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Algorithmic ldentification of Probabilities *

Paul M.B. Vitanyi and Nick Chater

Abstract

The problem is to identify a probability associated with & senatural numbers, given an infinite
data sequence of elements from the set. If the given sequgrirawn i.i.d. and the probability mass
function involved (the target) belongs to a computably eerahle (c.e.) or co-computably enumerable
(co-c.e.) set of computable probability mass functionsntthere is an algorithm to almost surely identify
the target in the limit. The technical tool is the strong lafharge numbers. If the set is finite and the
elements of the sequence are dependent while the sequetypéce in the sense of Martin-Lof for at
least one measure belonging to a c.e. or co-c.e. set of capuineasures, then there is an algorithm
to identify in the limit a computable measure for which thesence is typical (there may be more than
one such measure). The technical tool is the theory of Kobnmgcomplexity. We give the algorithms

and consider the associated predictions.

. INTRODUCTION

One can associate the natural numbers with a lexicographgth-increasing ordering of finite strings
over a finite alphabet. A natural number corresponds to thiegsof which it is the position in this
order. Since a language is a set of sentences (finite strivgsaofinite alphabet), it can be viewed as
the set of natural numbers. The learnability of a languagdeunarious computational assumptions is
the subject of an immensely influential approach_in [5] angeemlly [€], or the review([9]. But surely
in the real world the chance of one sentence of a language lsied is different from another one. For
example, in general short sentences have a larger chancenddig up than very long sentences. Thus,
the elements of a given language are distributed in a certain There arises the problem of identifying

or approximating this distribution.
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Our model is formulated as follows: we are given an infinitquence of data consisting of elements
drawn from the set (language) according to a certain prdibakdnd the learner has to identify this
probability. In general, however much data been encoudéhere is no point at which the learner can
announce a particular probability as correct with cenailifeakening the learning model, the learner
might learn to identify the correct probability in the limiThat is, perhaps the learner might make a
sequence of guesses, finally locking on to correct proltplaind sticking to it forever—even though
the learner can never know for sure that it has identified threect probability successfully. We shall
consider identification in the limit (following, for examgl [€], [9], [1€]). Since this is not enough we
additionally restrict the type of probability.

In conventional statistics, probabilistic models are ¢ty idealized as having continuous valued
parameters; and hence there is an uncountable number dblega®babilities. In general it is impossible
that a learner can make a sequence of guesses that preoigadyon to the correct values of continuous
parameters. In the realm of algorithmic information theamparticular in Solomonoff induction [18] and
here, we reason as follows. The possible strategies ofdemare computable in the sense of Turing [19],
that is, they are computable functions. The set of thesesigelie and thus countable. The hypotheses that
can be learned are therefore countable, and in particudasdh of probabilites from which the learner
chooses must beomputable

We consider two cases. In case 1 the data are drawn indepdddetically distributed (i.i.d.) from a
set of natural numbers according to a probability mass fonéh a co-c.e. set of computable probability
mass functions. In case 2 the set is finite and the elementseoinfinite sequence are dependent and

the data sequence is typical for a measure from a co-c.eesabsomputable measures.

A. Preliminaries

Let NV denote the natural numbers, aRdthe real numbers. We say that ugentify a function f in
the limitif we have an algorithm which produces an infinite sequeficés, . .. of functions andf; = f
for all but finitely manyi. This corresponds to the notion of “identification in theitinin [G], [9], [16],
[20]. In this notion at every step an object is produced anek &t finite number of steps the target object
is produced at every step. However, we do not know this finitmlmer. It is as if you ask directions
and the answer is “at the last intersection turn right,” bon ylo not know which intersection is last. In
the sequel we often “dovetail” a computation. This is a téghe that interleaves the steps of different

computations ensuring progress of each individual conjpmaFor example, we have computations



c1, co. Dovetailing them means first performing step 1cof then performing step 2 aof; followed by

step 1 ofcq, then performing step 3 of; followed by step 2 ofc2, and so on.

B. Related work

In [1] (citing previous more restricted work) a target prblity mass function was identified in the
limit when the data are drawn i.i.d. in the following settirigpt the target probability mass functigrbe
an element of a list, g2, . .. subject to the following conditions: (i) every : N — R is a probability
mass function; (ii) we exhibit a computable total functiofii, z,e) = r such thatg;(z) — r < e with
r,e > 0 are rational numbers. That is, there exists a rational narapproximation for all probability
mass functions in the list up to arbitrary precision, and \we @ single algorithm which for each such
function exhibits such an approximation. The technical mseased are the law of the iterated logarithm
and the Kolmogorov-Smirnov test. However, the listgs, ... can not contain all computable probability
mass functions because of a diagonal argument, Lemima 1.

