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ABSTRACT 

A I L -  an acronym for Amoeba Interface Language - is a class-oriented 
RPC stub generator, used with Amoeba's RPC primitives. Together with 
Amoeba's facilities for manipulating capabilities (bit patterns that are 
unforgeable references to objects maintained by servers anywhere on a 
network), AIL provides a completely object-oriented view of a distributed 
operating system. 

Input to AlL consists of class and type definitions and generator 
directives; output are several flies containing function definitions to be 
compiled and linked with clients and servers. Class definitions consist 
mainly of function headers (specifying parameter types, etc.). Classes can 
inherit multiple other classes. AlL can (in principle) generate stubs for 
different programming languages, so clients and servers need not be writ- 
ten in the same language. 

Introduction 
Modem distributed operating systems use Remote Procedure Call (RPC) as their primary 
communication paradigm. The principle of RPC is as follows: A client program calls a 
stub routine which marshals its parameters into a buffer, ships the buffer over the net- 
work to a server, and waits for a reply. The server that receives the buffer unmarshals the 
parameters and calls the implementation procedure with these parameters. When the 
implementation procedure returns, the server marshals its output parameters into a buffer 
and ships it back to the client. The client stub awakes once it receives the reply buffer, 
unmarshals the output parameters, and returns to its caller. 

The attractive value of the RPC paradigm lies in its resemblance with ordinary, 
local procedure calls: the client just calls a procedure to execute a remote operation, and 
the operation is done when the procedure returns. Since ordinary compilers do not gen- 
erate code to call remote procedures, a tool is needed to generate the stub routines and 
the corresponding server code (like unmarshaling the parameters). Such a tool is called a 
stub compiler or stub generator. Stub compilers are used for several reasons: to simplify 
the interface to the underlying communication primitives, to cope with heterogeneity in 
the environment (like byte order problems), and to support interface abstraction. 

This paper describes AIL, a stub compiler for Amoeba, 1 a capability-based distri- 
buted operating system. Besides doing the jobs that stub compilers normally do, AIL 
provides a powerful mechanism to define common subsets of interfaces in the form of 
class inheritance. 
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Amoeba RPC 
Amoeba provides a highly efficient RPC mechanism. A client process sends a request to 
a server by calling 

trans(&reqhdr, reqbuf, reqbufsize, 
&replhdr, replbuf, replbufsize) . 

A server process waits for a request by calling 

getreq(&header, buffer, buffersize) 

and sends a reply with the call 

putrep(&header, buffer, buffersize) 

(not necessarily using the same parameter values). A header is a data structure defined in 
a standard definitions file containing space for a capability (which includes a 64-bit ser- 
vice port number identifying the service), a few numeric parameters to the request, and 
some extra information that can be used for access rights checking. A buffer is an array 
of  memory bytes and is transferred uninterpreted. Amoeba's RPC layer locates the 
server based on a match (involving a one-way function to prevent forgery) between the 
ports specified by client and server in their request headers, and ensures that at most one 
server gets the request and that the reply is sent back to the correct client. 

In common usage a server, say a file server or a time server, recognizes a number of 
request types: e.g., a file server would support the requests create-file, write-file, read-file, 
and delete-file, and a time server would support the requests get-time and set-time. All 
requests to one server are normally directed at the same port; the server differentiates 
between request types by inspecting a command code in the request header. 

To provide a nice interface to the service for client programmers, stub routines for a 
service are normally provided in a library. Generally, a stub routine copies its input 
parameters into a request header and/or buffer, sets the request code in the header, does 
the transaction with the server, and returns relevant fields from the reply header and/or 
buffer to its caller through output parameters or the function result. 

Why A Stub Generator 
There are at least two reasons why it is desirable to automate the generation of client 
stubs and request decoding code for servers. 

First, such code almost always follows a standard pattern, so it is boring to write 
(and hence mistakes such as unchecked error conditions slip in easily). 

Second, a stub generator can more easily ensure that servers support exactly the 
same interface where this is required: for instance, multiple file server implementations 
should show the same face to their clients, so clients needn't know on which server their 
files reside. 

