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We consider the following network design problem. We are given an undirected graph G = (V, E) with edge
costs c(e) and a set of terminal nodes W C V. A hose demand matrix is any symmetric matrix D, indexed by
the terminals, such that for each i € W, Z#i D;; < 1. We must compute the minimum-cost edge capacities
that are able to support the oblivious routing of every hose matrix in the network. An oblivious routing
template, in this context, is a simple path P;; for each pair i,j € W. Given such a template, if we are to route
a demand matrix D, then for each i,j, we send D;; units of flow along each P;;. Fingerhut et al. [1997] and
Gupta et al. [2001] obtained a 2-approximation for this problem, using a solution template in the form of a
tree. It has been widely asked and subsequently conjectured [Italiano et al. 2006] that this solution actually
results in the optimal capacity for the single-path VPN design problem; this has become known as the VPN
Conjecture. The conjecture has previously been proven for some restricted classes of graphs [Fingerhut et al.
1997; Fiorini et al. 2007; Grandoni et al. 2008; Hurkens et al. 2007]. Our main theorem establishes that
this conjecture is true in general graphs. This also has the implication that the single-path VPN problem is
solvable in polynomial time.

A natural fractional version of the conjecture had also been proposed [Hurkens et al. 2007]. In this version,
the routing may split flow between many paths, in specified proportions. We demonstrate that this multipath
version of the conjecture is in fact false. The multipath and single path versions of the VPN problem are
essentially direct analogues of the randomized and nonrandomized versions of oblivious routing schemes for
minimizing congestion for permutation routing [Borodin and Hopcroft 1982; Valiant 1982].
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1. INTRODUCTION

Robustness has become one of several paradigms used to address data uncertainty
in optimization. While the input data may not be known perfectly, it assumes that
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each input comes from some known bounded region (called the universe or uncertainty
set) of legal inputs. Robust optimization then seeks an optimal solution that is valid
for all possible inputs in the universe; robustness is thus a worst-case approach for
coping with uncertainty. The area has seen significant development in the 1990’s due
especially to work by Ben-Tal and Nemirovski [1998, 1999] and El Ghaoui et al. [1997,
1998] (see also Ben-Tal et al. [2009] for more references).

Robust optimization has also gained popularity in discrete optimization [Bertsimas
and Sim 2003; Kouvelis and Yu 1997], and one particularly active area of research
arises in the context of network design. This work is largely motivated by the fact that
traffic demands in internet protocol (IP) networks are often hard to determine and/or
are rapidly changing. In the basic model for robust network design the input consists
of a graph (network topology) and a set of terminals that must be connected. One must
determine how much capacity to allocate to each edge of the network so that all traf-
fic patterns can be supported. The uncertainty in the problem is that the network may
have to support a wide variety of traffic patterns. We can represent a specific traffic pat-
tern with a demand matrix; this is a matrix D, indexed by the terminals, with entry D;;
specifying the demand from i to j. It is assumed that we are given a universe U of pos-
sible demand matrices, specified as a polyhedron (or more generally, as a convex body).
The problem is to design a “minimum cost” network such that each demand matrix in
U can be routed in the resulting network. There are several possible cost metrics. For
instance, the congestion measure would seek to minimize the maximum capacity. This
represents a broad class of network optimization problems that contains as special
cases problems that have been widely studied. This includes problems in the theory of
parallel computation [Borodin and Hopcroft 1982; Valiant and Brebner 1981], multi-
commodity flows [Leighton and Rao 1999] and online algorithms [Récke 2002, 2008]. In
the present paper, we consider the total cost measure; we assume that each edge has a
per-unit cost of reserving capacity, and the aim is to minimize the sum of capacity costs.

We have omitted a crucial issue in our discussion so far: the way in which demands
are routed between terminals. In particular, we need to specify whether and how
rapidly the routing may be updated in response to changes in the traffic matrix. In
dynamic routing, one has total freedom; the routing may be fractional, and may
be completely updated whenever incoming traffic demands change. This version
was introduced in Ben-Ameur and Kerivin [2003] and can be seen to be a convex
optimization problem. However, it turns out to be coNP-hard [Chekuri et al. 2007]
based on a reduction from (uniform) sparsest cut, which also shows that it is hard to
approximate if sparsest cut is.

