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STABILITY RESULTS FOR DISCRETE VOLTERRA EQUATIONS 

P.J. van der HOUWEN 

Centrtnn voor Wiskunde en Informatica, Amsterdam 

SUMMARY 

Firstly, stability results are presented for a general class of linear 

multistep methods for Volterra equations. These results are obtained by de-

riving a recurrence relation of finite length for the discrete Volterra 

equations. Secondly, the various results are illustrated by a numerical 

example. Finally, results of Lubich are mentioned which do not use finite 

recurrence relations. 

I • INTRODUCTION 

We consider Volterra integral equations of the form 

(I. I) e (t)y(t) g(t) k(t,s,y(s))ds, t e I 

This equation is called of the first kind if 8 = O, of the second kind if 

8 = I, and of the third kind if 8 has a finite number of zeros in I. The 

initifl or forcing function g(t) and the kernel function k(t,s,y) are pre­

scribed, and y(t) is the unknown function. 

It will be assumed that (I.I) possesses a unique solution in C [I] 

which is ensured if g and k are sufficiently smooth and unless t 0, 

if kt(t,t,y) is bounded away from zero fort• I and ye Jl (for precise 

conditions we refer to Tricomi [26] and Anselone [3]). 

In this paper we concentrate on the stability of numerical methods for 



solving (I.I) with fixed step size h. We will confine our considerations to 

a general class of linear multistep methods and to stability with respect 

to perturbations of the initial function g(t) on an infinite interval, i.e. 

T + "'• The following definition of stability will be used. 

DEFINITION I.I. Let yn and y: denote the numerical solutions corresponding 

to initial functions g and g*, respectively, and let g - g* ~ P[t0 ,~J 
where P[t0, .. J denotes a space of perturbations defined on I. Then 

(a) yn and the generating method are said to be stabl.e with respeat to 

P[t0,~J if for every e > 0 there exists a o c o(e:) such that 

max I g(t ) - g * (t ) I :S 0 .. max I y - y* I :S e: • 
n2:0 n n n2:0 n n 

(b) yn and the generating method are said to be asymptotiaaiiy stabZe with 

reepeat to P[t0 ,mJ if there exists a Ii such that 

maxig(t)-g*(t)l:s:o .. y -y*+o as n+"'· 0 
n~O n n n n 

Depending on the choice of the space of perturbations P[t0,~J stronger 

and weaker forms of stability are obtained. 

In deriving stability conditions so far the greater part of the papers 

on stability has used some (linear) test kernel for which one tries to re-

duce the numerical scheme to a reau.rrence relation of finite Zength and to 

which one applies the theory of linear differenceequations. One class of 

frequently used test kernels are the polyr.omiai aonvolution kernels 

(1.2) K(t,s,y) 

Obviously, by repeated differentiation with respect to t of the corresponding 
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Volterra equation we can obtain a differential equation of order m + J, 

By a similar operation of repeated differencing the numerical scheme can be 

often reduced to the discrete analogue of a differential equation, viz. a 

finite recurrence relation for Yn· Another class of suitable test kernels 

are the finiteLy dscomposahle kernels which also lead to finite recurrence 

relations. In Section 3 and 4 we will discuss the kernel (1.2) form• I, 

in Section 5 finitely decomposable kernels will be treated, and in Section 

6 the various results will be compared by means of a numerical example, 

Recently, Lubich [19], inspired by earlier work of Nevanlinna L22,23], 

has derived stability results without using finite recurrence relations. In 

Section 7 some of his results will be presented. 

2. VLM METHODS 

A simple way of discretizing the equation (I.I) consists of writing 

this equation with t = tn := t 0 +nh for n = O(l)N, h fixed and such that 

tN := T, and approximating the integral term by some suitably chosen qua­

drature rule. The numerical solution can then be obtained by solving the 

resulting algebraic equations successively. This method is called a direat 

quadrature (DQ) method. Such methods do not always produce satisfactory re­

sults. For instance, if Gregory quadrature rules (for a definition see e.g. 

[4, p. 117]) are used, equations of the first kind cannot be solved because 

the numerical method does not converge (see [18, II]), and equations of the 

second kind in which the kernel has a large Lipschitz constant with respect 

to y, will often require a much smaller integration step h then neces·sary 

for representing the solution of the equation. In order to overcome these 

difficulties several alternative methods have been proposed (see [28, 30, llj). 

These alternative methods together with the above mentioned DQ method can 



be described by the following Vottel'l'a ZiTlllCU' muZtistep method (VLMmethod). 

Let Fn(t) denote some numerical approximation to the so-called tag term 

function 

(2.1) F(t,s) :• g(t) + j k(t,s,y(s))ds 

to 
at the point s • tn and define the VLM formula 

IC IC K K' IC 

(2.2) I ai en-iYn-i + l: I e .. i .et +.)·h 1 I y .• k(t +" 
i•O i•O j->< lJ n-1 n J i•O j•-1< lJ n J 

tn-i'Yn-i) 

for n • ><(l)N, where en-i :• 9(tn-i) and y1, •••Y><-I are assumed to be pre-

computed by some starting method. Then the VLM method consists of two com-

ponents: the VLM for>muLa (2.2) and a quadrature ruZe for approximating 

F(t,s). Usually, the quadrature rule is of the form 

ii 
(2.3) :• g(t) + h L wnlk(t,tl,yl) 

l•O { ~ for 
• F(t,t) - E (h;t), n • 

n n ii for 

n < IC 

n :!: IC 

where the wnl denote given quadrature weights and ; is sufficiently large in 

order to obtain a sufficiently small approximation error En(h,t). The lag 

term formula (2.3) requires the starting values y0 , y 1, ••• , YK• 

The parameters ai, aij and yij determine the accuracy and stability of 

Yhe VLM method. For convergence results in the case of e E 0 ore: I, we 

refer to [14]. Here we concentrate on the stability of VLM methods to be dis-

cussed in the remaining sections. This section is concluded with a few exam-

plea of VLM methods. 