There are other desirable properties of good client-server interfaces that can benefit 
from mechanical assistance: when client and server reside on machines with different 
architectures, transformation of data between client and server representations may be 
necessary. Amoeba automatically translates the integers in the request and reply headers 
when necessary, but data in the buffer is copied as-is. Hence, sending an array of  
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integers from a little-endian machine such as a VAX to a big-endian machine like a 
68000 requires swapping the bytes in each integer. Transfer of floating point values 
between machines poses even bigger problems. Inclusion of proper data conversion code 
is better done mechanically, especially since its absence often isn't spotted in tests. 

Design Goals 
The AIL stub generator was designed with the following goals in mind: 
• Generate client stubs and server main loops for the majority of server interfaces 

envisioned for Amoeba. 
• Support easy incorporation of predefined standard interfaces into specific interfaces. 
• Support multiple implementations of the same server interface. 
• Support clients and servers written in different programming languages. 
• Support clients and servers running on different machine architectures. 
• No changes to the Amoeba kernel. 
• As efficient as equivalent handwritten code. 
AIL does not attempt to solve the following issues: 
• Name binding: the basic binding of clients to servers is done by Amoeba's 'locate' 

mechanism (on a per-request basis); an additional level of naming is available through 
the directory service. 

• Transparency between local and remote calls: because of the inherently different 
semantics, we find it a bad idea to try and make remote calls look exactly like as local 
calls. 

• Backward compatibility with existing server interfaces in Amoeba: most were such a 
mess that they weren't worth saving anyway. 

There are some beneficial side effects from using AIL as well: 
• AIL helps to enforce uniform error handling. 
• AIL can output the data packing and unpacking code (together called marshaling code) 

by itself, providing a simple way for applications to save their data structures to disk in 
a portable yet binary (and hence efficient) format. 

Input Language 
Initially, the idea was to put special markers in C source and preprocess this. This soon 
proved impractical, especially in the light of the multi-language goal, so we decided to 
design a language specialized to the specification of RPC interfaces. Although we made 
up the combination, most language building blocks were borrowed from other languages: 
• the lexical elements, source preprocessing mechanism and type system was borrowed 

from C (perhaps not the ideal choice but with the advantage of compatibility with 
existing software in the Amoeba project); 

• the class concept (although extensively modified) and the function prototype notation 
were borrowed from C++; 2 

• the notion of separate in and out parameters was borrowed from Ada and Modula-2÷. 3 
There are good reasons for borrowing language elements when designing a special- 
purpose language like this one: 
• the advantages and disadvantages of concepts and notations are well understood; 
• users need little time to learn the new language (if they know the language borrowed 

from); 
• because we chose C's preprocessor, lexical elements and type system, we can actually 
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include C definition files to import types that are needed by AIL interfaces. 

Classes 
The class concept in AIL differs quite a bit from that in C++. A class in AIL can contain 
only constant and type definitions and function prototypes; there are no data members. 
AIL classes specify only public information; there are no private definitions as in C++. 

Functions And Parameters 
Interface stub functions generated by AIL always return an error code as their function 
result and have a capability as their first parameter. Thus, AIL function prototypes do 
not specify a return type, and the first parameter is represented by a single '*'. Each fol- 
lowing parameter must be completely specified by listing its transfer direction, type and 
name. 
• The transfer direction can be 'in' (which is the default), 'out', or 'in out'; it indicates 

whether the parameter is input to the server, output from the server, or both. There is a 
fourth transfer direction, 'var in', which means (in C) a parameter that is input to the 
server but passed to the stub by reference instead of by value. In other languages this 
may be the same as 'in'. 

• The type of a parameter determines the type of expressions or variables acceptable as 
actual parameters, including properties like array size. 

• The name is used only for documentary purposes. 
Since the client stubs are intended to be called by programs written in C or Pascal 

(for example), the class member call notation from C++ cannot be used to call client 
stubs generated by AIL. Instead of writing 

object->member_function(argumentl, argument2, ...) 

the user must write 

member function(object, argumentl, argument2 .... ) 

To make this work, the client stubs must have global scope (unless the language supports 
modules, like Modula-2). A consequence of this restriction is that there may be no over- 
loading of function names used in different interfaces. A simple convention to prevent 
name clashes in practice is to prefix all function names with an abbreviation of their class 
name, followed by an underscore. 

