J,A, BERGSTRA, J,W, KIOP
Centre for Mathematics and Ccmputer Science
P. O. Box 4079, 1009 AB Amsterdam, The Netherlands

We verify a simple version of the altemating bit protocol in the system ACP (Algebra of Commincating Processes with silent actions) augmented with Koomen's fair abstraction rule.

INTRODUCTION

Let D be a finite set of data. These data are to be transmitted through an unreliable medium from location 1 to location 2 , by means of a transmission protomol T.

With $x 1$ (d) we denote the act of reading datum d at location 1 , whereas w2 (d) denotes the act of writing value d at location 2. The external (higher level) specification of the behaviour of T is this:

$$
T=\sum_{d \in D} r 1(d) \cdot w 2(d) \cdot T
$$

Fron its initial state T is enabled to read any deD, thereafter T will write d at 2 and subsequently return to its initial state.

A very interesting mechanism to implement T is the alternating bit protocol (from [21). This protocol turns out to be sufficiently complicated to serve as a test case for protocol verification methods (see HATLPERN \& OWICKI [7] and LAMPORT [8] for instance).

We will present a description and verification of ABp the alternating bit protocol), in terms of process algebra. Our presentation makes extensive use of $A C P_{T}$, Algebra of Communcating Processes with silent actions, as well as of ideas by C.J. Koomen from philips Research.

The advantage of process algebra in contrast to techniques based on temporal logic and Hoare-style verification is mainly that the entire verification is done in terms of calculations on the protocol itself. Both safety and liveness are simultaneously dealt with in the equational calculus of process algebra.

The structure of this note is as follows:
2. Explanation of the architecture of ABP.
2. Axioms and rules of process algebra.
3. Verification of $A B P$.

[^0]Remark. It must be said that $A B P$ as explained here is only one of the many variations on the same theme, and among these a rathex simple one. Process algebra is well suited to specify individual protocols; at present the specification of classes of protocols is not supported by process algebra. For other issues of a philosophical nature we refer to [10] and [11].

1. ARCHITECTURE OF ABP

1.1. The protocol can be visualised as follows:

There are four components:
$S:$ sender. S reads data d at 1 ($d \in D$), and communicates the data to channel K until an acknowledgement has been received via channel L.
K : data transmission channel. K commicates data in DO UDI (Di $=\{d i \mid d \in D\}$), and may communicate these correctly or communicate an error value e. K is supposed to be fair in the sense that it will not produce an infinite consecutive sequence of error outputs.

R: receiver. R receives data from K, outputs them at 2 and sends back acknowledgements via L.

I: acknowledgement transmission channel. The task of L is to communicate boolean values from R to S. The channel I may yield error outputs but is also supposed to be fair.

The components S, K, R and L are processes. The protocol T is described by

$$
\partial_{H}(s\|K\| R \| L)
$$

Here $\|$ denotes parallel composition and ∂_{H} encapsulates $s\|k\| R \| L$ by requiring that no external processes may interfere in the communications at ports 3,4,5 and 6.

In order to obtain an abstract view of the protocol the operator τ_{I} is applied, which replaces internal actions (in f) by the silent action τ. Thus:

$$
T=\tau_{I} \partial_{H}(S\|K\| R \| I)
$$

Verification amounts to a proof that this T satisfies the equation

$$
T=\sum_{d \in D} r I(d) \cdot w 2(d) \cdot T
$$

1.2. Structure of the components of ABP.

1.2.1. Data and actions.

D is the finite set of data that is to be transmitted by $A B P$. For $d \in D$, do and di are new data, obtained by appending 0 resp. 1 to d. We write:

$$
\begin{aligned}
& D O=\{d O \mid d \in D\} \\
& D I=\{d I \mid d \in D\} \\
& D=D \cup D O \cup D I \cup\{0,1, e\} .
\end{aligned}
$$

ID is the set of data that occur as parameter of atomic actions. For $t \in\{1, \ldots .6\}$ there are read and write actions:
$x t(a)$, read $a \in D$ at t
wt (a), write $a \in \mathbb{D}$ at t.

