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1Algorithmic Identification of Probabilities
Paul M.B. Vitányi and Nick Chater

Abstract

The problem is to identify a probability associated with a set of natural numbers, given an infinite

data sequence of elements from the set. If the given sequenceis drawn i.i.d. and the probability mass

function involved (the target) belongs to a computably enumerable (c.e.) or co-computably enumerable

(co-c.e.) set of computable probability mass functions, then there is an algorithm to almost surely identify

the target in the limit. The technical tool is the strong law of large numbers. If the set is finite and the

elements of the sequence are dependent while the sequence istypical in the sense of Martin-Löf for at

least one measure belonging to a c.e. or co-c.e. set of computable measures, then there is an algorithm

to identify in the limit a computable measure for which the sequence is typical (there may be more than

one such measure). The technical tool is the theory of Kolmogorov complexity. We give the algorithms

and consider the associated predictions.

I. INTRODUCTION

One can associate the natural numbers with a lexicographic length-increasing ordering of finite strings

over a finite alphabet. A natural number corresponds to the string of which it is the position in this

order. Since a language is a set of sentences (finite strings over a finite alphabet), it can be viewed as

the set of natural numbers. The learnability of a language under various computational assumptions is

the subject of an immensely influential approach in [5] and especially [6], or the review [9]. But surely

in the real world the chance of one sentence of a language being used is different from another one. For

example, in general short sentences have a larger chance of turning up than very long sentences. Thus,

the elements of a given language are distributed in a certainway. There arises the problem of identifying

or approximating this distribution.
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Our model is formulated as follows: we are given an infinite sequence of data consisting of elements

drawn from the set (language) according to a certain probability, and the learner has to identify this

probability. In general, however much data been encountered, there is no point at which the learner can

announce a particular probability as correct with certainty. Weakening the learning model, the learner

might learn to identify the correct probability in the limit. That is, perhaps the learner might make a

sequence of guesses, finally locking on to correct probability and sticking to it forever—even though

the learner can never know for sure that it has identified the correct probability successfully. We shall

consider identification in the limit (following, for example, [6], [9], [16]). Since this is not enough we

additionally restrict the type of probability.

In conventional statistics, probabilistic models are typically idealized as having continuous valued

parameters; and hence there is an uncountable number of possible probabilities. In general it is impossible

that a learner can make a sequence of guesses that precisely locks on to the correct values of continuous

parameters. In the realm of algorithmic information theory, in particular in Solomonoff induction [18] and

here, we reason as follows. The possible strategies of learners are computable in the sense of Turing [19],

that is, they are computable functions. The set of these is discrete and thus countable. The hypotheses that

can be learned are therefore countable, and in particular the set of probabilites from which the learner

chooses must becomputable.

We consider two cases. In case 1 the data are drawn independent identically distributed (i.i.d.) from a

set of natural numbers according to a probability mass function in a co-c.e. set of computable probability

mass functions. In case 2 the set is finite and the elements of the infinite sequence are dependent and

the data sequence is typical for a measure from a co-c.e. subset of computable measures.

A. Preliminaries

Let N denote the natural numbers, andR the real numbers. We say that weidentify a functionf in

the limit if we have an algorithm which produces an infinite sequencef1, f2, . . . of functions andfi = f

for all but finitely manyi. This corresponds to the notion of “identification in the limit” in [6], [9], [16],

[20]. In this notion at every step an object is produced and after a finite number of steps the target object

is produced at every step. However, we do not know this finite number. It is as if you ask directions

and the answer is “at the last intersection turn right,” but you do not know which intersection is last. In

the sequel we often “dovetail” a computation. This is a technique that interleaves the steps of different

computations ensuring progress of each individual computation. For example, we have computations
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c1, c2. Dovetailing them means first performing step 1 ofc1, then performing step 2 ofc1 followed by

step 1 ofc2, then performing step 3 ofc1 followed by step 2 ofc2, and so on.

B. Related work

In [1] (citing previous more restricted work) a target probability mass function was identified in the

limit when the data are drawn i.i.d. in the following setting. Let the target probability mass functionp be

an element of a listq1, q2, . . . subject to the following conditions: (i) everyqi : N → R is a probability

mass function; (ii) we exhibit a computable total functionC(i, x, ǫ) = r such thatqi(x) − r ≤ ǫ with

r, ǫ > 0 are rational numbers. That is, there exists a rational number approximation for all probability

mass functions in the list up to arbitrary precision, and we give a single algorithm which for each such

function exhibits such an approximation. The technical means used are the law of the iterated logarithm

and the Kolmogorov-Smirnov test. However, the listq1, q2, . . . can not contain all computable probability

mass functions because of a diagonal argument, Lemma 1.