A second well-known (and more practical) model is that of oblivious routing. This
approach, inspired by routing in packet networks, asks for a template that defines
ahead of time how any future demands will be routed. For each terminal pair i,j,
the template specifies a path P;; joining i,j. The interpretation is that if there is a
future demand of D;; between terminals i and j, then we will send D;; flow along
P;;. A relaxed form of the oblivious routing model would only require a unit flow
fij for each pair, and we route the demand proportionally according to the flow. We
refer to these models as single-path routing (SPR) and multipath routing (MPR)
respectively. In Ben-Ameur and Kerivin [2005], it is shown that the robust design
problem is polytime solvable for the MPR model if the universe U/ has a polytime
separation oracle. In contrast, the SPR model was recently shown to be hard to
approximate to within polylogarithmic factors [Olver and Shepherd 2010] (and using
tree embedding techniques, an O(log n)-factor approximation is possible [Gupta 2004,
private communication]).
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1.1. The VPN Problem

We have discussed the robust network design model and known results for general
universes U. As with general robust optimization, there has also been intensive
study of specific fixed universes. A class of particular interest (indeed it was well
studied before the general robust network design model was even formulated) is
the hose model. The hose model was independently formulated by Fingerhut et al.
[1997], motivated by applications to ATM broadband networks, and by Duffield
et al. [1999], motivated by the specification of virtual private networks (VPNs). This
latter motivation is particularly important. An enterprise customer wishes to set
up a private network (perhaps connecting various company branches), on top of an
underlying network of a large telecommunications operator. The customer has specific
bandwidth requirements, and in order to satisfy these, the operator will need to
reserve capacity on the network for this customer’s use. The amount and distribution
of this reserved bandwidth depends on the exact customer requirements, and these
need to be specified in some way. The simplest way is via point-to-point demands;
the customer specifies the bandwidth requirement for each pair of terminals in the
VPN, and the network must be able to route all these demands simultaneously. This
is known as the pipe model. However, the demand pattern across the VPN is unlikely
to be fixed; more likely, demands will fluctuate over time. In order for the customer
to give a specification in the pipe model that covers all likely circumstances, the
worst-case demand between every pair would have to be used.

In the hose model, a different and more flexible description of the customers
requirements is given. Rather than specifying the exact demand between each pair of
terminals, only a maximal aggregate demand at each terminal needs to be specified.
More precisely, the customer must specify, for each terminal in the VPN, an upper
bound on the total demand terminating at that terminal. The service guarantee
provided by the network operator is that any pattern of demands across the network
must be routable, as long as they respect these upper bounds.

The model comes in both symmetric and asymmetric flavors; it is the symmetric
version that will concern us in this article. The symmetric hose universe is determined
by a single marginal b; for each terminal i, which gives the upper bound on the total
demand terminating at i. The associated class of hose matrices is

H®) = (DR Dy =Djand Y Dy <b; Vi e W}; 6))
jewW

we will write just H when b is understood. The term “symmetric” is used because we
consider demand to be between an unordered pair of terminals; D;; and Dj; refer to
the same demand. We thus also require that P;; = Pj;, f;; = f;;, as appropriate. There
is no such restriction in the asymmetric hose model, where demands are considered
to be oriented. Moreover, two distinct marginals b; and b;r are associated with
each terminal i, representing the upper bounds on the total incoming and outgoing
demands, respectively. The asymmetric hose universe is then

HBT,b7) = (D e RN "Dy <bf and > Dj;; <b; Vie W)
Jjew jew
The VPN problem asks for the cheapest capacity assignment that can support all the
corresponding hose matrices.
Erlebach and Riiegg [2004] showed that the MPR version of the VPN problem
is polynomially solvable, using the ellipsoid method. Subsequently, compact LP for-
mulation were given independently by Altin et al. [2007] and Hurkens et al. [2007]
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(see Section 3). Both of these results can easily be extended to the general robust
network design model.

The first theoretical results for single-path routing were given by Fingerhut et al.
[1997] and (independently, but later) by Gupta et al. [2001]. In both works, a factor
2 approximation algorithm is given based on a particularly simple structure, namely,
they find a node r (not necessarily a terminal) such that the oblivious routing is
defined by a shortest path tree T rooted at r. The optimal capacity is obtained as
follows. For each node v, route b, units from v on its (shortest) path in 7" to r. The
optimal network design is just the aggregate of these capacities for each v. We call the
resulting capacitated tree the VPN t¢ree for r. It had been discussed [Gupta and Kumar
2001, private communication] and subsequently conjectured [Italiano et al. 2006] that
this solution actually results in the optimal capacity for the VPN problem; this has
become known as the VPN Conjecture.

The conjecture has previously been proven for some special cases. Fingerhut et al.
[1997] demonstrated it for complete graphs with all edge lengths equal. Hurkens et al.
[2007] showed that it holds when the graph is a ring network, as well as all graphs
of at most 4 nodes. They in fact showed the stronger result that the optimal MPR so-
lution is always a tree in these cases; their method is to explicitly construct matching
primal and dual solutions to a compact LP description of the problem. Grandoni et al.
[2008] gave a much shorter proof for ring networks, and their approach will be very
important for us in the present work. Independently of this work, Fiorini et al. [2007]
gave a proof for outerplanar graphs.

1.2. Contributions of This Article
Our main result is that the conjecture is true in general graphs:

THEOREM 1.1. For any graph G = (V,E) with nonnegative edge costs and an as-
sociated class of hose matrices H, under the SPR model, there is a minimum cost VPN
which is a VPN tree for some noder € V.

