Chapter 26

Modern Monte Carlo Methods and GPU
Computing

Alvaro Leitao and Cornelis W. Qosterlee

Abstract Pricing early-exercise options under multi-dimensional stochastic pro-
gesses is a major challenge in the financial sector. In Leitao and Oosterlee (Int
J Comput Math 92(12):2433-2454, 2015), a parallel GPU version of the Monte
Carlo based Stochastic Grid Bundling Method (SGBM) (Jain and Oosterlee, Appl
Math Comput 269:412-431,2015) for pricing multi-dimensional Bermudan options
is presemcd‘ The method is based on a combination of simulation, dynamic pro-
gramming, regression and bundling of Monte Carlo paths. To extend the method’s
gpplicability, the problem dimensionality and the number of bundles is increased
drastically. This makes SGBM very expensive in terms of computational costs
on conventional hardware systems. A parallelization strategy of the method is
~ developed and the GPGPU paradigm is used to reduce the execution time. An
~mproved technique for bundling asset paths, which is more efficient on parallel
hardware, is introduced. Thanks to the performance of the GPU version of SGBM,
e can fully exploit the method and deal with very high-dimensional problems.

Pricing results and comparisons between sequential and GPU parallel versions are
presented.

in both interpretation and implementation makes them very attractive for
oners. However, the main drawback usually attributed to this technique is
Migh computational cost. Although this fact has been improved in the last
8 (due to the rapid evolution of the software and hardware), there still
ME particular problems where the application of Monte Carlo methods can
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be considered “expensive”. That is the case when we deal with multi- or high-
dimensional problems. In many cases, the use of Monte Carlo is the only option
for this type of problems since other methodologies like PDE- or Fourier-based
approaches can not be applied for very high dimensions (more than three), due
to the curse of dimensionality. In this chapter, we will focus our analysis on
high-dimensional early-exercise option coniracts and how to combine a Monte
Carlo based pricing method with parallel GPU computing resulting in an efficient
technology.

In recent years, different Monte Carlo simulation techniques for pricing multi-
dimensional early-exercise options were developed. Some representative methods
were developed by Longstaff and Schwartz [7] and Tsitsiklis and Van Roy [8],
One of the recent Monte Carlo pricing techniques is the Stochastic Grid Bundling
Method (SGBM), proposed by Jain and Oosterlee in [5] for pricing Bermudan
options with several underlying assets. The method is a hybrid of regression- and
pundling- based approaches, and uses regressed value functions, together with
bundling of the state space 10 approximate continuation values at different time
steps. In [6], the method’s applicability has been extended by increasing the number
of bundles and the problem dimensionality, which, together, also imply a drastic
increase of the number of Monte Carlo paths. As the method becomes much more
time-consuming then, we have parallelized the SGBM method taking advantage of
the General-Purpose computing on Graphics Processing Units (GPGPU) paradigm.
In this chapter, this work is summarized.

26.2 Problem Formulation

This section defines the Bermudan option pricing problem and sets up the notations
used in this chapter. A Bermudan option is an option where the buyer has the ri

to exercise at a set number of times, f € [to =0 ty = TJ, before
end of the contract, T. S; = (5] $%) e RY defines the d-dimensional underlying
process. Let i, := h(S;) be an adapted process representing the intrinsic value of the
option, i.e. the holder of the option receives max(h;. 0), if the option is exercised
time 1. The value of the option at the terminal time 7 is equal to the option’s payolt
ie.,

Vi (Sy) = max(h(S7), 0).

The conditional continuation value Q. i.e. the expected payoff at time fms 15

0,.(S1,) = DinE [Vin1 Grms )[S, ]+
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where D, is the discount factor. The Bermudan option value at time ¢

! m and State Sfm
is then given by

vr,,; (S:,.,J = max{h(s.ﬂ,,}- Q:,., (Sr,,;l)-

We are interested in finding the option value at the initial state Sy, e Vi (Sy,).

