus,
we only have a small number of candidates to check for correctness of the AMD
encoding. This not only provides efficiency of the reconstruction (in contrast
to the scheme of [17]), but also allows for better parameters, as we will see in
Sections 3.3.5 and 3.3.6.

As a final remark, we stress the fact that there are several variants of and
concepts related to Robust Secret Sharing. For instance, we assume that
a tampering function Tamper over A acts a the identity on the coordinates
outside A, and only depends on the coordinates in A; if only the first condition
is assumed, then a secret-sharing schemes satisfying Definition 3.3.1 is said to
be robust against a rushing adversary.

Furthermore, a related concept of special relevance is Verifiable Secret Shar-
ing [15], which is a fundamental building block for Multi-Party Computation;
loosely speaking, VSS can be seen as an enhanced version of Robust Secret
Sharing, where security is guaranteed even if the sharing procedure is not
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correctly executed.

Moreover, a scenario somewhat in between robust and verifiable secret sharing
has been studied by Cramer et al. in [17]; this variant is called “single-round
honest-dealer VSS”, and differs from Definition 3.3.1 in that the reconstruction
algorithm is not allowed to output an incorrect value, although it can output
an error message.

Finally, Ishai et al. explore in [40] the notion of identifiable secret sharing,
which aims at providing some security even when half or more of the shares
are incorrect.

3.3.2 AMD Codes

Algebraic Manipulation Detection codes (AMD codes for short) are the first
ingredient of our construction. AMD codes have been introduced by Cramer et
al. [21]; as the name suggests, they are used to detect algebraic manipulations
on some input data.

Definition 3.3.2 (Algebraic Manipulation Detection codes [21]). Let S be a
non-empty set and G be an abelian group; given a real number δ > 0, a δ-secure
Algebraic Manipulation Detection (or AMD) code with message space S and
cyphertext space G is given by two functions:

• Encode : S →$ G (randomized);

• Decode : G → S t {⊥} (deterministic)

Satisfying the following defining properties:

• Correctness: Decode(Encode(s)) = s with probability 1 for any s ∈ S;

• Robustness: p(Decode(Encode(s) + ∆) /∈ {s,⊥}) ≤ δ for any s ∈ S and
any ∆ ∈ G.

Remark 3.3.1. Notice that the robustness definition also holds when the error is
non-deterministic: to be precise, let ∆ ∈$ G be a random variable independent
of Encode(s); then it still holds that

p(Decode(Encode(s) + ∆) /∈ {s,⊥}) ≤ δ.
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3.3.3 List-Decodable Codes

The second ingredient of the construction is given by error-correcting codes
with high-list decodability properties. The definition of list-decodability is
given as follows:

Definition 3.3.3. Let C ⊆ Fn be a code of block length n over some alphabet
F ; then C is said to be (t, `)-list decodable if for any vector y ∈ Fn with
dH(y, C) ≤ t, there are at most ` codewords x ∈ C with dH(x,y) ≤ t.

We generally assume that t < dmin(C).

Given a (t, `)-list decodable code C, we denote by ListDecode the function
y 7→ {x ∈ C : dH(x,y) ≤ t}. Notice that the set L := {x ∈ C : dH(x,y) ≤ t}
has a natural ordering given by assigning to each x ∈ L its error pattern x−y,
and then sorting the error patterns according to any order (e.g., a lexicographic
one). We will thus view ListDecode(y) as a list, i.e. a vector, although we
will keep using set notation.

Linear list-decodable codes enjoy the following property:

Remark 3.3.2. Let C be a (folded) Fq-linear code of length n; denote by
ListDecode the function y 7→ (x ∈ C : dH(x,y) ≤ t). Then for any x ∈ C and
e ∈ (Fmq )n with wH(e) ≤ t, we have that

ListDecode(x + e) = x + ListDecode(e),

where x + ListDecode(e) := (x + x′ : x′ ∈ ListDecode(e)) .

Indeed, equality trivially holds as sets since for any x′ ∈ C, x + x′ also sits in
C and dH(x′, e) = dH(x + x′,x + e).

For what concerns equality as lists, simply notice that for any x′ ∈ ListDecode(e),
the error pattern x′ − e coincides with the error pattern (x + x′)− (x + e), so
that the claim holds.

3.3.4 The Construction

We show in this section how to combine AMD codes and highly list-decodable
codes to obtain a robust secret-sharing scheme:

Construction 3.3.1. Let AMD be a δ-secure AMD code given by functions
AMD.Encode : Fkq →$ Flq and AMD.Decode : Flq → Fkq t {⊥}.
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Further, let LSSS = LSSS(C,f) be the (non-randomized) secret-sharing
scheme obtained from a code C and a function f as in Definition 3.1.1,
where C is a (folded) Fq-linear, (t, `)-list decodable code and f : C → Flq is
a surjective, Fq-linear map. We assume that t′ ≥ t, where t′ denotes the
privacy threshold of LSSS.

We then obtain a secret-sharing scheme RobustSSS by defining its sharing
and reconstruction algorithms as follows:

• Share := LSSS.Share ◦ AMD.Encode : Flq →$ (Fmq )n;

• RobustRec :
(
Fmq t {⊥}

)n → Flq t {⊥} where given y ∈ (Fmq )n,
RobustRec first computes ListDecode(y) and applies f to each el-
ement of ListDecode(y), obtaining a list L of “candidates”.

Then, for any z ∈ L, RobustRec computes s′ := AMD.Decode(z);
if s′ 6= ⊥, then RobustRec outputs s′. If the AMD-decoding of all
symbols of L produces error symbols ⊥, then RobustRec outputs ⊥.

The main result of this Section shows how the parameters of the underlying
components control the robustness of the induced scheme:

Proposition 3.3.1. RobustSSS is a Secret-Sharing Scheme with t′-privacy
and (t, ε)-robustness for ε := `δ.

Proof. Reconstruction. We need to show that RobustRec(Share(s)) = s
with probability 1 for any secret s ∈ Flq; let thus s ∈ Flq be an arbitrarily fixed
secret, and let x := Share(s) = LSSS.Share(AMD.Encode(s)). By definition of
LSSS, we have that x ∈ C with probability 1, so that ListDecode(x) = {x}
with probability 1; the claim then follows by the reconstruction property of
LSSS and the correctness of AMD.

Privacy. Fix a subset A ⊆ [n] with 1 ≤ |A| ≤ t′; we need to show that the
distribution of ShareA(s) does not depend on the choice of the secret s ∈ Flq.
Now this holds for LSSS; hence since Share = LSSS.Share ◦ AMD.Encode, the
claim holds.

Robustness. Finally, we need to prove that RobustSSS is (t, ε)-robust: hence
fix a secret s ∈ Flq, and let x := Share(s); furthermore, let Tamper : (Fmq )n →
(Fmq )n be a tampering function over a set A ⊆ [n] with |A| ≤ t. Let y :=
Tamper(x). We need to prove the following:
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RobustRec(y) = s, except with probability at most ε.

Now recall that RobustRec works as follows: first, a list of candidates L is
computed by applying f to each element of ListDecode(y); then the elements
of L are AMD-decoded, as as soon as a decoding succeeds, RobustRec outputs
that AMD-decoded element.

As a first step, we show that AMD.Encode(s) ∈ L with probability 1: indeed,
let z := AMD.Encode(s), so that x ∈$ f−1(z). By definition of tampering
function, dH(x,y) ≤ t with probability 1, so that x ∈ ListDecode(y), and, in
turn, z = f(x) ∈ L with probability 1. Hence the claim holds.

Now since AMD.Encode(s) belongs to the list of candidates L with probability
1, we have that

RobustRec(y) 6= s only if there exists z′ ∈ L such that AMD.Decode(z′) /∈ {s,⊥}.

We thus need to upper bound the probability that such a z′ exists. First notice
that we can assume that L is a list of length ` (up to adding ⊥ symbols to it),
i.e. we can write L = (z(1), . . . , z(`)). Hence we have that

p
(
∃ z′ ∈ L s. t. AMD.Decode(z′) /∈ {s,⊥}

)
≤
∑̀
j=1

p
(
AMD.Decode(z(j)) /∈ {s,⊥}

)
.

Hence to conclude it suffices to show that any element of the sum is upper-
bounded by δ; in view of Remark 2.3.3, this can be showed by proving that
z(j) = z + e(j) for some error e(j) independent of AMD.Encode(s).

To this end, notice that we can write y = x + e where wH(e) ≤ t with
probability 1, and where e is a function of xA. Now thanks to Remark 3.3.2,
we have that ListDecodej(y) = x+ListDecodej(e), which means that z(j) =
z+f(ListDecodej(e)) by linearity of f . Hence to conclude, it suffices to show
that f(ListDecodej(e)) is independent of AMD.Encode(s); now by t′-privacy,
xA is independent of z = AMD.Encode(s) since |A| ≤ t′, so that e and, in turn,
f(ListDecodej(e)) are also independent of AMD.Encode(s). This concludes
the proof.

The next subsections show two implementations of this construction.
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3.3.5 A Shamir-based Scheme

Let n, t < n/2 be two fixed positive integers. The two ingredients of the scheme
are the following.

The code AMDq,d due to Cramer et al. [21] (which has optimal size of tags for
a given security parameter), given by the following encoding function:

AMD.Encode : Fdq →$ Fdq × Fq × Fq
s 7→

(
s, r, rd+2 +

∑d
i=1 sir

i
)

for uniform r ∈$ Fq

where d is an integer and Fq a finite field of cardinality q, with char(Fq) - d+2,
and with the obvious decoding function AMD.Decode (that checks that the three
coordinate satisfy the above relationship). We have that AMDq,d is a δ-secure
AMD code for δ ≤ (d+ 1)/q, which means that the following lemma holds:

Lemma 3.3.2 ([21]). For any prime power q and any integer d such that
char(Fq) - d+ 2 there exists a (d+ 1)/q-secure AMD code with message space
Fdq and cyphertext space Fdq × Fq × Fq.

As a code-based secret-sharing scheme, we use a variant of Shamir’s scheme,
namely we instantiate Massey’s blueprint with folded Reed-Solomon codes:

Definition 3.3.4 (Guruswami and Rudra [37]). Given a finite field Fq with
q elements, a generator γ of the multiplicative group F×q and positive integers
m, n, k ≤ n with q > mn, the Folded Reed-Solomon Code FRS of length n
over Fmq is given as follows.

Let C̃ be the following (standard) Reed-Solomon code:

C̃ :=
{(
ϕ(1), ϕ(γ), ϕ(γ2), · · · , ϕ(γmn)

)
: ϕ(x) ∈ Fq[x],degϕ ≤ k − 1

}
≤ Fmnq

Then FRS is simply C̃ viewed as a code over F := Fmq , i.e., it is obtained from

C̃ by bundling together blocks of m consecutive symbols.

Notice that FRS thus has rate R and minimum distance d where

R :=
logqm(|FRS|)

n
=

k

mn
, d ≥ n− k − 1

m

Now given a folded Reed-Solomon code FRS with q > m(n+ 1), we define the
function f : FRS→ F to be
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f : FRS → F
x = (ϕ(1), · · · , ϕ(γmn)) 7→

(
ϕ(γmn+1), · · · , ϕ(γmn+m)

)
It is immediately seen that the scheme LSSSFRS,f obtained this way enjoys
(Rn− 1)-privacy.

Now the key point of folded RS codes is that they are highly list-decodable,
as shown in the following theorem:

Theorem 3.3.3 ([37]). For any real numbers ε > 0 and 0 < R < 1, and for
any large enough integer m > 0 (depending on ε and R) and any integer n > 0,
there is folded Reed-Solomon code FRSn with folding parameter m and field size
q = O(mn), which have rate at least R and that are ((1−R− ε)n, poly(q))-list
decodable.

Furthermore, such list decoding can be realized by an algorithm with running
time poly(n,m).

We can now connect this code-based secret-sharing scheme and the above
AMD codes as in Construction 3.3.1 to get the following result:

Proposition 3.3.4. Let κ and M be positive integers, and let 0 < τ < 1/2.
We then have that for any large enough integer n, there exists an n-player
secret-sharing scheme RobustSSSn such that:

• the secret space has cardinality at least 2M ;

• the scheme enjoys τn-privacy and (τn, 2−κ)-robustness.

The overhead of the scheme is in O(κ+logM); furthermore, both sharing and
robust reconstruction can be implemented in time polynomial in n and κ.

Proof. Since τ < 1/2, for large enough n there exists a constant ε such that
τ + 1/n < 1− τ − ε. Let thus R be any constant with τ + 1/n < R < 1− τ − ε,
and let FRSn be the code obtained from Theorem 3.3.3; then FRSn has rate at
least τ + 1/n and is (τn, `)-list decodable with ` = poly(q).

Let LSSSn = LSSS(FRSn,fn)} be the induced code-based secret-sharing scheme;
by the above discussion, each LSSSn enjoys (Rn− 1) = τn-privacy.

Now write Fmq ' Fm′κ′q ×Fκ′q ×Fκ′q where m′ = m/κ′− 2 for a parameter κ′ to
be determined; we then apply Construction 3.3.1 and connect LSSSn with the
AMD code AMD(qκ′ ,L) given by AMD.Encode : Fm′κ′q → Fm′κ′q × Fκ′q × Fκ′q from
Lemma 3.3.2.
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Now the resulting scheme RobustSSSn still enjoys τn-privacy and is (τn, ε)-
robust for ε ≤ ` · ((m′ + 1)/qκ

′
); furthermore, its secret space has cardinality

qm
′κ′ . Hence to obtain the claimed security and secret space size we need to

set

{
` · (m′ + 1)/qκ

′ ≤ 2−κ

m′κ′ ≥M logq 2

Now these equations are satisfied by setting

{
κ′ =

⌈
logq `+ logq(M logq 2) + κ logq 2

⌉
m′ =

⌈
M logq 2/κ′

⌉
The overhead of the scheme is thus equal to

m log q −M = (m′κ′ + 2κ′) log q −M
≤ (M logq 2 + 3κ′) log q −M
= O(κ′)

= O(logM + κ).

This concludes the proof.

3.3.6 With Universal Hash Functions

We present here a second way to implement Construction 3.3.1, where we keep
the AMD codes of Lemma 3.3.2, but use linear secret-sharing schemes based
on universal hash functions and highly list-decodable codes.

We first define the codes that will be used in our construction:

Theorem 3.3.5 (List-decodability of Folded Algebraic Geometric Codes [38]).
For any real numbers 0 < R < 1 and ε > 0, and for any large enough integer
m > 0 (depending on R and ε) there exist a constant prime power q and an
infinite family of m-folded Fq-linear codes {Cn}, such that the rate of Cn is R,
and Cn is efficiently (τn, `)-list decodable with τ = 1−R− ε and ` = poly(n).

Furthermore, such list decoding can be realized by an algorithm with running
time poly(n,m).

We then obtain following result:
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Proposition 3.3.6. For any real number 0 < τ < 1/2 and integer κ >
0 there exists an infinite family {SSSn} of efficient n-player secret-sharing
schemes with (τn)-privacy and (τn, 2−κ)-robustness. The secret has size Ω(n+
κ) and the shares have size O(1 + κ/n) (each); this means that the share size
is constant in n.

Proof. Let {Cn} be the family of codes from Theorem 3.3.5, with R and ε to
be determined; each Cn has parameters [n,Rmn, d]q for constant m and q, and
is (1−R− ε, `)-list decodable for ` = poly(n).

Now let H be a family of linear universal hash functions FRmnq → Fρmnq for a
parameter ρ > 0 to be determined; notice that such a family exists thanks to
Theorem 3.2.6.

By connecting Cn with a random h ∈ H as in Definition 3.1.1, we obtain
a linear secret-sharing scheme LSSSn; for η > 0, we have that the scheme
enjoys τn-privacy (with positive probability over the choice of h) as long as
R ≥ ρ+ η + τ +H(τ)/(m · log(q)).

By writing Fρmnq ' Fρ′mnκ′q × Fκ′q × Fκ′q , we can connect LSSSn to the AMD

code given by encoding function AMD.Encode : Fρ′mnκ′q → Fρ′mnκ′q × Fκ′q × Fκ′q
as in Lemma 3.3.2.

The resulting secret-sharing scheme SSSn has the same privacy as LSSSn and is
((1−R−ε)n , `(ρ′mn+ 1)/qκ

′
)-robust; hence to get τn-privacy and (τn, 2−κ)-

robustness we need to set


R ≥ ρ+ η + τ +H(τ)/(m · log(q))
1−R− ε ≥ τ
` · ρ

′mn

qκ′
≤ 2−κ

i.e.

{
1− τ − ε ≥ R ≥ ρ+ η + τ +H(τ)/(m · log(q))
κ′ ≥ κ logq 2 + logq `+ logq(ρ

′mn+ 1)

The first row has a solution R since 1− 2τ ≥ ε+ρ+ η+H(τ)/(m · log(q)) (for
small enough ε, ρ and η, and up to enlarging m), while the second inequality
is satisfied by setting

κ′ :=
⌈
κ logq 2 + logq `+ logq(ρmn+ 1)

⌉
.

Moreover, the size of each share space is equal to m log q; now we have that
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m log q = Θ(m) = Θ(1 + κ′/n) = Θ(1 + κ/n).

Finally, the secret has size ρ′mn log q = nΘ(m log q); this concludes the proof.
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Chapter 4

New Protocols for Secure
Multi-Round
Communication

We discuss in this chapter some generalizations of (Robust) Secret Sharing;
we first discuss the application of Secret Sharing and Robust Secret Sharing
to a scenario of one-way secure communication over parallel channels, which
will form the common framework for the present and previous chapters.

Section 4.1 shows a generalization of this secure-communication setting, where
messages can be transmitted in both ways; this model has become known as
Secure Message Transmission. Based on the article [66], co-authored by Gilles
Zémor, we use coding-theoretic techniques to construct a two-round protocol
with perfect security, and show how our protocol has lower complexity and a
more simple core structure compared to previous work.

In Section 4.2, we consider a more general scenario where an attacker has
increased eavesdropping and tampering powers. We show how this scenario
models the communication in a Secure Network Coding scenario; based on the
articles [66] and [67] with Gilles Zémor, we then propose two secure protocols
in this setting. The first protocol works in two rounds, and is an adaptation
of the “vanilla” protocol of Section 4.1; the second one works in three rounds,
and can also provide security in a multicast setting, i.e. in the presence of
several receivers.
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4.1 Perfectly Secure Message Transmission

We start by discussing in more details a direct application of Secret Sharing
sketched in Chapter 2, Section 2.5. Suppose that two users Alice and Bob
are connected by n parallel channels, and that an attacker Eve controls t of
this channels (we will explain the meaning of “control” in the next few lines).
Assume that Alice wishes to communicate a secret value s that she holds, and
that she is only allowed to send a single symbol over each channel.

As a first adversarial model, assume that Eve acquires the symbols transmitted
over the channels under her control, and assume that she is able to erase them,
meaning that Bob will receive an error message ⊥ instead of the symbol. It is
then readily seen that a secret-sharing scheme can be used to achieve security
in this setting: Alice can compute a share vector (s1, . . . , sn) from the secret s
and send each share to Bob over a distinct channel; if the scheme has t-privacy
and (n− t)-reconstruction, we then achieve privacy (meaning that Eve obtains
no information at all on the secret) and reliability, meaning that Bob is able to
compute the secret message s from the received data, in spite of the symbols
erased by Eve.

Similarly, if we assume that Eve can eavesdrop and tamper, meaning that she
can replace any symbol transmitted over a channel that she controls with an
arbitrary symbol from the same alphabet, then a (t, ε)-robust secret sharing
scheme can be used in the same way to achieve privacy and reliability (although
reliability is only guaranteed with probability 1− ε).

The model that has become known as Secure Message Transmission, intro-
duced by Dolev et al. in [27], is a further generalization of the above setting,
where we assume that the channels can also be used by Bob to convey data to
Alice, and where Alice and Bob are free to transmit several symbols over each
channel. The adversary Eve is able to eavesdrop and tamper on the channels
under her control, and the goal is again for Alice to communicate a secret
message to Bob with privacy and reliability. We stress the fact that, tradi-
tionally, perfect privacy is required, while reliability can either have a small
error probability or be perfect. In the latter case, we speak of Perfectly Secure
Message Transmission or PSMT, which we focus on in this section.

We now give a formal definition of a PSMT protocol. Notice that in con-
trast with Secret Sharing, which we defined in “abstract” terms, PSMT is
here formalized in terms of this secure-communication scenario, as an abstract
definition would be quite cumbersome. We stress the fact, however, that in
view of our mathematical formalization of interactive protocols (cf. Chapter 2,
Section 2.4), the definition we give here is mathematically rigorous.

Definition 4.1.1 (PSMT). A Perfectly Secure Message Transmission proto-
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col is specified by positive integers n, t ≤ n and a finite, non-empty set F . The
protocol involves two users, Alice and Bob, that are connected by n “channels”,
and an adversary Eve that “controls” t of these channels.

Alice and Bob can send elements of F to each other over each channel; when-
ever a symbol is transmitted over a channel under her control, Eve acquires
that symbol and is allowed to replace it with a symbol from F of her choice.

We assume that Alice holds secret values s(1), . . . , s(`) ∈ F ; a PSMT proto-
col specifies which symbols Alice and Bob should communicate to each other,
and is deemed secure if the following two conditions hold for any choice of
s(1), . . . , s(`) ∈ F :

• Privacy: the data eavesdropped by Eve has a distribution which does not
depend on the secrets s(1), . . . , s(`).

• Reliability: Bob is always able to recover s(1), . . . , s(`) from the data he
sent and received.

We contribute to Perfectly Secure Message Transmission by constructing a
two-round protocol with better efficiency compared to previous work and a
more intuitive and powerful core structure.

The following subsections are organized as follows. In Section 4.1.1 we give
some more background on PSMT, discuss what are the state-of-the-art pro-
tocols in the field and how our protocols compare to them. In Section 4.1.2,
we sketch the core structure of our protocols, before starting to discuss the
details; Section 4.1.3 presents the basic communication tools that are going
to be needed, and Section 4.1.4 presents another fundamental concept for our
protocols, the pseudo-basis or syndrome-spanning subset. In Section 4.1.5 we
present a first protocol, prove its security and discuss its efficiency; finally, in
Section 4.1.6 we show how to improve this protocol to reach better efficiency.

4.1.1 An Overview of PSMT

Two factors influence whether PSMT is possible and how difficult it is to
achieve, namely the number t of channels corrupted and controlled by Eve,
and the number r of transmission rounds, where a transmission round is a
phase involving only one-way communication (either from Alice to Bob, or
from Bob to Alice).

It was shown in Dolev et al.’s original paper [27] that for r = 1, i.e. when
communication is only allowed from Alice to Bob, PSMT is possible if and
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only if n ≥ 3t + 1; notice that in this setting, PSMT is essentially equivalent
to Robust Secret Sharing, which indeed is easily seen to be possible with no
error probability only if n ≥ 3t+ 1 (cf. Chapter 3, Section 3.3.1).

