
Il. The Cell Size Distribution and Semigroups of Linear Operators 

0. Diekmann 

In this chapter we present relevant parts of the theory of strongly continuous semigroups of linear operators in the 
context of a concrete example: the time evolution of the size distribution of a proliferating cell population. Our aim is 
to give a motivated introduction to the general mathematical theory of linear semigroups and to demonstrate its use­
fulness for the study of density independent structured population models. We want to show that abstract arguments 
and concrete calculations may be combined to arrive at strong conclusions. 

In section I we perform a preliminary transformation of the cell size density equation introduced in section I.4, 
and we specify the population state space in which we want to work. In section 2 we collect some basic definitions and 
results from semigroup theory and we illustrate these by means of some elementary but enlightening examples. Subse­
quently we show in section 3 that one can indeed associate a semigroup with the size structured cell model. Notions 
from spectral theory are introduced in section 4 and subsequently it is shown that the spectrum of the infinitesimal 
generator of the cell semigroup can be found by solving a SCKl&lled characteristic equation. This characteristic equa­
tion is studied in section 5, and in section 6 we show that the state space can be decomposed according to a subdivi­
sion of the spectrum. Sections 7 and 8 are again concerned with the general theory. First we discuss various relations 
between the spectrum of the generator and the spectrum of the semigroup operators, and then we deal with exponen­
tial estimates. In section 9 the results of the preceding sections are applied to the cell model in the special case that 
V(2x)<2V(x), where Vis the individual cell growth rate as a function of size x. The conclusion is that asymptotically 
for large time the population grows exponentially, while its size distribution converges towards a (stable) distribution 
which is independent of the initial condition (the dynamics is asymptotically one-dimensional). Section 10 continues 
the introduction in section I.3.4 of integration along characteristics, a very important auxiliary technique. The results 
are used in section I I to study the exceptional case that V(2x) = 2 V(x) for all relevant x. In section 12 the case that 
V(2x) = 2V(x) in some interval and V(2x)<2V(x) in another interval is treated, and the conclusions for the general 
case are summarized. Some clarifying remarks about the role of positivity are made in section 13. Finally, we show in 
section 14 that the linear theory can be used in a rather special case of a general model for substrate limited growth in 
achemostat. 

1. Fonnulation of the problem. 

In chapter I, section 4, we showed that the size-density of a population of unicellular organisms reproducing by binary 
fission is governed (under constant environmental conditions) by the linear functional-partial differential equation 

a a 
atn(t,x) = -a;-(V(x)n(t,x))-µ.(x)n(t,x)-b(x)n(t,x) + 4b(2x)n(t,2x) (l.l) 

l 
n(t,2a) = 0 

where V,µ. and b denote, respectively, the growth, death and fission rate of individual cells and a = min support of b 
= minimal size at which fission can possibly occur. In order to describe that cells will divide with certainty before 
reaching a maximal size, which we talce without loss of generality to be x = I, we shall assume that b has a non­
integrable singularity in x = I and we shall restrict the domain of the size variable x to the interval [1ha, I]. We 
repeat convention I.4.2.1 as: 

CONVENTION 1.1. If the x-argument of a function exceeds one, the value of the function is by definition zero. 

This convention serves to assign to the term 4b{2x)n(t,2x) the value zero for x>t, in accordance with the fact 

that no baby cell will have size greater than one half. Throughout this chapter we assume that O<a<l, but in many 
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parts we make the much stronger assumption +<e;;a<I which entails that the smallest mother is still larger than the 

biggest daughter. 

For each fixed t we conceive of n(t, ") as a function defined on [+a,!). 

INTI:RLUDE 1.2. About Banach spaces and linear operators: a quick Introduction for readers with little mathematical background. 
It is convenient to consider such a function of x as an element of (point in) a space in much the same way as an N-tuple of real 

nwnbers is considered as a point in RN, the N-dimensional Euclidean space. A space of functions on !}a, I] will necessarily be 

infinite-dimensional. Quite naturally we want it to be a linear space: if we multiply an element by a scalar (a real or complex 
number) we want to obtain another element and likewise if we add two elements. 

It turns out that in an infinite dimensional space one can introduce several non-equivalent notions of convergence. So we have 
to specify explicitly our ideas about nearness. A convenient way to do this is to define the distance between two elements, in such a 
way that certain natural (intuitive) geometrical properties hold. In a normed linear space X there is associated with each element f 
of X (notation: feX) a nonnegative real number 11/11, called the norm off, such that 

(i) II/+ gll .;;lljll + llgll, 

(ii) llcxfll = 1<>111.fll for any scalar ex, 

(iii) llfll = 0 implies f = 0. 

In such a space we can identify the distance between/and g with 11/-gll. Note that by (i) the triangle inequality 

llf-gll .. llf-hll + llh-gll 

holds. Finally we want to include in our axioms the technical condition that sequences for which it is reasonable to expect that they 
converge, do indeed converge to an element of the space. An infinite sequence (f.} of elements of X is called a Cauchy sequence if 
for any •>0 there exists an integer n0 such that the relations k;;.n 0 and l>n0 imply that 11/.-f,ll<•. A Banach space X is a 
normed linear space in which every Cauchy sequence {f.} converges to some feX (i.e. llJ,,-.fll-+0 for n ..... oo). 

The defining properties of a Banach space are such that: 

(i) they allow the construction of a rich and powerful mathematical theory, 

(ii) many concrete function spaces, which arise in practical applications, have these properties. 

Function spaces which we shall meet in the following are: 

(i) C[a,,8], the space of continuous functions defined on the interval [a,,8] with values in R provided with the supremum norm 
llfll = sup{lf(x) 11 a.;;x.;;{J) 

(ii) C 0{cx,/J], the subspace of C[cx,,8] of functions which are zero for x = ex, provided with the supremum norm; 
p l. 

(iii) Lp(<>,/J), the space of integrable functions for which 11.fll = <J lf(x)jPd.x)P is finite (strictly speaking this is a space of 

equivalence classes of functions; see RUDIN, 1974); 

(iv) L.,(a,{J), the space of (essentially) bounded measurable functions provided with the supremum norm. 

Let X and Y be Banach spaces with norms 1111 .. and llllr and let L be a linear operator from X into Y (that is, to every feX 
there is associated Lfe Y and L(aj) = c>Lf and L(j + g) = Lf + Lg). To say that Lis continuous means that Lf,, converges to 
Lf in Y, whenever f, converges to fin X, but one can prove that this property is equivalent to L being bounded in the sense that for 
some positive constant K 

llL.fllr .;; Kllfllx for all feX. (1.2) 

Hence we use for linear operators the words "continuous" and "bounded" interchangeably. The set of all bounded linear operators 
from X into Y is itself a linear space e(X, Y) which we can norm by 

llL llLIK.Y>: = sup{ llL.fll y 111.fllx.;; I} . (1.3) 

One can prove that equipped with this so-called operator norm L(X, Y) is a Banach space. An alternative equivalent definition of the 
operator norm is 

11Llli1x.Y> = inf (K I relation (1.2) holds}. (1.4)· 

Frequently we will omit the indices X, Y and L(X, Y), which distinguish the various norms from each other, simply because the con­
text unambiguously stipulates which norm is meant. 

It may happen that one can define a linear operator L on a subspace of X without being able to extend L to a bounded opera­
tor defined on all of X (we will meet several examples below). In such a case L is said to be unbounded and one has to specify care­
fully both the subspace on which L is defined, to be denoted by Oj)(L) and to be called the domain of L, and the action of L. If the 
domains of two unbounded operators are not identical they have to be considered as different objects even if their action is 
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identical. Frequently ~L) will be dense in X (i.e. for any feX and any <>0 one can find ge~L) such that 11/-gll« or, 
equivalently, the closure "!:(L) of "!:(L) is all of X). 

O<:casionaly we shall have to integrate Banach space valued functions (see, for instance, the variation-of- constants formula (3.6) 
below). For our purposes the Riemann 'integral of a continuous function is adequate. We refer to LADAS & LAKSllMIKANTHAM 

(1972) for a quick introduction to the theory of integration in Banach space. 

It remains to specify the function space Y in which t ... n (t, ") is supposed to take its values. At this point many 
roads depart. From the point of view of probabiliti theory one may wish to interpret n(t, ·) as a measure. Our 
"definition" of n in section 1.4 suggests to take L 1(2a, I) as the state space Y. But continuous functions may be 

easier to work with. 

Llkewise we have to make assumptions about the measurability, integrability and/or continuity of V,µ. and b and 
we can either strive for the utmost generality by assuming as little as possible about these ingredients of our model or, 
on the contrary, we may assume everything which seems reasonable and makes life easy. Noting that it is largely a 
matter of taste we adopt the second attitude. We make the 

AssUMPTION 1.3: 

Hv: Vis a strictly positive continuous function on d·a, I); 

H µ: µ.is a non-negative continuous function on [Ta, I]; 

H": b is non-negative and continuous on [Ta,!); b(x) = 0 for xe[+a,a] and b(x)>O for xe(a, I) while 

" lim f b(f)d~ = + 00 • 
xtl a 

Note that one of tl:ie assumptions concerning b expresses that every cell with size greater than a has a positive proba­
bility per unit of time of division. 

Before we define Y we make a transformation. Motivated by the cohort calculations in subsection 1.4.1 we define 

E(x) = exp [- j b(f) + µ(~ d~J · 
a /2 V(f) 

The transformation 

leads to 

where 

_ J'.1& 
m(t,x) - E(x) n(t,x) 

atm~t,x) = -V(x)a;m(t,x) + k(x)m(t,2x) la a 

m(t,2a) = 0 

k(x) = 4 ~~~~ ~~~~ b(2x) , Ta°'"x°'"T. 

Ex:BR.crsE 1.4: Check that (1.7) is correct. 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

We emphasize that Convention I.I implies that k(x)m(t,2x) = 0 for x>T and for convenience later on we define 

k(x) = 0 , (1.9) 

The profit of transformation (1.6) is technical in character: it turns out that (1.7) is easier to handle than (1.1). We 
can interpret m as the, with a survival-factor corrected, flux of cells (recall that the flux at x is by definition the 
number of cells which pass x per unit of time and therefore equals V(x)n(t,x), the velocity times the density). 

We are going to look for a "solution" t ... m(t,-) of (1.7) which takes values in the Banach space X of continuous 
functions defined on [Ta, I] which are zero in x = +a, provided with the supremum norm: 
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(LIO) 

This amounts to considering n(t ·) 1 · 
, as an e ement of a weighted C-space Y Vlith tailor-made norm 

llcf>\I = sup{ ;~:i I cf>(x)I I +a<;;x,.;;;l}. I LI!) 

In particular it implies that n(t ) h 
Cam. . ,x as to go to zero for xfl at least as fast as E(x) and that the behaviour near ~ I 

es extra weight (note that E(l) - 0') I · f · · · 
a . . - · · n view o the cohort calculauons these are natural properties Moreover 

c~:se a r~stenon justi~cat'.on w_e shall ~e~onstrate in subsequent sections that these properties are pr~ed in ~ 
o tnne (so working m Y is a restncuon on the initial condition n(O,x) only). 

We are now ready to <rive a p · th · al f · • 
h ,,,,. recise ma ematic ormulat10n of the problem and to outline the pro~ram t~f t.rus 

c apter: c 

(i) we want to interpret (1.7) as an abstract equation 

dm -
-=Am 
dt 

in X, where A is the generator of a semigroup T(t) acting on X 

(ii) we want to study the large time behaviour of T(t) 

(iii) as an important tool in (ii) we shall use a detailed study of the spectral properties of A. 

REMARK 1 :5 · The tildes s~rve here t.° emphasize the distinction with the generator A and the semi group r1.n 
corresponding to n(t, ·) and introduced m section l.5. In the following sections we will omit the tildes. 

ExERcISE 1.6. Define H: Y ->X by (cf. (1.6)) 

(Hcf>)(x) = ~~=; cf>(x). I l.l2) 

Convince yourself that His continuous and that its inverse n- 1 is continuous as well (His an isomorphism). Verify 

that 

T(t) = H- 1 Tct)H 

REMARK l.7. (About the notation.) In the following we shall use the symbols A,cf>,>f and k to denote mathematical 

objects which are different from the various distributions and the population growth rate which were denoted by these 

symbols in section I.4. We trust that this will not lead to confusion. 

2. Strongly continuous semigroups of bounded linear operators 

In the first part of this section and in sections 7 and 8 we present without proof some basic !11.l!.themallcal material 

concerning linear semigroups of operators. For proofs and additional results we refer to PAZY (l98.3a) and DAVIES 

(1980). The bible remains HILLE & PHILLIPS (1957). Other convenient sources are BALAKR!SHNAN (1976), Bal.ENI· 

MORANTE (1979), BUTZER & BERENS (1967), DUNFORD & SCHWARTZ (1958), KATO (1976). LADAS & lAKSH..'lllKANTHAM 

(1972), ScHAPPACHER (1983), WEBB (1985a) and YOSIDA (1980). The second part of this section is devoted to some 

examples (in particular translation semigroups) which serve to pave the way for our treatmen1 of the fission equation 

in section 3. 

