
76

A Survey of Active Object Languages

FRANK DE BOER and VLAD SERBANESCU, Centrum Wiskunde and Informatica

REINER HÄHNLE, TU Darmstadt

LUDOVIC HENRIO and JUSTINE ROCHAS, Université Côte d’Azur, CNRS, I3S

CRYSTAL CHANG DIN and EINAR BROCH JOHNSEN, University of Oslo

MARJAN SIRJANI, Mälardalen University and Reykjavik University

EHSAN KHAMESPANAH, University of Tehran and Reykjavik University

KIKO FERNANDEZ-REYES and ALBERT MINGKUN YANG, Uppsala University

To program parallel systems efficiently and easily, a wide range of programming models have been proposed,
each with different choices concerning synchronization and communication between parallel entities. Among
them, the actor model is based on loosely coupled parallel entities that communicate by means of asynchro-
nous messages and mailboxes. Some actor languages provide a strong integration with object-oriented con-
cepts; these are often called active object languages. This article reviews four major actor and active object
languages and compares them according to carefully chosen dimensions that cover central aspects of the
programming paradigms and their implementation.

CCS Concepts: • Software and its engineering → Parallel programming languages; Concurrent pro-

gramming structures;

Additional Key Words and Phrases: Programming languages, active objects, actors, concurrency, distributed
systems

ACM Reference format:

Frank De Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal Chang Din, Einar
Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-Reyes, and Albert Mingkun Yang. 2017.
A Survey of Active Object Languages. ACM Comput. Surv. 50, 5, Article 76 (October 2017), 39 pages.
https://doi.org/10.1145/3122848

1 INTRODUCTION

Designing a programming language for concurrent systems is a difficult task. The programming
abstractions provided in concurrent programming libraries are often rather low level and diffi-
cult to reason about, both from the point of view of the programmer and for verification tools.
This article focuses on one family of concurrent programming languages that tries to mitigate

Authors’ addresses: F. D. Boer and V. Serbanescu, Centrum Wiskunde and Informatica, Kruislaan 413, P.O. Box 94079,
1090 GB Amsterdam, The Netherlands; emails: {F.S.de.Boer, vlad.serbanescu}@cwi.nl; R. Hähnle, Technische Universität
Darmstadt, Fachbereich Informatik, Fachgebiet Software Engineering, Hochschulstr. 10, 64289 Darmstadt, Deutschland;
email: haehnle@cs.tu-darmstadt.de; L. Henrio and J. Rochas, I3S - projet SCALE, 2000, rte des Lucioles - Les Algorithmes -
bât. Euclide, 06903 Sophia Antipolis cedex, France; emails: ludovic.henrio@cnrs.fr, justine.rochas@gmail.com; C. C. Din and
E. B. Johnsen, Department of Informatics, University of Oslo, P.O. Box 1080 Blindern, N-0316 Oslo, Norway; emails: {einarj,
crystald}@ifi.uio.no; M. Sirjani, Högskoleplan 1, 721 23 Västerås, Sweden; email: marjan.sirjani@mdh.se; E. Khamespanah,
North Karegar St. Pardis II, Tehran, Iran; email: ekhamespanah@yahoo.com; K. Fernandez-Reyes and A. M. Yang, Box 337,
751 05 UPPSALA; emails: {kiko.fernandez, albert.yang}@it.uu.se.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2017 ACM 0360-0300/2017/10-ART76 $15.00
https://doi.org/10.1145/3122848

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

https://doi.org/10.1145/3122848
mailto:permissions@acm.org
https://doi.org/10.1145/3122848

76:2 F. De Boer et al.

this problem: active object languages. The first and most important characteristic of this family
of languages is inherited from the actor paradigm. It relies on organizing the program in terms of
well-defined entities called actors. Each actor is an independent entity that behaves autonomously
and that communicates with other actors through asynchronous messages. Actors execute concur-
rently and communicate asynchronously, without transfer of control. This makes the actor model
attractive [3, 8]: Using the actor model, information sharing is simplified, programming is less
error prone, analysis becomes much easier, and programs scale better to parallel and distributed
architectures, because control threads are implicit rather than explicit in the programs.

Within actor-based languages we focus in this survey on one specific category that uses asyn-
chronous method calls as its communication paradigm. Languages in this category are often called
active object languages. Whereas messages sent to an actor are generally selected by pattern match-
ing over the message queue, asynchronous method calls restrict the communication between active
objects to messages that trigger method activations. Consequently, messages to an actor can be
indefinitely ignored if the actor never switches to an appropriate state, whereas it can be statically
guaranteed that asynchronous method calls to an active object are understood. The basic unit of
concurrency is the same in all actor languages, and the active object languages have the same
attractive features as actor languages in general, but the way methods are called seems to pose
a rather subtle distinction. Although this merely causes minor differences regarding the expres-
siveness of the different languages, it causes considerable differences in terms of the abstractions
offered to the programmer. By supporting communication by asynchronous method calls, the pro-
gramming model of active object languages is tightly integrated with the object-oriented program-
ming paradigm and its programming abstractions, which are familiar to most programmers.

We start this survey by giving the historical context that led to the existence of active object
languages and that justifies their importance. We then focus on four languages that are represen-
tative of this language family. We start with Reactive Objects Language (Rebeca), which is closest to
the classical actor model [3] but nevertheless provides communication by a form of asynchronous
method invocation. The three other languages—ABS, ASP, and Encore—are precise representa-
tives of active object frameworks. Additionally, each of them implements replies to asynchronous
method calls in the form of futures (see Section 2.1), which enables advanced synchronization be-
tween the active objects.

The languages presented here come with strong support for formal methods and verification
techniques; Rebeca and ABS even make this their main focus, having been conceived as model-
ing languages: Actors do not merely offer a convenient programming abstraction but also greatly
simplify static program analysis by naturally structuring programs in entities that can serve as
the basis for compositional analyses. ASP and Encore instead put the focus on highly optimized,
efficient implementations. Whereas these languages all fit inside the category of active object lan-
guages, they propose different solutions for how they support synchronization and for how much
internal concurrency they allow inside active objects. The languages are surveyed with respect
to their objectives, level of formalization, and their implementation and tooling support. Further-
more, they are compared with respect to a number of dimensions in the design space of active
object languages: the degree of synchronization, the degree of transparency, and the degree of
data sharing.

This article is organized as follows. Section 2 presents an overview of the actor and active object
languages; it first adopts a historical perspective and then focuses on the four chosen languages,
justifying their choice, presenting their design principles, the approach they advocate, and the
tools they offer. Section 3 focuses on the implementation and runtime support for the presented
languages. Section 4 discusses design aspects of active object and related languages, and Section 5
concludes the article.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:3

2 ACTIVE OBJECT LANGUAGES

2.1 A Brief History of Actor and Active Object Languages

The development of high-level programming languages is generally driven by the quest for
suitable abstractions of the low-level implementation details of specific underlying hardware
architectures. A major challenge in the development of such languages is the high-level specifica-
tion of concurrent and parallel threads of control and their synchronization. In process calculi like
CSP [57] and CCS [75] independent threads of control communicate data synchronously, for ex-
ample, via channels. The Ada programming language [10] extends this model of synchronous com-
munication by a rendezvous interpretation of the execution of procedure calls and returns. In the
shared-variable model of concurrency, threads of control communicate and synchronize directly
via shared data. For example, the popular object-oriented programming language Java extends the
sequential thread of control of Simula and Smalltalk, in which a thread consists of a stack of proce-
dure (method) calls, from one to multiple threads in a manner resembling operating systems [44].

The shared-variable model of concurrency underlying the Java language requires that the de-
veloper ensures so-called thread safety; insufficient synchronization may cause data races between
threads, rendering program behavior “unpredictable and sometimes surprising” [44]. To avoid data
races, complex low-level synchronization mechanisms are used, which in turn may give rise to
deadlocks and thread starvation. The result of executing multi-threaded programs depends on an
intricate and fine-grained granularity of interleaving. This makes their behavior difficult to under-
stand and to verify. In addition, the multi-threaded concurrency model decouples data (represented
statically by classes) and control (represented at runtime by threads), which is unintuitive and dif-
ficult to use in a distributed setting.

The Actor model of computation [3, 55] departs from the synchronous communication mech-
anisms described above and is based on loosely coupled processes that interact via asynchronous
message passing. Actors integrate and encapsulate both data and a single thread of control and
communicate without transfer of control. Message delivery is guaranteed but messages may ar-
rive out of order. This loose coupling makes Actor languages conceptually attractive for parallel
and distributed programming; in fact, the Actor model originated from the need “to efficiently run
the coming generation of PLANNER-like artificial intelligence languages including those requir-
ing a high degree of parallelism” [55]. Erlang [8] is one of the most successful actor languages,
especially because of its adoption by programmers in the industry and because of its massively
parallel execution model supporting a huge number of independent actors.

In the original Actor models mentioned above, the interpretation and processing of messages is
confined to and part of the overall internal behavior of an actor. However, this does not allow a clear
separation of concerns between communication and computation and as such does not support
a “programming to interfaces” discipline [72]. A major advance in the development of high-level
programming languages is the compositional construction of programs in terms of modules and
their interfaces, which gave rise to the object-oriented programming paradigm. Modules are used
to model abstract data types and as such provide a powerful abstraction which fully integrates
data and control. In the object-oriented paradigm, modules are generalized to classes. Classes can
be characterized as modules from which objects can be dynamically instantiated and referred to
by unique identifiers (generated at runtime). The concepts of classes and objects were introduced
in Simula 67 [34], the first object-oriented language. Whereas Simula was a sequential language
with a single thread of control, it was developed to simulate real-world (concurrent) systems and
already featured the concept of coroutines [33].

Active (or concurrent) object languages integrate the basic Actor model with object-oriented
concepts and as such do support interface abstractions of implementation details. This integration
was first proposed in ABCL [93]. It can be realized by modeling a message as an asynchronous

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:4 F. De Boer et al.

method call, thus fixing the interpretation of a message by a corresponding method definition.
Returning values from a method call can be modeled by another asynchronous message, as done
in the actor-based language Rebeca [86, 88],

The notion of method calls can be further integrated by directly supporting return values while
maintaining a loose coupling between actors; this leads to the notion of future variables. Futures

were originally discovered by Baker and Hewitt in the late 1970s [9], later rediscovered by Liskov
and Shrira as promises in Argus [70] and by Halstead in MultiLisp [47], before finding their way
into object-oriented languages such as ConcurrentSmalltalk [92], ABCL [93], Eiffel// [23], and
CJava [32].

A future can be pictured as a mailbox that will eventually contain the return value from a method
call. Hence, the calling method may proceed with its computation and pick up the reply later. This,
however, requires additional synchronization by means of a blocking get-operation on the future.
In Creol [62, 63] such a synchronization mechanism is combined with cooperative scheduling of
the method activations of the active object, using an explicit statement to release control. This al-
lows coroutine-like method call execution inside an active object that encapsulates a single thread
of control. Cooperative scheduling permits a compositional proof theory [35].

Java’s multi-threaded concurrency model can be integrated with active objects on the basis of
cooperative scheduling. In the Abstract Behavioral Specification (ABS) language [61], Creol’s co-
operative scheduling is combined with the structuring mechanism of concurrent object groups
[82], originally developed for Java. A group of active objects has a thread pool with threads gen-
erated by (external) asynchronous method calls and extended as a stack of (internal) synchronous
method calls. Within a pool, at most one thread is executing at any time and the granularity of
interleaving is explicitly controlled in the code by means of the cooperative scheduling statements.

Caromel et al. [22] designed ASP, an imperative, asynchronous object calculus with transparent
futures. Their active objects may have internal passive objects that are passed between active ob-
jects by deep copying the entire (passive) object graph. Unnecessary copying can be avoided with
ownership type systems [27]. To limit the complexity of reasoning in a distributed and concurrent
setting, ASP is restricted to ensure that reduction is confluent and deterministic. ASP constitutes
the theoretical foundation for the ProActive language [21].

Like ASP, the Encore programming language [16] integrates active objects into an object-
oriented model and distinguishes among active and passive objects (such that passive objects are
owned by active ones). Unlike ASP, passive objects are data race free and may be passed by refer-
ence, due to a capability type system [24, 25].

Selection of Representative Languages. In the remaining article, we discuss these four active ob-
ject languages in detail: Rebeca, ABS, ASP, and Encore. Our selection intends to cover different
aspects: modeling languages designed for analysis (ABS, Rebeca) vs. languages optimized for effi-
cient execution (Encore, ProActive/ASP); close to the classical actor model and distributed systems
(Rebeca, partially ABS, ProActive/ASP) vs. targeted at multicore platforms (Encore); and code gen-
eration (ABS) vs. runtime environment (Encore, ProActive/ASP). We have also made sure that the
four languages discussed in detail have left the experimental stage and are available in stable,
public distributions. All four language have a formally defined semantics allowing us to precisely
compare the behavior of the programs written in them.

Other High-level Concurrent Languages. A detailed discussion of other high-level concurrent
languages can be found in Section 4.2.

2.2 Dimensions of Comparison between Languages

Before we discuss details of the different active object languages, we define the key points that we
consider as important when comparing their design.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:5

Objective of the Language. Identifying the objective of the language, for which purpose it was
created, is crucial to understand the design of a programming language and the tradeoffs that
have been made between different aspects. For example, the performance of the language can be
a crucial factor for which another aspect can be given less priority, such as the accessibility of the
language to non-experts.

Degree of Synchronization. There is a close relation between the design of a concurrent program-
ming language and the degree of synchronization that can be expressed in it. Each language has a
different set of synchronization primitives, even though for active object languages the choices are
limited. Some languages, inspired by pure actors, have no synchronization primitive: Concurrent
entities evolve in a completely asynchronous manner and there is no instruction to wait for some
event to happen. Synchronization between processes is due to the causal dependency created by
the flow of messages. Many active object languages use futures as a synchronization mechanism.
A future represents a result that has not been computed yet. Once the result has been computed, it
can be made available automatically or be explicitly retrieved, depending on the language design;
in each case, we say the future is resolved. A process can also block while waiting for a future to
be resolved. In active object languages, futures represent the result of asynchronous invocations.
Usually a future access is a synchronization point. This kind of synchronization can make con-
current programming easier, as it ensures a sequential workflow on which the programmer can
rely.

Some active object languages support cooperative scheduling: A thread can be suspended to
handle another message1 and resumed later. Suspension can be triggered when checking whether
a future was resolved. This breaks the sequential processing of a message but can make program
execution more efficient and less deadlock-prone.

Another synchronization constraint is related to message ordering [26]. Ensuring an order of
message reception, like point-to-point FIFO, adds synchronization which can lead to a loss of ef-
ficiency and a gain in program properties. The programmer can rely on some order of message
delivery, which simplifies programming. Often some order of message delivery is necessary for
the execution of the application, especially when the messages reach a stateful object. Ensuring
that the operations are done in the correct order by explicit synchronization is more costly and
more constraining than relying on a message ordering property.