In [2] computability questions are apparently ignored. TheConclusionstates “If the true density [and

hence a probability mass function] is finitely complex [it iscomputable] then it is exactly discovered

for all sufficiently large sample sizes.”. The tool that is used is estimation according tominq(L(q) +

log(1/
∏n

i=1 q(Xi)). Here q is a probability mass function,L(q) is the length of its code andq(Xi)

is the q-probability of theith random variableXi. To be able to minimize over the set of computable

q’s, one has to know theL(q)’s. If the set of candidate distributions is countably infinite, then we can

never know when the minimum is reached—hence at best we have then identification in the limit. If

L(q) is identified with the Kolmogorov complexityK(q), as in Section IV of this reference, then it is

incomputable as already observed by Kolmogorov in [12] (forthe plain Kolmogorov complexity; the

case of the prefix Kolmogorov complexityK(q) is the same). ComputableL(q) (given q) cannot be

computably enumerated; if they were this would constitute acomputable enumeration of computableq’s

which is impossible by Lemma 1. To obtain the minimum we require a computable enumeration of the

L(q)’s in the estimation formula. The results hold (contrary to what is claimed in theConclusionof [2]

and other parts of the text) not for the set of computable probability mass functions since they are not

c.e.. The sentence “you know but you don’t know you know” on the second page of [2] does not hold

for an arbitrary computable mass probability.

In reaction to an earlier version of this paper with too largeclaims, in [4] it is shown that it is impossible

to identify a computable measure in the limit given an infinite sequence of elements from its support
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which sequence is guarantied to be typical for some computable measure.

C. Results

The set of halting algorithms for computable probabilities(or measures) is not c.e., Lemma 1 in

Appendix A. This complicates the algorithms and analysis ofthe results. In Section II there is a

computable probability mass function (the target) on a set of natural numbers. We are given an infinite

sequence of elements of this set that are drawn i.i.d., and are asked to identify the target. An algorithm

is presented which identifies the target in the limit almost surely provided the target is an element of

a c.e. or co-c.e. set of halting algorithms for probability mass functions (Theorem 1). This underpins

partially the result announced in [8]. The technical tool isthe strong law of large numbers. In Section III

the set of natural numbers is finite and the elements of the sequence are allowed to be dependent. We

are given a guaranty that the sequence is typical (Definition1) for at least one measure from a c.e. or

co-c.e. set of halting algorithms for computable measures.There is an algorithm which identifies in the

limit a computable measure for which the data sequence is typical (Theorem 2). The technical tool is the

Martin-Löf theory of sequential tests [15] based on Kolmogorov complexity. In Section IV we consider

the associated predictions, and in Section V we give conclusions. In Appendix A we review the used

computability notions, in Appendix B we review notions of Kolmogorov complexity, in Appendix C we

review the used measure and computability notions. We deferthe proofs of the theorems to Appendix D.

II. COMPUTABLE PROBABILITY MASS FUNCTIONS AND I.I.D. DRAWING

To approximate a probability in the i.i.d. setting is well-known and an easy example to illustrate our

problem. One does this by an algorithm computing the probability p(a) in the limit for all a ∈ L ⊆ N
almost surely given the infinite sequencex1, x2, . . . of data i.i.d. drawn fromL according top. Namely, for

n = 1, 2, . . . for everya ∈ L occurring inx1, x2, . . . , xn setpn(a) equal to the frequency of occurrences

of a in x1, x2, . . . , xn. Note that the different values ofpn sum to precisely 1 for everyn = 1, 2, . . . . The

output is a sequencep1, p2, . . . of probability mass functions such that we havelimn→∞ pn = p almost

surely, by the strong law of large numbers (see Claim 1). The probability mass functions considered here

consist ofall probability mass functions onL—computable or not. The probability mass functionp is

represented by an approximation algorithm. In the limitp is reached almost surely.

Here we deal only with computable probability mass functions. If p is computable then it can be

represented by a halting algorithm which computes it as defined in Appendix A. Most known probability
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mass functions are computable provided their parameters are computable. In order that it is computable

we only require that the probability mass function is finitely describable and there is a computable process

producing it [19].

One issue is how short the code forp is, a second issue are the computability properties of the code

for p, a third issue is how much of the data sequence is used in the learning process. The approximation

of p results in a sequence of codes of probabilitiesp1, p2, . . . which are a list of the sample frequencies in

an initial finite segment of the data sequence. The code length of this list grows to infinity as the length

of the segment grows to infinity. The learning process uses all of the data sequence and the result is an

encoding of the sample frequencies in the data sequence in the limit. This holds also ifp is computable.

THEOREM 1: I.I.D. COMPUTABLE PROBABILITY IDENTIFICATION Let L be a set of natural numbers

andp be a probability mass function onL which is an element of a c.e. or co-c.e. set of halting algorithms

for computable probability mass functions. There is an algorithm identifying p in the limit almost surely

from an infinite sequencex1, x2, . . . of elements ofL drawn i.i.d. according top. The code ofp via an

appropriate Turing machine is finite. The learning process uses only a finite initial segment of the data

sequence and takes finite time.

We do not know how large the finite items in the thorem are. We give an outline of the proof of Theorem 1.

The proof itself is deferred to Appendix D. We start by extending the strong law of large numbers to

probability mass functions on subsets ofN . By assumption the target probability mass functionp is a

member of a c.e. or co-c.e. set of halting algorithms for computable probability mass functions listed as

list A. If q is in list A andq = p, then for everyǫ > 0 we havep(a)− q(a) < ǫ for all a ∈ L. If q is in

list A andq 6= p, then for somea ∈ L there is a constantδ > 0 such that|p(a) − q(a)| > δ. For every

n = 1, 2, . . . we estimatep(a) for all a ∈ L by the number of occurrences ofa in the n-length initial

segment of the provided data sequence.

