
PHYS I CA 

Wavelet 1nethods in (financial) time-series 
processing 

Zbigniew R. Strnzik * 
Jftllht:WW!ir) und ( 'u.iripu!er S1.:t.:'til...'e ; c·u:1 1 , AmsterdtHn Tht· .\''t'!herlantL\ 

Abstract 

\\.<: bnefl: Jescnbe the advantag.:s of using the wavelet transform for the pmccssing of 
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the k~cai seal mg (correlation) char:.ict.:rist1cs of the S& P inJ.:x with the wavdet based effective 
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tune horizon ,,f the index. We observe- an intrigumg mterplay betwe.:n such (different i 
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I. lntrodoction 

Economics has been producing more and more complicated models. trying to cap­
ture deviations of the model situation from reality. But patching a model to increase 
its complexity may not be an optimal way of modelling. Any economic system is 

complicated but to a large degree, this is due to the enormous number of 
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degrees of freedom. The interactions between economic entities do not need to be very 
complicated. Approaches aiming at improving the description of a system by means of 
high order corrections may, therefore, have a rather slow convergence to the satisfactory 
model. 

On the contrary, statistical physics uses very simple models of interactions between 
components of a huge ensemble. Concepts from statistical physics have proven quite 
successful in the work of econophysicists. The power of modem computers allows 
not only the testing of such models but also the analysis of data for the presence of 
multiscaling characteristics, in particular locally in the data. An analysis of correlations 
can be linked to the models of interaction between the system components, and so can 
the multiscale distribution analysis. 

Physics has a long tradition of dealing with systems with an extreme number of 
degrees of freedom, where entities are coupled with very simple interaction rules. This 
is probably why economics has recently experienced great interest among physicists, 
following the pioneering work of Gene Stanley et al. [1,2], Rosario Mantegna [3,4], 
Alain Arneodo et al. [5,6], Marcel Ausloos et al. [7,8] and, not to forget, the early 
work of Benoit Mandelbrot [9,10]. 

Whereas the physicists derive the final model from the characteristics of the data 
analysed, using their learned physics knowledge and scientific intuition, the latest com­
puter science trend is to assist the data analyser in model discovery. Data mining is 
the name for this recent direction in machine learning, see for example Refs. [ 11-
13 ]. Market/shopping basket analysis and insurance or loan scoring are already widely 
done using data mining techniques. We expect that the number of contributions of data 
mining/model discovery approaches in the economical sciences will grow rapidly in 
the coming decade. 

Therefore, working without an a priori assumed model is characteristic of the mod­
em approach to economics. Instead, the model is to be inferred from the data. The 
data is analysed in terms of very generic analysis methods like, for example, wavelet 
decomposition. The wavelet transform components are then analysed and, of course, 
simple or complex models can be fitted to such decomposition components. The scaling 
of moments or distributions can be tested and a hypothesis drawn, but the first step is 
data analysis in the most generic terms. 

The possibility of doing analysis locally is another very attractive option. The sta­
tionarity of almost any statistical characteristic fails when applied to the financial data. 
A similar situation pertains in other complex phenomena (take, for example, the human 
heartbeat (14-16]). But where the non-stationarities occur, interestingness begins, and 
with tools like the wavelet transform, capable of taming the non-stationarities (trends), 
interesting (local) patterns can be discovered in the data. 1 

In Section 2, we briefly introduce the wavelet transfonnation in its continuous form, 
we describe the requirements for the wavelet in Section 3 and discuss the advantages for 

1 Of course, ultimately we would like to be able to feed such local pattems back into the global theory, but 
at the moment we will remain more modest and simply local. 
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time series processing. In particular, we focus in Section 4 on the ability of the wavelet 
transformation to characterise scale-free behaviour through the Holder exponent. We 
describe in brief a technical model enabling us to estimate the scale-free characteristic 
(the effective Holder exponent) for the branches of a multiplicative process. A more 
extensive coverage of this method is available in Refs. [17,18]. In Section 5, we use 
the derived effective Holder exponent for the local temporal description of the S&P 
index. Section 6 provides an extension to the fluctuation analysis of the effective Holder 
exponent of the S&P index. Section 7 closes the paper with conclusions. 