Here $t \in\{1, \ldots, 6\}$ is called a port (or location, but we prefer port.).
Communication takes place at ports only:

$$
\operatorname{rt}(a) \mid w t(a)=j
$$

where j is an internal action. Another kind of internal action is i it corresponds to internal choices made by K and L. The entire alphabet A of proper actions is then as follows:

$$
A=\{x t(a) \mid i \leqslant t \leqslant 6, a \in \mathbb{D}\} \cup\{w t(a) \mid 1 \leqslant t \leqslant 6, a \in \mathbb{D}\} \cup\{i, j, \delta\}
$$

The commanication function . . . $: A \times A \rightarrow A$ yields δ (deadlock or failure) except in the case mentioned before: $r t(a) \mid w t(a)=j$.

Of course the abstraction operator will introduce Milner's silent action で and the universe of discourse consists of the processes over $A_{\tau}=A \cup\{\tau\}$. Furthermore H, the set of subatomic (or communication) actions is:

$$
\bigcup_{t \in\{3,4,5,5\}} \bigcup_{a \in \mathbb{D}}\{r t(a), w t(a)\}
$$

and I, the set of internal actions is just $\{i, j\}$.

1.2.2. The individual components.

We will first give the well-known state transition diagrams for 'process graphs') for S, K, L and R. Here a node is a state and an arrow denotes an action (i.e. state txansition of the process). Both state ana actions can be parametrised by data.

Channels:

($a \in \mathrm{DO} \cup \mathrm{DL}$)

$L=\sum_{a \in\{0,1\}} r 6(a) \cdot(i . w 5(a)+i, w 5(e)) . L$

Note that K and L, after receiving input, have a nondeterministic choice, by doing one of both i actions.

At the level of this equational specification of K and fairness is not yet mentioned. Fairness will come in when abstraction is applied to remove the i's.

Sender:

$$
\begin{aligned}
& s=s^{0} \cdot s^{1} \cdot s \\
& s^{n}=\sum_{d \in D} r 1(d) \cdot s_{d}^{n} \quad(n=0,1) \\
& s_{d}^{n}=w 3(d n) \cdot U_{d}^{n} \\
& U_{d}^{n}=(r 5(1-n)+r 5(e)) \cdot s_{d}^{n}+r 5(n)
\end{aligned}
$$

Receiver:

$$
\begin{aligned}
& R= R^{1} \cdot R^{0} \cdot R \\
& R^{n}=\left(\sum_{d \in D} r 4(d n)+r 4(e)\right), w 6(n) \cdot R^{n}+ \\
&+\sum_{d \in D} r 4(d(1-n)) \cdot w 2(d) \cdot w 6(1-n) \\
&(n=0,1)
\end{aligned}
$$

2. PROCESS ALGEBRA

2.1. $\underline{A C P}_{\tau}$.

Let A be a set of atomic actions and $\mid \cdot: A x A \rightarrow A$ a comunication function, which is commutative and associative and for which δ acts as a zero. A_{τ} denotes $A \cup\{\tau\}$; T is the silent action, that results from application of the abstraction operator.

The signature of operations of processes that we will use is this:

Table 1.

+	alternative composition (sum)	
\cdot	sequential composition (product)	
$\\|$	parallel composition (merge)	
U	left-merge	
1	communication merge	
∂_{H}	encapsulation	
τ_{I}	abstraction	
δ	deadlock/failure	
τ	silent action	

An $A C P_{r}$ algebra is an algebra of the above signature (where | extends the communication function on atoms) and which satisfies the axioms in Table 2 . Here $H \subseteq A, I \subseteq A, \delta \notin I$ and a, b, c range over A.

Table 2.
ACP_{τ} algebras satisfy the combinatorial identities shared by finite processes. In order to deal with infinite processes we will further assume that the following second order principles and xules are satisfied in the process algebra in which we model ABP, the alternating bit protocol.

```
    I. Recursive specification principle (RSP)
II. Koomen's fair abstraction rule (KFAR)
III. Handshaking axiom (HA)
IV. Expansion Theorem (ET)
```

We will explain I-IV below. First, however, we allow ourselves some methodological remarks.