EXAMPLE 2.1. The DQ method can be presented as the simple VLM method 

(2.4) e y - i Ct > - o. n n n n 
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If E(h,t) = O(hr) ·ash+ 0 uniformly for all tn = t 0 + nh < I and the 

starting errors are O(hq) then the DQ method is of order p = min (q-1,r} 

if 6 : 1 and g,k are sufficiently smooth. For 6 = 0 convergence is not 

guaranteed (see l28]). 0 

EXAMPLE 2.2. Consider the VLM formula 

(2.5) 30nyn - 4en-1Yn-1 + en-2Yn-2 + 3Fn(tnl - 4Fn(tn+1) + Fn(tn+2l 

= 2hk(tn,tn,yn) 

which was called in [ 13] an indir'ect backwm•d dijfei>entiat?'.on j'or'17TUla (IBD 

formula). It generates a method of order p = min {q,r,2) for second kind 

equations and first kind equations as well. 0 

3. THE BASIC TEST EQUATION 

We start with the derivation of a recurrence relation of fixed length 

for the VLM solution of the Volterra equation 

t 

(3. I) 6(t)y(t) g(t) 

The linear case where f(s,y) 

+ J f(s,y(s))ds. 

to 
~y for ~ constant, is called the baaie test 

equation for stability. It was proposed by Mayers [2!j and extensively used 

by Baker and Keech [6} in deriving stability results for the DQ method. 

In deriving stability results for the VLM method it is convenient to 

introduce the forward shift operator E and the polynomials 

(3. 2) (l(Z) l "· /-i S(z) = I ( l s .. )/-i, y(t) = ~ (I y .. )/-i. 
i=O L i=O j=-K LJ, i=O j=-K lJ 

THEOREM 3.1. F'OY' eqMti.on (3.1) the VLM method is a"lgebr•aically equivalent 

with the Y'ecur'Y'ence !'elation 

K K 

(3.3) a(E)enyn - hy(E)f(t ,y) =-!:;" I I siJ.g(tn+J'), n ;> 0, 
n n i=O j=-K 



provided that B(z) = 0 (i.e. the VLM is (a,y)-reduaible). 0 

From this recurrence relation and LelIIllla 3.1 stated below, conclusions 

can be drawn on the behaviour of yn as n + w (with h fixed) in the case of 

the basic test equation. We first state this lennna which is proved e.g. in 

[25, p. 205] and then give a stability result in the form of Corollary 3.1. 

LEMMA 3.1. Let G(z) be a polynorrriaZ satisfying the root condition (that is 

with aZZ its zeros on the unit disk those on the unit airaZe being simple 

zeros). Then there erists a constant C suah that the solution of the Unear, 

inhomogeneous difference equation G(E)yn = gn+m' n <: 0 satisfies the inequa­

Uty 

r; G(z) is a Schur· polynomial (that is aZl zeroo are within t.he un.it cirale) 

then 

COROLLARY 3.1. Let e = O ore= I, let B(z) = 0 and let k(t,s,y) = ~y. Then 

the VLM method is stable with respect to the space of perturbations 

(a) P[t0 ,m] = Ll[t0 ,w] if ea(z) - h~y(z) satisfies the root condition 

(b) P[t0 ,wJ = c [t0 ,wJ if ea(z) - h~y(z) is a SahUP polynomial. 0 

!_~LE 3.1. The VLM formula (2.5) can be characterized by the polynomials 

a(z) = 3z2 - 4z +I, B(z) = 0, y(z) = 2z2 • 

Thus, the corresponding VLM method is stable with respect to C[t0 ,mJ: (i) 

for all ~ if e = O; (ii) for those ~ such that 3z2 - 4z +I - 2h~z2 is a Schur 
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polyDOIDi.al if e • I (this polynomial is easily recognized as the character­

istic polynomial of the two-step backward differentiation method which is 

known to be a Schur polynomial if Re E: < 0). D 

EXAMPLE 3.2. Consider the VLM formula (&-0,1) 

which belongs to the class of modified nruZtilag (MML) formulas proposed by 

Wolkenfelt [28,30). The polynomials a,ll and y are given by 

l 
a(z) • z - I, ll(z) • O, y(z) • 2<z+I) 

Fore • 0 we have stability w.r.t. L1[t0,•J and fore • I w.r.t. C[t0 ,•J 

provided that Re E: < O. D 

The above.stability results do not apply to third kind Volterra equa-

tions because the recurrence relation (3.3) when applied to the basic test· 

kernel, does not reduce to a constant coefficient recursion. We also observe 

that the stability conditions expressed in Corollary 3.J do not involve IUlY 

knowledge of the la:g term quadrature rule. Thus an efficient lag term formu-

la can be conbined with a stable pair {a,y} to obtain an VLM method that can 

be easily implemented on a computer. 