2. Why wavelets? 

The wavelet transform is a convolution product of the signal with the scaled and 
translated kernel-the wavelet l/J(x) [ 19 ,20]. The scaling and translation actions are 
performed by two parameters; the scale parameter s 'adapts' the width of the wavelet 
kernel to the resolution required and the location of the analysing wavelet is determined 
by the parameter b: 

1 j (x-b) (Wf)(s,b)= s dxf(x)lf; -s- , (1) 

where s, b ER and s > 0 for the continuous version (CWT). 
The 3D plot in Fig. 1 shows how the wavelet transform reveals more and more detail 

while going towards smaller scales, i.e. towards smaller log(s) values. The wavelet 
transform is sometimes referred to as the 'mathematical microscope' [5,6], due to its 
ability to focus on weak transients and singularities in the time series. The wavelet 
used determines the optics of the microscope; its magnification varies with the scale 
factors. 

Whether we want to use a continuous or discrete WT, see Fig. 2, is largely a matter 
of application. For coding purposes, one wants to use the smallest number of coeffi­
cients which can be compressed by thresholding low values or using correlation proper­
ties. For this purpose a discrete (for example a dyadic) scheme of sampling the scales, 
position b space is convenient. Such sampling often spans an orthogonal wavelet base. 

For analysis purposes, one is not so concerned with numerical or transmission effi­
ciency or representation compactness, but rather with accuracy and adaptive properties 
of the analysing tool. Therefore, in analysis tasks, continuous wavelet decomposition 
is mostly used. The space of scale s and position b is then sampled semi-continuously, 
using the finest data resolution available. 

For decomposition, a simple base function is used. The wavelet lf;, see Eq. (1) took 
its name from its wave-like shape. It has to cross the zero value line at least once 
since its mean value must be zero. The criterion of zero mean is referred to as the 
admissibility of the wavelet, and is related to the fact that one wants to have the 
possibility of reconstructing the original function from its wavelet decomposition. 

This condition can be proven formally, but let us give a quick, intuitive argument. 
We have seen that wavelets work at smaller and smaller scales, covering higher and 
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Fig. I. Continuous wavelet transform representation of the random walk (Brownian process) time series. 
The wavelet used is the Mexican hat-the second derivative of the Gaussian kernel. The coordinate axes 
are: position x, scale in logarithm log(s ), and the value of the transform W(s,x). 
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Fig. 2. Continuous sampling of the parameter space (left) versus discrete (dyadic) sampling (right). 

higher frequency bands of the signal being decomposed. This is the so-called band pass 
filtering of the signal. Only a certain band of frequencies (level of detail) is captured by 
the wavelets working at one scale. Of course, at another scale a different set of details 
(band of frequencies) is captured. But other frequencies (in particular zero frequency) 
are not taken into the coefficients. This is the idea of decomposition. 
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Kernels like the Gaussian smoothing kernel are low-pass filters, which means they 
evaluate the entire set of frequencies up to the current resolution. This is the idea of 
approximation at various resolutions. 

The reader may rightly guess here that it is possible to get band pass information 
(wavelet-coefficients) from subtracting two low-pass approximations at various levels of 
resolution. This is, in fact, the so-called multi-resolution scheme of decomposition into 
WT components. But back to the admissibility-reconstruction from multiple resolution 
approximations would not be possible since the same low frequency detail would be 
described in several coefficients of the low pass decomposition. This, of course, is 
not the case for wavelets; they select only a narrow band of detail with very little 
overlap (in the orthogonal case no overlap at all!). In particular, if one requires that 
the wavelet is zero for frequency zero, i.e., it fully blocks zero frequency components, 
this corresponds with the zero mean admissibility criterion. 