Class Inheritance 
The power of the class mechanism lies in the possibility to extend existing classes by 
creating derived classes. A derived class has all the properties of its base ctass(es), plus 
any properties added by its own definition. In C++, a derived class must be derived from 
exactly one base class; in AIL, a class can be derived from multiple base classes. This 
property is called multiple inheritance. 

As an example of an application of multiple inheritance, consider two interfaces: a 
class 'try' implementing the operations write-to-tty and read-from-try, and a class 'win- 
dow' implementing create-window and move-window (and probably others). If we now 
want to implement a terminal emulator in a window, the interface to a terminal emulator 
window should support both the tty and the window interface. This is easily accom- 
plished by creating a class 'tty-emulator-window' inheriting the classes tty and window. 
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Suppose that the tty and window classes both inherit the class 'standard'; this is now also 
inherited by the new class. 

AIL does not need the concept of 'virtual functions' present in C++. The 'virtual' 
predicate in C++ means that a derived class can override the implementation of that func- 
tion, and since AIL functions are implemented in servers, this is true for all AIL func- 
tions. 

Variable Length Arrays 
AIL's type system, mostly borrowed from C, has an extension to specify arrays of vari- 
able length. Variable length arrays are needed to provide reply buffers for stubs that can 
return a variable amount of data: the client has to specify a buffer containing space for 
the maximum amount expected, but the reply must indicate the actual amount returned. 

By specifying two expressions for the size of an array, separated by a colon, an 
actual and a maximum size can be set. This construct may occur only in function proto- 
types (where both expressions may refer to other parameters) and in structure definitions 
(where the maximum must be constant but the actual size may refer to other members of 
the structure). 

Overriding Marshalers 
For data types containing pointers, C's type notation isn't powerful enough to derive ade- 
quate marshaling code: a pointer may point to exactly one object of the given type, or to 
an array containing a variable number of objects, whose length can in general only be 
determined by inspecting the data. For this purpose, amongst others, the user may pro- 
vide the names of routines to do the actual marshaling for a particular type. The most 
trivial example is the C string data type: the library defines a marshaler to marshal char- 
acters up to the terminating zero. For other languages than C (assuming these support 
variable-length strings), marshalers must be provided that support the same network for- 
mat. The syntax used to specify marshalers (an option tacked onto the typedef syntax) 
isn't wonderful, but additional marshalers are rarely needed in practice. 

Examples 
Here are some examples of AIL class definitions. These classes do not necessarily 
correspond to actual classes used in Amoeba. The numeric ranges in square brackets 
after the class name are used to generate request codes; for various reasons AlL cannot 
be trusted to choose request codes itself. 



18 

#include <amoeba.h> /* Defines capability, etc. */ 

class 

}; 

standard [1000..1999] { 
std info(*, out char info buffer[buflen:100], 

-- in int buflenT; 
std_restrict(*, int rights_mask, 

out capability restricted_cap); 
std_destroy(*); 

class tty [2000..2099] { 
inherit standard; 
const TTY MAXBUF = i000; 
tty_write(*, char buffer[size:TTY_MAXBUF], 

int size); 
tty_read(*, out char buffer[size:TTY_MAXBUF], 

out int size); 
}; 

class window [2100..2199] { 
inherit standard; 
win_create(*, int x, int y, int w, int h, 

out capability win_cap); 
win move resize(*, int x, int y, int w, int h); 

}; 

class tty_emulator window [2200..2299] 
inherit tty, window; 
/* No additional features */ 

}; 

The Stub Generator 
AIL works in three phases. 
• Phase one reads and checks all class definitions in the input. 
• Phase two determines, for each function of each class, the request and reply message 

formats. 
• Finally, phase three, instructed by generator directives in the input, writes source files 

in the desired language containing interface definitions, client stubs and/or server code. 
The request and reply message formats determined in the second phase are a function 
only of the class definitions found in the input, not of the generator directives: if the stub 
generator used a different message format when directed to generate stubs for Pascal than 
when directed to generate C stubs, communication between clients and servers written in 
different languages would fail. 
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Server Structure 
Amoeba servers generally create a number of threads, each executing the same server 
main loop (get request, process it, put reply). The details of thread creation are server- 
specific and not handled by AIL; it only generates the server main loop itself. For each 
function in the class that the server is to implement (including those in base classes), 
when a request for that specific function arrives, the server main loop calls a function 
"impl_function-name' with the same parameters as the corresponding client stub, except 
that the first parameter (a capability in the client stub) points to the request header, to 
save copying a few bytes. 