In analogy with ODEs one may define the stability region R as the set 

of points hE: £.C where the VLM method is stable. If R contains the whole ne-

gative axis then the method is called A0-stabZe (when applied to the basic 

test equation). If the whole left half-plane is contained in R then the VLK 

method is called A-stable. 

In·order to see whether there exist A-stable, (a,y)-reducible VLM meth-

ods which are convergent, we should know what conditions convergence imposes 



on the polynomials {a,y} (see [14)). 

THEOREM 3.2. Let ll(z) : O. The conditions to be imposed on the poLy>W1"i.aZs 

{a,y} in ol'der to obtain a convergent VLM method are: (i) if 9 - I then 

{a,y} shouLd generate a convergent LM method for ODEs;(ii) if e - 0 then y 

shouZ.d be a Schur poZ.ynomiaZ.. 0 

Since there exist A-stable, convergent LM methods for ODEs, we conclude 

from Corollary 3.1 and Theorem 3.2 that there exist convergent, (a,y)-reduc­

ible VLM methods for second kind equations which are A-stable w.r.t. C[t0,•J. 

For first kind equations we see that convergence implies stability w.r.t. 

L'[t0 ,•J. 

The above considerations do not apply to e.g. the DQ methods because of 

the condition B(z) = o. It is possible to include such non-(a,y)-reducible 

VLM formulas by imposing additional conditions on the lag term formula. We 

will not work this out for the basic test kernel but instead we give in the 

next section an analysis of the convoZution test kernel. of which the basic 

test kernel is a special case. 

Finally, we remark that the stability criteria derived for the basic 

test equation may be indicative for the stability of methods applied to more 

general kernels of the form K(t,s)y. In practice, one replaces t by K(t,s) 

with t 0 s s s t s T. 

4. THE CONVOLUTION TEST EQUATION 

It has been observed by Kershaw (17) that the use of the basic test 

equation "is obviously convenient, however, its true relevance to the inte­

gral equation situation does not appear to have been thoroughly examined". 

In order to get some insight to what extent the stability criteria derived 

on the basis of equation (3,1) change if we are dealing with a more general 
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equation, several authors have considered the convolution equation [29, 8] 

t 

(4.J) ey(t) - g(t) + J L"f;+11(t-s)]f(s,y(s))ds 

to 
with ~ and 11 constant. The linear case is called the con'l)Oiution test equa-

tion. 

We will not restrict our considerations to (a,y)-reducible methods; in 

order to facilitate an elegant analysis we require the quadrature rule used 

for computing the lag term to be (p,a)-redueibLe (cf. (20, 31)). Let the po-

lynomials 

(4.2) p(z) :• i. ZK-i 
1 

iC • 
a(z) := l b.z1 

i•O 1 

define a convergent LM method for ODEs, then the quadrature rule (2.3) is 

called (p,a)-reducible if 

(4.3) 

iC 0 

.20 aiwn-i,t - {b 
i= n-t 

for l•O (I )n-i<-1 

n•K,K+ l, .... 
for n-1< (I )n 

(We have added the tilde in order to indicate the relation with the lag term 

Fn(t).) For the analysis of more general lag term formulas we refer to [6, 28, ], 

In addition to the polynomials a,y,p and cr we define the polynomials 

(4.4) i(z) 
K - K-i -:• l B. z , a.. :• 

i•O i i 

and similarly the polynomials y(z), y*(z), p#(z) and a#{z). 

The analogue of Theorem 3.1 now reads (cf. [15, 9J): 

THEOREM 4.1. For equations (4.1) the VLM method with (p ,a)-reducibZe Zag term 

is aZgeb:raicZy equivalent !Vith the recurrence relation 



(4.5) pr(E)o(E)e y + ~h pr-l(E)[a(E)cr(E) - y(E)p(E)Jf(t ,y) 
n n n n 

+ nh2{pr-l(E)[S(E)o(E) - y(E)p(E) - y#(E)p(E)] 

+ p(E)[a(E)cr#(E) +a# (E)cr(E)J-p#(E)d(E)S(E)}f(tll,yn) 

= - pr(E)EK( I I aiJ. g(t .)), n ~ 0, 
i=Oj=K n+J 

where r = I if a(z) = 0 and r = 2 otherwise. 0 

COROLLARY 4.1. Let e = 0 ore= and Zet k(t,s,y) = [~ + n(t-s)]y. Then the 

VLM method with (~,o)-redueibZe Zag term is stable with respect to 

(a) PCt0 ,=J = L1[t0 ,=J if 

(4.6) Spr(z)o(z) + ~h pr-l(z)[S(z)o(z) - y(z)p(z)] 

+ nh2{pr-l(z)[S(z)cr(z)-y(z)p(z)-l(z)p(z)j 

+ p(z)[S(z)cr#(z)+ a#(z)cr(z)J -ii#Cz)a(z)a(z)} 

satisfies the root condition. 

(b) P[t0 ,=J = C[t0 ,=J if (4.6) is a Schur poZynonriaZ. 0 

EXAMPLE 4.1. Consider the DQ method applied to the basic test equation (i.e. 

n=O). Then o(z) =I, a(z) =-I and y(z) = 0 so that (4.6) reduces to 

(4.6') e 1\'(z) - ~h Cl(z). 

