
Ultramicroscopy 184 (2018) 57–65 

Contents lists available at ScienceDirect 

Ultramicroscopy 

journal homepage: www.elsevier.com/locate/ultramic 

Automatic correction of nonlinear damping effects in HAADF–STEM 

tomography for nanomaterials of discrete compositions 

Zhichao Zhong 

a , ∗, Richard Aveyard 

b , Bernd Rieger b , Sara Bals c , Willem Jan Palenstijn 

a , 
K. Joost Batenburg 

a , d 

a Centrum Wiskunde & Informatica, Amsterdam, The Netherlands 
b Department of Imaging Physics, Delft University of Technology, The Netherlands 
c EMAT, University of Antwerp, Antwerp, Belgium 

d Mathematical Institute, Universiteit Leiden, Leiden, The Netherlands 

a r t i c l e i n f o 

Article history: 

Received 3 July 2017 

Revised 19 October 2017 

Accepted 20 October 2017 

Available online 31 October 2017 

a b s t r a c t 

HAADF-STEM tomography is a common technique for characterizing the three-dimensional morphology 

of nanomaterials. In conventional tomographic reconstruction algorithms, the image intensity is assumed 

to be a linear projection of a physical property of the specimen. However, this assumption of linearity is 

not completely valid due to the nonlinear damping of signal intensities. The nonlinear damping effects 

increase w.r.t the specimen thickness and lead to so-called “cupping artifacts”, due to a mismatch with 

the linear model used in the reconstruction algorithm. Moreover, nonlinear damping effects can strongly 

limit the applicability of advanced reconstruction approaches such as Total Variation Minimization and 

discrete tomography. 

In this paper, we propose an algorithm for automatically correcting the nonlinear effects and the sub- 

sequent cupping artifacts. It is applicable to samples in which chemical compositions can be segmented 

based on image gray levels. The correction is realized by iteratively estimating the nonlinear relationship 

between projection intensity and sample thickness, based on which the projections are linearized. The 

correction and reconstruction algorithms are tested on simulated and experimental data. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

u  

c  

a  

j  

m  

t  

t  

r  

a  

i  

a  

C

 

e  

t  

a  

p  

t  

v  

r  

i  

a  

A  

t  

t  

t  

fi  

I  

s

 

a  

t  

t  

h

0

. Introduction 

In materials science, electron tomography (ET) is commonly

sed to characterize the three-dimensional (3D) structural and

ompositional information of nanomaterials. The 3D image is usu-

lly reconstructed from a tilt series of two-dimensional (2D) pro-

ections (projection images). The projection images should have a

onotonic relationship between the measurement intensity and

he integrated physical property of the specimen, which is referred

o as the projection requirement in ET [1,2] . Strictly speaking, the

elationship should be linear, as most tomographic reconstruction

lgorithms are based on a linear mathematical model – the line

ntegral model. It assumes that the projection is a measurement of

 physical property integrated along the projection orientation (see

hapter 3 in [3] ). 

High angle annular dark field (HAADF) scanning transmission

lectron microscopy (STEM) is commonly used for ET [1,4] under

he implicit assumption that the projection requirement can be
∗ Corresponding author. 
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pproximately satisfied. The image intensity approximates to be

roportional to the mass-thickness weighted by Z ∼ 2 , where Z is

he atomic number [4] . However, this approximation is not always

alid. One example is that when projections of a crystalline mate-

ial are acquired at zone-axis orientations, fringes and large overall

ntensity differences can be observed. Thus the tilts at zone-axis

re usually excluded from the tomographic reconstruction step [5] .

nother example is that the image intensity damps at high sample

hickness due to the multiple scattering events redirecting elec-

rons outside the annular detector, which can occur in all projec-

ion orientations. While the zone-axis effects can be easily identi-

ed, intensity damping is not easily seen in individual projections.

n this paper, we aim at addressing the nonlinear effects of inten-

ity damping for tomographic reconstruction. 