Let X be a Banach space Vlith norm 11·11. Let {T(t)},.,0 be a family of bounded linear operators from X mto itself. 

We will call {T(t)} a strongly continuous (one-parameter) semigroup iff 

(i) T(O) = I 

(ii) T(t)T(r) = T(t + r) , t, r;;;.O, 

(iii) limllT(t)cf>-cf>li == 0 , V'cf>EX. 
1.10 

(The adverb "strongly" indicates that (iii) amounts to convergence in the strong operator topology). Assumption (iii) 

is based on the wish to be assured of continuous orbits 1.-.T(l)<j> and so it may seem strange that (iii) only requires 

continuity in t = 0. Therefore we propose 

EXERCISE 2.1. Show that (i) - (iii) guarantee that for each fixed </>EX the mapping 1 .... T(l)<I> is mntinuous from IR+ to 

x. 
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The operator A defined by 

Aq, = lim l.(T(t)</>-q,) 
tjO t 

with domain of definition 6D(A} consisting of those q,eX for which J_(T(t)</>-q,) converges in X to a limit as t.j,O, is 
t 

called the infinitesimal generator of {T(r)}. We will frequently omit the adjective "infinitesimal". 

THEOREM 2.2. (Uniqueness of the correspondence). A linear operator can be the generator of at most one semigroup. 

DEFINITION 2.3. A linear operator L :X_., Y (where X and Y are Banach spaces) is called closed iff for each sequence 
{x,} in X such that (i) Xn e6D(L); (ii) 3x eX such that Xn_.x for n-->oo; (iii) 3y E Y such that Lxn-->y; necessarily 
xe6D(L) and Lx = y. 

REMARKS (i) One can show that Lis closed iff the graph {(x,Lx) Ix e6D(L)} is a closed subset of XX Y. 
(ii) Among unbounded operators some behave better than others. We will see later that closed operators are good 
guys in the sense that for these a satisfactory spectral theory exists. 
(iii) Differential operators are, as a rule, closed. 

In principle the generator A of a semigroup {T(I)} could be a "bad" operator with a rather small domain of 
definition. The next result states that this is actually impossible. 

THEOREM 2.4. A is a closed operator and 6D(A) is dense in X 

Intuitively A is the derivative of T(t) at t = 0. Indeed we have 

THEOREM 2.5. If <j>e6D(A) then T(t)q,e6D(A)for all t;;;>O. On 6D(A) the operators T(t) and A commute and 

:t T(t)<j> = AT(t)</> = T(t)A<j>, if <j>ED(A). 

One of the high-lights of semigroup theory gives a precise characterization of those operators which generate semi­
groups: 

THEOREM 2.6. (Hille-Yosida). A closed operator A with dense domain 6D(A) is the infinitesimal generator of a strongly 
continuous semigroup if! real numbers Mand w exist such that for all ;\>w the operator Al - A has a bounded inverse and 

\\((Al-A)- 1)"1\..;__M_ n = 1,2, · · · . 
(;\-w)" ' 

REMARKs (i} Of course the symbol \!·\\ here indicates the operator norm (see Interlude 1.2). 
(ii} The most important way to establish that some given operator generates a semigroup is to verify the Hille-Y osida 
conditions (see PAZY, 1983a). However, for the kind of problems we are dealing with in this chapter there exist, as we 
will show in detail, easier ways. As a consequence we are not going to use Theorem 2.6 (it is stated here only for the 
sake of completeness). 

Ex.AMPLE 2.7. Let X = BUC(R), the space of bounded, uniformly continuous functions from IF!: into IF!: provided with 
the supremum norm ll<t>ll = sup{l</>(x)l 1-oo<x<+oo}. Defining 

(T(t)q,)(x) = q,(x -t), 

we clearly obtain a strongly continuous semigroup (note that the strong continuity of translation is guaranteed by our 
restriction to uniformly continuous functions). 
Claim: Aq, = -q,', with 6D(A) = {</>I <P is continuously differentiable and q,' belongs to BUC(IR:)}. 

PROOF. Suppose that q,e6D(A) and Aq, = t/; then by definition 

lim sup{! p!,x -t)-p!,x) -11-(x)l I- oo <x < + oo) = 0 , 
tjO I 

from which we conclude that t/; is the left-derivative of -q,. Since t/; is (uniformly) continuous the inequality 
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I </>(,x +t)-<f>{x) <j>(y-t)-cp(y) 
_, -t<x)l.;;1 1 -w)I +lwJ-w-1>1. 

where Y = x + t, shows that <P is differentiable with derivative -.;, . If, on the other hand, qi EBUC(R) then 

cj>(x -t)-p(x) ' 110 
I / + <P'(x)I = lj (<P'(x)-<l>'(x -T))dT\ ..... o 

0 

uniformly for x EIR since 

'1€>0 3 8>0 such that \<l>'(x)-<1>'(x -,.)\,.;;£provided \T\,.;;8 O 

REMARKS (i) A is unbounded. Indeed, consider cp(x) = sinmx then 11<1>11 = I and liA.PI! = m and consequently for no 
Ke\R the inequality llA<Pll,.;;Kll<t>ll can hold for all </>EX. 

(ii) The fact that Gil(A) is dense in X is well-known in this special example. 

(iii)One can easily verify directly that A is closed by taking limits in the relation <1>.(x) = cl>.(0) + j </>~(~~. 
Q 

(iv)If </> is differentiable then so is its translate and the order of translation and differentiation may be changed without 

changing the result. Moreover, ! <l>(x -t) = -<1>'(x -1). Compare this with Theorem 2.5. 

(v) Defining n(t,x) = (T(t)<P)(x) we may, if tj>EGj)(,4), rewrite the abstract equation 

! T(t)<P = AT(t)</> as ~; + ~: = 0 , a first order partial differential equation with initial condition 

n(O,x) = </>(,x). We observe that both partial derivatives exist iff </>E"D<.A), but that the semigroup yields a very natural 

extension of the solution concept. This can be made more explicit by interpreting j_ + _l_ as the directional deriva-ot a.ic 
tive Din the (1,1) - direction: 

Df(t,x): = lim ..!..{f(th,x+f)-f(t,x)) 
t-90 E 

(see Appendix IHA for a general definition). Indeed, the directional derivative Dn exists, even though n is not C 1, 

and Dn = 0. Thus n(t,x) = (T(t)<l>)(x) is a solution of Dn = 0, n(O,x) = <l>(,x). 

The example above illustrates a general principle: the generator of translation is differentiation. A technical ela· 

boration of this principle in various function spaces amounts to a precise description of the domain of definition of 

the operator of differentiation. For the next result we refer to RUDIN, 1974, Chapter 8. 

DEFINITION 2.8. A function .p:[a,b ] ..... R is called absolutely continWJUS if VE>O 3 8{E)>O such that for each finite ool-
N N 

lection of disjunct open intervals (xi.yi), · · · ,(xN,JN) the condition ~(>·;-x;)<8 implies~ l<l>(y,)-<l>(,x,)j<E. 
i=l t=l 

, 
THEOREM 2.9. (i) Suppose </>(,x) = </>(,a) + J if(~d~ with ifeL 1[a,b]. Then</> is absolutely continuous. 

(ii) Let </> be absolutely continuous. a Then <I> is differentiable for almost all x and 1>' EL 1 [a,b l while 
, 

p(x) = p(a) + j <1>'md~. 
a 

ExAMPLE 2.10. Let X = L 1(R) and define 

(T(t)<l>)(x) = <l>(x -t). (2.l) 

Then {T(t)} is a strongly continuous semigroup (more general the translation operator is continuous in.Lp-spaces with 

I .;;;,p < oo; note however that translation is not continuous in L "'). In view of the theorem above 1t comes as no 

surprise that Alf> = -cp' with "D(_A) = {</>\</>is absolutely continuous and 1>' EL1 (R)). 

ExAMPLE 2.11. In bounded domains we have to incorporate a boundary condition. Let X = L1{0, I] and define 

{
</>(,x -t) for .x-;;.t 

(T(t)<P)(x) = o for x<t 
(2.2) 
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Then At/> = -tj>' with 6D(A) = { <i>I</> is absolutely continuous and </>(0) = O} · 

ExAMPLE 2.12. The semigroup of the last example cannot be defined on C[O, I] since, when </>(O)oj=O, T(t)</> would have 
a jump discontinuity. But with X = Co[O, l], the space of continuous functions on (0,1] which vanish for x = 0, pro­
Vi.ded with the supremum norm, everything is fine and A</>= -tj>' with 6D(A) == {4>lt/>EC 1[0, I] and tj>'(O) = O}. 

ExllRCISE 2.13. Verify the last assertion. 

ElcAM:PLE 2.14. The last two examples above correspond to the first order partial differential equation 

2!!. + 2!!. = 0 at ax 
with boundary condition n(t,0) = O and initial condition n(O,x) = </>(x). As a next step towards the fission problem 
we change the equation into 

2!!_ + V(x).£!!_ = 0 (2. 3) a1 ax ' 
where Vis a continuous and strictly positive function. In order to show that essentially (in a sense specified below) 
nothing has changed we try to find a transformation of variables 

y = G(x) 

which reduces the new problem to the old. Since 

j_ = ~ .J_ = (G- 1)'(G(x)) J... oy ay ax ax 
we want to choose G such that (G- 1)'(G(x)) = V(x). Differentiating the identity G 1(G(x)) == x we obtain 
(G- 1)'(G(x))G'(x) = I and therefore we choose 

x d~ 
G(x) = f vm. 

Q /2 

a Let X = Co[2,IJ, Y = C0(0,G(I)] and define L :X->Y by 

(L</>)(y) = </>(G- 1(y)), 

and L - 1 :Y~Xby 

(L - 1o/Xx) = o/(G(x)). 

Let the semigroup T(t) acting on Y be defined by (2.2). Then 

T(r) = C 1T(t)L 

defines a semigroup on X with generator 

A = L - 1AL ' 61(A) = L - 161(A). 

Explicitly we obtain 

(T(r)<l>){x) = </>(G- 1(G(x)-t)) 

(where we define G- 1(y) = 0 for y.s;;O) and 

Atj> = -V<t>'' 6j)(A) = {</>I </>EC1(1,11 & «1> = tj>'(1) = O}. 

ExERCISE 2.15. Verify the preceding calculations. Verify that (2.7) defines a solution of (2.3). 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Seroigroups {Tct)} ~d {T(t)} which are related as~ (2.5) are called intertwined or conjugated. In the present 
example the representauon (2.5) shows how the action of T(t) can be decomposed into translation and deformation. 

ExERCISE 2.16: If V goes to zero ~~ciently fast in the left endpoint of the interval (the "stream in" point) we don't 
need to prescnbe a boundary condiuon (nor can we). First solve formally 

! ~~ + x~: = 0 , O<x<+oo, 

n(O,x) = </>(x) , O.s;;x<+oo 
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and subsequently define the corresponding semigroup on X = C[O, + oo) and calculate the generator. 

ExERCISE 2.17. In continuation of Exercise 1.6 show that 

A= H- 1AH with6D(A) = H-16D(A). 

REMARK 2.18. The examples 2.11 and 2.12 show that in an L 1-space (and more generally in LP-spaces) a boundary 
condition may show up only in the domain of the generator, whereas in the C-context one is forced to include it in the 
definition of the space. But then one of the conditions characterizing the domain of the generator will be a boundary 
condition for the derivative! 

ExERCISE 2.19. Let A be a bounded linear operator from X into X. Define for each IER the bounded linear operator 
eAr by the Taylor series 

"' t1A 1 
eAt = ~ _ 1_, 

I =O /. 

which converges in the operator norm. Convince yourself that { eA') is a semigroup with generator A. 

ExERCISE 2.20. If X = u;iN then any bounded linear operator A is, for a given basis, represented by a matrix. One 
way to compute the matrix eAr is to bring A in Jordan canonical form (HIRSCH & SMALE, 1974) and to use 
LEMMA. If B = PAP- 1 then eB = PeAP- 1, and 
LEMMA. If A 1A 2 == AiA 1 (i.e. A 1 and A 2 commute) then eA 1 eA 2 = eA 1 +A 1 

Show in this manner that 

[a -/Ji , , fi a I _ at r COS/31 - Sin/3t] 
(u) e - e l sin,81 cos/3t · 

3. Do growth, death and division generate a semigroup? 

Our aim is to associate a semigroup with the problem 

-m(t x) = - V(x)-m(t,x) + k(x)m(t, 2x) a1 ' ax 
1 

m(t,z-a) = 0. 