26.3 Stochastic Grid Bundling Method

SGBM [5] is a simulation-based Monte Carlo method for pricing early-exercise
options (such as Bermudan options). SGBM first generates Monte Carlo paths
forward in time, which is followed by determining the optimal early-exercise policy,
moving backwards in time in a dynamic programming framework, based on the
Bellman principle of optimality. The steps involved in the SGBM algorithm are
briefly described in the following:

+ Step I: Generation of stochastic grid points. The grid points in SGBM are
generated by Monte Carlo sampling, i.e., by simulating independent copies of
sample paths, {S, (n),..., S} n=1,..., N. of the underlying process S,,
all starting from the same initial state S,

* Step II: Option value at terminal time. The option value at the terminal time
ty = T is given by

Vi (Syy) = max(h(S,,).0),
with max(#(S,,,), 0) a multi-dimensional payoff function,

The following steps are subsequently performed for each time step, fy, m <
M, recursively, moving backwards in time, starting from f,.

* Step III: Bundling. The grid points at f,; are clustered or bundled into

£ I G — %, (v) non-overlapping sets or partitions. SGBM employs
bundling to approximate the conditional distribution using simulation. It samples
this distribution by bundling the grid points at 1,,_; and then uses those paths that
originate from the corresponding bundle to obtain a conditional sample for time
I

Step IV: Mapping high-dimensional state space to a low-dimensional space.
Corresponding to each bundle Py (B), B = 1,....v, a parameterized value
function Z : R? x RX 1> R. which assigns values Z(S,, . e/ ) to states S, , is

Computed. Here a'f” € RX is a vector of free parameters. The objective is then to

choose, for each tw and B, a parameter vector a';:_, so that

Z(S,,.al) ~ V, (S,).




468 A. Leitao and C.W. Oosterje
* Step V: Computing the continuation and option values at f,_;. The ¢op.
tinuation values for S, _ (n) € 4,,_,(B), n = 1,..., N, B =1
approximated by
01, (S, (1) = EIZ(S,,, o},)IS,,, (n)]- (26.1)
The option value is then given by

?’;m_] (S, (n)) = max(h(S,,_, (n)), @,m_l (S, (n).

Due to their importance, the last three steps are more extensively described in the
following sections.

26.3.1 Bundling

We propose a bundling technique in the SGBM context which is highly efficient
when taking into account our goal of high dimensionality, called equal-partitioning,
This technique is particularly well-suited for parallel processing: it does not involve
an iterative process, distributes the data equally and does not need to store the
d-dimensional points. Equal-partitioning has two steps: sorting and splitting. The
general idea is to sort the data first under some convenient criterion and then split
the sorted data items into sets (i.e. bundles) of equal size. The sorting process i§
independent of the dimension of the problem, efficient and, furthermore, it is highly"
parallelizable. In addition, the storage of all Monte Carlo simulation data points ¢an’
be avoided since only a reduced part is needed in the bundling stage. The split stage:
assigns directly the portions of data to bundles which will contain the same number
of similar (following some criterion) data items. Hence, the regression can beé
performed accurately even though the number of bundles increases in a significant
way. Furthermore, the equally sized bundles allow for a better load balancing within
the parallel implementation.

26.3.2 Parameterizing the Option Values

The high-dimensional option pricing problem become intractable and
the approximation of the value function. This can be achieved by introdué
parameterized value function Z R x R — R, which assigns a value Z(S
1 to state S, , where @ € R” is a vector of free parameters. The goal is ;0
corresponding to each bundle B at time point f,,—;, a parameter Vector @, s
that,

Vin(Si) ~ Z (Sy,.0f,) -
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SGBM I'o.lkows the approach of Tsitsiklis and Van Roy [8] and it uses basis functi
to approximate the values of the options. Hence, two important dccisions‘hzllmcuotrllS
made: the form of the function Z and the basis functions. For each particular ]:r{:);)(; r:
e

we dcﬁn.c several basis functions, ¢;, @, ..., ¢, that are typically chosen based
on experience, as in the case of the LSM method (7], aiming to rcprcseﬁl releuatm

properties of a given state, S, . In our case, the form of Z (S,, .af) depends on S

only through ¢(S,, ). Hence, for some function f : RE x RE "
3

Z(Sy-ahy) = £ (4(51,).af ), where

— R, we can write

p L p
Z(S,.0f) = 3 of Wu(s,).

k=1

An exact computation of the vector of free parameters, a'fi,, is generally not feasible
for the corresponding bundle Z 3, an ¢ imation &% ;

. rresp gbundle 4, _, @ﬁ]. Thus, an approximation arf” is computed by
using ordinary least squares regression.

