
A CHARACTERISATION OF COMPUTABLE DATA TYPES BY MEANS OF A FINITE

EQUATIONAL SPECIFICATION METHOD

J.A. BERGSTRA

Department of Computer Science,
University of Leiden,

Wassenaarseweg 80, 2300 RA LEIDEN,
The Netherlands

J.V. TUCKER

Department of Computer Science,
Mathematical Centre,

2e Boerhaavestraat 49, 1091 AL AMSTERDAM,
The Netherlands

INTRODUCTION

By redefining the construction of finite equational hidden function specifications

of data types, as these are made with the initial algebra methodology of the ADJ Group,

we are able to give an algebraic characterisation of the computable data types and

data structures. Our technical motivation are the simple notions of strong and weakly

normalised Church-Rosser replacement systems studied in the l-Calculus, and in plain

mathematical terms the theorem we prove is this.

THEOREM. Let A be a many-sorted algebra finitely generated by elements named in its

signature. Then the following statements are equivalent:

i. A is computable.

2. A possesses a finite, equational hidden enrichment replacement system specification

which is Church-Rosser and strongly normalising°

3. A possesses a finite, equational hidden enrichment replacement system specification

which is Church-Rosser and weakly normalising.

The unexplained concepts are carefully defined in Section 2, on replacement system

specifications, and in Section 3, on computable algebras. In Sections 4 and 5 we prove

the theorem. Section i explains in detail the theoretical issues to do with data types

which the theorem attempts to resolve.

This paper continues our studies on the adequacy and power of definition of al-

gebraic specification methods for data t~rpes which we began in [i~, see also [53. (It

is an edited version of [2]; subsequent papers are [3,43.) Here the reader is assumed

well versed in the initial algebra specification methods of the ADJ Group [63, see al-

so KAMIN [73; knowledge of our [i~ is desirable but not, strictly speaking, essential.

Prior exposure to the l-calculus is no~ required, of course, but hopefully the reader

is acquainted with the Church-Rosser property from ROSEN [ii].

i. INITIAL ALGEBRA SEMANTICS AND DATA TYPES

A data structure is defined to be a many-sorted algebra A finitely generated

77

from initial values a l,...,a n ~ A named in its signature Z. A data type is defined to

be any class K of such data structures of common signature. At the heart of the ADJ

Group's theory of data types is the idea that the semantics which eharacterise a data

type K should be invested in the construction of an initial algebra I K for K with the

result that every data structure A 6 K is uniquely definable, up to isomorphism, as an

epimorphic image of I K. In its turn, this initial algebra I K is uniquely definable,

again up to isomorphism, as a factor algebra of the syntactic algebra T(Z) of all terms

over Z because T(Z) is initial for the class ALG(Z) of all E-algebras. Let I K ~T(Z)/~ K

where z K is a congruence for which t £K t' means that the terms t and t'are identical

syntactic expressions as far as the semantics of K is concerned. Observe that in these

circumstances we may plausibly call a data type (semantics for) K computable when
K

is decidable on T(Z). And the problem of syntactically specifying the data type K can

be investigated through the problem of specifying the congruence =K"

The preferred method of prescribing ~K is to use a finite set of equations or

conditional equations E over T(Z) to establish a basic set of identifications D E c

T(Z) x T(Z) and to take z K as the smallest congruence =E on T(Z) containing D E With

reference to our [13, it is known that this method will not define all Computable data

types, but that it is able to define many non-computable ones. Enriching the method

to allow the use of a finite number of hidden functions does enable it to specify any

computable data type, but can be shown to expand the number of non-computable data

types it defines.

Our proposal here is to determine the congruences for initial algebras by means

of replacement systems. A replacement system is intended to formalise a system of de-

ductions, governed by simple algebraic substitution rules, within which a deduction

t ÷ t' says that the rSle of t can be played by t' as far as the semantics of K is con-

- t' but not conversely. What we do is to make an cerned, meaning t + t' implies t =K '

analysis of the congruence =K through the structural behaviour of algebraically styled

"proof systems" for it and from this, and an appropriate specification machinery, we

are able to guess the classification theorem for computable data types. That this is

precisely the theorem stated in the Intmod~ction comes from the reflection that the

semantics of a type K is supposed to be uniquely determined up to isomorphism with an

initial algebra IK, and not by a particular syntactical construction. Since the comput-

ability of =K means the computability of the algebra T(Z)/Z K under our definition and,

in particular, since this notion of an algebra's computability is an isomorphism in-

variant, we can erase all mention of syntax in the semantical concept of a computable

data type and identify these with the computable algebras.

So with regard to the content of our theorem, the reader may care to consider the

ease with which statement (3) implies (I) is proved as evidence for the natural signi-

ficance 6f strong and weakly normalised Chruch-Rbsser replacement system specifications

while the implication (1) implies (2) may be considered as the hard won answer to the

question about adequacy: Do these specifications define all the data types one wants?