Degree of Transparency. This aspect concerns the number and complexity of the programming
abstractions we need to understand. Some abstractions are made explicitly visible in the program
and some are transparent (i.e., hidden to the programmer). For example, if futures are transparent,
then variables pointing to futures are not explicitly distinguished from other variables by a static
type and no explicit instruction is provided to access a future: The access is blocking if the future
is not resolved yet.

In general, the more transparency, the easier it is to write simple programs, because the program-
mer does not need to know the specifics of the concurrency model and parallelism is provided au-
tomatically. However, for complex programs, the benefits of transparency are weaker, because ex-
posing the programming abstractions can make programming, debugging, or optimization easier.

Degree of Data Sharing. Data sharing is a crucial aspect of concurrent and distributed program-
ming. Depending on the target application domain and the potential for distributed execution, the
constraints regarding data sharing can vary a lot. The most efficient way to communicate data

1The terms message and method call are used interchangeably in the literature on active object languages, depending on the
tradition that influenced language development. Here we adopt the terminology that is standard for the language under
discussion.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:6 F. De Boer et al.

between different cores on the same machine is to share the data, whereas in a distributed setting,
copying data to different consumers is often more efficient, as it avoids communication overhead.

Efficiency aside, the complexity of the language implementation varies with the degree of data
sharing. Copying data raises the problem of data consistency, as data modifications may not be
reflected in all copies. Shared data access makes data consistency easier to obtain but creates addi-
tional communication about the shared memory, additional synchronization, and delays. In prac-
tice, active object and actor languages with distributed runtime systems often use a “no shared
memory” approach favoring data copies with very few globally known and shared entities.

Data sharing occurs between threads and relates to the question of which objects are active. The
first active object models were uniform: All objects were active with their own thread and com-
municating by asynchronous method invocations only. Later, active object models were designed
with more focus on efficient access to objects. Two additional models were proposed. First, non-

uniform active object models, where some objects are full-fledged active objects with their own
threads, and others are passive objects (i.e., standard objects). Second, concurrent object groups
provide a different alternative where all objects are accessible from anywhere but the objects in
the same group share the same thread and their access is synchronized.

Formal Semantics. To establish formal properties of a language as well as for formal verification,
a formal semantics is required. Most active object languages have a formal semantics, probably due
to the fact that active object and actor models were created to make concurrent entities run more
safely. A formal semantics can be used to prove generic language properties that help programming
(e.g., data race-freedom), to prove the soundness of an implementation or of optimizations, and
to implement tools for the formal analysis of programs. All these aspects have the potential to
increase the trustworthiness of a language and the programs written in it.

Implementation and Tooling Support. An important dimension of language comparison concerns
the provided tool suite. Some active object languages have been designed with certain tool sup-
port in mind, which can explain some of the design decisions that were taken. The tool support
around a programming language ranges from utilities to help the programmer in designing, writ-
ing, analyzing, optimizing, and verifying their programs to utilities to support the deployment and
execution of these programs.

Futures play a particularly important role in the design of an active object language, both con-
cerning transparency and synchronisation. Futures can be either explicit, with a specific type and
dedicated operations like in ABS or Encore, or implicit with automatic synchronisation like in
ProActive. The implicit synchronisation is easier to program but explicit futures makes the pro-
grammer aware of synchronisation points and makes it easier to spot deadlocks. Also, with implicit
futures code fragments can remain oblivious of whether they operate on regular references or on
future references. Future synchronisation can be blocking like in ProActive, blocking with thread
release like in Creol, or asynchronous via callbacks like in AmbientTalk. The blocking access has
the advantage to guarantee the sequential processing of a message but can lead to deadlocks.
The asynchronous callbacks are deadlock free but enforce less sequential execution and creates
additional race conditions. Blocking with potential thread release provides a compromise, where
messages are treated sequentially but can be interrupted to handle another message. ABS and En-
core provides both strict sequentiality (get) and potential thread release (await); when accessing a
future, the programmer must choose between a potential race condition and a potential deadlock.

2.3 Representative Examples of Active Object Languages

We give detailed presentations of the four languages identified at the end of Section 2.1. To ease
comparison, each presentation follows the dimensions introduced in the previous section.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:7

2.3.1 Rebeca.

General Presentation and Objective of the Language. Rebeca is an actor-based modeling language
created in 2001 [88, 89] as an imperative interpretation of Agha’s actor model [3].

Rebeca is designed to model and verify concurrent and distributed systems with the goal to
bridge the gap between software engineers and the formal methods community by being a usable
and at the same time analyzable modeling language. It has a formal semantics and allows efficient
compositional verification based on model checking [86, 87] with state space reduction techniques
[60]. Efficient analysis relies on a number of restrictions: no shared variables, no blocking send or
receive, single-threaded actors, and non-preemptive message execution (the execution of different
messages does not interfere).

With usability as a primary design goal, Rebeca’s concrete syntax is Java-like, its computation
and communication model is kept simple, and analysis support is in the form of model checking.
Rebeca is an actor-based language without shared variables between actors and with asynchro-
nous message passing; there is no blocking send or receive statement. Therefore, learning Rebeca
is easy and using model checking tools requires far less expertise than deduction-based analyses.
The semantics of Rebeca helps analyzability as follows: Rebeca actors are isolated and hence vari-
ous abstractions, as well as modular and compositional verification become more feasible. Rebeca
offers natural modeling capabilities and efficient model checking tools for concurrent distributed,
event-based applications with pure asynchronous message passing. However, sometimes synchro-
nization among components or different communication models are vital, and the modeling of
some applications becomes cumbersome. Following the strategy of “pay for what you need,” core
Rebeca can be extended in different dimensions, creating the Rebeca family to support modeling
and analysis of a wider variety of application domains (see Table 1).

Extended Rebeca [85, 86] groups actors in components, with globally asynchronous commu-
nication between components and locally synchronous communication inside a70 component.
RebecaSys is developed to support hardware/software co-design (or system-level design) [77] and
adds a wait statement to be faithful to the target design language, SystemC. Global variables are
added, but their use is controlled. In Variable Rebeca, the modeler can use annotation to model vari-
able behaviors and hence define a product line of actors with different computations [81]. Variable
Rebeca preserves the semantics of Rebeca and all members of Rebeca family can be extended by
the annotation mechanism used in Variable Rebeca. Broadcasting Rebeca [94] and Wireless Re-
beca [95] focus on modeling and verifying of network protocols and provide broadcasting and
multi-casting message passing, respectively. Timed Rebeca [2, 78] addresses real-time behavior
and is supported by customized efficient analysis tools. Probabilistic Timed Rebeca [59] extends
Timed Rebeca to capture probabilistic behavior and can only be analyzed using back-end tools.
These extensions are orthogonal to other language extensions that preserve the semantics of core
Rebeca; these extensions can be added on top of Variable Rebeca and Broadcasting and Wireless
Rebeca.

Language Description. We describe Rebeca using a Media Service example, shown in Figure 1.
Clients send requests for watching movies to a dispatcher and the dispatcher non-deterministically
redirects requests to media servers. The Rebeca model of Media Service consists of a number of
reactive classes, which are Server, Dispatcher, and Client, each describing the type of a certain
number of actors (called rebecs in Rebeca). A reactive class specifies the size of its message queue
(Line 1) and may declare state variables (Line 14). Each actor has a set of known actors to which it
can send messages. For example, an actor of type Dispatcher knows three actors of type Server
(Line 2), to which it can send a reqForMovie message (Lines 6–8). Each reactive class in Rebeca
may have a constructor. Constructors have the same name as the declaring reactive class and do

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:8 F. De Boer et al.

Table 1. Summary of Dimensions of Comparison for Members of Rebeca Family

Objective Synchronization Transparency
Data

Sharing
Formal

Semantics
Tool

Support

Rebeca Modeling and
verification of
distributed,
concurrent systems

None (Full) message
queues and
interleaving of
execution

None SOS, ACP Afra
integrated
tool,various
backends

Extended
Rebeca

Globally
asynchronous-
locally
synchronous
systems

Locally
synchronous
messages

As in Rebeca None SOS None

RebecaSys Hardware/
software co-design

Wait statement As in Rebeca +
synchronization
over global
variables

Global
variables

LTS Model
Checking,
Simulation

Variable
Rebeca

Product lines of
actors

None As in Rebeca +
feature inclusion
for selected
product

None SOS Rebeca tool
(after
manual
mapping to
Rebeca)

Broadcasting
Rebeca

Actors with
broadcasting
abilities

None As in Rebeca +
broadcasting to all
actors mechanism

None SOS Model
Checking

Wireless
Rebeca

Ad-hoc mobile
networks

None As in BR +
handling
connectivity of
nodes +
multi-casting

None SOS Model
Checking

Timed
Rebeca

Realtime actors Delay statement As in Rebeca +
Progress of time

None SOS, RT
Maude,
Timed
Automata,
FTTS

Afra
integrated
tool,
various
backends

Probabilistic
Timed
Rebeca

Probabilistic
real-time actors

As in TRebeca As in TR None SOS Backends
IMCA and
Prism

Fig. 1. A simple Rebeca model.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:9

not return a value. Their task is to initialize the actor’s state variables (Line 16) and to put initially
needed messages in the queue of that actor (Line 22).

Message servers are implemented in reactive classes similar to methods in Java. In contrast to
Java methods, message servers do not return values and their declaration starts with the keyword
msgsrv. A message server is executed on receiving its corresponding message. Its body may in-
clude assignments, conditionals (Lines 5–9), loops, and message sending statements (Lines 18–24).
Periodic behavior is modeled by sending messages to oneself (Line 26). Since communication is
asynchronous, each actor has a message queue from which it takes the next message to serve. The
ordering of messages in these queues is FIFO. An actor takes the first message from its queue,
executes the corresponding message server non-preemptively, and then takes the next message.
The actor stays idle if there is no message in the queue. A non-deterministic assignment statement
models non-determinism in a message server (Line 4). The main block creates the actors of the
model. In the example, seven actors are created and receive their known actors and the parameter
values of their constructors (Lines 29–31).

Degree of Synchronization. Following Agha’s [3] actor model, Rebeca’s actors only communicate
by asynchronous message passing, but Rebeca ensures a FIFO point-to-point message ordering,
guaranteeing some execution order. Extended Rebeca [85, 86] adds tightly coupled components;
actors inside a component can be synchronized by a handshake communication mechanism guar-
anteeing a causal message ordering. RebecaSys adds wait statements to the syntax and a block of
shared global variables to the model. All actors can read from and write to global variables. Waiting
on global variables introduces a form of synchronization between actors reminiscent of coopera-
tive scheduling over futures, as an actor’s processor is released while waiting for a given Boolean
expression to become true.

Broadcasting Rebeca adds a broadcast statement to Rebeca, but there are no known actors, so
sending a message directly to an actor is impossible. Wireless Rebeca adds support for multi-cast
to neighbors and uni-cast to the sender to Broadcasting Rebeca. Neighbors of an actor are those
actors that sent a message to it. There is no additional synchronization between two given actors
in Broadcasting and Wireless Rebeca.

Degree of Transparency. In Rebeca, programmers are not exposed to asynchronous communi-
cation among actors. The syntax is the same as for sequential programming. There is no way to
access the content of message queues, and acknowledgments are not sent on starting or finishing
the execution of a message server. Programmers have no control over the interleaved execution
of actors; that is, the internal thread of an actor takes a message from the actor’s message queue
and serves it in an isolated environment, regardless of the states of other actors. This transparency
holds for all Rebeca extensions. Timed Rebeca and Probabilistic Timed Rebeca change the message
queue into a bag with time-stamped messages, nevertheless, the transparency is unchanged.

Degree of Data Sharing. Rebeca is a typical uniform active object language that guarantees the
absence of data sharing. There are no shared variables among actors in Rebeca. Parameters in
messages sent among actors are passed by value. This is even the case if a reference to an actor is
passed as a parameter; the sent reference is created as a shallow copy of the original reference, for
example, in Figure 1, Line 8 Dispatcher sends a request to the server m3 and passes the reference
to the client to m3 as a parameter instead of passing a fresh copy of the client actor. In RebecaSys,
global variables can be defined and used in a controlled manner for wait statements as explained
above.

Formal Semantics. To support analyzability and develop formal verification tools, Rebeca and its
extensions all have formal semantics. The model checking tool set of Rebeca is developed based

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:10 F. De Boer et al.

on Rebeca’s semantics [89]. An Algebra of Communicating Processes (ACP) semantics is defined
in Reference [58]. The semantics of Timed Rebeca is defined in terms of timed automata [67],
timed transition systems [68], Real-time Maude [80], and floating time transition systems [68].
Floating time transition systems constitute an innovative semantics for real-time actors, resulting
in a significantly reduced time and memory consumption when verifying timed actor models.
Formal semantics of Probabilistic Timed Rebeca is defined in terms of Timed Markov Decision
Processes in Reference [59].

Implementation and Tooling Support. There is a wide range of analysis and mapping tool sets for
Rebeca family models2:

• Eclipse-based editor with syntax highlighting for writing models and properties
• Compiler and build system integrated with the error location mechanism of Eclipse
• Model checking tool for LTL and CTL model checking of Rebeca, as well as Floating Time

Transition System generator and analyzer for Timed Rebeca
• State space generators for CADP and μCRL analysis and visualization tool sets
• Facilities for traversing counter examples in case of property violation

Most of these tools and libraries are part of Afra, the modeling and model checking IDE for
Rebeca family models, but there are some stand-alone tools as well:

• Simulator backend for Rebeca and Timed Rebeca in Erlang [78]
• Analysis backend for Timed Rebeca in Real-Time Maude [80]
• Model checking tool chain for Probabilistic Timed Rebeca [59] using PRISM and IMCA
• SysFier: model checking tool for SystemC designs [77]
• Sarir: μCRL2 model checker for Rebeca [58]
• Distributed model checking tool for Rebeca models [66]
• Model checking tool for Broadcasting Rebeca [94]
• Bounded Rational LTL model checker of Rebeca [12]
• Guided search engine for deadlock detection [84]

2.3.2 ABS.

General Presentation and Objective of the Language. The Abstract Behavioral Specification lan-
guage (ABS) [61] is an object-oriented, concurrent modeling language that has been developed
since 2009. Its ancestors include Creol [64] and JCoBox [82].

