
5 

Part I 

An SWE solver for use on the CYBER 205 

l. INTRODUCTION 

In hydraulic engineering, the shallow-water equations (SWEs) are used to 
describe flows in shallow seas, estuaries and rivers. Numerical models based 
on these SWEs can be used to determine the influence of infrastructural works 
on the flow. Furthermore, output from these models can be used to calculate 
salt intrusion, the effect of waste discharges, water quality parameters, cooling 
water recirculation and sediment transports. An important application, in the 
Netherlands, is the storm surge barrier in the mouth of the Eastern Scheldt 
(Oosterschelde) estuary, by which this estuary can be separated from the sea 
during storms. In this case, a numerical model, based on the SWEs, was exten­
sively used in the development phase of the barrier. Furthermore, after the ins­
tallation, a similar numerical model provides guide lines for the operation of 
the barrier, not only to protect the dikes along the border of the Eastern 
Scheldt, but also in order to preserve the delicate ecological balance in the 
estuary, which has an important fish nursery as well as oyster and mussel cul­
tures. 
The nature of the applications is such that strong gradients in the solution are 
common, though shocks do not appear. As a consequence, it is not strictly 
necessary to satisfy numerically conservation of momentum or energy. (These 
conservation properties are indispensable for the approximation of physical 
shocks [23, 33].) However, the conservation of mass is important as the local 
amount of mass is directly connected to the depth and the latter determines 
largely the propagation of the waves (see [38, p. 155] and [39]). Moreover, 
using the model for the calculation of the dispersion of dissolved matter, mass 
conservation is even more needed in order to prevent loss of matter. 

In the following we will briefly describe the contents of each section. 



6 

In Section 2, the problem is described, i.e. the equations, the domain, the 
boundary conditions and the initial values. Many of these topics are already 
treated by other authors {e.g. [3, 24, 38]), but it is briefly summarized for com­
pleteness. In addition, in Section 2.3.2, we propose some new boundary condi­
tions for the SWEs in the viscid case. 

Various aspects of the numerical algorithm are discussed in Section 3. With 
respect to the space discretization, attention will be given to the assumptions 
near the boundaries. Furthermore, the time discretization and its stabilization 
are treated. The latter will be discussed in more detail with respect to its appli­
cation to the SWEs. Finally the drying and flooding procedure is described. 

Section 4 is devoted to the vectorization aspects of the CYBER 205 code. The 
various techniques which were used to construct an efficient code are presented 
in detail. 

The components of the developed software and their actual use are discussed 
in Section 5. 

In Section 6, results are given of some computations for complex geometries. 
To obtain these results either our own system or the WAQUA system has been 
used. In the latter case interfaces were made such that our computational rou­
tines could replace those of Stelling in WAQUA. This enabled us to test the 
code on real engineering problems. 

2. PROBLEM DESCRIPTION 

2.1. The equations 
In this section, the equations are given and it will be briefly indicated how they 
are derived from the Navier-Stokes equations. Consider Figure 2.1, where a 
vertical cross section of a flow field is drawn, 

FIGURE 2.1. Vertical cross section of a flow field. 

and let z =O be a reference plane, which is, for example, the mean sea level. 
With respect to this referen~e plane, we define the local bottom profile by 
-h(x,y) and the local elevat10n by t(x,y,t); the total depth is then given by 



7 

H =h +s. The SWEs can be derived from the Navier-Stokes equations in a 
few steps (see [3, p. 190]). First, the Navier-Stokes equations are simplified by 
assuming hydrostatic pressure and incompressibility of water. Then, the result­
ing equations are integrated over the total depth, where the vertical boundary 
conditions follow from the assumptions that the bottom as well as the water 
surface are stream surfaces. The integrated equations are expressed as far as 
possible in terms of the depth integrated horizontal velocities. Furthermore, 
for the stress along the bottom an empirical formula is substituted and the tur­
bulent velocity fluctuations and the dispersion due to the non-uniform vertical 
distribution of the horizontal velocities are represented by viscosity (see [22, 8]). 
The resulting equations read 

u =-uu -vu -g1- +fv _ _g_,Ju 2 +v 2 u/H+A!:i.u+P' t x y ~x c2 v , 

Vr = -uvx-vvy-gsy-fu-~ Vu2 +v 2 v / H +A!:i.v+ P, (2.1) 

Sr= -(Hu)x-(Hv)y +Fr. 

The first two equations are momentum equations describing, in this 
incompressible case, the change in time of the depth-averaged velocities u and 
v. The third one is a continuity equation. In the momentum equations appear 
the Coriolis force parametrized by f, which is due to the rotation of the 
earth, and the bottom friction parametrized by C (Chezy coefficient). Further­
more, g and A respectively denote the acceleration due to gravity and the 
viscosity coefficient for horizontal momentum exchange. pu and P are exter­
nal forcing functions such as wind stress or barometric pressure and pr 
represents a source of water or a sink. The last is used in the model of the 
Eems-Dollard estuary described in Section 6.2. In this model, it represents the 
discharges of some rivers into the estuary. More details on these parameters 
can be found in [3]. 

2.2. The domain 
The domain for these equations is to a large extent arbitrary. An example is 
drawn in Figure 2.2. 

open - - --­

closed ---

FIGURE 2.2. Example of a domain. 

The contour of the domain consists of parts along "land-water" lines (e.g., 



8 

river banks or coast lines), which are called closed boundaries, and parts across 
the flow field, which are called open boundaries. The latter are artificial boun­
daries that have been chosen judiciously across the flow field in order to res­
trict the size of the domain (see Section 2.3.2). However, due to assumptions 
near these open boundaries, it is advised to choose these boundaries far from 
the region of interest. 

2.3. The boundary conditions 
As said in the previous section, there are two types of boundaries to be dis­
tinguished: closed boundaries along "land-water" lines and open boundaries 
across the flow field. In this section, we present boundary conditions for both 
cases. 

2.3.1. Closed boundaries. Let (.,.) define an inner product. Then at closed 
boundaries we have the conditions (see Stelling [38]) 

~aj=~ µ~ 

(1-a)(v,s)-a(\l(v,s},n)=O for A:;l=O, (2.3) 

where v = [ u, v ]T and s and n respectively are the local tangential unit vector 
(direction counter clock wise) and the normal unit vector (direction inward) at 
the boundary. Physically, condition (2.2) describes that there is no mass flow 
through the boundary. Furthermore, condition (2.3) represents partial slip 
along the closed boundary. This partial-slip condition becomes important 
when the mesh size used in the numerical model is smaller than the thickness 
of occurring boundary layers in the flow (see e.g. [29]). The amount of "slip" 
is parametrized by a. For the special cases a= 1 and a=O this is a "perfect 
slip" and a "no slip" boundary condition, respectively. In general a= 1, i.e. 
the mesh size is much larger than the boundary layers. 

