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Abstract. The weak stochastic realization problem is considered for discrete-time 

stationary counting processes. Such processes take values in the countable infinite 

set N = {0,1,2, ... }. A stochastic realization is sought in the class of stochastic 

systems specified by a conditional distribution for the output given the state of 

Poisson type, and by a finite valued state process. In the paper a necessary and 

sufficient condition is derived for the existence of a stochastic realization in 

the above specified class. 

I. INTRODUCTION 

The purpose of this paper is to present a result for the weak stochastic realiza­

tion of a discrete-time counting process and to indicate the major open questions. 

The weak stochastic realization problem to be considered is given a discrete-time 

counting process to show existence of and to classify all minimal Poisson-finite-state 

stochastic systems whose output equals the given process in distribution. The class 

of Poisson-finite-state stochastic systems is specified by a conditional distribution 

for the output given the state of Poisson type, and by a finite valued state process. 

The motivation of this problem is the area of control and prediction for systems 

with point process observations. Examples of practical problems in this area are the 

control of queues, the prediction of traffic intensities, the estimation of software 

reliability, and the estimation of certain biomedical signals. The prediction and 

control problems for this class of systems, under the assumption that the parameter 

values are known, have been considered. Practical application of these results 

demands the solution of the system identification problem and the stochastic realiza­

tion problem for the class of Poisson-finite-state systems. 

The stochastic realization problem for Gaussian processes has received quite some 

attention the past fifteen years [.2,3,61. Both the weak and the strong version of the 

problem have been investigated. A considerable body of results is available for this 

problem. The corresponding problem for finite valued processes for which a realization 

is sought in the class of stochastic systems with a finite state process has also 

received consideration r4,5,8J. However, little proeress has been made on this problem 

as far as a realization algorithm and the characterization of minimal realizations is 
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concerned. The major bottle neck is a factorization question for nonnegative matrices 

l 5]. 

In this paper attention is focused on the weak stochastic realization problem 

for stochastic processes taking values in the positive integers. This problem should 

be distinguished from the finite stochastic realization problem for processes taking 

values in a finite set. A weak stochastic realization is sought in the class of 

Poisson-finite-state stochastic systems described above. A necessary and sufficient 

condition will be stated for a discrete-time counting nrocess to have a realization 

in this class. Open questions will be mentioned. 

A surmnary of the paper follows. The problem formulation is given in section 2, 

while in section 3 a condition for existence of a weak stochastic realization is 

derived. 

2. PROBLEM FORMULATION 

Below a definition is given of a Poisson-finite-state stochastic system and 

the corresponding weak stochastic realization problem is formulated. 

Notation and terminology that will be used in the paper, will be defined. Let 

{Q,F,P} be a complete probability space and T = Z be the time index set. The condi­

tional independence relation for a triple of a-algebra's F 1 ,F2 ,G is defined by the 

condition that 

for all x 1 E L+(F 1) and x 2 E L+(F 2); notation (F 1 ,G,F 2) E Cl. Here L+(F 1) is the set 

of all positive F1 measurable random variables. The smallest a-algebra with respect 

to which a random variable x is measurable is denoted by Fx, and that containing the 

a-algebra's G and H by GvH. The set of positive integers is denoted by N = {0,l ,2, ... }, 

while that of strictly positive integers by Z+ = {I,2,3, ... }.0 For n E Z+ is Zn 

{I ,2, ... ,n}. The set of nonnegative matrices is denoted by R:xn. For material on this 

set see [I]. 

2. I. DEFINITION. A Poisson-finite-state stochastic system is a collection 

where Ul,F,P} is a complete probability space, T = Z, N = {0,1,2, ... }, X = {c 1,c2 , ... , 

en} c (O,oo) for some n E Z+,BN,BX are a-algebra's on N and X generated by all subsets 
of N and X, n: :;ix T + X, >.: QxT+ Xare stochastic processes called respectively theoutpu· 

process and the state process, such that for all t E T, k E N 

[ I n- v F~] 
EI(n=k) Ft-I -

t 



and 
n­

F t 
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A-v Ft , t e T) is a stationary finite-state Markov process. Here 

V s s t}), F! = a({As' V s e T}). 

Notation: a e PFSE. 

In a stochastic systemone exhibits, besides the externally available output process, 

the underlying state process. The state process is of crucial importance for the solution 

of prediction and control problems. The above defined stochastic system is called Poisson­

finite-state because the conditional distribution of the output process given the past and 

the state process is of Poisson type, and because the state process is a finite-state 

Markov process. 
In the following a stochastic process taking values in N will be called a 

discrete-time counting process. The output of a Poisson-finite-state stochastic system 

is a discrete-time counting process. 