For e = I this leads to the same stability regions which apply to the LM 

method {p,cr}. In particular, if {p,cr} is A0- or A-stable then the DQ method 

is also A0- or A-stable (w.r.t. C~t0 ,=J). Fore= 0 we find that at least 

o(z) should satisfy the root condition. Thus, the higher order Gregory rules 

which are based on the Adams-Houlton methods do not generate a stable DQ 

method for first kind equations because o(z) do not have all its roots on 
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the unit disc. 0 

In actual application, the Gregory rules are popular because of their 

easy implementation oo a computer. The preceding ezample, however, ahowa 

that for second kind equations (&•I) the DQ methods have the rather modest 

stability regions possessed by the Ad1111111-Moulton methods and for first kind 

equations the higher order methods are even unstable. This observation vas 

precisely the reason for introducing alternative methods such as the IBD 

methods (cf. Eumple 2.2) and the MML methods (cf. Example 3.2 ). 

As for the basic test equation one may define for the convolution test 

equation the stability region R which contains all points (th,nh2) for which 

the VLK method is stable. The method is called v0-stab'Le if R contains the 

points {(t,n) It< O, n s 0} (cf. [8, 29]). Evidently, v0-stability is the 

analogue of A0-stability defined in the preceding section. It has already 

been observed that A0-stable DQ methods do eltist. This raises the question 

whether v0-stable DQ methods exist. Wolkenfelt [293 proved the following ne­

gative result. 

THEOREM 4.2. For e - l DQ methods IJflth ('ff,'if)-reducib'Le l.ag tenn cannot be 

vo-stabie. 

Amini (I] considered the v0-stability for the claaa of NNL-formu'La8' 

defined by 

(4.7) 

IC 

• h I y.k(t ,t .,y .>. i-0 l. n n-L 0-L 

THEOREM 4.3. For e = I MdL methods IJflth (ii,a)-reducib'Le l.ag tenn cannot be 

v0-stabie. O 



Nevertheless, the MIL methods behave auch more stable than DQ -thods (cf, 

[30]). 

Next, we consider the class of indi1'6Ct l.i1UICD" multistep (UM) methods, 

an example of which has already been given in Ix.ample 2.2 • These methods 

are defined by the ILM formula (15] 

K 1(-i K 

(4.8) I [ea.y . + I Y""+· F .et .)J ·h I y. k(t: .,t. .. ,y .), i•O 1 n-1 j-i l. L J n-i. n+J i•O 1 n-L n-1 n-ri.1 

where {cl} define a numerical differentiation formula. The corresponding po­

lynomial (4.3) is given by 

(4.9) p(z)[0o(z) - f;h y(z) J - nh2 a(z) y(z). 

For 6 : I this polynomial is identical to the characteristic polynomial 

Brunner and Lambert [7] derived for their stability test equation for inte-

gro-differential equations. Since in that paper stability regions are given 

which do contain the points {(h,,h2n) I t < 0, n ~ 0}, we may conclude that 

there exists v0-stab7.e ILM methods for the seaond kind test equation. 

EXAMPLE 4.2. Let {p,a} and {o,y} correspond to the trapezoidal rule and the 

backward Euler rule. Then the four different methods which can be formed are 

all v0-stable for the convolution test equation of the second kind. 0 

So far we have considered the case e = I. Next, consider the case e • 0, 

For the DQ method the polynomial (4.6) is given by 

(4.10) p{z)[ep(z) - Ch o(z)J - nh2z[o(z)p'(o:;)- p(z)a1 (z)j, 

which for e • 0 can be written in the form 

(4. 11) p(z)a(z) - (- i h }[a(z)j)'(z) - p(z)a'(z)j. 
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This polynomial can be interpreted as the characteristic polynomial of an 

.LM method {p 1,a 1} for the ODE y'(t) • (-n/t)y(t). If the DQ method is v0-

stable, then -n/f; assumes values in the range (---,O). Hence, we only have 

v0-stability if the LM method {p 1,a 1} is A0-stable. Since p 1(z) is of degree 

2K' and a 1(z) of degree 2K' - I the LMmethod {p 1,a1} cannot be v0-stable. Thus, 

THEOREM 4.4. Fore= O DQ methods with (p,a)-r-educibZe Zag tel'171 aannot be 

v0-stabZe. 

For the MML formula (4.7) the polynomial (4.6) reduces to 

(4. 12) _ ( ) 2{ ( - K - ) p (z) 0a(z) - f;h y (z) - nh a z)a(z) - a 0z a(z 

+ p(z)[Ky(z) - z y'(z)]}, 

which again can be associated to an LM method {p 1,a 1} for the ODE 

y'(t) = (-n/f;)y(t) if·e • O. It has not yet been investigated whether this 

LM method can be made A0-stable (implying v0-stability for the l+!L method) 

by appropriate choice of the polynomials a, y, panda, and taking into ac-

count the convergence conditions. 

Finally, we consider the ILM formula (4.8) with characteristic polyno-

mial (4.9) which for e m 0 assumes the form 

(4.13) y(z)Lp(z) - (-iht(z)]. 
THEOREM 4.5. Let the LM method {p,O'} be A0-stabZe. Then fore= o, IIN 

methods 1'1ith {p,a}-r-educibZe Zag term are v0-stabZe 1'1ith respect to 

(a) P[t0 , .. 3 •L 1[t0 , .. 3 if y(z) satisfies the :root condition. 

(b) P[c0 , 00 ]•C[t0 , .. J ify(z) is a 5.JlzUPpoZynomiaZ. 0 

As for the basic test equation , the stability conditions based on the 

convolution test equation·are applied to more general convolution kernels 



K(t-s)y by putting~ • K(O) and~• K'(t) with t £ I. 