This result also settles the complexity of the single-path VPN problem, since the
optimal VPN tree can easily be computed in polynomial time by trying all possibilities
for the root node (as noted in Fingerhut et al. [1997] and Gupta et al. [2001]). The
proof of this result (Section 2) uses a reduction from Grandoni et al. [2008] that shows
that a certain Pyramidal Routing Conjecture implies the VPN Conjecture. It is this
Pyramidal Routing Conjecture that we will verify.

Given that the VPN Conjecture holds true, it would be natural to suspect that
there was a fractional-implies-integral type result and that in fact the optimal cost
VPN under the MPR model is also a tree. This stronger conjecture was in fact posed
in Hurkens et al. [2007]. Our second main result is that the strong conjecture does not
hold, and we give two simple counterexamples in Section 3.

1.3. Further Related Work

Concave Costs. Building on our result, Fiorini et al. [2010] consider the general-
ization of the VPN problem to concave costs. In this model, the cost of purchasing
capacity on an edge is given by some concave function of the required bandwidth
(rather than a linear function, as in the discussion thus far). They show that the
optimal SPR solution is still a tree in this more general model.

The Asymmetric Hose Model. As mentioned, only the symmetric VPN problem will
concern us in this article. The asymmetric version has also received much attention
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however. It is APX-hard [Fingerhut et al. 1997], by reduction from the Steiner tree
problem. The first theoretical results [Gupta et al. 2001; Kumar et al. 2002] gave a
constant approximation to the problem of finding a best tree solution (however the
optimal solution is not always a tree). The first constant factor approximation was due
to Gupta et al. [2003], and was subsequently improved by Eisenbrand and Grandoni
[2005], Eisenbrand et al. [2007] and Grandoni and Rothvof3 [2010]. See also Rothvof3
and Sanita [2009] for further work in this model.

Other Hose Model Variants. Eisenbrand and Happ [2006] consider a generalization
of the symmetric hose model where terminals are divided into groups; in addition to
the hose constraints, they disallow demands between terminals in the same group.
(As motivation, they suggest a setting where terminals in the same office are already
connected via an internal network.) They give a constant factor approximation
algorithm for this model.

In Olver and Shepherd [2010], a natural generalization of the symmetric hose model,
the tree demand model, is considered. The universe is determined by a capacitated
tree T, distinct from the network itself, but with the leaves of T labelled by the
terminal set. A demand is considered feasible if and only if it is routable on T. One
easily sees that the case where T is a star corresponds exactly to the symmetric hose
model. A constant factor approximation algorithm is given.

Congestion Measure. A permutation routing is a pattern of demands where each
terminal sends one packet, and each terminal receives one packet. In early work on
parallel computation the following packet routing problem was intensively studied: is
there an oblivious routing scheme that routes any permutation routing demand with
low, that is, O(logn), congestion?

Viewed as a demand matrix, a permutation routing looks like a collection of node-
disjoint cycles. These in turn correspond to (twice) the extreme points of 71, (by which
we denote the hose universe defined by unit marginals: b; = 1 for each terminal 7).
Hence, the problem was to find an oblivious routing scheme to support all demands in
#H1 with low congestion. In celebrated works, Valiant [1982] and Valiant and Brebner
[1981], such a randomized oblivious scheme (randomized load balancing) was shown to
exist for several popular classes of sparse networks proposed for parallel computation,
in particular hypercubes. The randomization in their scheme corresponds to the
oblivious templates being fractional (i.e., multipath routing); the weight given to
a particular path in the template represents the probability that a packet will be
routed along that path. In contrast, it is known that the desired congestion bound
of O(logn) is not achievable under deterministic (single-path) routing. Borodin and
Hopcroft [1982] showed a lower bound of Q(/7/A%/2), A being the maximum degree
(see also Kaklamanis et al. [1991]).

We also mention the seminal work of Leighton and Rao [1999] on flow-cut gaps. The

uniform multiflow demand on a subset X C V of terminals is the demand D;; = ﬁ

for all i, j. One sees that if the uniform multiflow is routable in a graph, then one can
obliviously route any hose matrix in H; with congestion 2. Hence, conditions on the
existence of uniform multiflows imply conditions on routability of hose matrices. If
the uniform demand is routable in a graph G, then for any cut §(S) with S C V, the
number of edges must be at least min{|S N X|, | X — S|}. Hence, the graph “expands”
relative to X. Leighton—Rao show that conversely, if a graph has this property, then
one may route the uniform demand with congestion O(logn) on each edge. Their result
is tight.