An abstract definition of a stochastic system can also be given [4,5,8]. It can 

then be shown that the above defined Poisson-finite-state stochastic system satisfies 

this abstraction definition. For the sake of completeness this result is put on 

record. 

2.2 DEFINITION. A (discrete-time) stoahastia system is a collection 

where {Q,F,P} is a complete probability space, T = Z, Y, X are sets and BY,BX 

a-algebra's on Y respectively X, y: QxT + Y, x: QxT + X are stochastic processes 

called respectively the output process and the state process, such that for all t e T 

(F~+ v F~+, Fxt, F~- v F~=l) e CI, 

where 

Fy+ = a ( { y , Vs ~ t}) . 
t s 

2.3 PROPOSITION. A Poisson-finite-state stoahastia system as defined in 2.1 is a 

stoahastia system as defined in 2.2. 

PROOF. Let t e T, k e N, i e Zn. Then 

Er I I JFn- v FAt-1 
J (n =k) ()., =c.) t-1 . t t+l 1 

Err Efr IFn- v FA-llFn-
<A 1 =c.) (n =k) t-1 oo J t-1 . t+ 1 • t . 
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n-1 11-
by (At, Ft-I v Ft , t E T) a Markov process, 

n ii 
A monotone class argument then gives that (F t v F E+l 

ii 
t n-

F , Ft-1 
induction procedure and another monotone class argument then yields that 

(Fn+ v FA+ Filt Fn- v Fil-) 
t t+I' ' t-1 t € CI, 

from which the result is easily deduced. 

For future use a dynamic representation of a Poisson-finite-state stochastic 

system is derived. Define x: 0xT +Rn by xit I(il =c.)' and c E Rn by 
t l 

For c E Rn define the diagonal matrix 

with on the diagonal entries of the vector c. Let b E: Rn, bi 

Then 

Let A E: Rnxn be the transition matrix of the stationary finite-state Markov process \; 

thus 

A. . = P ( { x. J =I } n { x. = l } ) /P ( { x. =I } ) 
lj l, t+ J t J t 

if well defined and zero otherwise. Then 

Define 

Then 6mlt' 6m2kt are martingale increments: 



440 

One obtains thus the representation 

fxt+l = Axt+6mlt' 

L -bT ( )k I I I(n =k)- D c xt k. + 6m2kt" 
t 

2.4 PROBLEM. The Poisson-finite-state weak stochastic realization problem is, given a 

stationary discrete-time counting process on T=Z, to solve the following subproblems: 

a. To give necessary and sufficient conditions for the existence of a Poisson-finite­

state stochastic system a such that the output process of this system equals the 

given process in distribotion; if soch a system exists then it is called a weak 

stochastic realization of the given process; 

b. to classify all minimal weak stochastic realizations, where minimal refers to the 

number of elements in the state space. 

One may pose the question why for discrete-time counting processes attention is 

restricted to the class of ?oisson-finite-state stochastic systems? The answer is that 

for systems in this class the stochastic· filtering problem can easily be solved. Such 

systems may therefore be used in applications. The system id~ntification problem then 

demands the estimation of ~he parameters of the filter representation. To answer 

questions about the identifiability of the parameters, the weak stochastic realization 

problem must be resolved. 

For the sake of reference the solution to the stochastic filtering problem for a 

Poisson-finite-state stochastic system is stated below. No reference in the literature 

is known for this result but its proof is elementary. 

2.5 PROPOSITION. Assume given a Poisson-finite-state stochastic system with the 

representation 

I = bTD(c)kx /k! + 6mZkt' (nt=k) t 

as described above. The solution of the stochastic filtering problem for this system 

is given by 

xt = E[xt!F~=l l, 

xt+I =Axt + l Mn<xt) - xtx~l 
k=O 

k T k~ -I 
(D(c) b/k!)[b D(c) xt/k!] I(n =k) 

t 

l [AD(xt)D(c)kb/k!][bTD(c)kxt/k!J- 1r(n =k)" 
k=O t 
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PROOF. Omitted. 

The solution of the above filtering problem is readily implemented. If 

bk E R:, k E N, is defined as bk= D(c)kb/k! then one has the recursion 

b. 

3. THE RESULT 

D 

Below a necessary and sufficient condition is given for a discrete-time counting 

process to have a weak stochastic realization in the-class of Poisson-finite-state 

stochastic systems. 

Some remarks on notation follow. The family of finite dimensional distributions 

of a stationary counting process n is denoted by, for any m E Z+, 

P (t 1, ... ,t ,k 1, ••• ,k) = P({n = k 1, ••• ,nt 
m m m t 1 m 

k }) 
m 

where t 1, ... ,tm E T,'tm ~ tm-l s ... s t 1, and k 1, ... ,km EN. Because the process is 

stationary pm is dependent on the ti's only through t 1-t2 ,t2-t3 , ••• ,tm-l-tm. 