Let #a(x1, . . . , xn) denote the number of timesa = xi (1 ≤ i ≤ n). For qi = p al-

most surely limn→∞maxa∈L |#a(x1, . . . , xn)/n − qnk (a)| = 0, and for qi 6= p almost surely

limn→∞maxa∈L |#a(x1, . . . , xn)/n − qni (a)| > 0. Hence we determine for eachn = 1, 2, . . . the least

index i (1 ≤ i ≤ n) in the listA for which |qi(a)−#a(x1, . . . , xn)/n| is minimal. This index is called

in. Let qk = p with k least. Eventually the initialk-length segment of the listA is co-computably

enumerated. Hence there is a finiten0 such that for alln ≥ n0 we havein = k, but we do not know

how largen0 is. This means thatp is identified in the limit.

REMARK 1: Since the c.e. and co-c.e. sets strictly contain the computable sets, Theorem 1 is strictly
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stronger than the result in [1] referred to in Section I-B. Itis more theoretical but strictly stronger than

[2] that does not give identification in the limit for classesof computable functions.

Define the primitive recursive probability mass functions as the set of probability mass functions

for which it is decidable that they are constructed from primitive recursive functions. Since this set is

computable it is c.e.. The theorem shows that identificationin the limit is possible for members of this

set. Define the time-bounded probability mass functions forany fixed computable time bound as the set

of elements for which it is decidable that they are probability mass functions satisfying this time bound.

Since this set is computable it is c.e.. Again, the theorem shows that identification in the limit is possible

for elements from this set.

Another example is as follows. LetL = {a1, a2, . . . , an} be a finite set. The primitive recursive

functionsf1, f2, . . . are c.e.. Hence the probability mass functionsp1, p2, . . . on L defined bypi(aj) =

fi(j)/
∑n

h=1 fi(h) are also c.e.. Let us call these probability mass functions simple. By Theorem 1 they

can be identified in the limit. Following the proof of Theorem1 in Appendix D, we give another example

in Example 2. ✸

III. C OMPUTABLE MEASURES

As far as the authors are aware, for general measures there exist neither an approximation as in

Section II nor an analog of the strong law of large numbers. However, there is a notion of typicality

of an infinite data sequence for a computable measure in the Martin-Löf theory of sequential tests [15]

based on Kolmogorov complexity, and this is what we use.

Let L ⊆ N be finite andµ be a measure onL∞ in a co-c.e. set of halting algorithms for computable

measures. In this paper instead of the common notationµ(Γx) we use the simpler notationµ(x). We

are given a sequence inL∞ which is typical (Definition 1) forµ. Thus, the constituent elements of the

sequence are possibly dependent. The set of typical infinitesequences of a computable measureµ have

µ-measure one, and each typical sequence passes all computable tests forµ-randomness in the sense of

Martin-Löf. This probability model forL is more general than i.i.d. drawing according to a probability

mass function. It includes stationary processes, ergodic processes, Markov processes of any order, and

other models.

THEOREM 2: COMPUTABLE MEASURE IDENTIFICATION Let L be a finite set of natural numbers.

We are given an infinite sequence of elements fromL and this sequence is typical for one measure in a

c.e. or co-c.e. set of halting algorithms for computable measures. There is an algorithm which identifies
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a computable measure in the limit for which the sequence is typical. The code of this measure is an

appropriate Turing machine and finite. The learning processuses only a finite initial segment of the data

sequence.

Let us explain the relation between Theorem 1 and Theorem 2. The set of infinite sequences of i.i.d.

draws from a finite setL according to a probability mass function induces a measure on L∞. Such a

measure is called an i.i.d. measure. The set of computable i.i.d. measures onL is a proper subset of the

set of computable measures onL. An infinite sequencex1, x2, . . . drawn i.i.d. according to a computable

probability mass functionp on L is almost surely typical in the sense of Definition 1 for the induced

computable i.i.d. measureµp, and every infinite sequence that is typical forµp is in the set of sequences

almost surely drawn i.i.d. according top. Hence Theorem 2 restricted to i.i.d. measures on finite sets

implies Theorem 1 and vice versa.

We give an outline of the proof of Theorem 2. The proof itself is deferred to Appendix D. Lower

semicomputable functions are defined in Appendix A. LetB be a list of a c.e. or co-c.e. set of halting

algorithms for computable measures with each measure occurring infinitely many times. For a measure

µ in the listB define

σ(j) = log 1/µ(x1 . . . xj)−K(x1 . . . xj).

By (A.2), data sequencex1, x2, . . . is typical forµ iff supj σ(j) = σ with σ <∞. By assumption there

exists a measure inB for which the data sequence is typical. Letµh be such a measure Since algorithms

for µh occurs infinitely often in the listB there is an algorithmµh′ in the list B with σh′ = σh and

σh < h′. Therefore, there exists a measureµk in B for which the data sequencex1, x2, . . . is typical

andσk < k with k least. If for everyn := 1, 2, . . . we compute the least indexi of µi in B such that

µi(x1, . . . , xn) < i, then we identify in the limit a computable measure inB for which the provided data

sequence is typical.