In [2] computability questions are apparently ignored. Thanclusionstates “If the true density [and
hence a probability mass function] is finitely complex [itdemputable] then it is exactly discovered
for all sufficiently large sample sizes.”. The tool that isedss estimation according tmin,(L(q) +
log(1/ 1~ ¢(X;)). Hereq is a probability mass function.(¢) is the length of its code ang(X;)
is the ¢-probability of theith random variableX;. To be able to minimize over the set of computable
g's, one has to know théd.(¢)’s. If the set of candidate distributions is countably irtfnithen we can
never know when the minimum is reached—hence at best we Ih@reitlentification in the limit. If
L(q) is identified with the Kolmogorov complexitk (¢), as in Section IV of this reference, then it is
incomputable as already observed by Kolmogoroviin [12] (far plain Kolmogorov complexity; the
case of the prefix Kolmogorov complexiti((¢) is the same). Computable(q) (given ¢) cannot be
computably enumerated; if they were this would constitut®mputable enumeration of computaple
which is impossible by Lemmid 1. To obtain the minimum we regjai computable enumeration of the
L(q)’s in the estimation formula. The results hold (contrary teatvis claimed in theConclusionof [2]
and other parts of the text) not for the set of computable gpdity mass functions since they are not
c.e.. The sentence “you know but you don't know you know” oa second page of [2] does not hold
for an arbitrary computable mass probability.

In reaction to an earlier version of this paper with too lactgems, in [4] it is shown that it is impossible

to identify a computable measure in the limit given an infinsequence of elements from its support



which sequence is guarantied to be typical for some computabasure.

C. Results

The set of halting algorithms for computable probabilitis measures) is not c.e., LemmA 1 in
Appendix[A. This complicates the algorithms and analysistted results. In Sectiofi]ll there is a
computable probability mass function (the target) on a $etatural numbers. We are given an infinite
sequence of elements of this set that are drawn i.i.d., amdsked to identify the target. An algorithm
is presented which identifies the target in the limit almasiely provided the target is an element of
a c.e. or co-c.e. set of halting algorithms for probabilitass functions (Theorefd 1). This underpins
partially the result announced in! [8]. The technical todhhis strong law of large numbers. In Section Il
the set of natural numbers is finite and the elements of theeseg are allowed to be dependent. We
are given a guaranty that the sequence is typical (Definifipfor at least one measure from a c.e. or
co-c.e. set of halting algorithms for computable measurasre is an algorithm which identifies in the
limit a computable measure for which the data sequence isalyflheoreniR). The technical tool is the
Martin-Lof theory of sequential tests [15] based on Kolmmgy complexity. In Sectioh IV we consider
the associated predictions, and in Secfidn V we give coimiss In AppendiX_A we review the used
computability notions, in AppendixIB we review notions of Ikmgorov complexity, in AppendikIC we

review the used measure and computability notions. We dieéeproofs of the theorems to Appendik D.

[I. COMPUTABLE PROBABILITY MASSFUNCTIONS AND I.1.D. DRAWING

To approximate a probability in the i.i.d. setting is welldvn and an easy example to illustrate our
problem. One does this by an algorithm computing the prdipahi(a) in the limit for alla € L C N
almost surely given the infinite sequengg zs, . . . of data i.i.d. drawn fron1. according tap. Namely, for
n=1,2,... for everya € L occurring inzy, zs, ..., z, Setp,(a) equal to the frequency of occurrences
of ain z1,z9,...,x,. Note that the different values of, sum to precisely 1 for every = 1,2,.... The
output is a sequengg, po, . .. of probability mass functions such that we hai@,, ., p, = p almost
surely, by the strong law of large numbers (see Cldim 1). Tbbeability mass functions considered here
consist ofall probability mass functions ofi—computable or not. The probability mass functipris
represented by an approximation algorithm. In the limis reached almost surely.

Here we deal only with computable probability mass functiotli p is computable then it can be

represented by a halting algorithm which computes it as défin AppendiX’A. Most known probability



mass functions are computable provided their parameters@nputable. In order that it is computable
we only require that the probability mass function is finjitdescribable and there is a computable process
producing it [19].

One issue is how short the code felis, a second issue are the computability properties of tlie co
for p, a third issue is how much of the data sequence is used in dneigy process. The approximation
of p results in a sequence of codes of probabilifieg, . . . which are a list of the sample frequencies in
an initial finite segment of the data sequence. The codeHeoigthis list grows to infinity as the length
of the segment grows to infinity. The learning process udesfdhe data sequence and the result is an
encoding of the sample frequencies in the data sequence iimth. This holds also ifp is computable.

THEOREM 1: I.I.D. COMPUTABLE PROBABILITY IDENTIFICATION Let L be a set of natural numbers
andp be a probability mass function danwhich is an element of a c.e. or co-c.e. set of halting algors
for computable probability mass functions. There is an idtlgm identifying p in the limit almost surely
from an infinite sequence,, zo, ... of elements ofl, drawn i.i.d. according t@. The code ofp via an
appropriate Turing machine is finite. The learning processsiwonly a finite initial segment of the data
sequence and takes finite time.