The consequence of intensity damping appears as the cupping

rtifact in tomographic reconstruction: the gray levels in the cen-

er of the reconstructed sample are underestimated while overes-

imated on the exterior [6] . In Fig. 1 (a), an example of the cupping

rtifact is given. It is a 2D cross section of an Au–Ag core-shell

anoparticle [7] , reconstructed using the SIRT algorithm [8] . If we

ook at the line-profile of the 2D image ( Fig. 1 (b)), the curve ap-

https://doi.org/10.1016/j.ultramic.2017.10.013
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Fig. 1. (a): 2D slice of the SIRT reconstruction of an Au–Ag nanoparticle. (b): Gray levels of the line-profile located at the dash line of the 2D slice. 

Fig. 2. Normalized HAADF signal intensity w.r.t the thickness of Au slabs mistilted 

10 degrees from the [100] zone axis about the < 100 > axis, simulated using the 

multislice method [5] . The accelerating voltage is 200 kV, the convergence angle is 

10 mrad and the detector angular range is 50–250 mrad. The intensities are scaled 

by the incident beam intensity. The red lines indicate the region where intensity is 

approximately linear to thickness. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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pears in a concave “cup” shape, while ideally it should be flat. The

cupping artifacts are caused by the strong damping effects of Au

at large thickness, which is illustrated by the simulated relation-

ships between measurement intensity and sample thicknesses us-

ing the multislice simulation method [5] in Fig. 2 . In this example,

the linear approximation is only valid for thickness smaller than

8 nm due to the clear damping effect for larger thickness. 

It is important to correct the nonlinear effects and the sub-

sequent cupping artifacts for three reasons. First of all, composi-

tional analysis based on gray levels becomes difficult when the

cupping artifacts occur, as gray levels are not proportional any-

more to density and atomic numbers. Second, morphological anal-

ysis based on segmentation of reconstruction images is hindered
y the cupping artifacts. Some straightforward segmentation meth-

ds, e.g. Otsu’s method [9] , require that for each chemical com-

osition there should be one constant gray level. Third, the non-

inear effects limit applying advanced reconstruction algorithms to

ddress a critical issue of ET – the missing wedge artifacts caused

y the limited tilt range of the sample. Algorithms such as total

ariation minimization [10] reduce the missing wedge artifacts by

ncorporating prior knowledge i.e. sparsity of the unknown sample.

evertheless, these algorithms have an even stronger requirement

or the linear forward model which is inaccurate due to the non-

inear effects. 

Despite these shortcomings of using uncorrected data, there are

ew publications addressing the nonlinearity issue in ET [5,6] . Non-

inear effects are usually ignored or mitigated during image acqui-

ition by increasing the inner angle of the HAADF detector but at

he cost of losing signal strength [5] . An alternative to adjusting

he acquisition parameters is to correct the measured data in a

ost-processing step by linearizing the projection data, provided

hat the incident beam intensity is known [6] . The method de-

cribed here requires only the HAADF signal, consequently, it can

e applied to correct cupping artifacts in many existing datasets

cquired in a conventional manner. The mathematical model of

onlinearity and the concept of linearization in [6] are also used

n this paper, which will be explained in Section 2.1 . 

Here, we propose an iterative algorithm to automatically cor-

ect the nonlinear effects and the cupping artifacts. It does not

equire the extra measurement of the incident beam intensity as

n [6] . Instead, it automatically models the nonlinear effects given

he projection data. The algorithm iteratively searches for the min-

mal distance between the acquired projections and the nonlinear

e-projections of chemical compositions by varying the nonlinear

odel and the reconstruction image, so as to estimate a nonlinear

elationship between the measured HAADF–STEM intensities and

ample thickness for all chemical compositions. The algorithm con-

ains the following steps in every iteration: first a reconstruction

mage with continuous gray levels is made; then the image is seg-

ented into several binary images, each of which corresponds to

 chemical composition; after that, the nonlinear effects are mod-

led by minimizing the projection distance; based on the model,
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Fig. 3. Flowchart of the correction algorithm. 
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he projection data is linearized at last. The concept of iterative

orrection has been used to correct beam hardening artifacts for

-ray computed tomography, which is similarly caused by nonlin-

ar intensities [11–13] . 

