
Math. Program., Ser. A
DOI 10.1007/s10107-017-1126-7

FULL LENGTH PAPER

Chain-constrained spanning trees

Neil Olver1,2 · Rico Zenklusen3

Received: 2 November 2015 / Accepted: 21 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract We consider the problem of finding a spanning tree satisfying a family
of additional constraints. Several settings have been considered previously, the most
famous being the problem of finding a spanning tree with degree constraints. Since the
problem is hard, the goal is typically to find a spanning tree that violates the constraints
as little as possible. Iterative rounding has become the tool of choice for constrained
spanning tree problems. However, iterative rounding approaches are very hard to adapt
to settings where an edge can be part of more than a constant number of constraints.
We consider a natural constrained spanning tree problem of this type, namely where
upper bounds are imposed on a family of cuts forming a chain. Our approach reduces
the problem to a family of independent matroid intersection problems, leading to a
spanning tree that violates each constraint by a factor of at most 9. We also present
strong hardness results: among other implications, these are the first to show, in the
setting of a basic constrained spanning tree problem, a qualitative difference between
what can be achieved when allowing multiplicative as opposed to additive constraint
violations.

This project was supported by NSF Grant CCF-1115849, an NWO Veni grant, and Swiss National
Science Foundation Grant 200021_165866.

B Neil Olver
n.olver@vu.nl; olver@cwi.nl

Rico Zenklusen
ricoz@math.ethz.ch

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

2 CWI, Amsterdam, The Netherlands

3 ETH Zurich, Zurich, Switzerland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1126-7&domain=pdf

N. Olver, R. Zenklusen

Keywords Network design · Spanning trees · Approximation algorithms

Mathematics Subject Classification 68W25 · 90C27

1 Introduction

Spanning tree problems with additional {0, 1}-packing constraints have spawned
considerable interest recently. This development was motivated by a variety of appli-
cations, including VLSI design, vehicle routing, and applications in communication
networks [5,9,16]. Since even finding a feasible solution of a constrained spanning
tree problem is typically NP-hard, the focus is on efficient procedures that either cer-
tify that the problem has no feasible solution, or find a spanning tree that violates
the additional constraints by as little as possible. Often, an objective function to be
minimized is also provided; here, however, we focus just on minimizing the constraint
violations.

A wide variety of constrained spanning tree problems have been studied. Unfortu-
nately, for most settings, little is known about what violation of the constraints must be
accepted in order that a solution can be efficiently obtained. An exception is the most
classical problem in this context, the degree-bounded spanning tree problem. Here the
goal is to find a spanning tree T ⊆ E in a graph G = (V, E) such that T satisfies a
degree bound for each vertex v ∈ V , i.e., |δ(v)∩T | ≤ bv . For this problem, Fürer and
Raghavachari [9] presented an essentially best possible algorithm that either shows
that no spanning tree satisfying the degree constraints exists, or returns a spanning tree
violating each degree constraint by atmost 1.We call this an additive 1-approximation,
in contrast to an α-approximation, where each constraint can be violated by a factor
α > 1.

Recently, iterative rounding/relaxation algorithms became the tool of choice for
dealing with constrained spanning tree problems. A cornerstone for this development
was the work of Singh and Lau [18], which extended the iterative rounding framework
of Jain [11] with a relaxation step. They obtained an additive 1-approximation even
for the minimum degree-bounded spanning tree problem, i.e., the cost of the tree they
return is upper bounded by the cost of an optimal solution not violating any constraints.
This result was the culmination of a long sequence of papers presenting methods
with various trade-offs between constraint violation and cost (see [6,7,10,12,13] and
references therein).

Singh and Lau’s iterative relaxation technique was later generalized by Bansal et
al. [4], to show that even when upper bounds are given on an arbitrary family of edge
sets E1, . . . , Ek , one can still find a (minimum cost) spanning tree violating each
constraint by not more than maxe∈E |{i ∈ [k] | e ∈ Ei }| − 1. If each edge is only in
a constant number of constraints, this leads to an additive O(1)-approximation. But
extending the iterative rounding technique beyond such settings seems to typically be
very difficult. Some progress was achieved by Bansal et al. [3], who used an iterative
approach that iteratively replaces constraints by weaker ones, leading to an additive
O(log n)-approximation if the constraints are upper bounds on a laminar family of
cuts. They left open whether an additive or multiplicative O(1)-approximation is

123

Chain-constrained spanning trees

possible in this setting, even when the cuts form a chain. Recently, Zenklusen [19]
presented an additive O(1)-approximation for generalized degree bounds, where for
each vertex an arbitrarymatroid constraint on its adjacent edges has to be satisfied. This
algorithms differs from previous iterative rounding approaches in that it successively
simplifies the problem to reach a matroid intersection problem, rather than attempting
to eliminate constraints until only spanning tree constraints remain.

To the best of our knowledge, with the exception of the setting of Zenklusen [19],
no O(1)-approximations are known for constrained spanning tree problems where an
edge can lie in a super-constant number of (linear) constraints. This seems to be an
important difficulty that current techniques have trouble overcoming. Furthermore, in
many settings, it is not well understood if finding an additive approximation is any
harder than a multiplicative one. In particular, no constrained spanning tree problem
was previously knownwhere an O(1)-approximation is possible, but an additive O(1)-
approximation is not. The goal of this paper is to address these points by studying
chain-constrained spanning trees—a natural constrained spanning tree problem that
evades current techniques.

1.1 Our results

The chain-constrained spanning tree problem is the following. We are given an undi-
rected graph G = (V, E) together with a family of cuts ∅ � S1 � S2, · · · , � S� � V
forming a chain, and bounds b1, . . . , b� ∈ Z>0. The goal is to find a spanning tree T
that satisfies all of the constraints, i.e.,

|T ∩ δ(Si)| ≤ bi ∀i ∈ [�], (1)

if such a spanning tree exists. Here, δ(Si) denotes the set of edges with precisely one
endpoint in Si .

Notice that chain constraints allow edges to be in a super-constant number of con-
straints. It is also a natural candidate problem that captures many of the difficulties
faced when trying to construct O(1)-approximations for the laminar case.

Our main algorithmic result is the following.

Theorem 1 There is an efficient 9-approximation for the chain-constrained spanning
tree problem.

Like most work in the area, we exploit the natural LP relaxation of the problem.
This relaxation asks for a point x in the spanning tree polytope PST which satisfies
the constraints. But our method is not based on iterative rounding, which has become
the standard tool. Instead, we reduce the problem to a family of independent matroid
intersection problems. In order to do this, we decompose the problem into a number of
independent subproblems, based on the laminar decomposition induced by a maximal
family of independent tight spanning tree constraints of the solution to the LP relax-
ation. By a judicious choice of objective function, we are able to ensure that each of
the resulting subproblems has a convenient structural property, namely, they have no
rainbows in their support. A rainbow is a pair of edges e, f such that e is in a proper

123

N. Olver, R. Zenklusen

superset of the chain constraints in which f is contained. Within a subproblem, the
lack of rainbows yields a natural “left-to-right” ordering of the edges in its support.
This ordering is crucially exploited in order to define a partition matroid with the
property that any independent set of this matroid does not contribute much more to
any constraint then the fractional solution for the subproblem.