In contrast to design-oriented or architectural languages, ABS code is fully executable. There is
a simulator as well as several code generation backends (at the moment, for Java, Haskell, and Er-
lang). At the same time, ABS abstracts away from features that make automatic analysis difficult in
mainstream programming languages. For example, ABS has an object model, but it does not sup-
port code inheritance and it enforces programming to interfaces as well as strong encapsulation.
It retains, however, modeling features that are essential for real-world applications, for example,
aliasing and unbounded object creation. The main design goal of ABS was to create a language that
permits the complex behavior of concurrent objects to be specified in a concise, natural manner,
while keeping automated analysis of that behavior feasible and scalable.

2These are accessible from the Rebeca home page, see http://rebeca-lang.org.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

http://rebeca-lang.org

A Survey of Active Object Languages 76:11

Fig. 2. Conceptual layers of the ABS language. Fig. 3. A simple ABS model.

There are extensions of ABS to model product variability [45] as well as time and other resources
[65] which have been used to, for example, model and analyze industrial software deployed on the
cloud [6], but these extensions are considered to be out of scope of the present article.

Language Description. The language layers of ABS are displayed in Figure 2. Based on parametric
(first-order) abstract data types, a pure, first-order functional language with pattern matching and
strict evaluation is defined. On top of this functional layer, there are objects and a standard im-
perative layer. So far, this is very much like Scala-light. The central issue for achieving automated,
scalable analysis is the design of the concurrency model.

The concurrency model of ABS combines asynchronous communication from the Actor model
with cooperative concurrency. We explain this concurrency model by means of the code in Figure 3.
The unit of distribution in ABS is a concurrent object group (COG), which can be thought of as a set
of tasks that share a common heap and a single processor. Tasks in different COGs can execute in
parallel, but at most one task is active in a given COG at any time. Each task executes code owned
by an object in the COG. New tasks are created by asynchronous method calls to objects in the
COG as well as, initially, by selecting the main block of a module. An example of the latter is the
code in Lines 16–19.

Line 16 declares and creates a new object of interface type Service, using the implementation
in class Server. The directive local places the object in the current COG. Without local, a new
COG would be created together with the object. The next line declares and creates a data object
(note that interface Data must be imported) in the same COG. Hence, s and d share the same heap.
Line 18 calls an initialization method (implementation not shown) on the data. The notation “!”
denotes an asynchronous call; its effect is to create a new task in the COG of d that executes the
code of init().

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:12 F. De Boer et al.

ABS enforces the “programming-to-interfaces” discipline [72] and has no other hiding mecha-
nism than interfaces: An object may implement several interfaces, so each pointer to the object is
typed by an interface controlling the methods available on that pointer. Fields are not accessible
via interfaces. Asynchronous calls do not interrupt the caller, so the statement following the call
is executed immediately. Therefore, we need a handle that we can use to retrieve the result of an
asynchronous call once its result has been computed. In ABS, the type of such handles has a future
annotation. As can be seen in Line 19, futures can be passed as parameters. This makes it possible
to use the result of an asynchronous call in different places without copying it (for example, for
barrier synchronization or delegation).

After the execution of the main block has finished, two tasks in the current COG are waiting,
corresponding to the calls to init() and process(), respectively. None of them could have started
while the main block was still executing, because there was no synchronization expression in the
latter. ABS does not determine which of init() and process() is started first. In fact, ABS can
be parameterized with different scheduling strategies, which can be programmed at the functional
layer [14]. The semantics leaves scheduling open, so the static analyzers for ABS take all possible
scheduling sequences into account.

ABS introduces cooperative concurrency internally in COGs. This means that no task is pre-
empted (interrupted) unless its modeler explicitly allows this to happen. Two expressions in ABS
explicitly release control: release and await. The former is unconditional while the latter has
a Boolean argument and can be used to synchronize with another task. In particular, synchro-
nization can depend on the resolution of futures; that is, cooperative scheduling can depend on
the presence of return values from asynchronous method calls. In the example, a synchronization
point is reached at Line 10 in the body of process(). It ensures that the value of the future fd is
available. If init() had not been already scheduled, then it will be scheduled now. Once the value
of fd is available, it is retrieved with a get expression. Note that rd and d might well be aliased.
The standard ABS idiom for asynchronous method calls in ABS is as follows:

Fut<T> fx = o!m(); ... ; await fx?; T x = fx.get;

In many cases of simple control flow, await and get follow an asynchronous call directly, with-
out intervening code. For this common situation the abbreviation

T x = await o!m();

is provided, which avoids the declaration of an explicit future.
Synchronous calls are also supported in ABS. Synchronous calls result in a stacklike behavior,

that is, the call yields the processor to the callee and blocks the caller until it returns. In Line 12, we
are only interested in the side effect of the modify() method. Synchronous calls are only permitted
inside the COG of the caller object, and the caller may decide whether to call any local method
synchronously or asynchronously. Note that the entire stack will be suspended in the case of a
processor release.

The concurrency model of ABS is designed to make formal analysis feasible. While formal anal-
ysis of multi-threaded languages with interleaving semantics, such as Java, is possible in principle
[1, 15], such analysis is highly complex and currently out of scope for relaxed memory consis-
tency models. The concurrency model of ABS carefully restricts the possible interactions between
concurrent tasks by means of cooperative concurrency, while still allowing the complex, realis-
tic behavior of asynchronous systems to be described. Analysis in this setting has been shown
to be compositional [4, 35] and scalable [40]. Section 3.2 discusses a possible implementation of
cooperative scheduling for ABS.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:13

Degree of Synchronization. If one attempts to retrieve a future value that is not yet ready, then
this results in the blockage of its COG until the value becomes available. Obviously, this can eas-
ily lead to deadlocks. Many deadlocks can be avoided by guarding get expressions with an await
(Line 10); however, not all deadlocks can be prevented in this manner. In addition, ABS comes with
automated deadlock detection tools [7, 43]. An important point is that no data races can occur
between explicit synchronization points (release, await), which makes computations determin-
istic. Communication is asynchronous in ABS, and no particular ordering has to be ensured on
request communication and service. Obviously, execution in general is non-deterministic unless
the scheduling of service requests is also controlled.

Degree of Transparency. ABS is an abstract language, and implementation-specific aspects in-
cluding scheduling, message queuing, and object representation are hidden from the modeler.
Abstract data types and interfaces can be used to postpone detailed design decisions while still
permitting analysis of those aspects of a model that are fully specified. In ABS the user may allow
task interleaving by explicitly introducing task release points using release and await. Using
these features, the user is exposed to the notion of asynchronous vs. synchronous calls, futures,
and thread interleaving, but the language still retains a compositional proof theory [39].

Degree of Data Sharing. There is no designated active object in a COG, all objects may be accessed
remotely. Thus, values from the functional language of ABS are passed by copy with a method call
whereas all objects are passed by reference (i.e., the pointer is copied), independent of whether the
called object is local or remote. All objects in ABS have strictly private visibility, that is, they can
only access their own fields directly. The fields of any other object must be accessed via explicit
method calls. ABS features a concurrent object group model where objects in the same group can
safely be invoked directly because they are manipulated by a single thread, invocations between
different COGs are by nature asynchronous.

Formal Semantics. ABS has a small step operational semantics [56, 61] that permits to prove
soundness theorems for the various analyses that are available for ABS. This semantics is directly
expressed in terms of rewrite rules in the Maude format [28], which yields a sound interpreter for
ABS.

In addition, there is an axiomatic semantics in the form of a program logic [38]. The behavior
of interfaces and classes can be specified by invariants over the histories of symbolic states as
contracts between processes. Because preemption is excluded in ABS, it is sufficient to establish
invariants upon object creation, at explicit synchronization points and upon the termination of
methods. A composition theorem for ABS about the relation between local and global invariants
has been established [39], which makes it possible to prove global behavioral properties of an ABS
model by (method-)local reasoning.

Implementation and Tooling Support. As ABS has been developed with the goal of being analyz-
able, there is a wide range of tools available.3 Most of them support the full ABS language and are
fully automatic, see the overviews [17, 90]. There is an Eclipse plug-in that provides a development
environment for ABS and integrates most tools. An alternative is the web-based ABS collaboratory
[41] that runs in a browser and permits to try out most ABS tools. The collaboratory can be used
either as a service or installed locally. Here is a list of currently supported tools for ABS:

• An editor with syntax highlighting and integrated build system, including compiler error
location

3These are accessible from the ABS home page, see http://abs-models.org.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

http://abs-models.org

76:14 F. De Boer et al.

• An ABS simulator/interpreter with interactive debugger
• Visualization of ABS model execution as a sequence diagram
• Code generator backends for Erlang, Haskell, ProActive [54] (see also Section 3.4), Java

8 [83].
• A glass box test case generator for concurrent models [5]
• Sound deadlock analysis tools [7, 43]
• A worst-case resource analysis tool that can be parameterized with a cost model for ex-

ecution time, memory consumption, transmission size, peak cost, and various other cost
categories [4]

• A deductive verification tool to prove expressive, history-based properties [38, 40] for mod-
els with an unbounded number of objects and tasks

2.3.3 ProActive and ASP.

General Presentation and Objective of the Language. ASP [21] is an active object programming
language specifically designed for programming and deploying distributed systems. ProActive is
a Java library implementing the semantics of the ASP calculus. The language is designed taking
the constraints of distributed programming into account and relies on Remote Method Invocation
(RMI) as the communication layer even though other communication mechanisms can be used.
ProActive is intended for distributed execution; it is a middleware that supports application de-
ployment on distributed infrastructures such as clusters, grids and clouds. Several choices for the
design of the language can be explained by these practical concerns.

One design choice for ASP and ProActive is to ensure maximal transparency for the program-
mer: Active objects and futures are used like usual Java objects. The ProActive middleware auto-
matically triggers asynchronous remote invocations and performs blocking synchronization when
needed.

A further design choice is that active objects are coarse-grained entities. We create a dedicated
thread for each of them and they come with a quite heavy machinery for managing each object and
communicating between them. This machinery fully ensures the distributed nature of the com-
putation. As a consequence, using the ProActive library, it is not possible to instantiate thousands
of active objects on the same core. In ASP not all the objects are active and in ProActive passive
objects are standard (Java) objects, and, consequently, their number is not particularly limited.

Since 2010, ASP features multi-active objects [49] meaning that in each active object, several
threads can run in parallel and process several requests of this active object, but each thread is still
isolated inside a single activity. Such multi-active objects feature at the same time local concur-
rency and global parallelism.

Language Description. In ASP, active objects coexist with so-called passive objects. An active
object together with its service thread(s), its passive objects, and its request queue is called an
activity. Each passive object is placed under the responsibility of an active object. Only active
objects are accessible between activities. The objects that are not active are only accessible within
an activity; if those objects need to be used by several activities, then they are copied in each
activity. Based on this clear separation, the activity is the unit of distribution, which matches the
usage of one memory space per activity. When using multi-active objects in ASP, several threads
can execute in the same activity; thus, several threads can potentially access the objects of an
activity.

The language is transparent: Method calls are automatically turned into asynchronous requests
if the targeted object is a remote active object; otherwise, it is a synchronous, local method call.
Similarly, futures are implicitly created for asynchronous calls. Futures are also transparently
manipulated: Wait-by-necessity synchronization is automatically triggered on an access to an

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:15

unresolved future. In ASP, futures are first-class: They can be passed between activities. In this
case, when the future is resolved, the result is automatically updated at all locations.

ProActive offers an API to create active objects and a runtime for handling ASP features. The
following is an example of a ProActive program:

O o = PAActiveObject.newActive(O.class, parameters, node);
T t = PAActiveObject.newActive(T.class, parameters, node);
V v = t.bar(); // implicit asynchronous method call
o.foo(v); // v can be passed without blocking
v.foobar(); // potential wait-by-necessity on v

An active object is created using newActive, instead of the new command of Java. The
newActive primitive takes as parameters the class to instantiate, the parameters of the construc-
tor, and the node on which the active object will be deployed. The variable v is the result of an
asynchronous call; it is an implicit future. When the future value is needed to continue execu-
tion, such as in v.foobar(), wait-by-necessity synchronization automatically applies if the future
is not resolved. Proxies in proActive handle active objects and futures transparently. The trans-
parent creation of proxies has some practical restrictions: The active objects and futures cannot
be of a primitive or generic type. If a future cannot be created, then this creates an immediate
synchronisation on the result.

The main principle of the multi-active object programming model is to execute multiple requests
of an active object in parallel, while controlling the concurrency. In practice, the programmer can
declare which requests (i.e., which methods of the active object) can be safely executed in parallel.
Such requests are called compatible requests. The internal scheduler of an active object will allo-
cate by default as many threads as necessary to run compatible requests in parallel. In ProActive,
multi-active object features can be used through a meta language, based on Java annotations. The
following is an example of multi-active object annotations in ProActive:

@Group(name="group1", selfCompatible=true)
@Group(name="group2", selfCompatible=false)
@Compatible({"group1", "group2"})
public class MyClass {

@MemberOf("group1")
public ... method1(...) { ... }

@MemberOf("group2")
public ... method2(...) { ... }

}

This example defines two request groups, with one method each. The two groups are declared
to be compatible (and so are their methods, by extension). The selfCompatible parameter de-
fines whether two different requests of the same group are allowed to run in parallel. At runtime,
a ready request is automatically executed if it is compatible (i) with requests that are already exe-
cuting and (ii) with older requests in the queue. The first condition prevents data races. The second
condition preserves the ordering of incompatible requests and prevents starvation, which would
arise when requests of a groupG that are merely compatible with currently executing requests are
continuously overtaking requests of another group G ′ with which they are incompatible.

Without annotations, a multi-active object is a mono-threaded active object without any local
parallelism nor any possible race condition. Programming a mono-threaded active object-based

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:16 F. De Boer et al.

application with ProActive is thus extremely simple. If some local parallelism is desired, then a
compatibility should be declared between requests that can be safely interleaved and for which
execution order does not matter.

To define compatibility between two requests, the programmer can use runtime information
such as the request parameters or the object’s state. Programming a multi-active object-based ap-
plication with ProActive is thus slightly more difficult than programming mono-threaded ProAc-
tive active objects but far less complex than programming with raw threads and low-level syn-
chronization mechanisms while, at the same time, providing a considerable degree of parallelism.
If even more parallelism is required, beyond what is possible with request compatibility, then
the programmer can define further requests as compatible and prevent undesired behavior with
traditional low-level Java synchronization primitives. Such a mixed approach goes beyond the
traditional active object model.

Further high-level specifications are available in multi-active objects, such as request prior-
ity [53]. To avoid thread explosion, a limit can be set on the number of threads running in parallel.
That can either be a hard limit restraining the overall number of threads or a soft limit that only
counts threads not involved in wait-by-necessity synchronization. Additionally, threads can be
limited per group.

To summarize, ASP and ProActive are based on the multi-active object programming model.
This model is suitable for non-experts, because it provides high-level features for distribution and
safe concurrency.