2.3.2. Open boundaries. The open boundaries are artificial "water-water" boun­
daries. In general, the conditions at these boundaries consist of combinations 
of (v,n), (v,s),t, (\l(v,n),n), (\l(v,s),n), (\lt,n), V1 and r1· The data needed for 
the conditions are usually obtained from measurements or from a model which 
encloses the model at hand. In practice, it appears to be more difficult to 
measure accurately the velocity than the elevation. As a consequence velocity 
data are mainly used for the boundary conditions if the model at hand is 
nested in a larger model. 
For the purely hyperbolic case (A =O) it is known that at an inflow boundary 
((v,n)>O) two boundary conditions are needed, whereas at an outflow boun­
dary ((v,n).;;;;O) only one boundary condition is required [29]. In the incom­
pletely parabolic case [42] (A:;l=O), we need at each boundary one extra condi­
tion. 

2.3.2.1. The inviscid case (A =O). Usually, at open boundaries the normal velo­
city (v,n) or the elevation is prescribed. Moreover, the tangential velocity (v,s) 



9 

is prescribed if (v,n)>O. In our model, we use the modification of these condi­
tions as proposed by Stelling [38], which are weakly-reflective for short wave 
components in the solution. At a "velocity boundary", i.e. a boundary where 
the velocity is prescribed, we specify the value of 

a 
(v,n)+yatR (2.4) 

and at an "elevation" boundary we specify the value of 

Here, 

a 
t+yatR. (2.5) 

R=(v,n)+2-Vgii (2.6) 

denotes the so-called ingoing Riemann invariant. Furthermore, in both cases 
we prescribe the value of the tangential velocity 

(v,s) if (v,n)>O. (2.7) 

The prescription of the value of the expressions (2.4) and (2.5) needs some 
explanation. In these expressions, the time derivative of the ingoing Riemann 
invariant is introduced [29, 4, 15, 5, 6, 10], because including these Riemann 
invariants into the boundary conditions has the effect that these boundary con­
ditions become weakly reflective for short wave components (see [45] and [38, 
p. 153]). These short wave components originate mainly from the initial condi­
tion and the eigenfrequencies of the model. If these Riemann invariants are 
not used, then these short wave components may disturb the solution for a 
long time as there is, in general, little dissipation in the model. When the 
value of R is not known, then (2.4) and (2.5) can still be used if the parameter 
y is chosen such that after the start-up period (see Section 2.4) the expression 
yoR / ot is small with respect to the magnitude of the normal velocity in the 
case of (2.4) or with respect to the magnitude of elevation in the case of (2.5). 
We will derive these Riemann invariants for the simplified one-dimensional 
case. Consider the one-dimensional equations 

Ur= -uux-gtx, 

t1= -(Hu)x, 

which are identical to (recall that t=H-h) 

Ur= -uux-gHx +ghx, 

Hr=-Hux-uHx. 

(2.8) 

(2.8') 

Multiplying the second equation with V g / H and adding and subtracting the 
equations, we obtain 

(u-+-2-Vgii)r= -(u+-Vgii) (u-+-2-Vgii)x+ghx, (2.9) 

or, introducing R ± = u -+-2 -Vgii, 



10 

Rf= -(u+ vgH)R"f· +ghx- (2.9') 

These equations express that the solution of (2.8) can be described by two 
waves moving in opposite directions with propagation speeds u+ vgii. Notice 
that, in this one-dimensional case, we have at the left boundary R = R + and 
at the right boundary R = - R - , where R is defined by (2.6). Suppose that 
the Riemann invariants are available at the boundaries. Then by prescribing 
R + and R - at the left and right boundary, respectively, we are led to a non­
reflective boundary treatment. In the two-dimensional case these conditions 
can also be used but they yield only in very special cases a non-reflective 
boundary treatment, i.e. if the flow is normal to the boundary and if the 
Coriolis force and the bottom friction are negligible. Nevertheless, in practice 
the flow is often very "close" to such a special case and consequently the 
weakly-reflective properties of these conditions are still substantial. It should 
be mentioned that Verboom and Slob (45] derived boundary conditions with 
improved weakly-reflective properties. Currently, this type of boundary treat­
ment is implemented in and tested for the WAQUA system (see [27]). Await­
ing the results of this implementation, we used the weakly-reflective boundary 
conditions (2.4) and (2.5) as proposed by Stelling. 
The well-posedness of the SWEs using these boundary conditions is treated by 
Verboom et al. [46]. 

2.3.2.2. The viscid case (A ?60). As already mentioned, in the viscid case at each 
boundary one extra condition is needed. Oliger and Sundstrom [29] propose to 
prescribe the value of the following expressions: 
At an inflow boundary (R as defined by (2.6)): 

R 

(\7(v,n),n) 

(v,s), 

and at an outflow boundary: 

(v,n) 

or 

A R - _ r;; (\7(v,n),n), 
vgH 

and 

('V(v,s),n). 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Similar conditions can be prescribed in the inviscid case as we discussed at the 
end of the preceding section (see also [29]). 
In addition to this set of conditions, we would like to have conditions which 
resemble conditions (2.4) and (2.5). In order to find such conditions, we will 
derive a class of boundary conditions for the one-dimensional equations. We 



11 

restrict our considerations to the one-dimensional case. because we assume that 
the condition for the tangential velocity is given by the prescription of 12) 

or 15) at an inflow or outflow boundary. . For the viscid case the 

equivalent of is 

R ·- V,--H- R-~ h . A R+ R-
1~ = -(u+ g ) ;: +g x i- 2 ( . + (2.16) 

In the following, we try to find boundary conditions such that is wdl­

pt)Sed. An important condition for the well-posedness of (2.16) is that the 

right-hand side should satisfy a so-called one-sided Lipschitz condition (see 

[2, 9]). We will explain the relevance of this condition briefly. Let a partial 

differential equation be given by 

(2. I 7) 

with appropriate boundary conditions, where wand f are functions 
. R _,.R 11 and f: Rn X R11 X 1R 11 _,.R 11 ). Furthermore, let an inner product be 

defined by 
.:t, 

<g.h>:::::: j(g,h)dx, (2.18) 

with a generated nom1 denoted by j. i. Then the one-sided Lipschitz condition 
we will use is defined by 

<f(w·,w,.wxx f(w.w,,w" ),w--w> ..;;o I w-w 1 2, (2.19) 

where oER. If this condition is satisfied then it can be proven (e.g. Dahlquist 

[2]) that 

(2.20) 

Now, we can proof the following theorem for the frozen coefficient form of 

16). On this theorem the difference w-w will be denoted by t::.w.) 

THEOREM 2.3. l. Let the flow be subcritical and the frozen coefficient form of 

( 2. be given ~~· 

R :+:: - -(u + - c;-gH )R:c +gh + .:i_(R .,_ +R-) 
1 - ll - V gn O . x < _, , • xx· 

,;;.. 