It was also shown in [27] that for r ≥ 2, i.e. when communication can be
performed in two or more rounds, PSMT is possible if and only if n ≥ 2t+ 1,
meaning that two-ways communication strengthen security, although only a
very inefficient way to do this was proposed. A number of subsequent efforts
were made to improve PSMT protocols, notably in the most difficult case,
namely for r = 2 rounds and when n = 2t + 1. The following two quantities,
called communication complexity and transmission rate, were introduced and
give a good measure of the efficiency of a PSMT protocol. They are defined
as follows:

Communication complexity := total number of bits transmitted to
communicate a single-bit secret,

Transmission rate :=
total number of bits transmitted

bit-size of the secret
.

Focusing exclusively on the case n = 2t + 1, Dolev et al. [27] presented a
PSMT protocol for r = 3 with transmission rate O

(
n5
)
; for r = 2 a protocol

was presented with non-polynomial rate.

Sayeed and Abu-Amara [57] were the first to propose a two-round protocol
with a polynomial transmission rate of O

(
n3
)
. They also achieved communi-

cation complexity of O
(
n3 log n

)
. Further work by Agarwal et al. [1] improved

the transmission rate to O(n) meeting, up to a multiplicative constant, the
lower bound of [68]. However, this involved exponential-time algorithms for
the participants in the protocol. The current state-of-the art protocol is due
to Kurosawa and Suzuki [46, 45]; it achieves O(n) transmission rate with a
polynomial-time effort from the participants. All these protocols do not do
better than O

(
n3 log n

)
for the communication complexity.

We contribute to this topic in the following ways. We present a construc-
tive protocol for which only straightforward computations are required of
the participants, that achieves the improved communication complexity of
O
(
n2 log n

)
. In passing, we give an affirmative answer to an open problem of

Kurosawa and Suzuki (at the end of their paper [45]) that asks whether it is
possible to achieve the optimal transmission rate O(n) for a secret of size less
than O(n2 log n) bits. We do this for a secret of O(n log n) bits.

Moreover, our solution is conceptually simpler than previous protocols: two-
round PSMT involves Bob initiating the protocol by first sending an array
of symbols (xij) over the n parallel channels, where the first index i means
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that symbol xij is sent over the i-th channel. All previous proposals relied
on arrays (xij) with a lot of structure, with linear relations between symbols
that run both along horizontal (constant j) and vertical (constant i) lines. In
contrast, we work with an array (xij) consisting of completely independent
rows x(j) = (x1j , x2j , . . . , xnj) that are simply randomly chosen words of a
given Reed-Solomon code. In its simplest, non-optimized form, the PSMT
protocol we present only involves simple syndrome computations from Alice,
and one-time padding the secrets it wishes to transfer with the image of linear
forms applied to corrupted versions of the codewords x(j) it has received from
Bob.

In its optimized form, the protocol achieves a transmission rate 5n + o(n),
compared to the previous record of 6n+o(n) of [35] obtained by painstakingly
optimizing the 25n+ o(n) transmission rate of [45].

4.1.2 An Overview of our Protocol

The protocol is specified by the number n = 2t+ 1 of channels between Alice
and Bob and the number ` of secret messages to be communicated; we assume
that the messages lie in a finite field Fq. The basic communication tool is given
by a randomized secret-sharing scheme built via Massey’s blueprint; according
to the formulation of Chapter 3, this is given by a pair (C, f), where C is a
linear block code of parameters [n, t + 1, t + 1] over Fq and f : C → Fq is a
surjective, Fq-linear map. C and f have the property that the knowledge of t
symbols of any of the codewords x ∈ C leaves f(x) completely undetermined;
C can be a Reed-Solomon code.

Since we require at most two rounds of communication, Bob starts the pro-
cedure; he chooses a certain number of random and independent codewords
x ∈ C, and communicates them to Alice by sending the i-th symbol of each
codeword over the i-th channel. This is a first major difference from previous
papers, notably [45], where codewords are communicated in a more compli-
cated “horizontal-and-vertical” fashion.

As a result of this first round of communication, Alice receives a corrupted
version y = x + e for each codeword x sent by Bob. As in previous PSMT
protocols, Alice then proceeds by broadcast, meaning every symbol she phys-
ically sends to Bob, she sends n times, once over every channel i. In this way
privacy is sacrificed, since Eve can read everything Alice sends, but reliability
is ensured, since Bob recovers every transmitted symbol by majority decoding.

A secret message consisting of a single symbol s ∈ Fq is encoded by Alice as
s + f(y) for some received vector y. In other words, s is one-time padded
with the quantity f(y) and this is broadcast to Bob. Notice that at this point,
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revealing s+f(y) to Eve gives her zero information on s; this is because she can
have intercepted at most t symbols of the codeword x: therefore the element
f(x) is completely unknown to her by the above property of C and f (i.e., the
privacy of Massey’s scheme), and the mask f(y) = f(x) + f(e) is unknown to
her as well.

Now broadcasting the quantity s+ f(y) is not enough by itself to convey the
secret s to Bob, because Bob also does not have enough information to recover
the mask f(y). To make the protocol work, Alice needs to give Bob extra
information that tells Eve nothing she doesn’t already know.

This extra information comes in two parts. The first part is simply the
syndrome σ(y) = HyT of y, where H is a parity-check matrix of C; no-
tice that this data is indeed useless to Eve, who already knows it given that
HyT = HxT + HeT = HeT where e is chosen by herself.

The second part makes use of the fact that during the first phase, Bob has
not sent a single codeword x to Alice, but a batch of codewords X and Alice
has received a set Y of vectors made up of the corrupted versions y = x + e
of the codewords x. Alice will sacrifice a chosen subset of these vectors y and
reveal them to Bob and Eve by broadcast. Note that this does not yield any
information on the unrevealed vectors y since Bob has chosen the codewords
x of X randomly and independently. At this point we apply an idea that
originates in [45]: the chosen revealed subset of Y is called in [45] a pseudo-basis
of Y. To compute a pseudo-basis of Y, Alice simply computes all syndromes
σ(y) for y ∈ Y, and chooses a minimal subset of Y whose syndromes generate
linearly all syndromes σ(y) for y ∈ Y. A pseudo-basis of Y could alternatively
be called a syndrome-spanning subset of Y. Now elementary coding-theory
arguments imply that a pseudo-basis of Y allows Bob, for any non-revealed y =
x+e, to recover the error e from the syndrome σ(y) = σ(e) (Proposition 4.1.4).

We shall present optimized variants that achieve the communication complex-
ity and transmission rate claimed in Section 4.1.1. Our final protocol involves
two additional ideas; the first involves a more efficient broadcasting scheme
than pure repetition: this idea was also used by Kurosawa and Suzuki. The
second idea is new and involves using a decoding algorithm for the code C.

4.1.3 Private and Reliable Communication Tools

We present here two communication tools that are used by Alice and Bob in
our protocol: a private communication tool and a broadcast procedure.

The private communication tool is a randomized secret-sharing scheme con-
structing via Massey’s paradigm (cf. Chapter 2, Section 2.6). We define the
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scheme and analyze it in the style of Definition 3.1.1, and show how it can be
used by Alice and Bob for private communication.

Lemma 4.1.1. For any positive integers n and 1 ≤ t ≤ n and any prime power
q > n there exist an Fq-linear MDS code C of parameters [n, t+ 1, n− t] and a
linear function f : C → Fq such that the following holds. If x ∈$ C is uniformly
distributed, then f(x) is uniformly distributed over Fq and is independent of
xA for any A ⊆ [n] with |A| = t.

This means that if a random x ∈ C is transmitted from Alice to Bob or
vice versa, then f(x) is uniformly distributed and independent of Eve’s eaves-
dropped data.

Proof. Let C′ be an MDS code of parameters [n + 1, t + 1, n − t + 1]; notice
that such a code exists for any n and t ≤ n (cf. Chapter 2, Section 2.2.2). Let
C be the code obtained from C′ by puncturing at its first coordinate, i.e.

C :=
{
x ∈ Fnq : ∃x ∈ Fq with (x,x) ∈ C′

}
The minimum distance of C is at most one less than that of C′, hence C is
MDS of parameters [n, t+ 1, n− t] as requested. The map f : C → Fq is given
by x 7→ x : (x,x) ∈ C′; notice that f can be explicitly constructed by setting
f(x) = −1/α · hxT , where α ∈ Fq \ {0} and h ∈ Fnq are such that (α,h) is a
row of a parity-check matrix of C′.

Now fix an arbitrary subset A ⊆ [n] with |A| ≤ t; we need to prove that
f(x) and xA are independent for x ∈$ C uniformly distributed. Thanks to
Proposition 3.1.2, it suffices to show that for any x ∈ Fq there exists y =
(x,x) ∈ C′ with yA = 0.

Now since {0} ∪A is an information set for C′ (where we count coordinates in
Fn+1
q from 0 to n), the claim holds. This concludes the proof.

Furthermore, under the assumption that n = 2t+ 1, Alice and Bob can com-
municate with perfect reliability via the following straightforward method:

Lemma 4.1.2 (Broadcast). Alice and Bob can broadcast any symbol x ∈ Fq
by sending it over all the channels. Since Eve controls t < n/2 of them, the
receiver will be able to recover x with a simple majority choice. Broadcast thus
guarantees reliability by sacrificing privacy.
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4.1.4 Pseudo-Bases or Syndrome-Spanning Subsets

The second fundamental building block of our paper is the notion of pseudo-
basis, introduced by Kurosawa and Suzuki [45]. The concept stems from the
following intuition: assume that Bob communicates a single codeword x of an
MDS code C to Alice by sending each of its n symbols over the corresponding
channel. Eve intercepts t of these symbols, thus C must have dimension at
least t+ 1 if we want to prevent her from learning x; but this means that the
minimum distance of C cannot exceed n + 1 − (t + 1) = t + 1, which is not
enough for Alice to correct an arbitrary pattern of up to t errors that Eve can
introduce.

If, however, we repeat the process for several different x(i), then Alice and
Bob have an important advantage: they know that all the errors introduced
by Eve always lie in the same subset of t coordinates. Kurosawa and Suzuki
propose the following strategy to exploit this knowledge: Alice can compute
a pseudo-basis (a subset with special properties) of the received vectors; she
can then transmit it to Bob, who will use this special structure of the errors
to recover them from their syndromes.

The key is the following simple lemma:

Lemma 4.1.3. Let C be a linear code of parameters [n, k, d]q, and let H be a
parity-check matrix of C; let E be a linear subspace of vectors of Fnq such that
the Hamming weight wH(e) of e satisfies wH(e) < d for any e ∈ E.

We then have that the following map is injective:

σ|E : E → Fn−kq

e 7→ HeT

Proof. Simply notice that ker
(
σ|E
)

= {0}: indeed, ker
(
σ|E
)
⊆ C; but by

assumption all elements of E have weight smaller than d, so that ker
(
σ|E
)

=
{0}.

We can now introduce the concept of pseudo-basis; for the rest of this sec-
tion, we assume that a linear code C of parameters [n, k, d]q has been chosen,
together with a parity-check matrix H and associated syndrome map σ.

Definition 4.1.2 (Pseudo-Basis [45]). Let Y be a set of vectors of Fnq ; a
pseudo-basis of Y is a subsetW ⊆ Y such that σ(W) is a basis of the syndrome
subspace 〈σ(Y)〉.
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Notice that a pseudo-basis has thus cardinality at most n− k, and that it can
be computed in time polynomial in n.

The following property formalizes the data that Bob can acquire after he ob-
tains a pseudo-basis of the words received by Alice:

Proposition 4.1.4 ([45]). Let r be a positive integer, and let X , E ,Y be three
subsets:

• X :=
{
x(1), . . . ,x(r)

}
a set of codewords of C,

• E :=
{
e(1), . . . , e(r)

}
a set of error vectors such that∣∣⋃ (support

(
e(j)
)

: j = 1, . . . , r
)∣∣ < d,

• Y :=
{
y(1), . . . ,y(r)

}
⊆ Fnq with y(j) = x(j) + e(j) for every j = 1, . . . , r.

Then, given knowledge of X and a pseudo-basis of Y, we have that e(j) can be
computed from its syndrome σ(e(j)) for any 1 ≤ j ≤ r.

Proof. The hypothesis on the supports of the elements of E implies that the
subspace 〈E〉 satisfies the hypothesis of Lemma 4.1.3 and the syndrome func-
tion is therefore injective on 〈E〉. Given the pseudo-basis

{
y(i) : i ∈ I

}
, we can

decompose any syndrome σ(e(j)) as

σ(e(j)) = σ(y(j)) =
∑
i∈I

λiσ(y(i))

=
∑
i∈I

λiσ(e(i))

= σ

(∑
i∈I

λie
(i)

)
which yields

e(j) =
∑
i∈I

λie
(i) =

∑
i∈I

λi(y
(i) − x(i))

by injectivity of σ on 〈E〉 (cf. Lemma 4.1.3).

Remark 4.1.1. Since the syndrome map induces a one-to-one mapping from
〈E〉 to σ(〈E〉), we also have that

{
y(i) : i ∈ I

}
is a pseudo-basis of Y if and

only if
{
e(i) : i ∈ I

}
is a basis of 〈E〉.
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The reader should now have a clear picture of how the pseudo-basis will be used
to obtain shared randomness: Bob will select a few codewords x(1), · · · ,x(r)

in an MDS code of distance at least t + 1, then communicate them to Alice
by sending the i-th symbol of each codeword over channel i; Alice will be
able to compute a pseudo-basis of the received words, a clearly non-expensive
computation, then communicate it to Bob. Bob will then be able to deter-
mine any error introduced by Eve just from its syndrome as just showed in
Proposition 4.1.4.

The following section gives all the details.

4.1.5 A First Protocol

We now present the complete version of our first communication protocol,
following the blueprint of Section 4.1.2.

Protocol 4.1.1. The protocol works in two rounds, and allows Alice to
communicate ` secret elements s(1), · · · , s(`) of Fq to Bob, where q is an
arbitrary prime power with q > n. The protocol uses the MDS code C
of parameters [n, t + 1, t + 1]q and the linear function f : C → Fq of
Lemma 4.1.1 for private communication, and the broadcast technique of
Lemma 4.1.2 for reliable communication.

• Round 1: Bob chooses t+` uniformly random and independent code-
words x(1), · · · ,x(t+`) of C and communicates them to Alice by send-
ing the i-th symbol of each codeword over the i-th channel.

• Round 2: Alice receives the corrupted versions y(1) = x(1) +
e(1), · · · ,y(t+`) = x(t+`)+e(t+`); she then proceeds with the following
actions:

(i) She computes a pseudo-basis
(
y(i) : i ∈ I

)
for I ⊂ {1, · · · , t+`}

of the received values and broadcasts to Bob
(
i,y(i) : i ∈ I

)
.

(ii) She then considers the first ` words that do not belong to
the pseudo-basis; to ease the notation, we will re-name them
y(1), · · · ,y(`). For each secret s(j) to be communicated she
broadcasts to Bob the following two elements:

- H
(
y(j)

)T
, the syndrome of y(j);

- s(j) + f
(
y(j)

)
.
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Proposition 4.1.4 now guarantees that for any j with 1 ≤ j ≤ ` Bob can
compute the error vector e(j) and hence reconstruct y(j) = x(j) +e(j) from
his knowledge of x(j). He can therefore open the mask f

(
y(j)

)
and obtain

the secret s(j).

Proposition 4.1.5. Protocol 4.1.1 allows for secure communication of ` ele-
ments of Fq against an adversary Eve controlling any subset of t channels.

Proof. As a first remark, notice that since the pseudo-basis has cardinality at
most t as remarked in Definition 4.1.2, Alice has enough words to mask her `
secret messages, since the total number of words is equal to t+ `. We can now
prove that the protocol is private and reliable:

• Privacy: we need to prove that the data eavesdropped by Eve has a
distribution independent of the secret messages s(1), . . . , s(`). Denote by
A ⊆ {1, . . . , n} the indices of the channels controlled by Eve; then Eve
acquires the following data during an execution of the protocol:

I. x
(1)
A , . . . ,x

(t+`)
A ;

II.
(
y(i) : i ∈ I

)
, the pseudo-basis;

III. H
(
y(j)

)T
for any j /∈ I

IV. s(1) + f
(
y(j1)

)
, . . . , s(`) + f

(
y(j`)

)
where ji /∈ I for any i.

First recall that the elements x(1), . . . ,x(t+`) are chosen independently of
each other and of the secrets, which means that the data of point II can

be ignored; similarly, since H
(
y(j)

)T
= H

(
x(j) + e(j)

)T
= H

(
e(j)
)T

,
the data of point III only depends on the errors introduced by Eve during

round 1. This means that it suffices to prove that (x
(j)
A , f(y(j))+s(j) : j)

has a distribution which does not depend on the secrets s(1), . . . , s(`).

By Lemma 4.1.1, s(i) +f(y(ji)) is uniformly distributed and independent

of x
(ji)
A ; hence (x

(ji)
A , s(i) + f(y(ji)) : i) is uniformly distributed over

Ct+`A × F`q. In particular, its distribution does not depend on the choice
of s, so that privacy holds.

• Reliability: Eve can disrupt the communication only during Round 1,
since Round 2 only uses broadcasts. Proposition 4.1.4 then ensures that
Bob can recover the vectors y(j) from their syndromes and the corre-
sponding codeword x(j). From there he can compute and remove the
mask f

(
y(j)

)
without error.
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We now compute the communication complexity and transmission rate of this
first protocol, underlining the most expensive parts:

Communication complexity: we can set ` := 1.

• Step I requires transmitting t + 1 codewords, thus requiring a total of
O
(
n2
)

symbols to be transmitted.

• Step II-(i) requires broadcasting up to t words of Fnq , thus giving a total

of O
(
n3
)

symbols to be transmitted.

• Finally, step II-(ii) requires broadcasting a total of t+1 symbols (a size-t
syndrome and the masked secret), thus giving a total of O

(
n2
)

elements
to be transmitted.

Hence since we can assume that q = O(n), we get a total communication
complexity of

O
(
n3 log n

)
bits to be transmitted to communicate a single-bit secret.

Tranfer rate: optimal rate is achieved for ` = Ω (n).

• Step I requires transmitting t + ` codewords, for a total of O
(
n2 + n`

)
symbols.

• Step II-(i) remains unchanged from the single-bit case, and thus requires
transmitting O

(
n3
)

symbols.

• Finally, step II-(ii) requires broadcasting a total of `(t + 1) symbols (`
size-t syndromes and the masked secrets), thus giving a total of O

(
n2`
)

symbols;

To sum up, the overall transmission rate is equal to

O
(
n2 + n`+ n3 + n2`

)
`

= O
(
n2
)
.

It is immediately seen that the main bottleneck for communication complexity
is step II-(i), i.e. the communication of the pseudo-basis, while for transmission
rate it is step II-(ii), i.e. the communication of the masked secrets and of the
syndromes. We address these issues in the following section.
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4.1.6 The Improvements to the Protocol

We show in this section how to improve communication complexity and trans-
fer rate.

Generalized Broadcast Our improvements on the two bottlenecks showed
in Section 4.1.5 rely on the fundamental technique of generalized broadcast,
which has been highlighted in the paper by Kurosawa and Suzuki [45].

The intuition is the following: we want to choose a suitable code CBCAST for
perfectly reliable transmission, i.e. we require that if any word x ∈ CBCAST is
communicated by sending each symbol xi over the i-th channel, then x can
always be recovered in spite of the errors introduced by Eve. In the general
situation, since Eve can introduce up to t errors, CBCAST must have minimum
distance 2t + 1 = n, and hence dimension 1; for instance, CBCAST can be a
repetition code, yielding the broadcast protocol of Section 4.1.3.

Now assume that at a certain point of the protocol, Bob gets to know the
position of m coordinates under Eve’s control; then the communication system
between the two has been improved: instead of n channels with t errors, we
have n channels with m erasures and t −m errors (since Bob can ignore the
received on the m channels under Eve’s control that he has identified). We
can thus expect that reliable communication between Alice and Bob (i.e.,
broadcast) can be performed at a lower cost by using a code with smaller
distance and greater dimension; the following lemma formalizes this intuition.

Lemma 4.1.6 (Generalized Broadcast). Let m ≤ t and let Cm be an MDS
code of parameters [n,m + 1, n − m]q; assume that Bob knows the location
of m channels controlled by Eve. Then Alice can communicate with perfect
reliability m+ 1 symbols x1, · · · , xm+1 of Fq to Bob in the following way: she
first takes the codeword c ∈ Cm which encodes (x1, · · · , xm+1), then sends each
symbol of c through the corresponding channel; Eve cannot prevent Bob from
completely recovering the message.

We refer to this procedure as m-generalized broadcast.

Proof. Notice that c is well-defined since Cm has dimension m+ 1. Now since
Bob knows the location of m channels that are under Eve’s control, he can
replace the symbols of c received via these channels with erasure marks ⊥,
and consider the truncated codeword c̃ lacking these symbols. Now c̃ belongs
to the punctured code obtained from Cm by removing m coordinates, which
has minimum distance (n−m)−m ≥ 2(t−m) + 1; it can thus correct up to
t − m errors, which is exactly the maximum number of errors that Eve can
introduce (since she controls at most t−m of the remaining channels). Once

69



he has obtained the shortened codeword c̃, he can then recover the complete
one since Cm can correct from m erasures, given that it has minimum distance
n−m ≥ m.

Hence if Alice knows that Bob has identified at least m coordinates under
Eve’s control, she can divide the cost of a broadcast by a factor m (since the
above method requires to transmit n symbols of Fq to communicate m + 1
symbols of Fq).

In the following paragraphs we will make use of Lemma 4.1.6 to improve the
efficiency of the protocol.

Improved Transmission of the Pseudo-Basis: a Warm-Up. We present
here a new method of communicating the pseudo-basis, which is a straightfor-
ward implementation of the generalized broadcasting technique.

The key point is the following observation:

Lemma 4.1.7. Let W =
(
y(i) : i ∈ I

)
be a pseudo-basis of the set of received

vectors; then if Bob knows m elements of W, he knows at least m channels
that are under Eve’s control.

Proof. By subtracting the original codeword from an element of the pseudo-
basis, Bob knows the corresponding error; furthermore, these errors form a
basis of the entire error space (Remark 4.1.1). Now if Bob knows m elements
of the pseudo-basis, he then knows m of these errors, which necessarily affect
at least m coordinates since they are linearly independent. The claim then
follows.

The sub-protocol consisting of the transmission of the pseudo-basis by Alice
is simply the following:

Protocol 4.1.2. Alice wishes to communicate to Bob a pseudo-basis W
of cardinality w.

For any i = 1, · · · , w, she then uses (i− 1)-generalized broadcast to com-
municate the i-th element of the pseudo-basis to Bob.
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Lemmas 4.1.6 and 4.1.7 ensure that this technique is secure; we now compute
its cost:

• Each element of the pseudo-basis is a vector of Fnq ;

• using m-generalized broadcast to communicate n elements of Fq requires

communicating
⌈

n
m+1

⌉
n field elements;

• hence Protocol 4.1.2 requires communicating the following number of
elements of Fq:

w∑
i=1

⌈n
i

⌉
n = O

(
n2

w∑
i=1

1

i

)
= O

(
n2 log n

)
which means that we have reduced to O

(
n2 log2 n

)
the total communi-

cation complexity.