REMARK 2: Let the underlying setL be finite. Define the primitive recursive measures as the set for

which it is decidable that they are measures constructed from primitive recursive functions. Since this

set is computable it is c.e.. The theorem shows that identification in the limit is possible for primitive

recursive measures. Define the time-bounded measures for any fixed computable time bound as the set

of elements for which it is decidable that they are measures satisfying this time bound. Since this set is

computable it is c.e.. Again, the theorem shows that identification in the limit is possible for elements

from this set.
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LetL be a finite set of cardinalityl, andf1, f2, . . . be a c.e. of the primitive recursive functions. C.e. the

stringsx ∈ L∗ lexicographical length-increasing. Then every string canbe viewed as the integer giving

its position in this order. Defineµi(ǫ) = fi(ǫ)/f(ǫ) = 1, and inductively forx ∈ L∗ anda ∈ L define

µi(xa) = fi(xa)/
∑

a∈L fi(xa). Thenµi(x) =
∑

a∈L µi(xa) for all x ∈ L∗. Call the c.e.µ1, µ2, . . .

the simple measures. The theorem shows that identification in the limit is possible for the set of simple

measures. Following the proof of Theorem 2 in Appendix D we show another example in Example 3.✸

IV. PREDICTION

In Section II the data are drawn i.i.d. according to a probability mass functionp on the elements ofL.

Given p, we can predict the probabilityp(a|x1, . . . , xn) that the next draw results in an elementa when

the previous draws resulted inx1, . . . , xn. The resulting measure onL∞ is called an i.i.d. measure.

For general measures as in Section III, allowing dependent data, the situation is quite different. We can

meet the so-called black swan phenomenon of [17]. Let us givea simple example. The data sequence

is a, a, . . . is typical (Definition 1) for the measureµ1 defined byµ1(x) = 1 for every data sequencex

consisting of a finite or infinite string ofa’s andµ1(x) = 0 otherwise. Buta, a, . . . is also typical for

µ0 which gives probabilityµ0(x) = 1
2 for every stringx either consisting of a finite or infinite string

of a’s, or a fixed numbern of a’s followed by a finite or infinite string ofb’s, and 0 otherwise. Then,

µ1 andµ0 can give different predictions given a sequence ofa’s. But given a data sequence consisting

initially of only a’s, a sensible algorithm will predicta as the most likely next symbol. However, if the

initial data sequence consists ofn symbolsa, then forµ1 the next symbol will bea with probability 1,

and forµ0 the next symbol isa with probability 1
2 and b with probability 1

2 . Therefore, while the i.i.d.

case allows us to predict reliably, in the dependent case there is in general no reliable predictor for the

next symbol. In [3] Blackwell and Dubin show that under certain conditions predictions of two measures

merge asymptotically almost surely.

V. CONCLUSION

Using an infinite sequence of elements from a set of natural numbers, algorithms are exhibited that

identify in the limit the probability distribution associated with this set. This happens in two cases: (i)

the target distribution is a probability mass function (i.i.d. measure) in a c.e. or co-c.e. set of computable

probability mass functions (computable i.i.d. measures) and the elements of the sequence are drawn i.i.d.

according to this probability (Theorem 1); (ii) the underlying set is finite and the infinite sequence is
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possibly dependent and typical for a computable measure in ac.e. or co-c.e. set of computable measures

(Theorem 2).

In the i.i.d. case the target computable probability mass function is identified in the limit almost surely,

in the dependent case the target computable measure is identified in the limit surely—it is one out of

a set of satsfactory candidate computable measures. In the i.i.d. case we use the strong law of large

numbers. For the dependent case we use typicality accordingto the theory developed by Martin-Löf

in [15] embedded in theory of Kolmogorov complexity. The i.i.d. result is actually a corollary of the

dependency result.

In both the i.i.d. setting and the dependent setting, eventually we guess an index of the target (or one

target out of many possible targets in the measure case) and stick to this guess forever. This last guess is

correct. However, we do not know when the guess becomes permanent. We use only a finite unknown-

length initial segment of the data sequence. The target for which the guess is correct is described by a

an appropriate Turing machine computing the probability mass function or measure, respectively.

APPENDIX

A. Computability

We can interpret a pair of integers such as(a, b) as rationala/b. A real functionf with rational

argument islower semicomputableif it is defined by a rational-valued computable functionφ(x, k) with

x a rational number andk a nonnegative integer such thatφ(x, k + 1) ≥ φ(x, k) for every k and

limk→∞ φ(x, k) = f(x). This means thatf can be computably approximated arbitrary close from below

(see [14], p. 35). A functionf is upper semicomputableif −f is semicomputable from below. If a real

function is both lower semicomputable and upper semicomputable then it iscomputable. A function f

is a semiprobability mass functionif
∑

x f(x) ≤ 1 and it is aprobability mass function if
∑

x f(x) = 1.

It is customary to writep(x) for f(x) if the function involved is a semiprobability mass function.

A set A ⊆ N is computable enumerable(c.e.) when we can compute a lista1, a2, . . . of which all

elements are members ofA. A c.e. set is also called recursively enumerable (r.e.). Aco-c.e.setB ⊆ N
is a set whose complementN \ B is c.e.. If a set is both c.e. and co-c.e. then it is computable. The

natural numbers above can be indexes.

