
Bayesian Analysis (2017) 12, Number 4, pp. 1069–1103

Inconsistency of Bayesian Inference
for Misspecified Linear Models, and a Proposal

for Repairing It

Peter Grünwald∗ and Thijs van Ommen†

Abstract. We empirically show that Bayesian inference can be inconsistent under
misspecification in simple linear regression problems, both in a model averaging/
selection and in a Bayesian ridge regression setting. We use the standard lin-
ear model, which assumes homoskedasticity, whereas the data are heteroskedastic
(though, significantly, there are no outliers). As sample size increases, the poste-
rior puts its mass on worse and worse models of ever higher dimension. This is
caused by hypercompression, the phenomenon that the posterior puts its mass on
distributions that have much larger KL divergence from the ground truth than
their average, i.e. the Bayes predictive distribution. To remedy the problem, we
equip the likelihood in Bayes’ theorem with an exponent called the learning rate,
and we propose the SafeBayesian method to learn the learning rate from the data.
SafeBayes tends to select small learning rates, and regularizes more, as soon as
hypercompression takes place. Its results on our data are quite encouraging.

1 Introduction

We empirically demonstrate a form of inconsistency of Bayes factor model selection,
model averaging and Bayesian ridge regression under model misspecification on a simple
linear regression problem with random design. We sample data (X1, Y1), (X2, Y2), . . .
i.i.d. from a distribution P ∗, whereXi = (Xi1, . . . , Xipmax) are high-dimensional vectors,
and we allow pmax = ∞. We use nested models M0,M1, . . . where Mp is a standard
linear model, consisting of conditional distributions P (· | β, σ2) expressing that

Yi = β0 +

p∑
j=1

βjXij + εi (1)

is a linear function of p ≤ pmax covariates with additive independent Gaussian noise
εi ∼ N(0, σ2). We equip each of these models with standard priors on coefficients and
the variance, and also put a discrete prior on the models themselves. We specify a
‘ground truth’ P ∗ such that M :=

⋃
p=0,...,pmax

Mp does not contain the conditional

ground truth P ∗(Y | X) (hence the model is ‘misspecified’), but it does contain a P̃ that
is ‘best’ in several respects: it is closest to P ∗ in KL (Kullback–Leibler) divergence, it
represents the true regression function (leading to the best squared error loss predictions
among all P ∈ M) and it has the true marginal variance (explained in Section 2.3).
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Figure 1: The conditional expectation E[Y | X] according to the full Bayesian posterior
based on a prior on models M0, . . . ,M50 with polynomial basis functions, given 100
data points sampled i.i.d. ∼ P ∗ (about 50 of which are at (0, 0)). Standard Bayes
overfits, not as dramatically as maximum likelihood or unpenalized least squares, but
still enough to show dismal predictive behaviour as in Figure 2. In contrast, SafeBayes
(which chooses learning rate η ≈ 0.4 here) and standard Bayes trained only at the points
for which the model is correct (not (0, 0)) both perform very well.

In fact we choose P ∗ such that P̃ ∈ M0, and we choose our prior such that M0

receives substantial prior mass. Still, as n increases, the posterior puts most of its
mass on complex Mp’s with higher and higher p’s, and, conditional on these Mp’s, at
distributions which are very far from P ∗ both in terms of KL divergence and in terms of
L2 risk, leading to bad predictive behaviour in terms of squared error. Figures 1 and 2
illustrate a particular instantiation of our results, obtained when Xij are polynomial
functions of Si and Si ∈ [−1, 1] uniformly i.i.d. We also show comparably bad predictive
behaviour for various versions of Bayesian ridge regression, involving just a single, high-
but-finite dimensional model. In that case Bayes eventually recovers and concentrates
on P̃ , but only at a sample size that is incomparably larger than what can be expected
if the model is correct.

These findings contradict the folk wisdom that, if the model is incorrect, then “Bayes
tends to concentrate on neighbourhoods of the distribution(s) P̃ inM that is/are closest
to P ∗ in KL divergence.” Indeed, the strongest actual theorems to this end that we know
of, (Kleijn and Van der Vaart, 2006; De Blasi and Walker, 2013; Ramamoorthi et al.,
2015), hold, as the authors emphasize, under regularity conditions that are substantially
stronger than those needed for consistency when the model is correct (as by e.g. Ghosal
et al. (2000) or Zhang (2006a)), and our example suggests that consistency may fail to
hold even in relatively simple problems; to illustrate this further, in the supplementary
material (Grünwald and Van Ommen, 2017), Section G.2, we show that the regularity
conditions of De Blasi and Walker (2013) are violated in our setup.
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Figure 2: The expected squared error risk (defined in (4)), obtained when predicting by
the full Bayesian posterior (brown curve), the SafeBayesian posterior (red curve) and
the optimal predictions (black dotted curve), as a function of sample size for the setting
of Figure 1. SafeBayes is the R-log-version of SafeBayes defined in Section 4.2. Precise
definitions and further explanation in and above Section 5.1.

How inconsistency arises The explanation for Bayes’ behaviour in our examples is
illustrated in Figure 3, the essential picture to understand the phenomenon. As explained
in the text (Section 3, with a more detailed analysis in the supplementary material),
the figure indicates that there exists good or ‘benign’ and bad types of misspecification.
Under bad misspecification, a phenomenon we call hypercompression can take place,
and that explains why at the same time we can have a good log-score of the predictive
distribution (as we must, by a result of Barron (1998)) yet a posterior that puts its
mass on very bad distributions.

The solution: Generalized and SafeBayes Bayesian updating can be enhanced with
a learning rate η, an idea put forward independently by several authors (Vovk, 1990;
McAllester, 2003; Barron and Cover, 1991; Walker and Hjort, 2002; Zhang, 2006a) and
suggested as a tool for dealing with misspecification by Grünwald (2011; 2012). η trades
off the relative weight of the prior and the likelihood in determining the η-generalized
posterior, where η = 1 corresponds to standard Bayes and η = 0 means that the
posterior always remains equal to the prior. When choosing the ‘right’ η, which in our
case is significantly smaller than 1 but of course not 0, η-generalized Bayes becomes
competitive again. We give a novel interpretation of generalized Bayes in Section 4.1,
showing that, for this ‘right’ η, it can be re-interpreted as standard Bayes with a different
model, which now has ‘good’ rather than ‘bad’ misspecification. In general, this optimal
η depends on the underlying ground truth P ∗, and the remaining problem is how to
determine the optimal η empirically, from the data.

Grünwald (2012) proposed the SafeBayesian algorithm for learning η. Even though
lacking the explicit interpretation we give in Section 4.1, he mathematically showed that
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it achieves good convergence rates in terms of KL divergence on a variety of problems.1

Here we show empirically that SafeBayes performs excellently in our regression setting,
being competitive with standard Bayes if the model is correct and very significantly
outperforming standard Bayes if it is not. We do this by providing a wide range of ex-
periments, varying parameters of the problem such as the priors and the true regression
function and studying various performance indicators such as the squared error risk,
the posterior on the variance etc.

A Bayesian’s (and our) first instinct would be to learn η itself in a Bayesian manner.
Yet this does not solve the problem, as we show in Section 5.4, where we consider a
setting in which 1/η turns out to be exactly equivalent to the λ regularization parameter
in the Bayesian Lasso and ridge regression approaches. We find that selecting η by (em-
pirical) Bayes, as suggested by e.g. Park and Casella (2008), does not nearly regularize
enough in our misspecification experiments. Instead, the SafeBayesian method learns
η in a prequential fashion, finding the η which minimizes a sequential prediction error
on the data. This would still be very similar to Bayesian learning of η if the error were
measured in terms of the standard logarithmic score, but SafeBayes, which comes in
two versions, uses a ‘randomized’ (R-log-SafeBayes) and an ‘in-model’ (I-log-SafeBayes)
modification of log-score instead (Section 4.2). In the supplementary material we com-
pare R- and I-log-SafeBayes to other existing methods for determining η: Section C.1
provides an illuminating comparison to leave-one-out cross-validation as used in the
frequentist Lasso, and Section F briefly considers approaches from the recent Bayesian
literature Bissiri et al. (2016); Holmes and Walker (2017); Miller and Dunson (2015);
Syring and Martin (2017).

The type of misspecification The models are misspecified in that they make the stan-
dard assumption of homoskedasticity — σ2 is independent of X — whereas in reality,
under P ∗, there is heteroskedasticity, there being a region of X with low and a region
with (relatively) high variance. Specifically, in our simplest experiment the ‘true’ P ∗ is
defined as follows: at each i, toss a fair coin. If the coin lands heads, then sample Xi from
a uniform distribution on [−1, 1], and set Yi = 0 + εi, where εi ∼ N(0, σ2

0). If the coin
lands tails, then set (Xi, Yi) = (0, 0), so that there is no variance at all. The ‘best’ condi-
tional density P̃ , closest to P ∗(Y | X) in KL divergence, representing the true regression
function Y = 0 and moreover ‘reliable’ in the sense of Section 2.3, is then given by (1)
with all β’s set to 0 and σ̃2 = σ2

0/2. In a typical sample of length n, we will thus have
approximately n/2 points with Xi uniform and Yi normal with mean 0, and approxi-
mately n/2 points with (Xi, Yi) = (0, 0). These points seem ‘easy’ since they lie exactly
on the regression function one would hope to learn; but they really wreak severe havoc.