Because of the novelty of the specification technique and the involved proof of

78

the theorem we shall work Q~t the material in the case of a single-sorted algebra after

which it becomes much easier for us to explain, and the reader to understand, the proof

of the theorem in the many-sorted case.

In what follows ~ denotes the set of natural numbers.

2. REPLACEMENT SYSTEMS AND THEIR SPECIFICATION

The technical point of departure is the idea of a traversal for an equivalence

relation. Let A be a set and ~ an equivalence relation on A. A traversal for ~ is a set

J c A wherein

(i) for each a 6 A there is some t £ J such that t H a; and

(ii) if t,t' 6 J and t ~ t' then t ~ t'.

Consider an initial algebra specification (Z,E) for a data type K where Z gives the

signature of K and E is some formula or other for axiomatis~ng its properties so that

the defining congruence H K is =E" The choice of a traversal J for H E fixes an opera-

- t' one tional view of the type as it is specified: given t,t' E T(Z), to decide t =E

imagines having to use E to calculate their prescribed "normal forms" n,n' e J and on

completing these deductions t +E n, t' +E n' one checks n = n'. The following bit of

theory about algebraic replacement systems is made up with this in mind and is meant

to abstract the bare essentials of such an operational view of data type specification.

Let A be a set and let R be a reflexive, transitive binary relation on A. We write

R as ÷R so to display membership (a,b) e R by a +R b and say a reduces (under R or ÷R)

to b or that b is a reduct (under R or +R) of a; and we shall call R and +R a reduction

system or a replacement system on the set A. Following the terminology of the l-Calcu-

lus we make these distinctions:

An element a c A is a normal form for +R if there is no b ~ A so that a ~ b and

a +R b; the set of all normal forms for +R is denoted NF(R).

The reduction system + R is Church-Rosser if for any a ~ A if there are bl,b 2 6 A

so that a +R bl and a +R b2 then there is c e A so that b I +R c and b 2 +R c-

The reduction system ÷ is weakly normalising if for each a £ A there is some
R

normal form b e A so that a ÷R b.

The reduction system ÷R is strongly normalising if there does not exist an infi-

nite chain

a0 +~al ÷~ R a +~ ... n

wherein for i e ~, a i # ai+ I.

A reduction system is Church-Rosser and weakly normalising if, and only if, every

element reduces to a unique normal form. Clearly strong normalisation ent&ilsweak nor-

malisation.

Let HR denote the smallest equivalence relation on A containing +R" It is an easy

exercise to show that for a,a' ~ A

a HR a' ~=~ there is a sequence a = bl,...,b k = a' such that for each pair bi,bi+ 1

there exists a common reduct ci, i ~ i ~ k-l.

79

Schematically:

a : b I b 2 b 3 bk_ 1 b k = a'

c I c 2 Ck-i

Using this characterisation of ~R it is straightforward to prove these facts.

2.1. LEPTA. The replacement system ÷R on A is Church-Rosser if, and only if, for any

a,a' { A if a ~R a' then there is c { A so that a ÷R c and a' "+R c.

2.2. LEPTA. Let ÷ be a Church-Rosser weakly normalising replacement system on A. Then
R

the set of normal forms NF(R) is a traversal for =R"

Suppose now that A is an algebra. Then by an algebraic replacement system +R on

the algebra A we mean a replacement system ÷R on the domain of A which is closed under

its operations in the sense that for each k-ary operation c of A,

al +R bl ak+R bk implies g(al ak) +R g<bl bk)"

2.3. BASIC LEMMA. If ÷R is an algebraic replacement system on an algebra A then z R is

a congruence on A. If + R is, in addition, Church-Rosser and weakly normalising then

the set of normal forms of +R is a traversal for ~ .
R

To achieve our goal of constructing algebraic replacement systems on the algebra

T(E) we need to explain how a replacement system is generated by a set of one-step

reductions and, furthermore, how these sets of one-step reductions can be determined

from quite arbitrary sets. We must built up this equipment for both set-theoretic and

algebraic replacement systems.

Let ÷ be a replacement system on a set A. S c A × A is said to generate ÷R as a
R

set of one-step reductions if S is reflexive and ÷R is the smallest transitive set

containing S, the so called transitive closure of S.

Let +R be an algebraic replacement system on an algebra A. S c A × A is said to

generate +R as a set of algebraic one-step reductions if S is reflexive, S is closed

under unit substitutions in the following sense: writing (a,b) £ S as a ÷S b, for any

k-ary operation ~ of A, for any I ~ i ~ k and a1,...,ai_l,ai+1,...,a k c A, and a ÷S b

it follows that o(al,...,ai_l,a,ai+1,...,a k) +S ~(al'''''ai-l'b'ai+l'''''ak)" And ~R

is the transitive closure of S.