By using the parameterized option value function Z (s,,,,.a‘:") for the bundle
#,,._,(B). the continuation values in Eq. (26.1) are approximated by

L
Oty (St (1)) = D,,_,E (Z ar, (mm(s,,,,)) ISt = S, ()

k=1
(26.2)

¥
=Dy, > @} (KE[¢(S,)IS)_, =S, ()],
k=]

where S, _ (n) € 4, _ (B). The continuation value will give us a reference
value to compute the early-exercise policy. The basis functions ¢ should be
chosen such that the expectations E [¢4(S, )|S,, , = S,,_,(n)] in Eq.(26.2) are
easy l(vl calculate, i.e. they are preferably known in closed form or otherwise have
analy!m approximations. In [6], several choices to determine the basis functions are
described, either for particular cases or more general situations.

_26.3.3 Estimating the Option Value

e . . .
e Eslimation of the option value is the final step in SGBM. We consider the so-

it:;rre"cr‘ em‘nmmr and path estimator. The direct estimator is typically biased
1 1€, 1L1s often an upper bound. The definition of the direct estimator is

vnu—l (S, (1)) = max (!'I (S,_, ()., 0, (S, _, (n))) .
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where n = 1,...,N. The final option value reads

N
- 1 o
E[vm{sm ;'] = "N' Z Vril{sn.{”)}-

n=1

The direct estimator corresponds to Step V in the initial description.

Once the optimal early-exercise policy has been obtained, the path estimator,
which is typically biased low, can be developed based on the early-exercise policy,
The resulting confidence interval is useful, because, depending on the problem g
hand, sometimes the path estimator and sometimes the direct estimator is superior,
The obtained confidence intervals are generally small, indicating accurate results,
In order to compute the low-biased estimates, we generate a new set of paths, gg

in common for duality-based Monte Carlo methods, S(n) = {S; (n),..., S, ()},
=1y Np. Along each path, the approximate optimal policy exercises are
T (S(n)) = min{t, : h(S, (n)) > O, S, (M), m=1,..., M},

where 0, (S, (n)) is previously computed using Eq. (26.2). The path estimator i
then defined by v(n) = h (S;+(s()). Finally, the low-biased estimate given by the
path estimator is

NL

1
M.’u [S"tl) = I!JI“ m Z ”(”)-

n=1

26.4 Parallel SGBM Method: Implementation Details

The GPU parallel implementation was performed by employing the Compute Uni
Jfied Device Architecture, CUDA, a parallel computing platform and programming
model developed by NVIDIA (see [2]).

Since SGBM is based on two clearly separated stages, we parallelize them
separately. First of all, the Monte Carlo path generation is parallelized (Step I
As is well-known, Monte Carlo methods are very suitable for parallelization:
because of characteristics like a very large number of simulations and daid
independence. In Fig. 26.1a, we see schematically how the parallelization is doné
where po, p1..... pn—1 are the CUDA threads. The second main stage of SGB _
is the regression and the computation of the continuation and option values (St
IV and V) in each bundle, backwards in time. Due to the data dependency betweelt
time steps, the way to parallelize this stage of the method is by parallelizing OV
the bundles, performing the calculations in each bundle in parallel. Schematic
simplified representation with two bundles is given in Fig. 26.1b. Note that, actualif




.