Heteroskedasticity, but no outliers While it is well-known that in the presence of
outliers, Gaussian assumptions on the noise lead to problems, both for frequentist and
Bayesian procedures, in the present problem we have ‘in-liers’ rather than outliers. Also,
if we slightly modify the setup so that homoskedasticity holds, standard Bayes starts be-
having excellently, as again depicted in Figures 1 and 2. Finally, while the figure shows

1An R package SafeBayes which implements the method for Bayesian ridge and Lasso Regression
(De Heide, 2016a) is available at the Comprehensive R Archive Network (CRAN).
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what happens for polynomials, we get essentially the same result with trigonometric
basis functions; in the experiments reported in this paper, we used independent mul-
tivariate X’s rather than nonlinear basis functions, again getting essentially the same
results. In the technical report (Grünwald and Van Ommen, 2014) ([GvO] from now
on) we additionally performed numerous variations on the experiments in this paper,
varying priors and ground truths, and always getting qualitatively the same results. All
this indicates that the inconsistency is really caused by misspecification, in particular
the presence of in-liers, and not by anything else. We also note that our results are
entirely different from the well-known Bayesian inconsistency results of Diaconis and
Freedman (1986): whereas their results are based on a well-specified model having ex-
ponentially small prior mass in KL-neighbourhoods of the true P ∗, our results hold for
a misspecified model, but the ‘pseudo-truth’ P̃ can have a large prior mass (any point
mass < 1 is sufficient to get our results); see also Section B in the supplement.

Three remarks before we start We stress at the outset that, since this is experi-
mental work and we are bound to experiment with finite sets of models (pmax < ∞)
and finite sample sizes n, we do not mathematically show formal inconsistency. Yet,
as we explain in detail in Conclusion 2 in Section 5.2, our experiments with varying
pmax and n strongly suggest that, if we could examine pmax = ∞ and n → ∞, then
actual inconsistency will take place. Additional evidence (though of course, no proof) is
provided by the fact that one of the weakest existing conditions that guarantee consis-
tency under misspecification (De Blasi and Walker, 2013) does not hold for our model;
see Section G.2 in the supplementary material. On the other hand, by checking exist-
ing consistency results for well-specified models one finds that, if one of the submodels
Mp, p < pmax, is correct, then taking a prior over infinitely many models, pmax = ∞,
poses neither a problem for consistency nor for rates of convergence. Since, in addition,
Grünwald and Langford (2004, 2007) did prove mathematically that consistency arises
in a closely related (also featuring in-liers) but more artificial classification problem, we
decided to call the phenomenon we report ‘inconsistency’ — but even if one thinks this
term is not warranted, there remains a serious problem for finite sample sizes.

We also stress that, although both our experiments (as e.g. in Figure 2) and the
implementation details of SafeBayes suggest a predictive–sequential setting, our results
are just as relevant for the nonsequential setting of fixed-sample size linear regression
with random design, which is a standard statistical problem. In such settings, one would
like to have guarantees which, for the fixed, given sample size n, give some indication
as to how ‘close’ our inferred distribution or parameter vector is from some ‘true’ or
optimal vector. For example, the distance between the curve for ‘Bayes, model wrong’
and the curve for the true regression function at each fixed n on the x-axis in Figure 2
can be re-interpreted as the squared L2-distance between the Bayes estimator of the
regression function and the true regression function 0.

Finally, we stress that, if we modify the setup so that the ‘easy’ points (0, 0) are
at a different location, and have themselves a small variance, and the underlying re-
gression function is not 0 everywhere but rather another function in the model, then
all the phenomena we report here persist, albeit at a smaller scale (we performed ad-
ditional experiments to this end in [GvO]; see also Section 6 and (Syring and Martin,
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2017)). Also, recent work (De Heide, 2016b) reports on several real-world data sets for
which SafeBayes substantially outperforms standard Bayes. This suggests that the phe-
nomenon we uncovered is not merely a curiosity, and can really affect Bayesian inference
in practice.

Contents and structure of this paper In Section 2, introduces our setting and the
main concepts needed to understand our results, including the η-generalized posterior,
and instantiates these to the linear model. In Section 3, we explain how inconsistency
can arise under misspecification (essentially the only possible cause is ‘bad misspeci-
fication’ along with ‘hypercompression’). Section 4 explains a potential solution, the
generalized and SafeBayesian methods, and explains why they work. Section 5 discusses
our experiments in detail. Section 6 provides an ‘executive summary’ of the experiments
in this paper and the many additional experiments on which we report in the technical
report [GvO]. In all experiments SafeBayesian methods behave much better in terms
of squared error risk and reliability than standard Bayes if the model is incorrect, and
hardly worse (sometimes still better) than standard Bayes if the model is correct.

Supplementary material Apart from inconsistency, there is one other issue with Bayes
under misspecification: our inference task(s) of interest may not be associated with the
KL-optimal P̃ . We discuss this problem in the (main) Appendix B in the supplemen-
tary material, and show how adopting a Gibbs likelihood (to which we can then apply
SafeBayes) sometimes, but not always solves the problem. On the other hand, we also
discuss how SafeBayes can sometimes even help with well-specified models. We also dis-
cuss related work, pose several Open Problems and tentatively propose a generic theory
of (pseudo-Bayesian) inference of misspecification, parts of which have already been de-
veloped in the companion papers Grünwald and Mehta (2016) and Grünwald (2017).

2 Preliminaries

We consider data Zn = Z1, Z2, . . . , Zn ∼ i.i.d. P ∗, where each Zi = (Xi, Yi) is an
independently sampled copy of Z = (X,Y ), X taking values in some set X , Y taking
values in Y and Z = X ×Y . We are given a model M = {Pθ | θ ∈ Θ} parameterized by
(possibly infinite-dimensional) Θ, and consisting of conditional distributions Pθ(Y | X),
extended to n outcomes by independence. For simplicity we assume that all Pθ have
corresponding conditional densities fθ, and similarly, the conditional distribution P ∗(Y |
X) has a conditional f∗, all with respect to the same underlying measure. While we do
not assume P ∗(Y | X) to be in (or even ‘close’ to) M, we want to learn, from given data
Zn, a ‘best’ (in a sense to be defined below) element of M, or at least, a distribution
on elements of M that can be used to make adequate predictions about future data.
While our experiments focus on linear regression, the discussion in this section holds for
general conditional density models. The logarithmic score, henceforth abbreviated to
log-loss, is defined in the standard manner: the loss incurred when predicting Y based
on density f(· | x) and Y takes on value y, is given by − log f(y | x). A central quantity
in our setup is then the expected log-loss or log-risk, defined as

risk
log(θ) := E(X,Y )∼P∗ [− log fθ(Y | X)]. (2)
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2.1 KL-optimal distribution

We let P ∗
X be the marginal distribution of X under P ∗. The Kullback–Leibler (KL)

divergence D(P ∗‖Pθ) between P ∗ and conditional distribution Pθ is defined as the
expectation, under X ∼ P ∗

X , of the KL divergence between Pθ and the ‘true’ conditional
P ∗(Y | X): D(P ∗‖Pθ) = EX∼P∗

X
[D(P ∗(· | X) ‖Pθ(· | X))]. A simple calculation shows

that for any θ, θ′,

D(P ∗‖Pθ)−D(P ∗‖Pθ′) = risk
log(θ)− risk

log(θ′),

so that the closer Pθ is to P ∗ in terms of KL divergence, the smaller its log-risk, and
the better it is, on average, when used for predicting under the log-loss.

Now suppose thatM contains a unique distribution that is closest, among all P ∈ M
to P ∗ in terms of KL divergence. We denote such a distribution, if it exists, by P̃ . Then
P̃ = Pθ for at least one θ ∈ Θ; we pick any such θ and denote it by θ̃, i.e. P̃ = Pθ̃, and
note that it also minimizes the log-risk:

risk
log(θ̃) = min

θ∈Θ
risk

log(θ) = min
θ∈Θ

E(X,Y )∼P∗ [− log fθ(Y | X)]. (3)

We shall call such a θ̃ (KL-)optimal.

Since, in regions of about equal prior density, the log Bayesian posterior density is
proportional to the log likelihood ratio, we hope that, given enough data, with high
P ∗-probability, the posterior puts most mass on distributions that are close to Pθ̃ in
KL divergence, i.e. that have log-risk close to optimal. Indeed, all existing consistency
theorems for Bayesian inference under misspecification express concentration of the
posterior around Pθ̃. While the minimum KL divergence point is not always of intrinsic

interest, for some (not all) models, P̃ can be of interest for other reasons as well (Royall
and Tsou, 2003): there may be associated inference tasks for which P̃ is also suitable.
Examples of associated prediction tasks for the linear model are given in Section 2.3;
we further consider non-associated tasks such as absolute loss in Appendix B.

2.2 A special case: The linear model

Fix some pmax ∈ { 0, 1, . . . } ∪ {∞}. We observe data Z1, . . . , Zn where Zi = (Xi, Yi),
Yi ∈ R and Xi = (1, Xi1, . . . , Xipmax) ∈ Rpmax+1. Note that this is as in (1) but
from now on we adopt the standard convention to take Xi0 ≡ 1 as a dummy random
variable. We denote by Mp = {Pp,β,σ2 | (p, β, σ2) ∈ Θp} the standard linear model
with parameter space Θp := {(p, β, σ2) | β = (β0, . . . , βp)

� ∈ Rp+1, σ2 > 0}, where
the entry p in (p, β, σ2) is redundant but included for notational convenience. We let
Θ =

⋃
p=0,...,pmax

Θp.Mp states that for all i, (1) holds, where ε1, ε2, . . . ∼ i.i.d. N(0, σ2).
When working with linear models Mp, we are usually interested in finding parameters
β that predict well in terms of the squared error loss function (henceforth abbreviated
to square-loss): the square-loss on data (Xi, Yi) is (Yi −

∑p
j=0 βjXij)

2 = (Yi − Xiβ)
2.