Our approach is only applicable to samples consisting of sev-

ral chemical compositions with uniform densities, such as homo-

eneous or core-shell particles. It is assumed that for these sam-

les the volumetric distributions of the compositions can be ap-

roximated well by segmenting the reconstructed image based on

ray levels and that this segmentation improves as the correction

odel applied to the measured data becomes more accurate. In

act, these kinds of samples are commonly studied in materials sci-

nce. For example, the samples typically studied in the context of

iscrete tomography [14,15] match the requirements. 

In Section 2 , the correction algorithm is explained in detail. In

ection 3 , we demonstrate how the nonlinear effects are corrected

sing this algorithm for real experimental data and phantom sim-

lations. 

. The nonlinear model and the correction algorithm 

.1. The nonlinear model 

To linearize the projections, we first need to define a model

hat describes the nonlinear relationship mathematically. A precise

athematical model is possible but does not fit as a subroutine

f the correction algorithm. The computation of a sophisticated

odel, such as the one used in multi-slice simulations which take

nto consideration the multiple scattering of electrons [5] , is ex-

remely time-consuming and costly. Therefore, a simple model is

referred here. 

Here, we choose a model that has already been used for de-

cribing the nonlinear relationship. In [6,16] , it is illustrated we can

ssume that the HAADF detector collects electrons complementary

o the electrons scattered to angles smaller than its inner detec-

or angle. The electrons can also be scattered to angles beyond

he outer detector angle, but the proportion is negligibly small. By

ragmatically applying a simple Beer-Lambert description of elec-

ron scattering we can state that the number of electrons scattered

o small angles p t decreases exponentially to the sample thickness

 along the beam direction. The p t − t relationship is 

p t = I 0 exp 

( 

−
K ∑ 

e 

μe t 

) 

, (1) 

here I 0 is the incident beam intensity, e is the index of chemical

omposition, K is the total number of chemical compositions, μe 

s the attenuation coefficient of chemical composition e . Therefore,

he complementary HAADF signal intensity p at sample thickness t

s: 

p = I 0 

( 

1 − exp 

( 

−
K ∑ 

e 

μe t 

) ) 

+ p b , (2)

here p b is the bias signal, which is influenced by the dark cur-

ent, carbon grid, and possibly other factors. 

This mathematical model has been used to correct the cupping

rtifacts successfully in [6] , which is applicable only if the incident

eam intensities can be measured. An advantage of this simple

odel is that it can easily be transformed into a linear relation-

hip by taking logarithms so that we can avoid solving nonlinear

east-squared problems for tomographic reconstruction. 

In the practice of ET, a series of projections are taken at differ-

nt angles. The image intensity of each pixel corresponds to the

lectrons scattered for an electron beam transmitting through the

ample, which is called a line projection here. In total, there are
 pixels for all the images. The image intensity of the i th pixel

s now written as an entry p i in p ∈ R 

M . In addition, the space of

econstruction is a cubic volume partitioned into N voxels. 

We also assume the chemical compositions are not mixed and

oxels are small enough to resolve every chemical composition,

hich means that in each voxel only one element is present. As

tated in the introduction, this algorithm is applied to samples

ith uniform density. Thus we assume that each chemical compo-

ition is either present (1) or absent (0) in each voxel. The distri-

ution of chemical composition e is described by binary variables

 ej , where j = 1 , . . . , N is the index of voxel. 