Remark l. At present it is not possible to provide a remotely complete axiomatisation of processes that is of use "in general". But the equational (sub)systems $A C P$ and $A C P_{\tau}$ are a fixed kernel. Here $A C P$ consists of the axioms Al-7,C1-3,CM1-9, D1-4, i.e. the left column of Table 2 .

Remark 2. The system ACP was introduced in [3], and $A C P_{\tau}$ was introduced in [4]. We view $A C P_{r}$ as a reformulation of the basic issues of Milner's CCS [9] Comments on the relation between ACP_{τ} and CCS are in [4].

Remark 3. Koomen's fair abstraction rule has been derived from an idea that C.J. Koomen and R. Schutten used in experimental work on protocol verification . At Philips Research Eindhoven they have developed a formula manipulation package based on ccs.

2.2. Explanation of the principles I,II,III,IV.

2.2.1. The recursive specification principle.

Let $X, Y, X_{i}, Y_{i}(i \in \omega)$ be variables for processes. We write X for $\left\{X_{i} \mid i \in \omega\right\}$ and Y for $\left\{Y_{i} \mid i \in \omega\right\}$. If z is a collection of variables then $t(Z)$ denotes an ACP_{τ} term over z .

Let $E \subseteq A$. We call the term $t(Z)$ E-guarded if each variable in $t(Z)$ is preceded by an atom in E and $t(Z)$ does not contain an operator τ_{I}. Here 'preceded' is defined thus: if t is a subterm (occurrence) in x and s in y, then t precedes s in $x . y$; likewise in $x \mathbb{y}$ (but not in $x \| y$). Example: $a \cdot(X \| Y)+b . X$ and $a . X .(X \| Y)+\tau(b \| X)$ are (a, b)-guarded, but $\tau . X+b . Y, \tau X \mid a Y$ and $(a X \| Y) \|$ bz are not E-guarded for any E. We call an equation $X=t(Z)$ E-guarded if $t(Z)$ is E-guarded.

Remark. The reason for excluding operators τ_{I} in an E-guarded term is that it is problematic to find a suitable definition of guardedness in the presence of such operators. Here 'suitable' refers to our wish to obtain unique prom cesses (by RSP; see below) as solutions of systems of guarded equations.
E.g. the following system has infinitely many solutions:

$$
\begin{aligned}
& X=a \cdot \tau_{\{b\}}(Y) \\
& Y=b \cdot \tau_{\{a\}}(X)
\end{aligned}
$$

Namely, every $X=a . p$ with a, b not in the alphabet of p is a solution.

DEFINITION. A recursive specification $S_{E}(X ; X)$ is a collection of E-guarded equations (over ACP):

$$
x_{i}=t_{i}(X)
$$

together with an equation

$$
x=t(X)
$$

Remark. If $P_{*} P_{i}(i \in \omega)$ satisfy the system of equations $S_{E}\left(P_{i} P_{i} \mid i \in \omega\right)$ then we want to view $S_{E}\left(X_{;} X_{i} \mid i \in \omega\right)$ as a specification of P involving auxiliary processes P_{i} (iccu).
of course this definition includes the case of a finite specification.

The recursive specification principle (RSP) states that a recursive definition singles out a unique process (if any). In more formal notation:
(RSP)
$\frac{S_{E}(X ; X) \quad S_{E}(X, Y)}{X=Y}$

2.2.2. Koomen's fair abstraction rule (KFAR).

This rule allows to compute $\tau_{I}(X)$ for certain X, thereby expressing the fact that certain steps in I will be fairly scheduled in such a way that eventually a step outside I is performed. This is the formal description of KFAR:

$$
\text { (KFAR) } \frac{\forall n \in \mathbb{Z}_{k} X_{n}=i_{n} \cdot X_{n+1}+Y_{n} \quad\left(i_{n} \in I\right)}{\tau_{I}\left(X_{n}\right)=\tau \cdot \tau_{I}\left(Y_{0}+\ldots+Y_{k-1}\right)}
$$

Here $\mathbb{Z}_{k}=\{0, \ldots, k-1\}$ and addition in subscripts works modulo k.
We illustrate the effect of KFAR in two simple examples:
(i) Suppose $x=i . X+a$ where $a \notin I$. Then an application of KFAR yields:
 resists being performed infinitely many times consecutively.
(ii) Let $Y=i . Y$, then $\tau_{I}(Y)=\tau . \delta$. To see this note that $Y=i . Y+\delta$ and apply KFAR.