Even though the high-level approach is quite clean, there are several difficulties we
have to address. In particular, it turns out to be impossible to obtain a multiplicative
guarantee within each subproblem separately. Instead we must use a more relaxed
target for each subproblem that nevertheless yields a constant multiplicative guarantee
overall.

It is interesting to compare our approach to the one taken by Goemans [10] in
work giving an additive 2-approximation to the minimum degree-bounded spanning
tree problem with no loss in cost. Like our result, this result is not based on iterative
rounding. Instead, local sparsity of an extreme point solution is exploited to argue that
the edges of G can be oriented so that each node has indegree at most 2. The degree
bound at a vertex v is then relaxed to involve only the edges which are oriented away
from v, so that each edge occurs in only one constraint; the degree bounds are thus
replaced by a single partition matroid. The result then follows by applying matroid
intersection.

Our approach can be seen in a somewhat similar light. Using the rainbow-free
structure in the subproblems, we eventually end up with a partition matroid in each
subproblem. One can of course combine these resulting partition matroids over all
the subproblems, to obtain a single global partition matroid. So at a high level, both
algorithms proceed by relaxing (or in our case, replacing) the given constraints by a
matroid constraint, and then applying matroid intersection.

We complement our O(1)-approximation result by showing that an additive O(1)-
approximation is impossible (assuming P �= NP). As mentioned, this is the first result
showing such a separation between what can be achieved additively and multiplica-
tively for a constrained spanning tree problem. Let n denote the number of vertices of
G.

Theorem 2 For the chain-constrained spanning tree problem it is NP-hard to dis-
tinguish between the cases where a spanning tree satisfying the chain constraints
exists, and the case that every spanning tree violates some degree bound by
Ω(log n/ log log n) units.

This result is given in Sect. 3. Previously, the only hardness result of a similar nature
was presented by Bansal et al. [3] for a very general constrained spanning tree prob-
lem, where constraints |T ∩ Ei | ≤ bi ∀i ∈ [k] are given for an arbitrary family of
edge sets E1, . . . , Ek ⊆ E . They showed that unless NP has quasi-polynomial time
algorithms, there is no additive (logc n)-approximation for this case, for some small
constant c ∈ (0, 1). Notice that our hardness result is stronger in terms of the approx-
imation ratio, the underlying constrained spanning tree model, and the complexity
assumption. Furthermore, Theorem 2 shows that the additive O(log n)-approximation
of Bansal et al. [3] for the laminar-constrained spanning tree problem is close to
optimal.

123

Chain-constrained spanning trees

1.2 Thin trees

Given a graph G and a point x in the spanning tree polytope of G, a spanning tree T
is called α-thin with respect to x if

|T ∩ δ(S)| ≤ α · x(δ(S)) ∀S ⊆ V .

The problem of finding an α-thin tree can be interpreted as a constrained spanning
tree problem, where an upper bound bS := x(δ(S)) is imposed on every cut δ(S) of
the graph. By construction, this exponentially sized LP has a feasible solution, and an
α-approximate solution is exactly an α-thin spanning tree.

The concept of thin spanning trees gained considerably in relevancewhenAsadpour
et al. [2] showed that an efficient algorithm for finding an α-thin spanning tree leads to
an O(α)-approximation for the Asymmetric Traveling Salesman Problem (ATSP).1

In a very recent tour de force, Anari and Oveis Gharan [1] gave a nonconstructive
proof of the existence of polyloglog n-thin trees, which implies the same bound on
the integrality gap of ATSP. The best constructive result for thin spanning trees (and
ATSP) yield O(log n/ log log n)-thin spanning trees [2,8]. It is open whether O(1)-
thin spanning trees exist, which (if shown constructively) would immediately imply an
O(1)-factor approximation for ATSP. The chain-constrained spanning tree problem,
as well as other variants where constraints are placed on only some cuts, can be seen as
easier variants of the thin tree problem. Our work can be seen as a small step towards
an attack on the thin tree conjecture using combinatorial methods.

2 The algorithm

To simplify the exposition, we assume thatwe are dealingwith amaximal chain of con-
straints imposed on the spanning tree. So we may label the vertices V = {v1, . . . , vn}
of G such that Si = {v1, . . . , vi } ∀ i ∈ [n − 1], the constraints being |T ∩ δ(Si)| ≤ bi
for all i ∈ [n − 1]. This is clearly not restrictive since by choosing a large right-hand
side, any constraint can be made redundant.

Recall that the natural LP for the problem asks for a point x in the spanning tree
polytope PST ofG satisfying x(δ(Si)) ≤ bi for all i ∈ [n−1]. Our algorithm startswith
a fractional solution of this relaxation (if the relaxation is infeasible, this provides a
certificate that the given instance has no solution). Butwe do not beginwith an arbitrary
feasible solution; we require an optimal solution with respect to a carefully chosen
objective. More precisely, we take a solution that minimizes the total length of the
edges, where the length of an edge {vi , v j } ∈ E is |i − j |. Equivalently, the length of
an edge is the number of chain constraints to which the edge contributes. This leads to
the LP (2) shown below. Let x∗ be an optimal solution to (2), which can be computed
by standard techniques (see [17]). Notice that the objective function of (2) is the same
as the total load on all cuts:

∑n−1
i=1 x(δ(Si)).

1 Strictly speaking, Asadpour et al.’s approach required the spanning tree not only to be thin, but also to
be of low cost. However this second requirement is not necessary for the mentioned statement to be true
(see [15]).

123

N. Olver, R. Zenklusen

min
∑

{vi ,v j }∈E
|i − j | · x({vi , v j })

x ∈ PST
x(δ(Si)) ≤ bi ∀ i ∈ [n − 1]

(2)

The above objective function is motivated by a subprocedure we use to find a spanning
tree in an instance that does not contain what we call a rainbow. A rainbow consists of
two edges {vi , v j }, {vp, vq} with i ≤ p < q ≤ j and either i < p or q < j , i.e., the
first edge is in a proper superset of the chain constraints in which the second edge is in.
Even though the above objective function does not necessarily lead to anLP solution x∗
whose support supp(x∗) = {e ∈ E | x∗(e) > 0}does not contain rainbows—a feasible
rainbow-free solution may not even exist—it eliminates rainbows in subproblems we
are interested in, as we will see later. Clearly, if LP (2) is not feasible, we know that
the reference problem has no feasible solution.

In all what follows, we only work on edges in supp(x∗). Therefore, to simplify the
exposition, we assume from now on that E = supp(x∗). This can easily be achieved
by deleting all edges e ∈ E with x∗(e) = 0 from G.