Degree of Synchronization. The only blocking synchronization in ASP is wait-by-necessity on a
future. As requests run to completion, potential deadlocks can arise for re-entrant calls, especially
if no compatibility annotation is specified. However, synchronization only occurs when the future
value is actually needed and future references can be safely transmitted between activities without
requiring additional synchronization, which limits the blocking synchronization leading to dead-
locks. The ProActive middleware transparently handles future value transmission [51] (a ProActive
future has its own serialization procedure). Deadlocks can also be removed by using multi-active
objects with no limit or a soft limit on the number of threads. Specifically, when a thread enters
wait-by-necessity, it is not counted in the soft thread limit of the active object anymore, so the
wait-by-necessity event potentially causes the start of another request.

Communication in ASP is causally ordered and requests are served in FIFO order. This restricts
the communication ordering more than a simple FIFO guarantee, providing more properties to the
programmer at the expense of additional delay during request emission.

Degree of Transparency. As pointed out above, transparency is a central design goal of ASP. The
programmer is not exposed to the notion of a future and merely in a limited manner to that of an
active object (at object creation time only). The syntax is as for sequential programming, there is no
specific construct for awaiting a future value or for performing an asynchronous call. Frequently,
sequential code can be reused unchanged in a distributed setting. When dealing with multi-active
objects, the programmer is exposed to the parallel treatment of requests and the programming
model becomes more explicit concerning concurrency aspects.

Degree of Data Sharing. ASP is a typical example of a non-uniform active object model, where
some objects are active and the others are passive and copied when transmitted between activities.
ASP follows a strict policy of absence of sharing between active objects. Objects that are not active
are passed by copy between activities (as request parameters or request results). This also applies
to objects that are referenced by passed objects: When objects are transmitted between activities,
a deep-copy mechanism ensures that they are copied together with all their dependencies to the
destination side. This mechanism, also used by RMI, slows down request invocation, because of

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:17

the time spent to transmit data, but it accelerates request treatment, because there is no need to
contact another activity to obtain the value of the request parameters. Note that active object and
future references are passed by reference.

Coherence between different copies of a passive object is not guaranteed. If a user wants to
ensure that an object has a unique coherent state, then he or she should not transmit it by copy:
Transmitting it as an active object reference would then be the best choice.

Formal Semantics. Caromel et al. [22] formalize the mono-threaded part of ASP and prove de-
terminacy properties. In particular, they prove that the order of future updates has no influence
on the execution and that the only source of non-determinacy in mono-threaded ASP is when
two activities can send a request to the same destination. A functional fragment of the calcu-
lus has been formalized in Isabelle/HOL [50]. A specific semantics has been designed to evalu-
ate a functional ASP program without risk of deadlock; the absence of deadlocks is proved in
Isabelle/HOL. The full semantics of ASP with multi-active objects is formalized by Henrio et al.
[49].

Implementation and Tooling Support. ProActive is the Java library implementing the ASP seman-
tics. To transparently handle active objects and futures in ProActive, a proxy is created for each of
them. Proxies encapsulate all code required to perform asynchronous, remote method invocations
and wait-by-necessity synchronization.

Whenever an active object or a future is given as a call parameter to an active object, it is in fact
their proxy that is copied. Hence, all copies of a proxy of an active object/future point to the same
active object/future. A further aspect of ProActive deals with the deployment of ASP active objects
on distributed infrastructures. The design choices of the programming language typically target
high performance for distributed ProActive applications. To deploy active objects on distributed
infrastructures, ProActive has a deployment specification mechanism that makes the physical de-
ployment independent from the deployment logic. This is realized by binding virtual node names,
used in the source code, to machine addresses or names. In practice, this binding is implemented in
XML configuration files. Since binding happens at deployment time, changes of the infrastructure
for a ProActive application are localized in few files and do not require recompilation. Several ma-
chines can be aggregated under a single virtual node name in the deployment logic, for example, to
provide the virtual node with certain properties or non-functional deployment options (e.g., fault
tolerance or logging).

Active objects provide a convenient programming model for component-based composition of
distributed applications [11]. The ProActive library implements the GCM distributed component
model. In this context, the Vercors platform [52] provides verification capacities for ProActive
components; Vercors consists of an Eclipse plugin for designing component systems and can both
verify the correct behavior of the application using the CADP model-checker and generate exe-
cutable ProActive/GCM code corresponding to the designed system.

2.3.4 Encore.

General Presentation. Encore [16] is a general-purpose parallel programming language based
on active objects developed since 2014. The language has been designed to excel at scalability
and rests on four pillar concepts: parallel by default using the active object paradigm for coarse-
grained parallelism, independent local heaps to promote data locality, type-based synchronization

directives provided by a novel capability system, and coordination of parallel computations and low-

level data parallelism via parallel combinators. On top of these key ingredients, Encore stays within
the object-oriented paradigm where active objects and futures can be seen as normal objects and,
instead of interfaces, has a trait system à la Scala.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:18 F. De Boer et al.

Language Description. In Encore, active objects have their own thread of control and communi-
cate with each other via asynchronous messages passing. Messages are appended to the receiver’s
message queue and processed one at a time in FIFO order. Because of their internal thread of con-
trol, active objects have an asynchronous interface, meaning method calls return immediately with
a future. In contrast, passive objects do not have an internal thread of control and expose a syn-
chronous interface. Each active object owns a local heap on which passive objects are allocated.
Ownership in this context means that the actor is responsible for keeping track of foreign depen-
dencies on passive objects on its local heap and eventually deallocate them. In Encore, passive
objects may be shared between active objects, and concurrent read/write access to passive objects
is supported by using the aforementioned capability system.

Encore is parallel by default. On coarse-grained parallelism, different active objects could run
concurrently, while within the same active object, the execution is sequential. Fine-grained parallel
computations can be created via the notion of tasks, for example, the code (async { e }) contains
a body e that is asynchronously executed and immediately returns with a future type value. Tasks
are more lightweight than actors (memory-wise) and increase the degree of asynchronicity in a
system.

Unlike ProActive, values resulting from method calls on active objects and spawning of tasks
have the explicit future type Fut[t]. Futures support future chaining as well as get and await
operations similar to ABS. This is explained in detail below.

Cooperative Scheduling of Active Objects. Encore supports ABS’ operators for cross-message con-
trol flow, that is, suspend (suspend :: void -> void), get (get :: Fut[t] -> t), and await
(await :: Fut[t] -> void). Encore’s await statement only supports waiting for the resolution
of a future, unlike ABS which supports waiting on general Boolean conditions (Section 2.3.2). En-
core’s support for future chaining, however, makes await less useful as chaining allows triggering
arbitrary operations on the resolved futures. Encore’s scheduling of requests is explained in detail
in Section 3.5.

Parallelism Inside Active Objects. Active objects provide coarse-grained parallelism via futures
but do not offer high-level language constructs for low-level coordination of parallel computations.
To express complex coordination workflows, such as pipelines and speculative parallelism, Encore
incorporates ParT collections and associated parallel combinators [16, 42]. A ParT collection is an
abstraction for asynchronous computations and values; it is controlled via parallel combinators.
ParT computations have type Par[t] (t is a polymorphic type).

We explain the ParT combinators with the example from Figure 4. It first computes the LU and
Cholesky factorizations in parallel, spawning tasks (Lines 5, 6). The resulting futures are lifted
(lift :: Fut[t] -> Par[t]) and grouped into the same ParT collection (||| :: Par[t] ->
Par[t] -> Par[t]), Line 7. Then an inversion of the matrix is performed asynchronously, using
the bind combinator (bind :: (t -> Par[t’]) -> Par[t] -> Par[t’]), Line 8, which receives
a function (first argument) that is applied asynchronously to the items in the ParT collection,
creating pipeline parallelism. The << combinator (<< :: (Fut[Maybe[t]] -> Par[t’]) ->
Par[t] -> Par[t’]), applies the getDiagonalMtx function to the first computation that returns
the inverted matrix, stopping the remaining computations, that is, safely stopping speculative
work.

The ParT collection and its combinators have been designed to perform operations asyn-
chronously, without stopping the current thread of execution. ParT integrates well with the active
object model, as it provides a uniform interface, via parallel combinators, to manipulate a collection
of asynchronous values and can express complex coordination workflows. Additional combinators
are discussed in Brandauer et al. [16].

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:19

Fig. 4. Data pipeline and speculative parallelism in matrix factorization The types of the functions are getMtx
:: Mtx, luFact :: Mtx -> [Factor], choleskyFact :: Mtx -> [Factor], mtxInv :: [Factor] ->
Par[Mtx], and getDiagonalMtx :: Fut[Maybe[Mtx]] -> Par[Mtx].

Degree of Synchronization. In Encore, the synchronization constructs get and await provide
similar control over futures as in ABS: The former blocks the active object until the future is
resolved and the latter releases the current thread of execution if the future is not resolved, so
the active object can continue processing other messages. Furthermore, Encore provides a future

chaining operator that registers a callback (as an anonymous function or lambda) to the future and
continues processing the rest of the message. The callback is executed when the future is resolved,
using the result of the future as the argument to the callback. This construct allows chaining
operations on futures without creating synchronization, similar to the default behavior of futures
in AmbientTalk [37], but it is more explicit and easier to control for the programmer. It is also a
way to mimic transparent first-class futures of ASP, except that the callback request is only created
when the future is resolved. Communication in Encore is asynchronous but requests are served in
a FIFO order.

Degree of Transparency. In Encore, regular and future variables are distinguished statically (e.g.,
int vs. Fut[int]). The get operation explicitly extracts the content from a future. Both in future
management and with parallel combinators, the programmer is exposed to the ongoing concurrent
computations. However, especially with future chaining and parallel combinators, the scheduling
and ordering of operations is automatic, and the programmer expresses concurrency from a high-
level point of view.

Data Sharing. Encore combines a concurrent object group model with a non-uniform active object

model where some objects are active and other objects are passive.
In Encore, active objects are protected by their own thread of control while passive objects are

protected by a capability type. Encore’s type system sees passive objects as resources protected by
a capability governing the permitted kind of access to the object [16]. A capability is built from
a trait and a kind. The trait provides the interface-like feeling of statically typed, Java-like OOP
languages while the kind expresses the “protection” provided by the interface. By changing the
kind, the interface changes its protection level. For instance, by changing the kind from exclusive

to lock-free, the interface changes the protection from an actor-like to a lock-free implementation.
Like in RebecaSys, this creates controlled data sharing.

Encore’s capabilities form the hierarchy in Figure 5. Exclusive capabilities are local to one
thread and linear capabilities may be transferred between concurrent computations without
data races by dynamic means of concurrency control. Shared capabilities may be shared across
concurrent computations, because they encapsulate a means of protection against concurrent

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:20 F. De Boer et al.

Fig. 5. Encore capability hierarchy.

access: Pessimistic capabilities like locks and actors serialize computation; optimistic capabilities

like STM and lock-free capabilities allow parallel operations but use a roll-back schema when
conflicts arise. Immutable and read-only capabilities are always safe to access concurrently,
because of the absence of writes. Finally, subordinate capabilities allow constructing aggregates of
objects whose data race-freedom stems from their proper encapsulation inside another capability.

Encore’s capabilities are created from traits, and, importantly, different traits in the same class
can construct different capabilities. This allows a substructural treatment of objects, for example,
taking a pair and splitting it into two disjoint halves, which can be pointed to and modified sepa-
rately. A more experimental feature of Encore is the combination of certain capabilities to express,
for example, an active object with a partially synchronous interface (like a priority channel) or
active objects that are encapsulated inside other active objects to create constrained active object
topologies.

Formal Semantics. The Encore concurrency model is formalized [16] using a small step opera-
tional semantics. Parallel combinators are formalized as well, including a soundness proof with
the implicit task parallelism model [42, 71]. The capability type system is formalized with proofs
of soundness and data race-freedom [24, 25].

Implementation and Tooling Support. Encore is a relatively new programming language and there
is limited tooling support. However, the Encore compiler can emit readable C code that can be
analyzed and debugged using any available tool that works with the C11 standard. The currently
supported Encore tools are as follows:

• Emacs and Atom editors with syntax highlighting and compiler error support
• Support for the GDB/LLDB interactive debugger
• Vagrant support for rapid installation of Encore in a virtual machine

3 IMPLEMENTATION OF ACTIVE OBJECTS

This section describes the implementation of the active object programming models introduced
above. Active object languages claim to support more intuitive, easier-to-use concurrent program-
ming models than traditional programming languages, while retaining the latter’s efficiency (or
even improve on it). Hence, implementation aspects of active object languages are as important as
their design. Their discussion exhibits a number of difficult, partially unsolved, research questions.
They constitute an essential part of this survey.

The implementation of a programming language can be done in a standalone manner with a full
compiler tool chain, or it can be implemented as an API inside an established language. A third

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:21

way to implement an active object language is to cross-translate it to another language with a
code generation backend, that is, a translator that captures the semantics of the source language.
The advantage of the latter solution is that several backends can be supported, targeting different
execution platforms, optimized for different needs.

Similarly to Section 2.2, the following subsection establishes dimensions of comparison regard-
ing the runtime system and efficient implementation of the language semantics. In subsequent
sections, we use these dimensions to compare different active object implementations. Whenever
meaningful, we show experiments illustrating under which conditions an implementation outper-
forms existing solutions.

3.1 Dimensions of Comparison between Implementations

Whether an implementation has support for physical distribution or not has a strong influence
on the different dimensions, for example, concerning the possibility to share data between active
objects but also concerning garbage collection. Since an active object is an independent entity
from the point of view of thread existence and scheduling, it is in several language considered as
the unit of distribution. Among the languages presented here, ASP is clearly targeting distributed
implementations, and some distributed implementations of ABS exist. Rebeca and Encore imple-
mentations do not support distribution for the moment.

Thread Creation and Scheduling. Active object languages implemented on top of an existing pro-
gramming language (or runtime system) must comply with the constraints given by the underlying
platform. In the case of multi-threading, some underlying platforms feature light threads, whereas
in some frameworks (e.g., Java) each thread is a physical one (i.e., a thread of the operating system).
In that case, one can consider implementing light threads on top of physical threads. Having light
threads is crucial when the goal of an active object language is to scale to a large number of active
objects located on the same machine or to cope with cooperative multi-threading when tasks can
be interrupted. It is a challenge to implement this behavior in programming languages that do
not support thread serialization, like Java. Concerning this dimension, the following questions are
raised in general: How are active objects and requests mapped to threads? Should the thread be a
physical or virtual?