(3.1) \

a a 

Instead of verifying the Hille-Y osida conditions we will first study the rather_ easy problem obt~ed by dropping t:: 
term k(x )m(t, 2x) and subsequently re-introduce this term as a relauvely mnocent perturbatton. So we define 
unbounded operator B on X by 

{
(B<j>)(x) = - V(x)<P'(x) 

I l 
6D(B) = {<i>EX I <j>EC 1[2,ll & <P'(2a) =OJ 

As in Example 2.14 it follows that B generates the strongly continuous sernigroup 

(Uo(t)<i>)(x) == q,(G- 1(G(x)-t)) 

with 

x d~ 
G(x) = j V(~ . 

a /2 

(3.2) 

(3.3) 

(3.4) 

. f dF V(F), F(O) = fa. Interpret F(t) as the size of a cell at time EXERCISE 3.1. Let F(t) be the unique solutton o di = 
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t given that the cell had size +a at time zero. Verify that F(t) = G- 1(t), i.e., G(F(t)) = t and F(G(x)) = x. 

. I . 
ExERCISE 3.2. Interpret G(x) as the time which a cell needs to grow from size 2a to size x. 

Ex.ERCISE 3.3. Let X(t,y) denote the solution of the initial value problem ~~ = V(x ), x(O) = y. Show that 

X(t,y) = c- 1(G(Y)+t) and that, consequently, (3.3) can be rewritten as (Uo(t)</>)(x) = </>{X(-t,x)). Interpret this 
representation in biological terms. · 

ExERCISE 3.4. (a technical point) Convince yourself that the strict positivity of V guarantees that the solution of the 

initial value problem dx = V(x), x(O) = y is unique (without any Lipschitz condition on V). 
dt 

Next we state a perturbation result: 

'THEOREM 3.5. Let B be the generator of a semigroup U0(t) and let C be a bounded linear operator. Then B +C gen­
erates a semigroup T(t). 

We shall sketch some instructive aspects of the proof. The differential equation 

dm = Bm + Cm m(O) = </> 
dt ' 

(3.5) 

and the variation-of-constants formula (see HIRSCH & SMALE, 1974, section V.5) suggest to look for solutions of the 
integral equation 

I 

m(t) = U 0(t)</> + J U0(t-r)Cm(r)dr. 
0 

(3.6) 

Using a certain straightforward estimate (PAZY, 1983a, section 3.1, proposition 1.2) one can show that the successive 
approximations 

k 
mk(t ;</>) = :2; U/t)</> (3.7) 

j=O 

where 

I 

U1+1(t)</> = fU0(t-r)CUj(r)</>dr (3.8) 
0 

converge to a solution m = m(t ;</>) and, moreover, that there is at most one solution. Finally one can verify that 
T(t)</> = m(t ;</>) defines a strongly continuous sernigroup of bounded linear operators with infinitesimal generator 
A = B + C, 6D(A) = 6D(B). 

Returning to the cell population we formally write 

(C</>)(x) = k(x)</>(2x) 

and ask ourselves whether or not this defines a bounded operator on X. 

(3.9) 

ExERCISE 3.6. Check that (3.9) defines a bounded operator if and only if k(+) = 0 or, in other words, b(x)E(x)->0 

for xfl. (Hint: recall Convention 1.1). 

Although xb(x)E(x) is integrable on !fa, l], the behaviour of this function in x = I may be such that C is 

unbounded, and consequently Theorem 3.5 is not strong enough for our purposes. There do exist many generaliza­
tions (KATO, 1976). In the present problem one can easily generalize the constructive procedure (3.7) - (3.8) to solve 
(3.6), by exploiting the embedding of X into L 1[+a, I]. Using that (3.3) defines a semigroup on L 1[+a, I] as well, that 

C is always continuous from X to L 1[fa, l] and that, as one can verify, the integration with respect tor produces a 

continuous function of x one can prove (see DIEKMANN, HEUMANS & THIEME (1984) for the details): 

'THEOREM 3.7. The operator 
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(A<l>)(x) = - V(x)</>'(x) + k(x)</>()x) 

6D(A) = {</>EX I <I> is continuously differentiable on[+a.+)u(f,ll and the limits 

li!j1-V(x)</>'(x)+k(x)<1>(2x) and li111- V(x)</>'(x) exist and equal each other, and 
z~ ·~ 

is the generator of a semigroup T(t) on X. 

(1 llll 

REMARKS (i) Note that 6D(A) == 6D(B) if and only if k(f l = 0 and that, in general, the domains of Band C "interact" 
to produce 6D(A ). 

(ii) !he terms in ~e series T(t)</> = 2;1~0 U1 (1)<1> have a straightforward biological interpretation. Un(I)</> is the contri­
bution to the density of those cells wliich were present at t = 0 and have not yet divided. We call it the ::1ro'th 
eration. Inductively we find that Lj(t)</>, the j-th generation, gives the contribution of those cells which arose from 
fission of cells of the (j- l)th generation and which have not yet divided themselves. Thus we speak about a genera­
tion expansion. 
(iii) Note the monotone convergence of the successive approximations (3.7) if</> is a non-negative function. 
(iv) The zero'th generation becomes extinct at t = G( l ). One can prove inductively that numbers exist such that 
the jth generation becomes extinct at t = er Mathematically this amounts to the jth tenn being zero for 
r;;.e1. 

(v) Assume that a >t (i.e., the smallest mother is still larger than the biggest daughter or, in other words. a ce!i which 

is just created cannot divide). Since a newly created daughter has a size less than or equal to +, it need; a certain 

time to grow up to size a at which it can divide. Consequently there will exist integers J(<>l such that for 1,.;;cr the gen· 
erations with j;:.J(a) cannot yet exist. Mathematically this amounts to all terms with index _1;;.J(<J) being zero 
t~a, i.e., for each firtite t the generation expansion has only finitely many non-zero terms. The assumption 

makes the exposition easy but is not needed for the result. One can prove (DIEKMANN, HEUM.ANS & THIEMF. 1984): 

LEMMA 3.8. Choose a>O. Let the bounded linear operator H from C([O,a]:X) into itself be dejined by 

I 

(Hm)(t) = JU0 (t-r)Cm(T)dr 
0 

Then Hi = Ofor j;;;. 2: !VI"' + m, where m is such that 2-m.;;;~ < rm+I and !Vi,, = sup{!V(x)! 

other words: H is nilpotent.) 

(3J I) 

I\. lfn 

l 
ExERCISE 3.9. (not difficult but time consuming) Prove this lemma for the special case that a>2 and g(x) = l for all 

x. 

In conclusion of this section we address the problem of specifying the sense in which T(t)<p satisfies the partial 
differential equation in (3.1). Combining Remark (v) about and below Example 2.7 and the representation (2.5) we 

now define 

(Df)(t,x) == lim_!_{/(t+<,G- 1(G{x)+<))-/(t,x)} 
t:-+0 ( 

ExERCISE 3.10. Verify that m(t,x) = (T(t)</>)(x) satisfies 

(Dm)(t,x) = k(x)m(t,2x) 

where, to be precise, one should take for x = +the limits <tO and <!0 in (3.12) separately if k(t)"f'=O. 

ExERCISE 3.11. Use the identity o- 1(G(x)) = x and the chain rule to show that (G- 1)'(G(x)) =: V(x). 

REMARK. Since a-1(G(x)+<) == x +<V(x) + o(<) we have 

(Df)(t,x) = lim l.{f(t+<, x +eV(x))-f(t,x)} 
(-o ( 

(3.12) 

~3.13) 

· · h d · · · the direc''on (1 V(x)) at the right hand side may not exist, while still the if f 15 smooth. However, t e envauve m " • . . · al 
limit in (3.12) is well defined. In section 10 and Chapter III, section 4 we shall mte:rpret D as a denvat1ve ong 
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characteristics. 

The first step in our analysis of the fission model is now completed: we showed existence and uniqueness of a solu­
tion which depends continuously on the initial data </>. The solution is constructed as a series in which every subse­
quent term is easily calculated from the preceding one. However, this representation of the solution is not of much 
help for an analysis of the large time behaviour. We need spectral theory. 

EXERCISE 3.12. Apply the constructive proof of Theorem 3.5 to the case where B is the generator of translation in 
BUC(IR) (i.e., the operator called A in Example 2.7) and (C</>)(x) = k</>(x). Find an explicit expression for S(t) by 
evaluating the series. 

EXERCISE 3.13. (a little tricky) Repeat the foregoing exercise with (C</>)(x) = k(x)</>(x) where k EBUC(IR). Note that 
the explicit expression for T(t) defines a semigroup for a much wider class of functions k. 

4. The spectrum of A. 

Let X be a Banach space over the complex numbers C and let L denote a closed linear operator with domain 6lX,L) C X 
and range ~L)CX. Let A be a complex number. 

DEFINITION 4.1. A is an element of the resolvent set p(L) iff the resolvent (A.I-L)- 1 exists and is bounded, i.e., 

(i) Al-Lis one-to-one (injective) 

(ii) ~A.I - L) is dense in X 

(iii) (AJ-L)- 1 is bounded' 

The so-called spectrum a(L) is by definition the complement of p(L). The point spectrum Pa(L) is the set of .those 
AEC for which AI - Lis not one-to-one, i.e., L</> = A</> for some #0. One then calls A an eigenvalue and <P an eigen­
vector corresponding to A. The null space '!Jrl.,AJ-L) is called the eigenspace and its dimension the geometric multipli· 
city of A. The generalized eigenspace GJrl.(A.I-L) is the smallest closed linear subspace that contains '!Jrl.,(A.I-LY) for 
j = 1,2,3, ... and its dimension is called the algebraic multiplicity of A. 

Although we will not need the following definitions, we present them for completeness. The continuous ;pectrum Ca(L) is the 
set of those :>-.eC for which M-L is one-to-one and ~AJ-L) is dense in X but (M-Lr 1 is unbounded. The residual spectrum 
Ra(L) is the set of those AeC for which M-L is one-to-one but ~AJ -L) is not dense in X. 

Throughout the rest of this chapter (!) we make 

I 
ASSUMPTION 4.2. a;;;.2 

(see section II.I for the biological interpretation). It will tum out that the analysis of the spectrum of the operator A 
defined in (3.10), with k defined in (1.8) and (1.9), is rather simple under this biologically reasonable restriction. 
Moreover, the results are representative for the general case, which is elaborated in detail in HEJJMANS ( l 985b). 

According to the rules we first try to construct (AJ-A)- 1 for as many AEC as possible. Note that we now work 
in the complexification of X (again denoted by .x) which means that all functions take values in C. The abstract inho­
mogeneous equation (A.I - A)/; = f implies l V(x)i//(x) + 1'#,x) = f(x) , 

V(~)i/l(x) + A#,x) = f(x) + k(x)¥2x) 

1/12a) = 0. 

I 
2.,;;x.;;;J 

I l 
, 2a~x~2 

·This assumption means that (M-L)- 1, which at first is only defined on 'W._M-L), can be extended to a bounded 
operator defined on the whole space X. For closed operators the conditions actually imply that ~;v - L) = X; so the 
formulation above is unnecessarily cumbersome in the present context, and was chosen solely because it is the standard 
formulation. 

(4.1) 
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Using the variation-of-constants f u1 f din d'"" · 
orm a or or ary u1erent1al equations we can solve the first equation to obtain 

"1{.x) = Ce X(G(+)-G(x)) + {x e,\(G(<l-G{x)) j!,fj_d' 
- vm <;; (4.2) 
l 

for ..!...;;;;x.;;;; I with the · · · · 
2 . constant C still to be deternuned. The nght hand side of the second equation in ( 4.l) can now 

be expressed m known fun t · d th unkn 
c 10ns an e own constant C and we find, taking account of the third equation, 

X I 2li 

o/(x) = J eX<G<<J-G(x)) {c/CG<-,J-G(2<J)k(f) + f(f) + k(f) ( e•CGM-G(2<Jlillld } _!!.{_ (4.3) 

a I 2 _ V(1J) 1J vm 
l 

for .l..a.;;;;x.;;;;.l.. Th fir · · 
2 2 · e st question 1s whether or not (4.2) and (4.3) define an element >Jl of X. Tue only thing that 

could possibly be wrong is the continuity in x = f. Now fu\l >/J{x) = C and lim 1/{x) = '/T(A)C + t<A.f) where by 

definition 
xi2 xr+ ' ' ~ 

I 

'IT(A) = f e,\(G(f)-G(2<J).!fil.d~ 
fa V(~ 

(4.4) 

and 

I 

J I U 
~(A,/) = J e A(G«J-G<-,)) ({(~) + k(f) ( e•<G(~)-G(21ill...ful2...dri)_!!L. 

fa T V(71) V(f) 
(4.5) 

In order that o/ is continuous we have to choose C such that 

(1-?T(A.))C = nA.,f). (4.6) 

If ?T(A.)7"'1 we can, for arbitrary f EX, indeed satisfy this compatibility condition. The explicit expressions (4.2) - (4.3) 
with 

(4.7) 

define a continuous mapping />-+../; from X into X and our construction guarantees that o/E''D(A) and (Al -A /if = f 
Thus we proved 

THEOREM 4.3. '1T(A)7"'1 implies AEp(A). 