In the set-theoretic case any reflexive set determines a replacement system in its

transiti~e closure. In the algebraic case any reflexive set, closed under unit substi-

tufions, can be shown to determine an algebraic replacement system in its transitive

closure. Thus, in either case, starting with an arbitrary set D c A × A one can close

it up to the smallest one-step reduction relation containing it, which we write +D(1)'

and hence to the set-theoretic or algebraic replacement system "~D which is its transi-

tive closure.

Let us now apply these ideas to specify algebraic replacement systems on T(Z).

80

Let TE[XI,...,X n] be the set of all polynomials over Z in indeterminates Xl,...,X n.

Let Tz[X] = Unew Tz[XI' Xn]"

Given a set E e TE[X] × Tz[X] first notice that if (t,t') £ E then without loss

of generality we can assume t,t' e TE[XI,...,X n] for sufficiently large n. Then we can

define a set D E c T(Z) × T(E) by

D E = {(t(sl,...,Sn), t'(sl,...,Sn)): (t,t') £ E & sl,...,s n £ T(~)}

and so obtain the smallest set of algebraic one-step reductions containing D E , which

we write +E(1)' and from it the algebraic replacement relation it generates, denoted

÷ . In these circumstances we denote by NF(Z,E) the set of all normal forms of ÷ and
E E

by =E the congruence associated to +E" Let T(Z,E) = T(E)/H E. Finally, if (t(X 1 ,Xn),

t'(Xl,...,Xn)) ~ E then we prefer to write t(Xl,...,X n) ~ t'(Xl,...,X n) e E, which we

refer to as a reduction equation.

From £hese definitions we see how to equationally specify algebraic replacement

systems which in turn specify algebras.

An algebra A of signature E A is said to have a finite equational replacement sys-

tem specification (~,E) if E = Z A and E is a finite set of reduction equations over

T(E) such that the reduction system + E on T(E) defines a congruence ~E which specifies

A by T(~,E) ~ A.

Recall that if A is an algebra of signature E A and ~ c ZA then AIE is the algebra

obtained from A by deleting the constants and operations of A not named in E.

<A>E is smallest Z-algebra contained in A.

An algebra A of signature E A is said to have a finite, equational hidden enrich-

ment replacement specification (E,E) if EA c E and E is a finite set of reduction equa-

tions over T(E) such that the reduction system + E on T(E) determines the algebra T(E,E)

and

= ~A. T(~,E) I~ A <T(~,E)>~A

Since the algebras which model data structures are finitely generated by elements named

in their signatures, any such algebra A is automatically minimal in the sense that

AIZ A = <A>EA.

The structural properties of a specification (Z,E), such as the Church-Rosser and

normalisation properties, are taken from those of its replacement relation +E" To gain

acquaintance with the specification method, we leave to the reader the proof of this

proposition.

2.4. LEMMA. If A is a finite algebra then A possesses a finite, equational replacement

system specification which is Church-Rosser and strongly normalising.

And we conclude with a technical fact about set-theoretic replacement systems of

use later on. Let A be a set. A set of one-step reductions ÷R(1) which generates a re-

duction system +R on A is said to be finitely branching if for each a 6 A the set

{b { A: a +R(1)b} is finite.

The reduction system +R on A together with its generating set of one-step reduc-

81

tions +:~(i)is said to be weakly Church-Rosser if for any a £ A, if a ÷R(1)bl and

a ÷R(1)b2 then there is c E A such that b I ~R c and b 2 +R c.

2.5. LEJ~MA. Let +R be a strongly normalising system on A generated by a finitely

branching set of one-step reductions +R(1)" If+R is weakly Church-Rosser with respect

to ÷R(1) then +R is Church-Rosser.

PROOF. 8y a chain of non-trivial one-step reductions from a 6 A of length k we mean a

sequence a = a 0 ÷R(1) al ~R(1)''" ÷R(1)ak wherein a i ~ aj 0 ~ i,j ~ k. Define liall =

maximum length of any such chain from a. This II.JJ: A ÷ ~ is a total function thanks to

K~nig's Infinity Lemma and the hypothesis of strong normalisation. We prove the propo-

sition by induction on the value of Ilall.

The basis case is automatic because llali = 0 iff a is a normal form.

As induction hypothesis assume the Church-Rosser property true of all reducts of

b ~ A such that libll <lIJ. Let a ÷R bl and a +R b2" We take the non-trivial case where

a,bl,b 2 are mutually distinct.

Since +R(1) generates +R choose al,a 2 such that for i = 1,2 a +R(1) a i +R bi and

notice that llai~ ~ flail. Let c O be a common reduct of al,a 2 supplied by the weak Chureh-

Rosser property. By the induction hypothesis applied to al,a 2 we can choose cl,e 2 as

common reducts of c0,b I and c0,b 2 respectively. Moreover since]Ic0i[<flail we can apply

the induction hypothesis again to obtain c as a common reduet of cl,c 2. Clearly c is

also a common reduct of bl,b 2. Q.E:D.

3. COMPUTABLE ALGEBRAS

Our definition of a computable algebra is taken from M.O. RABIN [i0] and A.I.