We thus want to find the distribution minimizing the expected square-loss, i.e. squared
error risk (henceforth abbreviated to ‘square-risk’) relative to the underlying P ∗:
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risk
sq(p, β) := E(X,Y )∼P∗(Y −Ep,β,σ2 [Y | X])2 = E(X,Y )∼P∗(Y −

p∑
j=0

βjXj)
2, (4)

where Ep,β,σ2 [Y | X] abbreviates EY∼Pp,β,σ2 |X [Y ]. Since this quantity is independent

of the variance σ2, σ2 is not used as an argument of risksq.

2.3 KL-associated prediction tasks for the linear model: Optimality;
reliability

Suppose that an optimal P̃ ∈ M exists in the regression model. We denote by p̃ the
smallest p such that P̃ ∈ Mp, and define σ̃2, β̃ such that P̃ = Pp̃,β̃,σ̃2 . A straightforward

computation shows that for all (p, β, σ2) ∈ Θ:

risk
log((p, β, σ2)) =

1

2σ2
risk

sq((p, β)) +
1

2
log(2πσ2), (5)

so that the (p, β) achieving minimum log-risk for each fixed σ2 is equal to the (p, β) with
the minimum square-risk. In particular, (p̃, β̃, σ̃2) must minimize not just log-risk, but
also square-risk. Moreover, the conditional expectation EP∗ [Y | X] is known as the true
regression function. It minimizes the square-risk among all conditional distributions for
Y | X. Together with (5) this implies that, if there is some (p, β) such that E[Y | X] =∑p

j=0 βjXj = Xβ, i.e. (p, β) represents the true regression function, then (p̃, β̃) also
represents the true regression function. In all our examples, this will be the case: the
model is misspecified only in that the true noise is heteroskedastic; but the model does
invariably contain the true regression function.

Moreover, for each fixed (p, β), the σ2 minimizing risk
log is, as follows by differen-

tiation, given by σ2 = risk
sq(p, β). In particular, this implies that

σ̃2 = risk
sq(p̃, β̃), (6)

or in words: the KL-optimal model variance σ̃2 is equal to the true expected (marginal,
not conditioned on X) square-risk obtained if one predicts with the optimal (p̃, β̃). This
means that the optimal (p̃, β̃, σ̃2) is reliable in the sense of Grünwald (1998, 1999): its
self-assessment about its square-loss performance is correct, independently of whether
β̃ is equal to the true regression function or not. In other words, (p̃, β̃, σ̃2) correctly
predicts how well it predicts in the squared-error sense.

Summarizing, for misspecified models, (p̃, β̃, σ̃2) is optimal not just in KL/log-risk
sense, but also in terms of square-risk and in terms of reliability; in our examples, it
also represents the true regression function. We say that, for linear models, square-risk
optimality, square-risk reliability and regression-function consistency are KL-associated
prediction tasks: if we can find the KL-optimal θ̃, we automatically behave well in these
associated tasks as well. Thus, whenever one is prepared to work with linear models and
one is interested in squared error risk or reliability, then Bayesian inference would seem
the way to go, even if one suspects misspecification. . . at least if there is consistency.
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2.4 The generalized posterior

General losses The original ‘generalized’ or ‘Gibbs’ posterior is a notion going back
at least to Vovk (1990) and has been developed mainly within the so-called (frequen-
tist) PAC-Bayesian framework (McAllester, 2003; Seeger, 2002; Catoni, 2007; Audibert,
2004; Zhang, 2006b; see also Jiang and Tanner (2008), Bissiri et al. (2016) and the ex-
tensive discussion in the supplementary material). It is defined relative to a prior on
predictors rather than probability distributions. Depending on the decision problem at
hand, predictors can be e.g. classifiers, regression functions or probability densities. For-
mally, we are given an abstract space of predictors represented by a set Θ, which obtains
its meaning in terms of a loss function 	 : Z × Θ → R, writing 	θ(z) as shorthand for
	(z, θ). Following e.g. Zhang (2006b), for any prior Π on Θ with density π relative to
some underlying measure ρ, we define the generalized Bayesian posterior with learning
rate η relative to loss function 	, denoted as Π | Zn, η, as the distribution on Θ with
density

π(θ | zn, η) := e−η
∑n

i=1 �θ(zi)π(θ)∫
e−η

∑n
i=1 �θ(zi)π(θ)ρ(dθ)

=
e−η

∑n
i=1 �θ(zi)π(θ)

Eθ∼Π[e−η
∑n

i=1 �θ(zi)]
. (7)

Thus, if θ1 fits the data better than θ2 by a difference of ε according to loss function 	,
then their posterior ratio is larger than their prior ratio by an amount exponential in ε,
where the larger η, the larger the influence of the data as compared to the prior.

Log-loss and likelihood Now consider the case that the set Θ represents a model of
(conditional) distributionsM = {Pθ | θ ∈ Θ}. Then we may set 	θ(zi) = − log fθ(yi | xi)
to be the log-loss as defined above. The definition of η-generalized posterior now spe-
cializes to the definition of ‘generalized posterior’ (in this context also called “fractional
posterior”) as known within the Bayesian literature (Walker and Hjort, 2002; Zhang,
2006a; Martin et al., 2017):

π(θ | zn, η) = (f(yn | xn, θ))ηπ(θ)∫
(f(yn | xn, θ))ηπ(θ)ρ(dθ)

=
(f(yn | xn, θ))ηπ(θ)

Eθ∼Π[(f(yn | xn, θ))η]
, (8)

where here as in the remainder we use the notation f(· | θ) and fθ(·) interchangeably.
Obviously η = 1 corresponds to standard Bayesian inference, whereas if η = 0 the
posterior is equal to the prior and nothing is ever learned. Our algorithm for learning η
will usually end up with values in between. The rationale behind taking η < 1 even if the
model is well-specified is discussed in Section F.2. A connection to misspecification was
first made by Grünwald (2011) (see Section F) and Grünwald (2012). In the literature
(7) is often called a ‘Gibbs posterior’; whenever no confusion can arise, we will use the
phrase ‘generalized posterior’ to refer to both (7) and (8).

Generalized predictive distribution We also define the predictive distribution based on
the η-generalized posterior (8) as a generalization of the standard definition as follows:
for m ≥ 1,m′ ≥ m, we set

f̄(yi+1, . . . , yi+m | xi+1, . . . , xi+m′ , zi, η)
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:= Eθ∼Π|zi,η[f(yi+1, . . . , yi+m | xi, . . . , xi+m′ , θ)]

= Eθ∼Π|zi,η[f(yi+1, . . . , yi+m | xi, . . . , xi+m, θ)], (9)

where the first equality is a definition and the second follows by our i.i.d. assumption.
We always use the bar-notation f̄ to indicate marginal and predictive distributions, i.e.
distributions on data that are arrived at by integrating out parameters. If η = 1 then f̄
and π become the standard Bayesian predictive density and posterior, and if it is clear
from the context that we consider η = 1, we leave out the η in the notation.

2.5 Instantiating generalized Bayes to linear model selection and
averaging

Now consider again a linear model Mp as defined in Section 2.3. We instantiate the
generalized posterior and its marginals for this model. With prior π(β, σ2 | p) taken
relative to Lebesgue measure, (8) specializes to:

π(β, σ | zn, p, η) = (2πσ2)−nη/2e−
η

2σ2

∑n
i=1(yi−xiβ)

2

π(β, σ | p)∫
(2πσ2)−nη/2e−

η

2σ2

∑n
i=1(yi−xiβ)2π(β, σ | p) dβ dσ

.

In the numerator 1/σ2 and η are interchangeable in the exponent, but not in the factor
in front: their role is subtly different. For Bayesian inference with a sequence of models
M =

⋃
p=0,...,pmax

Mp, with π(p) a probability mass function on p ∈ { 0, . . . , pmax }, we
get

π(β, σ, p | zn, η) = (2πσ2)−nη/2e−
η

2σ2

∑n
i=1(yi−xiβ)

2

π(β, σ | p)π(p)∑pmax

p=0

∫
(2πσ2)−nη/2e−

η

2σ2

∑n
i=1(yi−xiβ)2π(β, σ | p)π(p) dβ dσ

. (10)

The total generalized posterior probability of model Mp then becomes:

π(p | zn, η) =
∫

π(β, σ, p | zn, η) dβ dσ. (11)

The previous displays held for general priors. The experiments in this paper adopt
widely used priors (see e.g. Raftery et al., 1997): normal priors on the β’s and inverse
gamma priors on the variance. These conjugate priors allow explicit analytical formulas
for all relevant quantities for arbitrary η. We consider here the simple case of a fixedMp;
the more complicated formulas with an additional prior on p are given in [GvO]. Let
Xn = (x�1 , . . . , x

�
n)

� be the design matrix, let the initial Gaussian prior on β conditional
on σ2 be given by N(β̄0, σ

2Σ0), and the prior on σ2 by π(σ2) = Inv-gamma(σ2 | a0, b0)
for some a0 and b0. Here we use the following parameterization of the inverse gamma
distribution:

Inv-gamma(σ2 | a, b) = σ−2(a+1)e−b/σ2

ba/Γ(a). (12)

Then the generalized posterior on β is again Gaussian with mean
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β̄n,η := Eβ∼Π|zn,p,η β = Σn,η(Σ
−1
0 β̄0 + ηX�

ny
n) (13)

and covariance matrix σ2Σn,η, where Σn,η = (Σ−1
0 +ηX�

nXn)
−1 (note that the posterior

mean of β given σ2 does not depend on σ2; also note that for η = 1, this is the
standard posterior); the generalized posterior π(σ2 | zn, p, η) is given by Inv-gamma(σ2 |
an,η, bn,η) where an,η = a0 + ηn/2 and bn,η = b0 +

η
2

∑n
i=1(yi − xiβ̄n,η)

2. The posterior
expectation of σ2 can be calculated as

σ̄2
n,η :=

bn,η
an,η − 1

. (14)

3 Bayesian inconsistency from bad misspecification

In this section and the next, we provide the necessary background on Bayesian inconsis-
tency under misspecification. We first explain (Section 3.1) when it can arise and we then
explain (Section 3.2) why it arises. Section 4.1 explains how a different learning rate can
solve the problem, and Section 4.2 introduces SafeBayes and explains how it can find this
learning rate. We focus on generalized Bayes with standard likelihoods (8), but stress
that analogous problems arise with Gibbs posteriors (7), as explained in Appendix B.