In some sense, the VPN problem can be viewed as the counterpart to some of these
past works, where total cost instead of congestion is the guiding metric.
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2. PROOF OF THE VPN CONJECTURE
2.1. Definitions and Notation

We consider undirected graphs G = (V,E) with node set V and edge set E. We may
abuse notation and simply refer to an edge with endpoints u,v as uwv. Each edge e
has an associated nonnegative cost c(e), representing the cost per unit of bandwidth
required for that edge. For any subset S of nodes, we denote by 55(S) the set of edges
with exactly one endpoint in S (if the context is clear we simply write §(S)). For a
pair of nodes s,¢ an s-t flow f is (for our purposes) defined in the path formulation:
for each simple path P with endpoints s,#, it assigns a value f(P). The size of the
flow is ) pf(P); if the value is one, we may refer to this as a unit flow. We normally
think of simple paths as the set of edges on the path; thus, for two paths P, @, the
notation P A @ denotes the symmetric difference of the two edge sets represented by
paths P and Q.

A VPN problem instance consists of an undirected graph G = (V, E) with edge costs
c(e), a terminal set W C V, as well as the integral marginals b; for each i € W defining
a hose universe. We use k& := |W| to denote the number of terminals. As was noted
in Fingerhut et al. [1997] and Hurkens et al. [2007], it is sufficient to consider unit
marginals, and we assume this from now on.

LEMMA 2.1. [FINGERHUT ET AL. 1997; HURKENS ET AL. 2007]. If the VPN Con-
Jecture holds for instances with unit marginals (b; = 1 for all i € W), then it holds for
all instances.

We consider two variants of the VPN problem.

— (MPR). In the multipath routing problem, the solution is specified by a unit i-j
flow f;;, for each pair i, j € W. The routing template P is defined by P := {f;; :
i,j € W}. Given a hose matrix D satisfying the marginals, the flow from i to j will
be routed proportionally according to this template, that is, any i-j-path P carries a
flow of D;if;;(P).

— (SPR). In the single-path routing problem, the flows in the routing template are
restricted to be unsplittable, that is, each pair i, j routes along a single path P;;. We
denote the routing template by P = {P;; : i #j € W}.

We use R;; to denote the set of all simple i-j-paths. A routing template induces a
VPN solution as follows. A bandwidth requirement u(e) on each edge is chosen as
small as possible but allowing all hose demands to be met; thus,

u(e) := max Z fiieD;;,
DeH . %
L,y cw
where f;i(e) := ZPeRiJ:eeP f;j(P). Note that the sum is over unordered pairs of terminals.
The cost of the solution is then given by Cvpn(P) 1= ) g cle)ule).

2.2. Pyramidal Routing

A Pyramidal Routing (PR) problem instance, as introduced in Grandoni et al. [2008],
is defined by an undirected graph G with edge costs, and a set of £ terminals W.
In addition, one node ¢ € W is specified as the root. A routing template consists of a
set P; of simple i-¢ paths P;;, one for each i €¢ W\ {¢}. Define I(e, P;) to be the total
flow through edge e, that is, l(e,P;) := |{i € W : e € P;;}|. The bandwidth requirement
y(e, P;) is instead given by the function

y(ey Pt) = min{l(e7 Pt)7k - l(e’ Pt)}
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Note that the function on the right hand side is concave in I(e, P;), but unusually, is
not monotone. The total cost is then Cpr(P;) 1= Y g c(e)y(e, Py).

One can also define an analogous fractional pyramidal routing problem, where in-
stead of paths P;;, the routing template consists of a set of unit i-¢ flows f;;.

Grandoni et al. [2008] show that the VPN Conjecture is implied by the following
conjecture:

Pyramidal Routing Conjecture. For every integral Pyramidal Routing instance,
there exists a minimal cost solution that is a tree.

The connection between Pyramidal Routing and the VPN problem may seem
strange at first. But as we show later in this section, a Pyramidal Routing solution
can be interpreted as a solution to the VPN problem of a particular type (that we
call truncated hub templates) which gives the pyramidal cost function a natural
interpretation. Thus, the result of Grandoni et al. [2008] may be interpreted as saying
that an optimal solution for VPN can be found amongst the truncated hub templates,
each of which corresponds to a PR solution.

The crucial part of their argument is the following lemma, the proof of which we
reproduce here for completeness. Their proof is an extension of one given in Gupta
et al. [2001, Theorem 3.1].

LEMMA 2.2. [GRANDONI ET AL. 2008]. Given a VPN instance, and an SPR routing
template P = {P;; : i #j € W}, there exists a terminal t € W so that Cypx(P) > Cpr(Py),
where Py = {Py; 11 € W\ {t}}.

PROOF. The strategy of the proof is to derive a lower bound for u(e) for each e
in the instance by judiciously selecting a demand matrix, which will then give us the
desired lower bound on Cypy(P). Fix an edge e. The choice D¢ of demand matrix for e
is given by

1 (ye,P) , yePj) . B
D=k (l(e,Pi) tTery) ife<Py, 2)
iy .
0 otherwise.

Here, P; = {P;; : i € W\ {j}} for each j € W, and depends on the SPR template P. O
CLAIM 2.3. Df is a valid hose demand matrix for all edges.

