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ABSTRACT
The number of electric vehicles (EVs) is expected to in-
crease. As a consequence, more EVs will need charging, po-
tentially causing not only congestion at charging stations,
but also in the distribution grid. Our goal is to illustrate
how this gives rise to resource allocation and performance
problems that are of interest to the Sigmetrics community.

1. INTRODUCTION
EVs consume a large amount of energy and as a result the

charging of EVs is causing congestion in the distribution grid
[2], which is exacerbated as the number of charging stations
is limited. Motivated by this, we consider a stylized model
that models the interplay of two sources of congestion (as
not all cars find a space): (i) the number of available spaces
with charging stations; (ii) the amount of available power.

Despite being a relatively new topic, the engineering liter-
ature on EV charging is huge. Here, we give only a sample.
In [14], an algorithm for optimally managing a large number
of plug-in EVs charging at a parking station is suggested.
In [13], optimal charging algorithms that minimize the im-
pact of plug-in EV charging on the connected distribution
grid are proposed. Examples of studies where randomness is
taken into account are [9], in which a methodology of model-
ing the overall charging demand of plug-in EVs is proposed,
and [15] where control algorithms based on randomized EV
charging arrival time are suggested. Mathematical mod-
els where vehicles communicate beforehand with the grid to
convey information about their charging status are studied
in [12]. In [7], cars are the central object and a dynamic pro-
gram is formulated that prescribes how cars should charge
their battery using price signals. Though the class of prob-
lem at hand fits well to the performance analysis, the only
other line of work where such ideas are used is [1] and [16],
where a gradient scheduler is proposed to minimize delays.

A common feature of the above studies is that they apply
to shorter operational time-scales. Since the desired scale of
infrastructure does not exist yet, it is important to consider
models that can be used on longer (investment) time-scales.
Equilibrium models are quite popular for investment and
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policy analysis of energy systems [3]. We therefore consider
a stylized equilibrium queueing model that takes into ac-
count both congestion in the distribution grid, as well as
congestion in the number of available spaces with charging
stations. We consider a stylized model of a parking lot with
finitely many spaces in which EVs (customers) arrive ran-
domly in order to get charged (for another application of
queueing theory to parking lots see [8]). The EVs have a
random parking and a random energy demand. Thus, each
EV receives two kinds of service, parking and charging. We
assume that all available power is charged at the same rate
to all cars that need charging; some of our results can be
extended to time-varying arrival rates and multiple types of
users and stations, but due to space we do not do so here.

Under Markovian assumptions, our analysis focuses on
the probability that an EV leaves the parking lot with a
fully charged battery. Specifically, we develop bounds and
a fluid approximation, and report partial results on a dif-
fusion approximation. Our mathematical results are closely
related to work on processor-sharing queues with impatience
[6], though the model here is more complicated as there is
limited number of spaces in the system and fully charged
cars may not leave immediately as they are still parked.

2. MODEL DESCRIPTION
We consider a charging station withK > 0 parking spaces,

each having an EV charger. We assume that the arrival,
parking and charging times of EVs are mutually indepen-
dent, and exponential with rates λ, µ and ν, respectively.
EVs leaves the system after their parking time expires. An
EV may leave the system without its battery being fully
charged. Furthermore, if all spaces are occupied, a newly
arriving EV does not enter the system but leaves immedi-
ately. As such, the total number of vehicles in the system
can be modeled by an Erlang loss system, though we need
a more detailed description of the state space.

We denote by Q(t) ∈ {0, 1, . . . ,K} the total number of
EVs in the system at time t ≥ 0, where Q(0) is the initial
number of EVs. Further, we denote by U(t) ∈ {0, 1, . . . , Q(t)}
the number of EVs of which their battery is not fully charged
at time t and by U(0) the number of vehicles initially in the
system. Thus, C(t) = Q(t)−U(t) represents the number of
EVs with a fully charged battery at time t.