For a different approach to fairness in processes we refer to DE BAKKER \& zucker [1].

2.2.3. Axioms of standard concurrency.

We will adopt the following axioms of 'standard concurrency'; all axioms (1)-(6) hold for finite processes from ACP_{τ}. In [5] these axioms are proved simultaneously with induction on term formation; we will only need here axioms (3)-(6).
(1) $\quad(x \| y) \mathbb{z}=x \|(y \| z)$
(2) $(x \mid a y) \amalg z=x \mid(a y \rrbracket z)$
(3) $x|y=y| x$
(4) $x\|y=y\| x$
(5) $x|(y \mid z)=(x \mid y)| z$
(6) $x\|(y \| z)=(x \| y)\| z$

2.2.4. Handshaking axiom (HA).

The handshaking axiom expresses the fact that all communications are binary, i.e. work by means of handshaking.
(HA) $\quad x|y| z=\delta$

2.2.5. Expansion Theorem (ET).

This theorem, in the context of $C C S$ due to $M I L N E R[9]$ and for $A C P_{\tau}$ formulated in [4], can be shown for finite processes from $A C P_{r}$. (See [5].) The Expansion Theorem presupposes $H A$ and the axioms of standard concurrency (except (1), (2)). The following notation is used: Let X_{1}, \ldots, x_{k} be processes. With X^{i} we denote merge of all x_{n} such that $n \in\{1, \ldots, k\}-\{i\}$. With $X^{i, j}$ we denote the merge of ail X_{n} such that $n \in\{1, \ldots, k\}-\{i, j\}$.

ET is then formulated as follows (for $k \geqslant 3$):

$$
\text { (ET) } \quad x_{1}\|\ldots\| x_{k}=\sum_{1 \leqslant i \leqslant k} x_{i}\left\|x^{i}+\sum_{1 \leqslant i<j \leqslant k}\left(x_{i} \mid x_{j}\right)\right\| x^{i, j}
$$

ET is an indispensable tool for the calculation of terms of the form $x_{2}\|\ldots\| x_{k}$. Essentially it is a generalisation of the axiom cml of $A C P_{\tau}$.

3. A VERTEICATION OF ABP

Let $T^{\prime *}=\sum_{d \in D} r 1(d) . w 2(d) . T^{*}$ and $T=\tau_{I} \partial_{H}(S\|K\| L \| R)$ in the notation of Sec-
tion 1. Section 1 fixes a set of atomic actions A and a communication function on it.

Using $A C P_{C}+R S P+K F A R+H A+E T$ we will show: $T=T *$. Stated different1y:

$$
\tau_{I} \partial_{H}(S\|K\| L \| R)=\sum_{d \in D} r 1(d) \cdot w 2(d) \cdot \tau_{I} \partial_{H}(S\|K\| L \| R)
$$

For the proof we use the following notationt

$$
\left(x_{1}\left\|x_{2}\right\| x_{3} \| x_{4}\right)=\left(\begin{array}{c|c}
x_{1} & x_{2} \\
\hline x_{3} & x_{4}
\end{array}\right)
$$

Using this notation we have:

$$
T=\tau_{I} \partial_{H}\left(\left.\frac{S}{L} \right\rvert\, \frac{K}{R}\right)=\tau_{\mathrm{H}} \mathrm{I}_{\mathrm{H}}\left(\begin{array}{c|c}
S^{0} \cdot s^{1} \cdot s & K \\
\hline L & R^{1} \cdot R^{0} \cdot R
\end{array}\right)
$$

For $\mathrm{b} \in\{0,1\}$ we write

$$
T^{b}(X, Y)=\tau_{I} \hat{H}\left(\begin{array}{c|c}
S^{b} \cdot S^{I-b} \cdot X & K \\
\hline L & R^{I-b} \cdot R^{b} \cdot y
\end{array}\right)
$$

In particular, $T=T^{0}(S, R)$.