3.1 Preparation: Benign vs. bad misspecification

The first thing to understand what goes on is to distinguish between two types of
misspecification. The difference is depicted in cartoon fashion in Figure 3. In the fig-
ure, P̃ = argminP∈M D(P ∗‖P ) is the distribution in model M that minimizes KL

divergence to the ‘true’ P ∗ but, since the model is nonconvex, the distribution ¯̃P that
minimizes KL divergence to P ∗ within the convex hull of M may be very different from
P̃ . This means that also the Bayes predictive distribution P̄ (Yi | Xi, Z

i−1) based on
Zi−1, with density as given by (9) with η = 1 and m = 1, may happen to be very
different from any P ∈ M, and in fact, closer to P ∗ than the KL-optimal P̃ . If, as in
the picture, P ∗ is such that infP∈M D(P ∗‖P ) decreases if the infimum is taken over
the convex hull of M, then we speak of ‘bad misspecification’; otherwise (e.g. if Q∗

rather than P ∗ was the true distribution, so that Q̃ reached the minimum) the mis-
specification is ‘benign’. We will see in the next subsection that inconsistency (posterior
not concentrating near P̃ ) happens if and only if the Bayes predictive P̄ (Yi | Xi, Z

i−1)
is KL-closer to P ∗ than P̃ at many i, which in turn can happen only if we have bad
misspecification. Figure 4 illustrates the strong potential for bad misspecification with
our regression model. Two remarks are in order: (a) for convex probability models, one
can only have benign misspecification. (b) Our regression model may seem convex since
it is convex at the level of regression coefficients, but, as we illustrate further below, it
is not convex at the level of conditional densities, which is what matters.

3.2 Hypercompression

A paradox? We now explain in more detail what can (and does, in our experiments)
happen under bad misspecification. We first note that there does exist an almost
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Figure 3: Benign vs. bad misspecification.

Figure 4: Variance of standard Bayes predictive distribution conditioned on a new in-
put S as a function of S after 50 examples for the polynomial model-wrong experiment
(Figure 1), shown both for the predictive distribution based on the full, model-averaging
posterior and for the posterior conditioned on the MAP model Mp̆map . For both pos-
teriors, the posterior mean of Y is incorrect for X �= 0, yet f̄(Y | Z50, X) still achieves
small risk because of its small variance at X = 0.

condition-free ‘consistency-like’ result for Bayesian inference that even holds under mis-

specification, but it is different from standard consistency results in an essential way.

This result, which in essence goes back to Barron (1998), says that, for any i.i.d. model

M, under no further conditions, for all n, the following holds:

E

[
1

n

n∑
i=1

(
D(P ∗‖P̄ (· | Zi−1))−D(P ∗‖Pθ̃)

)]
(15)
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= E

[
1

n

n∑
i=1

risk
log(P̄ (· | Zi−1))

]
− risk

log(θ̃)

= E

[
1

n

n∑
i=1

(
− log f̄(Yi | Xi, Z

i−1)
)
−

(
− log fθ̃(Yi | Xi)

)]
≤ smalln, (16)

where the expectation is over Zn ∼ P ∗. Here, extending (2), we used the notation
risk

log(P̄ (· | Zi−1)) = E(Xi,Yi)∼P∗ [− log f̄(Yi | Xi, Z
i−1)]. The equalities are (essen-

tially trivial, see (Grünwald, 2007)) rewritings; the real meat is in the final inequality.
smalln depends on the amount of prior mass in neighbourhoods of P̃ , and in our case,
is on the order of (log n)/n with a small constant in front (details in Section D.1 of the
Supplementary Material). This implies that at most sample sizes i, D(P ∗‖P̄ (· | Zi−1))
must be of order 1/i, even if the model is misspecified; thus, at least in a time-averaged
sense, the KL divergence between P ∗ and the Bayes predictive distribution converges
at a fast rate of order 1/n to the smallest value attainable within model M, or be-
comes even smaller. However, in the experiment of Figure 1, we see that Bayes is not
putting significant posterior mass near the pseudo-true parameter θ̃ at most n. Given
(15)–(16), at first this may seem paradoxical or even impossible, but of course there is
an explanation: because we have bad misspecification as in Figure 3, it can in fact hap-
pen that many terms D(P ∗‖P̄ (· | Zi−1)) −D(P ∗‖Pθ̃) in the sum in (15) are negative.
Then Barron’s bound (15)–(16) may be satisfied, not because the posterior concentrates
on distributions close to P̃ , but rather because — at many sample sizes i — it puts
its mass on distributions which are very far from P̃ , but mixed together are closer in
KL-divergence to P ∗ than is P̃ . As long as the prior puts sufficient mass near P̃ and the
data and model are i.i.d., this is the only way in which inconsistency under misspeci-
fication can occur. By the law of large numbers, if (and only if) a substantial fraction
of the terms in (15) are negative, we would also expect that the log-loss of predicting
Yi given Xi using the Bayes predictive is often lower than the log-loss of predicting Yi

given Xi using the KL-optimal P̃ ; in other words, we expect many of the terms on the
left in (16) to be negative as well. As we show in Section 5.2, Figure 7, this indeed
happens in our experiments — in such an extreme form that for n < 100 the entire sum
in (16) is negative by a fair amount. If this sum is negative for empirical data, we say
that hypercompression takes place. The name is borrowed from information theory —
readers familiar with this field will recognize the sum over the − log fθ̃(Yi | Xi) as the
number of bits needed to code the n observed y-values given the x-values under the code
which would be optimal to use in expectation if the data were sampled from Pθ̃. The
sum in (16) being negative implies that this code is outperformed by another code on
the empirical data, something which is next to impossible if the model is correct — this
is quantified by the no-hypercompression inequality (Grünwald, 2007) which we repeat
in Section 5.3 to help interpret our results.

If we have hypercompression, then P̄ (· | Zi) will be close in KL divergence to P ∗.
Small KL-divergence implies small log-risk, and in Section 2.3 was also related to small
square-risk and good performance on other KL-associated prediction tasks. This at
first sight may seem like another paradox: in Figure 2 we saw very large square-risk of
the Bayes predictive. Again, this is no contradiction: the relation between log-risk and
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square-risk (5) does not hold for arbitrary distributions, but only for members of the
model. If, as in the figure, P̄ (· | Zi−1) is outside the model (in fact, it differs significantly
from any element of the model), small KL-divergence is no longer an indication that
P̄ (· | Zi−1) will also give good results for KL-associated prediction tasks.

To see where the hypercompression in our regression example comes from, note first
that our model is not convex: the conditional densities indexed by θ are normals with
mean Xβ and fixed variance σ2 for each given X; a mixture of two such conditional
normals can be bimodal and hence is itself not a conditional normal, hence the model
is not convex. In our setting the predictive is a mixture of infinitely many conditional
normals. Its conditional density is a mixture of t-distributions, whose variance highly
depends on X, thus making the highly heteroskedastic predictive very different from
any of the — homoskedastic — distributions in the model. The striking difference is
plotted in Figure 4. Hypercompression occurs because at X = 0, the variance of the
predictive is smaller than σ̃2, which substantially decreases the log-risk.

4 The Solution: How η � 1 can help, and how
SafeBayes finds it

4.1 How η-generalized Bayes for η � 1 can avoid bad
misspecification

We start with a re-interpretation of the η-generalized posterior: for small enough η, it is
formally equivalent to a standard posterior based on a modified joint probability model2.
Let f∗(x, y) be the density of the true distribution P ∗ on (X,Y ). Formally, we define
the η-reweighted distributions P (η) as joint distributions on (X,Y ) with densities f (η)

given by

f (η)(x, y | θ) = f∗(x, y) ·
(
f(y | x, θ)
f(y | x, θ̃)

)η

, (17)

extended to n outcomes by independence. Now, as follows from (Van Erven et al., 2015,
Example 3.7), in our setting3 there exists a critical value of η̄ such that if we take any
0 < η ≤ η̄, then for every θ ∈ Θ, P (η)(· | θ) is a (sub-) probability distribution, i.e. for
all θ ∈ Θ, ∫ ∫

f (η)(x, y | θ)dxdy ≤ 1. (18)

If for some θ ∈ Θ, (18) is strictly smaller than 1, say 1 − ε, then the corresponding
P (η)(· | θ) can be thought of as a standard probability distribution by defining it on
extended outcome space (X ×Y)∪{�} and assuming that it puts mass ε on the special
outcome � which in reality will never actually occur. We can thus think of M(η) :=
{P (η)(· | θ) | θ ∈ Θ} as a standard probability model. One immediately verifies that,

2In this explicit form, this insight is new and cannot be found in any of the earlier papers on
generalized or safe Bayes, although the reweighted probabilities that we now define can be found in
e.g. Van Erven et al. (2015).