Let the conditions at the left boundary be prescribed ~r 

t::.u=O 

or 

A (ti.R + + t::.R - )x + at::.Kt + /3:1R = 0 

with {3- a= 2 Vgif; and a,,,;; - ViiJ; in the case of outflow, and by 

ilu =O and ilK=O 

(2.21) 

(2.22) 

(2.23) 

(2.24) 



12 

or 

A(AR+ +AR-)x+aAR+ +/3AR- =O and M- +8LlR+ =O (2.25) 

with (2\[iii;+a)-(a+13)8+ {302 ..;,o in the case of inflow. Let the conditions at 
the right boundary be given by interchanging the roles of LlR + and LlR - in 
(2.22)-(2.25). Then the right-hand side of (2.21) satisfies the one-sided Lipschitz 
condition with a= 0. 

PROOF. For this linear case, substitution of the right-hand side of (2.21) into 
the Lipschitz condition with a=O yields the inequality 

{-(c+(LlR+)2 +c-(AR-)2)+ (2.26) 
x, 

A(AR+ +AR-)x(AR+ +AR-)} I ?,-A j(LlR + +AR-)~d.x:e:;;O 
x, 

wJi~e c± =u0± \[iii;. The boundary conditions for both solutions 
(R- and R ±) are equal. Hence, the differences aR. ± have homogeneous 
boundary conditions. Furthermore, forcing terms cancel out. Now, appropri­
ate boundary conditions have to be found such that (2.26) holds. Notice that 
the integral has a negative contribution to the left-hand side of (2.26). There­
fore, we will omit the integral. 
If one chooses the boundary condition AR+ +LlR- =O (i.e. Au=O), then 
from (2.26) there remains 

-2uo(AR+f l~;..;,o. 

The term at the left boundary, i.e. at x1, is negative at outflow (u0 <0). Hence, 
it is sufficient to prescribe (2.22) at an outflow boundary. If the left boundary 
is an inflow boundary, then the term at this boundary is positive and therefore 
an extra condition is needed such that AR+ =O. For example by the condition 
At=O. Hence, it is sufficient to prescribe (2.24) at in inflow boundary. 
Next, at the left boundary, we consider boundary conditions of the type 

A(AR+ +AR-)x+aAR+ +pAR- =O. (2.27) 

Substitution into the inequality (2.26) yields, at the left boundary, the inequal­
ity 

(c+ +aXAR + )2 +(a+,B)AR +AR- +(c- +/3)(LlR-)2:e:;;O. (2.28) 

The constants a and ,8 should be chosen such that this quadratic form is nega­
tive definite. It is definite if its discriminant is negative. Evaluation of this 
discriminant leads to the condition 

(a-{3)2 -4(c + c- +(ac- + (3c + ))..;,O. 

Assuming that u0 =O, then this inequality is equal to 

(a- /3+ 2 -lifi;)2 ..;,o. 

(2.29) 

(2.30) 



13 

It is now e~verified, that~ is s~tisfied at outfl?~ (u 0 ~0) for the choice 
{3-a=2 VgHo and a~ -ygH0 • This proves condition (2.23). 
At an inflow boundary we add to (2.27) the condition tl.R- +86.R + =O. Sub­
stitution into (2.28) yields the inequality 

c+ +a-(a+ /3)8+(c- +/3)82 ~0. 

As the flow is subcritical, we have that c+ ~2 Vgii"; and c- ~O. Using these 
inequalities we are led to condition (2.25). D 

The inflow conditions (2.10) and (2.11) proposed by Oliger and Sundstrom are 
now found for a= /3 = 0 and 8 = - oo in (2.25). For this choice we obtain from 
(2.25) that we have to impose the conditions ilux =O and tl.R + =O, which are 
the perturbed one-dimensional equivalents of (2.11) an~.10), respectively. 
Furthermore at outflow we find for a= -2 y gH 0 the condition 
Atl.ux -\/;Ji; tl.R + which is the perturbed linearized equivalent of (2.14). 
Furthermore, at inflow the theorem su~ests to impose the conditions (chosing 
a=/3, 8= -1) Ailux +atl.u=O and d gH =O which are, assuming the 
differences to be small, the perturbed equivalents of prescribing the expres­
sions: 

A I. r;; 
(v,n)+-(V(v,n),n) and t for a~-2 vgH. 

a 
(2.31) 

At outflow we find from the theorem the condition (chosing /3= -a= \[iii;) 
Atl.ux-.yg/i;tl.(2V'iii}=O which is for small differences (W<<Ho) the 
perturbed equivalent of the condition imposed by prescribing the value of 

gf-A ("V(v,n),n). (2.32) 

The boundary conditions (2.31) and (2.32) are almost of the same form as the 
conditions (2.4) and (2.5). 

REMARK. The boundary conditions given in the theorem are not changed when 
also a linear bottom friction term is taken into account. Suppose that a term 
-A.u is introduced in the right-hand side of the first equation of (2.8). Then we 
will find in (2.21) the term -A.(R + + R - ) and in (2.26) the term 

x, 

-A.j(Ll.R+ +tl.R-)2dx. 
x, 

If the inequality (2.26) is satisfied without the last term (which is the case for 
the various boundary conditions specified in the theorem), then it will also 
hold when this term is included because the term is negative. 



14 

2.4. The initial values 
In practical applications, almost any smooth initial function, consistent with 
the boundary conditions, will eventually lead, after the start-up period, to the 
same solution. This period is determined by the amount of dissipation in the 
equations (2.1 ), by the reflection at the open boundaries (parametrized by y, cf. 
(2.4) and (2.5)), by the geometry and by the difference between the initial func­
tion and the true solution at the starting time. Hence, after the start-up 
period, the solution is completely determined by the boundary conditions and 
the forcing terms, and does not depend anymore on the initial values. it 
should be noticed that these boundary conditions may be time-dependent, 
which consequently yields a time-dependent solution. 

3. THE NUMERICAL ALGORITHM 

In this section, we will deSl-tibe the discretization of the SWEs. Since the space 
discretization is performed on a so-called staggered grid, we will first describe 
this staggering. Next, we discuss how the boundaries of the domain are 
represented in this grid. Thereafter, the space discretization of the various 
terms is given. Further, the time discretization, its stabilization, and the 
discretization of the weakly-reflective boundary conditions will be described. 
Finally, the drying and flooding procedure used is explained. 