Let us explain the relation with identification in the limit.We explain this for the more complicated

case of co-c.e. sets. The case for c.e. sets is similar. Consider a computable enumerationo1, o2, . . . of a

setO of objects. A co-c.e. setS is a sublistC of o1, o2, . . . such thatC = {oi : i ∈ S}. The members
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of C are the good objects and the members ofO \ C the bad objects. We computably enumerate the

bad objects. We do not know in what order the bad objects are enumerated or repeated; however we do

know that the remaining items are the good objects. These good objects with possible repetitions form

a list A, a scattered sublist of the original computable enumeration of O. This list A is a co-c.e. set. It

takes unknown time to enumerate each initial segment ofA, but we are sure this happens eventually.

Hence to identify thekth element in the listA while requiring the first1, . . . , k − 1 elements requires

identification in the limit.

It is known that the overwhelming majority of real numbers are not computable. If a real numbera is

lower semicomputable but not computable, then we can computably find nonnegative integersa1, a2, . . .

and b1, b2, . . . such thatan/bn ≤ an+1/bn+1 and limn→∞ an/bn = a. If a is the probability of success

in a trial then this gives an example of a lower semicomputable probabity mass function which is not

computable. Suppose we are concerned with all and only computable probability mass functions. There

are countably many since there are only countably many computable functions. But can we computably

enumerate them? The following lemma holds even if the functions are rational valued.

LEMMA 1: (i) Let L ⊆ N and infinite. The computable probability mass functions onL are not c.e..

(ii) Let L ⊆ N , finite, and|L| ≥ 2. The computable measures onL are not c.e..

Proof: (i) Assume to the contrary that the lemma is false and the computable enumeration is

p1, p2, . . .. Compute a probability mass functionp with p(a) 6= pi(ai) for ai ∈ L is theith element ofL As

follows. If i is odd thenp(ai) := fi(ai)+fi(ai)fi+1(ai+1) andp(ai+1) := fi+1(ai+1)−fi(ai)fi+1(ai+1),

By constructionp is a computable probability mass function but different from anypi in the enumeration

p1, p2, . . ..

(ii) SinceL is finite the setL∗ is c.e.. Hence the set of cylinders inL∞ is c.e.. Therefore (ii) reduces

to (i).

B. Kolmogorov Complexity

We need the theory of Kolmogorov complexity [14] (originally in [12] and the prefix version we use

here in [13]). A prefix Turing machine is is a Turing machine with a one-way read-only input tape with an

distinguished tape cell called theorigin, a finite number of two-way read-write working tapes on which

the computation takes place, an auxiliary tape on which the auxiliary string y ∈ {0, 1}∗ is written, and a

one-way write-only output tape. At the start of the computation the input tape is infinitely inscribed from

the origin onwards, and the input head is on the origin. The machine operates with a binary alphabet. If
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the machine halts then the input head has scanned a segment ofthe input tape from the origin onwards.

We call this initial segment theprogram.

For every auxiliaryy ∈ {0, 1}∗, the set of programs is a prefix code: no program is a proper prefix of

any other program. Consider a standard enumeration of all prefix Turing machines

T1, T2, . . . .

Let U denote a prefix Turing machine such that for everyz, y ∈ {0, 1}∗ andi ≥ 1 we haveU(i, z, y) =

Ti(z, y). That is, for each finite binary programz, auxiliary y, and machine indexi ≥ 1, we have that

U ’s execution on inputsi andz, y results in the same output as that obtained by executingTi on input

z, y. We call such aU a universalprefix Turing machine.

However, there are more ways a prefix Turing machine can simulate other prefix Turing machines. For

example, letU ′ be such thatU ′(i, zz, y) = Ti(z, y) for all i andz, y, andU ′(p) = 0 for p is not i, zz, y

for some i and z, y. ThenU ′ is universal also. To distinguish machines likeU from other universal

machines, Kolmogorov [12] called machines likeU optimal.

Fix an optimal machine, sayU . Define the conditionalprefix Kolmogorov complexityK(x|y) for all

x, y ∈ {0, 1}∗ by K(x|y) = minp{|p| : p ∈ {0, 1}∗ andU(p, y) = x}. For the sameU , define thetime-

bounded conditional prefix Kolmogorov complexityKt(x|y) = minp{|p| : p ∈ {0, 1}∗ andU(p, y) =

x in t steps}. To obtain the unconditional versions of the prefix Kolmogorov complexities sety = λ

whereλ is the emptyword (the word with no letters). It can be shown thatK(x|y) is incomputable

[12]. ClearlyKt(x|y) is computable ift < ∞. Moreover,Kt′(x|y) ≤ Kt(x|y) for every t′ ≥ t, and

limt→∞Kt(x|y) = K(x|y).