Data Sharing and Object Referencing. This aspect addresses the question whether objects are
shared between active objects and, if so, how. Active objects encapsulate their state such that
they are independent from each other. Active objects prevent race conditions by allowing a sin-
gle entity (an ABS COG or an active object) access to each object. This principle partitions the
memory, which limits or prevents data races. In practice, a distinction is needed between objects
that can be remotely accessed (by asynchronous invocations), objects that must be copied when
exchanged between active objects, and objects that can be shared safely (e.g., immutable objects).
Accessing objects in another entity might cause communication overhead and delay the treat-
ment of requests. Copying objects might lengthen the initial request invocation, because of the
serialization time, but accelerates request treatment. Handling copies also involves coherency is-
sues. To communicate, objects must be able to reference each other. The ability to reference and
interact with remote objects raises further questions in a distributed setting, where a global address
space is generally too costly. How to efficiently and safely share information between active ob-
jects is an open challenge and different data sharing strategies have been proposed in active object
implementations.

Error Handling. The handling of errors is easier in a sequential program where the context of an
operation is known. In a concurrent setting, if a task raises an error, then this needs to be reported
to another task. When the second task is informed of the error it is difficult to react properly as the

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:22 F. De Boer et al.

conditions that raised the error are not fully known. In distributed implementations, exception
handling is even more complex, because an exception might reveal node or communication
failures. Additionally, active object implementations can offer recovery mechanisms to allow
systems to recover after one or more active objects have failed.

Garbage Collection. Garbage collection is important for active object applications to scale and to
be perennial. In most cases, the garbage collecting strategy must be implemented to fit a particular
active object language. Even for active object languages built on a host language with garbage
collection, that language can only provide partial garbage collection. The central question for ac-
tive object implementations is when active objects are no longer needed, that is, when they cease
having to serve new requests. Again, the question is even more complex in the case of distributed
implementations, because reference counting is scattered.

3.2 Java 8 Backend for ABS

ABS (see Section 2.3.2) allows several programming paradigms and design patterns offering both
a functional and an object-oriented model. Annotations support custom schedulers to be defined
to ease the development of batch systems and workflows. The main goal of the Java 8 backend4

for ABS is to translate these models into production code to be executed in a parallel or distributed
environment. The challenge is to generate real memory structures and execution instances, while
being aware of possible resource limitations, communication bottlenecks, latencies, and perfor-
mance issues that are not easy to observe at a modeling level. The version of the Java 8 backend
for ABS presented below does not support distributed execution.

Thread Creation and Scheduling. ABS contains constructs for the two finest levels of granularity
in parallel computing, scheduling method calls within an object and scheduling object execution
within a task. Cooperative scheduling used to be a major implementation challenge before Java 8,
because a straightforward implementation would match a Java thread to each method call and
a thread pool to each object. Hence, an asynchronous method call caused the creation of a new
thread inside a thread pool along with the start of this thread executing the method. There is
a mismatch because a Java object is a thread pool containing the threads originating from the
methods invoked by that object. In ABS, however, at most one method executes on an object at
any time, so creating a new thread for each fine-grained ABS method call is wasteful. It scaled
badly due to the huge number of threads that occupy a large portion of the heap and seriously
compromised the performance of previous Java backends for ABS.

Cooperative Scheduling of Active Objects Using Java 8. New features of Java 8 allow method
calls to be wrapped in lightweight lambda expressions that can be put on the scheduling queue
of an ExecutorService to which the running objects are mapped, significantly reducing the
number of idle threads at runtime. Figure 6 shows how active objects in this implementation are
demand driven and only create a physical thread once they have a method to execute inside their
queue and the ExecutorService has a thread available in its pool. Finally, when all messages are
blocked or the active object’s queue is empty the thread is ended and released back to the pool
of the ExecutorService. The impact of this approach is evaluated on an ABS benchmark com-
paring the performance of the Java 8 backend with the ProActive backend for ABS discussed in
Section 3.4. The only drawback of the current implementation approach is that if a method call
contains a recursive stack of synchronous calls, this stack needs to be saved when encountering
an await statement, which cannot be realized with lambda expressions. To solve this problem,
such a call stack can be modeled by continuation functions and then saved as lambda expressions.

4Available at https://github.com/vlad-serbanescu/abs-api-cwi/tree/LocalOnly.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

https://github.com/vlad-serbanescu/abs-api-cwi/tree/LocalOnly

A Survey of Active Object Languages 76:23

Fig. 6. Thread creation and scheduling.

These lambda expressions are ordered such that, once released, the continuations can execute and
maintain the correct logic of the program.

Data Sharing and Object Referencing. In the Java 8 backend for ABS objects are organized into
COGs, each running on one thread. When objects are created, they are assigned to a new or existing
COG. All invocations on the object are executed on the thread of the COG to which the object is
assigned. Data shared among distributed objects are passed through lambda expressions that are
sent as serialized messages between the objects, so all data passed in a distributed system must
be serializable. With COGs residing on the same machine, for example, applications that run on
a multi-core machine, all data are passed as arguments to lambda expressions or synchronous
method calls in Java 8. Objects can keep references to any other object in any COG as inner fields.
Similarly to data sharing, objects must be serializable to be transferred between distributed objects.
Furthermore, the generated classes will automatically be loaded on all machines that require an
object of a particular type, such that remote objects can invoke methods on serialized references
they receive.

Error Handling. In the Java 8 backend, software errors are handled by Java’s exception handling
mechanism. All exceptions defined in ABS translate directly into extensions of the Exception class
in Java. Furthermore ABS syntax for pattern matching exceptions translates directly to Java’s try-
catch mechanisms at compile time.

Garbage Collection. Garbage collection in the Java 8 backend only requires bookkeeping futures
that lock messages on actors from separate COGs, so an actor responsible for completing a future
can notify the awaiting actors to resume execution. Once this notification is completed, these
references are deleted and the process of freeing memory is handled completely by Java’s garbage
collector.

3.3 ProActive

The ProActive library5 is completely written in standard Java and provides an implementation
for the ASP programming model targeting distributed applications. By default, it uses Java’s
RMI package to implement the communication layer between active objects, although other
communication protocols are possible. This fact accounts for most of the implementation specifics
mentioned below.

Thread Creation and Scheduling. In ProActive, an active object with no defined compatibility rule
is mapped to a single Java thread to process the requests. Furthermore, there is a Java thread to han-
dle request reception in each active object. Java threads are mapped to operating system threads,

5Available at https://github.com/scale-proactive.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

https://github.com/scale-proactive

76:24 F. De Boer et al.

thus ProActive uses at least two threads per active object. But as ProActive features multi-active
objects, this number can be higher, as the active object scheduler can create Java threads on the fly
to process a compatible request. Since Java threads are rather heavy, the ProActive scheduler imple-
mentation makes a particular effort in optimizing thread usage. First, a thread pool is instantiated
at active object startup to ensure a basic thread reuse policy. Second, when the number of threads is
limited at the application level (through multi-active object annotations), that limit literally maps to
Java threads, such that fine performance tuning can be achieved at the application level. In addition,
threads waiting for a future can be temporarily reused to process the request that will indirectly
resolve the awaited future. This can be done during wait-by-necessity. To summarize, in ProActive
thread creation and thread scheduling are almost completely exposed to the programmer, allowing
him or her to have far ranging control over the performance of ProActive applications.

Data Sharing and Object Referencing. Like ASP, ProActive differentiates between active and pas-
sive objects in a way that is mostly transparent to the programmer, except that passive objects are
passed by copy when communicated between active objects, while references between active ob-
jects can be shared and accessed from anywhere. The first reason for this behavior is that ProActive
is based on Java RMI, which in turn is based on parameter copy. The second reason is distribution:
Provision of a consistent distributed memory is too costly in High Performance Computing (HPC)
and is the primary target of ProActive. Of course, data are shared between the several threads of
a multi-active objects. This sharing pattern is implemented using RMI and Java serialization per-
forming a deep copy of the parameters transmitted between objects. Future and active objects are
implemented by a proxy that can be passed by reference and is serialized as a reference (without
any copy of other referenced objects). The serialization mechanism is also used to track multiple
references to the same future and to implement efficient future update strategies [51].

Remote objects in RMI are globally referenced in the RMI registry, which maps remote object
names to remote object stubs that can be copied and used anywhere to access the remote object.
Networking communication is ensured by the RMI-JRMP protocol. Consequently, all active objects
in ProActive are referenced in the RMI registry and can be accessed in this way from any other
object through the adapted protocol. For non-active objects, traditional Java object references are
used as they are only referenced within the same active object. To summarize, two types of ob-
ject references exist in ProActive: global references, retrievable from the RMI registry, and local
references, acting like standard reference types.

Error Handling. Since ProActive targets distributed environments that are prone to failures, a
particular effort was made to produce robust ProActive applications by including two error han-
dling mechanisms in the ProActive library. First, an exception chaining mechanism developed on
top of the basic RMI exception RemoteException, produces readable feedback when ProActive
applications crash. Second, a specific API compensates for the difficulty of dealing with asynchro-
nous exceptions and the lack of control over Java’s exception mechanism [19].

A further aspect of the ProActive library concerns continuing to execute an application in pres-
ence of failed active objects, for example, when a machine hosting an active object of the applica-
tion crashes. For this purpose ProActive implements a fault-tolerant protocol specific to the active
object semantics. It enables a set of failed active objects to restart from the latest checkpoint. Check-
points are recorded per active object, based on the communications between them. This strategy
is coupled with the logging of events received by the active object to ensure a deterministic re-
execution. The fault-tolerant protocol is ready for applications that feature mono-threaded active
objects. It is under development for applications that feature multi-active objects.

Garbage Collection. Garbage collection in ProActive is tightly coupled to how objects are ref-
erenced. No particular mechanism is needed for the garbage collection of regular objects, which

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:25

Fig. 7. Representation of ABS objects and calls in ProActive.

is handled by Java’s garbage collector. Since a regular object cannot be referenced by more than
one active object, no reference to this object exists in another JVM and standard garbage collec-
tion suffices. However, for an active object, we cannot directly know whether a reference to it still
exists, because many proxies can be disseminated throughout the network. An adapted algorithm
to garbage collect active objects was developed in ProActive which detects useless active objects
(those that are idle and only referenced by idle active objects). This is handled by a form of common
agreement based on the reference graph between active objects [20].

3.4 ProActive Backend for ABS

The ProActive backend for ABS6 generates ProActive code for an ABS source program [54]. The
goal of the ProActive backend is to provide a fully working execution of ABS models in distributed
environments, with less optimization than necessary for the Java 8 backend. Since ABS and ASP
are based on different active object models, the main challenges in the translation are (i) how to
efficiently support object groups in ProActive where only active and passive objects are available;
(ii) how to handle objects in the translation, since objects are passed by reference in ABS and
by copy in ProActive; and (iii) how to simulate cooperative scheduling with multi-threading con-
trolled through annotations. We first present object referencing aspects, because the scheduling
depends on the set of objects classified as active.

Data Sharing and Object Referencing. All objects in ABS are accessible from all others (via suitable
getter/setter methods); thus, one could implement each ABS object with a ProActive active object.
In practice, this is infeasible: A ProActive active object has an associated plain Java thread. So this
solution would inevitably lead to substantial memory consumption and context switch overhead.
Instead, in the code generated by the ProActive backend, only COGs are active objects and serve
as the entry point to all objects they contain. This hierarchy implies that other objects than COGs
are passive, preserving the performance of the ProActive backend. Thus, on the first level of the
index hierarchy, we have network-wide accessible COG objects. That mechanism is integrated in
ProActive, as it is based on RMI. At the second index level, we have locally accessible objects.
That mechanism is implemented in the COG class with a map from object identifiers to object
references. The translation introduces indirection through COGs that are accessible by remote
reference. This configuration of objects is illustrated in Figure 7(a), where a COG 2 is created
through a new Server object.

6Available at: https://bitbucket.org/justinerochas/absfrontend-to-proactive.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

https://bitbucket.org/justinerochas/absfrontend-to-proactive

76:26 F. De Boer et al.

An asynchronous call in ABS is translated into a generic asynchronous method call on the COG
serving as the index to the targeted object. Then a generic caller method of the COG retrieves
the targeted object via a unique identifier and runs the desired method on it using reflection, see
Figure 7(b). In ProActive passive objects are not shared between active objects. Therefore, a passive
object is copied when it is a parameter of a remote method call, whereas parameters of method
calls in ABS are passed by reference. When the translation performs a remote method call on a
COG, all parameters get copied. This is not a problem for the identifier of the targeted object, the
name of the method to run, and the primitive values, because they are immutable. For the reference
type parameters the differing parameter passing semantics is still safe, but for a different reason.

While any access to an object is via an asynchronous method call on the copy of method pa-
rameters, those invocations end up calling the unique original version of the created object and
their hosting COG. Thanks to this mechanism, data sharing in ABS is correctly simulated under
the no-sharing philosophy of ProActive, because the copied data are only used as a reference to
the original object. This means that when we copy an object from one node to another, we only
need the object’s identifier plus a reference to its COG to retrieve it in the right memory space. Its
other attributes can be omitted. This observation allows us to optimize object copying and saves
bandwidth. Consequently, the ProActive backend generates programs that copy fewer data but in-
cur more communication than native ProActive applications. Compared to the Java 8 backend for
ABS, the ProActive backend does not distinguish whether COGs are located on the same machine
to optimize communication; however, this is not a problem, since only references are copied. Also,
in the ProActive backend class loading is handled by RMI, whereas it is implemented from scratch
in the Java 8 backend.

Thread Creation and Scheduling. Multi-active objects provide several mechanisms to control the
scheduling of requests. Their proper tuning allows the ProActive backend to simulate the behavior
of ABS cooperative scheduling. When comparing the ProActive backend and the Java 8 backend
(Section 3.2), we can state that both deliver one message per asynchronous invocation, but in
ProActive a single request queue exists for all objects in the same COG, whereas in the Java 8
backend, there is one request queue per object. The Java 8 backend ensures that all objects in the
same COG compete for one single thread, whereas the ProActive backend creates one thread per
executing (and paused) request: It is the scheduling derived from compatibility annotations that
ensures at most one request is progressing at a time. This strategy avoids continuations that are
difficult to implement in Java, because of JVM restrictions. Finally, the Java 8 backend shares a
thread pool for many COGs, whereas in the ProActive backend each COG has its own thread pool.
To summarize, the ProActive backend has to handle more idle threads than the Java 8 backend.

The central idea to implement ABS preemption in ProActive is to exploit thread limits: A hard
limit restricts the total number of threads for a multi-active object instance, and a soft limit merely
restricts the number of active threads. Now we first declare the generic caller method of a COG that
executes all other methods to be compatible with itself, that is, many activations of such methods
are allowed to run in parallel. Then we impose on this set of methods a soft thread limit of one.
Hence, there is at most one active thread at any time that serves requests in a COG multi-active
object. Requests do not run in parallel but interleave using wait-by-necessity: await on a future
is translated into access to a future that frees the current active thread (soft limit). Blocking get
statements are also translated to future accesses, but the current active thread is not released (a
hard limit is ensured).