We do not know how large the finite items in the thorem are. We gh outline of the proof of Theordm 1.
The proof itself is deferred to Appendix] D. We start by extegdthe strong law of large numbers to
probability mass functions on subsets/gt By assumption the target probability mass functjois a
member of a c.e. or co-c.e. set of halting algorithms for catalple probability mass functions listed as
list A. If ¢ is in list A andq = p, then for everye > 0 we havep(a) — g(a) < eforalla € L. If g isin
list A andgq # p, then for some: € L there is a constant > 0 such thatjp(a) — ¢(a)| > 6. For every
n = 1,2,... we estimatep(a) for all « € L by the number of occurrences afin the n-length initial

segment of the provided data sequence.

Let #a(xy,...,x,) denote the number of times = z; (1 < i < n). For ¢ = p al-
most surely lim,, o maxqer, |[#a(x1,...,2,)/n — qf(a)] = 0, and for ¢; # p almost surely
limy, 0o max,ey, [#a(x1, ..., 2,)/n — ¢ (a)| > 0. Hence we determine for each= 1,2,... the least
indexi (1 < i <n) in the list A for which |¢;(a) — #a(x1,...,z,)/n| is minimal. This index is called

in. Let ¢ = p with k least. Eventually the initiak-length segment of the lis{dl is co-computably
enumerated. Hence there is a finitg such that for alln > ng we havei,, = k, but we do not know
how largen is. This means that is identified in the limit.

REMARK 1: Since the c.e. and co-c.e. sets strictly contain the coabjrisets, Theorefd 1 is strictly



stronger than the result inl[1] referred to in Section I-Bislimore theoretical but strictly stronger than
[2] that does not give identification in the limit for classafscomputable functions.

Define the primitive recursive probability mass functiorss the set of probability mass functions
for which it is decidable that they are constructed from ftiira recursive functions. Since this set is
computable it is c.e.. The theorem shows that identificaitiotihe limit is possible for members of this
set. Define the time-bounded probability mass functionsafor fixed computable time bound as the set
of elements for which it is decidable that they are probgbithass functions satisfying this time bound.
Since this set is computable it is c.e.. Again, the theoreowslthat identification in the limit is possible
for elements from this set.

Another example is as follows. Let = {ay,aq,...,a,} be a finite set. The primitive recursive
functions f1, fo,... are c.e.. Hence the probability mass functignsp,, ... on L defined byp;(a;) =
fi(7)/ >_oh_; fi(h) are also c.e.. Let us call these probability mass functiompls. By Theoreni Il they
can be identified in the limit. Following the proof of Theorflhin AppendiXD, we give another example

in Examplel2. <&

I1l. COMPUTABLE MEASURES

As far as the authors are aware, for general measures thesenexther an approximation as in
SectionIl nor an analog of the strong law of large numbersvél@r, there is a notion of typicality
of an infinite data sequence for a computable measure in thiinaf theory of sequential tests [15]
based on Kolmogorov complexity, and this is what we use.

Let L C N be finite andu be a measure oA* in a co-c.e. set of halting algorithms for computable
measures. In this paper instead of the common notatidh.) we use the simpler notation(z). We
are given a sequence ibr° which is typical (Definitior[ll) foru. Thus, the constituent elements of the
sequence are possibly dependent. The set of typical inBeitgiences of a computable measureave
u-measure one, and each typical sequence passes all coepetsts foru-randomness in the sense of
Martin-Lof. This probability model forl, is more general than i.i.d. drawing according to a probigbili
mass function. It includes stationary processes, ergogicgsses, Markov processes of any order, and
other models.

THEOREM2: COMPUTABLE MEASURE IDENTIFICATION Let L be a finite set of natural numbers.
We are given an infinite sequence of elements ftbrand this sequence is typical for one measure in a

c.e. or co-c.e. set of halting algorithms for computable sness. There is an algorithm which identifies



a computable measure in the limit for which the sequencepiay. The code of this measure is an
appropriate Turing machine and finite. The learning procses only a finite initial segment of the data
sequence.
Let us explain the relation between Theorem 1 and Thedidemh@.sEt of infinite sequences of i.i.d.
draws from a finite sel. according to a probability mass function induces a measaré®. Such a
measure is called an i.i.d. measure. The set of computaldemeasures ol is a proper subset of the
set of computable measures BnAn infinite sequence, zo, ... drawn i.i.d. according to a computable
probability mass functiop on L is almost surely typical in the sense of Definitioh 1 for theuned
computable i.i.d. measure,, and every infinite sequence that is typical fgyis in the set of sequences
almost surely drawn i.i.d. according @ Hence Theoreril2 restricted to i.i.d. measures on finite sets
implies TheoreniI1 and vice versa.

We give an outline of the proof of Theorelm 2. The proof itselfdeferred to AppendixID. Lower
semicomputable functions are defined in Apperdix A. Bebbe a list of a c.e. or co-c.e. set of halting
algorithms for computable measures with each measure megunfinitely many times. For a measure

w in the list B define
o(j) =logl/pw(zr...zj) — K(z1...xj).