Next, consider those A for which ?T(A) = I. If we choose /(x):=O the function ijJ defined by (4.2) - (4.3) is, for arbi­

trary C EC, an element of ~A) such that CM - AN = 0. Hence we have 

THEOREM 4.4. ?T(A) = l implies AEPa(A). 

So the spectrum of A is precisely the set {A.i,,.(A) = I} and A has only a point spectrum. By analogy "ll<ith the 

well-known situation for ordinary differential equations we will call the equation 

,,.(A.) = 1 (4.8) 

the characteristic equation. In subsection I.4.3 we discussed its biological interpretation and in the next section we dis­

cuss th.e position of its roots in the complex plane. 

Ex.ERCISE 4.5. The assumption a;;.T made that we had to consider only two subintervals when constructing the resol-
1 

vent. Use three subintervals to derive the corresponding characteristic equation for the case a;;;. 4. 

The construction above implies that elements of "ll.(:V-A) are unique modulo the constant C. So the dimension 

of '!JC(;\/ -A) (i.e., the geometric multiplicity) is at most one (here the restriction a;;;. Yi is essential). In conclusion of 

this section we prove 

THEOREM 4.6. Suppose '1T(A) = I. The eigenvalue ;\ is simple (i.e. has algebraic multiplicity one) ifJ ?T'(;\.)7"'0. 
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PROOF. Any element</> of 91.((V-A)2) that does not belong to 91.(V-A) necessarily satisfies ()\]-A)</>= IJ,/i, for 
some non-zero constant 0, where t is defined by (4.2) - (4.3) with/(x)=O and, say, C = 1. Just as before we find the 
solvability condition (J-77(A.))</>(2) = Ol;(A.,lf;). Since 7T(A) = 1 this condition can be satisfied iff r(A.,lf;) = 0. Now 

l;(A.,lf;) = ( 1) + (2) where 

I I 

T x I 2.( ,/,{~\ d' 
(2) = f e (G(<)-G(,-)) k(" f J.<GM-G(l()) ..:t:l..'.JL d -'-

' " e V(71) 11 V(s) 
!,- eX(G(O-G(l()) k(s)(G(2s)-G(J_)) ~ 
I 2 vm • ,. za T 

I 

Hence l;(A.,lf;) = ,J eX(G(O-G(l())km(G(lS)-G(s)) :C~) . On the other hand we obtain the same expression for 
,. 

-'IT'(A.) by differentiation of (4.4). D 

EXERCISE 4.7. Determine o(A) for A from Example 2.7. 

EXERCISE 4.8. Do the same for A from Example 2.12 and for B from Example 2.14. 

5. The characteristic equation 

Using the definition (1.5), (1.8), (3.4) and (4.4) we can rewrite 'IT(A) as 

'IT(/...) = 2 f l.fil_ exp [- f A+µ.(?)) +b(?J) d11] ds . 
0 V(8 ~ 12 V(71) 

(5.1) 

Since, V, µ. and b are nonnegative 'IT is strictly decreasing on the real axis. Clearly 'IT( - oo) = + oo and 'IT( + oo) = 0. 
We conclude that there exists precisely one real root which we call AJ (d means dominant, a terminology explained in 
Remark 5.6 (i) below; note that in section 1.4 we called the real root k; so k = AJ)· From the explicit expression for 
'IT' obtained by differentiation of (5.1) it readily follows that 'IT'(A.J)<O. We conclude from Theorem 4.6: 

THEOREM 5.1. A has precisely one real eigenvalue Ad and this is a simple eigenvalue. 

Since V,µ. and bare real valued 'IT(A) = 'IT(:\), where the bar denotes complex conjugation. Hence non-real roots of 
'1T(A.) = 1 occur in complex conjugate pairs. From the definition (5.1) it follows almost directly that 'IT is an analytic 
function. Hence the roots are isolated points, without any finite point of accumulation. In order to obtain further 
information about the position of the roots we try to write '1T as a Laplace transform. Formula ( 4.4) suggests the 
transformation 

T = G(2S)-G(~) 

Since 

dT = _2 ___ l_ 
d~ V(lS) V(~ ' 

we need a condition on V for (5.2) to define a one-to-one relationship. In the following we shall treat three cases: 

DEFINITION 5.2. 

Case I: V(2x)<2V(x) 

I I 
Case II: V(2x) = 2V(x) , 2a,,;;;;x,,;;;;2, 

!V(2x) = 2V(x) , 

Case III : 
V(2x)<2V(x) , 

(5.2) 

(5.3) 
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ExERCISE 5.3. Verify that the general solution of V(2x) = 2V(x), +a,,;;;x,,.;;+, is given by V(x) = xp(lnxlln2) withp 

an arbitrary one-periodic function. 

REMARKS 5.4. (i) Mathematically there is no difference between V(2x)<2V(x) and V(2x)>2V(x), for all x, but bio­

logically the first seems reasonable and the second absurd. 

(ii) The list of cases is far from exhaustive. Occasionaly we shall state remarks, exercises and results for still other 

ci:ses. See Theorem 5.10 and the end of section 12, in particular Theorem 12.3. 

THEOREM 5.5. In Case I there exists <>0 such that every root >-=f),d of the characteristic equation .,,.(;\) = 1 satisfies 
Re.\<>.a-•. 

PROOF. Let ~r) be the inverse function of r(g} defined in (5.2). Then 

G(I)-G(+J 

J . e-x, lili.!21. !!.f (r)dr. 
G(a) V(~r)) dr 

Hence .,,.. is of the form 

c, 
'1T(A) = J e-''K(r)dr 

c, 

with c2>c 1 >0 and K(r):;;.oO and not identically zero. Putting;\ = µ + iv we obtain 

Cz C3 

'lT(A) = J COSl!T e-µ, K(r)dr-i /sinvr e-µr K(r)dr, 
C1 t'1 

from which we infer that for v?60 

JRe'lT(>.)[ < .,,..(µ) = '1T(Re;\). 

(5.4) 

(5.5) 

Since 0<.,,.(µ)<l for µ:;;.o;\d necessarily Re.\<;\d if ;\ is a root. According to the Lemma of Riemann-Lebesgue 
(RUDIN, 1974, 5.14) 

c, 

lim J cosvr e-µT K(r)dr = 0 
1•1-oo c, 

uniformly forµ in compact sets. So in each vertical strip µ1..;;Re;\<µ2 there can be at most finitely many roots. The 

conclusion of the theorem is now obvious. 0 

REMARKs 5.6. (i) Since Ad is the eigenvalue with largest real part we call it the dominant eigenvalue. 
(ii) One can use Hadamard's Factorization Theorem for entire functions of order one to show that there exist infinitely 

many roots. See chapter VIII c.f TITCHMARSH ( 1979). 

THEOREM 5.7. In Case II the roots of 'IT(A) = I are given explicit{Y b;' 

I 1;2 ~ 
A/ = -G {ln I t d~ + 2/.,,.i) , !El. 

(a) a /2 V(.) 

PROOF. In this case G(2x)-G(x) = constant = G(a) and consequently 

1/2 

'1T(A) = e-AG(a) J ~ d~. 
a ;2 V(~) 

Taking logarithms in the equation '1T(A) = I yields the result (recall that the "complex" logarithm is multi valued or 

see Exercise 7.5 below). 0 

'THEOREM 5.8. In Case Ill the conclusion of Theorem 5.5 holds. 

PROOF. 
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with ~(:r) implicitly defined by (5.2). The proof of Theorem 5.5 carries over almost verbatim. D 

I I I I 
ExERCISE 5.9. Assume that V(2x)>2V(x) for 2a.:;.x<fJ and V(2x)<2V(x) for f3<x.;;.2 for some f3e(2a;2). 
Prove that the conclusion of Theorem 5.5 holds. 

By now it should be clear that Case II is really exceptional and we summarize and extend our conclusions in: 

THEOREM 5.10. If V(2x)';l=2V(x)for some xe[{-a, +1 the real eigenvalue A,i is strictly dominant. If V(2x) = 2V(x)for 

all x e[+a, {-1 then, on the contrary, there exist countably many eigenvalues on the line ReX = 'Ad, whichfonn an additive 

subgroup of this line. In all cases the eigenvector corresponding to A,i is positive. 

In section 13 we shall put these findings in the right perspective and there we also present several important refer­
ences. 

6. Decomposition of the population state space X 

Let lfd denote the eigenvector corresponding to the real eigenvalue A,i. Then 

T(tNd = i•'>i-d. 

ExERcISE 6.1. Prove this identity. Hint: compute :i T(t)o/d using Theorem 2.5. 

(6.1) 

An obvious conjecture is now that for arbitrary l[>EX the X-valued function T(t)<j> will have for 1->co its fastest growth 
"in the direction" of >i-d when A,i strictly leads the field of real parts of eigenvalues of A. To begin with we have to 
give a precise meaning to "in the direction". 

The eigenvector o/d spans the linear subspace '8'l(A,i!-A) which clearly is invariant under {T(t)}. Our plan is to 
decompose X into '8'l{A,il-A) and another invariant subspace and to prove subsequently that the restriction of {T(t)} 
to that second subspace obeys an exponential estimate with exponent A,i-E when ReX<'Ad-E for all eigenvalues 'A 
other than A,i. In this section we carry out the first and easiest half of the plan only, postponing the second half to 
sections 8 and 9. 

DEFINl110N 6.2. Let X be a Banach space. A bounded linear operator P :X-+X is called a projection if and only if P2 = P. 

DEFINITION 6.3. X is the direct sum of two linear subspaces Y and Z if and only if for each x eX there exist a unique y E Y and 
ZEZ such that x = y+z. NOTATION: x = YE!lZ. 

ExERCISE 6.4. Let P :X -->X be a projection. Show that X = <ill(P)EB'!Jt.(P) and that '!Jt.(P) = <ill(J - P). Show that ®i{P) and <ill(P) 
are closed. 

ExERcISE 6.5. Let X = YEllZ with Y and Z closed linear subspaces. Define linear operators P,Q :X-.X by Px = y and Qx = z 
where ye Y and zeZ are defined by x = y + z. Show that P and Q are projections and that Q = 1-P. (Hint: In order to show 
that P and Q are bounded one can use the closed graph theorem: If the linear operator L :X 1-+X 2 is closed then L is continuous; see 
Definition 2.3 for the notion of a closed operator). 

The next theorem is one of the key-stones of our approach. It shows that one can associate with spectral values 
which are poles of the resolvent a natural direct sum decomposition of the underlying space. For the proof we refer to 
YOSIDA, 1980, VIIl.8. 

THEOREM 6.6. Let L be a closed linear operator on the complex Banach space X and let Ao be an isolated point of a(L). 
Then Ai-.(AI-L)- 1 is a holomorphic mapping (in a punctured neighbourhood fJ\ {'Ao} of 'Ao) admitting the Laurent 
expansion 

+oo 
(AI-L)- 1 = ~ (A-Ao)kAk (6.2) 

-oo 
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where for each keZ 

with : a. (counter-clockwise oriented) circumference IA.-A.o I = 7J, where 71 is so small that the cirde 

contain singularities of (AI - L )- 1 other than Ao itself The operator A _ 1 is a projection on x. 

(6.3) 

If Ao is a pole or (AI - L)- 1 o' order m (i e A -'-0 d A - o r. k · · 
~ ~ · ., -mr an k - ,or < -m) then ', 1' an t'l"<mvalue• of l "Mar:,, 

k;;.,m · · '~ · " . • -· J' 

0\(A_i) = GJlJ..(A,,I-Lh 

0\(l-A-1) = '5\((.\ol-Ll} 

so that, in particular, 

(6.4) 

~MARK 6.7. Calculations inv~lving inte~als of complex variable operator-valued functions can be performt>d in pre­

cisely the same way as calculations mvolvmg ordinary complex functions. Thus the expression (6.3) for A, is obtained 

from the Cauchy formula. To determine A _ 1 in practice one simply calculates the "coefficient" of 1>.-·A.il- 1 in the 

expansion of (Al-L)- 1 in powers of >.-A.o (see below for a concrete example). 