CLATM:

$$
T^{b}(x, y)=\sum_{d \in D} x(d) \cdot w 2(d) \cdot \tau_{T} \partial_{H}\left[\frac{\left.s^{1-b} \cdot X\right|_{K}}{\left.L\right|_{R} ^{b} \cdot Y}\right]
$$

The claim proves $T=T^{*}$ as follows:

$$
T=T^{0}(S, R)=\sum_{d \in D} r l(d) \cdot w 2(d) \cdot \tau_{I} g_{H}\left[\begin{array}{c|c}
S^{1} \cdot S & K \\
\hline L & R^{0} \cdot R
\end{array}\right]=
$$

$$
\begin{aligned}
& \sum_{d \in D} r l(d), w 2(d) \cdot \tau_{I} \partial_{H}\left(\begin{array}{l|l}
S^{1} \cdot s^{0} \cdot s^{1} \cdot s & K \\
\hline L & R^{0} \cdot R^{1} \cdot R^{0} \cdot R
\end{array}\right)= \\
& \sum_{d \in D} r 1(d) \cdot w 2(d) \cdot T^{1}\left(S^{1} \cdot S, R^{0} \cdot R\right)= \\
& \sum_{d \in D} r 1(a) \cdot w 2(a) \cdot \sum_{a \in D} r 1(a) \cdot w 2(a) \cdot \tau_{I}{ }_{H}\left[\left.\frac{S^{0} \cdot S^{3} \cdot S \mid}{L} \right\rvert\, R^{I} \cdot R^{0} \cdot R\right]= \\
& \sum_{d \in D} r I(d) \cdot w 2(d) \cdot \sum_{a \in D} r I(a) \cdot w 2(a) \cdot T .
\end{aligned}
$$

Thus T satisfies an (A-guarded) recursion equation which is also satisfied by T^{*}. It follows by RSP that $\mathrm{T}=\mathrm{T}^{*}$.

PROOF OF THE CLAIM. We write

$$
G^{b}(X, Y)=\partial_{H}\left(\begin{array}{c|c}
S^{b} \cdot S^{1-b} \cdot x & K \\
I & \frac{R}{R^{-b} \cdot R^{b} \cdot Y}
\end{array}\right)
$$

and

$$
G_{d}^{b}(X, Y)=\partial_{H}\left[\begin{array}{c|c}
s_{d}^{b} \cdot s^{1-b} \cdot X & k \\
L & R^{1-b} \cdot R^{b} \cdot Y
\end{array}\right]
$$

Terms like $G^{b}(X, Y)$ and $G_{d}^{b}(X, Y)$ can be rewritten using the Expansion Theorem. ET will yield $4+6=10$ terms and in all cases in this proof at most 2 of these terms are not equal to δ. In the sequel we will use applications of ET as a single calculation step. (Note that it is entirely feasible to verify ail these applications of ET automatically.)

Now:

$$
\begin{aligned}
T^{b}(X, Y)= & \sum_{a \in D} r l(d) \cdot \tau_{I} \partial_{H}\left(\left.\frac{s^{b} \cdot s^{1-b} \cdot X}{L} \right\rvert\, \frac{K}{R^{1-b} \cdot R^{b} \cdot Y}\right]= \\
& \sum_{d \in D} r 1(d) \cdot \tau_{I} G_{d}^{b}(X, Y)
\end{aligned}
$$

We will derive a recursive specification for $G_{d}(X, Y)$:

$$
\begin{aligned}
& G_{d}^{b}(X, Y)=j \cdot \partial_{H}\left(\begin{array}{c|c}
U_{d}^{b} \cdot s^{1-b} \cdot X & \left(i . w^{4}(e)+i . W 4(d b)\right) \cdot K \\
\hline L & R^{1-b} \cdot R^{b} \cdot Y
\end{array}\right)= \\
& =j \cdot\left[i \cdot \partial_{H}\left[\begin{array}{c|c}
U_{d}^{b} \cdot S^{1-b} \cdot X & w 4(e) \cdot K \\
\hline L & R^{I-b} \cdot R^{b} \cdot Y
\end{array}\right)+i \cdot \partial_{H}\left(\begin{array}{c|c}
U^{b} \cdot S^{I-b} \cdot X & w 4(d b) \cdot K \\
\hline L & R^{I-b} \cdot R^{b} \cdot Y
\end{array}\right]\right]=
\end{aligned}
$$