Now we define the nonlinear relationship in the discrete form.

or pixel i , the corresponding sample thickness of chemical com-

osition e is now written as the ray-sum 

∑ N 
j=1 w i j s e j , where the

actor w ij is determined by the area of intersection between the i th

ine projection and the jth voxel. The relationship between projec-

ion intensities and binary volumes are: 

p i = I 0 

( 

1 − exp 

( 

−
K ∑ 

e =1 

μe 

N ∑ 

j=1 

w i j s e j 

) ) 

+ p b , (3)

here i = 1 , . . . , M. 

.2. The correction algorithm 

The basis of the correction algorithm is to estimate the nonlin-

ar relationship of Eq. (3) based on the reconstructed distributions

f chemical compositions. The procedures of the automatic correc-

ion algorithm are given in the flowchart ( Fig. 3 ). The correction is

ealized iteratively through the following steps: (1) make a recon-

truction image based on the linear model from the projections;

2) segment the reconstruction into a series of binary images, one

or each chemical composition; (3) estimate the parameters of the

onlinear model in Eq. (3) given the projections and the binary

mages; (4) reduce the nonlinearities in the projections through a

escaling of the intensities based on the nonlinear model. 

Before we explain the steps explicitly, we establish an objec-

ive function which will be used to guide the optimization in the

orrection algorithm. We define it as the l 2 norm of the distance

etween the acquired projections and the re-projection of binary
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Fig. 4. (a): 3D volume rendering of the Pt nanoparticle assembly. (b): 3D volume 

rendering of the Au–Ag nanoparticle. 
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images based on our nonlinear model: 

C(I 0 , p b , μ, S ) 

= ‖ p − I 0 

( 

1 − exp 

( 

−W 

K ∑ 

e =1 

μe s e 

) ) 

− p b ‖ 

2 
2 , (4)

where W = { w i j } , μ = { μe } and S = { s e j } . 
We also define a stopping criterion. The cost value at the rth

iteration is denoted as the c r . The loop is terminated if the cost is

stable, which is when the following criterion is met: 

c r + c r−1 

c r−2 + c r−3 
> t, (5)

where 0 < t < 1 is a thresholding value. Note that although we min-

imize the cost function in some steps of the algorithm, the cost is

not guaranteed to reach a global minimum in the end. 

Step 1: Reconstruction 

As the first step, a reconstruction with continuous gray levels is

made for determining the binary images in the next step. Though

it is possible to reconstruct binary images directly using some dis-

crete tomography algorithms (e.g. [14] ), these algorithms will pos-

sibly not give better results than basic algorithms given an inaccu-

rate forward model. Thus, we choose to first make a reconstruction

x with continuous gray levels based on a linear model and then

segment the reconstruction into binary images S . 

The reconstruction is computed using the simultaneous itera-

tive reconstruction technique (SIRT) [8] which solves the following

least-squares problem: 

x 

∗ = argmin 

x 
‖ p lin − W x ‖ 

2 
2 . (6)

The widely used SIRT algorithm is chosen for its robustness to

noise and its easy implementation. 

The input for this step is a set of “linearized” projections p lin .

For the first iteration, they are just the acquired projections. For

the other iterations, they are adopted as the projections that have

been rescaled in the previous iteration, which will be explained in

Step 4. 

Step 2: Segmentation 

The binary images are then determined by segmenting the re-

construction image x . As gray levels are related to atomic num-

bers, we segment the SIRT reconstruction by global thresholding.

The thresholds for the segmentation are determined by solving the

following optimization problem: 

S ∗ = argmin 

S ∈S 
C(I 0 , p b , μ, S ) . (7)

The solution of this problem is found by straightforward (brute-

force) sampling of the space of thresholds, each time evaluating

the cost function. In practice, the thresholds are sampled from the

minimum to the maximum of gray levels of the SIRT reconstruc-

tion in Step 1. 

The first iteration is again an exception since parameters have

not yet been estimated and the objective function cannot be com-

puted. Thus, the above segmentation method is not applicable. In-

stead, the thresholds are determined using Otsu’s method which

finds optimal thresholds based on the gray level histograms [9] . 