The ABS-to-ProActive translation illustrates the differences among these languages, especially
regarding futures. In ProActive, the synchronization is data-flow oriented, as futures are transpar-
ently accessed and updated, and wait-by-necessity can only be released on data access. In ABS

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:27

synchronization on futures is control-flow oriented: A future access succeeds on request termina-
tion. However, in most programs a future access is used to retrieve information and the control-
flow synchronization of ABS corresponds to a data-flow synchronization. Nevertheless, it is pos-
sible to write programs that do not perform dataflow synchronization and behave differently.
We have formally proven [54] that all ABS programs are faithfully simulated by the ProActive
backend.

Example and Experiments. We use a representative HPC application: pattern matching of a DNA
sequence programmed in the MapReduce model [36]. The case study is computation-intensive
and involves only a small amount of active object communication. As ProActive relies on physical
threads for active objects and data copying occurs in each communication, ProActive is better
suited for computation-intensive scenarios than for communication-intensive ones. We compared
performance of the code generated with the ProActive backend [79] for ABS run in distributed
mode, the code generated with the Java 8 backend of ABS run on a single machine, and native code
written manually in ProActive for the same algorithm. Map instances (workers) are created in their
own COG. We search a pattern of 250 bytes inside a database of 5 MB. Each map searches for the
maximum matching sequence of a chunk and a reducer outputs the global maximum matching
sequence. We report the global execution time. When deploying with ProActive, we instantiate
two workers on each machine (each machine has two dual-core CPUs). In the generated program,
we manually replaced the translation of functional ABS types (integers, Booleans, lists, maps) with
standard Java types, similar to the code the Java 8 backend produces, because the translation does
not handle ABS datatypes.

Figure 8(a) shows the execution times of both ABS backends for the application ranging from 2
to 50 workers and 1 to 25 physical machines with ProActive. The execution times of the ProActive
backend are sharply decreasing for the first few added machines and then decrease at a slower rate.
The first instance added in the Java 8 backend also improves significantly the performance of the
program and the Java 8 backend performs better with one or two workers. Thanks to the efficient
thread management of the Java 8 backend, the performance stays stable until 30 workers. With a
high number of instances, the degree of parallelism becomes harmful. In contrast, increasing the
degree of parallelism for the ProActive backend results in a linear speedup, because it balances the
load between machines and benefits from distribution.

Figure 8(b) compares the performance of the generated ProActive code to a hand-written ver-
sion. The overhead introduced by the translation performed by the ProActive backend is very low
(<10%), except when many machines are involved and the communication rate is high.

3.5 Encore

The Encore implementation7 consists of two major components, a source-to-source compiler (from
Encore to C) implemented in Haskell and the runtime system, implemented in C. The runtime
provides efficient parallel execution but has no support for distribution. The Encore runtime stack
(Figure 9) is built around the runtime used by the Pony language (PonyRT) [31], which includes an
actor library and garbage collection for both active objects (actors) [30] and passive objects [29].
The Encore runtime (EncoreRT) extends the PonyRT with new features such as futures, the ParT
abstraction, a task library, and the notion of encore threads (explained below). These features are
part of the runtime and thus written in C. On top of these libraries rests the Encore Standard
Library, which is written in Encore itself.

7Available at https://github.com/parapluu/encore.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

https://github.com/parapluu/encore

76:28 F. De Boer et al.

Fig. 8. Execution time of DNA-matching ABS application.

Fig. 9. Encore runtime stack.

Thread Creation and Scheduling. In Encore, the runtime has schedulers whose responsibility is
to schedule active objects. Each scheduler owns a queue of active objects, and each active object
owns its own mailbox, which contains messages to process.

On system start-up, the runtime maps physical cores to schedulers, saving the overhead of
creating and context switching over a large number of threads, although this can be overrid-
den if desired. Each scheduler runs in a loop, scheduling active objects until the whole program

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:29

Fig. 10. An Encore scheduler, local to one core. (Left) A scheduler has a queue of active objects with non-
empty message queues. (Right) The state after execution of suspend in the left configuration.

Fig. 11. (Left) An Encore program executing a get on an unresolved future. This causes the currently exe-
cuting active object to be unscheduled, only to be rescheduled after the future has been resolved. Once the
object gets to the head of the scheduling queue after this point, the get operation returns and the program
continues from this point. with non-empty message queues. (Right) An Encore program executing an await
on an unresolved future. In contrast to get, the active object is only unscheduled if it does not have any
messages in its message queue, and once the future is resolved, the resuming method is placed at the end of
the active object’s queue.

terminates. In each iteration of the loop, the scheduler performs three procedures. First, the sched-
uler pops an active object from the beginning of the queue. Second, it hands over control to the
active object so it can process messages in its mailbox. The active object can only process one
message at a time to ensure fairness. Third, if a message is indeed processed in the previous step,
then the active object is pushed to the end of the scheduler’s queue; otherwise, the active object is
unscheduled due to having an empty mailbox. Unscheduled active objects are rescheduled when
other active objects send messages to them. Furthermore, in the second step, new active objects
could be created, and they would be pushed to the end of queue of the current scheduler. Active
objects can be migrated from one scheduler to another via work stealing, which realizes a load
balancer; this only happens when a scheduler runs out of active objects.

Active objects in Encore are implemented by assigning them to a lightweight abstraction called
encore thread, which resembles green threads. Encore threads provide a thread-of-control to the
active object, so it can process messages in its message queue. This implementation detail makes
Encore capable of running thousands of active objects on the same machine.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:30 F. De Boer et al.

The semantics of suspend, await, and get is illustrated by Figures 10 and 11, which show how
these operations involve descheduling (removed from round-robin scheduler queue) and blocking

(no processing of other messages in the active object’s queue) of an active object and whether a
resuming message is prepended or appended to the active object’s message queue.

Unlike the ProActive backend for ABS that relies on creating new threads, Encore opts for han-
dling stacks, which can be attached to encore threads. Based on this idea, the current stack is put
aside and a new stack is given to the encore thread so it can continue running some other or the
same active object using the new stack. To make this process more efficient, Encore has a stack
pool that allows reusing unused stacks. On resolution of the awaited future, the encore thread can
continue processing the suspended execution and, when it has finished, the stack is collected and
returned to the stack pool for future reuse.

Data Sharing and Object Referencing. Active and passive objects in Encore are shared by refer-
ence, as opposed to ProActive, which performs deep copying of the object (Section 3.3). In practice,
this means that sharing large objects in Encore poses no performance issues. Active objects run
in an Encore thread that provides its own thread of control. In terms of the capability system,
immutable passive objects are immune to this problem for obvious reasons. Following this line,
a locked mutable passive object provides locking guarantees on the object, which prevents data
races. In a slightly more advanced usage scenario, we might share part of the mutable passive
object so multiple active objects could work on different parts of the same passive object, concur-
rently. This would be safe as well. The integration of such shared passive objects with capability
types is work in progress.

Error Handling. Currently, Encore offers limited support for exception handling. Errors can be
expressed using option types, where Nothing could represent the error, and programmers can
pattern match on it.

Garbage Collection. Encore borrows the garbage collector from PonyRT with the necessary ex-
tension to accommodate future values. Garbage collection consists of two parts, collecting active
objects, which is covered by Clebsch and Drossopoulou [30], and collecting passive objects [29].

3.6 Erlang Backend for Rebeca

Execution of Rebeca models is performed by translating Rebeca models to Erlang code. Erlang
is a dynamically typed general-purpose programming language for distributed, real-time, and
fault-tolerant applications with an actor-based concurrency model. Having the same concurrency
model, translating Rebeca models to Erlang is realized by a direct mapping of language constructs
[78].

Thread Creation and Scheduling. Actors, as the only concurrent elements of Rebeca models, are
mapped to processes in Erlang, which are much lighter than OS-level threads (more than 100,000
of them can be run on a single computer [8]). The programming facilities of Erlang for developing
concurrent applications (i.e., spawn, “!”, and receive) allow processes to create new processes and
to communicate through asynchronous message passing. These capabilities are used to translate
Rebeca models to Erlang code without the need for modification. The generated processes are
scheduled by the default, reduction-based Erlang scheduler.

Data Sharing and Object Referencing. Reserving a dedicated memory space for each process in
Erlang avoids sharing objects between processes. When object communication happens, the sent
message and its parameters are stored in the receiver actor’s message bag, located in its dedicated
memory space. References to actors are permitted for the purpose of sending messages (although
not for sharing data among actors).

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:31

Fig. 12. The surveyed active object languages according to various design dimensions.

Error Handling. In the current version of Rebeca, there is no mechanism for exception handling;
the programmer must rely on traditional messages to deal with errors.

Garbage Collection. Rebeca borrows the default garbage collector of Erlang without any modifi-
cation, which runs one garbage collector for each process, handling garbage collection internally
within each actor.

4 DISCUSSION

4.1 Design Tradeoffs in Active Object Languages

The four languages reviewed in this article start from the same programming model, the active
object paradigm, but address different challenges and are motivated by different design goals. We
review the different design tradeoffs, summarized in Figure 12.

Degree of Synchronization. The degree of synchronization is a design choice that is central to
the design of parallel programming languages. The original actor model has a semantics where
communications are purely asynchronous and no strict synchronization exists. This resembles
the principles of Rebeca. However, Rebeca ensures FIFO message communication to provide some
guarantees on the ordering of operations. From a global perspective, synchronization hinders ef-
ficiency and parallelism but makes programming easier and sometimes more efficient. The other
programming languages we discussed allow programs to synchronize on the result of a method
invocation through the use of futures. However, different synchronization patterns exist on fu-
tures: from strict synchronization like the get operator of ABS to asynchronous reaction to future
fulfillment enabled by future chaining in Encore.

Two synchronization patterns on futures presented in this article feature an interesting
compromise: the await operation of ABS and Encore enables cooperative multi-threading and
lets the program serve another request while the future is awaited; and the wait-by-necessity

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:32 F. De Boer et al.

synchronization of ProActive that automatically waits on the availability of useful data. Wait-by-
necessity allows the program to pass futures around and never worry about imbricated futures.
Different communication paradigms have been investigated in the proposed languages, the ex-
treme cases being the causally ordered communications ensured by ASP which makes program-
ming easier, because of the ordering guaranteed to the programmer, and the fully asynchronous
communication of the ABS semantics, which allows more parallelism and better overlap between
communication and computation. Interestingly, many implementations of ABS ensure FIFO order-
ing of messages, even with asynchronous communication as the default semantics of ABS.

Degree of Transparency. The degree of transparency is very much related to the synchronization
primitives. Right now, in practice, there are mostly two extreme approaches: either everything is
very explicit and the user syntactically differentiates asynchronous invocations from synchronous
ones (e.g., o!m() vs. o.m() in ABS) or everything is hidden to the programmer who programs active
objects, as if they were sequential objects and where synchronization on method results is hidden
to the programmer. In Rebeca, explicitness is even stronger as the remotely invocable methods are
declared by a specific syntax and do not return a result.

Data Sharing and Data Access. Active objects do not share memory according to the Actor pro-
gramming paradigm; however, we see that at least some objects can be accessed by other objects.
Data sharing plays an especially important role in relation to implementation. ASP, designed
in close relation to Java RMI, because of the ProActive library implementation, features a non-
uniform active object model where active objects can be invoked from anywhere and other objects
are transmitted by copy. ABS was designed as a specification language where each object can be
invoked by any other object; the first implementations of ABS did not support distribution, and
the distributed implementations provide a hierarchical way of addressing objects to scale. Encore
has a particular role here, as it is focused on efficient local parallelism, where it is possible to have
efficient addressing of many objects; this allows an implementation of passive objects where no
data are copied and a better efficiency is provided.

It is interesting to notice that both ASP and Encore allow the programmer to depart from the
pure actor model by providing local multi-threading to an actor, either inside the treatment of a
request (the parallel combinators of Encore) or by running several requests in parallel (the multi-
threaded active objects of ASP). In each case, the extension of the language is provided in such a
way that it relies on the same programming abstractions as classical active objects, and for this
reason, it is still very easy to write safe and efficient programs. In both cases, multi-threading allows
the programs to gain efficiency by better using local concurrency; it also allows the programmer
to express some parallelism patterns that are difficult to write with classical active objects. It is
important to notice that, even if the strict mono-threading policy of actors can be broken in those
language, the programming language still strictly guarantees that no data race can exist between
two actors.

Formal Semantics. It is noteworthy that all four languages are equipped with a formal semantics,
which is the basis for unambiguous implementations and for far reaching tool support in terms of
static analysis tools, test generators, optimizers, and so on. For several of the languages discussed
here meta properties of the formal semantics were proven, such as type safety or data race freedom.

Tooling and Execution Support. Both Rebeca and ABS started with a strong focus on tool-based
formal analysis and verification but recently added fairly efficient implementations which rely on
cross translation. ProActive and Encore focused on efficient implementation on distributed and
many-core computer architectures, respectively, and come with “native” implementations based
on extensions of existing frameworks.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:33

Rebeca is probably the language that features the largest variety in the different language
semantics that can be verified. ABS in contrast is equipped with a large variety of different
analyses based on the same semantics. Both languages show the advantage of adopting an active
object programming paradigm compared to standard models of distribution and concurrency
for the verifiability of programs. ASP and Encore mainly focused on execution support. While
powerful verification tools also exist for those languages, significant effort have been put into
the efficiency of local parallelism in Encore and to support effective large-scale distribution in
ProActive. ProActive programs target HPC applications: It makes it easy to deploy an application
on a large set of machines, but it reaches maximal efficiency when instantiating only a few active
objects per physical core. The Java 8 backend for ABS provides light threads and enables the
instantiation of many active objects on the same machine. It also permits active objects to achieve
faster local interaction than in ProActive. At a finer granularity, Encore provides optimized
constructs for safe and efficient programming at a lower level of abstraction.

The different execution environments discussed in this article cover a broad range of ways to
implement an active object language. A language can in principle be implemented from scratch
with a whole compiler tool-chain but to offer a more efficient runtime support and to minimize im-
plementation effort all the languages presented here rely on an existing, widely adopted language.
Encore is probably the closest to a full implementation of a language and runtime support, as it
compiles to C and requires a dedicated runtime environment. It is also probably the most efficient
local implementation of active objects. Rebeca and ABS mostly rely on compilation to high-level
languages, sometimes augmented with a dedicated API. ProActive takes a different approach and
is implemented as a library for an existing language, allowing the programmer to use almost all
the functionalities of the host language, albeit a few natural restrictions. The ProActive backend
for ABS illustrates the possibility to cross-translate an active object language into another one.