3. The wavelet 

The only admissibility requirement for the wavelet tf; is that it has zero mean-it is 
a wave function, hence the name wavelet. 1: l/J(x) dx = 0 . (2) 

However, in practice, wavelets are often constructed with orthogonality to a polynomial 
of some degree n. 1: ;!' lf!(x) dx = 0 . (3) 

This property of the wavelets-orthogonality to polynomials of degree n-has a very 
fine application in signal analysis. It is referred to by the name of the number of 
vanishing moments. If the wavelet is orthogonal to polynomials of a degree up to n 
and including n, we say that it has m = n + 1 vanishing moments. So one vanishing 
moment is good enough to filter away constants-polynomials of zero degree Po. This 
can be done, for example, by the first derivative of the Gaussian kernel plotted in 
Fig. 3. Similarly the second derivative of the same Gaussian kernel, which is often 
used upside down and then appropriately called the Mexican hat wavelet, has two 
vanishing moments and in addition to constants can also filter linear trends P1• Of 
course, if the wavelet has m vanishing moments, it can filter polynomials of degree 
m - l,m - 2, .. .,0. 

4. The HOider exponent 

The use of vanishing moments becomes apparent when we consider local approxi­
mations to the function describing our time series. Suppose we can locally approximate 
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Fig. 3. Left: the smoothing function: the Gaussian. Centre: wavelet with one vanishing moment the first 
derivative of the Gaussian. Right: wavelet with two vanishing moments, the second derivative of the Gaussian. 

the function with some polynomial Pn, but the approximation fails for Pn+l · One can 
think of this kind of approximation as the Taylor series decomposition. In fact the ar­
guments to be given are true even if such Taylor series decomposition does not exist, 
but it can serve as an illustration. 

For the sake of illustration, let us assume that the function f can be characterised 
by the Holder exponent h(xo) in xo, and f can be locally described as: 

f(x)x0 = co + C1 (x - Xo) + · · · + Cn(x - Xo t + Clx - xolh(xo) 

= Pn(X - Xo) + Clx - xolh(xo). 

The exponent h(x0 ) is what 'remains' after approximating with P11 and what does not 
yet 'fit' into an approximation with Pn+I · More formally, our function or time series 
f(x) is locally described by the polynomial component Pn and the so-called Holder 
exponent h(xo). 

lf(x) - Pn(X - Xo)I :::::; Clx - xolh(xol. (4) 

It is traditionally considered to be important in economics to capture trend behaviour 
Pn. It is, however, widely recognised in other fields that it is not necessarily the regular 
polynomial background but quite often the transient singular behaviour which can carry 
important information about the phenomena/underlying system 'producing' the time 
series. 

One of the main reasons for the focus on the regular component was that until the 
advent of multi-scale techniques (like WT) capable of locally assessing the singular 
behaviour, it was practically impossible to analyse singular behaviour. This is because 
the weak transient exponents hare usually completely masked by the much stronger P11 • 

However, wavelets provide a remedy in this case! The reader has perhaps already 
noted the link with the vanishing moments of the wavelets. Indeed, if the number of 
the vanishing moments is at least as high as the degree of ? 11 , the wavelet coefficients 
will capture the local scaling behaviour of the time series as described by h(x0 ). 

In fact, the phrase 'filtering' with reference to the polynomial bias is not entirely 
correct. The actual filtering happens only for wavelets the support of which is fully 
incorporated in the biased interval. If the wavelet is at the edge of such an interval 
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Fig. 4. Left: the input time series with the WT maxima above it in the same figure. The strongest maxima 
correspond to the crash of '87. The input time series is debiased and L1 normalised. Right: we show the 
same crash related maxima highlighted in the projection showing the logarithmic scaling of all the maxima. 

(where bias begins) or if the current resolution of the wavelet is simply too large 
with respect to the biased interval, the wavelet coefficients will capture the information 
pertinent to the bias. This is understandable since the information does not get 'lost' 
or 'gained' in the process of WT decomposition. The entire decomposed function can 
be reconstructed from the wavelet coefficients, including the trends within the function. 
What wavelets provide in a unique way is the possibility to tame and manage trends 
in a local fashion, through localised wavelets components. 