Step 3: Nonlinear parameters estimation 

Given the binary images, we can update the free parameters of

the nonlinear model I 0 , p b , μ by minimizing the objective function,

which is a nonlinear regression problem. This nonlinear regression

problem is solved using the Nelder–Mead method [17] . To improve

the stability of the regression, the three parameters are estimated

separately and iteratively in an inner loop: 

For l = 1 : L 

p b 
l+1 = argmin 

p b 

C(I l 0 , p b , μ
l , S ∗) ;
l+1 = argmin 

μ> 0 

C(I l 0 , p 
l+1 
b 

, μ, S ∗) ;

 0 
l+1 = argmin 

I 0 >max ( p ) 

C(I 0 , p 
l+1 
b 

, μl+1 , S ∗) . (8)

ere l is the iteration number of the inner loop. The estimation al-

orithm requires initial parameter values. In the experiments, we

ound that the initial values have little influence on the conver-

ence result but proper initial values help to converge faster. Since

e know that the beam intensity I 0 should be at least the max-

mal image intensity and that the attenuation coefficients μ and

he bias intensity p b are very small, we can start from I 1 
0 

= max ( p ) ,

p 1 
b 

= 0 and μ1 = 0 , which were used in all the experiments in the

aper. 

Step 4: Projection intensities rescaling 

Given the parameters, we rescale the measured projections p to

educe nonlinear damping effects using: 

 

, 

lin 
= log 

I 0 + p b − p 

I 0 
, (9)

here p 

, 

lin 
is the rescaled projections and is used as the input data

or Step 1. At the last iteration, the rescaled projections are re-

urned as the output p lin . These correspond to the linearly pro-

ected sum of the attenuation coefficients. 

. Experiments and simulations 

We report the correction of cupping artifacts for two sets of ex-

erimental data and three phantom simulations. The experimen-

al data show strong nonlinear effects because the samples consist

f thick metallic materials. Two phantom simulations resembling

he experimental data were performed, as ground-truth is missing

or quality assessment of the reconstruction image due to the lack

f other measurement methods. In addition, a phantom of four

hemical compositions was simulated to investigate the robustness

f the algorithm when more chemical compositions are present,

s the experimental samples consist of only one or two chemical

ompositions. 

.1. Experiments 

The first experimental sample is an assembly consisting of 16

t nanoparticles, each of which has a diameter of about 60 nm

 Fig. 4 (a)) [18] . It has only one chemical composition and a rela-

ively more complex structure than the second sample. 

The second sample is a hetero-nanoparticle, which is an Ag

anoparticle with a diameter of approximately 110 nm with an em-

edded Au octahedron [7] . It is studied as a case where the cup-

ing artifacts reduce the image contrast between different chem-

cal compositions. The specifications of data acquisition are listed

n Table 1 . 

This dataset has been used to investigate HAADF–EDS bimodal

omography (HEBT) in [7] . In that study, the authors have no-
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Table 1 

Data acquisition specifications. 

Specimen Nanoparticle assembly Core-shell nanoparticle 

Electron microscope Tecnai G2, FEI company Tecnai Osiris, FEI company 

Accelerating voltage 200 kV 120 kV 

Convergence angle 16 mrad 18 mrad 

HAADF detector range 82–180 mrad 54–230 mrad 

Projection angles range −74 ◦–74 ° −75 ◦–75 °
Projection angle increment 2 ° 5 °
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iced that the raw data had strong intensity damping which not

nly limited straightforward segmentation of the HAADF recon-

tructions but also undermined the validity of HEBT based on lin-

ar models. Therefore, in [7] the data has been linearized in the

ata preprocessing as mentioned in Section 3.2 of [7] . 

.1.1. Results: Nanoparticle assembly 

Fig. 5 (a) is the initial SIRT reconstruction, based on which

 binary image ( Fig. 5 (c)) was segmented using Otsu’s method.

ig. 5 (b) and (d) are the reconstruction and the binary image ac-

uired after applying the correction algorithm. To obtain morpho-

ogical information which is difficult to observe in the reconstruc-

ion images, we plotted their edges ( Fig. 5 (e)) which are detected

sing a Sobel filter that depends on the derivatives of gray levels. 