If c, b E. R~ then D(c)D(b) = D(b)cl(c), while D(c)b = D(b)c. Let u ERn,uT=(J !. .. !). 

A stochastic matrix is an elemell.t A E Rnxn such that uTA = uT. Note that if x: rl><T->Rn 
+ 2 

is defined as in section 2 by xit I(At=Ci)' that then (xit) = xit' while for if j, 

3.1 THEOREM. Asswne given a stationary discrete-time counting process on T 

with finite-dimensional distribution, for m E z+, 

z, say 

There exists a weak stochastic realiza~ion of this process in the class of Poisson­

finite-state stochastic systems iff there exists a n E Z+' a stochastic matrix 
nxn n n 

A ER+ , and r,c E (0, 00 ) , such that if b E (0, 00 ) , bi= exp(-ci), then for any 

m E z+, tl, ... ,tm E T,tm < tm-1 < ••• < tl,kl, ... ,km EN one has 

pm(tl '· · · 'tm,kl '···,km) 
k t -t k t -t 

= u D(b)D(c) 1A l 2o(b)D(c) 2A 2 J 

k 
••. D(b)D(c) mr/k 1 !k2! ... km! 

The above existence criterion is analogous to that of the existence of a finite 

stochastic realization as given in [41. However, there conditional distributions are 

used, as where here unconditional distributions are preferrc•d. Remarks on a realization 

algorithm are given below the proof. 

PROOF. a =0 Assume there exists a weak stochastic realization say specified by the 



representation 

I(n =k) = bTD(c)kct/k! + ~m2kt' 
t 
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as discussed in section 2. Let r = E(xt). Then for t 1 < t 2 

E[xt I(n )] 
2 t1=k 

= Atz-t 1D(b)D(c)kr/k!, 

p 1(t 1,k) = E[I(n =k)J uTD(b)D(c)kr/k! 
tl 

It will be shown by induction that for 

E[x I I ] t 0 (n =k 1)... (n =k ) 
t1 tm m 

to-t1 k1 tm-tm-1 km 
A D(b)D(c) ... A D(b)D(c) r/k 1 ! •.. km! 

By the above this holds form= 1. Suppose it is true form - 1. Then 

E[x I I ] 
t 0 (n =k ) . . . (n =km) 

tl tm 

= E[E[x I( =k ) IFn-_ 1 v 
to nt 1 tl 

1 

E[I I ] (n =k 1) ... (n =k) 
t 1 tm m 



443 

f . nxn 
b. <-= I the indicated factorization exists then one has n E Z+, A E R+ a stochastic 

matrix, and c E (0,=)n. One can then construct a probability space and a Poisson-finite­

state stochastic system on it and part a. of the proof then shows that 

E[I I =k )] (n =k 1) ••• (n 
t 1 t m 

T kl tl-~2 
u D(b)D(c) A ... D(b)D(c) 

k 
mr/kl !k2! ... km! 

D 

A major unsolved question for the stochastic realization problem under discussion 

is the construction of a realization algorithm. The following heuristic procedure may 

be considered. 

1. Assume that the function k!p 1(t,k),. as function of k EN, is a positive Bohl function 
· n nxn 

meaning that there exists a n E Z+, h,g E R+, F E R+ such that 

k!pl (t,k) 

Assume further that F can be chosen diagonal, say F D(c) with c E Rn. Define b,d E Rn 
+ + 

as b. 
1. 

exp(-ci)' di= exp(ci). Then 

T k T k 
k!p 1 (t,k) = h D(c) g = u D(h)D(c) g 

uTD(b)D(d)D(h)D(c)kg 

l:~=O P1 (t,k) = 
T u r. 

nxn 
2. Determine a stochastic matrix A ER+ such that for all t 1 ,t2 ET, t 2 < t 1 , 

kl ,k2 E N, 

n nxn 
Step 1 and 2 determine n E Z+, c E (O,=) , A E R+ . 

3. Check whether the condition of theorem 3.1 holds for any m E Z+. 

A major difficulty with the above algorithm is that nothing is known about 

factorization of positive functions as in step 1 above. In addition little is known 

about the factorization in step 2 of positive functions with more then one countable 

infinite index. Analogous difficulties occur in the finite stochastic realization 

problem [4,5]. 

Another major unsolved question is the characterization of minimal realizations. 
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It seems that this question is also analogous to that of the finite stochastic 

realization problem, see [S]. 1here it is shown that this question leads to a factori­

zation problem for nonnegative matrices. The latter problem is unsolved. 
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