26.1 Stages of the parallel SGBM method. (a) Monte Carlo stage. (b) Bundling stage

fal stages of
lel stage, the
I the followin

parallelization are performed, one per time step. Between each
bundling (Step 1) is carried out.

g subsections, we will show more specific details of the CUDA
mplementaion of the parallel SGBM method.
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26.4.1 Parallel Monte Carlo paths

We launch one CUDA thread per Monte Carlo path. The necessary random numbers
are obtained “on the fly” in each thread by means of the cuRAND standard library. Ip
addition, the intrinsic value of the option and also the computation of the expectatiop
in Eq.(26.2) are performed within the Monte Carlo generator, decreasing the
number of launched loops and taking advantage of the parallel execution. The
intermediate results are stored in an array defined inside the CUDA Kkernel which
can be allocated in the registers, speeding up the memory accesses. We also perform
calculations for the sorting criterion (required in the equal partitioning bundling)
inside the Monte Carlo generator, avoiding the storage of the complete Monte Carlg
grid points and the transfers of data from GPU global memory to CPU main memory
in each time step. This approach gives us a considerable performance and allows
us to increase drastically the dimensionality and also the number of Monte Carlg
simulations (depending on the number of bundles).

26.4.2 Bundling Scheme

As mentioned, equal-partitioning bundling involves two operations: sorting and"
splitting. For the sort part, we take advantage of the CUDA Data-Parallel Primitives
Library (CUDPP), described in [3]. We choose the parallel Radix sort which
is included in version 2.1 of CUDPP. In addition, CUDPP provides a ke E
Jevel Application Programming Interface (API), allowing us to avoid the transfes
between stages of parallelization. Once the sorting stage has been performed, he
splitting stage is immediate since the size of the bundles is known, i.e. N/v. Eagh
b CUDA thread manages a pointer which points at the beginning of the correspon dir
P region of GPU global memory for each bundle. The memory allocation is made f¢
1 all bundles together which means that the bundle’s memory areas are adjacent &
the accesses are faster (coalescing).

26.4.3 Estimators

The exercise policy and the final option values can be computed by m
direct and path estimators. For the direct estimator, one CUDA thread

is launched at each time step. For each bundle, the regression and opHi
are calculated on the GPU. All CUDA threads collaborate in order {0
the continuation value which determines the early-exercise policy. On
exercise policy is determined, the path estimator can be executed. ItS P
can be done over paths because the early-exercise policy is already Kno
by the previous computation of the direct estimator) and is not NECEEE
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the rc.grc:slsi(m One CUDA thread per path is launched and it computes the optimal
exercise time and the cash flows according to the policy.

26.5 Results

The implementation have been carried out in two programming languages: C and
CUDA. This allows us to assess the improvement given by the parallel version
compared with the sequential one. Experiments were performed on the Accelerator
Island system of the Cartesius Supercomputer (more information in [1]). We
consider the d-dimensional problem of pricing basket Bermudan options under the
multi-dimensional Geometric Brownian Motion (GBM). The experiments setting

+ Initial state: S, = (40,40, ...,40) € R4,
+ Strike: K = 40.
+ Risk-free interest rate: », = 0.06.

+ Dividend yield rate: gs = 0.0,8 = 1,2,...,d.
+ Volatility: 05 = 02,8 =1,2,..., d.
s+ Correlation: p;; = 0.25,j=2,...,d,i=1,..., J-

+ Maturity: 7 = 1.0.
» Exercise times: M = 10.
* Number of basis functions: L = 3.

26.5.1 Egqual-Partitioning: Convergence Test

First, we wish to test the convergence of the new equal-partitioning technique
bundling. Regarding the sorting criterion, we choose the payoff criterion, i.e, we
ort the Monte Carlo scenarios following the geometric or arithmetic average of
Mhe assets for geometric and arithmetic basket options, respectively. In Fig.26.2,
i show the convergence in option prices for geometric and arithmetic basket
#mudan options with different dimensionalities, i.e.d = 5,d = 10 and d = 15.
lhlf-case of the geometric basket option, we can also specify the reference price
S8dined by the COS method [4].