In addition, the fidelity of the nonlinear regression for the non-

inear model was investigated. The fitted nonlinear model w.r.t

hickness is plotted in Fig 6 , where the thickness was computed as

he forward projection of the binary image after correction. The er-

or bars indicate the mean intensities and the standard deviations

f the projection intensity. 

.1.2. Results: Au–Ag core-shell nanoparticle 

For this experimental data, the SIRT reconstructions and seg-

ented binary images before and after correction are shown in

ig. 7 . In addition, the line profiles across the reconstruction im-

ges for some iterations are plotted in Fig. 8 to demonstrate how

ray levels evolve during a run of the correction algorithm. 

As discussed in the introduction, the nonlinear effects also hin-

er adopting prior knowledge to reduce missing wedge artifacts.

n this data, the projections were only acquired from −75 ◦–75 °.
e thus compared reconstructions using advanced reconstruction

lgorithms: total-variation minimization (TV-min) [10] , discrete al-

ebraic reconstruction technique (DART) [14] and total variation

egularized DART (TVR-DART) [15] , which incorporate the prior

nowledge of image sparsity, discrete gray levels and image spar-

ity combined with discrete gray levels respectively. The images re-

onstructed from the nonlinear projections and the corrected pro-

ections are given in In Fig. 9 . 

Finally, we plotted the normalized residuals of the cost function

.r.t. iterations for the two experimental data ( Fig. 10 ). For the first

nd second experiments, the cost values converge to stable mini-

ums after 16 and 12 iterations respectively. 

.2. Phantom simulations 

First of all, two phantom simulations were made resembling the

wo experimental datasets. Note that the purpose of the simulation

s not to validate the nonlinear model, but to assess the quality

f nonlinear correction assuming the nonlinear forward model is

ccurate once all model parameters have been accurately obtained.

or each sample, we first applied the correction algorithm to the

xperimental data to obtain binary images and nonlinear forward

odels. Afterwards, projections were simulated by projecting the

inary images based on the nonlinear model. In addition, Gaussian

oise was added to the projections to make the simulation more

ealistic. 
The simulations provide ground-truth to quantify the quality

f reconstructions. Here, the error metric is defined as the mean

ifference between the reconstructed and the ground-truth binary

mages: 

rr = 

1 

K 

K ∑ 

e 

N ∑ 

j 

‖ s e j − g e j ‖ / 

N ∑ 

j 

g e j , (10)

here { g ej } are the ground-truth binary images. 

The third phantom simulation, focused on the correction for

ore than two chemical compositions, was made using the same

hapes as the nanoparticle assembly phantom. What is different

s that instead of having one composition for all particles, there

re particles of four different compositions, each having a differ-

nt atomic number. Then projections were made by projecting the

articles based on the nonlinear model. 

.2.1. Results of simulations 

The first phantom resembles the nanoparticle assembly, whose

ontours are plotted in Fig. 11 (c) and (d). Fig 11 (a) is the initial

IRT reconstruction before correction, based on which a binary im-

ge ( Fig. 1 (c)) was segmented. Fig. 11 (b) and (d) shows the SIRT

econstruction and the binary image after applying the correction

lgorithm. The error metrics of the binary images are respectively

% and 2% before and after correction. 

The results of the second phantom simulation are shown in

ig. 12 , where (a) and (b) are the SIRT reconstructions before and

fter correction respectively. The binary images in Fig. 12 (c) and (d)

ere segmented from the SIRT reconstruction images. The ground-

ruth phantom is plotted using red and green contours for Au and

g respectively. The error metrics of the binary images are respec-

ively 56% and 1% before and after correction. 