C. Measures, Semimeasures, and Computability

Let L ⊆ N and finite. Given a finite sequencex = x1, x2, . . . , xn of elements ofL, we consider the set

of infinite sequences starting withx. The set of all such sequences is written asΓx, thecylinderof x. We

associate a probabilityµ(Γx) with the event that an element ofΓx occurs. Here we simplify the notation

µ(Γx) and writeµ(x). The transitive closure of the intersection, complement, and countable union of

cylinders gives a set of subsets ofL∞. The probabilities associated with these subsets are derived from
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the probabilities of the cylinders in standard ways [10]. Asemimeasureµ satisfies the following:

µ(ǫ) ≤ 1 (A.1)

µ(x) ≥
∑

a∈L

µ(xa),

and if equality holds instead of each inequality we callµ a measure. Using the above notation, a

semimeasureµ is lower semicomputableif it is defined by a rational-valued computable function

φ(x, k) with x ∈ L∗ and k a nonnegative integer such thatφ(x, k + 1) ≥ φ(x, k) for every k and

limk→∞ φ(x, k) = µ(x). This means thatµ can be computably approximated arbitrary close from below

for each argumentx ∈ L∗.

Let x1, x2, . . . be an infinite sequence of elements ofL. The sequence is typical for a computable

measureµ if it passes all computable sequential tests (known and unknown alike) for randomness with

respect toµ in the sense of Martin-Löf [15]. One of the highlights of thetheory of Martin-Löf is that

the sequence passes all these tests iff it passes a single universal test, [14] Corollary 4.5.2 on p 315, see

also [15].

DEFINITION 1: Let x1, x2, . . . be an infinite sequence of elements ofL ⊆ N with L finite. The

sequence istypical or randomfor a computable measureµ iff

sup
n
{log 1

µ(x1 . . . xn)
−K(x1 . . . xn)} <∞. (A.2)

The set of infinite sequences that are typical with respect toa measureµ haveµ-measure one. The

theory and properties of such sequences for computable measures are extensively treated in [14] Chapter

4. There the termK(x1 . . . xn) in (A.2) is given asK(x1 . . . xn|µ). However, sinceµ is computable we

haveK(µ) <∞ and thereforeK(x1 . . . xn|µ) ≤ K(x1 . . . xn) +O(1).

EXAMPLE 1: Let us elucidate by example the notion of typicality. Letµk be a measure defined by

µk(x1 . . . xn) = 1/k for xi = a for every1 ≤ i ≤ n and a fixeda ∈ {1, . . . , k}, andµk(x1 . . . xn) = 0

otherwise. ThenK(a . . . a) (a sequence ofn elementsa) equalsK(i, n) + O(1) = O(log n + log k).

(A sequence ofn elementsa is described byn in O(log n) bits anda in O(log k) bits.) By (A.2) we

havesupn∈N {log 1/µk(a . . . a)−K(a . . . a)} <∞. Therefore the infinite sequenceaa . . . is typical for

everyµk. Similarly, the infinite sequencey1, y2, . . . is not typical forµk for yi ∈ {1, . . . , k} (i ≥ 1) and

yi 6= yi+1 for somei. Namely,supn∈N {1/µk(y1y2 . . . yn)−K(y1y2 . . . yn)} = ∞. ♦
The example shows that an infinite sequence of data can be typical for more than one measure. Hence our
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task is not to identify a single computable measure according to which the data sequence was generated

as a typical sequence, but to identify a computable measure that could have generated the data sequence

as a typical sequence.

D. Proofs of the Theorems

Proof: OF THEOREM 1: I.I.D. COMPUTABLE PROBABILITY IDENTIFICATION. Let L ⊆ N , and

X1,X2, . . . be a sequence of mutually independent random variables, each of which is a copy of a single

random variableX with probability mass functionP (X = a) = p(a) for a ∈ L. Without loss of generalty

p(a) > 0 for all a ∈ L. Let #a(x1, x2, . . . , xn) denote the number of timesxi = a (1 ≤ i ≤ n).

CLAIM 1: If the outcomes of the random variablesX1,X2, . . . arex1, x2, . . . , then almost surely for

all a ∈ L we have

lim
n→∞

(

p(a)− #a(x1, x2, . . . , xn)

n

)

= 0. (A.3)

Proof: The strong law of large numbers (originally in [11]) states that if we perform the same

experiment a large number of times, then almost surely the number of successes divided by the number

of trials goes to the expected value, provided the mean exists, see the theorem on top of page 260

in [7]. To determine the probability of ana ∈ L we consider the random variablesXa with just two

outcomes{a, ā}. ThisXa is a Bernoulli process(qa, 1− qa) whereqa = p(a) is the probability ofa and

1− qa =
∑

b∈L\{a} p(b) is the probability of̄a. If we setā = min (L \ {a}), then the meanµa of Xa is

µa = aqa + ā(1− qa) ≤ max{a, ā} <∞.

Thus, everya ∈ L incurs a random variableXa with a finite mean. Therefore,(1/n)
∑n

i=1(Xa)i converges

almost surely toqa asn→ ∞. The claim follows.