The power consumed by the parking lot is limited and



depends on the number of uncharged EVs at time t. We let
it be given by f : IR+ → IR+, f(U(t)) := min{U(t),M}.
Here, 0 < M ≤ K denotes the maximum number of cars the
parking lot can charge at full power.

3. MAIN RESULTS
We present bounds and approximations based on fluid and

diffusion limits for the fraction of EVs that get fully charged.
Proofs (and results for other performance measures) will be
presented in an extended version of this paper.

3.1 Bounds
Under our assumptions, the number of uncharged EVs

and the total number of EVs in the system (U(t), Q(t)), is
a two dimensional Markov process. The fraction of fully

charged EVs in stationarity is given by the ratio: E[C(∞)]
E[Q(∞)]

.

In the special case K = M , we can compute explicitly the
joint distribution, and in the case K = ∞, the distribution
of the number of uncharged EVs is given by a variation of
the Erlang A formula (see [17] for details on the Erlang A
model). Note that, in our model customers / EVs can leave
the system also during their service, unlike in the Erlang
A queue. Based on these two special cases (K = M , K =
∞), the following proposition, which can be proved using
Markov-rewards methods, presents an upper and a lower
bound for the fraction of EVs that get fully charged.

Proposition 3.1. Let CKM (∞) and QKM (∞) be the num-
ber of fully charged EVs and the total number of EVs in
stationarity for the system (K,M). We have that

E[C∞M (∞)]

E[Q∞M (∞)]
≤ E[CKM (∞)]

E[QKM (∞)]
≤ E[CKK (∞)]

E[QKM (∞)]
. (1)

3.2 Fluid approximation
We develop a fluid approximation for finite K, following

a similar approach as in [6]. The main differences are the
finitely many servers in the system and that the state space
consists of two regions: U(∞) > M and U(∞) ≤M .

Consider a family of models as defined earlier indexed by

n. The fluid scaling (in steady state) is given by Un(∞)
n

. To
obtain a non-trivial fluid limit, we assume that the capacity
of power in the nth system is given by nM , the arrival rate
by nλ, and the number of parking spaces by nK.

Proposition 3.2. Let Eµ and Eν be exponential random

variables with rates µ and ν. We have that Un(∞)
n

→ u∗,
as n → ∞. In addition, u∗ is given by the unique positive
solution of the following fixed-point equation:

u∗ = min{λ, µK}E[min{Eµ, Eν max{1, u
∗

M
}}]. (2)

Observe that if we define f(U(·)) = 1 (i.e., the processor
sharing discipline) and replace K by nλK (assuming for
simplicity µ = 1), we derive [6, Equation 4.1].

Let Ps denote the probability that an EV leaves the park-
ing lot with fully charged battery in the fluid model. It is
given by Ps = P(Eµ > Eν max{1, u∗/M}), where u∗ is the
unique solution of (4). Under our assumptions, the explicit
expression for this probability can be found. That is,

Ps =

{
ν

µ+ν
, u∗ ≤M,

νM
λ(1−PK)

, u∗ > M.
(3)

We directly use a modified form of our fluid approxima-
tion, which can be derived heuristically using Little’s law
and a version of the snapshot principle (essentially assum-
ing an EV sees the system in stationarity throughout its so-
journ). Let PK be the blocking probability in a loss system
with K servers. To obtain our approximation, we replace
min{λ, µK} by λ(1− PK), leading to

u∗ = λ(1− PK)E[min{Eµ, Eν max{1, u
∗

M
}}]. (4)

3.3 Diffusion Approximation
Consider the following asymptotic regime. Define Mn =

λn
ν+µ

+ β
√
n, where −∞ < β < ∞ and λn = n(ν + µ),

i.e., the “square-root staffing rule” as in [4] and [5]. In
addition, define Kn = λn

µ
+ κ
√
n, where −∞ < κ < ∞.