PROOF. We need to show that ZjeW ij < 1foralli € W. We have

- l ye,P) vy, P
> D= ) k<l(e,73i)+l(e,73j))

JEW JEW:eeP;;
< ¥ %(kl—l(;ﬂ)+§(e,§))
it B\ P LB
-y 1 _k
jEW:eePijk He, Pi)
=1. O
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CLAIM 2.4. For every edge e, we have

u(e) = %Zy(e,m (3)

ieWw

PROOF. The claim follows from the definitions of ij and l(e,P;) = [{j € W:e € Py}|.

we) > Z l(y(e,Pi)+y(e,7’j)>

{i,j):ecPy k \le,P;) l(e,Pj)
=Y ¥ 1 v, P)
icW jeW:eeP; ke, P;)
1
= E Zy(ea PL)- .
W

The theorem now follows by multiplying the inequality in (3) by c(e) and summing
over alle € E:

> cleyule) = Zc(e)1 > y(e,P)
2

eck ecE eW

= % YD clewye, Py

ieWeeE

> mi ;
=min} ce)ye, P
ecE

We have seen that the VPN cost is lower bounded by some Pyramidal Routing
cost. In fact, a converse result holds too: the cost of optimal SPR solutions can also
be upper bounded by the cost of an associated Pyramidal Routing problem. To do
this, for each solution P; to a PR problem instance with root ¢, we define an oblivious
routing template, called the truncated hub template associated with P;. This is defined
as the template Q = {Q;; : i, j € W}, where @;; is any i-j-path in the component of
P;; A P;; (symmetric difference) containing i and j. Note that since i and j are the only
odd-degree nodes in P;; A Pj;, they will indeed be in the same component.

Figure 1 shows two examples of how the truncated hub template is constructed
from the pyramidal routing template. Note that while intuitively the truncated hub
template is obtained by “shortcutting” the pyramidal routing, this is not always the
case, as is shown in the second example.

LEMMA 2.5. Given a solution P; to a PR problem instance with root t, the capacity
on any edge e required by its truncated hub template Q is at most y(e, Py). In particular,
Cypn(Q) < Cpr(Py).

PRrROOF. Let D € H be any valid demand matrix. Consider any edge e and define the
set of nodes which route through e by R, := {i € W : e € P;;}; note that l(e, P;) = |R.]|.
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Qz’j Qij

.

J
n

t t t t

Fig. 1. Two examples of how the truncated hub template routing @;; is constructed from the pyramidal
routing template.

Now notice that if we have a pair i, j € W where e € §;;, then exactly one of i and j
is in R,, because of the symmetric difference construction. So we have

> Dy=) > Dy

{i,j)ec@; icR, j¢R.

=22 Dy

i1€R, jeW
<> 1
icR,
= l(e, Pt)
Similarly,
> D<) Y Dy<> 1=k—leP.
{i,j})ee@y; J#Re iR, J¢Re
Thus, we have that
Y Dy <minfle, P,k — Lie, P)} = y(e, Py).
{i,]}:ecQ;;
But then the required capacity on edge e is
= D;;
u(e) = max Z i <y, P,
{i,/}:ecqyj
as required. |

Note that by the proof of Lemma 2.2 the optimal SPR cost is at least a weighted
average of costs Cpg(P;). The preceding lemma shows that it is also at most the cost of
any given optimal PR solution. Thus, we have the following new result. It effectively
shows that, in order to find an optimal VPN, one may restrict to truncated hub-routing
templates.
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THEOREM 2.6. For any pair t,t' € W, the optimal solutions to the PR problems with
root t and t' are the same, and have the same value as the optimal solution of the asso-
ciated SPR problem. Hence, the PR conjecture and the VPN Conjecture are equivalent.

It should be noted, however, that no such correspondence holds between the MPR
problem and the fractional PR problem. As we prove later, the optimal MPR solution
may be cheaper than the optimal SPR solution in some cases; but note the following.

LEMMA 2.7. There exists an optimal solution to a fractional Pyramidal Routing
instance that is integral, that is, f;; induces an i-t-path for all i € W\ {¢}.

PROOF. We show this by proving that the problem consists of minimizing a concave
function over a 0-1 polytope B. A routing template P; = {f;; : i € W} induces a vector
xPt in RF¥IEl by setting ngé = f;(e). Let the polytope B C R¥*/El be the set of vectors
induced by feasible solution templates. By the max-flow min-cut theorem, the extreme
points of B are 0-1 vectors.

The objective function is Cpr(P) = Y ,.gc(e)y(e, Py). As noted before, y(e, ;) is a
concave function in the load on e. Since the load is a linear function of the routing
template (thought of as a vector f = (f;;);ew of flows), y(e, P;) is concave over ; since
the sum of concave functions remains concave, Cpg(P) is too. It is well known that
a minimizer of a concave objective always exists at a vertex of the polytope, which
corresponds to an integral routing template. |

2.3. A Reduction to T-Joins

We begin with an instance of the Pyramidal Routing problem, with root ¢. Let 7; be a
routing template for this instance.