Above, we have suggested that the function can locally be described with Eq. ( 4 ). 
Its wavelet transform w<nlf with the wavelet with at least n vanishing moments now 
becomes: 

w<n) f(s,xo) =; J Clx - xo\h(xo)l/I ( x ~ Xo) dx = C\s\h(xo) J \x'\h(xo)tjl(x') dx'. 

Therefore, we have the following power law proportionality for the wavelet transform 
of the (Holder) singularity of f(xo): 

w(n) f(s,xo) rv \s\h(xo). 

From the functional form of the equation, one can immediately attempt to extract the 
value of the local Holder exponent from the scaling of the wavelet transform coefficients 
in the vicinity of the singular point xo. This is indeed possible for singularities which 
are isolated or effectively isolated, that is that can be seen as isolated from the current 
resolution of the analysing wavelet. A common approach to trace such singularities and 
to reveal the scaling of the corresponding wavelet coefficients is to follow the so-called 
maxima lines of the CWT converging towards the analysed singularity. This approach 
was first suggested by Mallat et al. [21,22] and later used and further developed among 
others in Refs. [5,6,23,24]. 

In Fig. 4, we plot the input time series which is a part of the S&P index containing 
the crash of '87. In the same figure, we plot corresponding maxima derived from the 
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CWT decomposition with the Mexican hat wavelet. The maxima corresponding to the 
crash stand out both in the top view (they are the longest ones) and in the side log-log 
projection of all maxima (they have a value and slope different from the remaining 
bulk of maxima). The only maxima higher in value are the end of the sample finite 
size effect maxima. These observations indicate that the crash of '87 can be viewed 
as an isolated singularity in the analysed record of the S&P index for practically the 
entire wavelet range used. 

This is, however, (luckily) an unusual event and in general in time series we have 
densely packed singularities which cannot be seen as isolated cases for a wider range 
of wavelet scales. The related Holder exponent can then be measured either by se­
lecting smaller scales or by using some other approach. A possibility we would like 
to suggest is using the multifractal paradigm in order to estimate what we call the 
effective Holder exponent. The detailed discussion of this approach can be found in 
Refs. [17, 18], but let us quickly point out that the effective Holder exponent captures lo­
cal deviations from the mean scaling exponent of the decomposition coefficients related 
to the singularity in question. This approach has been quite successful in evaluating 
histograms of the scaling exponents, singularity spectra and collective properties of the 
local Holder exponent. 

Dense singularities can be seen as evolving from a multiplicative cascading process 
which takes place across scales. The CWT has been successfully used in revealing 
such a process and in recovering its characteristics. In short, all that is then needed 
to evaluate the local effective Holder exponent for a singularity at a particular scale is 
the gain in process density across scales with respect to the scale gain: 

j/h; = log(Wf uJpb(s1o))- log(Wfwpb(Sh;)) 
siv log(s10 ) - log(shi) ' 

where WfoJpb(s) is the value of the wavelet transform at the scale s, along the max­

imum line Wpb corresponding to the given process branch bp. Scale s10 corresponds 
with generation Fmax, while Sizi corresponds with generation F0, (simply the largest 
available scale in our case). 

5. Employing the local effective Holder exponent in the characterisation of time series 

Such an estimated local h(x0, s) can be depicted in a temporal fashion, for example 
with colour stripes, as we have done in Fig. 5. The colour of the stripes is determined 

by the value of the exponent h(xo,s) and its location is simply the x0 location of 
the analysed singularity (in practice this amounts to the location of the corresponding 
maximum line). Colour coding is done with respect to the mean value, which is set 
to the green colour central to our rainbow range. All exponent values lower than 
the mean value are given colours from the 'warmer' side of the rainbow, all the way 
towards dark red. All higher than average exponents get 'colder' colours, down to dark 
blue. 
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Fig. 5. Left: example time series with local Hurst exponent indicated in colour: the record of healthy 
heartbeat intervals and white noise. The background colour indicates the Holder exponent locally, centred at 
the Hurst exponent at green; the colour goes towards blue for higher h and towards red for lower fi. Right: 
the corresponding log-histograms of the local Holder exponent. Full colour version can be downloaded from 
www.cwi.nl/~zbyszek 