Our algorithm decomposes the problem of finding an O(1)-approximate spanning
tree T ⊆ E into an independent family of a special type of spanning tree problem
on rainbow-free graphs. To decompose the problem, we consider tight spanning tree
constraints. More precisely, let L ⊆ 2V be any maximal laminar family of vertex-
sets corresponding to spanning tree constraints that are tight with respect to x∗. In
other words, L is maximal laminar family chosen from the sets L ⊆ V satisfying
x∗(E[L]) = |L| − 1, where, E[L] ⊆ E denotes the set of edges with both endpoints
in L . In particular, L contains all singletons. We say that L2 ∈ L is a child of L1 ∈ L
if L2 � L1 and there is no set L3 ∈ L with L2 � L3 � L1. For L ∈ L, we denote by
C(L) ⊂ L the set of all children of L . Notice that C(L) forms a partition of L .

To construct a spanning tree T in G we will determine for each L ∈ L a set of
edges TL in

EL := E[L] \ (∪C∈C(L)E[C]),

that form a spanning tree in the graph GL obtained from the graph (L , EL) by con-
tracting all children of L . Hence, the vertex set of GL is C(L), and an original edge
{u, v} ∈ EL is simply interpreted as an edge between the two children Cu,Cv ∈ C(L)

that contain u and v, respectively. For singletons L ∈ L, we set TL = ∅. One can easily
observe that a family {TL}L∈L of spanning trees in {GL}L∈L leads to a spanning tree
T = ∪L∈LTL in G. Constructing “good” spanning trees TL in GL , for each L ∈ L,
will be our independent subproblems. As we will argue more formally later, the main
benefit of this division is that the edge set EL used in the subproblem to find TL does
not contain any rainbows. Our goal is to define constraints that the spanning trees TL
have to satisfy, that allow us to conclude that the resulting spanning tree T = ∪L∈LTL
does not violate the chain constraints by more than a constant factor.

One of the arguably most natural constraint families to impose would be to require
that the contribution of TL to any cut Si is within a constant factor of the contribution
of x∗ on Si when only considering edges in EL , i.e.,

123

Chain-constrained spanning trees

Fig. 1 The situation that makes
(3) unattainable in general.
Shown is a subproblem L with
two children L1 and L2; for the
chain constraints shown as
dashed boxes,
x∗(δ(Si) ∩ EL) = ε. This can
occur even though there must be
at least one unit of weight
connecting L1 and L2

L1 L2

|TL ∩ δ(Si)| ≤ O(x∗(δ(Si) ∩ EL)). (3)

If the above inequality holds for each L ∈ L and i ∈ [n − 1], then the final spanning
tree T will indeed not violate any chain constraint by more than a constant factor: it
suffices to sum up the inequalities for a fixed i over all sets L and observe that {TL}L∈L
partitions T , and {EL}L∈L is a partition of EL :

|T ∩ δ(Si)| =
∑

L∈L
|TL ∩ δ(Si)| ≤ O

(
∑

L∈L
x∗(δ(Si) ∩ EL)

)

= O(x∗(δ(Si))) = O(1)bi .

(4)

Unfortunately, it turns out that it is in general impossible to find spanning trees TL that
satisfy (3). This is because there can bemany constraints Si forwhich x∗(δ(Si∩EL)) =
o(1), in a setting where one has to include at least one edge in TL that crosses one of
these constraints; see Fig. 1.

We therefore introduce a weaker condition on TL . For L ∈ L and i ∈ [n − 1], let
Ci (L) ⊆ C(L) be the family of all children C ∈ C(L) of L that cross the cut Si , i.e.,
Si ∩ L �= ∅ and L \ Si �= ∅. We want the sets TL to satisfy the following:

|TL ∩ δ(Si)| ≤ 7 · x∗(δ(Si) ∩ EL) + 2 · 1{|Ci (L)|≥2} ∀i ∈ [n − 1]. (5)

Here, 1{|Ci (L)|≥2} is the indicator that is equal to 1 if |Ci (L)| ≥ 2 and 0 otherwise.
We first show in Sect. 2.1 that satisfying the above condition indeed leads to a good

spanning tree T .

Theorem 3 For L ∈ L, let TL be a spanning tree in GL that satisfies (5). Then
T = ∪L∈LTL is a spanning tree in G satisfying

123

N. Olver, R. Zenklusen

|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi i ∈ [n − 1].

We then show in Sect. 2.2 that such spanning trees can indeed be found efficiently.

Theorem 4 For each L ∈ L, we can efficiently find a spanning tree TL in GL satis-
fying (5).

Combining the above two theorems immediately leads to an efficient algorithm to
find a spanning tree in G that violates each chain constraint by at most a factor of 9
whenever LP (2) is feasible, and thus proves Theorem 1. For convenience, a summary
of our algorithm is provided below.

Algorithm to find spanning tree T that violates chain constraints by a
factor of at most 9.

1. Compute an optimal solution x∗ to the linear program (2).
2. Independently for each L ∈ L, invoke Theorem 4 to obtain a spanning

tree TL in GL satisfying (5).
3. Return T = ∪L∈LTL .

2.1 Analysis of algorithm (proof of Theorem 3)

For each L ∈ L, let TL be a spanning tree in GL that satisfies (5), let T = ∪L∈LTL ,
and let i ∈ [n−1]. Using the same reasoning as in (4) we can bound the load on chain
constraint i as follows:

|T ∩ δ(Si)| =
∑

L∈L
|TL ∩ δ(Si)|

(5)≤ 7
∑

L∈L
x∗(δ(Si) ∩ EL) + 2

∑

L∈L
1{|Ci (L)|≥2}

= 7x∗(δ(Si)) + 2
∑

L∈L
1{|Ci (L)|≥2},

using the fact that {EL}L∈L partitions E . To prove Theorem 3, it thus suffices to show

∑

L∈L
1{|Ci (L)|≥2} ≤ x∗(δ(Si)), (6)

which then implies
|T ∩ δ(Si)| ≤ 9x∗(δ(Si)) ≤ 9bi ,

where the last inequality follows from x∗ being feasible for (2). We complete the
analysis by showing the following result, which is a stronger version of (6).

Lemma 5 ∑

L∈L
(|Ci (L)| − 1)+ ≤ x∗(δ(Si)),

where (·)+ = max(0, ·).

123

Chain-constrained spanning trees

Proof Let Li ⊆ L be the family of all sets in L that cross Si , and let Lmin
i ⊆ Li be all

minimal sets of Li . We will show that

∑

L∈L
(|Ci (L)| − 1)+ = |Lmin

i | − 1. (7)

Let us first see that this is a strengthening of the lemma. Since all sets W ∈ Li

correspond to tight spanning tree constraints with respect to x∗, we have that the
restriction x∗|E[W] of x∗ to the edges in the graph G[W] is a point in the spanning tree
polytope of G[W]. In particular, at least one unit of x∗|E[W] crosses any cut in G[W].
Since W ∈ Li , the set Si induces a cut (Si ∩ W,W \ Si) in G[W]. Hence

x∗(δ(Si) ∩ E[W]) ≥ 1 ∀ W ∈ Li .