The third phantom simulation presents the case when four

hemical compositions exist in the same phantom. The SIRT recon-

truction images before and after correcting the nonlinearity are

hown in Fig. 13 (a) and (b) respectively, while the corresponding

inary images are given in Fig. 13 (c) and (d). The error metrics of

he binary images are respectively 69% and 20% before and after

orrection. 

.3. Discussion 

In the initial reconstruction of the nanoparticle assembly

 Fig. 5 (a)), the artifacts appear, on one hand, as dark streaks elon-

ated from the gaps between particles. On the other, they appear

s underestimated gray levels in the interior, for which we see

issing pixels in the binary image ( Fig. 5 (c)). 

The correction algorithm successfully reduced these artifacts

nd produced images easier to interpret. The correction algo-

ithm also changed the morphology of the reconstruction image

 Fig. 5 (b)), as can be seen from the plot of edges. The change may

e due to the removal of the overestimated gray levels on the

ackground. The plot of fitting ( Fig. 6 ) shows that the experimen-

al data matches our nonlinear model, demonstrating a damping

ffect following the exponential rule. It is also noticeable that the
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Fig. 5. (a) and (b): SIRT reconstructions of the Pt nanoparticle assembly from the 

nonlinear projections and corrected projections respectively. (c) and (d): Binary im- 

ages obtained by segmenting (a) and (b) respectively. (e) Edges of reconstructions 

before (white) and after correction (green). (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

Fig. 6. The nonlinear damping model fitted for projection signal intensity w.r.t. 

sample thickness of the nanoparticle assembly. The error bars indicate mean in- 

tensities and the standard deviations of the projection data. 

Fig. 7. (a) and (b): SIRT reconstructions of the Au–Ag nanoparticle from the non- 

linear projections and corrected projections. (c) and (d): Binary images segmented 

based on the reconstruction images (a) and (b) respectively. 

b  

t  

s  

w  

s

 

p  

d  

s  
standard deviations decrease at large thickness, which can be ex-

plained by noting that the errors introduced by segmentation are

relatively smaller at larger thickness. 

In the initial SIRT reconstruction image of the Au–Ag nanoparti-

cle ( Fig. 7 (a)), the cupping artifacts caused the loss of contrast be-

tween Au and Ag, even though Au and Ag have a large difference in

atomic number. As a result, many pixels were misclassified in the
inary images ( Fig. 7 (b)). The algorithm corrected the experimen-

al data and enhanced the contrast between Au and Ag. Demon-

trated in Fig. 8 , the contrast between Au(center) and Ag(outskirts)

as enhanced step by step. At last, the Au and Ag particles were

egmented correctly based on gray levels. 

The Au–Ag nanoparticle should be suitable for incorporating

rior knowledge to correct missing wedge artifacts. It contains two

istinct compositions with uniform densities, and thus the recon-

truction image should be sparse and have constant gray levels.
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Fig. 8. Cross-section line profiles of the SIRT reconstructions of the Au–Ag nanopar- 

ticle at different iterations. (For interpretation of the references to color in this fig- 

ure legend, the reader is referred to the web version of this article.) 

Fig. 9. (a)/(b), (c)/(d) and (e)/(f) are the T V-min, DART and T VR-DART reconstruc- 

tions of the Au–Ag nanoparticle from projections before/after the correction respec- 

tively. 

Fig. 10. The residuals of cost function ( Eq. (10 )) w.r.t. iterations for the two experi- 

mental datasets. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 11. (a) and (b): SIRT Reconstruction images of the nanoparticle assembly phan- 

tom simulation before and after the nonlinearity correction. (c) and (d): Binary im- 

ages segmented based on (a) and (b) respectively. The red contour shows the shape 

of the phantom. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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r

owever, before the correction, incorporating different variants of

rior knowledge in the reconstruction actually appears to be detri-

ental to the image quality, as can be seen in Fig. 9 . Especially the

ip of the Au particle was expanded. The expanded tip probably is

 mixture of cupping artifacts and missing wedge artifacts. After

orrecting the nonlinear effects, the linearized projection data was

uitable for using the advanced algorithms as the reconstructions

how. 