The diffusion scaling is given by Ûn(t) :=
Un(t)− λn

ν+µ√
n

and

Q̂n(t) :=
Qn(t)−λnµ√

n
.

Theorem 3.3. If (Ûn(0), Q̂n(0))
d→ (Û(0), Q̂(0)) then

(Ûn(·), Q̂n(·)) d→ (Û(·), Q̂(·)), as n → ∞. The diffusion
limit satisfies the following 2-dimensional stochastic differ-
ential equation[

dÛ(t)

dQ̂(t)

]
=

[√
2(ν + µ) 0

0
√

2(ν + µ)

] [
dWÛ (t)
dWQ̂(t)

]
+

[
b1(Û(t), Q̂(t))

b2(Û(t), Q̂(t))

]
dt−

[
Y (t)
Y (t)

]
,

(5)

where b1(x, y) = −ν(x ∧ β) − µx and b2(x, y) = −µy. Fur-
ther, WÛ (t) and WQ̂(t) are driftless, univariate Brownian

motions such that E[WÛ (t)WQ̂(t)] = (ν + 2µ)t. In addition,

Y (·) is the unique nondecreasing nonnegative process such
that (5) holds and

∫∞
0

1{Q̂(t)<κ}dY (t) = 0.

Note that Q̂(t) satisfies the known Erlang B diffusion [10].
When κ = ∞ the system (5) has an explicit invariant dis-
tribution. Take the vectors m− = (0, 0), m+ = (− νβ

µ
, 0)

and the positive definite matrices Σ− =

[
1 2

ν+2µ
2

ν+2µ
ν+µ
µ

]
and

Σ+ =

[
ν+µ
µ

1
µ

1
µ

ν+µ
µ

]
. Let f− and f+ be 2-dimensional nor-

mal pdfs with mean vectors m−, m+ and covariance ma-
trices Σ− and Σ+, respectively. In case K = ∞, we can
show that the joint steady state pdf of the random vector
(Û(∞), Q̂(∞)) can be written as

φ(x, y) = c1f−(x, y)1{x≤β} + c2f+(x, y)1{x>β},

where c1, c2 are given in [4, Equations 3.9–3.10].

3.4 Numerical evaluation and discussion
In Fig. 1–3 we depict the bounds in (1) and the fluid

approximation in (3) for 3 cases: moderately, critically, and
over-loaded. The vertical axes give the probability that an
EV leaves the parking lot with fully charged battery and
the horizontal axes give the ratio M/K. The lower and the
upper bounds seem to be tight for M > 0.7K. Also, the
lower bound is tight under light load, in the other cases the
fluid approximation works well for K = 50.
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Figure 1: K = 10, 50 and λ = 0.8K
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Figure 2: K = 10, 50 and λ = K

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M/K

S
uc

ce
ss

 p
ro

ba
bi

lit
y

 

 

actual
lower bound
upper bound

fluid approximation

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

M/K

S
uc

ce
ss

 p
ro

ba
bi

lit
y

 

 

actual
lower bound
upper bound

fluid approximation

Figure 3: K = 10, 50 and λ = 1.2K

4. DISCUSSION AND EXTENSIONS
Our numerical results show there is room for improvement

for critically loaded systems, making it worthwile to derive
the invariant distribution of the process in Theorem 3.4; the
solution for κ = ∞ did not yield better results than the
Erlang A lower bound.

From an applications standpoint, it is important to re-
move various model assumptions. If parking and charg-
ing times are given by the (possibly dependent) generally
distributed random variables B and D, we can develop a
measure-valued fluid model by extending [6]. The fluid limit
in steady-state will be defined by the fixed point equation

u∗ = λ(1− PK)E[min{B,Dmax{1, u
∗

M
}}].

We are currently extending this to multiple customer classes,
multiple parking lots, and time-varying arrival rates. On a
high level, the analysis is reminiscent of [11].
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