MAL'CEV [9], independent papers devoted to founding a general theory of computable

algebraic systems and their computable morphisms.

An algebra A is said to be computable if there exists a recursive set of natural

numbers ~ and a surjection ~: ~ ÷ A such that to each k-ary operation u of A there cor-

responds a recursive tracking function $: k + m which commutes the following diagram,

k
A JA

k ~

w h e r e i n k (x l , . . . , x k) = (~x l , . . . , a x k) . And, f u r t h e r m o r e , t h e r e l a t i o n ~ , d e f i n e d on

a by x - y iff a(x) = a(y) in A, is recursive. In case this relation ~e is recursively

enumerable we ~ay A is semicomputab~e.

Both notions, in these formal definitions, become so called finiteness conditions

of Algebra: isomorphism invariants possessed of all finite structures. And also note-

worthy is %his other invariance property from MAL'CEV [9]:

If A is a finitely generated algebra computable or semicomputable under both ~:

~ ÷A and ~: ~ ÷ A then e and 8 are recursively equivalent in the sense that there ex-

ist recursive functions f,g which commute the diagram:

82

A

g

See MAL'CEV [9].

Given A computable under ~ then combining the associating tracking functions on

dqe domain ~ makes up a recursive algebra of nun~ers from which ~ is an epimorphism

to A. Applying the recursiveness of ~ to this observation it is easy to prove this

useful fact.

3.1. LEMMA. Every computable algebra A is isomorphic to a recursive number algebra

whose domain is the set of natrual numbers, ~, if A is infinite, or else is the set

of the first m natural numbers, ~ , if A is finite of Gardinality m.
m

We proved this in its many-sorted version in [I]. Obviously, no such isomorphic

representation is possible for the semicomputable algebras for otherwise they would

be computable.

If A is computable under ~ then a set S c A n is (~-)comp~table or (e-)semicomput-

able accordingly as ~-I(S) = {(Xl, Xn)~n: (~Xl'''''~Xn)~S} is recursive or r.e.

3.2. LEMMA. Let A be a computable algebra and ~ a congruence A. If ~ is computable or

semicomputable then the factor algebra A/H is computable or semicomputable accordingly.

The algebras T(Z) are always computable under any of their standard g6del number-

ings. Of course, it was this fact we had in mind when we spoke of a data type K being

computable when its defining congruence =K is decidable. Wherever z K is syntactically

determined by some specification mechanism (Z,E) it is customary to speak of the word

or term problem for (E,E) and mean the decidability of HK" In any case, through Lemma

3.2 and isomorphism invariance, we can now redefine a data type to be computable when

its initial &igebra is computable.

Relying on the reader's experience in constructively manipulating syntax, we set

him or her the proofs of these last lemmas as easy, though instructive, eXercises.

3.3. LEMMA. Let (Z,E) be a finite, equational replacement system specification. Then

the basis set D E , the one-step reduction relation -E(1)' the replacement system +E,

the set of normal forms NF(Z,E), and the congruence E E are all semicomputable. In

particular, T(Z,E) is a semicomputable algebra.

3.4. PROPOSITION. Let (E,E) be a finite, equational replacement system specification

which is Church-Rosser and weakly normalising. Then T(Z,E) is a computable algebra.

3.5. LEMMA. Let A be a semicomputable algebra with semicomputable congruence ~. If

there exists a semicomputable traversal for ~ then the factor algebra A/H is a com-

putable algebra.

4. PROOF OF THE THEOREM

A strongly normalising reduction system specification is at the same time a

83

weakly normalising reduction system specification so statement (2) automatically

implies statement (3). Since computability is an isomorphism invariant, Proposition

3.4 proves (3) implies (i). Thus this section is devoted to proving statement (i) im-

plies statement (2). The case where A is finite the reader has proved as Lemma 2.4

and so we assume A to be infinite.

By Lemma 3.1, we can take A isomorphic to a reeursive number algebra R =

(~;fl'''''fp'Cl'''''Cq) and concentrate on building a replacement system specification

for R. First we shall build a complicated recursive number algebra R 0 by adding to R

a variety of recursive functions.

k
Given a total recursive function f: ~ ÷ e then, by the Kleene Normal Form Theo-

rem, this may be written f(x) = U(pz.T(e,x,z)) where U and T are the so called Kleene

computation function and T-predicate, respectively, and e is some index for f. Since

U and T are primitive recursive so are the functions

h(z,x) = U(pz' ~ z.[z' = z v T(e,x,z')]

g(z,x) = f0 if Bz' ~ z. T(e,x,z)

~i otherwise.

From these functions we can define a recursive function

t(z,x,0) = h(z,x)

t(z,x,y+1) = t(z+l,x,g(z+i,x))

sO that f is factorised into t,h,g in the sense that f(x) = t(0,x,l). (The uninitiated

reader should consult M. MACHTEY & P. YOUNG [87.)