We are now going to apply Theorem 6.6 to the operator A. The calculations in section 4, notablv formulas (4.2) -

(4.7) imply that 
. 

where l ;\(G(fJ-G(x)) 
e 

..Y(A,x) = 
fx t,(Gm-G(2<}-G(x) + G(TJ} lfil_ 

e V(~) d~ 
a /2 

l 
2.;;x,.;;;1, 

(6.51 

(6.6) 

and where A>->R(A.,f,x) is analytic. Hence the singularities of .\ .... (AI-Ar· 1 are precisely the zeros of l -'1"(.\) and 

these are poles. The order of the pole equals the order of the zero. In the case of ~ we have 'TT'(},d l=FO and the o:rder 

is one (cf. Theorem 5.1). The residue of A>->((Al-A)- 1/){x) in A. = Ad is given by 

t(A.d,f) ..Y(A. ) = n.>..J>J) if; ( ) 
-'TT'(A.d) d•x -.,,'(A.d) d x 

so the projection A _ 1, here denoted by P, is given by 

Pf = t(A.~,f) >/Id · 
-?T (A.d) 

EXERCISE 6.8. Verify that P is a projection using the calculations in the proof of Theorem 4.6. 

(6.7) 

COROLLARY 6.9. X = GJ1.i..A.dl -A )EB'!j\(A.dl -A) and the corresponding projection onto ".rl(~l -A) is P defined in (6. 7 ). 

EXERCISE 6.10. Verify that '5\(A.dl-A) is invariant under {T(t)} and show that P commutes with T(t). 

7. Relations between the spectra of A and of T(t) 

In this and the following section X denotes a Banach space, {T(r)) a strongly continuous semigroup of bounded linear 

operators on X and A the infinitesimal generator of {T(t)}. We intend to explore the condus1ons about the behanour 

of { T(t)} (especially for large t), that can be drawn from our knowledge of the spectrum of A. In this secuon we con­

centrate on the spectrum of T(t) and in the next one we shall consider exponential estimates. 

NOTATION: If W is a subset of C then e'w = { e"" I w E W}. 
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THEOREM 7.1. e1oCA)co(T(t)) , t;;;.O. 

The proof will be delegated to the next two exercises. 

t 

ExERCISE 7.2. Define Z(t)<I> = J elll.1 -•>r(1'),PdT. Show that 
0 

(i) ~Z(t)) C 6D(A); 

(ii) AZ(t)<I> = Z(t)Aq,, \fq,e6D(A); 

(iii) (Al -A )Z(t) = e1v I -T(t). 

ExERCISE 7.3. Prove Theorem 7.1 by showing that for elve p(T(t)) the operator Z(t)(eA'J-T(l))- 1 is the inverse of 
AI-A. 

ExERCISE 7.4. Assume that e-A'llT(t)ll-+0 for t-+oo and RM.>Wo (in the next section we prove that one can always 
00 

find "'o such that this holds). Define R(X) = J e-A•T(T)dr for RM.>c.>Q. Show that ~R(X))C6il(A) and that 
0 

(AI -A )R(X) = I. The observation that A and R(X) coIIU11ute on 6D(A) implies that R(X) is the resolvent of A for 
RM.>"'<J. Note the analogy with the identity 

00 

J e-><• e"" dT = (X-a)- 1 • 

0 

ExERCISE 7.5. (For those who have little experience with complex exponentials and logarithms). For fixed t>O, 
analyse the mapping r.,_.eA' (from C into C) and its multivalued inverse. Concentrate in particular on vertical and 
horizontal lines and their images. (Draw each line in some colour and draw its image in the same colour .) Use the 
periodicity with respect to the imaginary part of X as a motivation to divide the plane in horizontal strips 

{X I (21-1)..!. <IrnX ,..; (2/ + l)..!. }. l EZ . 
t t 

One can show by means of examples (see, for instance, Example 8.6) that the converse of Theorem 7.1 does not 
hold. The situation is more surveyable if we restrict our attention to the point spectrum. 

THEOREM 7.6. e•Po(A) C Pu(T(I)) c [e1PoCA) U{O} ); more precisely we have that el\J ePa(T(t)) if XePa(A) and that for 

at least one /eZ, X + 2; 1 ePo(A) if el\J ePa(T(t)). 

ExERcrsE 7.7. Prove the first inclusion by means of the identity (on 6D(A)) el\J I-T(t) = (Al-A)Z(t) = Z(t)(Al-A). 

THEOREM 7.8. GJl.(e>.11-T(t)) is the closed linear subspace spanned by the linear subspaces GJl.(X1I-A) with X1ePa(A) 
such that el,1 = e1v. 

ExERCISE 7.9. Let <f>eGJl.((AI-A)2). Show that 

T(t)</> = eAt<f> + teAt(A -AI)</> 

and deduce from this identity that cf>eGJl.((e"' /-S(1))2) while 

cf>eGJl.(eAt I-T(t)) iff <t>eGJl.(AI-A). 

ExERCISE 7.10. Prove by induction that GJl.((AI -A)')CGJl.((eAI /-S(t)f ). 

REMARK 7.11. NUSSBAUM (1984) proves the analogue of Theorem 7.8 for the k·times iterated operators. A spectral mapping 
theorem similar to Theorem 7 .6 holds for the residual spectrum, but the continuous spectrum of the semigroup need not be faithful 

to that of the generator. 

8. Exponential estimates 

Aiming at exponential estimates we shall study the large time behaviour of 1-1ogllT(t)ll. It will appear that this 
t 
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function has a limit for t4oo. The next and far more difficult problem is to characterize the limit in terms of (known) 
properties of the generator A and we will find that certain technical (so-called compactness) conditions are very help­
ful if not essential. To begin with we introduce an important concept. 

Let L be a bounded linear operator on X. The spectral radius r0 (L) can be defined by 

I 

r .(L) = inf llLkllk" 
k>I 

although it clearly deserves its name because an alternative definition is provided by point (ii) of: 

LEMMA. 8.1. 
I 

(i) lirn llL k II k exists and equals r 0 (L) 
k-+<l:l 

(ii) sup I A. I = r0 (L). 
Xeo(L) 

The proof of (i) is based on a discrete version of the following auxiliary result which we need below. 

(8.1) 

LEMMA 8.2. Let p :[O, oo )->IR be bounded on each finite subinterval and subadditive (i.e. 

p(t1 + t2)~(t1) + p(t2), V't 1, t 2 ;;;>0). Define P = inf .E.fil. Then lim £.fil exists and equals 11. 
1>0 t 1-ao t 

We want to apply this lemma with p(t) = logl!T(t)ll and therefore we need the following: 

LEMMA 8.3. llT(t)ll is bounded on bounded intervals. 

This lemma is a straightforward consequence of the uniform boundedness principle (the Banach-Steinhaus 

theorem, see RUDIN, 1974, 5.8). 

We now define 

wa = wa(T(t)) = inf .l1ogi1T(t)ll 
•>0 t 

(8.2) 

and find 

THEOREM 8.4. 

i) lim .l1ogll T(t)ll exists and equals Wo· 
t~oo t 

ii) 'Vw>w. 3M(w) such that llT(t)ll,..;M(w)e"'', t;;.O. 

iii) r 0 (T(t)) = e""' for t ;;;.Q. 

ExERCISE 8.5. Prove points (ii) and (iii). 

It remains to characterize the so-called growth bound w0• The following example (due to GREINER, VOIGT & WOLFF, 

1981) shows that the obvious conjecture"'° = s(A), where by definition 

s(A) = sup{ReA.jA.ea(A)}, 

is false. 

ExAMPLE8.6. Define llfll1 = jeTlf(T)\d.,.andletforsomepe(l,oo) 
0 

X = (jeLp(O,oo) \ llfll1 <co} 
provided with the norm lljll = 11.llli.,. + lljll,. Then X is a Banach space and the translation 
(T(t)JX:x.) = j(x+t), 1;;.o, is strongly continous. Clearly llT(t)llo<;;l. In order to show that llT(r)ll = I we introduce 

{
I for t<T<.t+I!, 

f.(T) = 0 elsewhere 

semi group 
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A simple calculation shows that 

11/,11 = < + <(e1 -1) and llT(t)/,11 = E + e1 -I 

so that 

llT(t)/,11 = llf.11(1-o(I)) for •io. 
We conclude that llT(t)ll = I and w0 = 0. 

The infinitesimal generator is Au= u' with GD(A) = {u I u is absolutely continuous and u'eX}. We shall demonstrate that 
{ll._I Reh>-!} Cp(A). The abstract equation (Al-A )u =/leads to 1'.u-u' =/and hence to 

u(I) = j e-A'f(t +r)tlT = e"' j e-A'f(T)dT 

0 ' 

(in principle we could add a term ce"' but such a term does not belongs to X for RM> -1). Straightforward estimates show that u 
thus defined belongs to X for RM>-1 and consequently u' = 1'.u-JeX. We conclude that u = (AJ-A)- 1/and that ll.e p(A). 

Finally, t....e"' is an eigenvector corresponding to the eigenvalue>. if Re>.< -1. Hence sup Re>. = -1~0 = WO· 
1i.ea(A) 

In view of Theorem 7.6 we know that Wo = sup{Rt:>. I AEa(A)} whenever T(t) has, for some t>O, an eigenvalue 
on the circumference lz I = r 0 (T(t)) = e""'. Such is certainly the case if all spectral values, except possibly z = 0, are 
eigenvalues. An important class of operators, viz. compact operators, has this property. We need some terminology. 

A subset W of X is called compact if every cover of X by open sets contains a finite subcover. An equivalent but 
more imaginitive condition for compactness is that every sequence in W has a subsequence that converges to an ele­
ment of W (N.B. The equivalence holds for metric spaces and therefore certainly for Banach spaces; see HUTSON & 

PYM, 1980). W is called precompact (or, relatively compact) if the closure W of W is compact. 

The compact subsets of RN are precisely the bounded, closed sets. If X is some space of functions defined on a 
domain Sl CRN one can sometimes find a reasonable simple criterion for the (pre)compactness of subsets of X (see 
KUFNER, JOHN & FucIK, 1977). We present one well-known example which we need later on. 

Let Sl be a compact subset of IRN. A set W of continuous functions on Sl is called uniformly bounded if it is a 
bounded subset of C(D) (i.e., there exists a constant K such that llfll = suolf(x)l.;;;K for all /eW). The set W is 

xeO 

called equicontinuous if 'V<>O 38 = B(<)>O such that V/eW and Vx,yeD with lx-yl<ll the estimate lf(x)-/(y)I<• 
holds. 

THEoREM 8. 7. (Arzela-Ascoli) A subset W of C(D) is precompact if and only if W is uniformly bounded and equicontinu­
ous. 

A linear operator is called compact (or completely continuous) if bounded sets are mapped onto precompact sets. 
Again there is an equivalent condition: the image of any bounded sequence should contain a convergent subsequence. 
It is not difficult to prove that compact linear operators are necessarily bounded and that the compact linear operators 
form a closed linear subspace of the space of bounded linear operators (provided with the operator norm). Moreover, 
the product of a compact and a bounded operator is compact. 

THEOREM 8.8. Suppose dim X = oo and let L:X-+X be a compact linear operator. Then Oe a(L). (0 can belong to 
Pa(L), Ra(L) or Ca(L)) and a(L) \ {O} consists of either a finite number of eigenvalues or an infinite sequence of eigen­
values that converges to zero. 

COROLLARY 8.9. Suppose that T(to) is compact for some to>O. Then c.io = s(A) = sup{Re>. \ ;\ePu(A)}. 

REMARK. The semigroup property implies that T(t) is compact for t;;i.t0 whenever T(t0 ) is compact. Indeed, 
T(t) = T(to)T(t-to) and the product of a compact and a bounded operator is compact. 

Although one can use Corollary 8.9 in many applications it is not strong enough to cover many others. We need 
some refinements. 

The (Kuratowski) measure of noncompactness a( JV) of a bounded set W C X is the infimum of the positive numbers 
d for which W can be covered by finitely many sets of diameter less than or equal to d (recall that the diameter of a 
set U is the supremum of { llx -y II \ x,y EU}; note that W is compact iff a( W) = 0). The measure of noncompactness 
\Lia of a bounded linear operator L is the infimum of the positive numbers fJ for which a(L(W))..;;fJa(W) for all 
bounded sets WCX (hence Lis compact iff IL\4 = 0; \·la defines a serninorm on X, cf. NUSSBAUM, (1970). 

The (Browder) essential spectrum a,(L) of a closed operator Lis defined as the set of those ;\ea(L) for which at 
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(i) 6Af.A/ - L) is not closed; 

(ii) :>. is an accumulation point of C1(L); 
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(iii) the generalized eigenspace corresponding to A. is infinite-dimensional. 

It is known that the complement CJ(L) \ oe(L) consists of isolated poles of finite order of the resolvent. The elements 

of CJ(L) \ CJ,(L) are called normal eigenvalues. Finally, we define the essential spectral radius 

r.(L) = sup{ I A.I JA.Eo.(L)} (8.3) 

and quote the following result of NUSSBAUM ( 1970): 

I I 

LEMMA 8.10. r.(L) = lim I LklT = iniJLklT 
k-(X;) k;;a.1 

The idea to use these concepts and results in the context of linear semi groups seems to be due to PROSS (1981 ). 