Definition 2.8. Call an edge e € E heavy if l(e, P;) > k/2.
Let H be the set of heavy edges determined by P;. Note that

© = l(e,Pr) ife¢ H,
= \k—le,P) ifecH.

Recall that for any T' C V with |T| is even, a T-join of G is a set J of edges such that
the odd degree nodes in the subgraph defined by ¢/ is precisely T

Let 7" be the set of odd degree vertices in the subgraph induced by H. Now define
T =T A{t}, and Ty := T A {u} for all u ¢ W. Note that |T"| is even, so |T| is
odd, and so |Ty| is even for all u € W. Let M, be the minimum cost T, -join on G.
CMy) = ZeeMu c(e) is defined to be the cost of M. Define C'(u) := C(Py: A H). This
we think of as being u’s contribution to the total cost of the Pyramidal Routing. Notice
that u pays for light edges on its path, and heavy edges not on its path. We also have

dYCw=> Y c@

ueW ueWeePy, AH
= Y le,P)-cle)+ Y (k—1le, P)cle)
ecE\H ecH
= Cpr(Py).

So this really is a division of the total cost between the terminals.
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LEMMA 2.9. A lowerbound for the cost Cpr(Py) of solution P;is Y, .w C(My).

PROOF. We want to show C'(u) > C(M,) for all u € W. Consider the symmetric
difference H,, := P,; A H. Since P,; has even degree at every node except © and ¢, and
H is a T’-join, it follows that H, is a Ty-join. So C(H,) > C(M,). But by definition,
C'(w) = C(H,). Thus,

Ceor(P) =) Cwy =) CH, =) CM,. O

ueWw ueWw ueW

Note that the right-hand side of this inequality depends on H only via T. We also
have the following pleasant result. Define the truncated template Q = {Q,, : u,v € W},
where @, is any u-v path contained within the component of M, A M, containing u
and v. Such a component must exist, because u and v are the only odd-degree nodes in
M, A M,. Then we have the following.

THEOREM 2.10. The truncated template Q satisfies
Cvpx(Q) < Z CM,).

ueWw

The proof is very similar to the proof of Lemma 2.5, and so we omit it.

Note that if we had T = {v}, then M, is a shortest path from u to v. So if v is
the centre of the minimum cost VPN tree, >, w C(M,) is exactly the cost of the
optimal tree solution. In the next section, we show that no other choice of T improves
upon this.

2.4. A T-Join Inequality

For each node v in G, define Csp(v) to be the cost of the VPN tree from the terminals
to v, that is,

Csp(v) := Y SP(u,v),
ueWw
where SP(u,v) is the cost of the shortest path (with respect to c(e)) between u and v
in G.
We prove the following inequality, which in turn proves the Pyramidal Routing
Conjecture by the reduction in the previous section.

THEOREM 2.11. Consider a VPN instance given by G(V,E), nonnegative cost
function ¢ on edges, and terminals W C V. Fix any terminal t € W and any subset
T C V of odd cardinality, and let M, be a Ty-join for each u € W, where Ty, := T A {u}.
Then, there exists a node v € V so that

Y CMy) = Csp(v).
ueWw

In fact, we prove the following slightly stronger theorem.

THEOREM 2.12. With the setup of the previous theorem, let F be the multigraph
obtained by taking the disjoint union of the M,,’s. Then there exists a node v € V so that
there are edge-disjoint paths from all the vertices in W to v.

Theorem 2.11 shows that the weight of the edges in the multiset U,M,, is at least
the weight of the edges in Cgp(v). Theorem 2.12 shows that in fact the latter set is
contained in the former one, immediately implying Theorem 2.11.

We provide two proofs of this theorem. The first was given in an earlier version of
this paper, and is completely elementary and self-contained. The second, subsequently
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communicated to us by Andras Sebd [2008, private communication], is somewhat
shorter, but makes use of the properties of Gomory—Hu trees.

We fix some notation before getting into the proofs. Call a set S € V T-even
(respectively T-odd) if |S N T'| is even (respectively, odd). Note that since |T'| is odd,
exactly one of S and V' \ S is T-even for any S C V.

2.4.1. First proof of Theorem 2.12. We need the following lemma.
LEMMA 2.13. For any set S C V which is T-even, |5p(S)| > |S N W]|.

PROOF. Consider any u € SNW. Since S is T-even, it is T,-odd. Thus, since M, is a
T,-join, it must cross S. The lemma now follows from the definition of F' as the disjoint
union of the M, ’s. ]

PROOF OF THEOREM 2.12. Construct the graph F’ from F by adding an extra node
s, and edges su for all u € W. The statement of the theorem is equivalent to showing
that there exists a node v so that there is an s-v flow of size £ in F’, taking all the
edges to have unit capacity.