Let A be a list of a c.e. or co-c.e. set of algorithms for the computable probability mass functions. If

q ∈ A andq = p then for everyǫ > 0 anda ∈ L holdsp(a)− q(a) < ǫ. By Claim 1, almost surely

lim
n→∞

max
a∈L

(

qi(a)−
#a(x1, x2, . . . , xn)

n

)

= 0. (A.4)

If q ∈ A andq 6= p then there is ana ∈ L and a constantδ > 0 such that|p(a)− q(a)| > δ. Again by

Claim 1, almost surely

lim
n→∞

max
a∈L

∣

∣

∣

∣

qi(a)−
#a(x1, x2, . . . , xn)

n

∣

∣

∣

∣

> δ. (A.5)
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In the proof of the strong law of large numbers it is shown thatif we draw x1, x2, . . . i.i.d. from a set

L ⊆ N according to a probability mass functionp then almost surely the size of the fluctuations in going

to the limit (A.4) satisfies|np(a)−#a(x1, x2, . . . , xn)|/
√

np(a)p(ā) <
√
2λ lg n for everyλ > 1 andn

is large enough for alla ∈ L, see [7] p. 204. Herelg denotes the natural logarithm. Sincep(a)p(ā) ≤ 1
4

andλ =
√
2 suffices we obtain|p(a)−#a(x1, x2, . . . , xn)/n| <

√

(lg n)/n for all but finitely manyn.

Let q ∈ A. Forq 6= p there is ana ∈ L such that by (A.5) and the fluctuations in going to that limit we

have|q(a)−#a(x1, x2, . . . , xn)/n| > δ−
√

(lg n)/n for all but finitely manyn. Sinceδ > 0 is constant,

we have2
√

(lg n)/n < δ for all but finitely manyn. Hence|q(a)−#a(x1, x2, . . . , xn)/n| >
√

(lg n)/n

for all but finitely manyn.

Let A = q1, q2, . . . and p = qk with k least. We give the algorithm with as output a sequence of

indexesi1, i2, . . . such that all but finitely many indexes arek. If L is infinite then the algorithm can

only use a finite subset of it. Hence we need to define this finitesubset and show that the remaining

elements can be ignored. LetAn = {a ∈ L : #a(x1, x2, . . . , xn) > 0}. In casea 6= An then |q(a) −
#a(x1, x2, . . . , xn)/n| = qi(a). We disregardqi(a) <

√

(lg n)/n as follows. LetL = {a1, a2, . . .}. For

eachqi define the setBi,n = {a1, . . . , am} with m least such that
∑∞

j=m+1 qi(aj) = 1−∑m
j=1 qi(aj) <

√

1/n. Therefore, ifa ∈ L \ Bi,n then qi(a) <
√

1/n. The setsAn andBi,n are finite for alln and

i. SetLi,n = An

⋃

Bi,n. Then for everya ∈ L we have|qk(a) −#a(x1, x2, . . . , xn)/n| ≤
√

(lg n)/n

for all but finitely manyn. For i 6= k there is ana ∈ Lk,n but no a ∈ L \ Lk,n such that|qi(a) −
#a(x1, x2, . . . , xn)/n| >

√

(lg n)/n for all but finitely manyn. This leads to the following algorithm:

for n := 1, 2, . . .

I := ∅; for i := 1, 2, . . . , n

if maxa∈Li,n
|qi(a)−#a(x1, x2, . . . , xn)/n| <

√

(lg n)/n

then I := I
⋃{i};

in := min I

With probability 1 for everyi < k for all but finitely manyn we havei 6∈ I while k ∈ I for all but

finitely manyn. (Note that for everyn = 1, 2, . . . the main term in the above algorithm is computable

even ifL is infinite.) The theorem is proven.

EXAMPLE 2: We give an example of a listA of a co-c.e. set halting algorithms for computable

probability mass functions. This set is large but does not contain all probability mass functions. A

semiprobability mass function is a function for which the values sum to at most 1.
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First we obtain a computable co-enumeration of computable total functions which is not c.e.. Let

f : N → N be a computable time-bound such as the Ackermann function, atotal computable function

growing faster than any primitive recursive function, andφ1, φ2, . . . a standard computable enumeration

of all partial computable functions. Computably enumerateall φi such thatφi(j) does not halt within

f(j) steps for alli, j ≥ 1. Eliminate all those fromφ1, φ2, . . . . The result is a subsequence of the original

computable enumeration, a computable co-enumeration of total computable functionsψ1, ψ1, . . . which

are time bounded byf .

CLAIM 2: Given a computable co-enumeration of computable total functions, one can exhibit a com-

putable total functionφ(i, x, n) = qni (x) such thatφ(i, x, n) ≤ φ(i, x, n+1) and limn→∞ qni (x) = qi(x)

iff qi is a lower semicomputable semiprobability mass function.

Proof: Let ψ1, ψ1, . . . be as above. Computably change everyψ into an algorithm lower semicom-

puting a semiprobability mass functionq, see the proof of Theorem 4.3.1 in [14] (originally in [21],

[13]). For everya ∈ L denote thenth approximation ofq(a) in the lower semicomputation ofq(a) by

qn(a). Therefore we can compute

Q = q1, q2, . . . , (A.6)

a list containing only algorithms which lower semicompute semiprobability mass total functions. Without

loss of generality the function lower semicomputed by everyalgorithm inQ is over the alphabetL.

Let L = {a1, a2, . . .}. The semiprobability mass functionsq in list Q such that there is ann for

which
∑n

i=1 q
n(an) < 1 − 1/n can be computably enumerated. The remaining elements in list Q are

probability mass functions and they are computably co-enumerated. The intersection of a two co-c.e. sets

is co-c.e.. We show that the remaining lower semicomputableprobability mass functions are computable.