S. FINITELY DECOMPOSABLE KERNELS 

Instead of proceeding along the lines outlined in the preceding sec-

tions and deriving recurrence relations for the case of the polynomial con-

volution kernel (1.2) (cf. [2]), we approximate the kernel k(t,s,y) by a 

finitely d.ecomposable function, i.e. 

(S. I) 
m 

k(t,s,y) ~ l it.(t)f (s,y) •: < G(t), F(s,y) > 
µa) -µ µ 

where < , > denotes the inner product and G, F denote vectors with components 

gµ, fµ (µ=1,2, ••• ,m). If we use the approximation (S.1) then the solution 

y(t) of (I.I) satisfies the equations 

(S.2) {
u'Ct> = 'Fct,yCtll, uct0J • o 
ect>y<t> - s<tl + < GCt>, uct> 

The VLM method when applied to a Volterra equation with kernel of fini-

tely decomposable form turns out to be a discretization of the system (5,2). 

In the following theorem which provides this relation we use the notation 

f 0 :• fct ,y >. 'G :•'Get >· n n n n 

THEORI!M 5.1. For> kernels of finitely decornposab7,e fo:rm th8 VLM method is ai-

wh8l'B {p ,o} d.efines the lag tem quadl'at'Ul'B ruZe. 0 

Unlike the recurrence relations presented in the preceding sections, 
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the recurrence relation provided by this thaorea generally does not have 

constant coefficienta when applied to kernel functions with fµ (s,y) • t 11 y. 

Nevertheless, it provides some insight into the stability of the VLM method 

as we will see in the following subsections. 

It should also be observed that stability results obtained for decom-

posable kernels < C hold for arbitrary kernels • C because (by the Stone-

Weierstrass theorem) the class of continuous decomposable kernels is dense 

in the class of all continuous kernels and because the VLK solution depends 

continuously on the kernel provided that k is sufficiently smooth [9]. 

5.1. Relation with ODE methods if 6 -

Suppose that all coefficients in the VLM formula vanish except for 

a0 • I, and e00 • - I, to obtain the DQ method (see Example 2.1). If e ~ 1, 

then (5.3) is recognized as an LMdiscretization of the system (5.2). Con-

sequently, if the LM method {p,o} is suitable for the integration of (5.2), 

then the DQ method based on {p,o} is suitable for the integration of the Vol-

terra equation with kernel (5.1). A:n advantage of this approach is that the 

well-developed theory for ODEs can be exploited. On the other hand, one 

should know something about the decomposition approximating the given kernel. 

For a further discussion we refer to [9j. 

Next differentiate the second equation in (5.2) to obtain (for a:t) 

(5. 2) 

f u• <tl - F'ct,y<t>l _,. 

l y' (t) - g'(t) + < G' (t), U(t) > + < G(t)' F(t,y(t)) > 

Let these differential equations be integrated by the LM methods {p,a} and 

{a,y}, respectively and replace the derivatives g' and G' by numerical appro-

ximations of the form: 



(5.4) 

where T(z) is a polynomial generating the numerical differentiation formula. 

The numerical scheme takes the form 

n n u 
(5.5) { 

p(E)U c ha(E)F(t ,y >. 

a(E)y • hy(E)[h- 1T(E)g(t) + < h-1T(E)G(t ), U(t) > 
n n n n 

+ < 

A comparison with (5.3) reveals that (5.5) is a special case of a VLM for­

mula. In [15) this type of formula was called an indireat Zinear multistep 

formula (see also Section 4). The stability properties of ILK formulas are 

largely determined by the polynomials {p,o} and {a,y}, and can be chosen ap-

propriately by using ODE stability theory. 

5.2. Convolution kernels 

In this section we derive a general stability result for convolution 

kernels of the linear form: 

(5.6) k(t,s,y) = K(t-s)y. 

Let us first assume that k is decomposable, i.e. 

(5. 7) K(t-s) • < G(t), F(s} >. 

Introducing the vectors 

.... -+-T-T -+ 
JC JC 

(5.8) v :• LYn• UnJ " wn • [- I 1 a .. g(t •. >. 0, •••• OJT 
n i•O j•-JC 1J n J 

the recursion (5.3) can be written in the form 

9 Rassias, Math. Analys. 129 
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(5.9) 

where the 

with 

matrices Bi(n) are given by 

L. M .<I) ... M~m) 
l l l 

N~ I) 'a.1 
l l 

Bi (n) = 0 
0 

N~m) 
l 

L. :• Sa. - h 
1 l 

a:.1 
l 

K 

l y ijK((j +i)h) 
j•-K 

:• ~ S g (t ) N~JJ) 
. l ij µ n+J' ' 1 
J=-K 

and with the convention that L. = M~µ) = 0 for 
1 l 

i > K. 

- b.hf (t .) 
i. µ n-1 

> K and a. = b. 0 for 
l 1 

In analogy to the linear stability analysis used in ODEs one may intro-

duce the concept of ZoaaZ sta.biZity at a point tii, that is we require the 

relation 

(5.9') 
•* \ B - ... 
L. i (n)vn-i 

i=O 
\'n' n fixed 

to be stable, rather than (5.9). It is to be expected that local stability 

in a sequence of points t 0 , tn+l, tn+r implies "global stability" in 

the range [t0 ,tn+r] provided that the matrices Bi(n) are slowly varying. Fol­

lowing Ll2j Theorem 5.2 can be proved. 