3.1. Grid staggering 
Grid staggering, originally introduced by Hansen [14], is often applied in the 
space discretization of partial differential equations. By this technique 
u. v and s are calculated at different grid points. which makes it possible lo 

decrease the storage requirements by a factor four without loss of accuracy 
with respect to the main tem1s of the SWEs. The idea will be illustrated by the 
one-dimensional equations 

Ur= --g{,, 

s,=-·Hou,, 

(3. l) 

which describe the dominant part of the SWEs in one dimension. If these 
equations are semi-discretized using second-order central differences, then we 
obtain 

( U1 ) 1 == - g( Z; + 1 - Z, - i) I ( 2~x ), 

(Z1)1 = -Ho(U1 +i -U1.-dl(2Ll.x), 

(3.2) 

where (U(t))1 and (Z(t)), approximate u(i!lx,t) and Wb..x.t), respectively. 
Observe that the subset of equations with i even, j odd is independent of the 
subset with i odd, j even. Hence, we may omit one of these sets, without loss 
of accuracy, thereby reducing the number of equations (and thus the number 
of dependent variables) by a factor two. Applying the same technique in the 
y-direction will lead to a final reduction by a factor four. A part of the result­
ing grid is drawn in Figure 3.1. 



5ZUZUZU 
4 v v v 
3ZUZUZU 
2 v v v 
lZUZUZU 

123456 

FIGURE 3.1. Position of the variables U, V and Z in space. 

15 

Those components, which are not available in a particular point can be 
obtained by averaging. In [38] more details can be found on the advantages of 
a space staggered grid. 

3.2. Representation of the boundaries 
In the discretization, the boundary of the domain is approximated by a 
polygon. This polygon consists of line pieces which are parallel to either the 
x-axis or the y-axis. The boundary is always parallel to the x-axis when it 
crosses a V-point and parallel to the y-axis when it crosses a U-point. Boun­
dary pieces in both directions can cross through Z-points. An example of such 
a polygon is given in Figure 3.2. 

v--v-, 
z u z u 
(' v Lv--v-, 
?VZUZUZU 
v--v-, v v I 

u z u z u 
Lv--v_J 

FIGURE 3.2. Boundary of the computational domain. 

Due to this convention, we have that at a closed boundary either U or V is 
zero. Hence, this approximation does not simulate well situations where the 
physical boundaries are not parallel to either the x-axis or the y-axis. This has 
some consequences for the discretization as will be discussed in Section 3.4.2. 
In fact, for complex geometries this representation of the domain is only first­
order accurate, i.e. the maximal distance between the numerical boundary and 
the true boundary decreases linearly with the mesh size. 

3.3. Space discretization 
In this section, the space discretization of the various terms of (2. l) will be 
described. As they-derivatives are discretized similar to the x-derivatives, we 
only consider the x-derivatives. This similarity property is also used in the 
implementation, which reduces the length of the code considerably. For 
presentation reasons only, an exception will be made for the approximation of 
U at a V-point. Furthermore, with respect to the discretization near 



16 

boundaries, only the treatment at left boundaries is given. The treatment at 
right boundaries is analogous. 
Two discretizations are implemented, a second-order and a fourth-order accu­
rate discretization. The fourth-order accurate discretization allows the use of a 
coarser spatial grid by which the stability condition imposed by the explicit 
time discretization used is relaxed. However, this advantage cannot always be 
exploited, because there are many cases where the choice of the space mesh is 
determined by the resolution needed to represent the boundary to a sufficient 
accurate degree (see the previous section). In such cases, the second-order ver­
sion may already simulate the flow at internal points very accurately. At the 
boundaries, lower-order discretizations are used in order to obtain a stable 
discretization. It turns out that this lower-order discretizations do not neces­
sarily lead to a reduced accuracy (see Section 3.4.2). By Gustafsson [ 13] it is 
shown for the discretized form of hyperbolic equations that, under certain 
assumptions, the order of convergence is not decreased if at the boundaries 
approximations of one-order lower accuracy are used. The second-order 
discretization is almost identical to that of Stelling [38]. The fourth-order 
accurate discretization does not give additional problems in the implementa­
tion. 

Below all discretizations are tabulated. ln Table 3. I, the discretization of U at 
a V-point is given, whereas in Table 3.2 the other discretizations used are 
specified. 
The Tables 3. I and 3.2 differ only in the presentation of the quantities given in 
the first column. In the first column of Table 3.1 notational details are given, 
whereas in the first column of Table 3.2 the terms to be discretized are listed. 
The second column specifies the position of the point at which the discretiza­
tion is needed. for all terms, first the discretization at an internal point is 
given followed by the discretization in the neighbourhood of a boundary. In 
the latter case, the point at which the discretization is needed is denoted by a 
bold letter. A closed (open) boundary is indicated by I (I). In our notation, I 
or I directly follows the actual position of the boundary. In order to save 
space, we have represented several situations at the same time. For example, 
the discretization (3.3.b) is used to approximate U at Z. Here, three different 
cases may occur, viz. U I Z U Z U, U I Z U Z U, and U Z I U Z U. These 
notations respectively mean a closed U-boundary, an open left U-boundary, 
and an elevation boundary. Hence, when more boundaries are indicated then 
this represents as many cases, where in each case only one of the indicated 
boundaries is valid. An exception is made for the case denoted by an asterisk 
in (3.10.b). Here a discretization is needed at an elevation point located 
between two closed boundaries. 
The third column gives the actual discretization formulas. It is assumed that 
the space mesh is constant in x and y-direction and it will be denoted by ~­
This is the space mesh of the unstaggered grid (cf. (3.2)). For the notation of 
the discretizations we use the so-called shift operator E. Let ~ be a function 
defined on R2. Then the shift operator Eis defined by E~;:=~;+I· where 



17 

~i=«iL~.y). Likewise, the shift operator Eis defined by E~/=~j+J. where 
~j =«x,j6.y) (6.y =i:U). Below we omit the subscripts. 
The order of accuracy of the discretizations is denoted by p, as given in the 
fourth column. The value of p is found by applying the discretization to a 
smooth test function. 
In the fifth column the formula number of the discretization is given for later 
reference. Moreover, an asterisk is used in this column to indicate that the 
discretization is different from that used by Stelling. 

As already mentioned, in Table 3.1 the discretization for the averaged value of 
U at a V-point is given. The construction of this averaged value proceeds in 
two steps; first U is approximated at a Z-point by averaging in x-direction 
(denoted by u\ thereafter fY is averaged in y-d~ection which finally gives 
the approximation of U at the V-point (denoted by fJY). 

notation position Discretization of p Formula 

U at a V-point number 

internally { .1..(E+ E-1)-.l...(£3 +E-3)}U 
16 16 4 (3.3.af 

ux u11z1uzu t(E+E- 1 }U 2 (3.3.b) 

u11zuzu +{3E-E3 }U 2 (3.3.cf 

internally { .1..(£ + j;-1 )-.l...(£3 + £.-3)}ux 
16 16 4 (3.3.df 

fjX.Y z1vzvz 
+{i:.+£-I}ux 2 (3.3.e) 

VI IZVZ 

z IV z v tp£-£3}V" 2 (3.3.f)° 

TABLE 3.1. Approximation of U at a V point 

Stelling uses at all points (3.3.b) and (3.3.e), successively. This approach does 
not always lead to a first-order accurate appro~mation of U at a V-point near 
a boundary (see Section 3.4.2). Nevertheless, ifY is used in (3.5.c) (see Table 
3.2), which itself is a rather crude approximation (see the discussion in Sec­
tions 3.4.1 and 3.4.2). The other discretizations are given in Table 3.2. For a 
discussion on the choice of the discretizations, we refer to the next section. 