3The story still goes through with some modifications if η̄ = 0 (Grünwald and Mehta, 2016).
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for every η > 0, D(P ∗‖P (η)(· | θ)) is minimized for θ̃, just as before — P (η)(· | θ̃) now
being equal to the ‘true’ P ∗ (!). By Bayes’ theorem, with prior π on model M(η), the
posterior probability is given by:

π(θ | zn) = f (η)(xn, yn | θ) · π(θ)∫
f (η)(xn, yn | θ)π(θ)ρ(dθ) =

∏n
i=1 f

∗(xi, yi) ·
(

f(yi|xi,θ)

f(yi|xi,θ̃)

)η

· π(θ)∫ ∏n
i=1 f

∗(xi, yi) ·
(

f(yi|xi,θ)

f(yi|xi,θ̃)

)η

π(θ)ρ(dθ)

=

∏n
i=1 f(yi | xi, θ)

η · π(θ)∫ ∏n
i=1 f(yi | xi, θ)ηπ(θ)ρ(dθ)

, (19)

which is seen to coincide with (8). Thus, as promised, for any 0 < η ≤ η̄, we can
equivalently think of the generalized posterior as a standard posterior on a different
model. But for such a value of η, our use of generalized Bayesian updating is equivalent
to using Bayes’ theorem in the standard way with a correctly specified probability model
(because P (· | θ̃) = P ∗), and hence standard consistency and rate of convergence results
such those by Ghosal et al. (2000) kick in, and convergence of the posterior must take
place. We can also see this in terms of Barron’s result, (15)–(16), which must also hold
for the model M(η), i.e. if we replace the standard predictive distribution P̄ (and its
density f̄) for model M by the standard predictive for model M(η). For this reweighted
model, we have that

0 = D(P ∗‖P̃ (η)) ≤ D(P ∗‖P̄ ) (20)

for any arbitrary mixture P̄ of distributions inM(η), and therefore also for every possible
predictive distribution P̄ := P̄ (· | Zi). This means that the terms in the sum in (15)
are now all positive and (15)–(16) now does imply that, at most n, the Bayes predictive
distribution is close to P̃ — so, generalized Bayes with 0 < η < η̄ should become
competitive again. The ‘best’ value of η will typically be slightly smaller than, but
not equal to η̄: convergence of the posterior on reweighted probabilities P (η) of order
smalln = (log n)/n corresponds to a convergence of the original probabilities P (1) at
order (logn)/(nη), so the price to pay for using a small η is that, although the posterior
will now concentrate on the KL-optimal distribution in our model, it may take longer
(by a constant factor) before this happens. The η at which the fastest convergence takes
place will thus be close to η̄, but in practice it may be slightly smaller, as we further
explain in Appendix D.2. We proceed to address the one remaining question: how to
determine η̄ based on empirical data.

4.2 The SafeBayesian algorithm and How it finds the right η

We introduce SafeBayes via Dawid’s prequential interpretation of Bayes factor model
selection. As was first noticed by Dawid (1984) and Rissanen (1984), we can think of
Bayes factor model selection as picking the model with index p that, when used for
sequential prediction with a logarithmic scoring rule, minimizes the cumulative loss.
To see this, note that for any distribution whatsoever, we have that, by definition of
conditional probability,

− log f(yn) = − log
n∏

i=1

f(yi | yi−1) =
n∑

i=1

− log f(yi | yi−1).
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In particular, for the standard Bayesian marginal distribution f̄(· | p) = f̄(· | p, η = 1)
as defined above, for each fixed p, we have

− log f̄(yn | xn, p) =

n∑
i=1

− log f̄(yi | xn, yi−1, p) =

n∑
i=1

− log f̄(yi | xi, z
i−1, p), (21)

where the second equality holds by (9). If we assume a uniform prior on model index p,
then Bayes factor model selection picks the model maximizing π(p | zn), which by Bayes’
theorem coincides with the model minimizing (21), i.e. minimizing cumulative log-loss.
Similarly, in ‘empirical Bayes’ approaches, one picks the value of some parameter ρ
that maximizes the marginal Bayesian probability f̄(yn | xn, ρ) of the data. By (21),
which still holds with p replaced by ρ, this is again equivalent to the ρ minimizing the
cumulative log-loss. This is the prequential interpretation of Bayes factor model selection
and empirical Bayes approaches, showing that Bayesian inference can be interpreted as
a sort of forward (rather than cross-) validation (Dawid, 1984; Rissanen, 1984; Hjorth,
1982).

We will now see whether we can use this approach with ρ in the role of the η for the
η-generalized posterior that we want to learn from the data. We continue to rewrite (21)
as follows (with ρ instead of p that can either stand for a continuous-valued parameter or
for a model index but not yet for η), using the fact that the Bayes predictive distribution
given ρ and zi−1 can be rewritten as a posterior-weighted average of fθ:

ρ̆ := argmax
ρ

f̄(yn | xn, ρ) = argmin
ρ

n∑
i=1

(
− log f̄(yi | xi, z

i−1, ρ)
)

= argmin
ρ

n∑
i=1

(
− logEθ∼Π|zi−1,ρ[f(yi | xi, θ)]

)
. (22)

This choice for ρ̆ being entirely consistent with the (empirical) Bayesian approach, our
first idea is to choose η̂ in the same way: we simply pick the η achieving (22), with
ρ substituted by η. However, this will tend to pick η close to 1 and does not improve
predictions under misspecification — this is illustrated experimentally in Section 5.4;
see also (Grünwald and Van Ommen, 2014, Figure 13). But it turns out that a slight
modification of (22) does the trick: we simply interchange the order of logarithm and
expectation in (22) and pick the η minimizing

n∑
i=1

Eθ∼Π|zi−1,η [− log f(yi | xi, θ)] . (23)

In words, we pick the η minimizing the posterior-expected posterior-Randomized log-
loss, i.e. the log-loss we expect to obtain, according to the η-generalized posterior, if
we actually sample from this posterior. This modified loss function has also been called
Gibbs error (Cuong et al., 2013); we simply call it the η-R-log-loss from now on.

We now give a heuristic explanation of why (22) (with ρ = η) fails while (23) works;
a much more detailed explanation is in the supplementary material. The problem with
(22) is that it tends to be small for η at which hypercompression takes place. By (15),
at η at which bad misspecification and hence hypercompression takes place — some
of the terms inside the expectation in (15) are negative — we also expect some of the
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terms in (16) to be negative. In Figure 7 we will see that in our experiments, this
indeed happens. (22) can thus become very small — smaller than the cumulative loss
we would get if we would persistently predict with the optimal θ̃ — for η = 1 or close to
1. These are the η for which we have already established that Bayes fails. In contrast,
the Gibbs error (23) is small in expectation only if a substantial part of the posterior
mass is assigned to θ close to θ̃ in the sense that D(P ∗‖Pθ)−D(P ∗‖Pθ̃) is small. This
stricter requirement clearly cannot favour η at which hypercompression takes place, and
directly targets η∗ at which the posterior mass concentrates around the optimal θ̃ — so
SafeBayes can be expected to perform well as long as such η∗ exists. Barron’s theorem
in combination with (20) implies (ignoring some subtleties explained in the appendix)
that for η∗ < η̄, for all large enough n (depending on η∗), the η∗-generalized posterior
indeed concentrates around θ̃, so that SafeBayes will tend to find such an η∗.

In practice, it is computationally infeasible to try all values of η and we simply have
to try out a grid of values, where, as shown by Grünwald (2012), it is sufficient to let grid
points decrease exponentially fast. For convenience we give a detailed description of the
algorithm below, copied from Grünwald (2012). In the present paper, we will invariably
apply the algorithm with zi = (xi, yi) as before, and 	θ(zi) set to the (conditional)
log-loss as defined before.

Algorithm 1: The (R-)SafeBayesian algorithm

Input: data z1, . . . , zn, model M = {f(· | θ) | θ ∈ Θ}, prior Π on Θ, step-size
κstep, max. exponent κmax, loss function 	θ(z)

Output: Learning rate η̂
Sn := { 1, 2−κstep , 2−2κstep , 2−3κstep , . . . , 2−κmax };
for all η ∈ Sn do

sη := 0;
for i = 1 . . . n do

Determine generalized posterior Π(· | zi−1, η) of Bayes with learning rate
η.
Calculate “posterior-expected posterior-randomized loss” of predicting
actual next outcome:

r := 	Π|zi−1,η(zi) = Eθ∼Π|zi−1,η [	θ(zi)] (24)

sη := sη + r;

end

end
Choose η̂ := argminη∈Sn

{ sη } (if min achieved for several η ∈ Sn, pick largest);

Variation Wemay also consider the η which, instead of the η-R-log-loss ((23) and (24)),
minimizes the η-in-model-log-loss (or just η-I-log-loss), defined as

n∑
i=1

[
− log f(yi | xi,Eθ∼Π|zi−1,η[θ])

]
. (25)
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We call the version of SafeBayes which minimizes the alternative objective function
(25) in-model SafeBayes, abbreviated to I-log-SafeBayes, and from now on use R-log-
SafeBayes for the original version based on the R-log-loss. Like (23), (25) cannot ex-
ploit hypercompression: it measures prediction error using the log score of a distribution
within M(η), whereas hypercompression only occurs if a distribution outside M(η) is
used; otherwise though, it is quite different from (23), and further illuminating motiva-
tion is provided in Section C.1 in the supplementary material. The theoretical results of
Grünwald (2012) do not give any clue as to whether to prefer the I- or the R-versions,
and a secondary goal of the experiments in this paper is thus to see whether one of them
is always preferable over the other (we find that the answer is no). Explicit formulas
instantiating both versions of SafeBayes to the linear model are given in Section C.1 in
the supplement; Section C.3 recalls some theoretical results on SafeBayes’ convergence
behaviour.