THEOREM 5.2. Let a:o 01• e= I and let k(t,s,y)=K(t-s)ywithK< C[t0 ,"'J. The 

VLM method with (p,a)-peducibZe Zag te1'm is ZocaUy stable at aU points 



tn' n ~ k* with respeat to the spaae of pertuPbations L1 [t0 ,~J if the poly­

nomial 

* * K K 
(5.10) I I ~ - - _ • - 2K * -i-j ao..a. + h L [S,.b. - y .• a.JK((l+J)h)Jz 

L J .f=-K J..\. J J"- L i=O j=O 

is a Schur polynomial. Here aj 

i > K. 0 

b. 
J 

0 for j > Kand "'i = Sil• "Yi.f = 0 for 

We observe that the characteristic polynomial (5.10) does not depend 

on n so that the local stability conditions to be derived from this theorem 

hold in the whole integration interval. Notice also that (5.10) only contains 

the function K(t) and does not refer to a particular decomposition of the 

form (5. 7). Thus, the theorem applies to arbitrary continuous, linear convo-

lution kernels. 

In practical applications .Theorem 5.2 yields complicated (local) sta­

biliry conditions unless K + K* is small (for a worked-out example see Sec-

tion 5,3). However, some insight into the local stability behaviour can be 

obtained if K((l+j)h) is sufficiently close approximated by a truncated 

Taylor expansion. 

(5.11) K((l+j)h) = ~ + (l+j)h ~ + ••• 

where~ := K(O), D = K'(O), .••. If only one term is used we obtain on sub-

stitution into (5.10) the polynomial (4.6') derived for the basic test equa-

tion, and if two Taylor terms are used we obtain the polynomial 

(5.12) Sp(z)o.(z) + ;h[S(z)o(z) - y(z)p(z)j 

+ Dh2cB(z)cr(z) - y(z)p(z) - 1#(z)p(z) + S(z)o#(z)j, 

A comparison with (4.6) reveals that (5.12) and (4.6) are identical if the 
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VLM formula is (~,y)-reducible (6(z)EO). For 6(z) ~ 0 the characteristic po-

lynoari.als differ which may be explained by observing that (5.12) character­

izes the local stability behaviour whereas (4.6) characterizes the g'lobal 

stability of the method. A further consequence of the local stability ap-

proach is the approximation (5.11) to b~ valid only in a small neighbourhood 

of t • O, whereas global stability requires the approximation to be valid in 

all points of the domain of definition. Thus, adopting the validity of local 

stabiiity analysis, and assuming that K(t) and K'(t) are slolilly varying in 

the interval [0,(K+K*)h], liJe e:r:peet stability lil.P.t. L1 Ct0 ,~J if (5.12) 

(lilith (•K(O), n•K' (0)) is a Seh11:r polynonti.aZ. 

EXAMPLE 5.1. In the case of the conventional DQ method the polynomial (5.10) 

reduces to 

(5.10') 
'K 

Gp(z) - h l b.K(jh)z'K-j 
j•O J 

a result already obtained in [12]. In particular, if all coefficients b. but 
J 

one vanish (so-called loeal diffe~entiation methods Ll6]), we obtain a poly-

nomial in which only one K(jh) value is involved. For instance, if {p,o} cor-

- I< responds to a backward differentiation formula we obtain Gp(z) - b0 (hz 

where ( • K(O). For the convolution test equation (4.1) this results in a 

loaalZy v0-stable DQ method with respect to perturbations .in L1 ( t0 ,~J both for 

e•Oande•t. D 

6. NUMERICAL ILLUSTRATION 

We derive the various stability conditions for the DQ method generated 

by the t~ezoidaZ ~le when applied to the second kind equation (cf. Garey 

[ 10]) 



t 

(6.1) I 2 3 2 I J y(t) • 2 >.(1-t )ln(l+t) + i; >. t - (2HJ)t +I - >. ln(l+t-s)y(s)ds 

0 

with exact solution y(t) • I + t. 

When the stability conditions based on the basic test equation are ap-

1 plied, we find from (4.6'), with 0 E I, p • z - 1, a• 'i(z+l) and t • K(t,s), 

the stability condition (w.r.t. r.1(0,.,,]): 

(6. 2) I z - I - 'ihK(t,s)(z+l), 0 s s s t s"' should satisfy the root 

oondition. 

Evidently, this condition is satisfied in the case of equation (6.1) for all 

hA 2: o. 

Using the convolution test equation, we find from (4.10) the stability 

condition (w.r.t. L1[0,.,,]): 

(6.3) 2 1 2 2 • (z-1) - 'ihK(O)(z -1) - h zK (t), t • [t0 ,.,,J should satisfy the 

:root condition. 

Applying Hurwitz criterion this condition reduces to 

(6.3') K(O),; O; K'(t) < O, t, [O,.,,]; h< ~· t < [0,.,,]. 
IK' (t) I 

For equation (6.1') this leads us to the condition h < 2l(l+t)/1', ). > 0. 

Next we consider the polynomial (5.12) yielding the local stability con­

dition (w.r.t. L1[o,.,,J) 

(6.4) z - I - !hK(O) (z+I) - lh2 K' (0) should be a SohUP polynomial. 2 2 

'lbis is satisfied if 

(6.4') K(O) S 0; K'(O) < 0; h< 2 , or K (O)sO;K'(O)<:O;h< 
llK' (0) I 

-2K(O), 
J(T"(O) 

so that in case of equation (6.1) the· local con:ditl:oirh < 2/IX, ). > O is obtained. 