This complexity is still one logarithmic factor short of our goal; we now show
how a more advanced technique allows us to bring down the cost to O

(
n2
)

field elements.

Improved Transmission of the Pseudo-Basis: the Final Version. In
this paragraph we show a more advanced technique to communicate the pseudo-
basis. The key idea is the following: denote by w the size of the pseudo-basis;
if Alice can find a received word y which is subject to an error of weight cw
for some constant c and sends it to Bob, then Bob will learn the position of at
least cw corrupted coordinates. Alice will thus be able to use cw-generalized
broadcast as in Lemma 4.1.6 to communicate the elements of the pseudo-basis
(which amount to wn symbols); since cw-generalized broadcast of a symbol
has a cost of O(n/cw), the total cost of communicating the pseudo-basis will
thus be (wn) ·O(n/cw) = O

(
n2
)
.

We thus devise an algorithm that allows Alice to find a word y subject to at
least m = Ω(w) errors (for instance, such condition is met if y is subject to
Ω(t) errors, since w ≤ t). Notice that such a word y may not exist among the
received words

{
y(i)
}

, therefore we will look for a linear combination of the

y(i) with this property.

As mentioned in Section 4.1.2, Alice will make extensive use of a decoding
algorithm. Recall that a code of distance d can be uniquely decoded from
up to b(d− 1)/2c errors, and that in the case of Reed-Solomon codes, such
decoding can be performed in time polynomial in n [49]; this means that
for any Reed-Solomon code C there exists an algorithm that takes as input

71



a word y ∈ Fnq and outputs a decomposition y = x + e with x ∈ C and
wH(e) ≤ b(d − 1)/2c (if such a decomposition does not exist, the algorithm
outputs an error message ⊥).

Protocol 4.1.3. Alice has received the words y(1), · · · ,y(r) and has com-
puted a pseudo-basis

{
y(i) : i ∈ I

}
of them; denote by w its cardinality.

Alice proceeds with the following actions:

• she uses Algorithm 4.1.1 below to find a “special word” y, with co-
efficients (µi : i ∈ I) such that y =

∑
i∈I µiy

(i). She then com-

municates to Bob the triplet
(
I, (µi : i ∈ I),y

)
by using ordinary

broadcast.

• Finally, she communicates the pseudo-basis of the received values by
using m-generalized broadcast, where m := min(w, t/3).

Before describing the algorithm formally and proving its validity, we sketch
the idea. Alice has computed a pseudo-basis {y(i) : i ∈ I}. For i ∈ I, she
applies the decoding algorithm to y(i) = x(i) + e(i). If the decoding algorithm
fails, it means that y(i) is at a large Hamming distance from any codeword, in
particular from Bob’s codeword x(i), and the single y(i) is the required linear
combination. If the decoding algorithm succeeds for every i, Alice obtains
decompositions

y(i) = x̃(i) + ẽ(i)

where x̃(i) is some codeword. Alice must be careful, because she has no guar-
antee that the codeword x̃(i) coincides with Bob’s codeword x(i), and hence
that ẽ(i) coincides with Eve’s error vector e(i). What Alice then does is look
for a linear combination

∑
i µiẽ

(i) that has Hamming weight at least t/3 and
at most 2t/3. If she is able to find one, then a simple Hamming distance argu-
ment guarantees that the corresponding linear combination of Eve’s original
errors

∑
i µie

(i) also has Hamming weight at least t/3. If Alice is unable to
find such a linear combination, then she falls back on constructing one that has
weight not more than 2t/3 and at least the cardinality w of the pseudo-basis;
this will yield an alternative form of the desired result. We now describe this
formally.
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Algorithm 4.1.1. Alice has a pseudo-basis
(
y(i) : i = 1, · · · , w

)
(indices

have been changed to simplify the notation); the algorithm allows Alice to
identify a word y subject to at least m := min(w, t/3) errors introduced by
Eve.

In the following steps, whenever we say that the output of the algorithm is a
word y(i), we implicitly assume that the algorithm also outputs the index
i; more generally, whenever the algorithm outputs a linear combination∑
i µiy

(i) of the words in the pseudo-basis, we assume that it also outputs
the coefficient vector (µ1, · · · , µw) of the linear combination.

1. Alice uses a unique-decoding algorithm to decode the elements of
the pseudo-basis; if the algorithm fails for a given word y(i) (i.e., it
outputs an error message ⊥), then Algorithm 4.1.1 stops and outputs
y(i).

2. If the decoding algorithm worked for every i, Alice gets a decom-
position y(i) = x̃(i) + ẽ(i) with x̃(i) ∈ C and wH

(
ẽ(i)
)
≤ t/2 for

every i; notice that it is not guaranteed that the x̃(i) coincide with
the codewords x(i) originally chosen by Bob.

If any of the ẽ(i) has weight greater than t/3, the algorithm stops
and outputs y(i).

3. Define f̃ (1) := ẽ(1) and ỹ(1) := y(1). For any i = 2, · · · , w, proceed
with the following actions:

– let λ(i) be a non-zero element of Fq such that f̃
(i−1)
j +λ(i)ẽ

(i)
j 6= 0

for any coordinate j ∈ {1, 2, . . . , n} for which f̃
(i−1)
j 6= 0.

– let f̃ (i) := f̃ (i−1) + λ(i)ẽ(i) and ỹ(i) := ỹ(i−1) + λ(i)y(i);

if wH

(
f̃ (i)
)
> t/3, stop and output ỹ(i).

4. Output ỹ(w).

We can now prove that this algorithm allows Alice to find the desired code-
word, which naturally implies that Protocol 4.1.3 indeed allows for reliable
communication of the pseudo-basis:

Proposition 4.1.8. Algorithm 4.1.1 allows Alice to find a word y subject to
an error introduced by Eve of weight at least m := min(w, t/3).
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Proof. The following observation is the key point of the algorithm:

Lemma 4.1.9. Let y = x + e = x̃ + ẽ for x, x̃ ∈ C. Then if ẽ satisfies
wH(ẽ) ≤ 2t/3, we have that wH(e) ≥ min {wH(ẽ), t/3}.

Proof. The claim is trivial if e = ẽ; hence assume that e 6= ẽ. Notice that
e− ẽ = x̃− x; hence since dmin(C) = t+ 1, we have that

t+ 1 ≤ wH (e− ẽ) ≤ wH (e) + wH (ẽ) ≤ wH (e) +
2t

3

Hence we have that wH (e) ≥ t/3, so that the claim is proved.

We now analyze the algorithm step-by-step:

1. if decoding fails for a word y(i), then it is guaranteed that the error
introduced by Eve on it has weight bigger than t/2 > m (otherwise, the
unique decoding algorithm would succeed since dmin(C) = t+ 1).

2. since by assumption wH

(
ẽ(i)
)
≤ t/2 ≤ 2t/3, if we also have t/3 ≤

wH

(
ẽ(i)
)
, then thanks to Lemma 4.1.9 the output y(i) is of the desired

type.

3. Since the algorithm did not abort at step 2, all elements ẽ(i) have weight
at most t/3.

First notice that if the algorithm did not produce f̃ (i−1) as output, then

f̃ (i) is well-defined: indeed, we have that wH

(
f̃ (i−1)

)
≤ t/3; this means

that λ(i) is well-defined, since it is an element of Fq that has to be
different from 0 and from at most t/3 < n− 1 elements.

Now if the algorithm outputs f̃ (i), then necessarily wH

(
f̃ (i−1)

)
≤ t/3

(otherwise the algorithm would have stopped before computing f̃ (i)); fur-

thermore, by assumption we have that wH

(
ẽ(i)
)
≤ t/3, so that wH

(
f̃ (i)
)
≤

2t/3 and we can apply Lemma 4.1.9, so that the output is of the desired
type.

4. Notice that for any i = 1, · · · , w, we have that f̃ (i) has maximal weight
among elements of the vector space 〈ẽ(1), · · · , ẽ(i)〉 (the condition on λ(i)

ensures that this condition is met at each step). Hence since the elements{
ẽ(1), · · · , ẽ(w)

}
are linearly independent (because their syndromes are

linearly independent, since (y(1), . . . ,y(w)) is a pseudo-basis), we have

that wH

(
f̃ (i)
)
≥ i for any i.
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In particular, we have that wH

(
f̃ (w)

)
≥ w; hence since wH

(
f̃ (w)

)
≤ 2t/3

as remarked above, we have that the output ỹ(w) is of the desired type.

Remark 4.1.2. Protocol 4.1.3 requires Alice to use ordinary broadcast to com-
municate a single vector of Fnq (hence transmitting n2 elements of Fq), then
to use m-generalized broadcast with m ≥ min{w, t/3} to communicate w ≤ t
vectors of Fnq (hence transmitting at most 3n2 elements of Fq). We thus get a
total of at most 4n2 elements of Fq to be transmitted.

Furthermore, Algorithm 4.1.1 has running time polynomial in n, as long as the
code C has a unique-decoding algorithm of polynomial running time as well. As
already remarked, such algorithms exist for instance for Reed-Solomon codes.

We then study the second bottleneck of Protocol 4.1.1.

The Improved Communication of the Masked Secrets We present
here the second key improvement to the protocol: after the pseudo-basis is
communicated, we devise a way to lower the cost of transmitting to Bob the
masked secrets and the information to open the masks. We aim at a cost
linear in the number ` of secrets to be transmitted (while it was quadratic in
Protocol 4.1.1). As in the previous paragraph, Alice makes use of a unique-
decoding algorithm.

Protocol 4.1.4. We assume that Alice wishes to communicate ` secret
elements s(1), · · · , s(`) of Fq to Bob, and that ` codewords x(1), · · · ,x(`)

of C have been sent by Bob to Alice (who has received y(1), · · · ,y(`)) and
have not been disclosed in other phases. The protocol is performed once
the pseudo-basis has been communicated to Bob; we thus assume that Bob
knows the global support S := ∪isupport

(
e(i)
)

of the errors affecting the

elements y(i) (cf. Remark 4.1.1).

• Alice uses a unique-decoding algorithm to decode y(i), so that for
every i she obtains (if decoding was successful) a decomposition
y(i) = x̃(i) + ẽ(i) with x̃(i) ∈ C and wH

(
ẽ(i)
)
≤ t/2.

For every i = 1, · · · , ` she then communicates the following elements
to Bob:

– the syndrome H
(
y(i)
)T

via t/2-generalized broadcast;
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– the elements z
(i)
1 , z

(i)
2 of Fq by ordinary broadcast, where

z
(i)
1 := s(i) + f

(
y(i)
)

z
(i)
2 :=

{
s(i) + f

(
x̃(i)
)

if decoding succeeded,
0 otherwise.

• Bob can then obtain each secret s(i) in a different way depending on
the size of the global support S of the errors:

– if |S| ≥ t/2, he uses the knowledge of the syndrome of y(i)

and of the support of the error to compute y(i), so that he can

compute z
(i)
1 − f

(
y(i)
)

as well.

– if |S| < t/2, he ignores the syndrome that has been communi-

cated to him, and computes z
(i)
2 − f

(
x(i)
)
.

Proposition 4.1.10. The above protocol allows for private and reliable com-
munication of ` elements of Fq.

Proof. We check privacy and reliability.

Privacy: we can prove that the data acquired by Eve is independent from the
secrets as in Proposition 4.1.5; the only relevant difference is that Eve may

learn the value of z
(i)
2 for some i. By dropping indexes to simplify notation,

let z2 := z
(i)
2 ; we then have that z2 = s+ f(x̃) = z1− f(ẽ). It is thus sufficient

to show that f(ẽ) is a function of the other data possessed by Eve; we prove
this claim in the following lemma:

Lemma 4.1.11. Let x be a codeword sent by Bob to Alice, and let y = x+e be
the received vector. Then Eve knows whether y can be decoded (i.e. y = x̃ + ẽ
as above) or not; furthermore, if y can be decoded, then she knows ẽ.

Proof. By definition, ẽ is a vector of minimum weight (and of weight at most
t/2) such that y− ẽ belongs to C; notice that the last condition is equivalent to
require that e− ẽ belongs to C. Now these requirements uniquely determine ẽ:
indeed, if by contradiction e− e′ ∈ C for another e′, then e′ − ẽ would belong
to C, a contradiction since wH(e′ − ẽ) ≤ t/2 + t/2 < dmin(C).

Hence ẽ is uniquely determined by e and C: Eve can thus compute it from the
data in her possession. Notice that, in particular, she knows whether ẽ exists
or not, i.e. whether decoding of y is possible or not.
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Reliability: we have two possible cases:

• if |S| ≥ t/2, then Bob is able to acquire the syndrome HyT of y via
t/2-generalized broadcast (cf. Lemma 4.1.6); thus as remarked in Propo-
sition 4.1.5, he can recover y and open the mask to get the secret.

• if |S| < t/2, then Bob knows that Alice has correctly decoded y, since
Eve introduced less than dmin/2 errors; thus x̃ = x so that z2 − f(x) =
(s+ f(x̃))− f(x) = s.

Notice that in this case Bob will have failed to decode the t/2-generalized
broadcast but he will simply ignore the elements received in this way.

Remark 4.1.3. Notice that we could further improve the efficiency of this pro-
tocol by requiring Alice to use w-generalized broadcast (instead of regular one)

to communicate the elements z
(i)
1 and z

(i)
2 , where w is the size of the pseudo-

basis; this, however, would not reduce the order of magnitude of the total
cost.

The Improved Protocol The improved protocol simply implements the
new techniques to communicate the pseudo-basis and the masked secrets.

Protocol 4.1.5. The protocol works in two rounds, and allows Alice to
communicate ` secret elements s(1), · · · , s(`) of Fq to Bob, where q is an
arbitrary prime power with q > n. The protocol uses Massey’s scheme (cf.
Lemma 4.1.1) for private communication, i.e. an MDS code C of param-
eters [n, t + 1, n − t] together with a linear function f : C → Fq, and the
broadcast techniques of Lemma 4.1.2 and 4.1.6 for reliable communication.

• Round 1: Bob chooses t+ `+ 1 uniformly random and independent
codewords x(1), · · · ,x(t+`+1) of C and sends them over the channels
to Alice.

• Round 2: Alice receives the corrupted versions y(1), · · · ,y(t+`+1),
and she computes a pseudo-basis

{
y(i) : i ∈ I

}
of the received values;

she then proceeds with the following actions:
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(i) She uses Protocol 4.1.3 to communicate the pseudo-basis to
Bob.

(ii) She then uses the remaining words to communicate to Bob the
masked secrets and the data to retrieve them as in the first part
of Protocol 4.1.4.

Upon receiving the pseudo-basis, Bob proceeds to compute the global sup-
port S of the error space; he can then obtain each secret s(i) as specified
in the corresponding part of Protocol 4.1.4.

Notice that privacy and reliability of the protocol follow from the previous
discussions; we now analyze the complexity of the protocol:

Communication complexity: we can set ` := 1.

• Round 1 requires transmitting t+ 2 vectors of Fnq , thus requiring a total

of O
(
n2
)

symbols to be transmitted.

• Round 2-(i) requires transmitting O
(
n2
)

elements of Fq as shown in
Remark 4.1.2.

• Finally, Round 2-(ii) requires using t/2-generalized broadcast to commu-
nicate n symbols, and standard broadcast to communicate 2 symbols,
thus giving a total of O(n) elements to be transmitted.

Hence since we can assume that q = O(n), we get a total communication
complexity of

O
(
n2 log n

)
bits to be transmitted to communicate a single-bit secret.

Transfer rate: optimal rate is achieved for ` = Ω (n).

• Round 1 requires transmitting t+`+1 = `+O(n) codewords, for a total
of n`+O(n2) symbols.

• Round 2-(i) remains unchanged from the single-bit case, and thus re-
quires transmitting O

(
n2
)

symbols.
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• Finally, Round 2-(ii) uses t/2-generalized broadcast to communicate `t
elements of Fq and standard broadcast to communicate 2` elements of
Fq, so that the overall cost is equal to 4n` symbols to be transmitted.

To sum up, the overall transmission rate is equal to

5n`+O
(
n2
)

`
= 5n+O

(
n2/`

)
Furthermore, by using Reed-Solomon codes (instead of arbitrary MDS ones),
we then have that Protocol 4.1.5 has computational cost polynomial in n for
both Alice and Bob.

4.1.7 Concluding Remarks and Open Problems

We have presented a two-round PSMT protocol that has polynomial com-
putational cost for both sender and receiver, and that achieves transmission
rate linear in n and communication complexity in O

(
n2 log n

)
. As proved

in [68], the transfer rate is asymptotically optimal; furthermore, our protocol
has a low multiplicative constant of 5. Conversely, it remains open whether
the O

(
n2 log n

)
communication complexity is optimal or not; the only known

lower bound on this parameter is still O(n), as the one for transfer rate [68].
It seems to us that a communication complexity lower than O

(
n2
)

is unlikely
to be achievable, at least not without a completely different approach to the
problem.

4.2 Generalization of PSMT to Linear Combi-
nations of Errors and Eavesdropped Data

We discuss in this subsection a generalization of Perfectly Secure Message
Transmission issued from Network Coding. We begin by examining PSMT
from a slightly more abstract point of view: if we forget about the n channels
connecting Alice and Bob and only look at the input and output of the involved
parties, we can see PSMT as a scenario where Alice and Bob send vectors of
length n to each other, and where an adversary Eve controls a subset A ⊆
{1, . . . , n} of t coordinates, meaning that every time a string x is transmitted,
she acquires xi for i ∈ A and she can replace xi with a symbol of her choice.

The scenario we consider now gives greater power to Eve, as she can eavesdrop
linear combinations of the transmitted symbols and inject linear combinations
of errors from a set of her choice. The formal definition is as follows:
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Definition 4.2.1 (Generalized Model). The protocol is specified by posi-
tive integers m,n, t, r and a finite field Fq. The protocol involves two users,
Alice and Bob, and an adversary Eve, who chooses t “eavesdropping vectors”
λ(1), . . . ,λ(t) ∈ Fnq and t “tampering vectors” µ(1), . . . ,µ(t) ∈ Fnq .

Alice and Bob can send to each other vectors x = (x1, . . . ,xn) where xi ∈ Fmq ;
whenever x = (x1, . . . ,xn) is transmitted (either from Alice to Bob or from
Bob to Alice), the following happens:

• Eve learns the value of

λ(i)xT = λ
(i)
1 x1 + · · ·+ λ(i)

n xn

for every i = 1, . . . , t.

• Eve selects t columns vectors ∆(1), . . . ,∆(t) ∈ Fmq , depending on all the
data she acquired so far; the intended receiver gets the message y = x+e,
where

e =

t∑
i=1

∆(i) ⊗ µ(i) =

t∑
i=1

(
∆(i)µ

(i)
1 , . . . ,∆(i)µ(i)

n

)
.

We assume that Alice holds secret messages s(1), . . . , s(`) ∈ Fmq ; a protocol that
specifies which vectors Alice and Bob should communicate with each other is
deemed secure if the following two properties are satisfied for any choice of
secrets and of eavesdropping and tampering vectors:

• Privacy: the data eavesdropped by Eve has a distribution which does not
depend on the secrets s(1), . . . , s(`).

• Reliability: Bob is always able to recover s(1), . . . , s(`) from the data he
sent and received.

Notice that standard PSMT can be seen as a more restrictive version of this
model, where Eve is forced to choose vectors λ and µ of weight 1, and where
moreover λ(i) = µ(i) for every i.

The following subsections are organized as follows. First, we show in Sec-
tion 4.2.1 that the generalization of Definition 4.2.1 is not gratuitous, since
such a setting models interaction in Secure Network Coding scenarios; we thus
give an overview of the topic and see discuss what the the state-of-the art
protocols achieve.
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We then contribute to the topic in two ways. First, we show in Section 4.2.2
that Protocol 4.1.1 can be adapted to provide security in the setting of Defi-
nition 4.2.1; more precisely, the only relevant modification we have to perform
is the following: instead of classical codes, which can correct from errors with
bounded Hamming weight, we use rank codes which can correct from errors
with bounded rank; notice that such are the errors introduced by the adversary
in Definition 4.2.1.

Then, in Section 4.2.3 we detail a three-round protocol that also works in a set-
ting with multiple receivers (i.e., multiple “Bobs”); again, we make extensive
use of the coding-theoretic techniques for PSMT presented in Section 4.1.

4.2.1 Motivation: Secure Network Coding

We discuss in this section the notion of Secure Network Coding, and show how
it can be modeled by Definition 4.2.1.

A network is a directed, acyclic and connected multigraph G with source nodes
(having in-degree 0) and destination nodes (with out-degree 0); for simplicity,
we will only consider networks with a single source node. The connectivity (or
min cut) C of a network G is defined as the minimum number of edges whose
removal disconnects the source node from the destination nodes.

A network can be used to transmit information from the source to the desti-
nation nodes: in Network Routing, this is done by simply allowing each node
to read the data received via the incoming edges and send it via the outbound
edges (the source node will simply produce and send data). In contrast to this
approach, (Linear) Network Coding allows nodes to perform operations on the
received data, and to send the results over the outbound edges.

More precisely, the source node will produce messages x := (x1, · · · ,xn), where
each xi belongs to the alphabet Fmq for a finite field Fq; elements of Fmq are
called packets. Each node will compute linear combinations over Fq of the
packets received via the input edges (or of the inputs xi in the case of the source
node) and send the results on the outbound edges; these linear combinations
form the network code. We assume that the code is feasible, i.e. that each
destination node can compute x as a linear function of the received packets.

It is well-known that a feasible network code for G exists if q is sufficiently
large and n ≤ C (where C denotes the connectivity of the network), while no
feasible network code exists if n > C [2, 47, 43].

Secure Network Coding adds an adversarial component to this setting: for
the sake of clarity, assume that the source node is controlled by a sender (who
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decides which message x the node will produce) and that each destination node
is controlled by a receiver, that can read the data received by the node. A first
adversarial model for this situation was introduced by Cai and Yeung [10],
where an adversary Eve can eavesdrop on t edges of the network (see also [30]
and [29]); subsequently, Silva and Kschischang [63] introduce a more general
adversarial model, where the adversary Eve gains full control of t edges of her
choice, meaning she can read the symbols transmitted over these edges and
replace them by symbols of her choice.

In case there is a single receiver, we can identify the sender with Alice and the
receiver with Bob. It is then readily seen that the communication from Alice
to Bob is affected by the adversary precisely as in Definition 4.2.1: each edge

i under Eve’s control carries a linear combination λ
(i)
1 x1 + · · ·+ λ

(i)
n xn of the

input packets x1, . . . ,xn, where the coefficients λ
(i)
j depend on the network

code; similarly, any error ∆(i) that Eve injects in edge i propagate to the
networks, so that eventually the output value would be affected by a linear

combination
∑t
i=1 ∆(i) ⊗ µ(i) of the errors, where again the coefficients µ

(i)
j

depend on the network code. As a worst-case scenario, we may assume that
Eve is free to select which subset of edges to control; this is modeled by letting
her choose the eavesdropping and tampering vectors in Definition 4.2.1.