Define D, to be the side of a minimum s-z cut containing z € V. Suppose for a
contradiction that |8z (D,)| < & for all z € V, since otherwise we have a valid routing
by the max-flow min-cut theorem. Since |67/ (D,)| = |0 (D,)| + |D, N W], this gives

15p(Dy)| <k —|D,NW| VzeV. (4)
Note that D, is T-even; otherwise V \ D, is T-even, and so by Lemma 2.13,

18p(D2)| = [6p(V\ D)l = W\ D;| =k — |D, N W|,

which contradicts (4).

It is enough to show that arbitrary intersections of the D,’s are T-even. To see this,
note that it implies that U,y D, is T-even, by the inclusion-exclusion principle. But
u € Dy, so UycyDy, =V, which is T-odd. This contradiction implies the result.

Hence, it remains to prove that intersections of D,’s are always T-even. Suppose
inductively that all intersections of less than [ sets, each of type D, for some z € V,
are T-even. This is true for [ = 2, since D, is T-even for all z € V. Now suppose for a
contradiction that for some arbitrary collection D1, ...,D;, theset Dy NDyN---ND;is
T-odd. Let D; = D; \ (Uj%;Dj). Claim 2.14 follows from the inclusion-exclusion principle,
and our inductive assumption.

CLAIM 2.14. Under the assumptions in the preceding paragraph, D; is T-odd for
all i.

I;IROOF. Note that D} = D;\ (Ujx;(D;ND;)). Now by the inclusion-exclusion principle,
we have

JDinDynT|=>"|D;nDy)NT|— > |D;ynD; nDYNT|+--
J#i J#i J1<Jeij1,J27t
+ DY D1nDen...DYNT.
The last term on the right is odd and the rest are even by our assumptions, and thus
Ui (Dj N D;) is T-odd; since D; is T-even, it follows that D/ is T-odd. O

Journal of the ACM, Vol. 60, No. 3, Article 17, Publication date: June 2013.



The VPN Conjecture Is True 17:13

CLAIM 2.15.

l [
> 18rD)I = Y 16pD))|
=1 =1

PROOF. Consider any edge e that contributes to the right-hand side. If it has
endpoints in D; and DJ/- for some i # j, then it will contribute twice to the right-hand

side; such an edge will also contribute at least (in fact, precisely) twice to the left-hand
side, in 6p(D;) and 6p(Dj). If e has an endpoint in D only, and not in any other DJ’., then

it is counted once on the right-hand side, and at least once on the left-hand side. ]

Now we have

l l
> 15D = Y 1857(D)I by Claim 2.15
i=1 =1

l
>y (k—ID;nW|)  asDjis T-odd
=1

l
>y (k—ID;nW|) asD;c<D,.
=1

But this is a contradiction because (4) implies

l l
Y 18D < Y _(k—|D; N W]).

i=1 =1

So our assumption that D1 N --- N D; is T-odd was incorrect, and the proof is
complete. |

2.4.2. A Shorter Proof. The following is a somewhat shorter proof of Theorem 2.12,
due to Andras Sebd [2008, private communication]. We actually prove the following
theorem, which in turn implies Theorem 2.12.

THEOREM 2.16. Let K be the complete graph on node set V, and let T C V be of
even size. Let H be the edge-disjoint union of any k T-joins of K. Then for any node
s € T, there is another node v € V such that there are k edge-disjoint s-v-paths in H.

Note that taking the underlying graph be the complete graph allows for any set of
T-joins, and thus makes the theorem more general. Before proving the theorem, let
us see why it implies Theorem 2.12. Construct F’ as described in the earlier proof of
Theorem 2.12, by adding a new node s connected to all the terminals; Theorem 2.12
asserts that there is a node v € V such that there are |W| edge-disjoint s-v-paths in F’.

Let M, := M, U {us} for all u € W. By construction, F’ is the disjoint union of M, for
u € W. But M), is a Ts-join, since M, is a T,-join and

T.A{ulA{s}=TA{s}=Ts.

Thus, F’ is the disjoint union of % different T-joins. Now applying Theorem 2.16
with the multigraph F’ playing the role of H and T playing the role of T gives the
conclusion of Theorem 2.12.

PROOF OF THEOREM 2.16. By the max-flow min-cut theorem it suffices to prove
that there is a node v such that the minimum s-v cut in H has size at least k. Recall
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that a T-cut is a set §(S) for some S C V such that |S N T is odd. A basic property of
T-cuts and T-joins is that every T-cut intersects every T-join (see, e.g., Cook et al.
[1997]).

Observe that for any T-cut S in H, we have |85(S)| > k. This is because H is the
disjoint union of £ T-joins, and each of them must intersect §g(S).