The first two phantom simulations show artifacts (in Fig. 11 (a)

nd Fig. 12 (a)) very similar to those from the experimental data,

hich indicates that the modeling of nonlinear effects is accurate.

oth reconstructions after correction are free of these artifacts, and

re in good agreement with the ground-truth phantom, as the er-

or metrics were reduced ( Table 2 ). 
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Fig. 12. (a) and (b): SIRT reconstructions of the Au–Ag nanoparticle phantom sim- 

ulation before and after the nonlinearity correction. (c) and (d): Binary images seg- 

mented based on (a) and (b) respectively. The red and green contours show the 

shape of the phantoms of Au and Ag respectively. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 2 

Errors metrics of binary images. 

Before correction After correction 

Nanoparticle assembly phantom 5% 2% 

Au–Ag nanoparticle phantom 56% 1% 

Phantom of four chemical compositions 69% 20% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. (a) and (b): SIRT reconstructions of the phantom simulation with four 

chemical compositions before and after correcting the nonlinear effects. (c) and (d): 

Binary images segmented based on (a) and (b) respectively. The colorful contours 

show the shape of the phantom particles of four different chemical compositions. 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
For the third simulation, we see cupping artifacts ( Fig. 13 (a))

with features observed in the previous two cases. First, there are

dark streaks and underestimated gray levels. Second, the contrast

between different chemical compositions is blurred. These artifacts

were corrected after applying the correction algorithm ( Fig. 13 (b)).

The segmented binary images after correction ( Fig. 13 (d)) show

a stack of different chemical compositions at the borders of some

particles. However, these misclassified pixels are not caused by the

cupping artifacts, but due to the limitation of the global thresh-

olding [19] . The gray levels in the reconstruction image are contin-

uously dropping at the borders. These pixels were classified into

particles of smaller gray levels. Despite the imperfect segmenta-

tion, the correction algorithm converged to a result free from cup-

ping artifacts, which also indicates the good robustness of the al-

gorithm. 

4. Conclusion 

In this paper, we proposed an iterative algorithm to automati-

cally correct the cupping artifacts in tomographic reconstructions

from HAADF–STEM projections with nonlinearly damping inten-

sities using only the projection data. The correction is based on

modeling the nonlinear relationship between projection intensities

and sample thickness as an exponential function. 
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We showed that the algorithm is an effective tool in achieving

etter tomographic reconstructions. It successfully corrected the

onlinear damping effects and the subsequent cupping artifacts in

hree cases where one, two and four chemical compositions are

resent respectively. The correction is useful for improving the ac-

uracy of morphological analysis and compositional analysis for 3D

anostructures and nanomaterials. In addition, users can benefit

rom it in enhancing the Z -contrast between chemical composi-

ions as well as in facilitating incorporating prior knowledge to cor-

ect the missing wedge artifacts. 

For limited data (e.g. with only a small range of tilts), the cor-

ection algorithms may fail due to the inaccurate segmentation

aused by the dominant missing wedge artifacts. Potentially, this

ssue may be addressed by replacing SIRT and possibly the seg-

entation step by an advanced reconstruction algorithm (e.g. TVR–

ART). However, it is still an unsolved question how to automat-

cally set the parameters of the reconstruction algorithms, which

as to be done in each iteration of the correction algorithm. 

Note that the algorithm is only applicable to samples consist

f several chemical compositions with homogeneous densities that

an be segmented based on images gray levels. This is because the

raylevel-based segmentation method fails easily when the chemi-

al compositions are mixed or have similar atomic numbers. More-

ver, this segmentation method is a global thresholding method.

t may lead to poor initial segmentation results and consequently

ailed corrections when the cupping artifacts are very strong. Con-

equently, the next step of improving the algorithm is to incorpo-

ate advanced segmentation methods or spectroscopic techniques

o determine the distributions of chemical compositions. 
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