5 Main experiment

In this section we provide our main experimental results, based on linear models Mp

as defined in Section 2.2. Figures 5 and 6 depict, and Section 5.2 discusses the results
of model selection and averaging experiments, which choose or average between the
models 0, . . . , pmax, where we consider first an incorrectly and then a correctly specified
model, both with pmax = 50; Figures G.1 and G.2 in the supplement do the same for
pmax = 100. Section 5.4 contains and interprets additional experiments on Bayesian
ridge regression, with a fixed p; a multitude of additional experiments checking whether
our results hold under model, prior and ground truth variations is provided in [GvO].
The final Section 6 summarizes the relevant findings of both the experiments below
and these additional experiments. But first we need to explain the priors π and the
sampling (‘true’) distributions P ∗ with which we experiment: as to the priors, in our
model selection/averaging experiments, we use a fat-tailed prior on the models given by

π(p) ∝ 1

(p+ 2)(log(p+ 2))2
.

This prior was chosen because it remains well-defined for an infinite collection of models,
even though we only use finitely many in our experiments. As a sanity check we repeated
some of our experiments with a uniform prior on 0, . . . , pmax instead; the results were
indistinguishable. Each model Mp has parameters β, σ2, on which we put the standard
conjugate priors as described in Section 2.5. We set the mean of the prior on β to
β̄0 = 0, and its covariance matrix to σ2Σ0 setting Σ0 to the identity matrix Σ0 = Ip+1;
the hyperparameters on the variance are set to a0 = 1 and b0 = 40; in Appendix C.2
we explain the reasons for this choice and alternatives we experimented with as well.

Concerning ground truth P ∗, our experiments fall into two categories: correct-model
and wrong-model experiments. In the correct-model experiments,X1, X2, . . . are sampled
i.i.d., with, for each individual Xi = (Xi1, . . . , Xipmax), Xi1 . . . , Xipmax i.i.d. ∼ N(0, 1).
Given each Xi, Yi is generated as

Yi = .1 · (Xi1 + . . .+Xi4) + εi, (26)
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where the εi are i.i.d. ∼ N(0, σ∗2) with variance σ∗2 = 1/40. In contrast, in the wrong-
model experiments, at each time point i, a fair coin is tossed independently of everything
else. If the coin lands heads, then the point is ‘easy’, and (Xi, Yi) := (0, 0). If the coin
lands tails, then Xi is generated as for the correct model, and Yi is generated as (26), but
now the noise random variables have variance σ2

0 = 2σ∗2 = 1/20. Thus, Zi = (Xi, Yi)
is generated as in the true model case but with a larger variance; this larger variance
has been chosen so that the marginal variance of each Yi is the same value σ∗2 in both
experiments.

From the results in Section 2.3 we immediately see that, for both experiments,
the optimal model is Mp̃ for p̃ = 4, and the optimal distribution in M and Mp̃ is

parameterized by θ̃ = (p̃, β̃, σ̃2) with p̃ = 4, β̃ = (β̃0, . . . β̃4) = (0, .1, .1, .1, .1), σ̃2 = 1/40
(in the correct model experiment, σ̃2 = σ∗2; in the wrong model experiment, since
σ̃2 must be reliable, it must be equal to the square-risk obtained with (p̃, β̃), which
is (1/2) · (1/20) = 1/40). f(x) := xβ̃ is then equal to the true regression function
EP∗ [Y | X].

Variations We have already seen a variation of these two experiments depicted in
Figures 1 and 2. In the correct-model version of that experiment, P ∗ is defined as follows:
set Xj = Pj(S), where Pj is the Legendre polynomial of degree j and S is uniformly
distributed on [−1, 1], and set Y = 0 + ε, where ε ∼ N(0, σ∗2), with σ∗2 = 1/40;
(X1, Y1), . . . are then sampled as i.i.d. copies of (X,Y ). Note that the true regression
function is 0 here. In [GvO] we briefly consider this and several other variations of these
ground truths.

5.1 The statistics we report

Figure 5 reports the results of the wrong-model experiment, and Figure 6 of the correct-
model experiment, both with pmax = 50. For both experiments we measure three aspects
of the performance of Bayes and SafeBayes, each summarized in a separate graph. First,
we show the behaviour of several prediction methods based on SafeBayes relative to
square-risk; second, we check a form of model identification consistency; third, we mea-
sure whether the methods provide a good assessment of their own predictive capabilities
in terms of square-loss, i.e. whether they are reliable and not ‘overconfident’. Below we
explain these three performance measures in detail. We also provide a fourth graph in
each case indicating what η̂’s are typically selected by the two versions of SafeBayes.

Square-risk For a given distribution W on (p, β, σ2), the regression function based on
W , a function mapping covariate X to R, abbreviated to EW [Y | X], is defined as

EW [Y | X] := E(p,β,σ)∼W EY∼Pp,β,σ|X [Y ] = E(p,β,σ)∼W

⎡
⎣ p∑
j=0

βjXj

⎤
⎦ . (27)

If we take W to be the η-generalized posterior, then (27) is also simply called the η-
posterior regression function. The square-risk relative to P ∗ based on predicting by W
is then defined as an extension of (4) as
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Figure 5: Four graphs showing respectively the square-risk, MAP model order, over-
confidence (lack of reliability), and selected η̂ at each sample size, each averaged over
30 runs, for the wrong-model experiment with pmax = 50, for the methods indicated in
Section 5.1. For the selected-η̂ graph, the pale lines are one standard deviation apart
from the average; all lines in this graph were computed over η̂ indices (so that the lines
depict the geometric mean over the values of η̂ themselves).



P. Grünwald and T. van Ommen 1089

Figure 6: Same graphs as in Figure 5 for the correct-model experiment with pmax = 50.
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risk
sq(W ) := E(X,Y )∼P∗(Y −EW [Y | X])2. (28)

In the experiments below we measure the square-risk relative to P ∗ at sample size i− 1
achieved by, respectively, (1), the η-generalized posterior, and (2), the η-generalized
posterior conditioned on the MAP (maximum a posteriori) model, i.e.

EZi−1∼P∗ [risksq(W )], with W = Π | Zi−1, η ; W = Π | Zi−1, η, p̆map(Zi−1,η) (29)

respectively, where the MAP model p̆map(Zi−1,η) is defined as the p achieving
maxp∈0,...,pmax π(p | Zi−1, η), with π(p | Zi−1, η) defined as in (11). We do this for three
values of η: (a) η = 1, corresponding to the standard Bayesian posterior, (b) η := η̂(Zi−1)
set by the R-log SafeBayesian algorithm run on the past data Zi−1, and (c) η set by
the I-log SafeBayesian algorithm. In the figures of Section 5.2, 1(a) is abbreviated to
Bayes, 1(b) is R-log-SafeBayes, 1(c) is I-log-SafeBayes, 2(a) is Bayes MAP, 2(b) is
R-log-SafeBayes MAP, and 2(c) is I-log-SafeBayes MAP.

Concerning the two square-risks that we record: The first choice is the most natural,
corresponding to the prediction (regression function) according to the ‘standard’ η-
generalized posterior. The second corresponds to the situation where one first selects a
single submodel p̆map and then bases all predictions on that model; it has been included
because such methods are often adopted in practice.

In Figure 5 and subsequent figures below, we depict these quantities by sequentially
sampling data Z1, Z2, . . . , Zmax i.i.d. from a P ∗ as defined above, where max is some
large number. At each i, after the first i−1 points Zi−1 have been sampled, we compute
the two square-risks given above. We repeat the whole procedure a number of times
(called ‘runs’); the graphs show the average risks over these runs.

MAP-model identification / Occam’s razor When the goal of inference is model iden-
tification, ‘consistency’ of a method is often defined as its ability to identify the smallest
model Mp̃ containing the ‘pseudo-truth’ (β̃, σ̃2). To see whether standard Bayes and/or
SafeBayes are consistent in this sense, we check whether the MAP model p̆map(Zi−1,η)

is equal to p̃.

Reliability vs. overconfidence Does Bayes learn how good it is in terms of squared
error? To answer this question, we define, for a predictive distribution W as in (28)

above, U
[W ]
i (a function of Xi, Yi and (through W ) of Zi−1), as

U
[W ]
i = (Yi −EW [Yi | Xi])

2.

This is the error we make if we predict Yi using the regression function based on pre-
diction method W . In the graphs in the next sections we plot the self-confidence ratio

EXi,Yi∼P∗ [U
[W ]
i ]/EXi∼P∗ EYi∼W |Xi

[U
[W ]
i ] as a function of i for the three prediction

methods / choices of W defined above. We may think of this as the ratio between
the actual expected prediction error (measured in square-loss) one gets by using a
predictor who based predictions on W and the marginal (averaged over X) subjec-
tively expected prediction error by this predictor. We previously, in Section 2.3, showed
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that the KL-optimal (p̃, β̃, σ̃2) is reliable: this means that, if we would take W the
point mass on (p̃, β̃, σ̃2) and thus, irrespective of past data Zi−1, would predict by

E(p̃,β̃,σ̃2)[Yi | Xi] =
∑p̃

j=0 β̃jXij , then the ratio would be 1. For the W learned from
data considered above, a value larger than 1 indicates that W does not implement a
‘reliable’ method in the sense of Section 2.3, but, rather, is overconfident: it predicts its
predictions to be better than they actually are, in terms of square-risk.

5.2 Main model selection/averaging experiment

We run the SafeBayesian algorithm of Section 4.2 with zi = (xi, yi) and 	θ(zi) =
− log fθ(yi | xi) is the (conditional) log-loss as described in that section. As to the
parameters of the algorithm, in all experiments we set the step-size κstep = 1/3 and
κmax := 8, i.e. we tried the following values of η: 1, 2−1/3, 2−2/3, . . . , 2−8. The results
of, respectively, the wrong-model and correct-model experiment as described above,
with pmax = 50, are given in Figures 5 and 6; results for pmax = 100 can be found in
Figures G.1 and G.2 in the supplement.