Furthermore, if the network also allows for communication from the receiver
to the sender, then the adversary again affects the communication as in Defi-
nition 4.2.1. One has to be careful, however, since our generalized adversary is
“symmetric”, i.e. his eavesdropping and tampering vectors do not change for
the communication from Alice to Bob and from Bob to Alice; this is not neces-
sarily the case for a Network-Coding scenario. Nevertheless, the protocols we
present actually do not require this symmetry of the adversarial powers, and
can thus be used to provide security in a Network-Coding scenario, as long as
communication is also possible from the receiver to the sender.

Hence the protocols that we present in the following sections provide the fol-
lowing contribution to Secure Network Coding:

• the generalization of Protocol 4.1.1 can be used to provide security for a
Network Coding scenario with a single receiver, as long as communica-
tion is also possible from the receiver to the sender; notice that though
Network Coding was originally introduced in a multicast scenario [2, 47],
it has since been proved useful in single sender – single receiver scenarios
as well [48, 70].

• the three-round protocol we present also works in a multicast scenario.

We stress the fact that just as the most recent works on Secure Network
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Coding [63], both our protocols are universal, namely they are defined and
secure regardless of the network code.

We remark that Jaggi et al. [42] studied a similar case, where the adversary
controls vertices instead of edges of the network; their protocol lets the ad-
versary inject up to n/2 errors, but with a weaker notion of security in that
it must drop the privacy requirement and the reconstruction process admits a
positive error probability.

How feedback improves security. Until very recently, existing work on
Secure Network Coding assumes that information can only flow from sender to
receiver. Notably, the work of Silva and Kschischang [63] presents a one-round
protocol that is secure as long as t < n/3; this is in fact optimal if no feedback
is allowed.

On the other hand, both our protocols are secure for any t < n/2, thanks
to the possibility to convey data in both senses. Notice that two-ways com-
munication has strengthened resistance against the adversary also in alter-
native information-theoretic scenarios, such as PSMT (which we covered in
Section 4.1) and Secret Key Agreement [52] (where the sender and a single
receiver communicate over a noisy channel in the presence of a wiretapper).

We give here some intuition on how two-ways communication strengthens resis-
tance in our case. A common approach for communication in Secure Network
Coding is to use rank-metric codes, a variant of block codes that can correct
from errors of limited rank; the properties of rank-metric codes mirrors those
of classical codes: for instance, we can speak of minimum distance d, a code
can be corrected from errors of rank at most b(d − 1)/2c, and the Singleton
bound still holds.

Assume that communication is only possible from the sender to the receivers,
and assume that a codeword x ∈ C is sent by the sender to the receivers, for a
given (rank-metric) code C. Then to ensure that the receivers can recover x,
C must have minimum rank-distance at least 2t + 1; furthermore, to prevent
Eve from recovering x, C must have dimension at least t+ 1. Thus dmin(C) +
dim(C) ≥ 3t+ 2; by the Singleton bound, we thus obtain 3t < n.

Now if feedback is allowed, the situation improves: the feedback information
can contain critical information on the errors introduced by the adversary
(namely, the pseudo-basis of the received values); this basically allows us to
recover the support of the errors and hence only requires the code C to have
minimum distance at least t + 1 for correction. We thus obtain security for
any t < n/2.
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4.2.2 The Two-Round Protocol

We present in this section a secure two-round protocol in the setting of Defi-
nition 4.2.1; as we have discussed above, this is achieved by simply adapting
Protocol 4.1.1 to a rank-metric setting. We start by adapting the machinery
needed for Protocol 4.1.1:

Rank-Metric Codes for Communication. We discuss here a special type
of codes, defined under the rank metric [24], [31]. These have been extensively
used in Secure Network Coding [62], [63].

Definition 4.2.2 (Rank-Metric Code). Let m,n be positive integers, and
let q be a prime power. Given the Fq-linear space Fm×nq , we can define the
rank distance between its elements by letting dR(x,y) := rank(y − x).

A rank-metric code C is a non-empty subset of Fm×nq with induced rank dis-
tance; by identifying the field Fqm with Fmq , we can view C as a code over Fnqm ,
and require it to be linear over Fqm ; we can hence speak of block length and
dimension of such a code (as in the Hamming case) and of minimum (rank)
distance, and combine these parameters into the triplet [n, k, d]qm .

Just as the Hamming case, we have that a rank-metric code of minimum
distance d can correct from errors of rank-weight at most b(d− 1)/2c.

The equivalent concept of MDS in this setting is called Maximum Rank-
Distance: a rank-metric code is Maximum Rank-Distance (or MRD for short)
if k+ d = n+ 1; an MRD code of arbitrary dimension k and length n exists if
and only if m ≥ n [24]. More precisely, for any q and any m,n, k with m ≥ n,
we can construct a Gabidulin code [31] of parameters [n, k, n− k + 1]qm .

As in the Hamming case, we can express a rank-metric code C in term of a
parity-check matrix H, i.e.

C =
{
x ∈ Fnqm : HxT = 0

}
.

Furthermore, we can define the associated syndrome map σ : w 7→ HwT ;
clearly, we have that C = ker(σ).

We will use the following fundamental property to transition between Ham-
ming and rank-metric codes for communication:

Proposition 4.2.1 ([62]). Let C be a MRD code of parameters [n, k, . . . ] over
Fqm ; let H be a parity-check matrix of C (so that H is an (n − k)-by-n ma-
trix with coefficients over Fqm) and let B be a full-rank k-by-n matrix with
coefficients over Fq. Then the square matrix
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(
H
B

)
is nonsingular over Fqm .

As a first building block, we construct a rank-metric equivalent of Lemma 4.1.1:
we show how to define a rank-metric code C and a vector h such that the adver-
sary has no information of the value of hxT if a random x ∈ C is transmitted
between Alice and Bob. Here the key point is that the vector h has entries in
Fqm rather than in Fq.

Lemma 4.2.2. For any prime power q and any positive integers n, m ≥ n+1
and t < n there exists an MRD code C of parameters [n, t+ 1, n− t]qm and a
vector h ∈ Fnqm such that the following holds for any t eavesdropping vectors

λ(1), · · · ,λ(t) ∈ Fnq :

if x ∈$ C is uniformly distributed, then hxT is uniformly distributed over Fmq
and is independent of λ(1)xT , . . . ,λ(t)xT .

This means that if a random x ∈ C is transmitted from Alice to Bob or vice
versa, then hxT is uniformly distributed and independent of Eve’s eavesdropped
data.

Proof. We construct C and h by adapting the blueprint of Lemma 4.1.1 to
the rank-metric setting: hence we first let C′ be an MRD code of parameters
[n+ 1, t+ 1, n− t+ 1], and let C be the code obtained by puncturing C′ at the
first coordinate, i.e.

C :=
{
x ∈ Fnqm : ∃x ∈ Fqm with (x,x) ∈ C′

}
Again, since puncturing can decrease the minimum rank distance by at most
1, C is MRD of parameters [n, t+ 1, n− t] as requested.

We then define h by selecting a parity-check matrix H′ of C′, and choosing a
row thereof of the form

(1,h) ∈ Fn+1
qm with h ∈ Fnqm .

Notice that such a row exists (up to multiplying H′ with a non-zero scalar of
Fqm) since C′ has minimum distance n − t + 1 > 1. Now assuming without
loss of generality that the vectors λ(1), . . . ,λ(t) are Fq-linearly independent,
we then have that the square matrix
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M :=


H′

0 λ(1)

...
...

0 λ(t)

−1 0


is non-singular thanks to Proposition 4.2.1. This means that for any b ∈ Ftqm
and any s ∈ Fqm , there exists a unique x̂ ∈ C with λ(1)xT = b1, . . . ,λ

(t)xT =
bt and h · xT = s.

In other words, we have that

p


 λ(1)

...
λ(t)

 · xT = b, hxT = s

 = 1/|C| for any b and s .

By using the law of total probability, it is thus easily seen that the claim holds.

In a symmetric fashion, we now present a rank-metric version of the broadcast
protocol, hence allowing for reliable communication of messages, although with
no guarantee of privacy.

Lemma 4.2.3. Given any prime power q and positive integers n,m, t with
n ≤ m and n ≥ 2t + 1, let CBCAST be an MRD code of parameters [n, 1, n]qm .
Then if an arbitrary x ∈ CBCAST is transmitted between the players, the receiver
can always recover x from the received message y by computing the closest
codeword to y.

Proof. By Definition 4.2.1, the receiver obtains a message y with y = x + e,
where the error e introduced by Eve is of rank at most t. Hence the original
codeword x can be recovered since CBCAST has rank-distance n ≥ 2t+ 1.

Syndrome-spanning subsets. We show that the machinery of the pseudo-
basis, or syndrome-spanning subset, can be adapted to the rank-metric case;
we begin with the equivalent of Lemma 4.1.3:

Lemma 4.2.4. Let C be a rank-metric code of parameters [n, k, d]qm ; let H be
a parity-check matrix of C, and let W ≤ Fnqm be an Fqm-linear subspace with
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the property that each w ∈ W is of rank at most d − 1 over Fq. Then the
syndrome map σ : w 7→ HwT is injective on W .

Proof. Assume that σ(w) = 0 for some w in W . By definition, we then have
that w belongs to C; hence since C has minimum rank-distance d and since w
has rank at most d− 1 by assumption, we have that w = 0.

This means that ker
(
σ|W

)
= {0}, so that σ|W is injective.

We then show how the concept of pseudo-basis and its main property can be
transposed to the rank-metric case; for the rest of this section, we assume that
a rank-metric code C of parameters [n, k, d]qm has been chosen, together with
a parity-check matrix H and associated syndrome map σ.

Definition 4.2.3. Let Y be a set of matrices of Fm×nq ; a pseudo-basis of Y is
a subset W ⊆ Y such that σ(W) is a basis of the syndrome subspace 〈σ(Y)〉.

Notice that a pseudo-basis has cardinality at most n − k, and that it can be
computed in time polynomial in n.

Proposition 4.2.5. Let r be a positive integer, and let C be a linear rank-
metric code of parameters [n, k, d]qm , and let X , E, Y be three subsets:

• X :=
{
x(1), . . . ,x(r)

}
a set of codewords of C,

• E :=
{
e(1), . . . , e(r)

}
a set of error matrices such that rank(e) ≤ d − 1

for all e ∈ 〈E〉Fqm ,

• Y :=
{
y(1), . . . ,y(r)

}
⊆ (Fmq )n with y(j) = x(j) + e(j) for every j.

Then, given knowledge of X and a pseudo-basis of Y, we have that e(j) can be
computed from its syndrome σ(e(j)) for any 1 ≤ j ≤ r.

Proof. The hypothesis on the rank of the elements of 〈E〉 implies that 〈E〉
satisfies the hypothesis of Lemma 4.2.4 and the syndrome function is therefore
injective on 〈E〉. Given the pseudo-basis

{
y(i) : i ∈ I

}
, we can decompose any

syndrome σ(e(j)) as

σ(e(j)) =
∑
i∈I

λiσ(y(i)) =
∑
i∈I

λiσ(e(i))

= σ

(∑
i∈I

λie
(i)

)
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which yields

e(j) =
∑
i∈I

λie
(i) =

∑
i∈I

λi

(
y(i) − x(i)

)
by injectivity of σ on E.

The Protocol. We define a two-round protocol for private and reliable com-
munication in the setting of Definition 4.2.1, obtained by adapting Proto-
col 4.1.1 to the rank-metric case.

Protocol 4.2.1. The protocol works in two rounds, and allows Alice to
communicate ` secret elements s(1), · · · , s(`) of Fmq to Bob; we assume that
m > n and that t < n/2, where t denotes the number of eavesdropping
and tampering vectors of the adversary.

The protocol uses a pair (C,h) as in Lemma 4.2.2 for private com-
munication, and an MRD code CBCAST for reliable communication as in
Lemma 4.2.3.

• Round 1: Bob chooses t+` uniformly random and independent code-
words x(1), . . . ,x(t+`) of C and communicates them to Alice.

• Round 2: Alice receives the corrupted versions y(1) = x(1) +
e(1), . . . ,y(t+`) = x(t+`) +e(t+`); she then proceeds with the following
actions:

(i) She computes a pseudo-basis
{
y(i) : i ∈ I

}
for I ⊂ {1, . . . , t+`}

of the received values, and uses CBCAST to reliably communicate
to Bob

(
i,y(i) : i ∈ I

)
.

(ii) She then considers the first ` words that do not belong to
the pseudo-basis; to ease the notation, we will re-name them
y(1), . . . ,y(`). For each secret s(j) to be communicated she
broadcasts to Bob the following two elements:

- H
(
y(j)

)T
, the syndrome of y(j);

- s(j) + h
(
y(j)

)T
.

Proposition 4.2.5 guarantees that for any j, 1 ≤ j ≤ `, Bob can compute
the error vector e(j) and hence reconstruct y(j) = x(j) + e(j) from his

knowledge of x(j). He can therefore open the mask h
(
y(j)

)T
and obtain

the secret s(j).
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Thanks to the generalization of the machinery of PSMT described above, the
security of Protocol 4.2.1 can be easily proved by adapting the proof of Propo-
sition 4.1.5. We thus obtain the following proposition:

Proposition 4.2.6. Protocol 4.2.1 allows for private and reliable communi-
cation of ` elements of Fmq in the setting of Definition 4.2.1.

We now analyze the complexity of Protocol 4.2.1. First notice that its com-
putational cost is clearly polynomial in n,m and q; we thus focus on the
communication cost:

Communication complexity: we can set ` := 1; furthermore, since MRD codes
exist for any q and any m > n, we can assume that q = 2 and m = O(n).

• Round 1 requires transmitting t + 1 codewords over the channels, thus
requiring a total of O

(
n3
)

bits to be transmitted.

• Round 2-(i) requires broadcasting up to t vectors of (Fmq )n, thus giving

a total of O
(
n4
)

bits to be transmitted.

• Finally, Round 2-(ii) requires broadcasting a total of t+1 elements of Fmq
(a size-t syndrome and the masked secret), thus giving a total of O

(
n3
)

bits to be transmitted.

We thus obtain a total communication complexity of

O
(
n4
)

bits to be transmitted to communicate a single-bit secret.

Tranfer rate: optimal rate is achieved for ` = Ω (n).

• Round 1 requires transmitting t+` codewords, for a total of O
(
n2 + n`

)
elements of Fmq .

• Round 2-(i) remains unchanged from the single-bit case, and requires
transmitting O

(
n3
)

elements of Fmq .

• Finally, Round 2-(ii) requires broadcasting a total of `(t+ 1) elements of
Fmq (` size-t syndromes and the masked secrets), thus giving a total of

O
(
n2`
)

elements of Fmq ;

To sum up, the overall transmission rate is equal to

O
(
n2 + n`+ n3 + n2`

)
`

= O
(
n2
)
.
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4.2.3 The Three-Round Protocol

We discuss here a three-round protocol that provides security in a setting
where a sender communicates with several receivers, and where an adversary
can affect each of these communications as in Definition 4.2.1. We assume
that Eve chooses the same eavesdropping vectors for each receivers, while the
tampering vectors may change for each of them; this setting models a network-
coding scenario with a single sender and several receivers.

We make use of the same core constructions of the previous section: rank-
metric codes and pseudo-basis; the protocol works in three phases: a first
communication round from sender to receivers, a feedback step, and a final
communication phase.

Protocol 4.2.2. The protocol works in three rounds, and allows the
sender to communicate ` secret elements s(1), · · · , s(`) of Fmq to r receivers.
The protocol uses a pair (C,h) where C is an MRD code of parameters
[n, t+ 1, n− t]qm and h is a vector of Fnqm as in Lemma 4.2.2. An MRD
code CBCAST of parameters [n, 1, n] is also taken as input to perform broad-
cast.

• Round 1: The sender chooses `+ rt uniformly random and indepen-
dent codewords x(1), · · · ,x(`+rt) of C and communicates them to the
receivers.

• Round 2: Each receiver obtains the corrupted versions y(1) =
x(1) + e(1), · · · ,y(`+rt) = x(`+rt) + e(`+rt) (where the errors may
depend on the receiver); each receiver then computes a syndrome-
spanning subset

{
y(i) : i ∈ I

}
of the received vectors and communi-

cates
(
I, {i,y(i)} : i ∈ I

)
to the sender via broadcast.

• Round 3: For each receiver, the sender computes the basis of the
error space given by

{
e(i) = y(i) − x(i) : i ∈ I

}
and broadcasts it to

the receivers (again, bases for different receivers may be different).

The sender then consider the first ` words that do not belong to any
basis; to ease the notation, we will re-name them x(1), · · · ,x(`). For
each secret s(i) to be communicated he broadcasts to the receivers the
element s(i) + h

(
x(i)
)T

.

At this point, each receiver can use the basis of the error space to recover
the codewords x(1), · · · ,x(`), which in turn he can use to recover the ele-

ments h
(
x(1)

)T
, · · · ,h

(
x(`)

)T
; he can hence compute the masks that have

been broadcast and recover the secrets.
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Proposition 4.2.7. Protocol 4.2.2 allows for secure communication of ` ele-
ments of Fmq against an adversary as described in Definition 4.2.1.

Proof. First notice that the protocol is well-defined since each syndrome-
spanning subset has cardinality at most t: hence there are at least ` codewords
outside all syndrome-spanning subsets since the total number of the codewords
is `+ rt.

We can now prove the privacy and reliability of the protocol:

• Privacy: the data acquired by the adversary is the following:

I. λ(i)
(
x(1)

)T
, . . . ,λ(i)

(
x(`+rt)

)T
for any i = 1, . . . , t;

II.
(
y(i) : i ∈ I

)
, the pseudo-basis (for each receiver);

III.
(
e(i) : i ∈ I

)
, the corresponding basis of the error space (for each

receiver);

IV. s(1) + h
(
x(j1)

)T
, . . . , s(`) + h

(
x(j`)

)T
where the indexes ji mark

elements outside any pseudo-basis.

Now thanks to the discussion in Section 4.2.2, privacy can be demon-
strated by adapting the proof of Proposition 4.1.5.

• Reliability: since the second and third round of communication are per-
formed via broadcast, we have that the syndrome-spanning subsets, the
bases of the error spaces and the masked values are correctly received;
now each receiver can use the knowledge of a basis of the error space
to decode from errors of rank-weight d − 1 = t for codewords of C
(cf. Lemma 4.2.4. He can thus recover the codewords x(1), · · · ,x(`) as

requested, and in turn the elements h ·
(
x(1)

)T
, · · · ,h ·

(
x(`)

)T
which

mask as one-time pads the secret elements.

The computational cost of Protocol 4.2.2 is easily seen to be polynomial in n,m
and q for the sender and for all receivers; furthermore, the protocol requires
transmitting O

(
n`+ n2rt

)
elements of Fmq to communicate ` secret elements

of Fq. This means that the communication complexity is equal to O
(
n4r
)

bits
and that the transfer rate is equal to O (n).
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Unicast and Multicast. We conclude this chapter by discussing how suit-
able our protocols are for multicast.

Protocol 4.2.1 has been presented in a unicast scenario, i.e. where a single
receiver Bob is present. It would be possible to adapt it to a multicast scenario,
but as far as we can see such a generalization would have little justification.

Indeed, assume that a sender is connected to r receivers in a network-coding
situation, where an adversary controls t wires of the network; as discussed in
Section 4.2.1, the communication between the sender and each receiver is then
modeled by Definition 4.2.1, assuming that the connectivity C of the network
is at least n. Under this assumption, by Menger’s theorem each destination
node is connected by n disjoint paths to the source node [8]; hence we could
achieve secure and reliable communication by simply executing a Perfectly
Secure Message Transmission protocol for each receiver.

The point is that this straightforward approach would be (roughly) as efficient
as adapting Protocol 4.2.1; hence in such a general scenario, there seems to be
little justification to perform such an adaptation.

Conversely, we have presented Protocol 4.2.2 (the three-round one) in a multi-
cast scenario. This is because Protocol 4.2.2 actually outperforms the straight-
forward approach sketched above: indeed, with this approach a Perfectly Se-
cure Message Transmission protocol is executed for each receiver. Now for
an arbitrary network these executions cannot be done in parallel, since the
connection paths could overlap. This implies that such a scheme, relying on
the best known PSMT protocol, would be r times more expensive than Pro-
tocol 4.2.2 for a growing secret message size, where r denotes the number of
receivers; recall in fact that Protocol 4.2.2 has a transfer rate of O(n), inde-
pendent of r. In fact, given the lower bounds on the complexity of PSMT [68],
for r > 2 our protocol has smaller complexity than anything that can possibly
be achieved with routing and PSMT.

In short, our three-step protocol preserves the fundamental property of net-
work coding: complexity does not depend on the number of receivers.
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Chapter 5

Improvements to the SPDZ
Multi-Party Computation
Protocol

This chapter is devoted to Secure Multi-Party Computation, or MPC for short,
a scenario where several users wish to jointly evaluate a function on some input
values without giving away the privacy of these inputs.

More specifically, we focus on the so-called “SPDZ” protocol by Damg̊ard et
al., named after the last names of its authors; our contribution is based on our
article [65] with Serge Fehr. The chapter is organized as follows: Section 5.1
provides an introduction on Secure Multi-Party Computation and the SPDZ
protocol, and summarizes our contribution to the topic; Section 5.2 gives an
overview of the SPDZ protocol, highlighting the problem of the non-identifiable
abort. Finally, Section 5.3 presents our protocol, which enhances the original
SPDZ with dishonest players detection.

5.1 An Introduction to Secure Multi-Party Com-
putation
and the SPDZ Protocol

MPC, introduced by Yao [73] in 1982, assumes that several parties P1, . . . , Pn,
usually referred to as players, hold private inputs x1, . . . , xn respectively; it is
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further assumed that an adversary gains control of some of the players (who
are then called corrupted). The adversary can be passive, meaning that he
only reads the data acquired by corrupted parties, or active, meaning that he
can decide the actions of corrupted players.

Informally stated, the players aim at computing the value ϕ(x1, . . . , xn) of a
function ϕ on their inputs, while guaranteeing the correctness of the output
and while keeping their inputs private. If we imagine that players can appeal
to a trusted mediator, then the problem can be easily solved: players would
simply send their inputs to the mediator via secure channels, the mediator
would compute the value of ϕ(x1, . . . , xn) and communicate it back to all the
players. The goal of an MPC protocol is to allows players to achieve the same
outcome without any external mediator.

Whether MPC is possible or not depends on several parameters and on the
exact security requirements of the protocol: for instance, relevant factors are
the number of corrupted players, their cheating capabilities (whether they can
deviate from the instructions of the protocol or not), their computing power,
and the communication model.

Since the initial theoretical possibility results for MPC in the late eighties [73,
32, 6, 13], much effort has been put into reducing the communication and
computation complexity of MPC, an important issue for the topic. We are
now at a stage where MPC is at the verge of being practical.