Detailed proofs of the following theorems can be found in WEBB ( ! 985a). In analogy with the definition of w0 in (8.2) 
we introduce 

We = w.(T(t)) = inf J... log IT(l)la 
t>O t 

(8.4) 

(with the convention that logO = - oo ). 

THEOREM 8.11. 

i) lim l..1oglT(t)J. exists and equals w, ,_OQ t 

ii) re(T(t)) = e"'·', t>O (with the convention e-"' = 0). 

THEOREM 8.12. 

wo = max{ w., w.) where Wn = sup{ReA. IA. is a normal eigenvalue of A} (8.5) 

So, provided we can show (using Theorem 8.11) that w,<w., we have obtained a characterization of Wo in terms of 
the spectrum of A. 

REMARK 8.13. Using Theorem 8.12 one can show that w0 = max{ w,,s(A)}. 

9. The stable size distribution 

Let us return to our concrete example, the semigroup {T(t)} and the generator A that go with the model for cell proli­

feration. The first thing we try is to prove that the semigroup is compact after finite time. Since the semigroup is con­

structively defined by the generation expansion we shall scrutinize the terms in this expansion. 

The zero'th generation 

(Uo(t)<t>Xx) = <P(G- 1(G(x)-t)) (9.1) 

transforms and translates the initial function <I> without changing the smoothness, and a glance at the Arzela-Ascoli 

Theorem 8.7 should suffice to conclude that U0(t) is not compact for t<G(I). For 1;;;.G(l), however, U0(t) is the 

zero-operator and thus certainly compact. 

The first generation corresponds to the operator 

t 

Ui(t')<I> = fUo(l-7)CUoM<i>dT. 
0 

ExERCISE 9.1. Show that explicitly 

l 

(U1(1)</>)(x) = j k(X(-t + -r,x))<l>(X(-r,2X(-t+.,.,x)))d.,. 
0 

where ( cf. Exercise 3.3) 

(9.2) 

(9.3) 
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X(-1,x) = G- 1(G(x)-t) (9.4) 

and where, for convenience, G(x) = G(l) for x;;.1 and k(x) = 0 for x>f. 

ExERCISE 9.2. Let «r,t,x) = G(X(-r,2X(-t+r,x))) = G(2X(-t+r,x))-r = G(2G- 1(G(x)-t+r)). Show that 

~ _ 2V(X(-th,x)) -I. (9.5) 
or - V(2X(-th,x)) 

In order to prove compactness of U1(t) we try to rewrite (9.3) such that the argument of</> does not contain the vari­
able x anymore (indeed, we need equicontinuity without knowing more about <f> than some sup-norm bound). For­
mula (9.5) implies that we can do so provided we restrict V to Case I of Definition 5.2: 

ASSUMPTION 9.3: For the rest of this section we assume that V(2x)<2V(x), for fa.o;x.o;f. 

Combining the results of Exercises 9.1 and 9.2 we have 

G(2x)-r 

(U1(t)<f>)(x) = f k(X(-t+'T(~,t,x)))<f>(G- 1 (~)) ~~(E,t,x)d~ (9.6) 
G(2X(-r,x)) 

where r(tt,x) is the inverse function of E(r,t,x) defined in Exercise 9.2. From this representation one can prove that 
U 1 (t) is compact, but the proof is rather technical. The essential ideas can be conveniently demonstrated in the sim­
ple special case V(x)=::l. 

ExERCISE 9.4. Show that (9.6) reduces to 

2x-r 

(U1(t)<f>)(x) = J k(t-x+E)<f>(f>dE, 
2x-2r 

with the convention k(x) = 0 for x<O;f a and x>f, when V(x)=!. 

THEOREM 9.5. Under Assumption 9.3 the first generation operator U 1(t) is compact for al/ 1;;.0. 

PROOF (for V(x)=::I). For any y>x we obtain from (9.7) that 

ICU1(1)<f>)(x)-(U1(t)<f>)(y) I <0;((!) + (2) + (3))11.Pll 

where 

2x -t 00 

(!) = J lk(t-x+E)-k(1-y+E)ldE<0;f \k(r)-k(r+x-y)\dr 
2x-2r 

2y-2r y-r 

(2) = J k(t-y+E)d; = J k(r)dT 
2x-2r 2x-y-1 

2y-r y 

(3) = J k(t-y +E)d~ = J k(r)dr 
2x-t 2x-y 

(9.7) 

As y-x,J,O, (I) goes to zero since translation is continuous in L1 (IR) (which is easy to prove using the fact that C 00 -

functions with compact support are dense in L 1(1R)) and (2) and (3) go to zero since the indefinite integral of an L1-
function is continuous (even absolutely continuous, see Definition 2.8 and Theorem 2.9). We conclude that 

I 

' {U1(t)<f> I ll<1>ll<0;K} is equicontinuous. Since I (U1(t)<f>)(x) I .;;;; / k(r)dr II<!> II this set is also uniformly bounded. D 

We next define inductively the /1h generation operator 

I 

U1(t) = f Uo(t-r)C U1-1(T)dT. 
0 

Ta 

(9.8) 

Exactly the same type of arguments (note that in the proof of Theorem 9.5 the equicontinuity is uniform for te[O,s] 
for any s < oo) yield 
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THEOREM 9.6. Under Assumption 9.3 the J'h generation operator U1(t) is compact for all t ;;.o and a/l l EN. 

As an aside we remark that a short probf applies when C is bounded (i.e., k(f) = 0): the (Riemann) integral is a 

limit of finite sums and the set of compact linear operators is closed. 

COROLLARY 9.7. Under Assumption 9.3 the semigroup 

0) 

T(t) == ~ Ui(t) (9.9) 
/=O 

is compact for t ;:;. G (I). 

PROOF. Only finitely many terms of the series are non-zero (see Lemma 3.8) so we don't have to worry about the 
sense of convergence. 0 

ExERCISE 9.8. If V(2.x) = 2V(x) for then ~! == 0 and consequently g(T,t,x) = ~(t,t,x) = 

G(X(-t,2x)) = G(2x)-t. Show that now 

I 

CU1Ctl<P)(x) == .p(G- 1(G(2x)-t)) J k(G- 1(G(x)-t+T))d-r 
0 

(9.10) 

and convince yourself that U 1 (t) will be compact only when the first generation has become extinct, i.e. for t ;;.G(2). 

Inductively one shows that U1(t) is not compact before t = G(/ + 1) and therefore T(t) will never be compact. 

ExERCISE 9.9. Compute G- 1(G(2x)-t) for the special case V(x) = x. 

ExERC!SE 9.10. Compute U2(t) for the special case V(x) == x. 

ExERCISE 9.11. Show that G(2x)-G(x) = constant == G(a) when V(2x) = 2V(x) and give a biological interpreta­
tion of this identity. 

We are now ready to reap the fruits of our efforts in sections 5 - 8. In particular we are going to apply Corollary 
8.9 to the restriction of T(t) to the invariant subspace g,J_"l\JI-A) (see Corollary 6.9 and Exercise 6.10). Denoting this 
restriction by TR(t) we observe that its generator is AR, the restriction of A to g,J_A.d!-A). Since a(AR) = a(A)\ {A.d} 

we conclude from Theorem 5.5 that sup{ReA. I A.Ea(AR)}<A"-£ for some t>O and subsequently from Corollary 8.9 
that c.>o(TR(t))<Ad-£ where w0(TR(t)) denotes the growth bound of TR(t), and, finally, from Theorem 8.4 (ii) that 

llTR(t)ll ,,,;; M//..,,-•)' , 1;:;.o. 

Recalling that P, defined by (6.7), denotes the projection onto GJ1J,A41 -A) along g,J_A41 -A), we write 

T(t)<P == T(t)(P<t> + (I-P)<P) = ei;,'P<t> + TR(t)(I-P)</> = e1;,1(Pip + O(e-")), t->'1J, 

and summarize our conclusions as one of the main results of this chapter. 

THEOREM 9.12. (The stable size distribution). Under Assumption 9.3 

T(t)<P = e/..,,1(- ~;~~; ifd + O(e-")), t->oo, 

or, in words: the dominant term in rhe asymptotic expansion of T(t)</> for t->oo is the product of three factors 

i) e/..,,': an exponential function of time with exponent Ad, the dominant eigenvalue 

ii) i/;4 : a fixed element of X, the eigenvector of A corresponding to Ad 

iii) - ~(~</>): a time-indenendent scalar which is the only factor that depends on the specific initial condition </> 
'IT'("d) r 

(9.11) 

(9.12) 

and the remainder terms are relatively exponentially smaller with an exponent that is determined by the distance along the 

real axis of~ and the other eigenvalues of A. 

ExERCISE 9.13. The eigenfunction ifd corresponding to~ is defined by (4.2) - (4.3) with A = "l\J, f(x)=.O and, say, 
C = 1 as a normalization. Thus i/;4 is a positive function. Show that HA.d,</>)>0 whenever ip;;;.O and <i>""O. 
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We conclude that the cell population will grow exponentially when A,i>O (respectively, die out exponentially when 
A,i<O or approach a constant level when A,i = 0) while at the same time the (normalized, transformed) size distribu­
tion converges to a fixed distribution >lid that does not depend on the initial condition. For that reason one calls t/Jd 
the (transformed) stable size distribution. We refer back to section 1.4 for a discussion of the biological information 
that is contained in this result. 

The techniques of this section required that we restricted our attention to the (biologically most important) Case I 
of Definition 5.5 (see Assumption 9.3). Our next objective will be to analyse the asymptotic behaviour of T(t) in Case 

II: V(2x) = 2V(x), +a..;;x..;;I. In order to understand what happens in that case we need an auxiliary result (the 

difference equation (10.18) below) which can be obtained by a very important and useful technique called integration 
along characteristics. 

10. Interlude: integration along characteristics 

In this section we shall introduce and illustrate the technique of integration along characteristics by analysing in detail 
its application to the cell proliferation model. In Chapter III, section 4 we return to it in a more general context and 
there we explain some of its features in a more geometric language. Here we concentrate on those aspects that involve 
straightforward systematic calculations, repeating to some extent our treatment in 1.3.4. 

The basic idea is to consider the independent variables t and x temporarily as functions of one variable s such that 

d d1 o dx o o o 
ds = ds at + d;° ox = at + V(x) ox . 

Thus it appears that we have to choose 

EL = 1 =>I = s + CJ ds , 

: = V(x) => vt) = ds => G(x) = s + G(c2) => x = G-J(s + G(c2)), 

where c J and c2 are arbitrary constants still at our disposal. 

First consider a function m(t,x) satisfying 

am + V(x) om = O. 
ill ox 

Then : = 0 where iii(s): = m(t(s),x(s)) and consequently iii(s) = constant = m(O) or 

m(s + C]> o-J(s + G((c2))) = m(CJ.C2). 

(10.1) 

(10.2) 

( 10.3) 

(10.4) 

(10.5) 

The mapping s>-+(s+c1>G-J(s + G(c2))) corresponds to an orbit in the (1,x)-plane with starting point (c1> c 2). Such 
orbits are called characteristics. In our biological model they correspond to the orbits that individual cells follow as a 
result of their growth. 

Next we have to realize that (t,x) points are restricted to the strip {(t,x) I t;;i.O, +a..;;x..;;1} and that the homo­

geneous equation (10.4) only holds in { (t,x) I t ;;.o, +..;;x..;; 1 }. The boundary of the latter domain consists of the lines 

x = + and x = 1 and the segment t = 0, + ..:x..: I. At the line x = + and the segment the characteristics enter 

this domain in the sense that (s + C1> G-J(s + G(c2)) belongs to the inside for s>O when either c2 = + or CJ = 0. 

At the line x = 1 they leave the domain. 

So we can use (10.5) to express m(t,x) for r;;.O and t..:x..;;l in terms of m(O,x) = <P(x) (the initial condition) 

and m(t, +), which we, pretending that it is a known function, baptize y(t). The procedure is as follows: 

i) 
I 

Take CJ = 0 and c2;;.T then 

m(s,G- 1(s + G(c2)) = <P(c2). (10.6) 

In order to transform back from the variables (s,c2) to the variables (t,x) we put (t,x) = (s,G-J(s + G(c2))) 
and obtains = t, c2 = o-1(G(x)-1) and finally 

m(t,x) = <P(G- 1(G(x)-r)), r..;;G(x)-G(+). (10.7) 
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I 
Take c2 = 2 and c 1 >O then 

m(s + ci,G- 1(s + G(+))) = y(ci). 