R 0 is constructed by adding 0 and the successor function x+l on ~ to R and, for

each recursive operation f of R, adding the corresponding factorising functions h,g,t

along with the list A of all primitive recursive fthnctions used in the primitive re-

cursive definitions of h and g.

Clearly, R01Z = <R0> ~ = R and so it is sufficient to show R 0 has a finite, equa-

tional replacement system specification which is Church-Rosser and strongly normalis-

ing. Let Z 0 be the signature of R 0. The specifying reduction equations E 0 in mind are

defined as follows. For each operation f,t,h,g of R 0, of the kind last mentioned, if

f,t,h,g are their corresponding function symbols in ~0' then we take with X =

(x~ x k)

(-I) fCx) ~ tC0,x,s(9))

(0) ~(z,x,0) ~ h(Z,X)

t(Z,X,S(Y)) ~ t(S(Z),X,g(S(Z),X))

For each function symbol I (Z0 corresponding to a primitive recursive function

I in the list A u {h,g} we add equations determined by these case distinctions.

(l) If l(x I ~) = x i then add ~(X I X k) ~ X i

(2) If l(y) = y+l then add I(Y) ~ S(Y).

(3) If l(x) = p(pl(x) ~n(X)) then add I(X) ~ ~(~I(X) ~n(X))

where here x = (x I ,x k) and X = (XI, Xk).

84

(4) If l(0,x) = ~l(x)

l(y+l,x) = p2(Y,X,l(y,x))

then add

(9,x) ~ ~i(x)

~(S(Y),X) ~ ~2(Y,X,~(Y,X))

where, again, x and X are possibly vectors.

Finally, we must take care of the constants of E in E 0. If c names the numerical con-

stant c then add c ~ sC(0). We number this as equation (5).

Thus (Z0,E0) is a finite, equational replacement system specification and it re-

mains to verify the Church-Rosser property and strong normalisation, and to show

T(Z0,E 0) ~ R0.

Call a term t ~ T(E) strongly normalising (with respect to E 0) if there does not

exist an infinite chain t = t O + t I + ... + t + ... where for i,j • ~ t, ~ t. and +
n • 3

is the reduction relation determined by E 0. Most of the theorem is proved on showing

4.1. LEMMA. If t is strongly normalising then it possesses a unique normal form of

the kind sn(0) for some n • ~.

4.2. LEMMA. Every term in T(~) is strongly normalising.

The proof of Lemma 4.1 verifies the Church-Rosser property and combined with

Lemma 4.2 shows our specification ~Z0,E 0) to be of the required type. Given these lem-

mas, we know from Basic Le~na 2.3 that {sn(0) : n ~ &l} is a traversal for T(Z0,E0) , and

this algebra isomorphic to R 0 we can use the map #(n) = [sn(0)]. Since # is to prove

known to be a bijection R 0 + T(E0,E0) , all that must be verified is that } is a homo-

morphism. This requires an inductive argument on the complexity of terms along the

lines of the proof of Lemma 4.2. Because the reasoning is much simpler than that for

Lemma 4.2, and routine for any reader with a little algebraic experience, we take the

liberty of omitting it. Thus, to complete the theorem it remains for us to prove Lem-

mas 4.1 and 4.2.

PROOF OF LEMMA 4.1. For t c T(Z 0) the restriction of + defines a replacement system

on the set Red(t) = {s ~ T(Z0): t + s} which is generated by any set of one-step re-

ductions ÷i for + also restricted to Red(t). If t is strongly normalising with respect

to + then (Red(t),+) is a strongly normalising set-theoretic replacement system. It is

a routine matter to check that + is weakly Church-Rosser with respect to +I by consid-

ering term complexity and to see that +i is finitely branching. So we may apply Lemma

2.4todeduce that (Red(t),+) is Church-Rosser as well as strongly normalising. (This

together with Le~na 4.1 proves our specification Church-Rosser:) A corollary of this

is the fact that t has a normal form with respect to + and it is unique.

Now we argue that NF(E0,E0) = {sn(0): n • m}. It is easy to see that {sn(0):

n c ~} c NF(Z0,E0) because a term sn(0) cannot be further reduced by equations from

E 0. On the other hand we can rule out all other terms as normal forms by these case

distinctions. Let t • T(E0).

85

If t = c e Z0' a constant naming c ~ 0, then equation (5) permits a reduction

to sC(0) and so since c can be reduced it is not a normal form.

If t = ~(sl,...,s k) where ~ is any function symbol of Z0 except S then, again,

there is a reduction to a distinct term to be had from the equations written down for

in the construction of E 0.

Finally, if t = sn(r), where r is a term of the first two kinds, then since r

has been seen to possess some non-trivial reduction so does t (as ÷ is an algebraic

replacement system). Q.E.D.

PROOF OF L ~ 4.2. We prove that each t e T(Z 0) is strongly normalising by induction

on the complexity of t.

As basis consider all constants. Let ~ 6 Z0 name the numerical constant c. By

inspection of E0, there is at most one reduction possible from t and this leads to a

normal form, viz. c ~ sC(0).