By (A.2), data sequence, zs, . .. is typical for  iff sup; o(j) = o with o < co. By assumption there
exists a measure I8 for which the data sequence is typical. Lgt be such a measure Since algorithms
for u;, occurs infinitely often in the list3 there is an algorithmy in the list B with o5, = o5, and
o, < h'. Therefore, there exists a measuig in B for which the data sequencg, -, ... is typical
ando, < k with k least. If for everyn := 1,2,... we compute the least indexof u; in B such that
wi(z1, ..., zy,) < i, then we identify in the limit a computable measuresirior which the provided data
sequence is typical.

REMARK 2: Let the underlying sel be finite. Define the primitive recursive measures as theaset f
which it is decidable that they are measures constructed fsamitive recursive functions. Since this
set is computable it is c.e.. The theorem shows that ideattific in the limit is possible for primitive
recursive measures. Define the time-bounded measuresydixad computable time bound as the set
of elements for which it is decidable that they are measumésfging this time bound. Since this set is
computable it is c.e.. Again, the theorem shows that ideatifin in the limit is possible for elements

from this set.



Let L be afinite set of cardinality, and f1, fo, ... be a c.e. of the primitive recursive functions. C.e. the
stringsx € L* lexicographical length-increasing. Then every string barviewed as the integer giving
its position in this order. Defing;(e) = fi(e)/f€) = 1, and inductively forz € L* anda € L define
pi(za) = fi(xa)/ > .cp filza). Thenp(x) = Y, op pi(za) for all z € L*. Call the c.e.p, pa, ...
the simple measures. The theorem shows that identificatidhel limit is possible for the set of simple

measures. Following the proof of Theoréi 2 in Apperidix D wevwshnother example in Examglé 3.

IV. PREDICTION

In Sectior(I) the data are drawn i.i.d. according to a prolitghihass functiorp on the elements of..
Given p, we can predict the probability(a|z1, . .., x,) that the next draw results in an elementvhen
the previous draws resulted in, ..., z,. The resulting measure ob is called an i.i.d. measure.

For general measures as in Secfioh Ill, allowing dependstat the situation is quite different. We can
meet the so-called black swan phenomenor_of [17]. Let us @iganple example. The data sequence
iS a,a,... is typical (Definition[1) for the measure, defined byu;(xz) = 1 for every data sequence
consisting of a finite or infinite string af’s and i1 (x) = 0 otherwise. Buta,a, ... is also typical for
o Which gives probabilityug(z) = % for every stringz either consisting of a finite or infinite string
of a’s, or a fixed numbern of a's followed by a finite or infinite string ob's, and 0 otherwise. Then,
w1 and uo can give different predictions given a sequence'sf But given a data sequence consisting
initially of only a’s, a sensible algorithm will prediat as the most likely next symbol. However, if the
initial data sequence consists ofsymbolsa, then for; the next symbol will bex with probability 1,
and for iy the next symbol is: with probability% and b with probability % Therefore, while the i.i.d.
case allows us to predict reliably, in the dependent cagse tilsein general no reliable predictor for the
next symbol. In([3] Blackwell and Dubin show that under certeonditions predictions of two measures

merge asymptotically almost surely.

V. CONCLUSION

Using an infinite sequence of elements from a set of naturalbews, algorithms are exhibited that
identify in the limit the probability distribution assot& with this set. This happens in two cases: (i)
the target distribution is a probability mass functiondi.imeasure) in a c.e. or co-c.e. set of computable
probability mass functions (computable i.i.d. measuresl)the elements of the sequence are drawn i.i.d.

according to this probability (Theorem 1); (ii) the undémly set is finite and the infinite sequence is



possibly dependent and typical for a computable measurecia.ar co-c.e. set of computable measures
(TheorentR).

In the i.i.d. case the target computable probability masstion is identified in the limit almost surely,
in the dependent case the target computable measure igfietkim the limit surely—it is one out of
a set of satsfactory candidate computable measures. Initthecase we use the strong law of large
numbers. For the dependent case we use typicality accotditige theory developed by Martin-Lof
in [15] embedded in theory of Kolmogorov complexity. Thed.iresult is actually a corollary of the
dependency result.

In both the i.i.d. setting and the dependent setting, ewdigtwe guess an index of the target (or one
target out of many possible targets in the measure case)ti@kdathis guess forever. This last guess is
correct. However, we do not know when the guess becomes perha/Ne use only a finite unknown-
length initial segment of the data sequence. The target foctwthe guess is correct is described by a

an appropriate Turing machine computing the probabilityssnfanction or measure, respectively.