4.2 Other Actor Languages

There are several other programming languages that introduce high-level abstractions for con-
current programming deviating from the active object approach. We focused in this survey on
languages based on an active object model; however, numerous programming models with sim-
ilar concepts that do not follow exactly the actor paradigm exist, for example, Seuss [76] and
SCOOP [73].

We give an overview of the main languages that adopt, at least partially, the concept of active
objects and were not discussed so far. Java Annotations for Concurrency (JAC) [48] supports an-
notations to specify the kind of parallelism that can occur inside a Java object from a relatively
high-level perspective. It is possible to encode versions of actors in JAC. The concurrency model
of AmbientTalk [37] is based on the E programming language [74], which implements a communi-
cating event-loop actor model with fully asynchronous futures (called promises): Calls on futures
trigger an asynchronous invocation that will be executed when the future is available and objects
are passed by eventual reference between actors rather than by copy. This facilitates the creation
of many small, object-level interfaces (each eventual reference acts as a new entry point to the
actor), rather than a single large actor-level interface. AmbientTalk adds new primitives to handle
disconnecting and reconnecting nodes in a network to support ambient-oriented programming.
In Panini [69], concurrent behavior is specified by composing modules (called “capsules”) that by
themselves behave sequentially. The granularity of concurrency is more coarse grained than in
active object languages and there are no explicit synchronization statements.

Akka [46, 91] is a scalable library for implementing actors on top of Java and Scala. Akka Typed
Actors is an implementation of the Active Objects pattern. Interactions between actors in Akka
only use message passing and all communication is asynchronous. Actors interact in the same

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:34 F. De Boer et al.

way, regardless whether they are on the same or separate hosts, communicate directly or through
routing facilities, run on a few threads or many threads, and so on. Such details may be altered at
deployment time through a configuration mechanism, allowing a program to make use of more
(powerful) servers without modification. The scalability of Akka also results from an efficient hi-
erarchical error handling mechanism where actors also play the role of supervisors. Akka is well
suited for hybrid cloud architectures and the elastic scaling of cloud platforms. In one experiment,
it only took 4 minutes to start a 1000-node Akka cluster on Google Compute Engine (GCE), in-
cluding the time to start the GCE instances.

Orleans [13, 18] is an actor framework developed at Microsoft research and used in several
Microsoft products, including online games relying on a cloud infrastructure. Its strength is the
runtime support for creation, execution, and state management of actors. Orleans relies on a non-
uniform active object model with copies of transmitted passive objects, like ASP. The semantics
of futures is based on continuations and relies on an await statement similar to that of ABS and
Encore; however, there is no primitive for cooperative scheduling. Consequently, the programmer
has to take care of possible modifications of the object state between the await and the future
access. This semantics for future access is similar to the way futures are handled in general in
Akka. There is extensive runtime support in the Orleans framework; in particular, it supports the
efficient creation, activation, and deactivation of active objects governed by the requirements of
an application. This is why Orleans is called a virtual actor model. Orleans also focuses on efficient
execution of active objects, including optimized serialization for inter-actor data transmission.
Both object management and data transmission scale in terms of distribution and in terms of the
number of active objects that can interact within a single application.

5 LESSONS LEARNED AND CONCLUSION

With the advent of many-core computers and large-scale cloud computing, the active object par-
adigm evolved out of actor-based concurrency as one of the most promising candidates to model
asynchronously parallel and distributed computations in a safe manner. We retraced the unfolding
of the active object paradigm since the early 2000s by focusing on four representative active ob-
ject languages. We are convinced that active object concepts will eventually make their way into
mainstream programming languages (the adoption of an actor system in Scala is a first indicator).
Therefore, it is essential to understand the tradeoffs involved in their design and implementation.

In this article, we discuss and compare design decisions for four active object languages and
show how the semantics of each language influenced its implementation, how different design de-
cisions create new challenges, how these have been addressed, and which limitations remain. One
important dimension along which the languages can be distinguished is how they handle efficient
data sharing and how each language finds a balance between copying and safe shared memory.
We hope that the tradeoffs and options discussed in this survey can serve as a future reference
for designers and implementers of programming languages that make use of the active object
paradigm.

REFERENCES

[1] Erika Ábrahám, Frank S. de Boer, Willem P. de Roever, and Martin Steffen. 2005. An assertion-based proof system
for multithreaded Java. Theoret. Comput. Sci. 331, 2–3 (2005), 251–290.

[2] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Arni Hermann Reynisson, Steinar Hugi Sigurdarson, and Marjan
Sirjani. 2011. Modelling and simulation of asynchronous real-time systems using timed rebeca. In Proceedings of

the Workshop on Foundations of Coordination Languages and Software Architectures, Mohammad Reza Mousaviand
António Ravara (Eds.). Electronic Proceedings in Theoretical Computer Science, Vol. 58. 1–19.

[3] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

A Survey of Active Object Languages 76:35

[4] Elvira Albert, Puri Arenas, Antonio Flores-Montoya, Samir Genaim, Miguel Gómez-Zamalloa, Enrique Martin-
Martin, Germán Puebla, and Guillermo Román-Díez. 2014. SACO: Static analyzer for concurrent objects. In Proceed-

ings of the 20th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
Erika Ábrahámand Klaus Havelund (Eds.). LNCS, Vol. 8413. Springer, 562–567.

[5] Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. 2015. Test case generation of actor systems. In Proceedings

of the 13th Intl. Symp. on Automated Technology for Verification and Analysis (ATVA), Bernd Finkbeiner, Geguang Pu,
and Lijun Zhang (Eds.). LNCS, Vol. 9364. Springer, 259–275.

[6] Elvira Albert, Frank S. de Boer, Reiner Hähnle, Einar Broch Johnsen, Rudolf Schlatte, Silvia Lizeth Tapia Tarifa, and
Peter Y. H. Wong. 2014. Formal modeling of resource management for cloud architectures: An industrial case study
using real-time ABS. Journal of Service-Oriented Computing and Applications 8, 4 (2014), 323–339.

[7] Elvira Albert, Miguel Gómez-Zamalloa, and Miguel Isabel. 2016. Combining static analysis and testing for deadlock
detection. In Proceedings of the 12th Intl. Conf. on Integrated Formal Methods (iFM 2016), Erika Ábrahámand Marieke
Huisman (Eds.). LNCS, Vol. 9681. Springer, 409–424.

[8] Joe Armstrong. 2007. Programming Erlang, Software for Concurrent World. Pragmatic Bookshelf.
[9] Henry. G. Baker Jr. and Carl Hewitt. 1977. The incremental garbage collection of processes. In Proceedings of the

Symposium on Artificial Intelligence and Programming Languages. ACM Press, New York, NY, 55–59.
[10] Henri E. Bal, Jennifer G. Steiner, and Andrew S. Tanenbaum. 1989. Programming languages for distributed computing

systems. Comput. Surv. 21, 3 (1989), 261–322.
[11] Françoise Baude, Ludovic Henrio, and Cristian Ruz. 2015. Programming distributed and adaptable autonomous

components—The GCM/ProActive framework. Softw. Prac. Exper. 45, 9 (2015), 1189–1227.
[12] Razieh Behjati, Marjan Sirjani, and Majid Nili Ahmadabadi. 2009. Bounded rational search for on-the-fly model check-

ing of LTL properties. In Proceedings of the 3rd IPM International Conference on Fundamentals of Software Engineering

(FSEN’09), Farhad Arbaband Marjan Sirjani (Eds.). LNCS, Vol. 5961. Springer, 292–307.
[13] Philip A. Bernstein and Sergey Bykov. 2016. Developing cloud services using the orleans virtual actor model. IEEE

Internet Comput. 20, 5 (2016), 71–75.
[14] Joakim Bjørk, Frank S. de Boer, Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. 2013. User-defined

schedulers for real-time concurrent objects. Innov. Syst. Softw. Eng. 9, 1 (2013), 29–43.
[15] Stefan Blom and Marieke Huisman. 2014. The vercors tool for verification of concurrent programs. In Proceedings

of the 19th Intl. Symposium on Formal Methods (FM’14), Cliff B. Jones, Pekka Pihlajasaari, and Jun Sun (Eds.). LNCS,
Vol. 8442. Springer, 127–131.

[16] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen, Ka I. Pun, S. Lizeth
Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. 2015. Parallel objects for multicores: A glimpse at the
parallel language encore. In Formal Methods for Multicore Programming: 15th International School on Formal Methods

for the Design of Computer, Communication, and Software Systems, Marco Bernardoand Einar Broch Johnsen (Eds.).
LNCS, Vol. 9104. Springer, 1–56.

[17] Richard Bubel, Antonio Flores Montoya, and Reiner Hähnle. 2014. Analysis of executable software models. In Exe-

cutable Software Models: 14th International School on Formal Methods for the Design of Computer, Communication, and

Software Systems, Marco Bernardo, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, and Ina Schaefer (Eds.).
LNCS, Vol. 8483. Springer, 1–27.

[18] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud
computing for everyone. In Proceedings of the Symposium on Cloud Computing in Conjunction with SOSP (SOCC’11),
Jeffrey S. Chaseand Amr El Abbadi (Eds.). ACM Press, 16.

[19] Denis Caromel and Guillaume Chazarain. 2005. Robust exception handling in an asynchronous environment. In
Proceedings of the ECOOP Workshop on Exception Handling in Object-Oriented Systems (2005).

[20] Denis Caromel, Guillaume Chazarain, and Ludovic Henrio. 2007. Garbage collecting the grid: A complete DGC for
activities. In Proceedings of the 8th ACM/IFIP/USENIX International Middleware Conference, Renato Cerqueiraand Roy
H. Campbell (Eds.). LNCS, Vol. 4834. Springer, 164–183.

[21] Denis Caromel and Ludovic Henrio. 2005. A Theory of Distributed Object. Springer.
[22] Denis Caromel, Ludovic Henrio, and Bernard Serpette. 2004. Asynchronous and deterministic objects. In Proceedings

of the Symposium on Principles of Programming Languages (POPL’04), Neil D. Jonesand Xavier Leroy (Eds.). ACM
Press, 123–134.

[23] Denis Caromel and Yves Roudier. 1996. Reactive programming in eiffel//. In Proceedings of the Conference on Object-

Based Parallel and Distributed Computation (OBPDC’95), Jean-Pierre Briot, Jean-Marc Geib, and Akinori Yonezawa
(Eds.). LNCS, Vol. 1107. Springer, 125–147.

[24] Elias Castegren and Tobias Wrigstad. 2016. Reference capabilities for concurrency control. In Proceedings of the

European Conference on Object-Oriented Programming (ECOOP’16), Shriram Krishnamurthiand Benjamin S. Lerner
(Eds.). LIPIcs, Vol. 56. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 5:1–5:26.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

76:36 F. De Boer et al.

[25] Elias Castegren and Tobias Wrigstad. 2017. Relaxed linear references for lock-free data structures. In Proceedings

of the European Conference on Object-Oriented Programming (ECOOP’17), Peter Müller (Ed.). LIPIcs, Vol. 74. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 6:1–6:32. DOI:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.6

[26] Charron-Bost, Bernadette, Mattern, Friedemann, and Gerard Tel. 1996. Synchronous, asynchronous, and causally
ordered communication. Distrib. Comput. 9, 4 (1996), 173–191.

[27] Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. 2008. Minimal ownership for active objects.
In Proceedings of the 6th Asian Symposium on Programming Languages and Systems (APLAS’08), Ganesan Ramalingam
(Ed.). LNCS, Vol. 5356. Springer, 139–154.

[28] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, and Carolyn L.
Talcott. 2007. All About Maude—A High-Performance Logical Framework, How to Specify, Program and Verify Systems

in Rewriting Logic. LNCS, Vol. 4350. Springer.
[29] Sylvan Clebsch, Sebastian Blessing, Juliana Franco, and Sophia Drossopoulou. 2015. Ownership and reference count-

ing based garbage collection in the actor world. (2015). In Proceedings of the 10th Implementation, Compilation, Opti-

mization of Object-Oriented Languages, Programs and Systems Workshop (ICOOOLPS’15).
[30] Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully concurrent garbage collection of actors on many-core ma-

chines. In Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming Systems Lan-

guages & Applications (OOPSLA’13), Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM Press,
553–570.

[31] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. 2015. Deny capabilities for safe, fast
actors. In Proceedings of the 5th International Workshop on Programming Based on Actors, Agents, and Decentral-

ized Control (AGERE’15), Elisa Gonzalez Boix, Philipp Haller, Alessandro Ricci, and Carlos Varela (Eds.). ACM Press,
1–12.

[32] Gianpaolo Cugola and Carlo Ghezzi. 1997. CJava: Introducing concurrent objects in java. In Proceedings of the 4th In-

ternational Conference on Object Oriented Information Systems (OOIS’97), Maria E. Orlowskaand Roberto Zicari (Eds.).
Springer, 504–514.

[33] Ole-Johan Dahl, Bjørn Myrhaug, and Kristen Nygaard. 1968. (Simula 67) Common Base Language. Technical Report
S-2. Norsk Regnesentral (Norwegian Computing Center), Oslo, Norway.

[34] Ole-Johan Dahl and Kristen Nygaard. 1966. SIMULA—An ALGOL-Based simulation language. Commun. ACM 9, 9
(1966), 671–678.

[35] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. 2007. A complete guide to the future. In Proceedings of the

16th European Symposium on Programming (ESOP’07), Rocco De Nicola (Ed.). LNCS, Vol. 4421. Springer, 316–330.
[36] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified data processing on large clusters. Commun. ACM

51, 1 (Jan. 2008), 107–113.
[37] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D’Hondt, and Wolfgang De Meuter. 2006. Ambient-oriented

programming in ambienttalk. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP’06),
Dave Thomas (Ed.). LNCS, Vol. 4067. Springer, 230–254.

[38] Crystal Chang Din, Richard Bubel, and Reiner Hähnle. 2015. KeY-ABS: A deductive verification tool for the concur-
rent modelling language ABS. In Automated Deduction (CADE-25), Amy P. Feltyand Aart Middeldorp (Eds.). LNCS,
Vol. 9195. Springer, 517–526.

[39] Crystal Chang Din and Olaf Owe. 2015. Compositional reasoning about active objects with shared futures. Form.

Aspects Comput. 27, 3 (2015), 551–572.
[40] Crystal Chang Din, S. Lizeth Tapia Tarifa, Reiner Hähnle, and Einar Broch Johnsen. 2015. History-based specification

and verification of scalable concurrent and distributed systems. In Proceedings of the 17th International Conference on

Formal Engineering Methods (ICFEM’15), Michael Butler, Sylvain Conchon, and Fatiha Zaïdi (Eds.). LNCS, Vol. 9407.
Springer.