The induction step is precisely this lemma.

4.3. LE~V~A. Let sl,...,s k 6 T(Z 0) be strongly normalising and let I be a k-ary func-

tion symbol of ~0" Then ~(sl,...,s k) is strongly normalising.

PROOF. First we order the signature Z0" For each operation f'l of R let hi,gi,t i be

the functions factoring f and let A. be the list of primitive recursive functions
! 1

used in the definitions of the h i and gi' those of h i preceeding those of ~i and each

of these two lists ordered by the complexity of the primitive recursive definitions

of the h i and gi respectively. Thus we order the constants and operations of R 0 into

the list

0,cl,...,c , x+I,AI,...,A , hl,. ,.. ,...,fp q P "''hp'gl -,gp,tl,.-.,tp,f I

and let the signature Z0 of R 0 be ordered in this way. We shall now prove the lemma

by induction on the position of ~ in the ordering of Z 0. One general remark, for any

term t = ~(sl~...,Sk) , is that an infinite reduction sequence from t which does not

involve a reduction from E 0 determined by ~ would require an infinite reduction se-

quence from one of its subterms in contradiction to the assumption that they are

strongly normalising. Thus in the argument we need only consider reduction sequences

from t = ~(sl,...,s k) which apply the reduction equations in E 0 written down for !"

For this reason the basis ~ = S is obvious. If t = S(r) then inspection of E 0

confirms no reduction from t determined by S to be possible since r is irreducible.

So assume as induction hypothesis that ~(Sl,...,s k) is strongly normalising for

all function symbols ~ preceeding I in ~0" The proof of the induction step divides

into 6 cases conveniently distinguished by i (rather than I). The first 3 cases

l(xl,...,Xk) = x i l(y) = y+l l(x) = Z(~l(x) ,~k(X))

where x = (Xl, x k) are straightforward and are omitted.

86

CASE 4. l(0,x) = ~l(X]

l(y+l,x) = ~2(Y,X,l(y,x))

Let t = l(~,s) where s = (Sl, s k) corresponding to x = (x I ,Xk). Now

by Lemma 4.1 any strongly normalising term T reduces to a unique normal form sn(0)

from which we can define the value of T to be val(T) = n. We do this case by an in-

duction argument on the value of r.

First of all observe that at the stage in a reduction from t at which (4) is ap-

plied r must have been reduced to 0 or to some S(T). In the former case we are in the

basis of the induction for val(r) = 0. The next term in the sequence has leading func-

tion s~ol ~I which preceeds ~ and so we are done by the main induction hypothesis.

Consider val(r) = n > 0 and assume as induction hypothesis that for all strongly

normalising terms T with val(1) < n then l(T,s) is strongly normalising. Since

val(r) ~ 0 we know that on the first application of equation (4) in a reduction se-

quence from t that r has been reduced to some S(T). And that the next element in the

' .,s~) sequence is ~2(T,S',I(T,S')) where s' = (sl,.. and s i ÷ sl, i ~ i ~ k. Now since

s and r are strongly normalising so are s' and T. Moreover, since val(T) < n, by

our latest induction hypothesis ~(T,s') is strongly normalising. Since ~2 preceeds

in Z0' the main induction hypothesis shows the reduct strongly normalising and the

sequence to terminate.

Remember this case covers function symbols corresponding to hi,g i as well as

those functions in A..
l

CASE 5. l(z,x,0) = h(z,x)

l(z,x,y+l) = l(z+l,x,g(z+l,x))

Let t = l(r,s,u) where s = (s I s k) corresponding to x = (x I ,~). As be-

fore, observe that at the first stage in a reduction sequence from t at which equation

(0) is applied it must have been reduced to 0 or to some S(T). The first possibility

does not permit an infinite continuation of the sequence because the next element is

some h(r',s') where r' and s' are strongly normalised reducts of r and s and this term

is strongly normalising by the induction hypothesis since h preceeds ~ in Z 0. There-

fore only sequences of the seoond kind need careful consideration.

Let val(T), for T a strongly normalising term, be just as in Case 4. Define for

any term of the kind t = l(r,s,u) the number

x(r,s) = (Zz)[g(z,val(s)) = 0] : val(r)

wherein val(s) abbreviates (val(sl) , val(Sk)).

We do this case by a concise induction on the value x(r,s). As basis we have t

with x(r,s) = 0. Consider a reduction sequence from t in which the first application

of equation (0) produces l(S(r'),s',g(S(r),s')) from ~(r',s',S(Y)). Since r + r',

s ÷ s' we have x(r',s') = 0 and

val(r') ~ (pz)[g(z,val(s)) = 0].