The first example time series is a record of the S&P500 index from time period 
1984- 1988. There are significant fluctuations in colour in this picture, with the green 
colour centred at h = 0.55, indicating both smoother and rougher components. In par­
ticular, one can observe an extremal red value at the crash of '87 coordinate, followed 
by very rough behaviour (a rather obvious fact, but to the best of our knowledge not 
reported to date in the rapidly growing coverage of this time series record), see e.g. 
Ref. [25]. 

The second example time series is a computer generated sample of fractional Brown­
ian motion with H = 0.6. It shows almost monochromatic behaviour, centred at H = 0.6; 
the colour green is dominant. There are, however, several instances of darker green 
and light blue, indicating locally smooth components. 

It is important to notice that h = Hsrownian_Wafk, the Holder exponent value equal to 
the Hurst exponent of an uncorrelated Brownian walk, corresponds with no correlation 
in time series. 2 An ideal random walk would have only monochromatic components 
of this value. Of course, an ideal, infinitely long record of fractional Brownian motion 
of H = 0.6 is correlated, but this correlation would be stationary in such an ideal case 
and no fluctuations in correlation level (in colour) would be observed. By the same 
argument, we can interpret the va:i;ations in h as the local fluctuations of correlation in 
the S&P index. The more red the colour, the more unstable, the more anti-correlated 
the index. And the more blue, the more stable and correlated. 

2 Theoretically this is h = 0.5, but finite size sample effects usually add some degree of correlation, slightly 
increasing this value. 
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To the right of Fig. 5, the log-histograms of the Holder exponent displayed in the 
colour panels are shown. They are made by taking the logarithm of the measure in 
each histogram bin. This conserves the monotonicity of the original histogram, but 
allows us to compare the log-histograms with the spectrum of singularities D(h). The 
log-histograms are actually closely related to the (multifractal) spectra of the Holder 
exponent (18]. The multifractal spectrum of the Holder exponent is the 'limit histogram' 
Ds-+o(h) of the Holder exponent in the limit of infinite resolution. Of course we cannot 
speak of such a limit other than theoretically and, therefore, a limit histogram (multi­
fractal spectrum) has to be estimated from the evolution of the log-histograms along 
scale. For details see Ref. (18]. 

Let us point out that the width of the spectra alone is a relatively weak argument in 
favour of the hypothesis of the multifractality of the S&P index. The log-histogram of 
the S&P is only slightly wider than the log-histogram of a record of fractional Brow­
nian motion of comparable length, see Fig. 5. An interesting observation is, however, 
that the crash of '87 is clearly an outlier in the sense of the log-histogram of Holder 
exponent (and therefore in the sense of the MF spectrum). The issue of crashes as 
outliers has been extensively discussed by Johansen [26] and recently by L 'vov et al. 
[27). Here we support this observation from another point of view. 3 

6. Discovering structure through the analysis of collective properties of 
non-stationary behaviour 

Non-stationarities are usually seen as the curse of the exact sciences, economics not 
excluded. Let us here present a different opinion: where the non-stationarities occur, 
interestingness begins! Non-stationarities can be seen as a departure from some (usu­
ally) simple 'model'. For example, this can be the failure of the stationarity of the 
effective Holder exponent (see Fig. 5). 

In some sense, they indicate that the simple model used is not adequate, but this 
does not necessarily mean that one needs to patch or replace this low level model. On 
the contrary, the information revealed by such a low level model may be used to detect 
higher order structures. In particular, correlations in the non-stationarities may indicate 
the existence of interesting structures. An intriguing example of such an approach in 
the financial domain is the work by Ameodo et al. where a correlation structure in 
S&P index has been revealed (28]. 