A probability mass functionq in list Q can be computed as follows: for everyǫ > 0 let nǫ be least such

that
∑n

j=1 q
n(aj) ≥ 1 − ǫ for all n ≥ nǫ. Thus every probability mass function in listQ is computable

and we have an algorithm to compute it. ♦
Proof: OF THEOREM 2 COMPUTABLE MEASURE IDENTIFICATION For the Kolmogorov complexity

notions see Appendix B. For the theory of semicomputable semimeasures, see Appendix C. In particular

we use the criterion of Definition 1 to show that an infinite sequence is typical in Martin-Löf’s sense.

The given data sequencex1, x2, . . . is, by assumption, typical for some computable measureµ and hence

satisfies (A.2) with respect toµ. We stress that the data sequence is possiblyµ-typical andµ′-typical

for different computable measuresµ andµ′. Therefore we cannot speak of the singletrue computable
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measure, but only ofa computable measure for which the data is typical.

Let B be a list of halting algorithms for a c.e. or co-c.e. set of computable measures such that each

element occurs infinitely many times in the list.

CLAIM 3: There is an algorithm with as input a listB = µ1, µ2, . . . and as output a sequence of

indexesi1, i2, . . .. For every large enoughn we havein = k with µk a computable measure for which

the data sequence is typical.

Proof: Define forµ in B

σ(j) = log 1/µ(x1 . . . xj)−K(x1 . . . xj).

SinceK is upper semicomputable andµ is computable, the functionσ(j) is lower semicomputable for

eachj. Define thenth value in the lower semicomputation ofσ(j) asσn(j). By (A.2), the data sequence

x1, x2, . . . is typical for µ if supj≥1 σ(j) = σ < ∞ In this case, sinceµ is lower semicomputable,

max1≤j≤n σ(n) ≤ σ for all n. In contrast, the data sequence is not typical forµ if σ(n) → ∞ with

n→ ∞ implying σn(n) → ∞ with n→ ∞.

By assumption there exists a measure inB for which the data sequence is typical. Letµh be such a

measure Since algorithms forµh occur infinitely often in the listB there is an algorithmµh′ in the list

B with σh′ = σh andσh < h′. Therefore, there exists a measureµk in B for which the data sequence

x1, x2, . . . is typical andσk < k with k least. The algorithm to determinek is as follows.

for n := 1, 2, . . .

if i ≤ n is least such thatmax1≤j≤n σ
n
i (j) < i

then output in = i else output in = 1.

Eventuallymax1≤j≤n σ
n
k (j) < k for large enoughn, andk is the least index of elements inB for

which this holds. Hence there exists ann0 such thatin = k for all n ≥ n0.

For large enoughn we have by Claim 3 a test such that we can identify in the limit an index of a

measure inB for which the provided data sequence is typical. Hence thereis ann0 such thatin = k for

all n ≥ n0. We do not care whati1, . . . , in−1 are. This proves the theorem.

EXAMPLE 3: We give an example of a listB of halting algorithms for a co-c.e. set of computable

measures.

CLAIM 4: Given a co-enumeration of computable total functions, one can exhibit a computable total

functionφ(i, x, n) = µni (x) such thatφ(i, x, n) ≤ φ(i, x, n + 1) and limn→∞ µni (x) = µi(x).
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Proof: To eliminate functions with undefined values, letψ1, ψ1, . . . be a co-enumeration of total

functions in a standard computable enumeration of all partial computable functions as in Example 2.

Computably change everyψ into an algorithm lower semicomputing a semimeasureµ, similar to the

method in the proof of Theorem 4.5.1 of [14] pp. 295–296 (originally in [21]). For everyx ∈ L∗ denote

thenth approximation ofµ(x) in the lower semicomputation ofµ(x) by µn(x). Therefore we can compute

M = µ1, µ2, . . . , (A.7)

a list containing only algorithms which lower semicompute semimeasures. Without loss of generality the

function lower semicomputed by every algorithm inM is over the alphabetL.

Every function in the list will be in the list infinitely often, which follows simply from the fact that

there are infinitely many algorithms which lower semicompute a given function. It is important to realize

that, although the code of a computable measure may be in listM, it is there as an algorithm lower

semicomputing the measure. By Claim 4 we can co-enumerate halting algorithms that lower semicompute

semimeasures (A.7). Letµn(x) denote thenth lower semicomputation ofµ(x) for a semimeasureµ. The

semimeasuresµ in list M such that there arex ∈ L∗ andn < ∞ such that eitherµn(ǫ) < 1 − 1/n or

µn(x) − ∑

a∈L µ
n(xa) < 1/n can be computably enumerated. The remaining elements in list M are

wide set of computable measures (but not all) and they are co-c.e.. A lower semicomputable algorithm

for a measure can be converted to a computable algorithm. To see this, letL = a1, a2, . . . , an. Let µ be

a lower semicomputable semimeasure with
∑

a∈L µ(xa) = µ(x) for all x ∈ L∗ andµ(ǫ) = 1. Then, we

can approximate allµ(x) to any degree of precision starting withµ(a1), µ(a2), . . . and determiningµ(x)

for all x of lengthn, for consecutiven = 1, 2, . . . . ♦
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