Now observe that due to minimality of the sets in Lmin
i , all sets in Lmin

i are disjoint.
Thus

x∗(δ(Si)) ≥
∑

W∈Lmin
i

x∗(δ(Si) ∩ E[W]) ≥ |Lmin
i |,

which, together with (7), implies Lemma 5. Hence, it remains to show (7).
Let Lnm

i = Li\Lmin
i be all sets in Li that are not minimal. Notice that only sets

L ∈ Lnm can have a strictly positive contribution to the left-hand side of (7) since
these are precisely the sets L ∈ L with |Ci (L)| ≥ 1: for any other set L ∈ L, either
(i) L /∈ Li , in which case none of its children can cross Si since not even L crosses
Si , or (ii) L ∈ Lmin

i , in which case we again get |Ci (L)| = 0 since L has no children
in Li due to minimality. We thus obtain

∑

L∈L
(|Ci (L)| − 1)+ =

∑

L∈Lnm
i

(|Ci (L)| − 1). (8)

Observe that
∑

L∈Lnm
i

|Ci (L)| counts each set in Li precisely once, except for the set
V ∈ Li which is the only set in Li that is not a child of some other set in Li . Hence

∑

L∈Lnm
i

|Ci (L)| = |Li | − 1. (9)

Finally, combining (8) with (9) we obtain

∑

L∈L
(|Ci (L)| − 1)+ =

∑

L∈Lnm
i

(|Ci (L)| − 1) = |Li | − 1 − |Lnm
i | = |Lmin

i | − 1,

thus proving (7). �

123

N. Olver, R. Zenklusen

2.2 Main step of algorithm (proof of Theorem 4)

Let L ∈ L. We now consider the problem of finding a spanning tree TL in GL that
satisfies (5). Recall that GL is obtained from the graph (L , EL) by contracting all
children of L . For simplicity, we again interpret an edge {vi , v j } ∈ EL as an edge in
GL between the two vertices corresponding to the sets Ci ,C j ∈ L that contain vi and
v j , respectively.

We start by showing that there are no rainbows in EL , which is a crucial assumption
in the algorithm to be presented in the following.

Lemma 6 For L ∈ L, EL does not contain any rainbows.

Proof SinceL is a maximal laminar family of tight spanning tree constraints inG with
respect to x∗, the spanning tree constraints imposed by the sets inL define the minimal
face of PST on which x∗ lies (this is a well-known result that can be proven through
combinatorial uncrossing, see e.g. [10]). From this we can conclude that any other
tight spanning tree constraint x∗(E[W]) = |W | − 1, for some set W ⊆ V,W /∈ L, is
implied by the spanning tree constraints given by L.

Now assume by the sake of contradiction that there are two edges e1, e2 ∈ EL that
form a rainbow, and let e1 be the edge contained in strictly more chain constraints
than e2. We will argue that one could slightly increase the fractional value x∗(e2)
by some small value δ > 0 and decrease x∗(e1) by δ to get a new feasible solution
yδ = x∗ + δ · χ(e2) − δ · χ(e1) to (2) with strictly smaller objective value than x∗,
thus violating that x∗ is an optimal solution of (2). Clearly, since x∗ does not violate
any chain constraint, also y does not violate any chain constraint. Furthermore yδ , for
any δ > 0, has indeed a lower objective value than x∗. The only point that remains
to show is that there is a small δ > 0 such that yδ ∈ PST . Since all tight spanning
tree constraints are implied by the constraints that correspond to sets in L, it suffices
to check that yδ does not violate any of the spanning tree constraints induced by L.
This indeed holds since any set W ∈ L either satisfies e1, e2 ∈ E[W]—this happens
ifW is a set containing L—or e1, e2 /∈ E[W],which happens for any other setW ∈ L.
Hence, for any W ∈ L and δ > 0, we have

yδ(E[W]) = x∗(E[W]) = |W | − 1.

Thus, none of the spanning tree constraints that are tight with respect to x∗ will by
violated by yδ for any δ > 0. Hence, by choosing a sufficiently small δ > 0 that makes
sure that yδ ≥ 0, and that no other (non-tight) spanning tree constraints are violated,
we obtain yδ ∈ PST . �
Weclassify chain constraints Si into two types, depending on the right-hand side of (5).
Call a cut Si bad if one can include at most one edge that crosses Si in TL without
violating (5), i.e.,

7x∗(δ(Si) ∩ EL) + 2 · 1{|Ci (L)|≥2} < 2.

Otherwise, call the cut Si good. Notice that for a cut Si to be bad, we need to
have |Ci (L)| = 1 because of the following. Clearly, if |Ci (L)| ≥ 2, then Si can-
not be bad due to the term 2 · 1{|Ci (L)|≥2}. If |Ci (L)| = 0, then we use the fact that all

123

Chain-constrained spanning trees

edges in E[L] that cross Si are part of EL , hence

x∗(δ(Si) ∩ EL) = x∗(δ(Si) ∩ E[L]) ≥ 1,

where the last inequality follows from the fact that x∗|E[L] is in the spanning tree
polytope of the graph (L , E[L]). Hence a cut Si is bad if and only if the following
two conditions hold simultaneously:

1. |Ci (L)| = 1,
2. x∗(δ(Si) ∩ EL) < 2

7 .

An edge e ∈ EL is called bad if e crosses at least one bad cut Si , otherwise it is called
good. We denote by AL ⊆ EL the sets of all good edges.

The procedurewe use to find a tree TL satisfying (5) constructs a tree TL that consists
of only good edges, i.e., TL ⊆ AL . We determine TL using a matroid intersection
problem that asks to find a spanning tree in GL satisfying an additional partition
matroid constraint.

To define the partition matroid we first number the edges AL = {e1, . . . , ek} as
follows. For e ∈ AL , let α(e) < β(e) be the lower and higher index of the two
endpoints of e, hence, e = {vα(e), vβ(e)}. (Notice that α(e) = β(e) is not possible since
x∗(e) > 0 ∀e ∈ E and x∗ ∈ PST .) The edges e ∈ AL are numbered lexicographically,
first by increasing value of α(e) and then by increasing value of β(e), i.e., for any
p ∈ [k−1] either α(ep) < α(ep+1), or α(ep) = α(ep+1) and β(ep) ≤ β(ep+1). Note
that since AL has no rainbows, the set of edges in AL crossing a given Si are labeled
consecutively. Ideally, we would like to group the edges in AL into consecutive blocks
{ep, ep+1, . . . , eq} each having a total weight of exactly x∗({ep, . . . , eq}) = 3/7.
Since this is in general not possible, we will split some of the edges by creating
two parallel copies. More precisely, to define the first set P1 of our partition, let
p ∈ [k] the lagest index for which x∗({e1, . . . , ep}) ≤ 3/7. If x∗({e1, . . . , ep}) = 3/7
then P1 = {e1, . . . , ep}. Otherwise, we replace the edge ep+1 by two parallel copies
e′
p+1, e

′′
p+1 of ep+1, andwe distribute theweight of x∗(ep+1) on e′

p+1, e
′′
p+1 as follows:

x∗(e′
p+1) = 3

7
− x∗({e1, . . . , ep}),

x∗(e′′
p+1) = x∗(ep+1) − x∗(e′

p+1).

