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Abstract

Let s, be the real Lie algebra of all differential operators in n-variables Y cogx®/ 828, g€ R where the
surn is over all rulti-indices o, 8 such that | of + | 8| =< 2. This note describes a certain representation of Is, by
means of (nonlinear) vectorfields which in a certain sense is all Kalman-Bucy filters for ndirmensional linear Sys-
terrs put together. This representation also tums out to be very closely related to the so-called Segal-Shale-W eil
representation of the simple quotient sp, of Is,.

1 INTRODUCTION

Let Is, be the Lie algebra of all differential operators in n variables chx‘*a“/ BzF, Cog€ R, with cog= 0 if
lol + |8l >2 Here o= (o, . . . ,a,), oy€ NU {0} is a multiindex and ol =+ -+ + @, The Lie bracket is
the commutator difference [D),Dyl= DDy~ DD, ]

Thus for example Is) has the basis 1, z, d/ dr, 2 d/ dz, d®/ dx?, d%/ de? z® and two exarrples of brackets

d2
are [dﬁr_'x]= 1, [ank 4x@—i~+ 2 &s is easily checked by letling Lhe left and right hand operators act on a test

function f(x). The dimension of Is, is 2n?+ 3n+ 1.
Let V(l}l”) be the Lie algebra of all smooth vectorfields on RY | that is the Lie algebra of all differential
operalors 2]‘}(:6)67“ with f;(x) a smooth function of z= (x,, ... ,zy). In this note | describe a representa-
i=1 T

tion of Is, in V(RY), N= -é—n(n+ 1)+ n+ 1, i.e. a homomorphism of Lie algebras Is, » V(RV), which is essen-

tally all KalmarrBucy filters for n-dimensional linear differential systerns put together, making this representa-
tion, so to speak, the universal grand Kalman-Buey filler. Below in section 4 it is explained how this phrase
mmust be interpreted.

Let 2, be the subspace of Is, spanned by the operators 1,z ...z, 5%— R -é-z;— One easily checks that A,

1

is an ideal of Is, and the quotient Is,/ h,, uns out to be the syrmplectic Lie algebra sp,. There is a very famous
(and sormewhat mysterious) representation of 5P, called the Segal-Shale-Weil representation (or oscillator
representation [7]), which is of importance in nurmber thesry [14]quantumn mechanics [12,13] harmonic analysis
and representation theory [8,11] Lagrangian mechanics [9] There is a subalgebra of Zs, isomorphic to go, (the
Levi-factor) and it now turns out that the representation obtained from the K alman-Bucy filter representation by
rmapping (Pm.z)e RY (P a symmelric nx n malrix, m an m vector and ¢ a scalar) to the unnormalized ' den-
sy’ exp(c+ < @mim.z> — 2mP(x)) (where P(x) is the quadratic form defined by the matrix P, is a real form
of the Segal-Shale-W eil representalion, i.e. the two become isormorphic after tensoring with C. This strengthens
and precizes the links belween filtering and quantum mechanics as discussed in [10]

This note is a drastically shortened version of [4] of the sarme tille, giving just the basic outlines.

2 STRUCTURE OF THE LINEAR SYSTEMS LIE ALGEBRA s,

. 0 7
definition of all 2nx 2n matrices M such that MJ+ JM "= 0 where J is the matrix J= _ . (The Lie

The Lie-algebras Is, and h, were defined in Section 1 above. The symplectic Lie algebra consists by
[5:]
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bracket in g, is the commmtator difference [M . M' = MM' -M'M . Let £;; be the 2nX 2n matrix with a 1 at
location (ij) and zeros elsswhere. Then

[¢)
T By i+ Bipein 4 P B i~ Bnijnei
j
sl
a0z, Envigt Bnvgi, B0

Is a surjective horomorphism of Lie algebres Is, - sp, with kemel h,. An isormorphic copy of sp, in Is, (a Levi
factor) is sparned by the operators

& 8 .1
S

where §; ; denotes the Kronecker delta.
3. THE FILTER ANTI-REPRESENTATION OF is,

Let N=V 2n{n+ 1)+ n+ 1 and denote a point in RY as a triple (Pm.c,) with P a symmetric nx n matrix,
™ an n-vector and ¢ a scalar. Consider the Lie algebra ¥ (RY) of smooth vectorfields as RY (cf. Section 1) and
consider the hormomorphism of real vector spaces.

k:ls,~» V(RN)
defined by the formulas
e}
1= = (3.1)
2, » m2+ 3 B, 0 (33)
de ) " om
) 9
T A 3.3
ox; om, (33)
Gl
Z,Z;= (Mymy+ Py)——+ 3 (m Py + ™y Py) é (34)
B 4 om
i) 8
+ §P@PJ—‘ EE'F X‘:PQPJ-‘ ﬁ
d 3 ) d 3
Ram T Mom %ae 0Py ;Pﬁ 0Py ©5)
bl o ... & 3
tmor; 3B, T pr Rap @8)

Theorem The vector space homororphism k:Is,» V(RY) defined by the forrmilae (3.1(36) is an injective
anti-hormormorphism of Lie algebras ie it satisfies k[D.D' = [k (D' )k (D) forall DD € Is,.