APPENDIX
A. Computability

We can interpret a pair of integers such (@sb) as rationala/b. A real function f with rational
argument idower semicomputablé it is defined by a rational-valued computable functiofx, k) with
x a rational number and a nonnegative integer such thatx,k + 1) > ¢(x, k) for every k and
limy_, o ¢(x, k) = f(x). This means thaf can be computably approximated arbitrary close from below
(see [14], p. 35). A functiory is upper semicomputabié — f is semicomputable from below. If a real
function is both lower semicomputable and upper semicoaipetthen it iscomputable A function f
is asemiprobability mass functioif > ©, f(z) < 1 and it is aprobability mass function ify_ f(z) = 1.
It is customary to writep(x) for f(z) if the function involved is a semiprobability mass function

A set A C N is computable enumerablg.e.) when we can compute a ligf, as, ... of which all
elements are members df A c.e. set is also called recursively enumerable (r.e.yoA.e.setB C N
is a set whose complemeif \ B is c.e.. If a set is both c.e. and co-c.e. then it is computaihe
natural numbers above can be indexes.

Let us explain the relation with identification in the limitve explain this for the more complicated
case of co-c.e. sets. The case for c.e. sets is similar. @@anaicomputable enumeration, oo, ... of a

setO of objects. A co-c.e. sef is a sublistC' of o1, 09,... such thatC' = {o; : i« € S}. The members



of C are the good objects and the membersof C' the bad objects. We computably enumerate the
bad objects. We do not know in what order the bad objects anenerated or repeated; however we do
know that the remaining items are the good objects. Thesd gbgects with possible repetitions form
a list A, a scattered sublist of the original computable enumaeraiiocO. This list A is a co-c.e. set. It
takes unknown time to enumerate each initial segmentl,obut we are sure this happens eventually.
Hence to identify thekth element in the listd while requiring the firstl, ... k — 1 elements requires
identification in the limit.

It is known that the overwhelming majority of real numbers aot computable. If a real numberis
lower semicomputable but not computable, then we can cabpufind nonnegative integers, as, . . .
andby, be, ... such thata, /b, < an4+1/bn+1 andlim,, . a,, /b, = a. If a is the probability of success
in a trial then this gives an example of a lower semicompetadsbbabity mass function which is not
computable. Suppose we are concerned with all and only ctabjeuprobability mass functions. There
are countably many since there are only countably many ctabfmifunctions. But can we computably
enumerate them? The following lemma holds even if the fonstiare rational valued.

LEMMA 1: (i) Let L C A and infinite. The computable probability mass functionsioare not c.e..

(i) Let L C N, finite, and|L| > 2. The computable measures @nare not c.e..

Proof: (i) Assume to the contrary that the lemma is false and the coampe enumeration is
p1, P2, - . .. Compute a probability mass functiprwith p(a) # p;(a;) for a; € L is theith element of.. As
follows. If i is odd therp(a;) := fi(a;)+ fi(a:) fi+1(ai+1) andp(ait1) := fiy1(ait1) — fi(ai) firr(aiv),

By constructiorp is a computable probability mass function but differentriranyp; in the enumeration
P1,P2,- ...
(i) Since L is finite the setl* is c.e.. Hence the set of cylinders Iri° is c.e.. Therefore (ii) reduces

to (i). n

B. Kolmogorov Complexity

We need the theory of Kolmogorov complexity [14] (origiryalh [12] and the prefix version we use
here in [13]). A prefix Turing machine is is a Turing machinghwa one-way read-only input tape with an
distinguished tape cell called thwigin, a finite number of two-way read-write working tapes on which
the computation takes place, an auxiliary tape on which thdiary stringy € {0, 1}* is written, and a
one-way write-only output tape. At the start of the compatathe input tape is infinitely inscribed from

the origin onwards, and the input head is on the origin. Thehme operates with a binary alphabet. If

10



the machine halts then the input head has scanned a segntéetiaput tape from the origin onwards.
We call this initial segment thprogram
For every auxiliaryy € {0,1}*, the set of programs is a prefix code: no program is a propéixpe

any other program. Consider a standard enumeration of efixpfuring machines
Ty, ...

Let U denote a prefix Turing machine such that for every € {0,1}* andi > 1 we haveU (i, z,y) =
T;(z,y). That is, for each finite binary program auxiliary y, and machine index > 1, we have that
U’s execution on inputg and z, y results in the same output as that obtained by execdfjman input
z,y. We call such & a universalprefix Turing machine.

However, there are more ways a prefix Turing machine can at@wither prefix Turing machines. For
example, letV’ be such that/’(i, 2z, y) = T;(z,y) for all « and z,y, andU’(p) = 0 for p is noti, zz,y
for some: and z,y. ThenU’ is universal also. To distinguish machines like from other universal
machines, Kolmogorov [12] called machines likeoptimal

Fix an optimal machine, say. Define the conditionaprefix Kolmogorov complexity (z|y) for all
z,y € {0,1}* by K(z|y) = min,{|p| : p € {0,1}* andU(p,y) = x}. For the samé/, define thetime-
bounded conditional prefix Kolmogorov complexity (z|y) = min,{|p| : p € {0,1}* andU(p,y) =
x in t stepg. To obtain the unconditional versions of the prefix Kolmagocomplexities sey = A
where \ is the emptyword (the word with no letters). It can be shown th&(z|y) is incomputable
[12]. Clearly K*(z|y) is computable ift < co. Moreover, K (z]y) < K'(z|y) for everyt’ > t, and
limy 00 Kt (z]y) = K (z|y).