Conclusion 1: Bayes performs well in model-correct, and dismally in model-incorrect
experiment The four figures show that standard Bayes behaves excellently in terms
of all quality measures (square-risk, MAP model identification and reliability) when the
model is correct, and dismally if the model is incorrect.

Conclusion 2: If (and only if) model incorrect, then the higher pmax, the worse Bayes
gets We see from Figures 6 and G.2 that standard Bayes behaves excellently in terms
of all quality measures (square-risk, MAP model identification and reliability) when the
model is correct, both if pmax = 50 and if pmax = 100, the behaviour at pmax = 100 being
essentially indistinguishable from the case with pmax = 50. These and other (unreported)
experiments strongly suggests that, when the data are sampled from a low-dimensional
model, then, when the model is correct, standard Bayes is unaffected (does not get
confused) by adding additional high-dimensional models to the model space. Indeed,
the same is suggested by various existing Bayesian consistency theorems, such as those
by Doob (1949); Ghosal et al. (2000); Zhang (2006a). At the same time, from Figures 5
and G.1 we infer that standard Bayes behaves very badly in all three quality measures
in our (admittedly very ‘evilly chosen’) model-wrong experiment. Eventually, at very
large sample sizes, Bayes recovers, but the main point here to notice is that the n
at which a given level of recovery (measured in, say, square-loss) takes place is much
higher for the case pmax = 100 (Figure G.1) than for the case pmax = 50 (Figure 5). This
strongly suggests that, when the model is incorrect but the best approximation lies in
a low-dimensional submodel, then standard Bayes gets confused by adding additional
high-dimensional models to the model space — recovery takes place at a sample size
that increases with pmax. Indeed, the graphs suggest that in the case that pmax = ∞
(with which we cannot experiment), Bayes will be inconsistent in the sense that the
risk of the posterior predictive will never ever reach the risk attainable with the best
submodel. Grünwald and Langford (2007) showed that this can indeed happen with a
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simple, but much more unnatural classification model; the present result indicates (but
does not mathematically prove) that it can happen with our standard model as well;
see also the discussion in Section G.2.

Conclusion 3: R-log-SafeBayes and I-log-SafeBayes generally perform well Com-
paring the four graphs for R-log-SafeBayes and I-log-SafeBayes, we see that they behave
quite well for both the model-correct and the model-wrong experiments, being slightly
worse than, though still competitive to, standard Bayes when the model is correct and
incomparably better when the model is wrong. Indeed, in the wrong-model experiments,
about half of the data points are identical and therefore do not provide very much infor-
mation, so one would expect that if a ‘good’ method achieves a given level of square-risk
at sample size n in the correct-model experiment, it achieves the same level at about 2n
in the incorrect-model experiment, and this is indeed what happens. Also, we see from
comparing Figures G.1 and G.2 on the one hand to Figures 5 and 6 on the other that
adding additional high-dimensional models to the model space hardly affects the re-
sults — like standard Bayes when the model is correct, SafeBayes does not get confused
by living in a larger model space.

Secondary conclusions We see that both types of SafeBayes converge quickly to the
right (pseudo-true) model order, which is pleasing since they were not specifically de-
signed to achieve this. Whether this is an artefact of our setting or holds more generally
would, of course, require further experimentation. We note that at small sample sizes,
when both types of SafeBayes still tend to select an overly simple model, I-log-SafeBayes
has significantly more variability in the model chosen-on-average; it is not clear though
whether this is ‘good’ or ‘bad’. We also note that the η’s chosen by both versions are very
similar for all but the smallest sample sizes, and are consistently smaller than 1. When
instead of the full η-generalized posteriors, the η-generalized posterior conditioned on
the MAP p̆map is used, the behaviour of all method consistently deteriorates a little,
but never by much.

5.3 Experimental demonstration of hypercompression for standard
Bayes

Figure 7 and Figure 8 show the predictive capabilities of standard Bayes in the wrong
model example in terms of cumulative and instantaneous log-loss on a simulated sample.
The graphs clearly demonstrate hypercompression: the Bayes predictive cumulatively
performs better than the best single model / the best distribution in the model space,
until at about n ≈ 100 there is a phase transition. At individual points, we see that it
sometimes performs a little worse, and sometimes (namely at the ‘easy’ (0, 0) points)
much better than the best distribution. We also see that, as anticipated above, for
η = 1 randomized and in-model Bayesian prediction (used respectively by R- and I-log-
SafeBayes to choose η̂) do not show hypercompression and in fact perform terribly on
the log-loss until the phase transition at n = 100, when they become almost as good as
prediction with the Bayesian mixture.
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Figure 7: Cumulative standard, R-, and I-log-loss as defined in (23) and (25) respec-
tively of standard Bayesian prediction (η = 1) on a single run for the model-averaging
experiment of Figure 5. We clearly see that standard Bayes achieves hypercompres-
sion, being better than the best single model. And, as predicted by theory, randomized
Bayes is never better than standard Bayes, whose curve has negative slope because the
densities of outcomes are > 1 on average.

Figure 8: Instantaneous standard, R- and I-log-loss of standard Bayesian prediction for
the run depicted in Figure 7.

The no-hypercompression inequality In fact, Figure 7 shows a phenomenon that is
virtually impossible if the Bayesian’s model and prior are ‘correct’ in the sense that data
Zn would behave like a typical sample from them: it easily follows from Markov’s in-
equality (for details see Grünwald, 2007, Chapter 3) that, letting Π denote the Bayesian’s
joint distribution on Θ×Zn, for each K ≥ 0,

Π

{
(θ, Zn) :

n∑
i=1

(
− log f̄(Yi | Xi, Z

i−1)
)
≤

n∑
i=1

(
− log fθ(Yi | Xi, Z

i−1)
)
−K

}
≤ e−K ,

i.e. the probability that the Bayes predictive f̄ cumulatively outperforms fθ, with θ
drawn from the prior, by K log-loss units is exponentially small in K. Figure 7 thus
shows that at sample size n ≈ 90, an a priori formulated event has happened of proba-
bility less than e−30, clearly indicating that something about our model or prior is quite
wrong.
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Since the difference in cumulative log-loss between f̄ and fθ can be interpreted as
the amount of bits saved when coding data from fθ with a lossless code that would
be optimal in expectation under f̄ rather than fθ, this result has been called the no-
hypercompression inequality by Grünwald (2007). The figure shows that for our data,
we have substantial hypercompression.

5.4 Second experiment: Bayesian ridge regression

We repeat the model-wrong and model-correct experiments of Figures 5 and 6, with just
one difference: all posteriors are conditioned on p := pmax = 50. Thus, we effectively
consider just a fixed, high-dimensional model, whereas the best approximation θ̃ =
(50, β̃, σ̃2) viewed as an element of Mp is ‘sparse’ in that it has only β1, . . . , β4 not equal
to 0. We note that the MAP model index graphs of Figures 5 and 6 are meaningless in
this context (they would be equal to the constant 50) so they are left out of the new
Figures 9 and 10. Results for Cesàro-averaged posteriors are shown instead; we refer to
Section C.3 in the supplementary material for their definition and relevance.

Connection to Bayesian (b)ridge regression From (13) we see that the posterior
mean parameter β̄i,η is equal to the posterior MAP parameter and depends on η but
not on σ2, since σ2 enters the prior in the same way as the likelihood. Therefore, the
square-loss obtained when using the generalized posterior for prediction is always given
by (yi − xiβ̄i−1,η)

2 irrespective of whether we use the posterior mean, or MAP, or the
value of σ2. Interestingly, if we fix some λ and perform standard (nongeneralized) Bayes
with a modified prior, proportional to the original prior raised to the power λ := η−1,
then the prior, conditioned on σ2, becomes normal N(β̄0, σ

2Σ′
0) where Σ′

0 = ηΣ0 and
the standard posterior given zi is then (by (13)) Gaussian with mean(

(Σ′
0)

−1
+X�

nX
)−1

·
(
(Σ′

0)
−1

β̄0 +X�
ny

n
)
= β̄i,η. (30)

Thus we see that in this special case, the (square-risk of the) η-generalized Bayes pos-
terior mean coincides with the (square-risk of the) standard Bayes posterior mean with
prior N(β̄0, σ

2ηΣ0) given σ2, for arbitrary prior on σ2. We first note that if Σ0 is the
identity matrix, then this implies that, for fixed η, the η-generalized Bayes posterior
mean coincides with the ridge regression estimate with penalty parameter λ := η−1. For
general Σ0, it implies that the posterior on β coincides with the posterior one gets with
Bayesian ridge regression, as defined, by4, e.g., Park and Casella (2008), conditioned
on setting the λ-parameter in Bayesian ridge regression equal to η−1. Now, the gen-
eral Bayesian ridge regression method has λ as a free parameter, determined either by
empirical Bayes or equipped with a prior. It is thus of interest to see what happens if,
rather than using SafeBayes, we determine η (equivalently, λ) in this way. In addition
to the graphs discussed earlier in Section 5.1, we thus also show the results for η set by
empirical Bayes (in separate experiments not shown here we confirmed that putting a

4To be precise, they call this method Bayesian ‘bridge’ regression with q = 2; the choice of q = 1 in
their formula gives their celebrated ‘Bayesian Lasso’.
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Figure 9: Bayesian ridge regression: Model-wrong experiment conditioned on p :=
pmax = 50. The graphs (square-risk, self-confidence ratio and chosen η as function
of sample size) are as in Figures 5 and 6, except for the third graph there (MAP model
order), which has no meaning here. The meaning of the curves is given in Section 5.1
except for empirical Bayes, explained in Section 5.4.
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Figure 10: Bayesian ridge regression: Same graphs as in Figure 9, but for the model-
correct experiment conditioned on p := pmax = 50.

prior on η and using the full posterior on η gives essentially the same results). Whereas
the empirical-Bayesian ridge regression is known to be a very competitive method in
many practical settings (indeed in our model-correct experiment, Figure 10, it performs
best in all respects), we see in Figure 9 (the green line) that, just like other versions of
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Bayes, it breaks down under our type of misspecification. We hasten to add that the
correspondence between the η-generalized posterior means and the standard posterior
means with prior raised to power 1/η only holds for the β̄i,η parameters. It does not hold
for the σ̄2

i,η parameters, and thus, for fixed η, the self-confidence ratio of both methods
may be quite different.