133 



134 

Finally, we choose the polynomial (5.10') as our starting point to 

obtain the "rigorous" local condition (again w.r.t. 1 1 [O,=]) 

(6.5) ;: I - !hK(O) jz - [I + !hK(h) J should be a Schur po linomiaZ, 

leading to the condition 

(6.5') [K(h) + K(O) :Jl 4 + hK(h) - hK(O) j < 0, 

and in the case of (6.1) to the step size condition h < 4/J...ln(l+h), >. > O. 

Sumnarizing, the following stability conditions are found for (6.1): 

test equations used condition (A= 100, T= 4) 

basic test equation ii h;;, 0 no condition 

convolution test equation h<21(i+t)/>. h < 20 

r appr. (S. 11) h < 2;./i.. h < 20 
general convol. eq. t rigorous h < 4/i.£.n( I +h) h < • 21 

!n order to test these results we have integrated (6.1) with>.= 100 

and T = 4 to obtain the accuracies (measured by the number of correct signi­

ficant digits sd := - 101oglrelative error!) listed in the following table: 

h .24 

sd -7.81 

• 23 

-6.47 

.22 .21 

-4.87 -2. 77 

• 20 

1.88 

.19 

2.70 

.18 

2.61 

.17 

2.65 

These figures clearly show for this example the reliability of the local sta-

bility conditions and the too optimistic prediction if the kernel is appro-

ximated by the basic test kernel. 

7. NEGATIVE DEFINITE CONVOLUTION KERNELS 

Recently Lubich [l9j has developed global stability results for (p,a)-

reducible DQ methods when applied to second kind equations with convolution 



kernels of the form 

(7. 1) k(t,s,y) ~ K(t-s), Re~< 0 

where K(t) is a continuous, positive definite function E Ll[lR+]. Here, a 

continuous function a : lR -> a; is said to be positive definite if 

for any choice of finite sequences {ti} and {zi} with tie lR and zi e a:. Si­

milarly, a sequence (an}:. is said to be positive definite if 

i ,j 
a .. z.z. 
1-J 1 J 

2 0 

for any choice of finite complex sequences {zi}. 

This work extends earlier work of Nevanlinna [22, 23]. Without proof we 

give the basic lennna's and the stability theorem from Lubich's paper. 

LEMMA 7. I. Let h > 0. If a : lR+ -+ a; and {w.e.}~ aJ<>e positive definite, then 

the sequence {w.e.a(lh)}~ is again positive definite. 0 

LEMMA 7.2. (Toeplitz, CaJ<>atheodoJ<>y). The sequence {an}~ is positive definite 
~ .e. 

iff it is bounded and Re rl=O a.e_z :>: 0 in \z\ < 1. 0 

LEMMA 7.3. Let w(z) := p(z- 1)/o(z-1) = rl=O w.e.z.e.. The stability J<>egion R of 

the LM method {p,o} aontains an open disc (stability disc VJ of radius 1" in 

the left half-plane touahing the 01>igin iff there exists a number a suah that 

the sequenae (w 0+c,w 1 ,w2 , ••• } is a pos-itive ,Zefinite sequence. HeJ<>e c = 1 I (2r). 0 

LEMMA 7.4. (Lubiah, Paley-WieneJ<>). Let {yn} satisfy the J<>eaurrenae relation 

( 7. 2) g + 
n 

n 
l b((n-l)h)yl, n 2 0, h > 0 

l=O 
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(7.3) 
.. l. l b(l.h)z ~ 0 for lzl s I. 

t.-o 

(a) yn + 0 Llhenever gn + 0 as n ... "' iff (6.3) is satisfied. 

(b) y n is bounded L11umever gn is bounded as n ... "' iff (7. 3) is satisfied. D 

THEOREM 7.1, (Lubich), Let R contain a stabiZity disc V of radius r, Zet 

h t • V, and Zet k(t,s,y) be of tha definite convolution form (7.1) urlth 

K(O) " l. Then 

(a) yn + 0 Llhenever g(tn) + 0 as n + "'• 

(b) yn is bounded Llhensver g(tn) is bounded as n + "'• 0 

Sketch of the proof. First the numerical scheme is written in the forni (6.2) 

so that by Lemma 7.4 it remains to verify Paley-Wiener's condition (6.3) with 

-I b(l.h) • th "'l K(i.h). By Lema 7. I and 7 .3 the sequence { (w0+(2r) )K(O). 

w1K(h), U>2K(2h), ••• }is positive definite, hence by Lemma 7.2 

Re l "'t. K(lh)l ~ - K(O) • - .l. for lzl S J, 
l•O 2r 2r 

" l Thus tl.•O "'t. K(lh)z ~ l/(th) forth£ V which is just the Paley-Wiener con-

dition. 0 

REFERENCES 

[I] AMINI, s., StabiUty anal.ysis of methods empfoying reducible rules for 

VoZterra integral equations, BIT ,E_, 321-328, 1983. 

[2] A.'IINI, S., C.T.H. llAICER, P.J. van der HOUWEN & P.H.M. WOLKENFELT, Stabi­

Zity anaZyaia of numerical. methods for VoZterra integral equa­

tions with poZynomiaZ convoZution kernels, J. of Integral 

equa.#ons l· 73-92, 1983. 



[3] A!ISELONE, P.M. (ed)., NonUnear in"tegra:l equations, University of 

Wisconsin Press, Madison, 1964. 