C. Measures, Semimeasures, and Computability

Let L C N and finite. Given a finite sequenge= x1, zo, . .., x,, of elements of_, we consider the set
of infinite sequences starting with The set of all such sequences is writtel'asthe cylinderof z. We
associate a probability(I",,) with the event that an element Bf, occurs. Here we simplify the notation
w(T;) and write u(x). The transitive closure of the intersection, complement] eountable union of

cylinders gives a set of subsets bf. The probabilities associated with these subsets areetkfiom

11



the probabilities of the cylinders in standard ways| [10]sémimeasurg satisfies the following:

ule) <1 (A1)
n@) > pla),
acl

and if equality holds instead of each inequality we calla measure Using the above notation, a
semimeasure; is lower semicomputabléf it is defined by a rational-valued computable function
¢(x, k) with x € L* and k a nonnegative integer such thatz,k + 1) > ¢(x, k) for every k and
limy_, o ¢(x, k) = pu(x). This means that can be computably approximated arbitrary close from below
for each argument € L*.

Let z1,29,... be an infinite sequence of elements lof The sequence is typical for a computable
measurey if it passes all computable sequential tests (known and amkralike) for randomness with
respect tou in the sense of Martin-Lof_ [15]. One of the highlights of ttreeory of Martin-Lof is that
the sequence passes all these tests iff it passes a singwrsatitest,[[14] Corollary 4.5.2 on p 315, see
also [15].

DEFINITION 1: Let x1,z9,... be an infinite sequence of elements BfC N with L finite. The

sequence igypical or randomfor a computable measuye iff

sup{log i —K(zy...2,)} < 0. (A.2)

T1...Tp)
The set of infinite sequences that are typical with resped toeasureu have y-measure one. The
theory and properties of such sequences for computableume=agre extensively treated in [14] Chapter
4. There the terni (x; ... z,) in (A2) is given asK (z; ... x,|u). However, since: is computable we
have K (1) < oo and thereforeK (z; ... x,|p) < K(z1...2,) + O(1).

ExaMPLE 1: Let us elucidate by example the notion of typicality. gt be a measure defined by
pr(z1 ... xy) = 1/k for z; = a for everyl <i <n and a fixeda € {1,...,k}, andpug(z1...2,) =0
otherwise. ThenK (a...a) (a sequence ofi elementsa) equalsK (i,n) + O(1) = O(logn + log k).

(A sequence of: elementsa is described by: in O(logn) bits anda in O(log k) bits.) By (A.2) we
havesup,,cp{log1/pk(a...a) — K(a...a)} < co. Therefore the infinite sequenee . .. is typical for
every ui. Similarly, the infinite sequence , yo, . .. is not typical forpu, for y; € {1,...,k} (¢ > 1) and

yi # yi+1 for somei. Namely,sup,ca{1/pk(v1y2 .- yn) — K(y1y2 ... yn)} = 0. &
The example shows that an infinite sequence of data can bmatypr more than one measure. Hence our
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task is not to identify a single computable measure accgrttinvhich the data sequence was generated
as a typical sequence, but to identify a computable meabateduld have generated the data sequence

as a typical sequence.

D. Proofs of the Theorems

Proof: oF THEOREM[I: I.I.D. COMPUTABLE PROBABILITY IDENTIFICATION. Let L C N, and
X1, X,,... be a sequence of mutually independent random variablel,afaghich is a copy of a single
random variableX with probability mass functio® (X = a) = p(a) for a € L. Without loss of generalty

p(a) >0 for all a € L. Let #a(xy,xa,...,x,) denote the number of times = a (1 < i < n).

CLAIM 1: If the outcomes of the random variabl&s, Xs, ... arex, zo, ..., then almost surely for
all a € L we have
lim <p(a) - #“(“1’“2""’%)) —0. (A.3)
n—o0 n

Proof: The strong law of large numbers (originally in_[11]) statésittif we perform the same
experiment a large number of times, then almost surely tmebeu of successes divided by the number
of trials goes to the expected value, provided the meansexigte the theorem on top of page 260
in [7]. To determine the probability of am € L we consider the random variablé§, with just two
outcomes{a,a}. This X, is a Bernoulli proces$q,, 1 — ¢,) whereq, = p(a) is the probability ofa and

1= ga = > per\ (o} P(b) is the probability ofa. If we seta = min (L \ {a}), then the meap, of X, is

le = aqq + a(l — q5) < max{a,a} < oc.