This splitting operation does not violate any previous assumptions: the weight x∗ on
the new edge set {e1, . . . , ep, e′

p+1, e
′′
p+1, ep+2, . . . , ek} is still a point in the spanning

tree polytope of the graph over the vertices C(L) with the new edge set. By applying
this splitting operation whenever necessary, we can assume that AL = {e1, . . . , ek}
can be partitioned into sets P1 = {e1, . . . , ep1}, P2 = {ep1+1, . . . , ep2}, . . ., Ps =
{eps−1+1, . . . , ek} satisfying:
(i) x∗(Ph) = 3/7 ∀h ∈ [s − 1],
(ii) x∗(Ps) ≤ 3/7.

123

N. Olver, R. Zenklusen

Using this partition we define a unitary partition matroid M = (AL , I) on the good
edges AL , with independent sets

I = {U ⊆ AL | |U ∩ Ph | ≤ 1 ∀h ∈ [s]}.

The tree spanning TL inGL that our algorithm selects is any spanning tree TL ⊆ AL

in GL that is independent in the partition matroid M . Notice that if there exists a
spanning tree in GL that is independent in M , then such a spanning tree can be found
in polynomial time by standard matroid intersection techniques (see [17, Volume B]
for more details about matroids in general and techniques to find common independent
sets in the intersection of twomatroids).Hence to complete the description and analysis
of our algorithm, all that remains is to show the existence of a spanning tree in GL

that is independent in M , and that such a spanning tree satisfies (5). We address these
two statements in the following.

The theorem below shows the feasibility of the matroid intersection problem.

Theorem 7 There exists a spanning tree TL ⊆ AL in GL that is independent in M,
i.e., TL ∈ I.
Proof Let y ∈ [0, 1]AL be defined by y(e) = 7

3 x
∗(e) for e ∈ AL . To prove the

theorem, we show that y is simultaneously in the matroid polytope of M and in the
dominant2 of the spanning tree polytope of GA

L , where G
A
L is the graph obtained from

GL by deleting all bad edges. This implies that the intersection of PST (GA
L) and the

matroid polytope PM of M is nonempty. Since PST (GA
L)∩ PM is a face of the matroid

intersection polytope corresponding to intersecting the matroid M with the graphic
matroid on GA

L , it is therefore integral [17]. Hence, if PST (GA
L) ∩ PM is nonempty, it

contains an integral point, and this corresponds to a spanning tree that is independent
in M .

The vector y is clearly in the matroid polytope of the partition matroid M , since
for any partition Ph with h ∈ [s] we have y(Ph) = 7

3 x
∗(Ph) ≤ 1.

To show that y is in the dominant of the spanning tree polytope of GA
L , we first

discuss some structural properties of GA
L that allow us to decompose the problem. Let

Si1 , Si2 , . . . , Sip be all bad cuts, where 1 ≤ i1 < · · · < i p ≤ n − 1. For j ∈ [p], let
C j ∈ C(L) be the child that crosses Si j . Notice that since Si j is bad, there is indeed
precisely one child of L that crosses Si j , and furthermore, there are no good edges
crossing Si j . Hence, every C j for j ∈ [p] is a cut vertex in GA

L , whose removal splits
GA

L into a part where all vertices are contained in Si j and a part where all vertices are
outside of Si j .

We define the following vertex sets of GA
L , which correspond to the vertex sets

between those cut vertices, including the cut vertices themselves:

B1 = {C ∈ C(L) | C ∩ Si1 �= ∅},
B j = {C ∈ C(L) | C ∩ (Si j \Si j−1) �= ∅} ∀ j ∈ {2, . . . , p},

2 Recall that the dominant of a polyhedron P is the set of vectors x such that x ≥ y for some y ∈ P .

123

Chain-constrained spanning trees

C1 C3

C2

C5 C6

C4

C7 C9
C8

C1 C3

C2

C2

C5 C6

C4

C8

C7 C9
C8

Si1

Si2

G1
L

G2
L

G3
L

Fig. 2 Anexample showingGL on the left (with the edges ofGA
L inbold), and the resultingG j

L = (B j , A j
L)

for j ∈ {1, 2, 3}

B p+1 = {C ∈ C(L) | C ∩ (V \Sip) �= ∅}.

Hence, the above sets contain all vertices of GA
L precisely once except for the cut

vertices, which appear in at least two sets.
For j ∈ [p + 1], let G j

L = GA
L [B j], i.e., G j

L is the induced subgraph of GA
L over

the vertices B j ; also let A j
L denote the edge set of G j

L (see Fig. 2). To show that y
is in the dominant of the spanning tree polytope of GA

L , we show that the restriction

of y to the edges of any of the graphs G j
L for j ∈ [p + 1] is in the dominant of the

spanning tree polytope of G j
L . Fix j ∈ [p + 1]. Let y j = y|

A j
L
be the restriction of y

to the edges in G j
L . To show that y j is in the dominant of the spanning tree polytope

of G j
L , we use the following well-known partition-based description of the dominant

of the spanning tree polytope (see [17]). LetW = {W1, . . . ,Wq} be a partition of the
sets in B j , i.e., the vertices of G j

L , and we denote by A j
L(W) all edges of A j

L with
endpoints in two different sets of the partitionW . To show that y j is in the dominant
of the spanning tree polytope of G j

L , we have to show that the following inequality
holds for any partition W = {W1, . . . ,Wq} of B j :

y(A j
L(W)) ≥ q − 1. (10)

Given a partition W = {W1, . . . ,Wq} of B j with q ≥ 2, we define a partition Z =
{Z1, . . . , Zq} of the set C(L) as follows. We start by setting Zr = Wr for r ∈ [q]. If
j ∈ {2, . . . , p+1}, we add∪ j−1

s=1Bs to the set Z ∈ Z that containsC j−1. Additionally,

123

N. Olver, R. Zenklusen

if j ∈ [p], we add ∪p+1
s= j+1Bs to the set Z ∈ Z that contains C j . Hence, Z is identical

toW with the possible exception of up to two sets. Let EL(Z) be the set of all edges
in EL that cross the partition Z . Notice that EL(Z) consists of all edges in A j

L(W)

together with all bad edges that cross either of the bad cuts Si j−1 or Si j . Since the

x∗-weight of the set of all edges crossing any bad cut is bounded by 2
7 we obtain

x∗(EL(Z)) ≤ x∗(A j
L(W)) + 2 · 2

7
. (11)

Furthermore, since x∗ is in the spanning tree polytope of GL , it fulfills the partition-
constraints that define the dominant of the spanning tree polytope of GL . For the
partition Z this leads to

x∗(EL(Z)) ≥ q − 1. (12)

Using the definition of y and combining (11) and (12) we obtain

y(A j
L(W)) = 7

3
x∗(A j

L(W))
(11)≥ 7

3
x∗(EL(Z)) − 4

3

(12)≥ 7

3
(q − 1) − 4

3
≥ q − 1,

since q ≥ 2. This shows (10) and therefore completes the proof. �
The following theorem finishes the analysis of our algorithm.

Theorem 8 Let TL ⊆ AL be a spanning tree in GL that is independent in M. Then
TL satisfies (5).