(4] BAKER, C.T.H., The numerical. tNatment of integral. equations, Clarendon 

Press, oxford, 1977. 

[SJ BAKER, C.T.H., St:ructure of recUJ'?'ence reZations in the study of stab;,.., 

Zity in the nume:ricaZ. treatment of VoZ.tel"l'a integral. and integro­

d:£fferenti.aZ equations, J. of Integral Eqns. ±_, 11-29, 1980. 

[6j BAKER, C.T.H. & M.S. KEECH, StabiUty regions in the rwmericaZ treatment 

of VoZ.terra integral. equations, SIAMJ.Numer. Anal._!2., 394-417,1978 

[7] BIU!NNER, H. & J .D. LAMBERT, Stabi.Z.ity of numerical. methods for VoZ.terra 

integro-differentiaZ. equations, Computing.!..£, 75-89, 1974. 

[8] BRUNNER, H., S.P. !1{6RSETT & P.H.M. WOLKENFELT, On Va-stabi.Zity of nu­

merical. methods for VoZte'.l'M integral. equations of ths second 

kind, Report NW 84/80, Mathematisch Centrlllll, Amsterdam, 1980. 

(9J BRUNNER, H. & P.J. van der HOUWEN, The numerical. eoZution of VoZ.terra 

equations, North-Holland, Amsterdam, to appear in 1985. 

[!OJ GAREY, L., SoZ.ving nonUnear second kind VoZ.terra equations by Ttr:Jdifi.ed 

increment methods, SIAM J. Numer. Anal • .!..£• 501-508, 1975. 

(I I] GLADWIN, C.J. & R. JELTSCH, Stability of quadrature ruZe methods for 

first kind VoZ.ternz integral. equations, BIT..!!.• 144-151, 1974. 

[ 12) ROUWEN, P.J. van der & P.H.M. WOLKENFELT, On the stabiZit!J of muZtistep 

formulas for VoZ.terra integral. equations of the second kind, 

Computing 24, 341-347, 1980. 

[ 13) ROUWEN, P.J. van der & R.J.J. te RIELE, BackbJo.rd differentiation type 

formuZ.as for Voite:rra integral equations of the second kind, 

Numer. Math. 37. 205-217, 1981. 

137 



138 

[14] -

[15) -

• Linear muZtiatep methods for VoZterra integral and integro-dif­

ferential equations, to appear in Math. Comp. • 

• In: Treatment of integral equations by numerical methods (eds. 

C•T.R. Baker an~ G.F. Miller), Academic Press, 1982. 

[ 16] KEECH, M.S., A third ord.er, semi-e:r:plicit method in the numerical soZu­

tion of first kind VoZterra integral equations, BIT.!J., 312-320, 1977. 

[ 17] KERSHAW, D., Volterra equations of the second kind, In: Numerical solu­

tion of integral equations (eds. L. M.. Delves & J. Walsh), 

Clarendon Press, Oxford, 1974. 

Ll8) LINZ, P., Numerical. methods for Vol.terra integral equations of the first 

kind, Computer J. 11_, 393-397, 1969. 

L 19:i LUBICH, Ch., On the stability of linear multiatep methods for VoZterra 

convolution equations, IMA J. Numer. Anal. 1_, 439-465, 1983. 

[20) MATIHYS, J., A-stable linear rrrultistep methods fo:r Volterro integro-dif­

ft'ential equations, Numer. Math. l?_, 85-94, 1976. 

[2l:i MAYERS, D.F.,ln: Numerical solution of ordina:ry and partial diffe:rentiaZ 

equations (ed. L. Fox), Pergamon, 1962. 

[22) NEVANLINNA, O., Positive quadratu:res fo:r VoZte:rra equations, Computing 

_!!. 349-357, 1976. 

[23) - , On the numerical solution of some VoZte:r:ra equations on infinite 

intervals, Report Inst. Mittag-Leffler, Djursholm, 1976. 

[24] PALEY, R.E.A.C. & N. WIENER, Fourie:r tranafoPms in the compZe:1: domain, 

Amer. Math. Soc. Providence, R.I., 1934. 

L25J STETIER, H.J., Analysis of disc:retization methods for o:rdina:ry differen­

tial equations, Springer Verlag, Berlin, 1973. 



L26] TRICOMI, F.G., Integral equations, Interscience, 1957. 

[27J WOLKENFELT, P.H.M., P.J. van der HOUWEN & C.T.H. BAKER, Analysis of 

nW11er>ieal methods for> seeond kind Volter>r>a equations by imbedding 

techniques, J. Integral Eq. ]_, 61-82, 1981. 

(28] WOLKENFELT, P.H.M., The nwner'ieal analysis of r>educible quadratUr>e meth-

[ 29J -

[30] -

[31J -

ods for VoZterr>a integr>al and integr>o-differ>entiaZ equations, 

Thesis, Mathematical Centrum, 1981. 

, Stability analysis of r>educible quadratUr>e methods for> Volterr>a 

integral equations of the second kind, ZAM!l .§.!._, 499-50 I, 1981. 

, Modified multiZag methods for Volterra functional equations, 

Math. Comp. 40, 301-316, 1983. 

, The construction of i>educible quadrature rules for Volter>m in-

tegml and integro-differentiaZ equationR, IY.A J. Numer. Anal. 

3_, 131-152, 1982. 

P. J. van der Houwen 
Centrum voor Wiskunde en Informatica 
Kruilan 413 
Amsterdam 
The Netherlands 

139 