Conclusions for model-wrong experiment For most curves, the overall picture of
Figure 9 is comparable to the corresponding model averaging experiment, Figure 5:
when the model is wrong, standard Bayes shows dismal performance in terms of risk
and reliability up to a certain sample size and then very slowly recovers, whereas both
versions of SafeBayes perform quite well even for small sample sizes. We do not show
variations of the graph for p = pmax = 100 (i.e. the analogue of Figure G.1), since it
relates to Figure 9 in exactly the same way as Figure G.1 relates to Figure 5: with
p = 100, bad square-risk and reliability behaviour of Bayes goes on for much longer
(recovery takes place at much larger sample size) and remains equally good as for
p = 50 with the two versions of SafeBayes.

We also see that, as we already indicated in the introduction, choosing the learning
rate by empirical Bayes (thus implementing one version of Bayesian bridge regression)
behaves terribly. This complies with our general theme that, to ‘save Bayes’ in general
misspecification problems, the parameter η cannot be chosen in a standard Bayesian
manner.

Conclusions for model-correct experiment The model-correct experiment for ridge
regression (Figure 10) offers a surprise: we had expected Bayes to perform best, and were
surprised to find that the SafeBayeses obtained smaller risk. Some followup experiments
(not shown here), with different true regression functions and different priors, shed
more light on the situation. Consider the setting in which the coefficients of the true
function are drawn randomly according to the prior. In this setting standard Bayes
performs at least as good in expectation as any other method including SafeBayes (the
Bayesian posterior now represents exactly what an experimenter might ideally know).
SafeBayes (still in this setting) usually chooses η = 1/2 or 1/4, and the difference in
risks compared to Bayes is small. On the other hand, if the true coefficients are drawn
from a distribution with substantially smaller variance than a priori expected by the
prior (a factor 1000 in the ‘correct’-model experiment of Figure 10), then SafeBayes
performs much better than Bayes. Here Bayes can no longer necessarily be expected
to have the best performance (the model is correct, but the prior is “wrong”), and
it is possible that a slightly reduced learning rate gives (significantly) better results.
It seems that this situation, where the variance of the true function is much smaller
than its prior expectation, is not exceptional: for example, Raftery et al. (1997) suggest
choosing the variance of the prior in such a way that a large region of parameter values
receives substantial prior mass. Following that suggestion in our experiments already
gives a variance that is large enough compared to the true coefficients that SafeBayes
performs better than Bayes even if the model is correct.
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A joint observation for the model-wrong and model-correct experiments Finally
we observe an interesting difference between the two SafeBayes versions here: I-log-
SafeBayes seems better for risk, giving a smooth decreasing curve in both experiments.
R-log-SafeBayes inherits a trace of standard Bayes’ bad behaviour in both experiments,
with a nonmonotonicity in the learning curve. On the other hand, in terms of reliability,
R-log-SafeBayes is consistently better than I-log-SafeBayes (but note that the latter is
underconfident, which is arguably preferable over being overconfident, as Bayes is). All
in all, there is no clear winner between the two methods.

6 Executive summary: Main conclusions from
experiments

Here we summarize the most important conclusions from our main experiments de-
scribed above, as well as from the many variations of these main experiments that we
performed to check the robustness of our conclusions in the technical report [GvO].

Standard Bayes In almost all our experiments, standard Bayesian inference fails in its
KL-associated prediction tasks (squared error risk, reliability) when the model is wrong.
Adopting a different prior (such as the g-prior) does not help, with two exceptions in
model averaging: (a) if using a prior that follows the suggestions of Raftery et al. (1997),
then Bayes works quite well with 50% ‘easy’ points, but starts to fail dramatically again
(in contrast to SafeBayes) once the percentage of easy points is increased a bit further;
(b) when it is run with a fixed variance that is significantly larger than the ‘best’
(pseudo-true) variance σ̃2. Moreover, in the ridge regression experiments, as reported
above, we find that standard Bayes can even perform much worse than SafeBayes when
the model is correct — so all in all we tentatively conclude that SafeBayes is safer to
use for linear regression.

SafeBayes The two SafeBayes methods discussed here behave reasonably well in all
our experiments, and there is no clear winner among them. I-log-SafeBayes usually
behaves excellently in terms of square-risk but is underconfident about its own per-
formance (which is perhaps acceptable, overconfidence being a lot more dangerous).
R-log-SafeBayes is usually good in terms of square-risk though not as good as I-log-
SafeBayes, yet it is highly reliable. In [GvO] we additionally experiment with versions
of SafeBayes for fixed-variance models, or, equivalently, for generalized posteriors of the
generic form (7) with a squared loss function (the I-version (C.1) is discussed in the sup-
plementary material, Section C.1). We find that (and explain why) for such cases, the
R-method is not competitive with the I-method; the I-method works well for squared
error prediction but, since it cannot learn σ2 from the data, cannot be used to assess
reliability (further explained in Section D.2).

Learning η in Bayes- or likelihood way/Bayesian ridge regression fails Despite its
intuitive appeal, fitting η to the data by e.g. empirical Bayes fails in the model-wrong



P. Grünwald and T. van Ommen 1099

ridge experiment with a prior on σ2, where, as explained above, it amounts to Bayesian
ridge regression (Figure 9). In [GvO] we also consider Bayesian ridge regression with a
fixed variance, i.e. a degenerate prior that concentrates on a single σ2. As we explain
there, in this setting empirical Bayes learning of η reduces to empirical Bayes learning
of the variance (since η−1 now plays just the same role as σ2/2), and again it leads to
very bad results in our model-wrong experiment. This latter empirical Bayes method
for learning η is also related to one of the methods advocated by Bissiri et al. (2016),
to which we return in Section F.

Robustness of experiments It does not matter whether the Xi1, Xi2, . . . are indepen-
dent Gaussian, uniform or represent polynomial basis functions: all phenomena reported
here persist for all choices. If the ‘easy’ points are not precisely (0, 0), but have them-
selves a small variance in both dimensions, then all phenomena reported here persist,
but on a smaller scale.

Centring We repeated several of our experiments with centred data, i.e. preprocessed
data so that the empirical average of the Yi is exactly 0 (Raftery et al., 1997; Hastie
et al., 2001). In none of our experiments did this affect any results. We also looked at
the case where the true regression function has an intercept far from 0, and data are
not centred. This hardly affected the SafeBayes methods.

Other methods We also repeated the wrong-model experiment for several other meth-
ods of model selection: AIC (Akaike’s Information Criterion), BIC (Bayesian Informa-
tion Criterion), and various forms of cross-validation. Briefly, we found that all these
have severe problems with our data as well. In these experiments, the mentioned meth-
ods were used to identify a model index p and η played no role. We also did an ex-
periment where we used leave-one-out cross-validation to learn η itself. When we tried
it with log-loss (as a likelihoodist or information-theorist might be tempted to do),
it behaved terribly. However, with the squared error loss it worked fine in the sense
that it achieved small squared error risk, which is not too surprising given its close
similarity to the I-version of SafeBayes with a fixed variance (see Section C.1 in the
Supplementary Material). Thus, we tentatively conclude (not surprisingly perhaps) that
cross-validation based on the squared error loss works well if one is interested in the
squared error risk; but it cannot be used for the other KL-associated prediction task,
i.e. assessing reliability (Section D.2).

Real-world data Finally, we note that (De Heide, 2016b) is a preliminary report on
some regression experiments with trigonometric basis functions, performed using the R-
package SafeBayes (De Heide, 2016a). De Heide found that the phenomenon described
in this paper also takes place for some real world data sets, namely daily maximum
temperatures at the Seattle airport and air pollution data from the Openair Project
at King’s College, London (Carslaw and Ropkins, 2012). These data sets do appear
heteroskedastic, and she finds that standard Bayes overfits and is substantially out-
performed by SafeBayes, just as in Figure 2. Similarly, Quadrianto and Ghahramani
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(2015) and Devaine et al. (2013) report good performance of SafeBayes-like methods in
practice.

Supplementary Material

Supplementary material of “Inconsistency of Bayesian Inference for Misspecified Linear
Models, and a Proposal for Repairing It” (DOI: 10.1214/17-BA1085SUPP; .pdf). In
this paper, we described a problem for Bayesian inference under misspecification, and
proposed the SafeBayes algorithm for solving it. The main appendix, Appendix B, places
SafeBayes in proper context by giving a six point overview of what can go wrong in
Bayesian inference from a frequentist point of view, and what can be done about it,
both in the well- and in the misspecified case. Specifically we clarify the one other
problem with Bayes under misspecification — interest in non-KL-associated tasks —
and its relation to Gibbs posteriors. The remainder of the supplement is devoted to
discussing these six points in great detail, explicitly stating several Open Problems,
related work, and ideas for a general Bayesian misspecification theory as we go along.
We also provide further details on SafeBayes (Appendix C), additional experiments
(Appendix G) and refine and explain in more detail the notion of bad misspecification
and hypercompression (Appendix D).
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