One of the currently known protocols that is (close to) efficient enough for
practical deployment is the so-called SPDZ protocol by Damg̊ard et al. [23],
and its variations from [22]. The efficiency of the SPDZ protocol is due to
a clever mix of cryptographic operations, which can mostly be pushed into a
preprocessing phase, and very efficient information-theoretic techniques.1

The SPDZ MPC protocol offers security against a dishonest majority, i.e.,
there is no bound on the number of corrupted players the protocol can tol-
erate: even if all but one of the players are corrupt, that one single party is
still protected, meaning that his input will remain private and that he will
not be lead to accept a false output. A downside of such protocols with secu-
rity against a dishonest majority is that they are inherently susceptible to a
“denial-of-service” attack: even one single dishonest party can enforce the pro-
tocol to fail, meaning that the honest parties have to abort the computation
without learning the outcome, whereas the cheating party may actually learn
it. Furthermore, the SPDZ MPC protocol is such that the cheating party who
launches the attack remains covert: the (honest) parties know that there is a
cheater among them that caused the protocol to fail, but they have no way to

1See Section 5.2.1 for a brief discussion over information-theoretic and computational
security.
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identify the culprit. As such, a single party can prevent the SPDZ protocol
from doing its job.

Identifiable vs Non-identifiable Abort. We feel that such an non-identifiable
abort, where the honest parties cannot identify the cheating party that caused
the abort, is a drawback for practical deployment. In real-life scenarios, there
are many reasons for why a party may be tempted to enforce the protocol to
fail: he may know or suspect that he is not going to like the outcome, he may
gain an advantage by learning the outcome but preventing the others from
learning it, he may want to sabotage the computation out of malevolence, etc.
And of course, if that party does not have to fear any consequence because
he knows that he will not be caught, there is little incentive for him not to
cheat. Furthermore, once a non-identifiable abort does take place, the affected
honest parties are stuck – there is nothing they can do: they cannot call any-
one to account, and re-trying the computation is (almost) useless, because the
cheating party can just re-do the attack.

In contrast to this is the concept of identifiable abort, where it is required
that, as a consequence of launching a denial-of-service attack, the cheating
party will be identified as being the culprit. Obviously, for a protocol that
offers identifiable abort, there is less incentive for a party to cheat and enforce
the protocol to fail, because he knows that he will be caught and have to
deal with the consequences. Furthermore, even if an abort does occur, the
affected honest parties have room for further actions: not only can they call the
cheating party to account, they can also re-do the computation with the culprit
excluded, and this way they can still obtain the outcome of the computation
eventually.2

We point out that non-identifiable abort is no issue in case of two-party com-
putation: if the protocol fails then it is clear to the honest party that the other
party must be cheating.

Our Contribution. We propose a new version of the SPDZ protocol that
supports identifiable abort: if the protocol aborts then at least one dishonest
party will be identified as having cheated. We emphasize that the challenge
lies in adding identifiability to SPDZ without increasing its complexity too
much; in particular, we want the protocol to run (almost) as fast as the original
version in case parties do not misbehave (too much). This is what our protocol
achieves.

2One has to be careful with this “solution” though: collaborating dishonest parties that
remained passive during the first run may now adjust their inputs, given that they have
learned the output from the first (failed) run.
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• In case no cheating takes place, i.e., all the players behave honesty, our
protocol is essentially as efficient as the original SPDZ protocol: namely,
it has an asymptotic communication complexity of O(n) point-to-point
communications per gate and an asymptotical computational cost of
O(n) field operations per gate.

We perform extra broadcasts compared to the original SPDZ protocol,
but since their number is independent of the circuit size, this can be
neglected for large enough circuits.

• In case cheating does take place, but to an extent that the protocol can
handle it and does not abort, our protocol is slower by a factor at most
2, hence still with an asymptotic complexity of O(n) per gate for both
communication and computation.

Again, the extra broadcasts can be neglected.

• In case cheating takes place and the protocol does abort (with identifica-
tion), we distinguish between the following two cases (which case occurs
depends on the kind of cheating):

– Identification with no agreement: Every honest player has identified
at least one player as a cheater, but there may not be agreement
among the honest players about the list of cheaters.3 In this case,
our protocol is slower still by a factor 2 only.

– Identification with agreement: There is common agreement among
the honest players about at least one player being a cheater. In
this case, our protocol may take substantially longer to identify the
cheater, namely in this case the number of cryptographic operations
to be performed grows with the size of the circuit.

Thus, the only case when our version is significantly slower than the original
SPDZ protocol is when a dishonest player cheats so bluntly that he is publicly
recognized as being a cheater. However, in many practical scenarios, there
seems to be little gain for a dishonest player in slowing down the protocol
at the cost of being publicly caught as a cheater, and thus having to face
the consequences. Therefore, in typical scenarios, our protocol is similarly
efficient as the original SPDZ protocol but, in contrast to the original version,
it discourages dishonest players from enforcing the protocol to abort.

Related Work. Cheater detection is achieved by early MPC protocols such
as [32], and by other protocols that are based on the paradigm that players

3But every player that is identified by an honest player to be a cheater is a cheater; thus,
this case can only occur if there is more than one cheater.
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prove in zero-knowledge that they followed the protocol instructions honestly.
However, the high communication complexity of these protocols make them
unsuitable for practical deployment.

On the other hand, recent MPC protocols (in a so-called offline/online model)
are designed to have very high efficiency, like the protocols from the SPDZ
family [23, 22], which feature a very attractive asymptotic communication
and computational complexity of O(n) per multiplication gate (for the online
phase). However, these protocols do not offer cheater detection. An earlier
protocol by Bendlin et al. [7] offers a very weak form of cheater detection:
namely, at least one honest player will identify a dishonest one, but other
honest players may have no clue on the identity of cheating parties; the protocol
has a computational complexity of O(n2) per multiplication gate.

The work by Ishai et al. [41] is the first to rigorously define and discuss the no-
tion of cheater detection (in the universal-composability model of Canetti [11]);
the article presents a general compiler that adds cheater detection to any semi-
honest MPC protocol in the preprocessing model.

A very recent protocol, due to Baum et al. [4], builds up on the Bendlin et
al. approach and achieves full cheater detection with a communication and
computational complexity of O(n2) per multiplication gate; this also improves
on the best protocol obtained by means of the techniques by Ishai et al.

The goal of our work is to develop a MPC protocol that is “strictly stronger”
than SPDZ, in that when not under attack it has the same running time than
SPDZ, and when under attack it either gives away cheaters or the protocol
can handle the attack and still has the same (asymptotic) running time than
SPDZ. This is achieved by our protocol, but is not achieved by any of the
above. Indeed, in case no severe cheating takes place, our protocol is at most a
factor 2 slower than SPDZ, hence achieving a communication and computation
complexity of O(n) per multiplication gate. If cheating does take place to
the extent that the protocol aborts, than either we obtain a weaker notion
of cheater detection (“identification with no agreement”) at the same cost,
or we obtain the same notion (“identification with agreement”), but with an
overhead in local computations.

5.2 The Standard SPDZ Protocol

We discuss in this section the original SPDZ protocol, thus providing the
starting point for our construction. We begin by recalling the notions of
information-theoretic and computational security (Section 5.2.1). In Section 5.2.2,
we then present the setting and goal of SPDZ, highlighting how it is divided
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into two phases; these are then discussed in the following two sections. Fi-
nally, Section 5.2.5 gives an idea on how the security of the second phase is
guaranteed, and highlights the problem of the non-identifiable abort.

5.2.1 A Brief Discussion on Information-Theoretic and
Computational Security

Before describing the details of the SPDZ protocol, we give discuss the two
notions that are needed to model its security.

All the previous chapter of this dissertation presented protocols with information-
theoretic security: namely, no assumptions are made on the computing power
of the adversary, neither in space (i.e., the adversary is allowed to have unlim-
ited memory) nor in time (i.e., he is allowed to run algorithms with arbitrary
long running time).

In practical scenarios, however, it is safe to assume that the adversary is lim-
ited, either in space, or in time, or in both; several cryptographic protocols are
secure only if this type of assumption is made (and under the postulate that
some computational problem is unfeasible to solve with limited space/time
computing power). We speak in this case of computational security.

In SPDZ, both these notions of security are found. However, computational
security is (almost) only found in the preprocessing phase; hence since our
focus is on the online phase, the informal definition of computational security
given above is sufficient for our purposes.

5.2.2 Setting and Goal of SPDZ.

The function to be computed. The SPDZ protocol involves n players
P1, . . . , Pn; each player Pi holds some inputs x(1), . . . , x(r), where each x(j) lies
in a finite field Fq and r depends on the player Pi.

The function to be evaluated at the input values is described in terms of an
arithmetic circuit C over Fq. An arithmetic circuit is a type of graph that
describes the behaviour of a function in a step-by-step manner, and it is given
by a finite, directed, acyclic and connected multigraph. The number of input
gates (i.e., of vertices with in-degree 0) of the graph is equal to the total number
of input values held by players; each of these gates is uniquely labeled with the
identifier of an input value. We assume for simplicity that there exists a single
output gate (with out-degree 0), and that its in-degree is equal to 1. Finally, all
other gates have in-degree either 1 (which are labeled with an element from Fq
and can either be addition-with-constant or multiplication-by-constant gates)
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or 2 (which can be sum or multiplication gates).

By simply following the topology of the circuit, we obtain a polynomial func-
tion of the inputs held by players: the starting point is given by the input gates.
Subsequently, sum and multiplication gates can be “evaluated” by adding or
multiplying the two inbound values, and sending the result via the outbound
edge to the following gate; multiplication-by-constant gates simply multiply
the inbound value with the given constant in Fq, and send the result to the
following gate.

Eventually, the output gate will yield the result of a computation, which is the
value of a polynomial function over Fq evaluated at the inputs held by players.

As hinted in Section 5.1, the goal of SPDZ is to allow players to evaluate the
circuit C on their inputs while keeping privacy: more precisely, any coalition
of up to n − 1 dishonest players should learn nothing about the input value
of the remaining player aside from what can be deduced from the outcome of
the computation; and no honest player should accept an incorrect output. We
speak of privacy and correctness; notice that we cannot achieve fairness, i.e.
we cannot guarantee that honest players will learn the correct output of the
computation.

We will further discuss security in Section 5.2.5; we now focus on further
detailing the SPDZ protocol.

The communication model. A critical point for our discussion is how the
communication between players is realized. More precisely, we assume that
players can communicate with each other via secure point-to-point channels
and via broadcast.

(Secure) point-to-point channels allow each player Pi to communicate with
any other player Pj with perfect reliability and privacy, meaning that Pj will
always correctly receive any message sent by Pi, while any other player will
have no information on these messages.

Broadcast, on the other hand, allows each player Pi to communicate a message
to all other players with perfect privacy and with consistency, meaning that
all players will receive the same message. A player that broadcasts a value is
modeled by an interactive algorithm Alg with the property that its output is
the same for all players. The key point, of course, is that dishonest players
are bound as well by the consistency property of broadcast: namely, we model
dishonest players by replacing Alg with an arbitrary algorithm Alg′, subject
nevertheless to the property that the output of Alg′ is the same for all players.

From a practical point of view, constructing a broadcast protocol from point-
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to-point channels is expensive. For this reason, when computing the complex-
ity of our protocol we keep a separate counter for point-to-point communication
and for broadcasts, assuming that the latter will be more expensive. Notice
anyway that providing a concrete instantiation of a broadcast protocol would
be beyond the scope of this dissertation.

The commitment scheme. This technique is used to solve the following
problem: assume that at a given point of the protocol, each player Pi has to
reveal a value zi that he holds; if this is simply done in turns, a malicious
player could then “adjust” zi depending on the previously revealed values.
This may happen, for instance, when players want to reconstruct a shared
value [z]: a malicious player could announce a suitably chosen false share so
that the players will reconstruct a value z̃ of his choice.

A commitment scheme is an interactive protocol that allows players to solve
this problem; we give here an informal definition of the variant we are in-
terested in. Such a scheme allows each player Pi to produce a commitment
Commit(zi) to a value zi that he holds; later on, he can be asked to publicly open
this commitment. The binding property of the scheme means that Commit(z)
can never open to z′ for z′ 6= z, while the hiding property means that it is
computationally unfeasible to obtain any information on z from Commit(z).

Thus in a situation when each player Pi has to reveal a value zi, we can ask for
each player in turn to broadcast a commitment Commit(zi), and then require
all players to open their commitments. Thus players cannot adjust their value
of zi depending on the previously announced values.

We will see in Section 5.2.3 how the original SPDZ protocol is endowed with
a commitment scheme.

The main ingredient: additive sharings. Following a standard paradigm
for MPC over arithmetic circuits [5], SPDZ requires players to share their input
values; each gate is then processed on the shares, and finally the shares of the
output are reconstructed at the end of the circuit. We start by detailing the
formulation of this sharing, before describing in more details how SPDZ works.

• A [·]-sharing of a value z ∈ Fq is an additive sharing of z, meaning that
each player Pi holds a random share zi ∈ Fq subject to

∑
i zi = z. This

is denoted by [z] = (z1, · · · , zn).

Furthermore, to ensure correctness, every shared value is accompanied by a
sharing of an authentication tag for the shared value; this is formalized as
follows:
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• For an arbitrary but fixed α ∈ Fq, a 〈·〉α-sharing of z consists of [·]-
sharings of z and of α ·z, i.e., 〈z〉α =

(
[z], [α ·z]

)
. The element α is called

the global key, and αz is called the tag of z and usually denoted by γ(z).
If α is clear from the context, we may write 〈·〉 instead of 〈·〉α.

We say that a sharing [z] or a sharing 〈z〉α =
(
[z], [γ(z)]

)
is privately opened

to a player Pi if each player Pj sends his share zj to Pi via a point-to-point
channel and Pi computes z :=

∑
j zj . We say that a sharing is publicly opened

if it is privately opened to a designated “king player” Pk, and then Pk sends
the reconstructed value z to all the players via point-to-point channels.4

Note that (for a fixed global key α) a 〈·〉α-sharing is linear, in the sense that
linear combinations can be computed on the shares:

〈z + w〉 = 〈z〉+ 〈w〉 :=
(
[zi + wi]i=1,··· ,n, [γ(z)i + γ(w)i]i=1,··· ,n

)
〈λz〉 = λ · 〈z〉 :=

(
[λzi]i=1,··· ,n, [λγ(z)i]i=1,··· ,n

)
.

Furthermore, if α is [·]-shared then the same holds for addition with a constant:

〈λ+ z〉 = λ+ 〈z〉 :=
(
[λ+ z1, z2, · · · , zn], [λα1 + γ(z)1, · · · , λαn + γ(z)n]

)
.

Finally, a triple
(
〈a〉α, 〈b〉α, 〈c〉α

)
is called a multiplication triple if it consists

of three 〈·〉α-shared random values a, b, c subject to ab = c.

SPDZ is divided into a offline (or pre-processing) phase, and an online phase.
The idea is to push most of the (somewhat) expensive cryptographic tech-
niques into the offline phase (which can be executed before the inputs to the
computation – or even the actual computation – are known), and rely mainly
on very efficient information-theoretic techniques in the online phase. We de-
scribe these two phases in the following sections.

5.2.3 The Pre-Processing Phase

The Pre-processing phase produces the following shared randomness:

• a [·]-sharing [α] of a random and unknown global key α,

• a list of 〈·〉α-sharings 〈r〉α of random and unknown values r, and

4We emphasize that, by definition, these private and public openings do not involve any
checking of the correctness of z by means of its tag; this will have to be done on top.
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• a list of multiplication triples
(
〈a〉α, 〈b〉α, 〈c〉α

)
with random and un-

known a, b, c = ab.

Concretely, these elements are produced via a (somewhat) additive- and (some-
what) multiplicative-homomorphic encryption scheme Enc; formally defining
Enc and its properties would be beyond the scope of this thesis, but we discuss
here some properties which are relevant for our construction. Enc takes as in-
put a “plaintext” value z and some randomness ρz, and produces a cyphertext
ez = Enc(z, ρz). The key point is that if even though Enc is injective on its
first coordinate (i.e. Enc(z, ρz) 6= Enc(z′, ρ′z) as long as z 6= z′), the value of a
cyphertext ez yields no information on the plaintext z for a computationally-
bounded party. This has the following two consequences:

• Enc can be used as a commitment scheme (cf. the previous section): in-
deed, each player Pi can compute a commitment on some value zi that he
holds by selecting a uniformly random ρzi and then setting Commit(zi) :=
Enc(zi, ρzi); opening this commitment requires Pi to broadcast both zi
and ρzi , so that players can check that indeed Commit(zi) = Enc(zi, ρzi).

Notice that the binding property of the scheme follows from the fact that
Enc is injective on its first coordinate, while he hiding property follows
from the the fact that Enc is an encryption function.

• As a sort of “side product” of the generation of the above sharings with
the help of Enc, the following is given at the end of the offline phase
for every [·]-sharing [z] = (z1, . . . , zn) that occurs as (first or second)
component of a 〈·〉α-sharing (as well as for the [·]-sharing [α]).

The commitment ezi := Enc(zi, ρzi) of each share zi is public, and
player Pi knows the corresponding randomness ρzi . Recall that Enc

is additively-homomorphic, so that linear combinations (and addition
with constants) can be computed on the commitments; this will form
the basis of our commitment check (cf. Section 5.3.6).

5.2.4 The Online Phase

The actual computation takes place in the online phase. By using the sharings
produced in the offline phase as a resource, the online phase can be executed
to a large extent by means of very efficient information-theoretic techniques –
the number of cryptographic operations (broadcasts, commitments) needed is
independent of the circuit size. Concretely, the online phase is composed of
the following gadgets.
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• Input sharing: For each input x held by a player Pi, a fresh (meaning:
yet unused) sharing 〈r〉α from the offline phase is selected and privately
opened to Pi. Pi then sends ε := x− r to all the players, and altogether
the players can then compute a sharing of x as 〈x〉α = ε+ 〈r〉α.

• Distributed addition (and multiplication/addition with constants): For
each addition gate in the circuit with shared inputs 〈z〉α and 〈y〉α, a
sharing of z+y is computed (non-interactively) as 〈z+y〉α = 〈z〉α+〈y〉α.
Correspondingly for multiplication/addition with a constant.

• Distributed multiplication: For each multiplication gate in the circuit
with shared inputs 〈z〉α and 〈y〉α, a sharing of z · y is computed (in-
teractively) by means of the multiplication subprotocol below, which
consumes one fresh multiplication triple from the offline phase.

• Output reconstruction: For each shared output value 〈z〉α, the players
publicly reconstruct z.

• Tag checking: For a shared value 〈z〉α = ([z], [γ(z)]) that has been pub-
licly opened, the players can check the correctness of z as follows. Every
player Pi computes yi := γ(z)i − z · αi and broadcasts a commitment of
yi, and then every player opens the commitment and the players com-
pute y :=

∑
i yi = γ(z)− z · α. If y = 0 then z is declared to be correct;

otherwise, it is declared incorrect and the protocol is aborted.

Multiplication subprotocol
A fresh multiplication triple

(
〈a〉, 〈b〉, 〈c〉

)
is selected, and the following is

performed.

1. The players compute 〈ε〉 := 〈z − a〉 and 〈δ〉 := 〈y − b〉.

2. The sharings 〈ε〉 and 〈δ〉 are publicly opened:

• 〈ε〉 and 〈δ〉 are privately opened to a designated king player Pk,
and

• Pk sends ε and δ to the others player via the point-to-point
channels.

3. The players compute 〈z · y〉 := 〈c〉+ ε〈b〉+ δ〈a〉+ εδ.
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5.2.5 The Security of SPDZ and Its Cost

We give here an overview of how SPDZ achieves security, highlighting the
problem of the lack of cheaters detection; our goal is to give a high-level
description of this aspect of SPDZ, and the reader should refer to the original
paper(s) for a formal discussion.

Security is achieved in a rather straightforward way: once the output of the
circuit has been publicly reconstructed, its tags are checked; the same goes for
any other value that has been opened during the protocol (e.g., the ε’s and
δ’s of multiplication subprotocols). The SPDZ protocol offers security against
a static adversary, namely an adversary that chooses which players to control
before the execution of the protocol (although the online phase actually does
not require this, and is thus secure against an adaptive adversary).

The idea is that even if the adversary controls n − 1 players, the key α is a
uniformly random element of Fq from his point of view; hence an incorrect
value will fail the tag check except with probability 1/q.

A downside of the protocol is that even a single dishonest player can easily
enforce the protocol to abort, e.g., by submitting an incorrect share for a
sharing 〈z〉α that is publicly opened and then checked; the check will recognize
(with high probability) that the reconstructed value z is incorrect, and so the
protocol will abort, but there is no way for the honest players to find out who
submitted an incorrect shares. We thus speak of non-identifiable abort.

Hence, any such dishonest player gets away with it, and hence there is no
incentive for a dishonest player not to cheat, should it give him any advantage
or satisfaction whatsoever. Our goal is to add dishonest players detection to
the SPDZ protocol, while keeping essentially the same complexity.

Complexity of SPDZ. We give here a brief overview on the complexity
of the online phase of SPDZ; we assume for simplicity that each player has a
constant (in n and |C|) number of inputs to be shared.

It can then easily be proved that the online phase of SPDZ has a total com-
putation cost of O

(
n · |C|+ n3

)
elementary field operations over Fq, and a

communication cost of O
(
n · |C|+ n3

)
elements of Fq to be communicated

via point-to-point channels.
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5.3 Adding Cheater Detection

We propose a new version of the SPDZ protocol that supports identifiable
abort: if the protocol aborts then at least one dishonest party will be identified
as having cheated. We emphasize that the challenge lies in adding identifia-
bility to SPDZ without increasing its complexity too much; in particular, we
want the protocol to run (almost) as fast as the original version in case parties
do not misbehave (too much).

We organize our discussion as follows. In Section 5.3.1 we provide an overview
of our protocol. Section 5.3.2 discuss an important building block of our
construction, namely the sub-protocol that ensures correct execution of (part
of) the circuit; in Section 5.3.4 we discuss how to secure the input-sharing and
output-reconstruction phases, and all pieces are put together in Section 5.3.5,
which proves the security of our protocol and computes its complexity. Finally,
in Section 5.3.6 we briefly discuss how to use the commitments to in-agreement
identify a dishonest player.

5.3.1 An Overview of The New Protocol

We explain on a high level how our protocol works. First, notice that there
are four distinct ways for dishonest players to disrupt the protocol execution
(and enforce an abort in the original SPDZ protocol):

• During the input sharing phase, dishonest players could send incorrect
shares of r to Pi, or Pi could send inconsistent values ε to the players.5

• During the multiplication step, dishonest players could send incorrect
shares of ε and δ to the king player.

• During the multiplication step, a dishonest king player could send false
and/or inconsistent values for ε and δ.

• In the output reconstruction phase, dishonest players could announce
false shares of the output.

We will focus on the two possible attacks in the multiplication step, since our
techniques to deal with those can easily be used to also deal with the attacks
in the input sharing and output reconstruction phases.