18 

term position Discretization p Formula 

number 

internally I I (2Ax){f(E2 -r2)--&:(E4 -E-4)}U 4 (3.4.a)* 

u121uzu I I (2Ax){ t<E2 -£-2)}U 2 (3.4.b)' 

1 /(2Ax){f(E2-£- 2)}V for u;;;.,o 2 
Ux u12u2u (3.4.c)' 

l /(2Ax){E2-J}U for U<O I 

1 /(2Ax){E2-J}U for U<O I 
UJZIUZU o for u;;;.,o 0 

(3.4.d) 

(b .. x} Uxxxx internally I I (16Ax){6-4(E2 + £- 2)+(£4 + E- 4)} v 3 (3.4.d)* 

internally I I (2Ax){ t(E2 - £--2)--&:(£4 - £-4)} V 4 (3.5.af 

v v 
VI I 2U z 

v v 
I I (2Ax){f(E 2 -E- 2)} v 2 (3.5.b )' v v v 

21vzv2 
Vx v v v 

v v 
VI 12u 2 l/(2Ax){(£2-J)}Vfor Ux"<O I 

v v 
v v (3.5.c) 

ZI uz 0 for U'Y;;;.,Q 0 
v v 

(Ax)3v.uxx internally I I (16Ax){ 6-4(£2 + £-2)+(E4 + £-4)} V 3 (3.5.d)° 

internally I I (2Ax){ 17._(£1 -£-1 )-_L(E3 - £-3)}2 4 (3.6.a)* 
tx 

24 24 

v1121uzv I I (2Ax ){ E 1 - E - I } 2 2 (3.6.b.) 

internally { -2..(E+ E- 1)-_L(E3 + E- 3)}2 16 16 4 (3.7.a) 

r viz 1u 2 f{E+E- 1}2 2 (3.7.b) 

UI z v 2 f{3£-£3}2 2 (3.7.c)* 

internally I /((2Ax)2)(-t+f(£2 + E -2)--&:(E4 + £-4)}U 4 (3.8.a)* 

Uxx VJl2JV2U I I ((2Ax)2){£2-2+ £-2 }V 2 (3.8.b) 

u1121uzv I /((2Ax)2)(£2-J}V 0 (3.8.c)* 

TABLE 3.2. Discretizations (to be continued) 



19 

term position Discretization p Formula 

number 

internally i /((2ax)2){-t+ fc£2 +£-2)-{i-(£4+£-·4)}V 4 (3.9.af 

v v 
v11zuz (3.9.b) 

v v 
I /((2ax)2){(£ 2 -2+£-2)} V v v v 2 

z1uzuz 
v v v 

v v 
Vxx v1zuz (3.9.c) 

v v 
l /((2ax)2){(£2-/)}V v v 0 

ZI u z 
v v 

v v I /((2ax)2){(£ 2 -(3-211)/)} V 

v1zuz 
11= I/[! +(1-a)ax /a)] 

I (3.9.d) 
v v 

internally I /(2ax){ ;: (£1-£-1)- 214 (£3-£-3)}HU 4 (3.10.a)' 

VI z uz 
(Hu)x z I uzu 1 /(2ax){£ 1 -£- 1 }HU 2 (3.10.b) 

u I z I u· 

UIZ u z I /(2ax){-~£- 1 + 26 £ 1 _ _J_E 3 )}HU 
24 24 24 

0 (3.10.c)' 

TABLE 3.2 (cont'd). Discretizations. 

As already mentioned, we have implemented a second-order accurate version 
and a fourth-order accurate version. In these tables the discretizations are 
given exactly as they are used in the fourth-order implementation. It will be 
clear that the fourth-order accuracy is only obtained at internal points. The 
discretizations as used in the second-order implementations are found from the 
tables by replacing the discretization at internal points by the discretizations 
with number (* .b ). Moreover, in the second-order case (3.3.e) is used instead 
of (3.3.d) at internal points. 



20 

3.4. Discussion 
In this section, we motivate the choice of the preceeding discretizations. Spe­
cial attention will be given to the following topics: boundary treatment, 
discretization near 'zig-zag boundaries', artificial diffusion and conservation of 
mass. 

3.4.1. On the effect of the boundary treatment. The given discretizations at the 
boundaries are only in part consistent with the boundary conditions derived in 
Section 2.3. The main terms of the SWEs are treated always consistent with 
these boundary conditions, but the advection and viscosity terms are not. The 
reason for this is that the representation of the boundary may cause severe 
numerical errors if straightforward consistent approximations of the advection 
terms are used (see Section 3.4.2). In the following we analyse the effect of 
such an (inconsistent) discretization. The discretization at the left boundary 
given in the tables may be considered as an approximation of the perturbed 
SWEs on the strip of width l::!..x located at this boundary (see Figure 3.3); the 
perturbed SWEs are given by: 

W1 =f(w,Wx.WyWxx,Wyy•x,t)+p(w,wx,Wxx•X,t), (3.11) 

where w=(u,v,tf and f is the right-hand side of (2.1). Furthermore, the per­
turbation p is given by 

PI =(-u'+ 21.x)ux+uux-AUxx• 

_ . A l -!J 
P2 -(-mm(u, O)+ 2LU )vx-2A (21::!..x)2 v +uvx -Avw (3.12) 

p3=0, 

where u'=min(u, 0) at a closed boundary and at an elevation boundary, and 
u'=u at a velocity boundary. 

().\I) 12.1) 

plw.:c: whi:rc houndan 
L'nnJition.~ arc 1mp.i~i.:d 

FIGURE 3.3. Domains where (3.11) and (2.1) are valid. 

~urthermo~e, the boundary conditions are given by (2.2) if the left boundary 
is closed, i.e. u =O, and by (2.4) or (2.5) if the left boundary is open, i.e. 
u+yRr=f'(t) or t+yR1=f(t). It should be noticed, that condition (2.7) is 
not imposed. This is avoided by an adaptation of the equation at an inflow 
boundary such that the coefficient of vx is always non-negative (see the second 
equation of (3.12)). At the right-hand side of the strip for which (3.11) is 
valid, the SW Es are as given in (2.1 ). 