Proof Consider a cut Si for somefixed i ∈ [n−1].Weconsider the partition P1, . . . , Ps
of AL used to define the partition matroid M . We are interested in all sets in this parti-
tion that contain edges crossing Si . Recall that the edges crossing Si are consecutively
labelled. Thus the sets of the partition containing edges crossing Si are also consecu-
tively numbered, so let these be

Pa, Pa+1, . . . , Pb, where 1 ≤ a ≤ b ≤ s. Since TL contains at most one edge in
each partition, we have

|TL ∩ δ(Si)| ≤ b − a + 1. (13)

We first consider the case b − a ≥ 2. Notice that all edges in any set Ph for
a < h < b cross Si . Hence,

x∗(δ(Si) ∩ EL) ≥
b−1∑

h=a+1

x∗(Ph) = (b − a − 1) · 3
7
,

where we used x∗(Ph) = 3
7 for 1 ≤ h ≤ s − 1. Combining the above inequality

with (13), and using that b − a ≥ 2 in the second inequality, we obtain that

|TL ∩ δ(Si)| ≤ b − a + 1 ≤ 3(b − a − 1) ≤ 7x∗(δ(Si) ∩ EL).

Thus TL satisfies (5).

123

Chain-constrained spanning trees

Assume now b − a ≤ 1. If Si is bad, then |TL ∩ δ(Si)| = 0 since TL only contains
good edges and no good edge crosses any bad cut. Hence, TL trivially satisfies (5). So
assume that Si is good, i.e., either |Ci (L)| ≥ 2 or x∗(δ(Si) ∩ EL) ≥ 2

7 . If |Ci (L)| ≥ 2,
then beginning again from (13) we have

|TL ∩ δ(Si)| ≤ b − a + 1 ≤ 2 = 2 · 1|Ci (L)|≥2.

Otherwise, if x∗(δ(Si) ∩ EL) ≥ 2
7 , then

|TL ∩ δ(Si)| ≤ 2 ≤ 7x∗(δ(Si) ∩ EL).

Either way, TL satisfies (5). �

3 Hardness and integrality gaps

In this section, we provide the proof of Theorem 2.

3.1 The chain-constrained partition problem

We will begin by considering a different problem, where we replace the spanning tree
constraint by a unitary partition matroid. We will show integrality gaps and hardness
for this problem first, and then show how this can be leveraged to the spanning tree
setting via a gadget.

So consider the following problem, that we call the chain-constrained partition
problem. We are given a graph G = (V, E) and a chain S1 � S2 � · · · � S�

of cuts, with associated upper bounds bi for i ∈ [�]. We are also given a partition
{B1, B2, . . . , Bq} of E . The goal is to pick precisely one edge from each part, while
satisfying the chain constraints. Without loss of generality, we can take E to be a
matching (by splitting vertices as needed); wewill always assume this in what follows.

The problem has a completely equivalent formulation as follows. We are given a
� × m consecutive-ones matrix A (i.e., entries of A are 0-1, and in any column of A,
the 1’s are all consecutive) and an integral right-hand side vector b of length �. We
are also given a partition B = {B1, . . . , Bq} of [m]. The goal is to pick one column
from each part so that the sum of the chosen columns does not exceed b, if such a
choice exists; or in other words, to find a vector x ∈ {0, 1}m such that Ax ≤ b and for
i ∈ [q] there is precisely one index j ∈ Bi with x j = 1. The correspondence to the
other formulation is that each row corresponds to a chain constraint, and each column
of 1’s to an edge.

Relation to the chain-constrained spanning tree problem. Herewewill show that addi-
tive integrality gaps and hardness results for the chain-constrained partition problem
transfer to the chain-constrained spanning tree problem. Note that only additive results
will transfer; our gadgetswill require increasing the right hand side, and constant-factor
multiplicative hardness (which is an easy consequence for the partition version) will
not carry over.

123

N. Olver, R. Zenklusen

Fig. 3 First step of the
reduction to the
chain-constrained partition
problem. Edges E ′ are shown as
wavy; the dashed sets are the
chain constraints

So let an instance of the chain-constrained partition problem be given, with G =
(V, E) being the graph. For each edge e, let α(e) be the innermost endpoint of edge
e (with respect to the chain) and β(e) the outermost endpoint. Now construct the set
of edges E ′ as the union of an arbitrary spanning tree on {α(e) | e ∈ E}, and for each
i ∈ [q], an arbitrary spanning tree on {β(e) | e ∈ Bi } (see Fig. 3). Keep the same set
of chain constraints, but modify the upper bounds by setting b′

i = bi + |δ(Si) ∩ E ′|.
Now consider the chain-constrained spanning tree problem on G ′ = (V, E ∪ E ′),

but subject to the extra restriction that every edge in E ′ must be picked. This is clearly
precisely the sameproblemas the original chain-constrained partition problem: R ⊆ E
satisfies the partition constraints if and only if R ∪ E ′ is a spanning tree of G ′, and
the definition of b′

i absorbs the change in the number of edges across the cut δ(Si). In
order to eliminate this extra restriction, we need one further trick.

Let s = |E ′| + 1. For each edge e = {va, vb} ∈ E ′, with a < b, we split e into a
path of length s�. Let v(r)

e denote the vertices of this path in order, with v
(0)
e = va and

v
(s�)
e = vb.
Call the resulting graph G ′′, and let E ′′ be the set of edges which replaced E ′. Note

that

(1) for each edge in E ′, all but at most one of the edges in the corresponding path must
be chosen in any spanning tree of G ′′.
We now define, for i ∈ [�] and j ∈ [s],
S(j)
i = Si ∪ {

v(k)
e : e ∈ E ′[Si], k ∈ [s�]} ∪ {

v(k)
e : e ∈ δG ′(Si), k < is + j

}
.

(See Fig. 4.) This family of sets clearly does form a chain. We may thus define an
instance of the chain-constrained spanning tree problem on the graph G ′′, and with
the contraints |T ∩ δ(S(j)

i)| ≤ b′
i for all i ∈ [�], j ∈ [s]. Call this problem the derived

problem.

Lemma 9 If the original chain-constrained partition problem has a feasible solution,
then so does the derived chain-constrained spanning tree problem.

123

Chain-constrained spanning trees

Fig. 4 Edge splitting ensures that there is no advantage to not taking all edges in E ′′

Furthermore if T is an additive k-approximate solution to the derived problem,
then T ∩ E is an additive k-approximate solution to the original problem.

Proof First, recall that if R is a feasible solution to the original problem in G, then
R ∪ E ′ is a spanning tree in G ′; hence T ′′ := R ∪ E ′′ is a spanning tree in G ′′.
Moreover

|T ′′ ∩ δG ′′(S(j)
i)| = |R ∩ δG(Si)| + |δG(Si) ∩ E ′| ≤ b′

i , for each i ∈ [�], j ∈ [s].

So T ′′ is a feasible solution to the derived problem.
Now consider an arbitrary spanning tree T in G ′′. Focus on some particular i ∈ [�].

We claim that

|T ∩ E ∩ δG(Si)| + |δG(Si) ∩ E ′| = max
j∈[s] |T ∩ δG ′′(S(j)

i)|.

