The linear systems Lie algebra, the Segal-Shale-Weil representation and all Kalman-Bucy filters

by

M ichiel Hazewinkel Centre for Mathematics and Computer Science P.O. Box 4079, 1009 A.B. Amsterdam.

Abstract

Let ls_n be the real Lie algebra of all differential operators in n-variables $\sum c_{\alpha\beta}x^{\alpha}\partial^{\beta}/\partial x^{\beta}$, $c_{\alpha\beta}\in \mathbf{R}$ where the sum is over all multi-indices α , β such that $|\alpha|+|\beta|\leq 2$. This note describes a certain representation of ls_n by means of (nonlinear) vectorfields which in a certain sense is all Kalman-Bucy filters for n-dimensional linear systems put together. This representation also turns out to be very closely related to the so-called Segal-Shale-W eil representation of the simple quotient sp_n of ls_n .

1. INTRODUCTION

Let $l\mathbf{s}_n$ be the Lie algebra of all differential operators in n variables $\sum c_{\alpha\beta}x^{\alpha}\partial^{\beta}/\partial x^{\beta}$, $c_{\alpha\beta}\in\mathbf{R}$, with $c_{\alpha\beta}=0$ if $|\alpha|+|\beta|>2$. Here $\alpha=(\alpha_1,\ldots,\alpha_n)$, $\alpha_i\in\mathbf{N}\cup\{0\}$ is a multiindex and $|\alpha|=\alpha_i+\cdots+\alpha_n$. The Lie bracket is the commutator difference $[D_1,D_2]=D_1D_2-D_2D_1$.

Thus for example ls_1 has the basis 1, x, d/ dx, x d/ dx, d/ dx, d/ dx^2 , d/ dx^2 , d/ dx^2 , d/ and two examples of brackets are $\left[\frac{d}{dx}x\right]=1$, $\left[\frac{d^2}{dx^2}x^2\right]=4x\frac{d}{dx}+2$ as is easily checked by letting the left and right hand operators act on a test function f(x). The dimension of ls_n is $2n^2+3n+1$.

Let $V(\mathbf{R}^N)$ be the Lie algebra of all smooth vectorfields on \mathbf{R}^N , that is the Lie algebra of all differential operators $\sum_{i=1}^N f_i(x) \frac{\partial}{\partial x_i}$ with $f_i(x)$ a smooth function of $x=(x_1,\ldots,x_N)$. In this note I describe a representation of ls_n in $V(\mathbf{R}^N)$, $N=\frac{1}{2}n(n+1)+n+1$, i.e. a homomorphism of Lie algebras $ls_n \to V(\mathbf{R}^N)$, which is essentiated as $ls_n \to l$.

tially all Kalman-Bucy filters for n-dimensional linear differential systems put together, making this representation, so to speak, the universal grand Kalman-Bucy filter. Below in section 4 it is explained how this phrase must be interpreted.

Let h_n be the subspace of ls_n spanned by the operators $1,x_1,\dots,x_n$, $\frac{\partial}{\partial x_1},\dots,\frac{\partial}{\partial x_n}$. One easily checks that h_n is an ideal of ls_n and the quotient ls_n/h_n turns out to be the symplectic Lie algebra sp_n . There is a very famous (and somewhat mysterious) representation of sp_n called the Segal-Shale-Weil representation (or oscillator representation [7]), which is of importance in number theory [14], quantum mechanics [12,13], harmonic analysis and representation theory [8,11] Lagrangian mechanics [9]. There is a subalgebra of ls_n isomorphic to sp_n (the Levi-factor) and it now turns out that the representation obtained from the Kalman-Bucy filter representation by mapping $(P,m,x) \in \mathbb{R}^N$ (P a symmetric $n \times n$ matrix, m an n vector and c a scalar) to the unnormalized "density" $exp(c+ < 2\pi im,x > -2\pi_2 P(x))$ (where P(x) is the quadratic form defined by the matrix P, is a real form of the Segal-Shale-Weil representation, i.e. the two become isomorphic after tensoring with C. This strengthens and precizes the links between filtering and quantum mechanics as discussed in [10].

This note is a drastically shortened version of [4] of the same title, giving just the basic outlines.