21 

The terms u'ux and min(u, O)vx arise from the discretizations {(3.4.c),(3.4.d)} 
and (3.5.c), respectively. Furthermore, l / (2A.x) ux follows from (3.8.c) and 
! I (2A.x)vx and 2(1-'IJ) / ((2Ll.x)2) v can be derived from (3.9.d) in the follow­
mg way: 

l 2 
(2Ll.x)2 (E -(3-2'1J)J)V= 

1 l 1 
(2Ll.x) { (2A.x) (E2-/)V}- (2A.x)2 (2-2'1J)V~ 

- 1-v -2 l-?J v 
2bx x (2Ll.x )2 · 

If we let A.x tend to zero, then we find from (3.11) that additionally (2.3) and 
(2.15) are imposed, i.e. (1-a)v-vx=O at a closed boundary and vx=O at an 
outflow boundary. Moreover, we find at all types of boundaries the condition 
ux =O and at an inflow boundary (u>O) vx =O (which replaces (2.7)). The 
latter causes that, for example, at a closed boundary three conditions are 
imposed. Hence, if A.x tends to zero the problem is overspecified. This may 
lead to instabilities and discontinuities (see Oliger and Sundstrom [29]), but so 
far these were not observed, which we ascribe to the fact that A.x is still very 
large. 

REMARK. By a small adaptation of the discretization, the expression (2.13) or 
(2.32) can be prescribed at an outflow boundary. 
The expression (2.13) is specified if at an open outflow boundary u is also used 
as a boundary condition for the viscosity term. Thereby, in the case of an open 
boundary Aux / (2A.x) in p 1 (see (3.12)) is replaced by Auxx. 
The expression (2.32) is prescribed at an outflow boundary if in the first 
momentum equation in the viscosity term ux =O is imposed and furthermore 
the elevation is specified. This is identical to prescribing the expression 
Aux + gt. In fact, this expression is specified in this way in the first momen­
tum equation. However, an adaptation of the calculation of H, which needs t, 
should be made. Instead of discretization (3.7.b), the expression (3.7.c) should 
be used to approximate H at the velocity point adjacent to the boundary. We 
have refrained from implementing these adaptations, because it is specious to 
do so as long as the treatment at inflow boundaries and closed boundaries is 
not fully consistent. 

We observe that the discretizations described above lead to a simple imple­
mentation. Moreover, from (3.11) we conclude that the perturbed SWEs are 
close to the true SWEs if 
1.a. the flow at the boundary is strongly sub-critical i.e. I u I <<Viii if u >0 

at a left boundary or if u <0 at a right boundary, 
Lb. the mesh-size is such that A/ (2Ax) is much less than ..Jiii, 
or if 
2. the terms ux and vx are approximately zero at the boundaries and a= 1 



22 

(see Section (2.3.1)). 
In many engineering problems these conditions are fulfilled to a sufficient 
degree (see also the discussion of Stelling and Willemse on this subject [40]). 

Condition l can be understood from (2.9). From this equation, we have that 
the propagation speed of the waves is given by the factor I u I + vgii. Simi­
larly, for the two-dimensional equations the propagation speed is Iv I + Vifi. 
If, over one mesh width, we perturb this speed by a quantity of magnitude less 
than or equal to I u I +A / (2Ax ), which is the case when (3.11) is valid, then 
the error may be expected to be small if I u I +A / (2Ax )< < \fiii, i.e. for a 
strongly subcritical flow and for a space mesh such that A / (2Ax) is small. 
Condition 2 is derived by comparison of (3.11) and (2.1). If this condition is 
satisfied then (3.11) and (2.1) are equal. 

3.4.2. Discretization near 'zig-zag boundaries'. The discretization of the advec­
tion terms and viscosity terms near boundaries seems to be crude. However, 
this treatment is more accurate than standard central differences for flows 
along boundaries which are neither parallel to the x-axis nor to the y-axis (so­
called 'zig-zag boundaries'). For example consider the boundary drawn in Fig­
ure 3.4, which should simulate a boundary given by a "diagonal" boundary. 

',(; ... Z U Z U Z numerical boundary 

L..)(0 V V physical boundary 

·lb-~ ... ~~ u 
'u. z u 

L.::v-... _ 

FIGURE 3.4. "Zig-zag" boundary. 

, flow parallel to the "diagonal" physical boundary is not disturbed by the 
JOundary in the free slip case, i.e. a= 0 in (2.2). In the numerical scheme 

where the "diagonal" boundary is represented by a "zig-zag" boundary this 
property should be approximated as best as possible. A straightforward cen­
tral (second-order) discretization of ux at the point indicated by U would lead 
to 

[ux]= 1 / (4Ax){E2 }U. 

If in this case U is positive, then the discretization of - uux will act as a bot" 
tom friction term. If, on the other hand, U is negative, then this term will have 
a destabilizing effect. Therefore, the differences are chosen as given in (3.4.d). 
A straightforward discretization of Uxx at the same point would lead to 

[uxx]= 1 /(2Ax)2{E2 -2}U. (3.13) 

This discretization will also act as a friction term and thereby a free slip boun­
dary is not correctly simulated. Therefore, the discretization is chosen as given 
in (3.8.c). Stelling uses (3.13) in this case [38, p. 147]. 



23 

A similar reasoning justifies the discretizations (3.5.c) and (3.9.c) of uvx and 
Vrn respectively, at the point indicated by V. An additional problem at this 
point is the computation of U at V. Stelling approximates U at V by averaging 
over the four neighbouring U-values. This gives only 3/4 of the real value if 
the flow is parallel to the boundary. Therefore, we employed approximations 
as given in Table 3.1, which give at least a first-order approximation in cases 
as discussed here. 
With respect to the continuity equation, the "zig-zag" representation of the 
boundary has little influence. Considering the discretization of the continuity 
equation at the point indicated by Z and assuming constant depth, then the 
second-order discretization of the right-hand side of the continuity equation is 
of the form - H (U + V - ( U + V)) / (2Li.x) where U and V are zero. This 
discretization does not change if we set U = - V, where V may have an arbi­
trary value, i.e. a flow parallel to the boundary. 
As a consequence of the above approach the deficiency in the "zig-zag" 
representation of a "diagonal" boundary is partly compensated by the discreti­
zation. An alternative is the transformation of the domain to another domain 
in which boundaries coincide with grid lines (see e.g. [48, 47]). However, when 
drying and flooding should be taken into account similar problems as dis­
cussed in this section can occur in the transformed domain. 

3.4.3. Artificial diffwion. A known problem of the discretizations (3.4.a), 
(3.4.b), (3.5.a) and (3.5.b) is that they may give rise to so-called 2Li.x waves (see 
[38] and [ 43]). This is caused by the fact that some eigenvalues of the operator 
become close to zero for high-frequency components in the solution. The 
occurrence of the 2Li.x waves can be avoided by adding "artificial diffusion" to 
the momentum equations. Adding diffusion of the form (Li.x )uxx to the discre­
tized first momentum equation, where a second-order derivative is used, gives 
rise to a considerable amount of numerical diffusion and decreases the accu­
racy to first-order. As a consequence, for many practical flow problems the 
accuracy of the low-frequency components in the solution is seriously 
influenced. Therefore we applied diffusion of the form -c(Lix)3uxxrn where a 
fourth-order derivative is used and where c is a parameter which is to a large 
extent independent of the problem. This gives rise to a third-order discretiza­
tion. For low-frequency components in the solution the damping effect of the 
fourth-order diffusion term is much less than for the second-order term. For 
high-frequency components, however, the damping effect of both treatments 
may well be of the same order of magnitude depending on the constants used. 
By numerical experiments it was found that c E[.2, .8] gives the desired robust­
ness for a large variety of problems. For the same reasons, (3.5.d) multiplied 
by - c is added to the second momentum equation. 