%9.2 Parallel SGBM: Performance Test

& € Convergence of the equal-partitioning technique shown numerically, we

 drastically the number of bundles and, hence, the number of Monte

10 paths . :
Paths, and perform a computational cost experiment, comparing the C and
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; S
Fig. 26,2 Convergence with ’—;5,:, Reference price
equal-partitioning technique. ~=-5d Direct estimator

ation: N = 2'8 and ) | -e—5d Path estimator
Configuration: N = 2" an 104 Relorsace ool
Ar = T/M. (a) Geometric 45 ® —+-10d Direct estimatg,
basket put option. (b)

—=—10d Path estimator
Arithmetic basket put option -~ - 15d Reference price

| =& 15d Direct eslimator
| ~= 15d Path estimator
— o)

—

Bundles v

=a-5d Direct estimator
—e—5d Path estimator
~4—10d Direct estimator
-+—10d Path estimator
| =4~ 15d Direct estimator,
|~=—15d Path estimator |

Bundles v

CUDA implementations. We now focus on pricing arithmetic bus‘kcl t?t;lt:rz?d__
option since it is a more interesting and involved problem. ll? the hrst’él e
Table 26.1, the execution times for the different SGBM stages. ie. Monte Car R
generation (MC), direct estimator computation (DE) and path csumawrrcodrn(p;u= :
(PE) are shown. The total computational cost for d = 5,d = 10 an »rimen.
problems are presented in the second half of the Table 26..1. In bnfll_ cx’:;:t -
we observe a significant acceleration of the CUDA versions. Th.t. l:lpse o
dimensionality is much less important in the parallel version than m,l cdin?enﬁ
version, resulting in an increasing speedup in terms of the problem
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,_—_ﬁlm Table 26.1 T@c (s) for the C and CUDA versions
~=~5d Direct estimator Stages time (d = 5) Total time
-e—5d Path estimator - — -
----10d Reference price _ ) MC_ ) Df‘ | PE {!‘ =35 _ d=10 _(-’ =15
—4-10d Diract eslimator C 79.22 39.64 58.65 256.05 600.09 1143.06
—=—10d Path estimator : t : -
‘ ---15d Reference price CUDA | 0.83 | 4.14 _ 1.20 _ 8.02 11.23 _ 15,73
| 160 Dirmat seimaicy ‘Speedup 95.44 9.57 48.87 31.93 53.44 72.67
I- =—15d Path estimator - = .
' —o Configuration: N = 222, Ar = T/M and v = 2"
Table 26.2 Time (s) for a high-dimensional problem
\\ 3 v =210 p =2
d=30 |d=40 |d=50 |d=30 [d=40 |d=50
! C 993.96 172379 [2631.95 | 992.29 1724.60 | 2631.43
ST 3 CUDA | 114 | 1788 | 2699 | 11.20 17.94 27.07
_____ s Speedup 89.22 96.41 97.51 88.60 96.13 97.21
4 16 Configuration: N = 220 and Ar = T/M

Bundles v
This is thank to equal-partitioning bundling technique, since the parallelism can
[==~5d Direct estimator be efficiently exploited.
-e-5d Path estimator

—4— 10d Direct estimalor
—=—10d Path estimator

-4~ 15d Direct estimator}
-=—15d Path estimator

26.5.3 High-Dimensional Problems

We now test a high-dimensional option pricing problem. In Table 26.2, the execution
limes for pricing arithmetic basket Bermudan put options in different dimensions
and with different numbers of bundles, v, are presented. Note that the number
of bundles hardly influences the execution times and the performance is mainly
‘dependent on the number of paths and the dimensionality. The obtained speedup
feaches around 100 times for the 50-dimensional problem.

Bundles v f.‘ 6 Conclusions

e

Hhis chapter, we have presented an efficient implementation of the Stochastic Grid
dling Method on a GPU architecture. Through the GPU parallelism, we could
Up the execution times when the number of bundles and the dimensionality
HEASe drastically. In addition, we have proposed a parallel bundling technique
SIS more efficient in terms of memory use and more suitable on parallel
g These two improvements enable us to extend the method’s applicability
Bhdimensional problems.

on pricing arithmetic basket Be .
involved problem. In the first half

‘erent SGBM stages, i.¢. Monte €
ation (DE) and path eslimal()rcom
1cost ford = 5,d = 10 and
If of the Table 26.1. In bulh. exp HTI.II
* the CUDA versions. The 1mps -".
the parallel version than in the
dup in terms of the problem
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Compared with other GPU parallel implementations of early-exercise optiop
pricing methods, our parallel SGBM is very competitive in terms of computationa]
time since we provided a new way to parallelize the backward stage, according to
the bundles, which gave us a remarkable performance improvement.
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