5Note that there is no issue of ε being incorrect since any ε corresponds to a possible
input for Pi.
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As pointed out above, the players have two “checking mechanisms” available
in order to verify the correctness of a reconstructed value z:

• they can use the tag γ(z) of z to check the correctness of z, and

• they can use the commitments to check the correctness of the shares zi.

The first technique is very efficient but cannot be used to identify who sub-
mitted a false share in case of an incorrect z; this can be done by the latter,
but that one is computationally more expensive, and so we want to avoid it
as much as possible and use it only as a “last resort”.

Now, a first and straightforward approach to achieve cheater detection but
use the computationally expensive techniques only as a last resort, seems as
follows: first, use the “cheap” tag checks to verify the correctness of every
reconstructed value (as in the original SPDZ protocol), and then resort to
the commitments if and only if an error is detected, in order to find out who
claimed an incorrect value.

Unfortunately, this does not work; the reason is that only the king player
knows the shares of, say, ε. As such, if ε claimed by the king player turns out
to be incorrect, there is no way for an honest player to distinguish the case of
a dishonest player Pi who has sent an incorrect share εi to the king player,
from the case of a dishonest king player who pretends that he has received an
incorrect share εi from Pi. There is no way such a dispute can be resolved,
even with the help of the commitments – except if these shares are broadcast
from the start, but that would greatly increase the complexity of the protocol.

To deal with such a situation, we use an idea from dispute control: we re-do
(part of) the computation in such a way that this particular dispute cannot
occur anymore (essentially by choosing a fresh king player). Since the number
of disputes is bounded, this means that there is a limit on how often something
needs to be re-done, and setting the parameters right ensures that this merely
gives a factor-2 blowup.

On the other hand, if a dishonest player Pi keeps on claiming an incorrect
share for, say, ε, even when the players are asked to broadcast their shares
because a fault was detected, then the players can use the (computationally
expensive) commitments to find the incorrect share, and the honest players
will unanimously identify Pi as cheater.

The overall structure of the computation phase of our protocol is thus as
follows:

Set-up: The circuit C is divided into consecutive blocks, each comprising ca.
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|C|/n gates (where “consecutive” here means that C can be evaluated
in a block-by-block manner).

Furthermore, a list Lsuspects of suspect players is initialized as the empty
set.

Computation: Sequentially, for each block the following is done:

I. A king player Pk /∈ Lsuspects is selected, and the computation is
done as in the normal SPDZ protocol by repeatedly invoking the
multiplication sub-protocol and doing local computations.

II. Once the block has been processed, a checking protocol BlockCheck
is invoked that verifies the correctness of the computation. BlockCheck
has three possible outcomes:

– Success: The block has been correctly processed. In this case,
the players simply move to the next block.

– Fail with Conflict: The block has not been correctly processed,
and Pk accuses some player(s) of faulty behaviour. In this case,
Pk and all accused players are added to Lsuspects, and the play-
ers go back to step I and re-do the computation with a “fresh”
Pk 6∈ Lsuspects. Should Lsuspects now consist of all players then
the protocol aborts; in this case, every honest player has iden-
tified at least one dishonest player.

– Fail with Agreement: The block has not been correctly pro-
cessed, and it is guaranteed that some player has broadcast an
incorrect share during the run of BlockCheck. In this case, the
players make use of the commitments to unanimously identify
the cheating player.

The following sections give all the details.

5.3.2 The Checking Protocol BlockCheck

We now provide a formal discussion of the check-phase mentioned in the pre-
vious section; what it will do is check the correctness and consistency of all the
ε’s and δ’s that were announced by the king player during the multiplication
subprotocols in the block to be checked.

We assume that t multiplication opening values 〈z(1)〉, · · · , 〈z(t)〉 have been
publicly opened via a king player Pk, and we will use the following notation:
for each shared value 〈z(h)〉,

– each player Pj has sent z
(h)
j to Pk;
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– z̃
(h)
j denotes the value received by Pk from Pj (so if Pj is honest, z̃

(h)
j =

z
(h)
j );

– Pk has computed and sent to each Pj the value z(h);

– z̃(h)(j) denotes the value received by each Pj from Pk (so if Pk is honest,
z̃(h)(j) = z(h)).

We first give an informal overview on how BlockCheck works:

• Step 1: players run a subroutine Rand to produce a random element e,
and they compute the linear combination 〈z〉 :=

∑
h e

h〈z(h)〉.

Let z̃i and z̃ be the respective linear combinations of z̃
(1)
i , · · · , z̃(t)

i and
of z̃(1), · · · , z̃(t).

• Step 2: Public Reconstruction. Each player broadcasts his share of 〈z〉,
upon which the king player Pk broadcasts a list of players that he accuses
of inconsistent behaviour; if he does so, BlockCheck outputs the message
“Fail with Conflict” and the list of accused players plus Pk.

If Pk has not accused anybody, then each player can broadcast an ac-
cusation against Pk, stating that the value z̃ that he received is differ-
ent from z (which is now public, since its shares have been broadcast).
If that is the case, then once again we are in the “Fail-with-Conflict”
case: BlockCheck outputs the corresponding error message and the list
of players accusing Pk plus Pk himself.

• Step 3: Tag Checking. If no accusations have been produced in Step 2,
then players check the tags of 〈z〉 = ([z], [γ(z)]); this is done running a
subroutine ZeroTest on [γ(z)]− z̃[α], which outputs > if it is a sharing
of 0, and ⊥ if it is not (except with small probability).

BlockCheck outputs the message “Success” if the tag check succeeds,
and “Fail with Agreement” if it fails.

The idea behind security is that if the tag check fails, then a dishonest player
Pi must have broadcast a false share zi during step 2, or (as we will see)
he has broadcast some false share as part of the execution of ZeroTest; in
either case, he has broadcast a linear combination (with coefficients that may
depend on the z̃(i)) of values he is committed to, by means of the commitments
from the pre-processing phase and by the linearity of all computations. Pi can
then be publicly identified as cheater by simply asking the players to open the
commitments to the claimed and broadcast values (cf. Section 5.3.6). We note
that checking the commitments causes a significant overhead to the efficiency
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of the protocol because the players need to perform computations on a large
number of commitments, proportional to the size of the circuit; in return,
however, it publicly identifies a cheating player.

We now give all the details. First, we formally define the subprotocol Rand,
which assumes that players have access to a commitment scheme (as in stan-
dard SPDZ - cf Sections 5.2.2 and 5.2.3).

Rand:

The protocol is used to generate a random seed e ∈$ Fq.

(i) Each player Pj selects a uniformly random ej ∈$ Fq and broadcasts
a commitment Commit(ej) to it;

(ii) all the commitments are then opened, so that all players obtain
e1, · · · , en;

(iii) the output of Rand is the value e :=
∑n
j=1 ej .

We now show that any error that occurred during the opening of the values
〈z(1)〉, · · · , 〈z(t)〉 will affect their linear combination as well (with high proba-
bility):

Lemma 5.3.1 (Security of Rand). Let e be a seed generated by Rand; con-
sider the following linear combination with coefficients given by the powers of
e:

〈z〉 :=

t∑
h=1

eh · 〈z(h)〉, z̃(j) :=

t∑
h=1

eh · z̃(h)(j) for any j = 1, · · · , n.

Assume that for a given index h ∈ {1, · · · , t} the value received by a given
player Pj is incorrect, i.e. z̃(h)(j) 6= z(h); then z̃(j) 6= z except with probability
t/q.

Similarly, if the values received by two players Pj and Pi for an index h are
different (i.e. z̃(h)(j) 6= z̃(h)(i)), then the same will hold for the corresponding
linear combinations, i.e. z̃(j) 6= z̃(i) except with probability t/q.

Proof. Define f(x) ∈ Fq[x] to be
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f(x) :=
∑
h

(
z(h) − z̃(h)(j)

)
xh;

following the definition of Rand, we have that z̃(j) = z if and only if f(e) = 0,
where f is non-zero polynomial of degree at most t. But e is a random element
of Fq independent of the coefficients z(h) − z̃(h)(j), so that

p(f(e) = 0) =
|roots of f |
|Fq|

≤ t

q
.

This proves the first part of the claim; the second part can be proved with a
simple adaptation of this argument.

We then discuss the “public opening and conflict” phase, performed via the
sub-protocol PublicOpening:

PublicOpening:

The protocol takes as input a shared value [z] and the index k of the king
player Pk; following the notation set at the beginning of the section, we
assume that each Pj holds zj , z̃(j) and that Pk holds (z̃j : j = 1, · · · , n).

Initialize the boolean value b to > and the list L to the empty set ∅.

(i) For each j = 1, · · · , n, player Pj broadcast zj and Pk broadcast z̃j ;
if the two values do not coincide, set b = ⊥ and L← L ∪ {Pj}.

(ii) If b = ⊥, the protocol stops and output (⊥, L).

(iii) Players set z̃ :=
∑
j zj ; for each j = 1, · · · , n, player Pj broadcasts

z̃(j). If this value is different from z̃, set b = ⊥ and L← L ∪ {Pj}.

(iv) The protocol outputs (b, L, z̃).

The following lemma is a direct consequence of the definition of the algorithm,
and states that the public opening routine is correct and sound:

Lemma 5.3.2 (Security of PublicOpening). Let (b, L, z̃) be the output of
PublicOpening ([z]) with king player Pk; we then have the following properties:

• (correctness) if 〈z〉 has been correctly reconstructed and players follow
the instructions of the protocol, then b = > and L = ∅.
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• (soundness) if z̃(j) 6= z̃(i) for some honest players Pj and Pi, then b = ⊥
and L 6= ∅.
Furthermore, in this case either Pk or all players in L are dishonest.

The last step consists in checking the tags of the value 〈z〉 = ([z], [γ(z)]),
which is performed by using the subroutine ZeroTest to check that the value
[γ(z)]− z̃[α] opens to 0.

Notice that the players cannot just do a public reconstruction of the sharing
[γ(z)] − z̃[α] to check whether it is a sharing of zero, because in case it is
not, the value of γ(z)− z̃α reveals information on α. That is why the slightly
more involved subroutine ZeroTest is invoked, which publicly reconstructs a
random multiple of [γ(z)]− z̃[α].

Now the security of ZeroTest relies on the secrecy of the global key α, which
we measure as follows:

Definition 5.3.1 (Guessing Probability). We measure the secrecy of a
random variable x ∈$ Fq (typically, the global key α) as follows: let v denote
the adversary’s view at a given point in the online protocol, i.e. the random
variable modeling all the data acquired by the adversary at that point.6

Then, the adversary’s (average) guessing probability of x is given by

pguess(x|v) :=
∑
v̂

p(v = v̂) ·max
x̂

p(x = x̂|v = v̂) .

We then introduce the following definition to model the information on x
possessed by the adversary:

Definition 5.3.2 (List Distribution). Given an abstract pair of random
variables (x, v), we say that the distribution of x given v is a list of size m if
there exists a (conditional) distribution p(`|v), where the range of ` consists of
lists of m elements in the range of x, such that the following two properties
hold for the joint distribution p(x, v, `) := p(x, v) · p(`|v):

(I) p(x ∈ `) ≤ maxˆ̀∈Im(`) p(x ∈ ˆ̀);

(II) p(x|v = v̂, ` = ˆ̀, x /∈ ˆ̀) = p(x|x /∈ ˆ̀) for every v̂, ˆ̀ such that the formula
is well-defined.

6Here and below, when we make information-theoretic statements, we understand v to not
include the encryptions/commitments of the honest parties shares etc. that were produced
during the preprocessing phase. Adding these elements to the adverary’s view of course
renders the information-theoretic statements invalid, but has a negligible effect with respect
to a computationally bounded adversary.
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In a nutshell, we use the above definition to formalize the following situation:
let v denote the adversary’s view and x := α; assume that the distribution of
α given v is a list of size m. This means that the adversary has tried to guess
the value of α for m times, and he has learned whether his guess was correct
or not after each guess.

We now state the basic properties of ZeroTest, which will in turn imply
the desired properties of the tag check; we assume that ZeroTest outputs a
boolean value b ∈ {>,⊥}, marking whether the input opens to zero or not,
and some extra data that will be omitted in the following lemma.

Lemma 5.3.3 (Security of ZeroTest). let b be the output of ZeroTest ([x]);
we then have the following properties:

• Correctness: if x = 0 and players follow the instructions of the protocol,
then b = > with probability 1.

• Soundness: consider the joint distribution p(x, v0), where v0 denotes the
adversary’s view before the execution of ZeroTest. Then

p(b = >) ≤ 1/q + pguess(x|v0).

Furthermore, if x = 0 but b = ⊥, then a dishonest player has broadcast
an incorrect version of a value to which he is committed by means of
a linear combination of the commitments produced in the preprocessing
phase.

• (privacy): Assume that x is uniformly distributed and that the distri-
bution of x given v0 is a list of size m0. Then after the execution of
ZeroTest([x]), the distribution of x given v is a list of guesses of size
at most m := m0 + 1, where v denotes the adversary’s view after the
execution of ZeroTest.

Now that we have fixed the notation for the subroutines, we can state the
definition of BlockCheck in a formal way:

BlockCheck:

The protocol takes as input a block and the index k of the king player Pk;
denote by 〈z(1)〉, · · · , 〈z(t)〉 the multiplication opening values of the block.

• Step 1: players execute Rand to get a random seed e ∈ Fq, then

compute the linear combination 〈z〉 :=
∑t
h=1 e

h〈z(h)〉.
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• Step 2: run
(
b, L, z̃

)
← PublicOpening ([z]); if b = ⊥, BlockCheck

stops and outputs the message “Fail with Conflict” together with the
list L ∪ {Pk}.

• Step 3: run ZeroTest ([γ(z)]− z̃[α]), and denote by b its output.

If b = >, BlockCheck outputs the message “Success”;

if b = ⊥, it outputs the message “Fail with Agreeement”.

We can now prove the following security properties of BlockCheck:

Proposition 5.3.4 (Security of BlockCheck). BlockCheck satisfies the fol-
lowing:

• Correctness: if all players behave honestly and hence all z̃(j) are correct
and consistently announced by Pk, then BlockCheck outputs “Success”
with probability 1.

• Soundness: if at least one of the z̃(j) is incorrect, i.e. 6= z(j), or inconsis-
tently announced by Pk, then the following holds except with probability
at most

δ = (2|C|/n+ 1)/q + pguess(α|v) ,

where v is the adversary’s view before the execution of BlockCheck.
BlockCheck outputs “Fail”; furthermore, if it outputs “Fail with Con-
flict”, then either the king player Pk or all of the accusing players are
dishonest (or both), and if it outputs “Fail with Agreement”, then all
z̃(j) have been consistently announced by Pk, and a dishonest player has
broadcast as part of BlockCheck an incorrect version of a value to which
he is committed by means of a linear combination (depending on the
z̃(j)’s) of the commitments produced in the pre-processing phase.

Proof. • Correctness: obvious by the correctness of PublicOpening and
ZeroTest.

• Soundness: first assume that there exists an index h such that z̃(h)(j) 6=
z̃(h)(i) for two honest players Pj and Pi; then thanks to Lemma 5.3.1,
z̃(j) 6= z̃(i) except with probability t/q, where t ≤ 2|C|/n since each
block contains at most |C|/n gates. Hence thanks to Lemma 5.3.2,
PublicOpening will output (⊥, L) with L 6= ∅, so that by definition
the output of BlockCheck will be “Fail with Conflict”. The properties
on L follow from Lemma 5.3.2.
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Now assume that there is consistency among the values but at least one
of them is incorrect, i.e. there is an h such that z̃(h) 6= z(h). Then
by Lemma 5.3.1, z̃ 6= z except with probability at most 2|C|/nq; now
assuming that PublicOpening did not output ⊥ (in which case we end up
in the “Fail-with-Conflict” case), ZeroTest is executed. The input of this
subprotocol is equal to [γ(z)]− z̃[α] = (z− z̃)[α], so that by Lemma 5.3.3
p(ZeroCheck((z− z̃)[α]) = >) ≤ 1/q+pguess((z− z̃)α|v), where v denotes
the adversary’s view before the execution of of ZeroTest. Since z 6= z̃,
we have that pguess((z − z̃)α|v) = pguess(α|v), so that BlockCheck will
output “Fail with Agreement” except with probability δ.

Finally, notice that in the “Fail-with-Agreement” case we have two pos-
sibilities: the first one is that z̃ 6= z, which means necessarily at least
a dishonest player submitted a false share of z; now this share will
be a linear combination of values he is committed to with coefficients
that depend on the multiplication opening values used so far (hence,
possibly including the z̃(h)’s). Since shares need to be broadcast dur-
ing PublicOpening, the dishonest player will thus be committed to a
wrong public value as claimed. The second possibility is that z̃ = z
but ZeroTest([γ(z)] − z̃[α]) = ⊥, in which case the claim follows by
Lemma 5.3.3.

We discuss in the next section how the tag checking is executed.

5.3.3 The Tag Check

We discuss here the sub-routine ZeroTest, meant to check whether some
shared value [x] is equal to zero or not. A straightforward way to do this would
be to simply open [x]; however, in the actual scenario this value will be equal
to [γ(z)]− z̃[α] for some shared value 〈z〉, and the adversary could select any
non-zero value ∆z and let z̃ = z+ ∆z, so that opening [γ(z)]− z̃[α] = ∆z · [α]
would actually let the adversary learn the global key α. This is no problem
in a stand-alone execution of the protocol, since this action would lead to a
commitment check (and thus to the identification of a cheater without any
need for the key α); however, we find it desirable to avoid leakage of the secret
key. In this way, α and and the pre-processing material can still be used in,
for instance, the execution of another instance of the protocol. We thus devise
a sub-routine that does not leak the value of α.
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ZeroTest:

The protocol takes as input a shared value [x].

(i) Players select a random shared value 〈r〉 and a fresh multiplication
triple (〈a〉, 〈b〉, 〈c〉).

(ii) Players compute [rx] with multiplication triple (〈a〉, 〈b〉, 〈c〉) as de-
scribed in Section 5.2.4, but with a different communication model:
instead of sending their data to a king player that acts as a relay,
they will broadcast a commitment to it, then open all the commit-
ments before moving to the next round.

(iii) Each player Pj broadcasts a commitment Commit((rx)j) to his share
of [rx], then all commitments are opened, so that players obtain rx.

(iv) Output > if rx = 0, ⊥ otherwise.

We first prove that the subprotocol is correct and sound:

Lemma 5.3.5 (Correctness and Soundness of ZeroTest). ZeroTest sat-
isfies the following properties:

• Correctness: if players follow the instructions of the protocol, ZeroTest([0]) =
> with probability 1.

• Soundness: consider the joint distribution p(x, v0), where v0 denotes the
adversary’s view before the execution of ZeroTest; then

p(ZeroTest([x]) = >) ≤ 1/q + pguess(x|v0).

Furthermore, if x = 0 but b = ⊥, then a dishonest player has broadcast
an incorrect version of a value to which he is committed by means of
a linear combination of the commitments produced in the pre-processing
phase.

Proof. - Correctness: trivially, ZeroTest will open [r · 0] = [0].

- Soundness: by definition of the protocol, the output of ZeroTest([x]) is equal
to > if and only if b = 0, where

b := (r − r̃)(x− x̃)− ỹ
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where r is a variable uniformly distributed and independent of x, x̃, r̃ and ỹ, and
the variables r̃, x̃ and ỹ are chosen by the adversary, and are thus determined
by his current view (since we can assume without loss of generality that the
adversary is deterministic).

By the law of total probability, we have the following equality:

p
(
(r−r̃)(x−x̃)−ỹ = 0

)
=
∑
v̂0

p(v0 = v̂0)·p
(
(r−r̃(v̂0))(x−x̃(v̂0)) = ỹ(v̂0)|v0 = v̂0

)
We focus on the element p((r − r̃(v̂0))(x − x̃(v̂0)) = ỹ(v̂0)|v0 = v̂0); we can
assume that ỹ(v̂0) = 0, since this clearly yields the highest probability. Notice
that

p
(
(r − r̃(v̂0))(x− x̃(v̂0)) = 0|v0 = v̂0

)
≤ p
(
r = r̃(v̂0)|v0 = v̂0

)
+ p
(
x = x̃(v̂0)|v0 = v̂0

)
≤ 1/q + max

x̂
p
(
x = x̂|v0 = v̂0

)
This implies that

p
(
(r − r̃)(x− x̃)− ỹ = 0

)
≤
∑
v̂0

p(v0 = v̂0) ·
(

1

q
+ max

x̂
p
(
x = x̂|v0 = v̂0

))
≤ 1/q +

∑
v̂0

p(v0 = v̂0) ·max
x̂

p
(
x = x̂|v0 = v̂0

)
= 1/q + pguess(x|v0)

Finally, notice that since ZeroTest only uses broadcast for communication,
all incorrect values submitted by players are now public; hence if x = 0 but
b = ⊥, then a dishonest player must have submitted a false value during the
multiplication of r and x, and thus he will be exposed when the commitments
on these values are checked.

Finally, we need to discuss the privacy of ZeroTest; we first remark that Defi-
nition 5.3.2, formalizing our privacy notion, yields the following consequences:

Remark 5.3.1. Assume that the uniform distribution x is a list of size m given
v; we then have the following properties:

(i) p(x ∈ `) ≤ m/q (immediate consequence of (I));
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(ii) p
(
x = y|x /∈ `

)
≤ 1/(q −m) for any y = y(v) (consequence of (II) via

the law of total probability).

Furthermore, let r be a random variable independent of both v and x, and set
v′ := (v, r). Then it trivially holds that if p(x, v) satisfies the above definition,
then so does p(x, v′).

Lemma 5.3.6 (Privacy of ZeroTest). Given an abstract pair of random
variables (x, v0), where v0 denotes the adversary’s view, assume that the uni-
form distribution of x given v0 is a list of size m0. Then after the execution
of ZeroTest([x]), the distribution of x given v is a list of guesses of size at
most m := m0 + 1, where v denotes the adversary’s view after the execution
of ZeroTest.

Proof. By looking at the instructions to compute and open [xr] to Pi, we see
that what the adversary can learn the following values (plus random sharings
of them): γ := x− a, δ := r − b and π := (r − r̃)(x− x̃), where a, b and r are
jointly uniformly distributed and independent of each other and of v, x, x̃, r̃. x̃
and r̃ are chosen by the adversary, and are thus determined by his view (since
we assume without loss of generality that the adversary is deterministic).

Now given the adversary’s view v0 before the execution of ZeroTest, the
adversary’s current view is equal to (v0, γ, δ, π); notice that a and b are (jointly)
random and independent of x, r, v0 and π, and thus so are γ = x − a and
δ = r− b, so that we may restrict the view to v := (v0, π) (cf. Remark 5.3.1)7.

Now by inductive hypothesis, there exists a conditional distribution p(`0|v0)
such that properties I and II hold for p(x, v0, `0) := p(x, v0) · p(`0|v0); in a
natural way, we define the new distribution to be

p
(
` = (x1, · · · , xm0

, xm)|v
)

:= p
(
`0 = (x1, · · · , xm0

)|v0

)
· p
(
x̃(v0) = xm|v0

)
.