$$
\begin{aligned}
& =j \cdot\left[i \cdot j \cdot \partial_{H}\left(\begin{array}{c|c}
U_{d}^{b} \cdot s^{1-b} \cdot x & K \\
\hline L & w 6(1-b) \cdot R^{1-b} \cdot R^{b} \cdot Y
\end{array}\right)+\right. \\
& \left.+i \cdot j \cdot \partial_{H}\left(\begin{array}{c|c}
U_{d}^{b} \cdot s^{1-b} \cdot X & K \\
\hline L & w 2(d) \cdot w 6(b) \cdot R^{b} \cdot Y
\end{array}\right)\right]= \\
& =j \cdot\left[i \cdot j \cdot j \cdot \partial_{H}\left(\begin{array}{l|c}
U_{d}^{b} \cdot s^{1-b} \cdot x & k \\
\hline(i \cdot w 5(e)+i \cdot w 5(1-b)) \cdot L & R^{1-b} \cdot R^{b} \cdot x
\end{array}\right]+i \cdot j \cdot z\right] \\
& \text { (with } Z=\partial_{H}\left[\begin{array}{c|c}
U_{d}^{b} \cdot s^{1-b} \cdot x & K \\
L & w 2(d) \cdot w 6(b) \cdot \mathbb{R}^{b} \cdot Y
\end{array}\right)= \\
& =j \cdot\left[i \cdot j \cdot j \cdot \left\{i \cdot \hat{Q}_{H}\left(\begin{array}{c|c}
U^{b} \cdot S^{1-b} \cdot X & K \\
\hline w 5(e) \cdot L & R^{I-b} \cdot R^{b} \cdot Y
\end{array}\right]+\right.\right. \\
& \left.\left.+1 \cdot \partial_{H}\left(\begin{array}{c|c}
\mathrm{U}_{\mathrm{d}}^{\mathrm{a}} \cdot \mathrm{~S}^{1-\mathrm{b}} \cdot \mathrm{X} & \mathrm{~K} \\
\hline \mathrm{w}^{5}(1-\mathrm{b}) \cdot \mathrm{L} & \mathrm{R}^{1-\mathrm{b}} \cdot \mathrm{R}^{\mathrm{b}} \cdot \mathrm{Y}
\end{array}\right)\right\}+i \cdot j \cdot 2\right]= \\
& =j \cdot\left[i \cdot j \cdot j \cdot \left\{i \cdot j \cdot j_{H}\left[\begin{array}{c|c}
S_{d}^{b} \cdot s^{1-b} \cdot x & k \\
\hline L & R^{1-b} \cdot R^{b} \cdot y
\end{array}\right]+\right.\right. \\
& \left.+i . j-\partial_{H}\left[\begin{array}{c|c}
s_{d}^{b} \cdot s^{1-b} \cdot x & K \\
\hline L & R^{l-b} \cdot R^{b} \cdot v
\end{array}\right]+i . j \cdot z\right]= \\
& =j \cdot\left[i \cdot j \cdot j \cdot i \cdot j \cdot G_{d}^{b}(X, y)+i \cdot j \cdot Z\right] \text {. }
\end{aligned}
$$

We can now apply kFAR for $k=6$ and $Y_{0}=\delta, Y_{2}=i \cdot j \cdot Z, Y_{2}=\ldots=Y_{5}=\delta$.
This gives:

$$
\tau_{I}\left(G_{d}^{b}(X, Y)\right)=\tau \cdot \tau_{I}(i \cdot j \cdot Z)
$$