2. STRUCTURE OF THE LINEAR SYSTEMS LIE ALGEBRA l_{S_n}

The Lie-algebras ls_n and h_n were defined in Section 1 above. The symplectic Lie algebra sp_n consists by definition of all $2n \times 2n$ matrices M such that $MJ + JM^T = 0$ where J is the matrix $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$. (The Lie

bracket in \mathfrak{sp}_n is the commutator difference $[M,M']=MM'\cdot M'M$. Let $E_{i,j}$ be the $2n\times 2n$ matrix with a 1 at location (i,j) and zeros elsewhere. Then

$$\begin{split} x_i x_j &\to E_{i,n+\ j} + E_{j,n+\ i}, \quad x_i \frac{\partial}{\partial x_j} \to E_{i,j} - E_{n+\ j,n+\ i} \\ & \frac{\partial^2}{\partial s_i \partial x_j} \to E_{n+\ i,j} + E_{n+\ j,i}, \quad h_n \to 0 \end{split}$$

is a surjective homomorphism of Lie algebras $ls_n \to sp_n$ with kernel h_n . An isomorphic copy of sp_n in ls_n (a Levi factor) is spanned by the operators

$$x_i x_j$$
, $\frac{\partial^2}{\partial x_i \partial x_j}$, $x_i \frac{\partial}{\partial x_j} + \frac{1}{2} \delta_{i,j}$

where $\delta_{i,j}$ denotes the Kronecker delta

3. THE FILTER ANTI-REPRESENTATION OF Is,

Let N=1/2 n(n+1)+n+1 and denote a point in \mathbb{R}^N as a triple (P,m,c,) with P a symmetric $n\times n$ matrix m an n-vector and c a scalar. Consider the Lie algebra $V(\mathbb{R}^N)$ of smooth vectorfields as \mathbb{R}^N (cf. Section 1) and consider the homomorphism of real vector spaces.

$$k: ls_n \to V(\mathbf{R}^N)$$

defined by the formulas

$$1 \to \frac{\partial}{\partial c} \tag{3.1}$$

$$x_i \rightarrow m_i \frac{\partial}{\partial c} + \sum_{t=1}^{n} P_{tt} \frac{\partial}{\partial m_t}$$
 (3.2)

$$\frac{\partial}{\partial x_i} \rightarrow -\frac{\partial}{\partial m_i}$$
 (3.3)

$$x_i x_j \to (m_i m_j + P_{ij}) \frac{\partial}{\partial c} + \sum_i (m_i P_{ji} + m_j P_{ii}) \frac{\partial}{\partial m}$$
(3.4)

$$+ \sum_{s,t} P_{is} P_{jt} \frac{\partial}{\partial P_{st}} + \sum_{t} P_{it} P_{jt} \frac{\partial}{\partial P_{tt}}$$

$$x_{i} \frac{\partial}{\partial x_{j}} \rightarrow -m_{i} \frac{\partial}{\partial m_{j}} \delta_{ij} \frac{\partial}{\partial c} P_{ij} \frac{\partial}{\partial P_{jj}} \sum_{t} P_{it} \frac{\partial}{\partial P_{jt}}$$

$$\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \rightarrow \frac{\partial}{\partial P_{ij}} \quad \text{if} i \neq j, \quad \frac{\partial^{2}}{\partial x_{i}^{2}} \rightarrow 2 \frac{\partial}{\partial P_{it}}$$

$$(3.6)$$

$$\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \rightarrow \frac{\partial}{\partial P_{ii}} \text{ if } i \neq j, \quad \frac{\partial^{2}}{\partial x_{i}^{2}} \rightarrow 2 \frac{\partial}{\partial P_{ii}}$$
(3.6)

Theorem The vector space homomorphism $k: ls_n \to V(\mathbf{R}^N)$ defined by the formulae (3.1)-(3.6) is an injective anti-homomorphism of Lie algebras, i.e. it satisfies k[D,D']=[k(D'),k(D)] for all $D,D'\in ls_n$.