Clearly, elements in the range of ` are lists of size m = m0 + 1 of elements in
the range of x.

We now prove that properties I and II hold for p(x, v, `): first of all, notice
that p (x ∈ `) = p (x ∈ `0) + p (x = x̃(v0)|x /∈ `0) · p (x /∈ `0); hence thanks to
properties (i) and (ii) of the Remark 5.3.1 we have that

7For the same reason, we omit here the fact that the view also contain random sharings
of x− a, r − b and π.
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p(x ∈ `) = p(x ∈ `0) + p
(
x = x̃(v0)|x /∈ `0

)
· p(x /∈ `0)

≤ m0/q + p
(
x = x̃(v0)|x /∈ `0

)
· (1−m0/q)

≤ m0/q +
1

q −m0
· q −m0

q

= (m0 + 1)/q = m/q

Hence property I holds; we can thus focus on property II. As a first step, notice
that if x /∈ ˆ̀, then in particular x 6= x̃(v̂0); hence we can re-write π = π̂ as
r = r̃(v0) + π̂/(x − x̃(v̂0)). Hence since r is independent of x, v0 and `0, we
obtain the following equalities:

p
(
x|(v0, π) = (v̂0, π̂), ` = ˆ̀, x /∈ ˆ̀

)
= p
(
x|v0 = v̂0, `0 = ˆ̀

0, x /∈ ˆ̀
0, x 6= x̃(v̂0)

)
= p
(
x|x /∈ ˆ̀

0, x 6= x̃(v̂0)
)

which means that property II holds.

We discuss in the next section how to securely share the inputs of the players
and reconstruct the output of the circuit.

5.3.4 Secure Input Sharing and Output Reconstruction

We show in this section how to secure the input-sharing and output-reconstruction
phases; we use the main ideas and techniques of the multiplication check.

We first describe in more detail how the input sharing is performed in the
original SPDZ protocol: each shared value 〈r〉 produced in the pre-processing
phase comes with another type of sharing, denoted by

JrK :=
(

[r],
(
βi, γ(r)i1, · · · , γ(r)in

)
i=1,··· ,n

)
,

where each player Pi holds ri, βi, γ(r)i1, · · · , γ(r)in and rβi =
∑
j γ(r)ji for any

i; the idea is that each each player Pi holds the key βi that can authenticate
the other players’ shares of r, given their tags γ(r)ji .

Now in classical SPDZ, whenever a player Pi holds input x, a random shared
value JrK is selected; then each player Pj communicates rj and γ(r)ji to Pi,
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who computes r and checks that rβi =
∑
j γ(r)ji ; Pi can then broadcast either

an error message or the value ε := x− r. The input is then shared as 〈r〉+ ε.

We add to this protocol our system of accusations; the commitment checks
will be executed as a last resort.

InputShare:

The protocol is used to share an input x held by player Pi; a fresh king
player Pk and a shared value 〈r〉, JrK are selected.

I. for each j 6= i, player Pj sends (rj , γ(r)ji ) to Pk, who in turn com-
municates these elements to Pi.

Pi then computes y := rβi −
∑
j γ(r)ji .

II. If y = 0, Pi broadcasts (>, ε := x− r);
players share x as 〈r〉+ ε and InputShare ends.

III. If y 6= 0, Pi broadcasts ⊥.

Then for each j 6= i, player Pj broadcasts (rj , γ(r)ji ); the king player
Pk broadcast a list L of players that he accuses of inconsistent be-
haviour.

– if L 6= ∅, then InputShare outputs message “Fail with Conflict”
together with the list L ∪ {Pk};

– if L = ∅, then Pi can accuse Pk of inconsistent behaviour; if that
is the case, InputShare output message “Fail with Conflict”
together with the list {Pi, Pk};

– if L = ∅ but Pi does not accuse Pk of inconsistent behaviour,
then InputShare outputs message “Fail with Agreement”.

The following proposition follows from the definition of InputShare and proves
that the protocol is secure:

Proposition 5.3.7 (Security of InputShare). Let x be an input held by
player Pi, where we model x as a uniformly distributed random variable over
Fq. Then InputShare satisfies the following properties:

• Correctness: if players behave honestly, InputShare(x) produces no ac-
cusations and players obtain a 〈·〉-sharing of x.
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• Soundness: if y 6= 0, then InputShare outputs “Fail”; furthermore, if
it outputs “Fail with Conflict”, then either the king player or all of the
accusing players are dishonest (or both), and if it outputs “Fail with
Agreement”, then all (rj , γ(r)ji ) have been consistently announced by Pk.
Then either one of these value is incorrect (and the corresponding player
is committed to this value) or all values are correct and Pi is dishonest.

• Privacy: if Pi is honest, the adversary’s guessing probability of x is equal
to 1/q.

We now introduce an output-checking phase which makes use of the protocols
introduced in the previous sections: it simply reconstructs the output, then
checks its tag with ZeroTest. If an error is detected, it will be guaranteed
that some players have broadcast a value they are committed to.

OutputCheck:

The protocol takes as input the shared value 〈z〉, output of the circuit.

I. Each player Pi broadcasts his share zi of [z].

II. Players set z̃ :=
∑
i zi; they then run ZeroTest ([γ(z)]− z̃[α]). De-

note by b its output;

– if b = >, the protocol outputs message “Success” and the ele-
ment z̃;

– if b = ⊥, the protocol outputs message “Fail”.

The following proposition proves that the protocol is correct and sound; its
proof follows from Lemma 5.3.3

Proposition 5.3.8 (Secuirty of OutputCheck). OutputCheck satisfies the
following properties:

• Correctness: if players submit the correct shares of [z] and behave hon-
estly during ZeroTest, then OutputCheck outputs “Success” and the
correct value z;

• Soundness: assume that z̃ 6= z or that the adversary behaved dishon-
estly in the ZeroTest phase (which means that a dishonest player has
broadcast an incorrect version of a value he is committed to). Then
OutputCheck outputs “Fail” except with probability 1/q + pguess(α|v).
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In the concrete setting, this error probability will be equal to 1/q+1/(q−
2n).

5.3.5 The Complete Protocol

In this section we formally define our protocol and argue its security. According
to the outline given in Section 5.3.1, the protocols presented are combined as
follows:

MPC Protocol

Set-up: the circuit C is divided into consecutive blocks, each comprising
ca. |C|/n gates (where “consecutive” here means that C can be
evaluated in a block-by-block manner).

Furthermore, a list Lsuspects of suspect players is initialized as the
empty set.

Input Sharing: a king player Pk /∈ Lsuspects is selected, and each player
Pi shares his input(s) via the subprotocol InputShare. This has
three possible outcomes:

– Success: players share the next input with the same proce-
dure, or move to the computation phase if all inputs have been
shared.

– Fail with Conflict: InputShare outputs a list L of suspect play-
ers; set Lsuspects ← Lsuspects ∪ L.

If all players belong to Lsuspects, the protocol aborts; other-
wise, a “fresh” king player Pk is selected, and players re-invoke
InputShare.

– Fail with Agreement: the players make use of the commitments
to unanimously identify the cheating player; in case all commit-
ment checks are successfully executed, then player Pi is deemed
dishonest and the protocols aborts.

Computation: Sequentially, for each block the following is done:

I. A king player Pk /∈ Lsuspects is selected, and the computation
is done as in the normal SPDZ protocol by repeatedly invoking
the multiplication sub-protocol and doing local computations.
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II. Once the block has been processed, BlockCheck is invoked; this
has three possible outcomes:

– Success: the players simply move to the next block.

– Fail with Conflict: BlockCheck outputs a list L of suspect
players; set Lsuspects ← Lsuspects ∪ L.
If all players belong to Lsuspects, the protocol aborts; oth-
erwise, a “fresh” king player Pk is selected, and players go
back to step I.

– Fail with Agreement: it is guaranteed that some player has
broadcast an incorrect share during the run of BlockCheck.
In this case, the players make use of the commitments to
unanimously identify the cheating player.

Output Reconstruction: At this point, the players have a well-
defined sharing 〈z〉 of the output of the circuit; they thus run
OutputCheck(〈z〉). This has two possible outcomes:

– Success: the output z is obtained by all players.

– Fail: it is guaranteed that some player has broadcast an incor-
rect share during the run of OutputCheck. In this case, the
players make use of the commitments to unanimously identify
the cheating player.

While the security of the input-sharing and output-reconstruction phases is
quite straightforward, the analysis of the computation phase requires a more
involved discussion.

Indeed, recall that the security of BlockCheck depends on the information
over the global key α possessed by the adversary (cf. Proposition 5.3.4), and
that this information may increase at every execution of BlockCheck. More
precisely, we need to upper bound the adversary’s guessing probability of α;
as a first step, we upper bound the number of executions of BlockCheck:

Remark 5.3.2. During the MPC protocol, BlockCheck is run at most 2n times:
indeed, notice that by definition the circuit C is divided into at most n blocks,
so that BlockCheck is run at most n times excluding re-boots.

Now the number of re-boots of BlockCheck is easily seen to be at most n:
indeed, a re-boot only occurs when BlockCheck outputs “Fail with Conflict”;
now by the soundness property of BlockCheck (cf. Proposition 5.3.4), this
will add at least a new player to Lsuspects, namely the previous king player, so
that we can have at most n such reboots in total before Lsuspects is “full” and
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hence the MPC protocol aborts.

We can now upper bound the adversary’s guessing probability of α;

Proposition 5.3.9. Throughout the entire protocol, the adversary’s guessing
probability of α is bounded by

pguess(α|v) ≤ 1

q − 2n
+

2n

q
.

Proof. It is easily seen that the adversary can increase his guessing proba-
bility only during the execution of BlockCheck or, more specifically, during
ZeroTest. This, by definition of BlockCheck, is executed only when the value
z̃ is consistent among players, so that its input is equal to [x] := [γ(z)]− z̃[α] =
(z − z̃)[α]. Hence we can assume as a worst-case scenario that z 6= z̃, so that
the adversary’s guessing probabilities of α and of x coincide.

Notice that at the beginning of the computation, the distribution of α given
the adversary’s view is a list of guesses of size 0 (cf.Definition 5.3.2); hence
we can inductively apply Lemma 5.3.3, so that during the execution of the
protocol the distribution of α given the adversary’s view is a list of guesses of
size at most 2n (recall that BlockCheck, and hence ZeroTest, is executed at
most 2n times as shown in Remark 5.3.2).

Hence according to Definition 5.3.2, and given that α is uniformly distributed,
there exists a distribution p(`|v) with the following properties:

(I) p(α ∈ `) ≤ 2n/q;

(II) maxα̂,ˆ̀p(α = α̂|v = v̂, ` = ˆ̀, α /∈ ˆ̀) = 1/(q −m).

Now from this we can deduce the claimed upper bound on the guessing prob-
ability: indeed, by using the law of total probability with the events (α ∈ `)
and (α /∈ `), we obtain
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pguess(α|v) =
∑
v̂

p(v = v̂) ·max
α̂

p(α = α̂|v = v̂)

≤
∑
v̂

p(v = v̂) ·
[
max
α̂

p(α = α̂|v = v̂, α /∈ `) + p(α ∈ `)
]

≤
∑
v̂

p(v = v̂) ·
[
max
α̂,ˆ̀

p(α = α̂|v = v̂, ` = ˆ̀, α /∈ ˆ̀) + p(α ∈ `)
]

≤
∑
v̂

p(v = v̂) ·
[

1

q − 2n
+

2n

q

]
=

1

q − 2n
+

2n

q

The security of the computation phase is now straightforward: as a worst-case
scenario, we will assume that the adversary controls all but one of the players.
First notice that if the adversary decides to behave (semi)-honestly, then by
the correctness of BlockCheck the protocol will reach the end of the circuit
and CommitCheck will not be executed.

On the other hand, if the adversary misbehaves in (at least) one of the invoca-
tions of the multiplication subprotocol in one of the blocks, either by sending
an incorrect share of 〈ε〉 or 〈δ〉 to Pk, or by having dishonest Pk announce
inconsistent values (or both), then this will be detected by BlockCheck that
will announce “Fail with Conflict” or “Fail with Agreement”, depending on
the adversary’s precise behavior.

In the case of a “Fail with Conflict”, the incorrect data is dismissed and the
block is rebooted with a fresh king player that is not in the list Lsuspects of
suspect players. As we discussed in Remark 5.3.2, every re-boot adds a new
player to Lsuspects, namely the previous king player, so that we can have at
most n such reboots in total before the protocol produces the correct output or
before Lsuspects is “full”, and in that case the protocol stops and every honest
player has correctly identified at least one dishonest player (because an honest
player ends up in Lsuspects only by accusing a dishonest player). Notice that
there is no need to check the commitments in this case. On the other hand, if
BlockCheck ends with a “Fail with Agreement”, then it is guaranteed that a
dishonest player has broadcast an incorrect version of a value he is committed
to.

As for the overall error probability, by combining the soundness error of
BlockCheck with the bound on pguess, and observing that BlockCheck is in-
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voked at most 2n times – as we have n blocks plus at most n reboots – we
obtain an overall error probability of at most

ε = 2n ·
(

1

q − 2n
+

2|C|/n+ 2n+ 1

q

)
To sum up, and using the corresponding security properties of the input-
sharing and output-reconstruction phases (cf. Propositions 5.3.7 and 5.3.8),
our new MPC protocol satisfies the following.

Theorem 5.3.10 (Security of the MPC protocol). For any computation-
ally bounded adversary that cannot break the encryptions / commitments used
in the preprocessing phase, except with negligible probability, an execution of
our protocol results in one of the following cases (depending on the adversary’s
strategy):

I. Success: the protocol reaches the end of the circuit and outputs the correct
result to all players. In this case, no commitment checks are needed.

II. Identification without agreement: the protocol aborts, but each honest
player has identified at least one dishonest player. Also in this case, no
commitment checks are needed.

III. Identification with agreement: the protocol aborts, and at least a dishon-
est player has broadcast an incorrect version of a value he is committed
to.

Hence the honest players will be able to in-agreement identify at least
one dishonest player.

Furthermore, in all cases, the adversary learns no information on the honest
players’ inputs, beyond the result of evaluating the circuit C on the inputs.

The Complexity of our Protocol. We discuss in this section the com-
plexity of our protocol; we focus on the circuit-evaluation phase, which is the
most expensive part of our protocol. The input sharing and the output recon-
struction, moreover, can be analyzed in a similar fashion (i.e., in the general
case they yield a complexity of the same order of magnitude as the original
SPDZ, and exceed it only to unanimously identify a dishonest player).

We start by discussing the complexity of BlockCheck: first notice that since
each block contains at most |C|/n gates, there are at most 2|C|/n multipli-
cation opening values to be checked in each block; we thus get the following
complexity:
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• 4n commitments need to be prepared via Enc, broadcast and opened (n
to produce a random seed via Rand, and 3n during ZeroTest);

• the computational complexity of a block check is in O
(
|C|+ n2

)
field

operations (excluding computation on commitments), essentially given
by the cost of computing the linear combination of the values to be
checked;

• finally, the block check requires broadcasting 3n field elements for the
dispute phase of PublicOpening. Notice that we do not use point-to-
point communication.

We thus get the following complexity of processing and checking a single block:

• First, the gates of the block are evaluated as in standard SPDZ; this
yields a complexity of |C|/n · O(n) = O(|C|) field operations (in total
over all players) and the same number of field elements for point-to-point
communication, and no broadcasts.

• At the end of the block, the subprotocol BlockCheck is executed; as we
have seen, its computation complexity is of O(|C|+n2) field operations,
while its communication complexity consists of no point-to-point com-
munication, and 3n broadcasts of field elements and 4n of commitments
and openings.

Now as we have seen, BlockCheck can lead to a “Fail-with-Agreement” abort,
to a re-boot of the current block (“Fail with Conflict”), or simply to the pro-
cessing of the following block (“Success”). As argued in Remark 5.3.2, we
can have at most n reboots in total before the protocol aborts; as such, the
overhead of the reboots causes at most a factor 2 overhead to the ordinary
computation of the n blocks.

We thus get the following result summarizing the complexity of our protocol:

Proposition 5.3.11. Our MPC protocol has the following complexity:

• Computation: O
(
n|C|+n3

)
field operations, plus preparing 8n2 commit-

ments (as part of Rand and of ZeroTest);

• Communication: O
(
n|C|

)
field elements for point-to-point communica-

tion plus O
(
n2
)

broadcasts.8

8Note that we treat broadcast as a given primitive here; implementing it using the point-
to-point communication and, say, digital signatures, causes some (communication and com-
putation) overhead, but this overhead is independent of the circuit size.
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Compared to the original SPDZ protocol, in case all players behave honestly,
our protocol is as efficient as the original protocol, up to an additive overhead
caused by an increased number of commitments and broadcasts9, but this
overhead is independent of the circuit size and thus negligible except for small
circuits. In case of active cheating – unless a dishonest player cheats so bluntly
that commitment checks are invoked and he will be publicly identified as being
a cheater – the (computation and communication) complexity of our protocol
is larger by a factor 2 only, plus the same kind of additive overhead that does
not depend on the circuit size.

5.3.6 The Commitment Check

We briefly discuss here the “last resort” to detect a dishonest player: checking
the commitments on his shares.

As we have seen in Section 5.2.3, for every shared value z that is [·]-shared in
the pre-processing phase each player Pi holds randomness ρzi and the value
ezi := Enc(zi, ρzi) has been broadcast. Now Enc is well-defined, namely ezi 6=
ez̃i for any choice of randomness: thus a player that has broadcast an incorrect
share z̃i will be unable to produce randomness that matches the cyphertext ezi .

We first give a definition of the encryption check assuming that Enc is linear;
we discuss the more general case, where the encryption scheme is only assumed
to be somewhat-homomorphic, in the next paragraph. We make the remark
that similar techniques and ideas have been used in a paper by Baum et
al. [3], where commitments are employed to allow an external party to check
the correctness of an execution of SPDZ. In [3], Pedersen commitments [55] are
used for this auditing process (instead of the encryption scheme from SPDZ).

CommitCheck (linear case):

the protocol takes as input the index i of a player Pi and his share zi =∑M
h=1 λ

(h)z
(h)
i , where all

[
z(h)

]
are computed in the preprocessing phase;

let e
(h)
i := Enc

(
z

(h)
i , ρ

(h)
i

)
(these values are public, cf. Section 5.2.3). We

assume that the coefficients λ(h) are public as well.

(i) Players set ei :=
∑M
h=1 λ

(h)e
(h)
i ;

(ii) Pi computes and broadcasts ρi :=
∑M
h=1 λ

(h)ρ
(h)
i ;

9Plus that we have to do real broadcasts, whereas in the original SPDZ protocol without
cheater detection it is good enough to do a simple consistency check and abort as soon as
there is an inconsistency.
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(iii) players set ei := Enc (zi, ρi).

If ei = Enc (zi, ρi), the protocol outputs >; otherwise, it outputs ⊥ and
Pi is deemed dishonest.

Trivially, if Pi behaves honestly, CommitCheck will output >; on the other
hand, if the share z̃i he submitted is not correct, then the output will be ⊥
since ezi 6= Enc (z̃i, ρ̃i) for any randomness ρ̃i.

Now thanks to Theorem 5.3.10, if the MPC protocol ends in a “Fail-with-
Agreement” case, then it is guaranteed that a dishonest player Pi has broadcast
a z̃i 6= zi; the values z̃1, . . . , z̃n to be checked are clear from the definition of the
subprotocols we discussed. Thus a dishonest player will be publicly identified
as such in a “Fail-with-Agreement” case.

The General Case. The security of CommitCheck is based on the assump-
tion that Enc is a linear map. Now in the original SPDZ, a different assumption
is made, namely that the encryption scheme is somewhat-homomorphic. This
means that there exists a decryption protocol Dec such that

Dec

(
M∑
h=1

λ(h)Enc
(
z(h), ρ(h)

))
=

M∑
h=1

λ(h)z(h)

for all M ≤ M ′, where M ′ is a positive constant (notice that here we have
dropped the indexes i to simplify the notation). We do not discuss here the
security properties of this decryption protocol, as this would be beyond the
scope of this dissertation; the detailed explanation can be found in [23].

Now if the share of player Pi to be checked is zi =
∑
h λ

(h)z
(h)
i for M ≤ M ′,

then players only need to slightly modify CommitCheck: namely, they need to

compute Dec
(∑

h λ
(h)e

(h)
i

)
and then check that it is equal to zi.

If, on the other hand, we have that M > M ′, then the encryption scheme
can no longer be used as a commitment scheme to prove the validity of zi. In
this case, we require players to switch to another linear commitment scheme
Commit,10 and then demonstrate equality of the committed values via a zero-
knowledge proof (i.e., without leaking any other information besides the fact

10Here and in the following protocol, with a slight abuse of notation we denote by Commit

both the commitment scheme and the algorithm that produces the commitment.
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that the committed values coincide). More precisely, the protocol becomes the
following:

CommitCheck:

the protocol takes as input the index i of a player Pi and his share zi =∑M
h=1 λ

(h)z
(h)
i , where all

[
z(h)

]
are computed in the preprocessing phase;

let e
(h)
i := Enc

(
z

(h)
i , ρ

(h)
i

)
(these values are public, cf. Section 5.2.3). We

assume that the coefficients λ(h) are public as well, and that players have
access to a linear commitment scheme Commit.

(i) Pi computes and broadcast a commitment c(h) := Commit(z
(h)
i ) for

all h, and publicly proves in zero-knowledge that c(h) and e(h) open
to the same value for any h;

(ii) players compute c :=
∑M
h=1 λ

(h)c(h);

(iii) Pi opens the commitment c.

If c opens to zi, the protocol outputs >; otherwise, it outputs ⊥ and Pi is
deemed dishonest.
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Summary

This dissertation presents contributions to four areas in Cryptography, inves-
tigating in particular its connection to Coding Theory. Concretely, we make
use of techniques from Coding Theory to construct and analyze cryptographic
protocols with new and/or enhanced properties.

We first focus on Secret Sharing, an important topic which forms the com-
mon ground for most of the concepts discussed in this thesis. A secret-sharing
scheme takes as input a secret value, and produces as output n shares in such
a way that small enough sets of shares yield no information at all on the se-
cret (privacy), while large enough sets of shares allow to recover the secret
(reconstruction). Secret Sharing has many applications to Cryptography. For
instance, secret-sharing schemes with additional properties, such as linear-
ity and multiplicativity, form a fundamental building block for secure Secure
Multi-Party Computation (MPC ). In MPC, n parties who do not necessarily
trust each other can to compute the value f(x1, . . . , xn) of a function f on
mutually private inputs x1, . . . , xn, while guaranteeing the correctness of the
output and while keeping their respective inputs private from each other.

Furthermore, Secret Sharing has several direct applications. It was originally
motivated by reliable and secure distributed storage of sensitive information,
relaxing the single-point-of-failure problem of conventional storage methods.
Moreover, a secret-sharing scheme can be used to solve the following special
instance of Perfectly Secure Message Transmission. Assume that a sender
Alice is connected to a receiver Bob via n distinct channels, some of which are
controlled by an adversary Eve. By using Secret Sharing, it is easy to devise
a scheme that allows Alice to communicate a secret message to Bob in such a
way that Eve learns no information on the message by eavesdropping on the
channels she controls, while Bob can receive the message even if Eve blocks
the channels under her control.