n

Thus, every: € L incurs a random variabl&, with a finite mean. Therefor¢] /n) > " ,(X,); converges
almost surely taz, asn — oo. The claim follows. ]
Let A be a list of a c.e. or co-c.e. set of algorithms for the comipletarobability mass functions. If

g € A andq = p then for everye > 0 anda € L holdsp(a) — ¢(a) < e. By Claim[1, almost surely

lim max <q,~(a) _ #alzy s, ’w")> =0. (A.4)

n—oo acl n

If ¢ € A andq # p then there is am € L and a constanf > 0 such thatjp(a) — g(a)| > 6. Again by

Claim[1, almost surely
#a(xy,To,. .., xy)
n

> 4. (A.5)

lim max
n—oo a€cl

gi(a) —
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In the proof of the strong law of large numbers it is shown thate draw z1,z-, ... i.i.d. from a set

L C N according to a probability mass functiprthen almost surely the size of the fluctuations in going
to the limit (A.4) satisfiesnp(a) — #a(z1, 72, . .., z,)|//np(a)p(a) < /2XIgn for everyX > 1 andn

is large enough for alk € L, see([7] p. 204. Heréz denotes the natural logarithm. Singé:)p(a) < %
and\ = /2 suffices we obtainp(a) — #a(x1, 29, . .., 2,)/n| < v/(lgn)/n for all but finitely manyn.

Letq € A. Forq # p there is am € L such that by[(A.b) and the fluctuations in going to that limé& w
have|q(a) — #a(z1, 22, ..., 2,)/n| > 6 —+/(Ign)/n for all but finitely manyn. Sinces > 0 is constant,
we have2./(Ign)/n < § for all but finitely manyn. Hencelg(a) — #a(x1, z2, ..., z,)/n| > 1/(gn)/n
for all but finitely manyn.

Let A = ¢g1,q2,... andp = ¢, with k least. We give the algorithm with as output a sequence of
indexesiy, ia, ... such that all but finitely many indexes ake If L is infinite then the algorithm can
only use a finite subset of it. Hence we need to define this filteset and show that the remaining
elements can be ignored. Let, = {a € L : #a(z1,22,...,2,) > 0}. In casea # A,, then|g(a) —
#a(z1,72,...,2,)/n| = gi(a). We disregardy;(a) < v/(Ign)/n as follows. LetL = {a;,as,...}. For
eachg; define the seB; ,, = {a1,...,an} with m least such thap 7= | ., gi(aj) =131, gi(a;) <
\/1/n. Therefore, ifa € L\ B;, theng;(a) < \/1/n. The setsA,, and B, ,, are finite for alln and
i. SetL;,, = A, |JBin,. Then for everya € L we have|g;(a) — #a(z1,2z2,...,2,)/n| < +/(Ign)/n
for all but finitely manyn. Fori # k there is ana € Ly, but noa € L\ Ly, such that|g;(a) —
#a(z1,22,...,7,)/n| > /(Ign)/n for all but finitely manyn. This leads to the following algorithm:

for n:=1,2,...
I:=g;fori:=1,2,...,n
if maxger, , |gi(a) — #a(zy,22,...,2,)/n| < +/(Ign)/n
then I := I J{i};

iy = min ]

With probability 1 for every: < k for all but finitely manyn we havei ¢ I while k € I for all but
finitely manyn. (Note that for evenyh = 1,2,... the main term in the above algorithm is computable
even if L is infinite.) The theorem is proven. |

EXAMPLE 2: We give an example of a lisl of a co-c.e. set halting algorithms for computable
probability mass functions. This set is large but does nottaio all probability mass functions. A

semiprobability mass function is a function for which thdues sum to at most 1.
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First we obtain a computable co-enumeration of computadti@l functions which is not c.e.. Let
f: N — N be a computable time-bound such as the Ackermann functiéstahcomputable function
growing faster than any primitive recursive function, afyd¢., ... a standard computable enumeration
of all partial computable functions. Computably enumeiatep; such thate;(j) does not halt within
f(y) steps for alli, j > 1. Eliminate all those fromp;, ¢», . ... The result is a subsequence of the original
computable enumeration, a computable co-enumerationtalf tomputable functiongn, 1, ... which
are time bounded by.

CLAIM 2: Given a computable co-enumeration of computable totattfans, one can exhibit a com-
putable total functiors(i, z,n) = ¢/*(x) such thatp(i, z,n) < ¢(i,z,n+ 1) andlim, . ¢ (z) = gi(x)
iff ¢; is a lower semicomputable semiprobability mass function.