Hence:

$$
\begin{aligned}
& T^{b}(X, Y)=\sum_{d \in D} r l(d) \cdot \tau_{I}\left(G_{d}^{b}(X, Y)\right)=\sum_{d \in D} r I(d) \cdot \tau \cdot \tau_{I}(i \cdot j \cdot Z)= \\
& =\sum_{d \in D} r l(d) \cdot \tau \cdot \tau \cdot \tau \cdot \tau_{I}(Z)=\sum_{d \in D} r l(d) \cdot \tau_{I}(Z)= \\
& =\sum_{d \in D} r 1(d) \cdot \tau_{I} \partial_{H}\left[\begin{array}{c|c}
U_{d}^{b} \cdot s^{1-b} \cdot x & K \\
L & W 2(d), w 6(b) \cdot R^{b} \cdot Y
\end{array}\right]= \\
& =\sum_{d \in D} r l(d) \cdot \tau_{I}\left[\begin{array}{ll|c}
w 2(d) \cdot \partial_{H}
\end{array}\left[\begin{array}{c}
u_{d}^{b} \cdot s^{1-b} \cdot x
\end{array}\right] K\right. \\
& =\sum_{d \in D} r I(d) \cdot w 2(d) \cdot \tau_{I}\left(X_{d}^{b}(X, Y)\right) \\
& \left(\text { with } K_{d}^{b}(X, Y)=\partial_{H}\left[\begin{array}{c|c}
0_{d}^{b} \cdot s^{1-b} \cdot X & K \\
\hline L & W \in(b), R^{b} \cdot Y
\end{array}\right]\right) .
\end{aligned}
$$

The next part of the proof of the claim consists in deriving a recursion equation for $k_{d}^{b}(x, y)$:

$$
\begin{aligned}
& K_{d}^{b}(X, Y)=j \cdot \partial_{H}\left(\begin{array}{l|l}
U_{d}^{b} \cdot s^{1-b} \cdot x & K \\
\hline(i, w 5(b)+i \cdot w 5(e)) \cdot L & R^{b} \cdot Y
\end{array}\right)= \\
& =j \cdot\left[i \cdot \partial_{H}\left[\begin{array}{l|l}
U_{a}^{b} \cdot s^{l-b} \cdot x & k \\
\hline w 5(b) \cdot L & R^{b} \cdot x
\end{array}\right]+i \cdot \partial_{H}\left[\begin{array}{c|c}
u_{d}^{b} \cdot s^{1-b} \cdot x & K \\
\hline w 5(e) \cdot L & R^{b} \cdot x
\end{array}\right]=\right. \\
& =j \cdot\left[i \cdot j \cdot \partial_{H}\left[\begin{array}{c|c}
s^{1-b} \cdot X & K \\
\hline L & R^{b} \cdot Y
\end{array}\right]+i \cdot j \cdot \partial_{H}\left[\begin{array}{c|c}
s_{d}^{b} \cdot s^{1-b} \cdot x & K \\
\hline L & R^{b} \cdot Y
\end{array}\right]=\right. \\
& =j \cdot\left[i \cdot j \cdot v+i \cdot j \cdot j \cdot \partial_{H}\left[\begin{array}{c|c}
0_{d}^{b} \cdot s^{i-b} \cdot x & (i . w 4(e)+i \cdot w 4(d b)) \cdot K \\
\hline L & R^{b} \cdot Y
\end{array}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (with } v=\partial_{H}\left(\begin{array}{c|c}
s^{1-b} \cdot x & K \\
\hline L & R^{b} \cdot y
\end{array}\right)= \\
& =j \cdot\left[i \cdot j \cdot V+i \cdot j \cdot j \cdot\left\{i \cdot \partial_{H}\left[\begin{array}{c|c}
U_{a}^{b} \cdot s^{1-b} \cdot x & w 4(e) \cdot K \\
\hline L & R^{b} \cdot x
\end{array}\right]+\right.\right. \\
& \left.+i . \partial_{H}\left[\begin{array}{c|c}
U_{d}^{b} \cdot s^{1-b} \cdot x & w 4(d b) \cdot K \\
\hline L & R^{b} \cdot Y
\end{array}\right]\right\}= \\
& =j \cdot\left[i \cdot j \cdot v+i \cdot j \cdot j \cdot\left\{i \cdot j \cdot \partial_{H}\left[\begin{array}{c|c}
u_{d}^{b} \cdot s^{1-b} \cdot x & K \\
\hline I & w 6(b) \cdot R^{b} \cdot x
\end{array}\right]+\right.\right. \\
& \left.\left.+\dot{L} j \cdot \partial_{H}\left(\begin{array}{c|c}
U_{d}^{b} \cdot s^{1-b} \cdot X & K \\
\hline L & w \in(b) \cdot R^{b} \cdot Y
\end{array}\right)\right\}\right]= \\
& =j \cdot\left[i \cdot j \cdot v+i \cdot j \cdot j \cdot i \cdot j \cdot k_{d}^{b}(x, y)\right] .
\end{aligned}
$$