87

And, thanks to the main induction hypothesis, we know that all the subterms of

1(S(r'),s',g(S(r') ,s')) are strongly normalising. From this information we can deduce

val(_g(S(r'),s')) = 0 so if a second application of equation (0) is made in the se-

quence then we will have a sequence of the kind considered, and proved finite, at the

opening of this case; whereas if no second application of (0) is made in the sequence

then the reductions must be made to the known strongly normalising subterms and so it

must terminate as observed in the opening of the induction argument of Lemma 4.3. The

calculation required is this

val(g(S(r'),s')) = g(val(r')+l,val(s'))

= g((~z)([g(z,val(s')) = 03, val(s')))

= 0.

Consider t = l(r,s,u) with x(r,s) = n > 0 and assume as induction hypothesis

that if rl,sl,u I are strongly normalising and X(rl,s I) < n then _l(rl,sl,u I) is strong-

ly normalising. Consider a reduction sequence from t in which the first application of

equation (0) produces l(S(r'),s',_g(S(r'),s')) from _l(r',s',S(T)) . By our assumptions

and the main induction hypothesis all subterms of the new reduct are strongly normal-

ising. Moreover, x(S(r'),s') < x(r',s') = X(r,s) = n and therefore by the latest in-

duction hypothesis _i (S (r') ,s' ,g (S (r') ,s')) is strongly normalising and the reduction

sequence must terminate.

CASE 6. 1(x) = f(x) .

This is, by now, obvious.

Having concluded the proof of Lemma 4.3 we have also contluded the argument for

Lemma 4.2. Q.E.D.

5. THE MANY SORTED CASE

We assume the reader thoroughly acquainted with the technical foundations of

the algebra of many-sorted structures for which no reference can better substitute

for the ADJ's basic paper [6~.

In notation consistent with our [IX, we assume A to be a many-so~ted algebra with

domains AI,...,An+ m and operations of the form

~,~ = ~l'''''Xk ;~
: A~I×...×AIk ,~,~ A

where I.~ £ {l,...,n+m}, I ~ i ~ k.
1

The concepts and machinery of Section 2 must be reformulated, but this is not

difficult: An algebraic replacement system R on A consists of a collection of set-

theoretic replacement systems RI,...,R n on its domains which satisfy the property that
I,~

for each operation ~ 0Z A, with arguments all,...,alk and b11,...,blk, where

l,~ .. ÷ a ,b e A , If a ÷ b , ,a ÷ b then ~ (a , ,a)
~i li li " 11 R1 11 "'" ~k Rk ~k 11 • I k R~
I,~

(bll,...,blk). The classification of replacement systems and the definitions of

the associated congruence, one-step reductions and so on as families of single sorted

88

relations proceed along the lines established for generalising algebraic ideas from

single-sorted to many-sorted algebras; this is true of their properties and of the

mdchanisms for specifying replacement systems.

To lift Section 3 to computable many-sorted algebras is also quite straight-

forward and, in fact, has been virtually written out already in our [13. Those lemmas

pertaining to replacement system specifications require only the appropriate introduc-

tion of sort indices into their proofs.

Up to and including the proofs that (2) implies (3), and (3) implies (i), for the

full theorem in its many-sorted case, it may be truly said that no new ideas or tech-

niques are required.

Consider the proof that (i) implies (2). With the help of a trick (the real sub-

ject of this section) we are able to construct this proof with the toolkit of Section

4. Dispensing with an easy case where all the domains of A are finite, we assume A to

be a many-sorted computable algebra with at least one domain infinite.

Without loss of generality we can take these domains to be AI,...,A n, BI,...,B m

where the A i are infinite and the B.l are finite of cardinality b.l + I. The generalised

Lemma 3.1 provides us with a recursive many-sorted algebra of numbers R with domains

~l,...,~n and FI,...,F m where ~l = w for i ~ i ~ n, F i = {0,1,...,b i} for i -< i -< m,

and R is isomorphic to A. When not interested in the cardinality of a domain of R we

refer to it as R., i ~ i ~ n+m. The aim is to give R a finite equational hidden func-
I

tion replacement system specification.

The first task is to build a recursive number algebra R 0 by adding to R new con-

stants and functions. The main idea is to code the many-sorted algebra R into its

first infinite sort ~I by means of functions R i ÷ ~1 and ~i ÷ Ri affd recursive track-

ing functions on ~I associated to the multisorted operations of R. At the same time

we shall dissolve the finite sorts by adding them as sets of constants. Here is the

formal construction.

For each infinite sort i we add as a new constant of sort i the number 0 E ~i

and the successor function x+1. For each finite sort i we add all the elements of F.
l

as new constants.

Each domain R. is coded into ~1 by adding the function foldl(x) = x, and is re-
1

covered by adding the function unfoldl: ~ + R , defined for infinite sorts i by
1

unfoldl(x) = x, and for finite sorts i by

unfoldl(x) = ix if x ~ b i

I b i o t h e r w i s e .