The server writer must provide implementation functions even for standard func- 
tions: although their meaning is standardized, their implementation is not. Every imple- 
mentation function must return a status code indicating whether it succeeded or failed, 
which will become the return value of the client stub. Marshaling of return values is only 
done if the implementation function succeeds. 

Possible Extensions 
The AIL stub generator is designed to support extensions: it is easy to add generator 
modules to support new languages, different stub types, or different RPC mechanisms. 
Some possible extensions are: 
• Certain interfaces would like to have some objects maintained by a library inside the 

client program. Rather than starting a server thread in the client (possible, but expen- 
sive since the data will be copied at least three times), we could have AIL generate a 
test in the client stubs for a particular port, and call a local implementation routine 
instead of engaging in an RPC call. 

• For C++ and other class-based languages (Modula-3?), it should be possible to gen- 
erate client stubs adhering to the language's standard method-calling syntax. 

• The input syntax could be augmented to tell more about the semantics of the remote 
functions, like idempotency, so a failed operation can be retried instead of returning an 
error immediately. 

Performance 
For many simple interfaces, AIL generates almost the same code as we would by hand. 
AIL-generated code never calls external functions besides user-specified marshalers and 
the RPC primitives, so there is no extra function call overhead. 

However, there are a few tricks unknown to AIL when determining the optimal 
packing of parameters into header and buffer (e.g., to pack a long int in two shorts in the 
header), it does rather conservative error checking, and its server code always contains 
byte swapping code in case a request comes from a client on an 'other-endian' machine. 

But the byte swapping code is never executed unnecessary: clients send and receive 
data in their native byte order, so the server needs to swap bytes only if their native byte 
order is different. All byte swapping is done in the server, to minimize the code size of 
the client stubs. 
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Comparison To Other Stub Generators 
None of the RPC stub generators mentioned below support classes: each interface stands 
completely on its own. 
• Sun RPC. 4 This is a stub generator for Sun RPC, which runs on SunOS (and other 

derivatives of 4.2 BSD Unix), and implements RPC on top of UDP/IP (unreliable 
datagrams). Like AlL, Sun RPC uses a special-purpose language derived mostly from 
C to specify server interfaces. The language is less powerful than ours, but directly 
supports the marshaling of discriminated unions. The input is not run through the C 
preprocessor. Rpcgen only generates C as output language. 

• Flume. 5 This is an RPC stub generator for Modula-2+ (a derivative of Modula-2) 
under the Topaz operating system. 6 Flume reads Modula-2+ interface definition 
modules, but imposes some restrictions; because the modules must still be understand- 
able by the Modula-2+ compiler, extra syntax for Flume's benefit could not be added, 
so certain options must he specified by embedding reserved strings in identifiers (a 
similar trick to lint's use of/*NOSTRICT*/etc.).  Flume tries to hide the difference 
between local and remote calls to the extreme: it even marshals recursive data struc- 
tures. Since the same function name is used for the client stubs as for the implementa- 
tion function in the server, a server cannot use its own client stubs to interface to 
another server (this would he useful in a 'gateway' service, for instance). Flume is 
completely bound to Modula-2+, and since (in practice) it is the only way to use Topaz 
RPC, programs writting in other languages cannot use RPC. 

Conclusions 
Here are a few points we have learned from our experience in building and using AIL: 
• It is worthwhile to spend some time to design and implement a special-purpose 

language that is just right for your needs. 
• Class-based interface definitions with multiple inheritance simplify the creation of new 

interfaces with a rich functionality. 
• Automatically generated stubs can be as fast as handwritten ones. 
This leads to: 
• Every self-respecting distributed system should have an RPC stub generator. 
And even: 
• Every RPC stub generator should be class-based and support multiple inheritance. 
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