The simplest way of detecting structure, we suggest, is detecting fluctuations or the 
collective behaviour of the local effective h. This has already been successfully applied 
in human heartbeat analysis [16]. Here we will present some preliminary results for 
the S&P index. 

3 The careful reader will notice that similar outliers can be seen in the log-histogram for the fBm in 
Fig. 5. These outliers are the end of the sample singularities and are caused by finite sample size. As such 
they are clearly outliers. 
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Fig. 6. The effective Holder exponent smoothed with two windows (MASO and MASOO) is shown. The two 
plots to the right show windows on the smoothed effective Holder exponent just before crash #1 and crash 
#2. (The crashes are visible in the left figure but not in the windows.) Visible oscillations of MASO and 
decay of MASOO characterise precursors of both crashes. The average level of the effective Holder exponent 
for the uncorrelated Brownian walk is also indicated. 

The non-stationary behaviour in h can be quantified, and for this purpose we use 
a low pass moving average filter (MA) to detect/enhance trends. This processing is, 
of course, done on the Holder exponent value set {hi(f(x))}, not on the input signal 
f(x). A n-MA :filtering of n base is defined as follows: 

l i=n 

hMAn (i) = - Lh;(f (x)) , 
ni=I 

(5) 

where h;(f) are the subsequent values of the effective Holder exponent of the time 
series /. 

Let us now go back to the S&P index and its effective Holder exponent description. 
Different window lengths in our MA filter represent different horizons for the trader. 
If the index is all that is available, in order to evaluate the risk associated with the 
trading (or in other words, to predict the risk of an index crash), the trader might want 
to know how 'stable' the market/index is on a daily or monthly time scale. In fact a 
comparison between the two indicators of stability might be even more indicative. 

This is exactly what we have done using two different time scales (two trading 
horizons) for the MA smoothing, see Fig. 6. The smoothed input is the effective Holder 
exponent of the S&P index. It corresponds closely with the logarithm of the local 
volatility and as such it reflects the stability of the market. 

We made the following observations from this experiment: the short time hori­
zon MA shows a strong oscillatory pattern in collective behaviour of the h. These 
oscillations have already been observed by Liu et al. [2] and by Vandewalle et al. 
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[7,8]. This is, however, not log-periodic behaviour in our results and it does not con­
verge to a moment of crash. What can perhaps be used in order to help the trader in 
evaluating the growing risk is the interplay of the various time horizons. The second 
MA filter has a time horizon I 0 times longer and it shows practically no oscillations. 
However, its value decays almost monotonically, in the moment just before the crash, 
reaching the level of correlations characteristic for the random walk (see Fig. 6 right 
inserts). Note that the crashes themselves are not visible in the insert plots. Let us 
recall that the main advantage of the effective Holder exponent above some traditional 
measures of volatility is that it describes the local level of correlation in the time se­
ries. If the value of h is below h = Hsrownian_Walk. this means we have an anti-correlated 
time series which intuitively corresponds with a rather unstable process. The h above 
h = Hsrownian_Walk indicates the presence of correlations and generally can be associ­
ated with 'stability'. Please note that the oscillations in MA50 before the crashes bring 
the collective h up and down between the correlated and the anti-correlated regimes. 
Similarly MA500 steadily decays towards the anti-correlated regime just before the 
crashes. 

7. Conclusions 

The local effective Holder exponent has been applied to evaluate the correlation 
level of the S&P index locally at an arbitrary position (time) and resolution (scale). 
In addition to this, we analysed collective properties of the local correlation exponent 
as perceived by the trader exercising various time horizon analyses of the index. A 
moving average filtering of Holder exponent based variability estimates was used to 
mimic the various time horizon analysis of the index. We observed intriguing interplay 
between different time horizons before the biggest crashes of the index. We find that 
this way of local presentation of scaling properties may be of economic importance. 
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