Applying KPAR we get:

$$
\begin{aligned}
& \tau_{I}\left(K_{d}^{b}(X, Y)\right)=\tau \cdot \tau_{I}(i . j \cdot V)=\tau \cdot \tau \cdot \tau \cdot \tau_{I}(V)=\tau \cdot \tau_{I}(V)= \\
& \tau \cdot \tau_{I} \partial_{H}\left[\begin{array}{l|l}
s^{1-b} \cdot x & K \\
\hline L & R^{b} \cdot y
\end{array}\right] .
\end{aligned}
$$

we conclude:

$$
\begin{aligned}
& T^{b}(X, Y)=\sum_{d \in D} r 1(d) \cdot w 2(d) \cdot \tau_{I}\left(K_{d}^{b}(X, Y)\right)= \\
& =\sum_{d \in D} r l(d) \cdot w 2(d) \cdot \tau \cdot \tau_{I} \partial_{H}\left(\begin{array}{c|c}
S^{1-b} \cdot x & K \\
\hline L & R^{b} \cdot Y
\end{array}\right)=
\end{aligned}
$$

$$
=\sum_{d \in D} r l(d) \cdot w 2(d) \cdot \tau_{I} \partial_{H}\left[\begin{array}{c|c}
s^{1-b} \cdot x & K \\
\hline L & R^{b} \cdot y
\end{array}\right) .
$$

This finishes the proof of the claim and the verification of ABP.

REFPERENCEA
[1] DE BAKKER, J.W. \& J.I. ZUCKER, COmpactness in semantics for merge and fair merge, Report IW 238/83, Mathematisch Centrum Amsterdam 1983.
[2] BARTLETT, K.A., R.A. SCANTLEBURY \& P.T. WILKINSON, A note on reliable fult-duplem tranmission over half duptex lines, CACM 12, No. 5 (1969).
[3] BERGSTRA, J.A. \& J.W. KLOP, Frocess Algebra for Synchronous Communiaation, Information and Control. Vol.60, Nos.1-3, 1984, 109-137.
[4] BERGSTRA, J.A. \& J.W. KIOP, Algebra of Comminicating Processes, to appear in Proc. of the CNI Symposium Mathematics and Computer Science (ed̃s. J.W. de Bakker, M. Hazewinkel and J.K. Lenstra), North-Holland, Amsterdan 1985.
[5] BERGSTRA, J.A. \& J.W. KLOP, Algebra of Commhicating Processes with abstraction, to appear in Theoretical Computer Science, 1985.
[6] HALLPERN, B.T., Vemifying concurrent processes using temporal logic. Springex LNCS 129, 1982.
[7] HAILPERN, B.T. \& S. OWICKI, Vemifying network protocole using temporal Zogic, in: Trends and applications symposium, National Bureau of standards 1980.
[8] LAMPORT, L., Snecifying concurrent program modules, ACM Toplas, Vol.5, No. 2, P.190-222.
[9] MTLNER, R., A Calculus of Communicating Systems, Springex LNCS 92, 1980.
[10] SCHWARTZ, R.I. \& P. MELIAR SMITH, Fnom state machine to temperat Zogic, specification methods for protocol standards, IEEE Transactions on communication, Vol.30, No. 12 (1982) p.2486-2496.

III YEMINI, Y. \& J.F. KUROSE, Can current protocol verification techaiques guarantee correctness? Computer networks, Vol.6, No.6 (1982), p. 377-381.

[^0]: This work was sponsored in part by ESPRIf contract 432 mETEOR.