By changing the minus sign in formulae (3.3) and (3.5) to a plus sign one finds a homomorphism of Lie algebras, i.e. a representation. And by replacing all terms in (3.2)-(3.6) involving a $\frac{\partial}{\partial c}$ with zero one obtains an antihomomorphism

$$k': ls_n \rightarrow V(\mathbb{R}^{N-1})$$

with kernel R.1 (i.e. only multiples of the identity operator are mapped to zero). It is this last anti-homomorphism which is all Kalman-Bucy filters put together. (The $\frac{\partial}{\partial c}$ -terms have to do with normalization.)

4. KALMAN-BUCY FILTERS AND THE ANTI-REPRESENTATION k^\prime

Now consider a linear dynamical system driven by white noise

$$dx_t = Ax_t + Bdw_t, \quad dy_t = Cx_t dt + dv_t, \tag{4.1}$$

$$x_t \in \mathbb{R}^n$$
, $u_t \in \mathbb{R}^m$, $u_t \in \mathbb{R}^p$, $y_t \in \mathbb{R}^p$

The Kalman-Bucy filter for such a system is a set of equations

$${dm \choose dP} = \alpha(m,P)dt + \beta_1(m,P)dy_{1t} + \cdots + \beta_p(m,P)dy_{p,t}$$
(4.2)

For instance in one of the simplest cases:

$$dx_t = dx_t$$
, $dy_t = x_t dt + dx_t$

one has

$$dP = (1 - P^2)dt$$
, $dt = P(du - mdt)$

so that the vector fields $\alpha(m,P)$ and $\beta(m,P)$ are respectively equal to

$$\alpha(m,P) = (1 - P^2) \frac{\partial}{\partial P} mP \frac{\partial}{\partial m}$$
$$\beta(m,P) = P \frac{\partial}{\partial m}$$

The relation between the Kalman-Bucy filter of a system (4.1) and the anti-representation k' is now as follows. Consider the Duncan-Mortensen-Zakai equation of (4.1), which is satisfied by an unnormalized version $\rho(x,t)$ of the density of $x_i = E[x_i | y_i, 0 \le s \le t]$:

$$d\rho = L \rho dt + \sum_{i=1}^{p} (Cx)_i dy_{it}$$

Here \boldsymbol{L} is the second order differential operator

$$L = \frac{1}{2} \sum (BB^T)_{i,j} \frac{\partial^2}{\partial x_i \partial x_j} \sum \frac{\partial}{\partial x_i} (Ax)_i - \frac{1}{2} \sum (Cx)_i^2$$
(4.3)

(Here $(Cx)_i$ is the *i*-th component of the vector Cx and $(BB^T)_{i,j}$ is the i,j entry of the product of the matrix B with its transpose.)

Theorem The α vectorfield of the Kalman-Bucy filter (4.2) of the system 4.1 is given by k'(L) where L is given by (4.3) and th β vector fields in (4.2) are equal to the $k'((Cx)_k)$.

This is essentially proved by the straightforward calculation [4]. This result also establishes for linear systems the (anti-)homomorphism principle of filtering, a powerful principle due to Brockett and Clark [1]. The proof in [2] of this principle for single-input single-output systems is wrong.

5. THE SEGAL-SHALE-WEIL REPRESENTATION

One way to obtain this representation is via the Stone-Von Neumann uniqueness theorem. Let H_n be the Heisenberg group $\mathbf{R}^n \times \mathbf{R}^n \times S^1$, where S^1 is the unit circle in \mathbf{C} with the multiplication $(x,y,z)(x',y',z')=(x+x',y+y',zz'\exp(-2\pi i < x,y>))$. The Lie-algebra of H_n is $h_n=\mathbf{R}^n \times \mathbf{R}^n \times \mathbf{R}$. The Lie bracket of h_n restricted to $\mathbf{R}^n \times \mathbf{R}^n \times \{0\}$ defines a bilinear form on \mathbf{R}^n given by the matrix J of the first few lines of section 2 above.