24 

3. 4. 4. Conservation of mass. The discretization (3.10) used in the continuity 
equations conserves mass near closed boundaries and in the internal domain. 
This can be shown by inspection of the associated matrix: 

1 
48Ax 

-251 26 -1 
1 I -21 21 -1 

I -21 

I 
I 

27 
-27 

-1 

where the first column corresponds with the boundary point (which has a zero 
value in this case). The first row originates from (3.10.c), whereas the other 
rows originate from (3.10.a). For conservation the column sums of this matrix, 
except for the first column, should be zero (see also [12, p. 6]), which is clearly 
the case. At closed boundaries, the discretization is zero-order consistent. The 
conservation property is in this case more important than consistency. In the 
same way it can be seen that at open boundaries the discretization does not 
preserve mass. The associated matrix is of the form 

-24 I 24 

1 I -27 27 -1 
1 

I 1 -27 27 -1 
48Ax 

I -27 

I 
where the first column is again associated with the boundary point. Here, the 
first row originates from (3.10.b). Applying this matrix to the vector UH and 
summing over all elements of the result vector yields a non-zero contribution 
at the open boundary of the form 

48~ {-23-2E+E2 }UH= 

~UH+ 48~E{E- 1 -2+E}UH, 

where the boundary point is used as a reference for the shift operator. If 
instead of (3.10.b) the approximation (3.10.c) is also used at open boundaries, 
then after the same manipulations a contribution -1 / (2Ax)UH will be 
found. This is considered ideal, because the only increase or decrease of the 
amount of mass is determined by the quantity imposed at the boundary. 
Using (3.10.b) there is an additional increase or decrease of mass. The amount 
of mass is solution-dependent. This contribution is small if the second deriva­
tive of the solution is small, which is usually the case. Therefore, we prefer to 
use the second-order discretization instead of the mass-conserving discretiza­
tion. Nevertheless, there is no additional difficulty in implementing the mass­
conserving approximation. 



25 

3. 5. Time discretization 
In this section, the time integration will be described. For this purpose the 
method of lines approach will be used. First we write (2.1) in the compact 
notation 

W1 =f(w,Wx,WyWxx,Wyy,x,t), t>to, XEg, (3.14) 

where w=(u, vJf. After space discretization of this PDE and its boundary 
conditions (see Section 2.3) on the space staggered grid, we obtain the system 
of ODEs 

d 
dt W(t)=F(W,t), t>to. (3.15) 

For the time integration of this system several integrators can be used. A sur­
vey is given in [18]. We use the classical Runge-Kutta formula given by (for a 
discussion of our choice we refer to Section 4.2., see also Praagman [31]) 

wn+i =Wn+b.t(Ki +2K2+2K3+Ki)/6, (3.16) 

where 

K1 =F(Wn ,tn), 
l I 

K1 =F(Wn +-z~tKi,tn +-zb.t), 

I I 
K3 =F(Wn +-z~tK2,tn +zb.t), 

Ki =F(Wn + ~tK3,tn +1). 

In this formula, tn=t0 +n~t and wn approximates W(tn)· The stability region 
of this formula in the complex plane is drawn in Figure 3.5. For linear stabil­
ity it is needed that the eigenvalues of b.tJ are within this region. Here J is the 
Jacobian matrix of F (J =aF(W,t) I aw) 

FIGURE 3.5. Stability region of the classical Runge-Kutta method. 

This picture shows that the classical Runge-Kutta method is conditionally 
stable, i.e., given a certain problem there is a restriction on the time step. For 
the SWEs, the eigenvalues may vary from almost purely imaginary to real 
depending on the depth. The imaginary parts of the eigenvalues are due to the 



26 

main tenns of the SWEs (see (3.1)) and to the advection terms. The negative 
real parts of the eigenvalues arise from the bottom friction and the viscosity 
terms. In general, the ratio A / (ilx vgii), reflecting the relative importance of 
the viscosity terms to the main terms with respect to stability, is rather small. 
Hence, in general, the viscosity terms are not so important with respect to sta­
bility. However, if the depth tends to zero (for example on a tidal fiat), then 
the bottom friction term tends to minus infinity. As this will lead to an 
unstable calculation, an upper limit is set to this friction term in such a way 
that the corresponding eigenvalue is still within the stability region. This adap­
tation of the momentum equations does not seriously influence the accuracy of 
the solution as shallow regions are, in general, only important as a water 
storage area (see [3]). We will describe this in more detail in Section 3.8. 

3.6. Stabilization of the time integration 
In this subsection, the stabilization procedure as employed in the code will be 
described. The stabilization, based on smoothing of the discretized right-hand 
side function, allows to use significant larger time steps than the maximum 
time step dictated by the stability condition of the explicit method used. 
Several authors [25,21,44] described and applied implicit smoothing. However, 
with respect to vector computing, we prefer to use explicit techniques (see Sec­
tion 4.2). The general concept of this type of smoothing for hyperbolic partial 
differential equations is treated in [49]. It is analysed more extensively in [ 19] 
for hyperbolic as well as for parabolic equations, and in [ 17] for solving elliptic 
equations. A review of the various applications of smoothing is given in [ 16]. 

The technique basically consists of solving 

d 
dt W(t)=S(F(W,t)), t>t0, (3.17) 

instead of (3.15), where S is a smoothing function. The function S should be 
chosen such that the spectral radius of as(F(W,t)) I aw is minimized provided 
that the evaluation of S(F) is cheap and the error due to the smoothing is lim­
ited. Evidently, the error introduced by this smoothing depends on the 
difference 

S(F(W,t))-F(W,t) (3.18) 

where W is a solution of (3.15). This error is small if F(W,t) is smooth, i.e. if 
successive elements of the vector F(W,t) differ slightly. For the original equa­
tion (3.14) this implies that the right-hand side f(.) should also be smooth if the 
solution w is substituted, i.e. it should have small space derivatives. This is 
trivially the case when we consider a stationary solution. In that case, the time 
~erivative of w is zero and consequently all space derivatives of the right-hand 
s~de ~e zero. In the case, that the solution varies slowly in time, i.e. the solu­
tlon is ~lose to a steady state, we expect that the space derivatives of the right­
hand side are close to zero. In [49] examples are given for which it is shown 
that small time derivatives of the solution result in small space derivatives of 



27 

the right-hand side. Moreover, in this paper it is shown that smoothing 
inherently appears in implicit time integration methods, which explains the 
improved stability behaviour of such methods. 
It should be noticed that this type of smoothing is different from smoothing 
the numerical solution itself. In the latter case smoothing may only be applied, 
without danger of loss of accuracy, if the solution itself is smooth, i.e. if the 
solution has small derivatives with respect to the space variables. This is in 
general not the case. Smoothing of the solution is, for example, proposed by 
Shuman [36]. A more sophisticated example is the Richtmeyer scheme [33], 
which may be regarded as a two-stage second-order Runge-Kutta method, 
where in the first stage the solution is smoothed, in order to obtain a stable 
method for hyperbolic equations. 
In the following we introduce the smoothing used, we derive the reduction of 
the spectral radius obtained after its application to the two-dimensional SWEs, 
and we consider its influence on the accuracy of the solution. 