Proof: Let 1,11, ... be as above. Computably change everinto an algorithm lower semicom-
puting a semiprobability mass functian see the proof of Theorem 4.3.1 in_[14] (originally in_[21],
[13]). For everya € L denote thenth approximation ofy(a) in the lower semicomputation af(a) by

q"(a). Therefore we can compute
Q:q17q27"'7 (A'6)

a list containing only algorithms which lower semicompugeniprobability mass total functions. Without
loss of generality the function lower semicomputed by ewagorithm in Q is over the alphabel. =
Let L = {ajy,aq,...}. The semiprobability mass functionsin list Q such that there is an for
which >~ | ¢"(a,) < 1 —1/n can be computably enumerated. The remaining elementstiliare
probability mass functions and they are computably co-erated. The intersection of a two co-c.e. sets
is co-c.e.. We show that the remaining lower semicomputatbability mass functions are computable.
A probability mass functiory in list Q can be computed as follows: for every- 0 let n. be least such
that Z;;l q"(aj) > 1 — € for all n > n.. Thus every probability mass function in li€ is computable
and we have an algorithm to compute it. &
Proof: oF THEOREM[Z2l COMPUTABLE MEASURE IDENTIFICATION For the Kolmogorov complexity
notions see AppendixIB. For the theory of semicomputablarseasures, see Appendix C. In particular
we use the criterion of Definition] 1 to show that an infinite seace is typical in Martin-Lof's sense.
The given data sequenee, z», . .. IS, by assumption, typical for some computable meagusaed hence
satisfies [(A.R) with respect tp. We stress that the data sequence is posgibtypical and/-typical

for different computable measurgsand 1/. Therefore we cannot speak of the singlee computable
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measure, but only oA computable measure for which the data is typical.

Let B be a list of halting algorithms for a c.e. or co-c.e. set of patable measures such that each
element occurs infinitely many times in the list.

CLAIM 3: There is an algorithm with as input a i = i, u2,... and as output a sequence of
indexesiy, is, . ... FoOr every large enough we havei, = k with x; a computable measure for which
the data sequence is typical.

Proof: Define foru in B

o(j) =logl/p(z1...xj) — K(x1...x5).

Since K is upper semicomputable andis computable, the functioa(j) is lower semicomputable for
eachj. Define thenth value in the lower semicomputation ef;) asc™(j). By (A.2), the data sequence
T1,T2,... is typical for u if sup;»;0(j) = 0 < oo In this case, since: is lower semicomputable,
maxi<j<po(n) < o for all n. In contrast, the data sequence is not typical foif o(n) — oo with
n — oo implying o™(n) — oo with n — oo.

By assumption there exists a measurg3ifior which the data sequence is typical. Let be such a
measure Since algorithms fag, occur infinitely often in the list3 there is an algorithmu,, in the list
B with o, = 0, and o, < h'. Therefore, there exists a measurgin B for which the data sequence

x1,%2,... IS typical andoy, < k with &k least. The algorithm to determirieis as follows.

for n:=1,2,...
if i < n is least such thatax<j<, o7 (j) < i

then outputi,, = i else outputi,, = 1.

Eventuallymax; <<, o}/(j) < k for large enough, andk is the least index of elements ii for
which this holds. Hence there exists ag such thati,, = k for all n > ng. [ |
For large enoughm we have by Claini I3 a test such that we can identify in the limitiredex of a
measure i3 for which the provided data sequence is typical. Hence tlsea®mn, such that,, = k for
all n > ng. We do not care whaty, ...,i,_1 are. This proves the theorem. [ |
ExAMPLE 3: We give an example of a lig of halting algorithms for a co-c.e. set of computable
measures.
CLAIM 4: Given a co-enumeration of computable total functiong ocan exhibit a computable total

function ¢(i, z,n) = pf'(z) such thatp(i, z,n) < ¢(i,z,n + 1) andlim,,_,o pf' (x) = pi(z).
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Proof: To eliminate functions with undefined values, iét,1,... be a co-enumeration of total
functions in a standard computable enumeration of all @acdomputable functions as in Example 2.
Computably change every into an algorithm lower semicomputing a semimeasuyesimilar to the
method in the proof of Theorem 4.5.1 6f [14] pp. 295-296 (oatly in [21]). For everyz € L* denote

thenth approximation of:(x) in the lower semicomputation @f(x) by p"(x). Therefore we can compute
M::ula/j’Za"'a (A7)

a list containing only algorithms which lower semicomputengmeasures. Without loss of generality the
function lower semicomputed by every algorithm.vt is over the alphabek. [ |
Every function in the list will be in the list infinitely ofterwhich follows simply from the fact that
there are infinitely many algorithms which lower semicongpaitgiven function. It is important to realize
that, although the code of a computable measure may be ioMisit is there as an algorithm lower
semicomputing the measure. By Cldiin 4 we can co-enumeribegalgorithms that lower semicompute
semimeasure§ (A.7). Let* () denote the:th lower semicomputation gf(z) for a semimeasurg. The
semimeasureg in list M such that there are € L* andn < oo such that eithep™(e¢) <1 —1/n or
p(x) = > e w™(xa) < 1/n can be computably enumerated. The remaining elementstioVisare
wide set of computable measures (but not all) and they areeco-A lower semicomputable algorithm
for a measure can be converted to a computable algorithmeddtss, letl = aq,as,...,a,. Let u be
a lower semicomputable semimeasure With ., p(xza) = p(z) for all z € L* and u(e) = 1. Then, we
can approximate afl(x) to any degree of precision starting witlia, ), i.(a2), . .. and determining.(z)

for all = of lengthn, for consecutiver = 1,2, .... O
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