The symplectic group SP_n is the group of all $2n \times 2n$ matrices S such that $MJM^T = J$ so that we can view SP_n as a group of automorphisms of h_n and H_n which moreover leaves the centre $S^1 \subset H_n$ invariant. Now let $\rho: H_n \to L^2(\mathbb{R}^n)$ be the Schrödinger representation of H_n . Let $g \in SP_n$, then $h \to \rho(g(h))$ is also a unitary representation of H_n which by (the W eyl form of) the Stone-von N eumann uniqueness theorem is unitarily equivalent to ρ . This associates a unitary operator w(g) to each $g \in SP_n$ which is unique up to a scalar. It turns out that the scalars can be fixed up to so as to define a unitary representation of the universal 2-fold covering SP_n of SP_n .

There is a partial description of this Segal-Shale-W eil representation as follows (cf. e.g. [6]). The elements

$$\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \cdot \begin{bmatrix} A & 0 \\ 0 & (A^{-1})^T \end{bmatrix} \cdot \begin{bmatrix} I & N \\ 0 & I \end{bmatrix}. \quad N \text{ symmetric}$$

of SP_n act respectively as:

The Fourier transform $L^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n)$

$$f(x) \rightarrow |\det' A|^{1/2} f(A^T x)$$

 $f(x) \rightarrow \exp(\pi i N(x)) f(x)$

From this it is not difficult to calculate that the derived representation on the smooth vectors $S(\mathbb{R}^n)$ (Schwartz space) is the one given by the oprators

$$ix_k x_j$$
, $i\frac{\partial^2}{\partial x_k \partial x_j}$, $x_k \frac{\partial}{\partial x_j} + \frac{1}{2}\delta_{k_j}$

which after a transformation $x_k \to \sqrt{i} x_k$ is precisely the Levi factor isomorphic to sp_n in ls_n . This already shows the relationship between linear filtering and the Segal-Shale-W eil representation.

More precisely associate to $(m,P) \in \mathbb{R}^{N-1}$. P positive definite, the normal density with covariance P and mean m. The induced vector fields on the image of $\{(m,P) \in \mathbb{R}^{N-1} | P \text{ positive definite}\}$ in $S(\mathbb{R}^n)$ are linear and they are the linear vector fields corresponding to the operators in ls_n on $S(\mathbb{R}^n)$. They are obviously extendable to all of $S(\mathbb{R}^n)$ and this constitutes a more precise version of the relationship.

References

- [1] R.W. Brockett, J.M.C. Clark, The geometry of the conditional density equations, Proc of the Oxford Conf. on Stochastic Systems 1978, A cad. Press 1980.
- [2] R.W. Brockett, Geometric methods in stochastic control and estimation. In [5], 441-478.
- [3] M. Hazewinkel, S.I. Marcus, On Lie algebras and nonlinear filtering, Stochastics 7 (1982), 29-62.
- [4] M. Hazewinkel, The linear systems Lie algebra, the Segal-Shale-Weil representation and all Kalman Bucy filters. Report 8130, Econometric Inst., Erasmus Univ. Rotterdam. Submitted Amer. J. Math.
- [5] M. Hazewinkel, J.C. Willems (eds), Stochastic systems: the mathematics of filtering and identification and applications, Reidel Publ. G., 1981.
- [6] R.E. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. Amer. Math. Soc. 3 (1980), 821-844.
- [7] R.E. Howe, &-series and invariant theory, Proc. Symp. Pure M ath. 33, 1, 275-285, Amer. M ath. Soc. 1980.
- [8] M. Kashiwara, M. Vergne, On the Segal-Shale-Weil representation and harmonic polynomials, Inv. Math. 44 (1978), 1-47.
- [9] G. Lion, M. Vergne, The Weil representation, Maslow index and Theta series, Birkhäuser, 1980.
- [10] S.K. Mitter, Nonlinear filtering and stochastic mechanics. In [5], 479-504. And references therein.
- [11] S. Rallis, G. Schiffmann, Weil representation I. Memoirs Amer. Math. Soc. 231 (1980).
- [12] I.E. Segal, Transforms for operators and symplectic automorphisms over a locally compact abelian group, M ath. Scand. 13 (1963), 31-43.
- [13] D. Shale, Linear symmetries of free boson fields, Trans. Amer. M ath. Sco. 103 (1962), 149-167.
- [14] A. Weil, Sur certains groupes d'operateurs unitaires, Collected Papers Vol.III 1-71, Springer, 1980; Comments: ibid 443-447.