Next we add for each operation f = fl,~ of R a recursive tracking function f:
k

~i which commutes the following diagram:

f

X 1 X k Rxlx'''XRxk ~ i~
unfold p fold x...×fold 1 ~ ~ el

~ix...X~l

89

And, just as in the single-sorted case, we factorise f into functions t,h,g and add

these along with all the primitive recursive functions arising from the primitive re-

cursive definitions of h and g. That is all. Observe R0] ~ = <R0> ~ = R, so it remains

to give a finite equational replacement system specification for R 0 which is Church-

Rosser and strongly normalising. Let Z0 be the signature of R 0 in which 12, iS, FOLD l,
i

UNFOLD name the zero, successor function, and coding maps associated to sort i; for

convenience we drop the sort superscript in case i = i. Here are the requisite set of

equations E0, beginning with the operations of R.

Let f = fi,Z be an operation of R named by function symbol f { ~ c Z0 and let

be its associated tracking map on ~i named by _ f e Z0" First, following the procedure

of Section 4, write out all the equations assigned to f and its factorisation. Second-

ly, add this equation to "eliminate" f

1 1
f(Xll Xlk) ~ UNFOLD~(~(FOLD l(Xll) ,FOLD k(Xlk))

where Xli is a variable of sort I i. Do this for every operation of R.

Turning to the coding machinery, consider first the folding functions. For each

infinite sort i add the equations,

FOLDI(IO) ~ 0

FOLml(iS(Xi)) ~ S(FOLDI(Xi))

where X. is a variable of sort i.
1

For each finite sort i, if i n E ~0

bet c ~ r. then add
1

i • FOLD (iC) ~ SO(O).

is a new constant of sort i denoting num-

Secondly consider the unfolding functions. For each infinite sort i add the equa-

tions,

UNFOLD 1 (0) ~ i0

i UNFOLD (S(X)) ~ iS(UNFOLDi(X))

where X is a variable of sort i.
i

For each finite sort i, if c is as before then add the equations =

UNFOLD i (S c (0)) > i - e if c < b.
- l

UNFOLD±(sC(x)) -> b. if c ~ b.
=l l

• and is named in ~0- E by b.=l; and X is a variable where b I is the last element of F i

of sort I.

And finally we consider the equations for the constants. For each infinite sort

i, if ic _ ~ E denotes the number c { ~i then add ic >- isC(u). ~ For each finite sort i,

if ic ~ 6 denotes the number e £ F. and ic { Z0 Z is its new constant symbol then we

i
remove the duplication by adding ic > _ - c.

This completes the construction of E 0.

What remains of the proof follows closely the arguments of Section 4. Here the

90

{isC sets of normal forms are, of course, (i0) :c~} when i is an infinite sort, and

{ic:cEFi} when i is a finite sort. And the arguments which lift Lemma 4.1 and 4.2 are

in all essential respects the same. Given, then, that (Z0,E0) is Church-Rosser and

strongly normalising, the normal forms being a traversal for =E0, we can prove

• ~ E i i isC i f R^ = T(E^, ^) by using the mappings ~ defined ~ (c) = [(0)] or i an infinite
U U , U .

sort and @l(c) = lc for i a finite sort.

REFERENCES

[13 BERGSTRA, J.A. & J.V. TUCKER, Algebraic specifications of computable and semi-
computable data structures, Mathematical Centre, Department of Computer
Science Research Report IW 115, Amsterdam, 1979.

[23 ~ , A characterisation of computable data types by means of a finite, equa-
tional specification method, Mathematical Centre, Department of Computer
Science Research Report IW 124, Amsterdam, 1979.

[33 ~ , Equational specifications for computable data types: six hidden func-
tions suffice and other sufficiency bounds, Mathematical Centre, Depart-
ment of Computer Science Research Report IW 128, Amsterdam, 1980.

[4] - - , On bounds for the specification of finite data types by means of equa-
tions and conditional equations, Mathematical Cen~e, Department of Com-
puter Science Research Report IW 131, Amsterdam, 1980.

[5] - - , On the adequacy of finite equational methods for data type specifica-
tion, ACM-SIGPLAN Notices 14 (11) (1979) 13-18.

[6] GOGUEN, J.A., J.W. THATCHER & E.G. WAGNER, An initial algebra approach to the
specification, correctness and implementation of abstract data types, in

R.T. YEH (ed.) Current trends in programming methodology IV, Data structur-
ing, Prentice-Hall, Engelwood Cliffs, New Jersey, 1978, 80-149.

[7] KAMIN, S., Some definitions for algebraic data type specifications, SIGPLAN
Notices 14 (3) (1979) 28-37.

[8] MACHTEY, M. & P. YOUNG, An introduction to the general theory of algorithms,
North-Holland, New York, 1978.

[9] MAL'CEV, A.I., Constructive algebras, I., Russian Mathematical Surveys, 16 (1961)

77-129.

[i03 RABIN, M.O., Computable algebra, general theory and the theory of computable
fields, Transactions American Mathematical Society, 95 (1960) 341-360.

[i13 ROSEN, B.K., Tree manipulating systems and Church-Rosser theorems, J. Associa-
tion Computing Machinery, 20 (1973) 160-187.