[41] Jesús Doménech, Samir Genaim, Einar Broch Johnsen, and Rudolf Schlatte. 2017. Easyinterface: A toolkit for rapid
development of GUIs for research prototype tools. In Proceedings of the 20th International Conference on Fundamental

Approaches to Software Engineering (FASE’17), Marieke Huismanand Julia Rubin (Eds.). LNCS, Vol. 10202. Springer,
379–383.

[42] Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. 2016. ParT: An asynchronous parallel abstraction. In
Proceedings of the 18th International Conference on Coordination Models and Languages (COORDINATION’16), Alberto
Lluch Lafuenteand José Proença (Eds.). LNCS, Vol. 9686. Springer, 101–120.

[43] Elena Giachino, Cosimo Laneve, and Michael Lienhardt. 2016. A framework for deadlock detection in core ABS.
Softw. Syst. Model. 15, 4 (2016), 1013–1048. DOI:http://dx.doi.org/10.1007/s10270-014-0444-y

[44] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. 2006. Java Concurrency in

Practice. Addison-Wesley.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.6
http://dx.doi.org/10.1007/s10270-014-0444-y

A Survey of Active Object Languages 76:37

[45] Reiner Hähnle, Michiel Helvensteijn, Einar Broch Johnsen, Michael Lienhardt, Davide Sangiorgi, Ina Schaefer, and
Peter Y. H. Wong. 2013. HATS abstract behavioral specification: The architectural view. In Proceedings of the Inter-

national Coference on Formal Methods for Components and Objects (FMCO’12), Bernhard Beckert, Ferruccio Damiani,
Frank de Boer, and Marcello M. Bonsangue (Eds.). LNCS, Vol. 7542. Springer, 109–132.

[46] Philipp Haller and Martin Odersky. 2009. Scala actors: Unifying thread-based and event-based programming. Theoret.

Comput. Sci. 410, 2–3 (2009), 202–220.
[47] Robert H. Halstead, Jr. 1985. MULTILISP: A language for concurrent symbolic computation. ACM Trans. Program.

Lang. Syst. 7, 4 (Oct. 1985), 501–538.
[48] Max Haustein and Klaus-Peter Löhr. 2006. JAC: Declarative java concurrency. Concurr. Comput.: Pract. Exper. 18, 5

(2006), 519–546.
[49] Ludovic Henrio, Fabrice Huet, and Zsolt István. 2013. Multi-threaded active objects. In Proceedings of the 15th Inter-

national Conference on Coordination Models and Languages, Florence, Italy (COORDINATION’13), Christine Julienand
Rocco De Nicola (Eds.). LNCS, Vol. 7890. Springer, 90–104.

[50] Ludovic Henrio, Florian Kammüller, and Bianca Lutz. 2012. ASPfun: A typed functional active object calculus. Sci.

Comput. Program. 77, 7–8 (July 2012), 823–847.
[51] Ludovic Henrio, Muhammad Uzair Khan, Nadia Ranaldo, and Eugenio Zimeo. 2010. First class futures: Specification

and implementation of update strategies. In Selected Papers of the Coregrid Workshop on Grids, Clouds and P2P Com-

puting, Mario R. Guarracino, Frédéric Vivien, Jesper Larsson Träff, Mario Cannataro, Marco Danelutto, Anders Hast,
Francesca Perla, Andreas Knüpfer, Beniamino Di Martino, and Michael Alexander (Eds.). LNCS, Vol. 6586. Springer,
295–303.

[52] Ludovic Henrio, Oleksandra Kulankhina, Siqi Li, and Eric Madelaine. 2016. Integrated environment for verifying
and running distributed components. In Proceedings of the International Conference on Fundamental Approaches to

Software Engineering (FASE’16), Perdita Stevensand Andrzej Wasowski (Eds.). LNCS, Vol. 9633. Springer, 66–83.
[53] Ludovic Henrio and Justine Rochas. 2014. Declarative scheduling for active objects. In Proceedings of the Symposium

on Applied Computing (SAC’14), Sung Y. Shin (Ed.). ACM Press, 1339–1344.
[54] Ludovic Henrio and Justine Rochas. 2016. From modelling to systematic deployment of distributed active objects. In

Proceedings of the 18th International Conference on Coordination Models and Languages (COORDINATION’16), Alberto
Lluch Lafuenteand José Proena (Eds.). LNCS, Vol. 9686. Springer.

[55] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A universal modular ACTOR formalism for artificial intelli-
gence. In Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI’73), Nils J. Nilsson (Ed.).
W. Kaufmann, 235–245.

[56] Highly Adaptable and Trustworthy Software using Formal Models 2011. Full ABS Modeling Framework. (March
2011). Deliverable 1.2 of project FP7-231620 (HATS) retrieved from http://www.hats-project.eu.

[57] Tony Hoare. 1985. Communicating Sequential Processes. Prentice Hall.
[58] Hossein Hojjat, Marjan Sirjani, Mohammad Reza Mousavi, and Jan Friso Groote. 2007. Sarir: A rebeca to mCRL2

translator. In Proceeding of the 7th International Conference on Application of Concurrency to System Design (ACSD’07),
Twan Basten, Gabriel Juhás, and Sandeep K. Shukla (Eds.). IEEE Press, 216–222.

[59] Ali Jafari, Ehsan Khamespanah, Marjan Sirjani, and Holger Hermanns. 2014. Performance analysis of distributed and
asynchronous systems using probabilistic timed actors. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 70 (2014).

[60] Mohammad Mahdi Jaghoori, Marjan Sirjani, Mohammad Reza Mousavi, Ehsan Khamespanah, and Ali Movaghar.
2010. Symmetry and partial order reduction techniques in model checking Rebeca. Acta Inform. J. 47, 1 (2010), 33–66.

[61] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. 2011. ABS: A core language
for abstract behavioral specification. In Proceedings of the International Conference on Formal Methods for Components

and Objects (FMCO’10), Bernhard Aichernig, Frank S. de Boer, and Marcello M. Bonsangue (Eds.). LNCS, Vol. 6957.
Springer, 142–164.

[62] Einar Broch Johnsen and Olaf Owe. 2007. An asynchronous communication model for distributed concurrent objects.
Softw. Syst. Model. 6, 1 (March 2007), 35–58.

[63] Einar Broch Johnsen, Olaf Owe, and Marte Arnestad. 2003. Combining active and reactive behavior in concurrent
objects. In Proceedings of the of the Norwegian Informatics Conference (NIK’03), Dag Langmyhr (Ed.). Tapir Academic
Publisher, 193–204.

[64] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. 2006. Creol: A type-safe object-oriented model for distributed
concurrent systems. Theoret. Comput. Sci. 365, 1 (2006), 23–66.

[65] Einar Broch Johnsen, Rudolf Schlatte, and S. Lizeth Tapia Tarifa. 2015. Integrating deployment architectures and
resource consumption in timed object-oriented models. J. Logic. Algebr. Methods Program. 84, 1 (2015), 67–91.

[66] Ehsan Khamespanah, Marjan Sirjani, Mohammad Reza Mousavi, Zeynab Sabahi-Kaviani, and Mohamadreza Razzazi.
2015a. State distribution policy for distributed model checking of actor models. Electron. Commun. Eur. Assoc. Softw.

Sci. Technol. 72 (2015).

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

http://www.hats-project.eu

76:38 F. De Boer et al.

[67] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi-Kaviani, Ramtin Khosravi, and Mohammad-Javad Izadi. 2015b.
Timed rebeca schedulability and deadlock freedom analysis using bounded floating time transition system. Sci. Com-

put. Program. 98 (2015), 184–204.
[68] Ehsan Khamespanah, Marjan Sirjani, Mahesh Viswanathan, and Ramtin Khosravi. 2015c. Floating time transition

system: More efficient analysis of timed actors. In Proceedings of the 12th Intl. Symp. on Formal Aspects of Component

Software (FACS), Christiano Bragaand Peter Csaba Ölveczky (Eds.). LNCS, Vol. 9539. Springer, 237–255.
[69] Eric Lin and Hridesh Rajan. 2013. Panini: A capsule-oriented programming language for implicitly concurrent pro-

gram design. In Proceedings of the Conference on Systems, Programming, and Applications: Software for Humanity

(SPLASH’13), Antony L. Hoskingand Patrick Eugster (Eds.). ACM Press, 19–20.
[70] Barbara Liskov and Ljuba Shrira. 1988. Promises: Linguistic support for efficient asynchronous procedure calls in

distributed systems. In Proceedings of the Conference of Programming Language Design and Implementation (PLDI’88),
Richard L. Wexelblat (Ed.). ACM Press, New York, NY, 260–267.

[71] Daniel McCain. 2015. Parallel Combinators for the Encore Programming Language. Master’s thesis. Uppsala University.
[72] Bertrand Meyer. 1992. Applying “design by contract.”IEEE Comput. 25, 10 (Oct. 1992), 40–51.
[73] Bertrand Meyer. 1993. Systematic concurrent object-oriented programming. Commun. ACM 36, 9 (Sept. 1993), 56–80.

DOI:http://dx.doi.org/10.1145/162685.162705
[74] Mark S. Miller, E. Dean Tribble, and Jonathan Shapiro. 2005. Concurrency among strangers: Programming in E as

plan coordination. In Proceedings of the International Symposium on Trustworthy Global Computing (TGC’05), Rocco
De Nicolaand Davide Sangiorgi (Eds.). LNCS, Vol. 3705. Springer, 195–229.

[75] Robin Milner. 1989. Communication and Concurrency. Prentice Hall.
[76] Jayadev Misra. 2001. A Discipline of Multiprogramming: Programming Theory for Distributed Applications. Springer,

Secaucus, NJ.
[77] Niloofar Razavi, Razieh Behjati, Hamideh Sabouri, Ehsan Khamespanah, Amin Shali, and Marjan Sirjani. 2010. Sysfier:

Actor-based formal verification of SystemC. ACM Trans. Embed. Comput. Syst. 10, 2 (2010), 19.
[78] Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Cimini, Ali Jafari, Anna Ingólfsdóttir, and Steinar Hugi

Sigurdarson. 2014. Modelling and simulation of asynchronous real-time systems using timed rebeca. Sci. Comput.

Program. 89 (2014), 41–68.
[79] Justine Rochas and Ludovic Henrio. 2014. A ProActive Backend for ABS: from Modelling to Deployment. Research

Report RR-8596. INRIA. Retrieved from https://hal.inria.fr/hal-01065072.
[80] Zeynab Sabahi-Kaviani, Ramtin Khosravi, Peter Csaba Ölveczky, Ehsan Khamespanah, and Marjan Sirjani. 2015.

Formal semantics and efficient analysis of timed rebeca in real-time maude. Sci. Comput. Program. 113 (2015), 85–118.
[81] Hamideh Sabouri and Ramtin Khosravi. 2013. Modeling and verification of reconfigurable actor families. J. Univers.

Comput. Sci. 19, 2 (2013), 207–232.
[82] Jan Schäfer and Arnd Poetzsch-Heffter. 2010. JCoBox: Generalizing active objects to concurrent components. In

Proceedings of the European Conference on Object-Oriented Programming (ECOOP’10), Theo D’Hondt (Ed.). LNCS,
Vol. 6183. Springer, 275–299.

[83] Vlad Serbanescu, Chetan Nagarajagowda, Keyvan Azadbakht, Frank de Boer, and Behrooz Nobakht. 2014. Towards
type-based optimizations in distributed applications using ABS and JAVA 8. In First International Workshop on Adap-

tive Resource Management and Scheduling for Cloud Computing, Florin Popand Maria Potop-Butucaru (Eds.). LNCS,
Vol. 8907. Springer, 103–112.

[84] Steinar Hugi Sigurdarson, Marjan Sirjani, Yngvi Björnsson, and Arni Hermann Reynisson. 2012. Guided search for
deadlocks in actor-based models. In Proceedings of the 9th International Symposium on Formal Aspects of Component

Software (FACS’12), Corina S. Pasareanuand Gwen Salaün (Eds.). LNCS, Vol. 7684. Springer, 242–259.
[85] Marjan Sirjani, Frank S. de Boer, Ali Movaghar, and Amin Shali. 2005. Extended rebeca: A component-based actor

language with synchronous message passing. In Proceedings of the 5th International Conference on Application of

Concurrency to System Design (ACSD’05), Jörg Deseland Yosinori Watanabe (Eds.). IEEE Press, 212–221.
[86] Marjan Sirjani, Frank S. de Boer, and Ali Movaghar-Rahimabadi. 2005. Modular verification of a component-based

actor language. J. Univers. Comput. Sci. 11, 10 (2005), 1695–1717.
[87] Marjan Sirjani and Mohammad Mahdi Jaghoori. 2011. Ten years of analyzing actors: Rebeca experience. In For-

mal Modeling: Actors, Open Systems, Biological Systems, Gul Agha, Olivier Danvy, and José Meseguer (Eds.). LNCS,
Vol. 7000. Springer, 20–56.

[88] Marjan Sirjani, Movaghar, and Mohammad Reza Mousavi. 2001. Compositional verification of an object-based model
for reactive systems. In Proceedings of the 11th Computer Science of Iran Computer Conference (CSICC’01).

[89] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. 2004. Modeling and verification of reactive systems
using rebeca. Fundam. Inform. 63, 4 (2004), 385–410.

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

http://dx.doi.org/10.1145/162685.162705
https://hal.inria.fr/hal-01065072

A Survey of Active Object Languages 76:39

[90] Peter Y. H. Wong, Elvira Albert, Radu Muschevici, José Proença, Jan Schäfer, and Rudolf Schlatte. 2012. The ABS
tool suite: Modelling, executing and analysing distributed adaptable object-oriented systems. J. Softw. Tools Technol.

Transfer 14, 5 (2012), 567–588.
[91] Derek Wyatt. 2013. Akka Concurrency. Artima.
[92] Yasuhiko Yokote and Mario Tokoro. 1987. Concurrent programming in concurrentSmalltalk. In Object-Oriented Con-

current Programming, Akinori Yonezawaand Mario Tokoro (Eds.). MIT Press, 129–158.
[93] Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. 1986. Object-oriented concurrent programming in

ABCL/1. In Proceedings of the ACM International Conference on Object-Oriented Programming, Systems, Languages

and Applications (OOPSLA’86), Norman K. Meyrowitz (Ed.). ACM Press, 258–268.
[94] Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi. 2015. Modeling and efficient verification of broadcasting

actors. In Proceedings of the 6th International Conference on Fundamentals of Software Engineering (FSEN’09), Mehdi
Dastaniand Marjan Sirjani (Eds.). LNCS, Vol. 9392. Springer, 69–83.

[95] Behnaz Yousefi, Fatemeh Ghassemi, and Ramtin Khosravi. 2016. Modeling and efficient verification of wireless ad
hoc networks (unpublished).

Received November 2016; revised May 2017; accepted July 2017

ACM Computing Surveys, Vol. 50, No. 5, Article 76. Publication date: October 2017.