By changing the minus sign in formulae (3.3) and (35) to a plus sign one finds a hormomorphism of Lie alge-
bres, Le a representation And by replacing all terms in (32)-(3.6) involving a :Twith zero one obtains an
antthomomorphism

Kils,»> VRN-Y
with kemel R.1 (i.e only muitiples of the identity operator are mapped to zero). It is this last anti-
homormorphism which is all K alman-Bucy filters put together. (The 3o terts have to do with normalization.)

4 KALMAN-BUCY FILTERS AND THE ANTI-REPRESENTATION k'

Now consider a linear dynamical systern driven by white noise
dr; = Az+ By, dy = Cmdf+ dy, (4.1)
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LER" e R™ yc P, yc RP
The Kalmar-Buey filter for such a system is a set of equations

()= almP)ts pim P -+ gyl P «?)
For instance in one of the sirmplest cases:
dr,=dyy, dy=zdi+ dy
one has
dP= (1—- PRdt, dm= P(dy ~ mdt)
so that the vector fields o(m, P) and f(m, P) are respectively equal to

olm.P)= (1= )2 mp 2
Bm.P)y= P

The relation between the Kalman-Bucy filter of a systerm (4.1) and the anti-representation k' is now as fol-
lows. Consider the D uncan-M ortensen-Zakai equation of (4.1), which is satisfied by an urmormalized verson
p(z.t) of the density of zp= Ezy, 0< s<t}

dp = L pdt+ f (Cx )iy
i=1
Here L is the second order differential operator
= Lyvgpry _# . 0 — L5 2
L= 3B, Bmi0n; EE(AZ)‘ > (Cx); (4.3)

(Here (Cz); is the i-th component of the vector Cz and (BBTY; is the 1,7 entry of the product of the matrix B
with its transpose.)

Theorem The a vectorfield of the Kalman-Bucy filter (4.2) of the Systern 4.1 is given by k'(L ) where L is given
by (4.3) end th 8 vector fields in (4.2) are equal to the & ‘(cx)).

This is essentially proved by the straightforward calculation [4] This result also establishes for linear systerns
the (anti-)homomorphism principle of filtering, a powerful principle due to Brockett and Clark {1] The proof in
2] of this principle for single-input single-output. systerrs is wrong.

5 THE SEGAL-SHALE-W EIL REPRESENTATION

One way to obtain this representation is via the Stone'Von N eurnann uniqueness theorem Let H, be the
Helsenberg  group R"x R"x S', where S' is the unit cirde in C with the multiplication
Ey2)z Y 2)=(z+z y+y =2 exp(~2m< zy > ). The Lie-algebra of Hp is k= R*x R*X R. The Lie
bracket of Ay, restricted to R*> R™x {0 defines a bilinear form on R* given by the matrix J of the first few lines
of section R above.

The syrplectic group SP, is the group of all 2nx 2n matrices S such that MJH 7= J so that we can view
SF, as a group of autormorphisms of A, and H, which moreover leaves the centre S'c H,, invariant. Now let
p: Hy» L¥(R™) be the Schrbdinger representation of H,. Letge SF,, then h- p(g (k) is also a unitary represen-
tation of Hy, which by (the W eyl form of) the Stone-von N eumann uniqueness theorem is unitarily equivalent to
p- This associates a unitary operator w(g) to each g€ SB, which is unique up to a scalar. It tums out that the
scalars can be fixed up to so as to define a unitary representation of the universal 2-fold covering SF, of sp,.

There is a partial description of this Segal-Shale-W eil representation as follows (cf. eg. [B]). The elements
0 Il |4 0 I N
P L
of SP, act respectively as:
The Fourier transform 7 (R™)-» L3R")
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Fla) > |det 4|V EF(AT2)

Fx) » epmiN(E)f(x)
Trom this it is not difficult to calculate that the derived representation on the smooth vectors S(R™) (Schwartz
space) is the one given by the oprators
& 8 1
7'Z?ar,c ox; T F ?k!‘
which after a trensformation x, - Viz, is precisdy the Levi factor isomorphic to sp, in Is,. This already shows
the relationship between linear filtering and the Segal-Shale-W el representation.

M ore precisely assodiate to (m,P)e RV~ P positive definite, the nonmeal density with covariance P and
mean m. The induced vector fidds on the image of {(m,P)€ RV-1| P positive definite} in S(R™) are linear and
they are the linear vector fields corresponding to the operators in Is, on S(R™). They are cbviousy extendable
to all of S(R™) and this consititutes a more precise version of the relationship.

'I.kaj,
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