If(t,x) = (s + c1>G- 1(s + G(+)))thens = G(x)-G(flandc 1 = t-G(x) + G(Tlsothat 

m(t,x) = y(t-G(x) + G(f)), t>G(x)-G(+) 

This ends our calculations for -} <x,,;;; I. 

t = G{X)-G(1f2} 

l l 
For 2a..;x,.;;2 we have to deal with the inhomogeneous equation 

am am at + V(x)a; = h(l,x), 

and the boundary condition 

l 
m(t,2a) = 0. 

(!0.8) 

(10.9) 

(I0.10) 

(10.11) 

For the time being h is considered as a known function but later we will substitute h(t,x) = k(x)m(t,2.x). The 

h · · h · I l l l I 

c aractenstics enter t e stnp {(t,x) I 1;;.0, 2a..;x..;2) at the segment 1 = 0, -:;-a..;x.;;,- and at the line x = -:,a 

so again we have to distinguish between two choices of coordinates. • • • , 

s 

=> m(s) = </>(.c 2) + jh(o, G- 1(o + G(c 2)))do => 

0 

I 

m(t,x) = cf>(G- 1(G(x)-1)) + f h(o, c- 1(0 + G(x)-t))do, for 1.o;G(x). 

0 

ii) Take t = s + c 1 and x = G- 1(s) with c1;;.o then 

l: =h(s + CJ, G- 1(s)) 

- 1 
m(O) = m(ci. Ta)= 0 

s 

=> m(s) = f h(o + CJ, G- 1(o))do => 
0 

G(x) x d'T 

m(t,x) = j h(o + t-G(x), G- 1(cr))dcr = j h(G(T) + t-G(x),r) -. for t>G(x). 

0 a/2 g('T) 

( 10.12) 

(I0.13) 

To round off our calculations we have to substitute h(t,x) = k(x)m(t,2.x), with m given by (10.7) or (10.8), into 

(10.12) and (10.13), thus expressing m for all r;;.O, +a..;x.;;I in terms of the (known) initial condition <I> and the 

(unknown) function y. If our approach is to be consistent, taking x = + in (10.12) and (10.13) should produce y(t)! 
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I 
Thus we find an equation for y which, assuming 2V(x);;;.V(2x), takes for 1;;;.G(l)-G(z) the form 

I 

' .M!:l y(t) = j T y(t + G(T)-G(2r))dr. 
a /2 V(T) 

(10.14) 

ExERCISE 10.1. Assume that 2V(x)>2V(x). Show that 

I I I I I 
y(t) = <P(G- 1(G(-z)-1)) + j k(G- 1(o + G(-z)-t)) <f>(_G- 1(G(2G- 1(o + G(z-)-t))-o))do, t,,;;;G(2), (10.15) 

0 
I I 

y{t) = J My(t + G('r)-G(2T))d-r + f t((T) </>(G- 1(G(2-r)-G(r)-t + Gd-)))dT 
a /2 V(r) p(1) T) 

(10.16) 

for G(+),,;;;1,,;;;G(l)-G(+), where p(t) is the unique solution of G(2p)-G(p) = t. 

If 2V(x)> V{2x) we can use the transformation o = G(2-r)-G(r) and its inverse -r = p(o) to rewrite (10.14) as the 
Volterra convolution equation 

G(l)-G(+) 

f ~!!..e._ 
G(a) V(p(o)) do (o)y(t-a)da. y(t) = 

If, on the other hand, 2V(x) = V(2x), then equation (10.14) is a difference equation (cf. Exercise 9.11) 

- + M 
y(t)-J

2 
V(-r)dTy(1-G(a)). 

ExERCISE 10.2. Consider Case II: V(2x) = 2V(x). Show that 

G(2G- 1(y)) = y + G(a), 

and use this result to derive the following relations from (10.7), (10.9), (10.12) and (10.13) 

m(t,x) == 1 1 x >l. l</>(G- 1(G(x)-1)) ,1.;;;G(x)-G(+)j 

y(r-G(x) + G(z)) ,r>G(x)-G(z) 2 

<P(G- 1(G(x)-1)) + _, f t~:~ da <P(G- 1(G(x) + G(a)-t)) , t.;;;G(x). 
G (G(x)-1) 

m(t,x) = f t((a))da ip(G- 1(G(a) + G(x)-t)) , G(x)<t,,;;;G(x) + G(a)-G(-}). 
/2 0 

fx .!£f2l I I 
12 V(a) do y(t-G(a) + G(z-)-G(x)) , t>G(x) + G(a)-G(z-). 

ExERCISE 10.3. Use the relations above to deduce that 
l 

I 
for x,,;;;-z. 

y(t) = ip(G- 1(G(+)-1)) + _ f ~((:)) da ip(G- 1(G(+) + G(a)-t)), 1,,;;;G(+) 
G 1(G(+)-1) 

J.. 

y(I) = .]2 ~~:~ da <P(G- 1(G(a) + G(-})-1)), 
I 

G(z-)<1,,;;;G(a) . 

(10.17) 

(10.18) 

(10.19) 

(10.20) 

(10.21) 

(10.22) 

(10.23) 
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ExERCISE 10.4. Use formulas (10.20) - (10.23) to show that 

(10.24) 

REMARKS 10.5. (i) Again we found that relevant features depend crucially on the function 2V(x)-V(2x). 

(ii) The results of this section constitute a first step towards an alternative proof of the existence and uniqueness of 

solutions. Indeed, one can use (10.15) - (10.17) to give a straightforward constructive proof of the existence of a 

unique solution y and subsequently (10.7), (10.9), (10.12) and (10.13) to define m(t,x) for x?"+. Moreover, the 

existence of a stable size distribution in case 2V(x)> V(2x) can be deduced from (10.17) as well (we refer to Chapter 

IV section 2 for an exposition of the relevant material). In Case II (V(2x) = 2V(x)) formulas (10.18) - (l0.23) in fact 

provide us with an explicit representation of the solution. 

(iii) We were able to derive a scalar equation for y(r) = m(t, f l since every potential mother cell necessarily passes 

size + during her life time (recall the reflections about the interpretation of '1T(0) in Interlude 4.3.2 in Chapter I. Here 

the Assumption 4.2: a;;.+ is essential. If we relax this assumption to a;;.2-k we need k equations for the variables 

m(t,2-1), I = 1,. .. ,k. 

I 
Ex:ERCISE 10.6. Assume a;;.4 and 2V(x);;.V(2x). Derive the analogue of equation (10.14). 

11. The merry-go-round 

In this section we concentrate on Case II of Definition 5.2.: V(2x) = 2 V(x). Firstly, we summarize the knowledge 

obtained so far. The characteristic equation has countably many simple roots 

21'1Ti I 1) 
X1 = li + , /El , (I · 

where 

1/2 

li = .!_ ln f J:Ji)_ d~ . 
T a/2 V(~) 

and by definition 

T = G(a), 

the size doubling time (see Exercise 9.11). The corresponding eigenvectors are 

1/i1(x) = IJ(x)e f.,(G(+)-G(x)) 

where 

J J:Ji)_d~ 
8(x) = a 72 vm 

f J:Ji)_ d~ 
a/2 vm 

I 
(with the usual convention that k(x) = 0 for x>2l· 

From (10.20) and (10.21) it follows that for t>-r 
I 

m(t,x) = IJ(x}y(t-G(x) + G(2)) 

(l 1.2) 

(11.3) 

(11.4) 

(11.5) 
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where y is a solution of 
I 

- 'Mt!l y(t) - a !
2 

V(a) da y(t-T), t>T, ( 11.6) 

(withy(t) for O..:t.;;T determined by the initial function</> as described in (10.22), (10.23)). 

Thus an obvious conjecture is that the action of the semigroup is some kind of combination of multiplication and 
periodic continuation, and our objective is to verify this conjecture while simultaneously making it more precise. In 
order to separate the multiplication from the periodic continuation we introduce 

z(t) = e-8'y(t) (11.7) 

and find upon substitution into (11.6) that 

z(t) = z(t-T), t~T, 

which implies that z is a T periodic function. Hence 

8(G(+)-G(x)) I 
m(t,x) = e81 8(x)e · z(t-G(x) + G(T)) 

or, in words: for t';;i>T, T(t)q> is the product of three factors 

i) e8': an exponential function of time with exponent li 
8(G(.L)-G(x)) 

ii) 8(x)e ' : a fixed element of X 

( 11.8) 

( 11.9) 

iii) z(t-G(x) + G(T)): a T-periodic function, with argument 1-G(x) + G(T), which is the only factor that 

depends on the specific initial condition </>. 

Note that (11.9) shows that w0 = 15 = s(A) 0 and in addition (since licL la = iclLla for ic>O) that w, = 15 as well. An 
alternative proof of the latter identity is given by the observation that {e>.,1 I IEZ} lies dense on the circumference 
{A. 11 A.I= e8'} when t/T is irrational (indeed, use the definition of essential spectrum, Theorem 8.11 (ii) and 
w,E;;wo = li). 

Recalling Theorem 7.8 we observe that '!JU_eB-r I -T(T)) is the infinite dimensional subspace which is obtained by 
taking the closure of the set spanned by 

6(G(J.)-G(x)) 2/wi (G(+)-G(x)) 
l/i1(x) = 8(x)e ' e • , IEZ. 

Well known results from Fourier analysis imply that this is precisely the subspace of functions of the form 

8(x)e-BG(x)q(G(x)), 

with q a continuous T-periodic function. Clearly (11.9) implies that T(t)<I> belongs to this subspace for t ';;i>T. 

(11.10) 

It follows likewise from Fourier theory that the sequence 1/11 does not constitute a basis for '!JU_e8' I -T(T)), i.e. the 
expansion in a series ~,c1>Ji1 does not necessarily converge in our supremum norm topology! 

Apart from some transient phenomena during a time interval of length T, the dynamics takes place in the dom­
inant subspace '!JU_e8' 1-T(T)). Since this is an infinite dimensional subspace, infinitely many characteristics of the ini­
tial condition (like zeros, extrema etc.) remain manifest for all time. This is in sharp contrast with the one­
dirnensional asymptotic dynamics in the case V(2x)<2V(x). 

A priori the existence of a canonical (i.e. commuting with the semigroup) projection P onto ~e8• I-T(T)) is not 
guaranteed. Calculations involving the residues in the isolated poles A.1 are not directly applicable since the resulting 
series might be divergent. (A remedy for this deficiency is provided by Cesare summation (this was pointed out to the 
author by Prof. R. Nagel; see SCHAEFER, 19 1974, III.7).) Happily, however, we can in the present case easily obtain 
an explicit representation of P from a detour: given q, we can calculate T(T)i/> from (10.24) and subsequently determine 
Pq,e~es-r 1-T(T)) from the condition that T(T)Pij> = T(T)<p, by exploiting the fact that (11.9) gives an explicit expres­
sion for the (group) action of T(t) on '!Jl(es-r I-T(T)). Thus we obtain• 

• Side-remark: For readers interested in functional differential equations we point out that for these the corresponding 
construction cannot be carried out because one has neither the precise characterization of the relevant subspace no~ the 
explicit representation of the dynamics on it. See VERDUYN-LUNEL (1984) for a recent treatment of retarded functional 
differential equations admitting solutions that vanish after finite time. 
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I 

fl(x){<P(x) + f 0:~ da·</>(G- 1(G(x) + G(a)))) 
x 

(P</>)(x) == <P(x) (11.11} 

' 
' , {<P(G- 1(G(x)-G(a))) + J iM_ da·<P(x)) , a..;;x<;;I. 

JT .J5M_ G''(G(x)-G(a)) V(a) 

a /2 V(a) da 

ExERCISE II.I. Verify that P 2 = P, that '!ll(P)C'!JL(e8'J-T(T)) and that the restriction of p to '!JL(e&,l-T(T)) reduces 

to the identity. · 

REMARK 11.2. Put a tape in a loop and slowly but surely turn the loudspeakers on. What you hear resembles to some 

extent the meaning of (11.9). Another convenient mental picture is the spiral staircase. Recall from Exercise 9.11 that 

the phase period T == G(a) equals the time which individual cells need to double their size. 

I AMPLITUDE 

.-----··- ... 

EXERCISE I I .3. In Exercise I.4.3.6 the equation 

a a 1 EJ.elx x -a n(t,x) = --3 (V(x)n(t,x))-µ{x)n(t,x)-b(x)n(t,x) + 2j b(-)n(t,-'Jdp 
t x x p p p 

(11.12) 

was derived as a description of cell proliferation, when the probability that a mother cell of size x splits into one 

daughter of size px and one of size (I - p )x is given by the x-independent probability density d (p ). Assume that 
I I '1 l 

d(p) = 0 for prr.(2-A..2 +A) for some AE(0,2) and that a>2 +A, where, as before, b(x) = 0 for x..;;a and 

b(x)>O for x >a. Derive the characteristic equation and analyse it. Put special emphasis on the case V(x) = x. 

Cautionary note: the minimal size is now cf- b.)a. 