This is a consequence of point (1) above; there are atmost |E ′| < s edges of E ′ crossing
δ(Si), and so there must be some choice of j ∈ [s] for which T ⊇ E ′′ ∩ δG ′′(S(j)

i). It
follows by the definition of b′

i that if T is an additive k-approximation to the derived
problem, then T ∩ E is an additive k-approximation to the original problem. �

Note that if the original instance has n vertices, then the derived instance will
have O(ns) = O(n2) vertices. So to prove Theorem 2 it suffices to show an
Ω(log n/ log log n) additive inapproximability result for the chain-constrained par-
tition problem.

3.2 NP-hardness

We will now consider only the chain-constrained partition problem from this point,
and we will use the equivalent consecutive-ones formulation discussed in Sect. 3.1.
Our first modest goal will be to show that it is NP-complete to decide whether there
is a solution that does not violate any constraints at all.

We first note that the same problem, butwithout the requirement that the ones in any
column of Amust be consecutive, is clearly hard, even if all parts of the partition have

123

N. Olver, R. Zenklusen

2 3

1

4

1 00 1 1 0 1 0
1 1
1 1

1 1
1 1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

C = b =

2
1
1
1
1

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 5 Reduction from independent set to a column selection problem; here k = 2

size 2. We reduce from the independent set problem (see Fig. 5). Let H = (W, E)

be a given graph, and k a given integer, and consider the question of whether H has
an independent set of size k. Let t = |W |, and w1, . . . , wt a labelling of W . Define
the partition {{2 j − 1, 2 j} | j ∈ [t]} of W ; if column 2 j is picked, this will represent
that vertex j is chosen in the independent set. We define C and b as follows. The first
row of C contains a 1 in all columns of odd index, and b1 = t − k; this ensures that
at least k vertices are chosen. Each edge {wi , w j } ∈ E has one corresponding row in
C , consisting of a 1 in columns 2i and 2 j , with all other entries 0; the corresponding
entry in b is also 1. This represents the constraint that at most one of wi and w j can
be picked. It is clear that a feasible solution x exists if and only if an independent set
of size k exists.

So our goal will be to simulate this pairwise column-selection problem without
the consecutive-ones restriction, via an instance where the consecutive-ones property
holds. Thus let C be an arbitrary � × m 0-1 matrix (we may assume each column
contains at least one nonzero entry), and b the vector of upper bounds. Assume that
the columns are ordered so that column 1 is paired with column 2, column 3 is paired
with column 4, and so on. Let ri be the number of ones in column i ∈ [m], and let
r ′ = ∑m

j=1 r j . First expand out the matrix C horizontally, by replacing column j by
r j columns, moving the i’th 1 in the column to the i’th replacement column (in the
same row). Call the resulting matrix C̃ ; so each column of C̃ has a single 1, and the
first r1 columns of C̃ correspond to the first column of C , the following r2 columns to
the second column of C , etc. Let Λn denote the n × 1 matrix consisting of all ones,
and In the n × n identity matrix. Let Q be the r ′ × � matrix

Q =

Λr1

Λr2

. . .

Λrk

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

123

Chain-constrained spanning trees

Then define the final matrix (which has the consecutive-ones property) by

A =
C̃

Ir ′ Q

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

,

as well as the partition

{{a, r ′ + a} | a ∈ [r ′]} ∪ {{2r ′ + 2 j − 1, 2r ′ + 2 j} : j ∈ [m/2]}.

The packing constraint for the first � rows remains unchanged, i.e., is given by b.
The packing constraint for all other rows is chosen to be 1.

Now suppose a feasible solution picks column 2r ′ +1. Then by the definition of A,
and our choice of packing constraints, none of the columns r ′ + 1, r ′ + 2, . . . , r ′ + r1
are chosen. Hence all of the columns 1, 2, . . . , r1 are chosen. This exactly corresponds
to picking column 1 of C . If we do not pick column 2r ′ + 1 on the other hand, there
is no good reason to choose any of these columns. The same argument shows that if
column 2r ′ + j is picked for some j ∈ [m], then all columns corresponding to column
j of C are picked. Since we must pick one of the columns 2r ′ + 2 j − 1 and 2r ′ + 2 j ,
this precisely mimics the requirement that we pick one out of columns 2 j − 1 and 2 j
of C .

Once again, the blowup is only polynomial; if C is �×m, then A will be O(m�)×
O(m�). This completes the proof that the chain-constrained partition problem is NP-
complete.

3.3 Boosting to an additive Ω(log n/ log log n) hardness

First, consider the following simple integrality gap construction, which will motivate
the hardness construction. Fix an integer k. We will construct a sequence of matrices
A1, A2, . . ., with Ai having ki rows and Θ(ki) columns, as well as a partition Bi of
the columns of Ai , as follows. Let A1 be a k × k identity matrix, and B1 be the trivial
partition with only one part. We construct Ai+1 inductively from Ai as demonstrated
by the blockmatrix diagramof Fig. 6; the left k columns consist of a vertically stretched
k×k identity matrix (i.e., the Kronecker product A1⊗Λk , where recallΛk is a column
vector of k ones), and the remaining columns consist of the Kronecker product Ik⊗Ai .
The partition Bi+1 contains one part consisting of the first k columns, and then a copy
of Bi for each set of columns corresponding to a copy of Ai .

Consider now the instance defined by Ak andBk with a right hand side consisting of
all ones. Observe that the obvious uniform fractional solution, wherewe pick xi = 1/k
for each i , is feasible, since there are precisely k 1’s in each row. However, for any 0-1
solution x satisfying the partition constraints, ‖Akx‖∞ ≥ k. Indeed, it is easy to see
inductively that ‖Ai x‖∞ ≥ i for any 0-1 vector x satisfying the partition constraints
Bi .

123

N. Olver, R. Zenklusen

Fig. 6 Construction of the
matrix Ai+1 (here, k = 3) 1

...
1

1

...
1

1

...
1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ai

Ai

Ai

It is easily checked that k = Θ(logm/ log logm),wherem is the number of columns
of Ak .

In order to obtain a hardness result, we will now embed the hardness construction
from the previous section as a gadget within this integrality gap construction. So let an
arbitrary chain-constrained partition problem be given; A1x ≤ b1, with partition B1.
Let m be the number of columns of A1, and k the number of rows. We may assume
that k ≤ 2m, since otherwise, due to the consecutive-ones structure, some constraints
will necessarily be redundant. We will construct a larger instance such that finding an
integral solution with additive violation o(logm/ log logm) would provide an exact
solution to the starting problem.

The approach is essentially the same as for the integrality gap construction. We
inductively define Ai+1 (with ki+1 rows) from Ai (with ki rows) by

Ai+1 =
(
A1 ⊗ Λki Ik ⊗ Ai

)
. (14)

The vector bi+1 (of length ki+1) is obtained by taking k copies of bi (which has length
ki), added to a stretched version of b1:

bi+1 = b1 ⊗ Λki + Λk ⊗ bi . (15)

Finally, define xi+1 so that the first m components of xi+1 is a copy of x1, and
the remaining components yield the vector Λk ⊗ xi (i.e., just xi repeated k times).
This ensures that if Ai xi ≤ bi and A1x1 ≤ b1, then Ai+1xi+1 ≤ bi+1. The partition
Bi+1 is defined in the obvious way: the first m columns are partitioned using B1, the
remaining columns are partitioned using k consecutive partitions of type Bi .