Now consider a Gomory—Hu tree 7 of H (see, e.g., Cook et al. [1997] for definition
and properties of these trees). Removing s from 7 breaks it into connected components.
At least one of these connected components must be T-odd because |T| is even and
s € T); call this component C. Let sv be the edge connecting s to C. Then the cut defined
by the edge sv and T is a T-cut and hence has size at least k. But since it is also a cut
given by the Gomory—Hu tree 7 it is a minimum s-v cut. Thus, we have shown that
the minimum cut between s and v has size at least %, and so there are k edge-disjoint
s-v-paths. a

3. THE MULTIPATH VPN CONJECTURE

It has been conjectured [Hurkens et al. 2007] (cf. Erlebach and Riiegg [2004]) that the
multipath version of the VPN problem, where routing templates may be fractional,
also has an optimal solution in the form of a tree. In this section, we show that
this conjecture is false. Moreover, we will give an example that shows that the ratio
between the integral and fractional optima can be as large as 9/8.

A similar phenomenon occurs more forcefully in the context of permutation packet
routing with the congestion measure, as discussed in Section 1.3. There, the congestion
can be dramatically worse for deterministic routing in comparison with randomized
(essentially, fractional) routing.

Before describing the counterexamples, it will be useful to introduce the compact
LP formulation for the multipath VPN problem, as derived in Altin et al. [2007] and
Hurkens et al. [2007]:

min )Y c@yile)

ecE ieW
such that  yj(e) +yj(e) > fij(e) Ve e E,{i,j} C W,
fij isaunitij-flow V(i j} S W
yi(e) >0 VieW,ecE

The flows f;; are defined on the bidirection of G, and we use f;j(e) to refer to the amount
of flow on edge e, irrespective of direction.

This formulation yields a convenient description of the capacity reservation of a
solution as a cost sharing between the terminals. We will think of y; as the capacity
paid for by terminal i. We see that y := {y; : i € W} is a valid capacity reservation if
and only if for every pair i #j € W, y; +y; supports a unit i-j-flow. Thus, we may think
of y as specifying a MPR solution, of cost

C) =) C=Y_ Y cleyie.

ieWw ecE ieW

We begin with the smallest counterexample we know of (and likely the smallest
possible). It consists of only 7 nodes, and is shown in Figure 2(a); edge lengths are
indicated. Half a unit of capacity is bought on each edge; the colors show which
terminal pays for each edge, with the edges paid for by terminal 1 shown in bold.
Since y; +y; has enough capacity for a unit i-j flow for every i, j € W, this is indeed a
feasible MPR solution of cost 15/2. The cheapest shortest path tree on the other hand
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4
(a) A gap of 16/15. (b) A gap of 9/8.

Fig. 2. Two small gap examples. In each, the edges paid for by terminal 1 (red) are shown in bold.

(found just by checking all possible choices of root) has cost 8. By Theorem 1.1, this
is the cost of the optimal SPR solution, and so we have a counterexample. The ratio
between OPTspr and OPTypr in this example is 16/15.

This example also shows that the multipath VPN Conjecture is false even for planar
graphs.

We can obtain a slightly larger gap with a slightly larger construction, using the
same idea. In Figure 2(b), all edges have cost 1. For the MPR solution, 1/3 capacity is
bought on each edge; the edges paid for by terminal 1 (red) are shown in bold, and the
rest are symmetric. This is again a feasible MPR solution, of cost 16/3. The cheapest
tree solution on the other hand costs 6; this gives a ratio OPTspr/OPTypr = 9/8.

4. CONCLUSION

We have seen that the ratio between the single-path and multipath optima can be as
large as 9/8. Conversely, it is explicit in Gupta et al. [2001] and implicit in Fingerhut
et al. [1997] that the gap between MPR and SPR is at most 2. We suspect that the
integrality gap is significantly smaller than 2, but this is currently an open question.

Having resolved the VPN Conjecture, we would like to conclude by suggesting a new
conjecture to take its place. Recall the tree demand problem discussed in our section
on related work: for a given capacitated tree T, with leaves labelled by the terminals, a
demand is considered feasible if and only if it is routable in 7. In Olver and Shepherd
[2010], we suggest a natural algorithm for the problem: it finds the cheapest solution
in the form of a hierarchical hubbing. A hierarchical hubbing solution for T is defined
by some mapping ¢ : V(T) — V(G), satisfying ¢ (i) =i for all i € W. An edge uv € E(T)
is then mapped to a shortest path between ¢ (1) and ¢ (v). Finally, this determines
a routing template by setting P;; to the image of the unique i-j-path in T' under the
mapping ¢. Notice that in the case where T is a star, this reduces to a shortest path
tree solution. The resulting solution is “tree-like” in the sense that it preserves the
structure of the tree 7' in the solution, even though the support of the solution need
no longer be a tree in general.

Generalized VPN Congjecture. For any instance of the tree demand problem, for a
given capacitated tree T, there is an optimal SPR solution in the form of a hierarchical
hubbing.
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Since the optimal hierarchical hubbing solution can be found in polynomial time by
means of a dynamic program, this would make the tree demand problem polynomially
solvable. The interested reader may refer to Olver and Shepherd [2010] for more
details on this problem.
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