Recovering data from incomplete information is common to both Secret Shar-
ing and Coding Theory. Therefore, it is perhaps not surprising that the two
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fields have known a long and fruitful interplay. In particular, Massey suggested
the construction of linear secret-sharing schemes from linear error-correcting
codes, and showed how to analyze properties of a secret-sharing scheme in
terms of those of the underlying code. From this analysis, one can derive
schemes whose reconstruction is governed by a parameter called distance of
the underlying code, and whose privacy is governed in terms of dual distance,
which depends on the dual of the code. There are examples of good codes that
have good duals as well (i.e., codes that have large distance and large dual dis-
tance), e.g. Reed-Solomon or random linear codes. However, it is currently
not known how to achieve these properties while at the same time providing
very efficient (i.e., linear-time) encoding and decoding.

We circumvent this problem by introducing an alternative paradigm where
the privacy of secret-sharing schemes no longer depends on the dual distance
of the underlying code, but is controlled by the rate of the underlying code
and by the parameters of a family of linear universal hash functions. This
allows us to fully harness the potential of recent code constructions to obtain
improved schemes; we exemplify this by means of two applications. First, we
make use of linear-time encodable and decodable codes to obtain a family of
secret-sharing schemes with asymptotically good reconstruction and privacy
where both the computation of the shares and the reconstruction of the secret
can be performed in linear time. Second, we make instead use of list-decodable
codes to obtain robust secret-sharing schemes, i.e., schemes that can recover
the secret even if some of the shares are incorrect, except with a small error
probability. The family we present optimizes the trade-off between the extra
data that needs to be appended to the share to achieve robustness and the
error probability in the reconstruction, reaching the best possible value.

The next topic we study is Perfectly Secure Message Transmission or PSMT
for short. As opposed to the non-interactive variant described above, we now
imagine that Bob is also allowed to send messages over the n channels to Al-
ice, where Eve corrupts and controls t < n of the channels, meaning that she
is able to read the data transmitted over the corrupted channels and replace
them with symbols of her choice. The interesting point is that two-way com-
munication improves security, namely it is possible to achieve perfect privacy
and perfect correctness as long as t < n/2, while in the non-interactive case,
this can only be achieved if t < n/3.

We present a new protocol working in two rounds and for any number t < n/2
of corrupted channels. The use of techniques based on syndrome computation
allows for a conceptually simpler blueprint and for improved efficiency, dividing
by a factor n the amount of data to be communicated to transmit a single-bit
secret.

PSMT can be generalized to scenarios where Alice and Bob are connected by
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more complex communication means. For instance, in Secure Network Coding
Alice and Bob are connected by a network, i.e. a directed and acyclic graphs
with a single source node (with no incoming wires) and a single sink node
(with no outbound wires); Alice can feed input to the source node, Bob can
read the data received by the sink node, while intermediate nodes compute
linear combinations of the data received via the incoming wires and transmit
it over the outbound wires. It is still assumed that an adversary Eve controls
(i.e., taps and tampers with) some of the wires in the network.

So far, Secure Network Coding has only addressed one-way communication.
In this dissertation, we consider, for the first time, two-way communication,
and show that it enables to achieve security for any t < C/2 (rather than
t < C/3 in the non-interactive case), where C is an invariant of the network
topology known as connectivity. We present two protocols, adapted from our
construction for PSMT; the first one works in two rounds, while the second
one works in three, but can be adapted to a scenario where multiple receivers
(instead of just one) are present. Both our protocols can tolerate any number
t < C/2 of corrupted wires, and are secure regardless of the way internal nodes
of the network transform the received data.

Finally, we focus on Secure Multi-Party Computation or MPC. As briefly dis-
cussed above, in MPC n parties known as players hold private inputs x1, . . . , xn
respectively and aim at computing the value f(x1, . . . , xn) of a function f on
their inputs, while guaranteeing the correctness of the output and while keep-
ing their respective inputs private.

A recent construction is the so-called SPDZ protocol by Damg̊ard et al., dis-
tinguished by its fast performance (and thereby its promising possibilities of
becoming practical). A downside of the SPDZ protocol is that it is susceptible
to a denial-of-service attack: even a single dishonest player can enforce the
computation to fail, meaning that the honest parties have to abort the compu-
tation without learning the outcome, whereas the cheating party may actually
learn it. Furthermore, the dishonest party can launch such an attack without
being identified to be the cheater.

We enhance the SPDZ protocol to allow for cheater detection: a dishonest
party that enforces the protocol to fail will be identified as being a cheater.
As a consequence, in typical application scenarios, parties will actually have
little incentive to cheat, and if cheating still takes place, the cheater can be
identified and discarded and the computation can be re-done, until it succeeds.

The challenge lies in adding this cheater detection feature to the original pro-
tocol without increasing its complexity significantly. To achieve this, we intro-
duce a carefully-designed dispute control system that allows players to proceed
with the execution of the protocol in cases where the original SPDZ protocol
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has to abort, so that eventually our protocol produces the correct output or
malicious players are identified. This allows us to obtain the following. In case
no cheating takes place, our protocol is as efficient as the original SPDZ pro-
tocol which has no cheater detection. In case cheating does take place, there
may be some additional overhead, which is still reasonable in size though, and
since the cheater knows he will be caught, this is actually unlikely to occur in
typical application scenarios.
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Samenvatting

Dit proefschrift maakt bijdragen aan vier deelgebieden in de cryptografie, met
nadruk op de verbanden met de coderingstheorie (ofwel, de theorie van de
foutcorrigerende codes). We maken gebruiken van coderingstheoretische tech-
nieken om cryptografische protocollen zowel te analyseren als te construeren
met nieuwe en verbeterde eigenschappen.

Secret sharing is een belangrijk onderwerp in de moderne cryptografie, en het
vormt de grondslag voor veel van de besproken begrippen on deze dissertatie.
Een secret-sharingschema heeft als input een geheime waarde en geeft als out-
put n shares. Deze shares hebben de eigenschap dat een kleine deelverzameling
ervan geen enkele informatie geeft over de geheime input (privacy), maar dat
met een voldoende grote deelverzameling het geheim kan worden achterhaald
(reconstructie). Secret sharing heeft talrijke toepassingen in de cryptografie.
Bijvoorbeeld, secret sharing met toegevoegde eigenschappen zoals lineariteit
en multiplicativiteit vormt een fundamentele bouwsteen voor secure multi-
party computation ofwel MPC. Met behulp van MPC kunnen n partijen de
functie-waarde f(x1, . . . , xn) van een functie f op geheime inputs x1, . . . , xn
correct uitrekenen zonder daarbij de inputs te hoeven uitwisselen; die blijven
namelijk geheim.

Voorts heeft secret sharing een aantal directe toepassingen. De meest oor-
spronkelijke daarvan is betrouwbare en veilige gedistribueerde opslag van sen-
sitieve informatie; hierbij geeft secret sharing een oplossing voor het single-
point-of-failure probleem van traditionele opslag-methoden. Een secret sharing
schema kan ook worden gezien als oplossing voor de volgende niet-interactieve
variant van perfectly secure message transmission. Stel dat Alice veilig een
bericht wil sturen naar Bob en daarvoor beschikking heeft over n communi-
catiekanalen, en zodat een aanvaller Eve enkele van deze kanalen kan afluis-
teren dan wel blokkeren. Op basis van secret sharing is het eenvoudig om een
methode te geven die Alice in staat stelt om een bericht naar Bob te sturen
zonder dat Eve informatie verkrijgt over de inhoud van het bericht. Tevens
kan Eve het bericht naar Bob niet blokkeren, ook niet als zij alle communi-
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catiekanalen blokkeert waarover ze controle heeft.

Het herstellen van data uit onvolledige informatie vormt een overeenkomst
tussen secret sharing en coderingstheorie. Het is daarom wellicht niet verwon-
derlijk dat er tussen deze twee gebieden sprake is van een lang en vruchtbaar
samenspel. Bijvoorbeeld, Massey heeft een constructie van secret sharing uit
lineaire foutcorrigerende codes voorgesteld en heeft laten zien hoe de eigen-
schappen van het secret-sharing schema begrepen kunnen worden in termen
van de eigenschappen van de onderliggende code. Hieruit volgt bijvoorbeeld
het bestaan van secret-sharing schema’s waarin de reconstructie bepaald wordt
door de minimum afstand van de code en waarin de privacy bepaald wordt door
de minimum afstand van de duale code. Er zijn voorbeelden van goede codes
waarvan de duale code tevens goed is, zoals Reed-Solomon codes of random
gekozen lineaire codes. Echter, het is thans een open probleem of er goede
codes bestaan die een goede duale code hebben en die tevens zeer efficiënte
(dat wil zeggen, linear-time) encodeer- en decodeer-algoritmen toelaten.

Dit probleem wordt omzeild in dit proefschrift door een nieuw verband te
leggen tussen secret-sharing en codes, die als resultaat heeft dat de privacy
van het cryptografische protocol niet meer afhangt van de duale van de on-
derliggende code, maar in plaats daarvan bepaald wordt door de rate van de
onderliggende code en de parameters van een familie van lineaire universele
hash functies. Dit geeft mogelijkheden om het potentieel van de meest recente
codes volledig te exploiteren en daarmee verbeterde protocollen te genereren.
We lichten dit toe met twee toepassingen. De ene toepassing maakt gebruik
van codes waarvan de codering en decodering kan worden berekend in lin-
eaire tijd. Hierdoor is het mogelijk een familie van secret-sharing schema’s te
construeren waarbij zowel het delen van de shares als het reconstrueren van
geheime data geschiedt in slechts lineaire tijd.

De andere toepassing construeert robuuste secret-sharing schema’s met be-
hulp van codes met zogeheten lijstdecodering. Zulke protocollen zijn zelfs –
hoewel met een kleine foutkans – in staat het gedeelde geheim te reconstrueren
wanneer enkele van de shares incorrect zijn. De familie van protocollen uit
deze toepassing optimaliseert de trade-off tussen de hoeveelheid extra data die
toegevoegd moet worden aan de shares om robuustheid te behouden en de
foutkans van de reconstructie van het gedeelde geheim.

Het volgende onderwerp van studie is perfectly secure message transmission
(PSMT). In tegenstelling tot de niet-interactieve variant die eerder aangehaald
is, wordt nu aangenomen dat Bob ook in staat is om berichten terug naar Alice
te sturen over de n bestaande communicatiekanalen. De aanvaller Eve heeft
nog steeds t < n van deze kanalen onder controle, en kan daarmee berichten
afluisteren en veranderen naar willekeur. Opmerkelijk is dat wederzijdse com-
municatie de veiligheid verhoogt, aangezien het in dit scenario mogelijk is om
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perfecte privacy en reconstrueerbaarheid te bemachtigen zolang t < n/2. In
het niet-interactieve geval kan dit alleen als t < n/3.

In dit proefschrift wordt een nieuw protocol gepresenteerd voor t < n/2 dat
twee rondes heeft. Het gebruik van technieken die gebaseerd zijn op zoge-
naamde syndrome computation maakt een conceptueel simpelere aanpak mo-
gelijk die tevens leidt tot verbeterde efficiëntie, namelijk een multiplicatieve
factor n besparing in totale communicatie in het speciale geval van een con-
stante bit-lengte secret.

PSMT kan gegeneraliseerd worden naar scenario’s waarin Alice en Bob toe-
gang hebben tot een complexere communicatie infrastructuur. Bijvoorbeeld,
in secure network coding zijn ze verbonden door een netwerk dat gemodelleerd
wordt door een gerichte, acyclische graaf met een enkele source knoop zonder
inkomende takken en een enkele sink knoop zonder uitgaande takken. Alice
kan data verzenden via de source en Bob ontvangt data via de sink, waarbij
de tussenliggende knopen lineaire transformaties toepassen op de inkomende
takken en resultaten uitsturen over de uitgaande takken. Nog steeds wordt
aangenomen dat Eve een zeker aantal van de kabels van het netwerk onder
haar controle heeft.

In eerdere studies wordt normaliter aangenomen dat communicatie in secure
network coding maar één richting opgaat. In dit proefschrift stellen wij daar-
entegen ook interactieve protocollen voor die – analoog aan PSMT – door
de communicatie in beide richtingen veilig blijven bij een groter aantal gecon-
troleerde netwerkkabels. De enige conditie is namelijk dat t < C/2 (vergelijken
met t < C/3 in het niet-interactieve geval), waar C een invariant is van de
netwerk topologie, de zogeheten connectivity. We beschrijven namelijk twee
protocollen, beide aanpassingen van het schema voor PSMT. De eerste heeft
twee fasen, terwijl de tweede er drie heeft en aangepast kan worden aan een
situatie met meerdere ontvangers. Deze twee protocollen zijn bestand tegen
het theoretisch maximale aantal aangedane netwerkkabels en blijven veilig,
ongeacht de bewerkingen van de netwerkknooppunten.

Tenslotte verleggen we de focus naar secure multi-party computation, wat
wordt afgekort naar MPC. Hierbij gaat het over n partijen – ook wel spel-
ers genoemd – die elk een geheime inputwaarde xi hebben. Het doel is om de
uitkomst van een zekere functie f(x1, . . . , xn) correct te berekenen met deze
geheime waarden als input, zodat de spelers hun inputs geheim houden.

Het recente werk van Dam̊ard et al. beschrijft een protocol dat zelfs met n−1
kwaadaardige spelers veilig blijft. Dit zogeheten SPDZ-protocol is geroemd
vanwege zijn efficiëntie en de mogelijkheid in de praktijk te kunnen wor-
den gebruikt. Dit SPDZ-protocol heeft echter als nadeel dat al één enkele
kwaadaardige partij de hele gezamenlijke berekening kan doen mislukken. Dit

145



houdt onder andere in dat de eerlijke partijen genoodzaakt zijn de bereken-
ing af te breken en de uitkomst niet hebben, terwijl de kwaadaardige partij
wellicht wel deze uitkomst kan leren van de gedeelde informatie. Sterker nog,
deze oneerlijke partij kan dit doen zonder dat de andere partijen erachter kun-
nen komen wie de veroorzaker was.

In deze dissertatie wordt het SPDZ-protocol verbeterd zodat er de mogelijkheid
bestaat om de kwaadaardige partij, die de berekening doet afbreken, te kunnen
identificeren. Bijgevolg zullen partijen niet de drang hebben vals te spelen als
zij dit verbeterde protocol gebruiken. Een kwaadwillige kan namelijk worden
gëıdentificeerd en vervolgens uit de groep gezet worden.

De hoofduitdaging was om identificatie van kwaadwilligen aan het SPDZ-
protocol toe te voegen, zonder dat de algehele complexiteit significant ver-
hoogd wordt. Om dit te bewerkstelligen, voeren we een nauwkeurig ontworpen
dispute control systeem in dat de partijen in staat stelt om de executie van
het protocol doorgang te laten vinden in gevallen waarin het oorspronkelijke
SPDZ protocol een “abort” zou dienen te declareren, met de eigenschap dat
de correcte output wordt gegenereerd of dat in ieder geval malicieuze spelers
gëıdentificeerd worden. Voorts, de protocol die wordt beschreven in deze dis-
sertatie is – mits het protocol correct wordt uitgevoerd – even efficiënt als het
SPDZ-protocol. Wanneer er wél sprake is van valsspelerij, kan het protocol
een relatief redelijk kleine vertraging oplopen. Omdat kwaadwilligen kunnen
worden opgespoord met dit protocol, is het echter niet waarschijnlijk dat deze
vertraging werkelijk voorkomt in de praktijk.
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Résumé

Le sujet de cette thèse est la cryptographie et son interconnexions avec la
théorie des codes. En particulier, on utilise des techniques issues de la théorie
des codes pour construire et analyser des protocoles cryptographiques avec des
propriétés nouvelles ou plus avancées.

On se concentre d’abord sur le partage de secret ou secret sharing, un sujet im-
portant avec de nombreuses applications pour la cryptographie actuelle. Dans
la variante à laquelle on s’intéresse, un schéma de partage de secret reçoit en
entrée un élément secret, et renvoie en sortie n parts de telle façon que chaque
ensemble de parts de taille suffisamment petite ne donne aucune information
sur le secret (confidentialité), tandis que chaque ensemble de taille suffisam-
ment grande permet de reconstituer le secret (reconstruction). Un schéma de
partage de secret peut donc être vu comme une solution à un problème de
communication où un émetteur Alice est connectée avec un destinataire Bob
par n canaux distincts, dont certains sont contrôlés par un adversaire Ève.
Alice peut utiliser un schéma de partage de secret pour communiquer un mes-
sage secret a Bob de telle façon qu’Ève n’apprenne aucune information sur le
secret en lisant les données transmises sur les canaux qu’elle contrôle, tandis
que Bob peut recevoir le message même si Ève bloque ces dits canaux.

Notre contributions au partage de secret concernent ses liens avec la théorie
des codes ; comme les deux domaines partagent un même but (récupérer des
données à partir d’informations partielles), ce n’est pas surprenant qu’ils aient
connu une interaction longue et fertile. Plus précisément, Massey commença
une analyse fructueuse à propos de la construction et de l’étude d’un schéma de
partage de secret à partir d’un code correcteur. L’inconvénient de cette analyse
est que la confidentialité d’un schéma de partage de secret est estimé grâce au
dual du code sous-jacent ; cela peut être problématique vu qu’il pourrait ne
pas être possible d’obtenir des codes avec des propriétés souhaitables qui aient
aussi un bon code dual.

On contourne ce problème en établissant une connexion nouvelle entre les
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deux domaines, telle que la confidentialité d’un schéma de partage de se-
crets n’est plus contrôlée par le dual du code sous-jacent. Cela nous permet
d’exploiter complètement le potentiel de certaines constructions récentes de
codes pour obtenir des meilleurs schémas ; on illustre ceci avec deux appli-
cations. Premièrement, en utilisant des codes avec codage et décodage en
temps linéaire on obtient une famille de schémas de partage de secret où
le partage (calcul des parts issues du secret) tout comme la reconstruction
peuvent s’effectuer en temps linéaire ; pour des seuils de confidentialité et
de reconstruction croissants, ceci restait jusqu’à présent un problème ouvert.
Deuxièmement, on utilise des codes avec décodage en liste pour construire des
schémas de partage de secret robustes, c’est-à-dire des schémas qui peuvent
reconstituer le secret même si certaines parts sont incorrectes, sauf avec une
petite probabilité d’erreur. La famille que nous présentons optimise le com-
promis structurel entre les données additionnelles qui doivent être ajoutées
aux parts pour obtenir la robustesse et la probabilité d’une erreur dans la
reconstruction, atteignant la meilleur valeur possible.

Une variante interactive du partage de secret est donnée par la transmission
parfaitement sécurisée de message, connue sous son acronyme anglais PSMT
pour perfectly secure message transmission. On imagine maintenant que Bob
aussi soit autorisé à envoyer des messages à Alice sur plusieurs canaux, et
qu’Ève soit capable de lire les données envoyées sur les canaux qu’elle contrôle
aussi que de les remplacer par des élément de son choix. La communication
à deux sens améliore la sécurité : il est possible d’obtenir confidentialité et
exactitude parfaites tant qu’Ève contrôle moins de la moitié des canaux, tandis
que dans le cas non interactif, ceci peut être atteint seulement si elle contrôle
moins d’un tiers des canaux.

On présente dans cette thèse un nouveau protocole qui marche en deux étapes
et pour le maximum possible de canaux corrompus ; son importance pour
le sujet est due à deux aspects. Premièrement, son efficacité est améliorée
par rapport aux constructions précédemment connues, spécialement quand le
secret à transmettre ne consiste qu’en un bit unique. Deuxièmement, il se
différencie des travaux précédents en évitant les lourdes méthodes classiques
et en utilisant au contraire des techniques plus simples issues de la théorie des
codes.

La PSMT se peut généraliser à des scénarios de communication plus com-
plexes. Par exemple, dans le codage sécurisé de réseau ou secure network
coding Alice est connectée avec Bob par une infrastructure de communication
plus compliquée, qui consiste en un réseau de câbles et de nœuds qui transfor-
ment et transmettent les données reçues ; on suppose toujours qu’Ève contrôle
(c’est-à-dire, écoute et manipule) certains câbles dans le réseau.

Seulement la communication unilatérale a été étudiée auparavant dans le
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codage sécurisé de réseau. On contribue au sujet en présentant des pro-
tocoles interactifs ; comme dans les scénarios précédents, cela nous permet
d’obtenir des procédés sûrs pour un plus grand nombre de câbles corrompus.
Plus précisément, on présente deux protocoles adaptés de notre construction
de PSMT ; le premier marche en deux étapes, tandis que le seconde marche
en trois, mais peut être adapté à un scénario où plusieurs destinataires (ou
“Bobs”) sont présents. Nos deux protocoles tolèrent le plus grand nombre
possible de câbles corrompus, et restent sûrs quelle que soit la façon dont les
nœuds du réseau transforment les données reçues.

Finalement, on se concentre sur le calcul sécurisé multi-parties, ou MPC de
son nom en anglais. Dans le MPC, n utilisateurs détiennent des entrées privées
x1, . . . , xn respectivement et veulent calculer la valeur f(x1, . . . , xn) d’une fonc-
tion f sur leurs entrées, tout en garantissant l’exactitude du calcul aussi que
la confidentialité des données d’entrée.

Une construction récente est le protocole SPDZ réalisé par Damg̊ard et al.,
remarquable par son exécution très rapide et ses intéressantes possibilités
d’implémentation. Un inconvénient du protocole SPDZ est sa vulnérabilité
à un attaque par déni de service: même un seul utilisateur malveillant peut
causer un échec du calcul, ce qui veut dire que les utilisateur honnêtes doivent
abandonner le calcul sans en apprendre le résultat, tandis que l’utilisateur
malveillant pourrait l’apprendre. Qui plus est, un tel utilisateur malveillant
peut monter ce type d’attaques sans qu’il puisse être identifie comme mal-
honnête.

On améliore le protocole SPDZ pour obtenir l’identification des utilisateurs
malhonnêtes : un tel utilisateur qui fait intentionnellement échouer le protocole
sera identifié comme malveillant. Par conséquent, dans des scénarios classiques
du monde réel, les utilisateurs auront peu de motivation pour tricher, et si
quelqu’un triche malgré tout, l’utilisateur malhonnête peut être identifié et
expulsé du procédé et le calcul exécuté une autre fois, jusqu’à ce qu’il réussisse.

Le défi est d’ajouter cette fonctionnalité de détection des tricheurs au protocole
originel sans augmenter significativement sa complexité. Si personne ne triche,
notre nouveau protocole est aussi efficace que le protocole SPDZ originel qui
ne possède pas de détection de tricheurs. En revanche, si quelqu’un triche, il
est possible que le coût augmente – mais de manière raisonnable, et comme le
tricheur sait qu’il sera attrapé, il est par ailleurs improbable que cela se passe
dans des typiques scénarios réels.
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