Lemma 10 If we have a 0-1 solution zi satisfying Bi and the relaxed constraints

Ai zi ≤ bi + (i − 1) · Λki , (16)

then we can efficiently construct a 0-1 solution z satisfying B1 and where A1z ≤ b1.

123

Chain-constrained spanning trees

Proof We proceed by induction. The claim clearly holds for i = 1.
So assume the claim holds for i − 1. Let z̃ be the vector consisting of the first m

components of zi . By the definition of Bi , z̃ satisfies B1. If A1 z̃ ≤ b1, we already have
the required solution, so suppose not.

Choose t so that β := (A1 z̃)t ≥ b1t + 1. Let mi denote the number of columns of
Ai . Now let zi−1 be the vector of length ki−1 consisting of the components of zi from
index m + (t − 1) ·mi−1 through m + t ·mi−1 − 1. Fix any j ∈ [ki−1], and consider
row j ′ := j + (t − 1) · ki−1 of (16). From (14) we have (Ai zi) j ′ = β + (Ai−1zi−1) j ,
and so

(Ai−1zi−1) j ≤ bij ′ − β + (i − 1)
(15)= bi−1

j + b1t − β + (i − 1) ≤ bi−1
j + (i − 2).

So zi−1 satisfies the conditions of the lemma for i−1, and so by induction the required
z can be found efficiently. �
Notice that Ai has ki ≤ (2m)i = O(m)i rows. Furthermore, the number of columns
mi of Ai is equal to m + k · mi−1. Since m1 = m, we obtain

mi = m
i−1∑

j=0

k j = m
ki − 1

k − 1
= O(m)i .

Choosing i = m, we obtain a matrix Am with O(m)m columns and O(m)m rows. This
we can reduce to a chain-constrained spanning tree problem on mO(m) nodes; writing
m in terms of the number of nodes n, we find that m = Θ(log n/ log log n), and we
obtain the required additive hardness of Theorem 2.

4 Conclusions

We would like to close with several interesting directions for future research.
One very natural question is whether there is an O(1)-approximation for laminar cut
constraints; we believe this to be true.

Although it seems non-trivial to directly generalize our procedure for the chain-
constrained case to the laminar case, we hope that they can be useful in combination
with insights from O(1)-approximations for the degree-bounded case. Another natural
extension would be to a cost version of the problem, where edges are weighted and
the goal is to return a spanning tree of minimum cost satisfying the chain constraints.
The main reason our approach does not generalize easily to this setting is that we use
a particular objective function to eliminate rainbows in the subproblems. Recently,
Linhares and Swamy [14] have shown how to produce a spanning tree that violates all
chain constraints by a constant multiplicative factor, and in addition has cost within a
constant factor of the optimum (the optimum being the cost of a cheapest spanning tree
that does not violate any of the constraints at all). Their algorithm relies explicitly on
the results of this paper, in particular Theorems 3 and 4. It remains an open question
to efficiently find a spanning tree that violates the chain constraints by a constant
multiplicative factor and has cost no larger than the optimum.

123

N. Olver, R. Zenklusen

Acknowledgements We are grateful to the anonymous referee for an extremely careful reading and many
constructive comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Anari, N., Oveis Gharan, S.: Effective-resistance-reducing flows and asymmetric TSP.
ArXiv:1411.4613 (2014)

2. Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An O(log n/ log log n)-
approximation algrithm for the asymmetric traveling salesman problem. In: Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2010)

3. Bansal, N., Khandekar, R., Könemann, J., Nagarajan, V., Peis, B.: On generalizations of net-
work design problems with degree bounds. Math. Program. 141(1), 479–506 (2013). doi:10.1007/
s10107-012-0537-8

4. Bansal, N., Khandekar, R., Nagarajan, V.: Additive guarantees for degree-bounded directed network
design. SIAM J. Comput. 39(4), 1413–1431 (2009)

5. Bauer, F., Varma, A.: Degree-constrained multicasting in point-to-point networks. In: Proceedings
of the Fourteenth Annual Joint Conference of the IEEE Computer and Communication Societies
(INFOCOM), pp. 369–376 (1995)

6. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: A push-relabel approximation algorithm for approx-
imating the minimum-degree MST problem and its generalization to matroids. Theor. Comput. Sci.
410, 4489–4503 (2009)

7. Chaudhuri, K., Rao, S., Riesenfeld, S., Talwar, K.: What would Edmonds do? Augmenting paths and
witnesses for degree-bounded MSTs. Algorithmica 55, 157–189 (2009)

8. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of
combinatorial structures. In: Proceedings of the 51st IEEE Symposium on Foundations of Computer
Science (FOCS), pp 575–584 (2010)

9. Fürer,M., Raghavachari, B.:Approximating theminimum-degree Steiner Tree towithin one of optimal.
J. Algorithms 17(3), 409–423 (1994)

10. Goemans, M.X.: Minimum bounded degree spanning trees. In: Proceedings of the 47th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 273–282 (2006)

11. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combina-
torica 21, 39–60 (2001)

12. Könemann, J., Ravi, R.: A matter of degree: improved approximation algorithms for degree-bounded
minimum spanning trees. SIAM J. Comput. 31, 1783–1793 (2002)

13. Könemann, J., Ravi, R.: Primal-dualmeets local search: approximatingMST’swith nonuniform degree
bounds. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp.
389–395 (2003)

14. Linhares, A., Swamy, C.: Approximating min-cost chain-constrained spanning trees: a reduction from
weighted to unweighted problems. In Proceedings of the 18th Conference on Integer Programming
and Combinatorial Optimization (IPCO). Springer-Verlag, New York, pp. 38–49 (2016)

15. Oveis Gharan, S., Saberi, A.: The asymmetric traveling salesman problem on graphs with bounded
genus. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 967–975 (2011)

16. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Approximation algorithms for
degree-constrained minimum-cost network-design problems. Algorithmica 31(1), 58–78 (2001)

17. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Berlin (2003)
18. Singh,M., Lau,L.C.:Approximatingminimumboundeddegree spanning trees towithin one of optimal.

In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 661–670
(2007)

19. Zenklusen, R.:Matroidal degree-boundedminimum spanning trees. In: Proceedings of the 23rdAnnual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1512–1521 (2012)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1411.4613
http://dx.doi.org/10.1007/s10107-012-0537-8
http://dx.doi.org/10.1007/s10107-012-0537-8

	Chain-constrained spanning trees
	Abstract
	1 Introduction
	1.1 Our results
	1.2 Thin trees

	2 The algorithm
	2.1 Analysis of algorithm (proof of Theorem 3)
	2.2 Main step of algorithm (proof of Theorem 4)

	3 Hardness and integrality gaps
	3.1 The chain-constrained partition problem
	3.2 NP-hardness
	3.3 Boosting to an additive Ω(logn / loglogn) hardness

	4 Conclusions
	Acknowledgements
	References