EXERCISE 11.4. In the special case that fission occurs exactly when reaching size x = I the analogue of (11.12) takes 

the form 

.£!:.(t,x) == - _aa (V(x)n(t,x))-µ(x)n(t,x) + 2d(x)V(l)n(I, I), 
ar x 

supplemented by the boundary condition 

l 
n(t,2-b.) == 0 

Analyse this problem. 

REMARK 11.5. An alternative way to derive (11.9) goes as follows. Put 

6(G(+)-G(x)) 
m(t,x) == e6'8(x)e · p(t,x) 

then 

!<t,x) + V(x)f(t,x) == k(~t~a, [p(t,2x)-p(t,x)] 

(l l.13) 

(11.14) 

(I 1.15) 

(! 1.16) 
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Since ll(Ta) = O we are led to require p(t, Ta) = p(t,a) in order to keep the right hand side bounded. If 
I 

p(t,2x) = p(t,x) the right hand side reduces to zero and thereforep(l,x) = p(t-G(x),2a) = p(t-G(x),a). Hence 

p(t,a) = p(t-7,a), i.e. p(t,a) is a r-periodic function. Consistency now requires that 
p(t,2x) = p(t-G(2x),a) = p(t-G(x),a), = p(t,x) but this requirement is fulfilled since G(2x)-G(x) = G(a). Thus 
we can solve (11.16) explicitly after a transient period of length ,. = G(a ). 

12. The merry-go-round with an absorbing exit 

In Case III of Definition 5.2 V satisfies the relation V(2x) = 2V(x) on the interval +a,,;;;x,,;;;,B while V(2x)<2V(x) 

for .B<x,,;;;+. Here.Bis some number between +a and T· Because of Theorem 5.8 (the existence of a strictly dom­

inant real eigenvalue Ad) we expect that in this case the normalized size distribution will converge towards a stable dis­
tribution. But calculations as in Exercise 9.8 indicate that T(t) will not be compact after finite time. Therefore we 
need more subtle arguments involving the measure of non-compactness and in particular the result w0 = max{ w,, wn} 
(Theorem 8.12). Remarkably our mathematical procedure can to a large extent be described in biological terms and 
this we will do first. 

One can conceive of the population as the union of two subpopulations. The first of these consists of those cells 
which were either present at t = 0 or arose from divisions of ancestors which at the moment of division had a size 
smaller than or equal to 2/1 (in other words, none of the ancestors has divided after t = 0 with size greater than 2/1). 
The second subpopulation is the complement and consists of those cells for which at least one of the ancestors has 
undergone a division after t = 0, while having a size greater than 2/1. 

The dynamics of the first subpopulation is of the merry-go-round type. The members of the second subpopulation, 
on the other hand, are obtained by successive application of generation operators of which one at least is compact, 
and hence the product is compact. Moreover, the traffic between the two subpopulations goes one way only since 
offspring of the first subpopulation can be a member of the second but not vice-versa. Therefore the second will grow 
faster than the first (indeed, the chance that an arbitrary newborn cell that is determined to divide will do so with size 
less than or equal to 2.B is less than one and q1->0 when l->oo and lql<l!). Hence there is hope that the compact 
part of the semigroup operator is asymptotically dominant over the non-compact part in the sense that w, <w0 . 

NOTATION: we shall denote functions that describe the first subpopulation by a dash above the letter, e.g. m, and 
functions that describe the second subpopulation by a hat, e.g. m. 

Define 

!k(
0
x) 

k(x) = 
I 

' 2a,;;;;,x,,;;;fi, 

, fi<x,,;;;\, (12.1) 

and 

k(x) = I 

_ !k(x) ,,B<x,,;;;f, 

0 ,2<x,,;;;l. (12.2) 

Let m satisfy 

[
am am Tt + V(x)a; = k(x)m(t,2x) 

rn(O,x) = </>{x) (12.3) 

then we may write m = m + m where 

[
a;n a;n - _ Tt + V(x)a; = k(x)m(t,2x) 

m(O,x) = <l>(x) (12.4) 

Ti + V(x)a; = k(x)m(t,2x) + k(x)m(t,2x) lam ain - - _ 

m(O,x) = 0 (12.5) 
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The definition 

T(t)tf> = m(t, ·;<1>) 

produces a merry-go-round semigroup and consequently 

- 1 l 12 M I p kl~\ 
wo(T(t)) = --In j d~ = -- ln J ..:=L.. d~ 

G(a) a 12 V(~) G(a) a .n V{8 . 

Next we define 

where 

t 

U1(t)t/> = J Uo(t-T)CU0(T)t/>dT 
0 

- -
(Ct/>)(x) = k(x)t/>(_2x). 

Explicitly we have (cf. Exercise 9.1) 

I 

(U1(t)t/>)(x) = J k(X(-t+r,x))<P(X(-T,2X(-t + T,X)))dT. 
0 

(12.6) 

(12.7) 

(12.8) 

(12.9) 

(12.10) 

'.:'low the point is that we can perform the transforma~on of Exercise 9.2 for precisely the -r-domain for which 

k(X( - t + -r,x )};60 and consequently the compactness of U 1 (t) follows in precisely the same way as the compactness 
of the operator U 1 (t) of section 9. Let 

T(t°)t/> = m(t, ·;</>) (12.11) 

(nota bene that { T(t)} is not a semigroup) then repetition of the argument yields that Tct) is compact for all t. From 

T(t) = T(t) + T(t) (12.12) 

we infer that IT(t)la = IT(t)I. and so 

loglT(t)I loglT(t)I. 
w.(T(t)) = fun a = fun <;;;Wo(T(t)). 

t-+oo t t-"c<:i 

ExERCJSE 12.L (i) Use the definition (4.4) of w(A.) and the definition (12.1) of k to show that \J(k)>A.ik). (ii) Deduce 

from (i) that (recall the definition s(A) = sup{ReA. I AEu(A)}) s(A)>s(A). (iii) Use s(A) = Wo(T(t)) and (ii) to obtain 

s(A)>w.(T(t)) = w.(T(t)) and conclude that w0(T(t)) = s(A) = Ad(k) and, moreover, w.(T(t))<;;;A.d(k)-c for some 
c>O. 

Let as before TR(t) denote the restnct1on of T(t) to the invariant subspace 01.(:1.,il-A) thi:m 

wo(TR(t)) = max{we(TR(t)), s(AR)}..;;max{w.(T(t)), s(AR)}..;;\J-• for some c>O. It follows that TR(t) satisfies an 
exponential estimate with exponent Ad-•, where e is the minimum of the distances along the real axis to, on the one 

hand, the other eigenvalues and, on the other hand, the essential spectrum. We summarize the result in 

THEOREM 12.2. With Vas in Case Ill of Definition 5.2 the conclusion of Theorem 9.12 about the stable size distribution 

remains valid, but the characterization of the exponent in the remainder term has to be modified as indicated above. 

The assumption on V in Case III is such that the set {x I V(2x) = 2V(x), +a..;;x..;;T} is just one interval and, 

moreover, such that the complement in [Ta, TI is just one interval as well. In the general case in which V(2x)7"'2V(x) 

for some x E[Ta, f 1, these sets might consist of many intervals and in addition V(2x)-2V(x) might assume both 

positive and negative values. This complicates the notation and the presentation of the arguments, but apart from this 

one can use essentially the ideas of this section to prove 

THEOREM 12.3. A necessary and sufficient condition for the existence of a stable size distribution is that V(2x)'1"'2 V(x) for 
I 

at least one x e[2a, II. 

A somewhat different proof of this result is presented in DJEKMANN, HEUMANS & THIEME (1984, part II), a paper 

which mainly deals with extensions of the above results to the case of time-periodic rates b, JI and V. 
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13. Remarks about positivity 

Performing explicit calculations we derived the characteristic equation ,,-(.\) = l for the spectrum of the generator A 
and subsequently we found from an analysis of 'IT that two possibilities exist: 

(i) either there exists a real eigenvalue~ which is strictly dominant in the sense that Re.\..;;A.d-E for all spectral 
values A.=F°Ad and some E>O, or 

(ii) there exists a vertical line Re.\ = 8 on which lie countably many eigenvalues which constitute an additive sub­
group of R in the sense that 8 + Uri, I eZ, is an eigenvalue whenever 8 + iri is; and all other eigenvalues (if 
any; there were none in our case) satisfy Re.\..;;8-E for some i>O. 

The aim of this section is to draw attention to the fact that it is frequently possible, notably in population problems, 
to obtain such conclusions even when explicit calculations are impossible or just cumbersome. The mathematical 
theory which deals with such matters goes under the heading of "spectral theory of positive operators and positive 
semigroups". Note that clearly T(t) maps positive functions onto positive functions as required by our interpretation 
of T(t)<p as a population density. The set of all positive functions in X is an example of a cone and an operator is 
called positive if it maps some cone into itself. As a generalization of the famous Perron-Frobenius theorem on the 
eigenvalues of a matrix with positive entries, there exists a collection of results which describes to some extent the 
structure of the spectrum of a positive operator (SCHAEFER, 1974). Moreover, analogues of such results for positive 
semigroups and their generators are known (GREINER, 1981; also see NAGEL, 1984, GREINER, 1984, and the references 
given there). The fact that we did not need these results in the present chapter (simply because we had other means to 
analyse the spectrum) detracts nothing from the merits of positive operator theory in the context of structured popula­
tion models. Indeed, in Chapter V positivity arguments will play a major role and we refer to that chapter for an out­
line of the relevant theory. In addition we refer to the paper "Structured populations, linear semigroups and posi­
tivity'' (H:eI.TMANs, 1984a) for a systematic exposition and a wealth of examples. 

14. A somewhat special nonlinear problem 

In this section we show how the conclusions about the model for substrate limited growth in the chemostat presented in 
subsection 1.4.5 can be derived from the linear theory developed so far. At the risk of causing confusion we shall now 
use again the symbols A and T(t) in the context of the original variables (recall the transformation (1.6)). 

Abstractly we can write the balance equation (l.4.5.5) in the form (with S instead of R for the substrate concentra­
tion) 

dn dt = /J(S)An - Dn (14.1) 

where 

(A<J>Xx) = -(V(x)<l>(x))'-V(x)8(x)<l>(x) + 4V(2x)8(2x)<l>(2x) (14.2) 

with the appropriate domain of definition (so note that this A corresponds to the untransformed problem and is 
di.lferent from, but intertwined with, the A of the foregoing sections). We know that A generates a linear semigroup, 
let us call it T(t), on a space of continuous functions with a tailor-made norm (l.11). Pretending that the substrate 
concentration S is a known function of time we can solve the equation for n quasi-explicitly: 

t 

n(t,.;<j>) = e-Dt T(f f1(S(-r))d•')4>, (14.3) 
0 

where <I> denotes the initial condition for n. As a side remark we mention that (14.3) delivers us from the obligation to 
define the notion of "a solution" for the nonlinear problem: we simply refer back to the end of section 3. 

l 

Since /J(S(t))._,O the integral J /1(8(-r))d-r approaches a limit as t-Ho. If this limit would be finite then necessarily 
0 

we would have that S(t)-+0 for t-+<Xi. But then (14.3) implies that the biomass W(t)-+0 as well and hence 
Z(t) = aW(t) + S(t)-+0 which is in contradiction with the result of Exercise 1.4.5.3. We conclude that 

I 

j fJ(S(-r)')dT-+<XJ for t-+<XJ. Assuming that for some xe[-}a, f l, V(2x)=F2V(x), this implies that 
0 
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n(t, ·;</>) = p(t){ <f>d + o(l)}, 1->00, (14.4) 

where <f>d is the stable size distribution and p{t) a real valued function which needs further investigation. Note that for 

constant death rates µ the stable distribution does not depend on the precise value of the death rate although,. of 

course, the dominant eigenvalue does; if below we write A.d we mean the dominant eigenvalue corresponding to µ = 0. 

Siibstituting (14.4) into the differential equation for n we find 

3£- = (A.df3(S)-D)p. (14 . .5) 

ExERc1sE 14.1. Verify that the o(l) term is rightly left out of (14.5) since the o(I) term in (14.4) lies in 'ifl(A.dl-A) 

while IJ((:\il -A) n ffi(:\il -A) = {O} . 

Substitution into the differential equation (l.4.5.6) for S leads to 

dS dt = D(S' -S)-a0 {3(S)p + f3(S)p·o(1), 

where 

I 

(14.6) 

ao = a J V(~)<l>d{~)d~. (14.7) 
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Because Z(t) == aW(t) + S(t) remains bounded for 1->oo and both Wand S are positive, each of them remains 

bounded as well. The boundedness of W implies the boundedness of p. So as far as the asymptotic behaviour is con-

cerned we may forget about the /3(S)po(l) term in the equation for ~. We now refer back to subsection I.4.5, and 

in particular to the Exercises 4.5.6 and 4.5.7, for a formulation of the conclusions which can be drawn. 