3.6.1. The choice of S. As a starting point in our presentation, we consider a 
smoothing based on the Jacobian matrix of (3.15), i.e. Sis of the form 

S(F)= Q(Jn)F+g (3.19) 

where Q(z) is a rational function with Q(z)~l for z~o, g is a correction term 
such that the error (3.18) tends to zero if the mesh size tends to zero, and Jn is 
the normalized Jacobian, i.e. Jn =J / p(J). Evidently, the eigenvalues of Jn are 
all contained within the unit disc in the complex plane. Evaluation of Q(Jn)F 
is in general expensive. pierefore, we sh~ll attempt to find simplified forms of 
Jn, which we denote by Jn, such that Q(Jn)F can be computed efficiently. We 
will start to consider the one-dimensional SWEs, which can be found from 
(2.1) by setting v and all y-derivatives equal to zero. For the construction of 
the smoothing procedure we only take into account the main terms of the 
SWEs (see (3.2)), because, in the problems we consider, these terms dominate 
the spectral radius. Nevertheless, the smoothing is applied to the complete 
discretized right-hand side of the SWEs ( cf. (3.17)). 

3.6.2. One-dimensional problems. We start with the description of our smooth­
ing technique for one-dimensional problems. The explicit smoothing function 
for the one-dimensional case we use, is defined by 

where 

S(F) = Sq(Sq-1 ( ... (S1 (F)) ... )), 

Sk(F)=SkF+~, 

Sk =I +µkDb 

Dk =4Dk -1U + Dk-1), k;;;;.2, 
-2 

D1 =Jn, 

(3.20) 



28 

- - 2(~) -
Jn - - r:;;-1. 

vgHo 

Here, J is of the form 

_ [ 0 -g8T l 
J= HoB 0 ' 

where the submatrix H 08 follows from the discretization (3.1 O.b) with constant 
depth H (denoted by H0). Later on, we will show that by this smoothing 
function the spectral radius of the Jacobian of the SWEs can be r~duced very 
effectively. It is straightforward to show that the eigenvalues of ln are con­
tained in the interval [-i,i] on t~~ imaginary axis (see. also .section_ 3.6.4). 
Consequently, the eigenvalues of ln are real and contained m the mterval 
[ -1,0]. _For the smoothing operator (3.20), the function Q (z) is of the form 
Q(z)=Q(z2). 

REMARK. For the stability properties of the smoothing as applied here it is 
enough to consider the spectrum of the smoothed Jacobian matrix. This is due 
to the fact that the Jacobian matrix is similar to a symmetric matrix by means 
of a positive definit matrix which itself is independent of the meshsize (see for 
more details the proof of Lemma 3.6.2). In contrast with the famous Von Neu­
mann analysis the boundary conditions are included in this approach. 
Nevertheless, the Von Neumann analysis yields the same results as the 
approach followed here (see [49]). 

Ex.AMPLE 3.1. In order to illustrate the form of J, Sk and g;., we consider the 
one-dimensional problem on the interval [O,L ], where at the left and right 
boundary the velocity and the elevation are respectively prescribed, i.e. 

u(O,t)= uo(t), (3.21) 

t(L,t)= tL(t). 

Let the ordering of the dependent variables be given by 

Wj(t)= U2j(t) for j = l, ... ,N, (3.22) 

Wj(t)=Z2j-2N-1(t) for j =N + l, ... ,2N, 

":'here U21(t) and Z2;-1(t) approximate u(2j~,t) and t({2j - l)ilx,t), respec­
tively. Furthermor~, i1x=L/(2N+l). The values of W0(t)=u 0(t) and 
f!'2N + 1 =tL~t) are ~ven and occu.r in _the forcing term of the discretized equa­
tJ.on. For this ordenng the Jacobian J assumes the form given in Figure 3.6. 



I 
2.:n 

g g 

FIGURE 3.6. The form of the simplified Jacobian. 

29 

Starting from this J we find, according to (3.20), that Dk is of the form as 
given in Figure 3.7. A number written on a (anti-) diagonal denotes the value 
for all elements of the (anti-) diagonal. If an anti-diagonal and a diagonal cross 
through the same point then the values of the anti-diagonal and the diagonal 
are simply added. This only occurs if the elements of the anti-diagonal have 
the value -1/4 (see (3.24)). 



30 

I 

' 

I 

' 
I 

' 
2•- 1 ·-I .. ~ . .. 

2"-' -1 ~---.-..-------., 
J_ 
4 

I 

' 

I -, 

FIGURE 3.7. The structure of Dk. 

I 

' 

From thls structure we observe that at internal points Sk(F) is given by the 
simple fonnula 

1 I I 
(Sk(F)); =4JJ.k~· -2'- 1 +(I -2µ.k)Fj +4µ.kFJ +t I' (3.23) 

as for these points (g;,.)1 is zero. Furthermore, near boundaries we have 



31 

for j = l, ... ,2k - 1 - I: 
1 I 

(Sk(F))J = -4µkF -1+2k-I +(I -2µk)Fj 

1 
+4µkF}+2k-I +(giJJ 

for j =2k-I: 

1 1 
(Sk(F))1 =(l -2µdF1 +4µkFJ +t-• +(gi,)J 

for j =N -2k-I + 1, ... ,N: 
l 1 

(Sk(F))1 =4µkF}-2,_. +(l-2µdFj 

1 
+4µkF -J+2N+1-2>-> +(gi,)J 

for j =N + I, ... ,N +2k-I: (3.24) 
l l 

(Sk(F))J =4µkF -J +1+2N+2>-> +(I --zµk)Fj 

I 
+4µkFJ+2,_, +(gi,)J 

for j = 2N - 2k - 1 : 

1 l 
(Sk(F))1=4µkFJ-2,_. +(l -2µk)F1 +(gi,)J 

for j =2N -2k-I + l, ... ,2N: 
1 I 

(Sk(F))1 =4µkF}-2' '+(l-2µdFj 

I 
-4µkF -J+4N+2-2,_, +(gi,)J 

In order to let the error (3.18) tend to zero if tlx tends to zero, ~ is chosen as 
follows: 

1 d 
(gi,)1=2µk dt uo(t) for j = l, ... ,2k-J _ l, 

I d 
(gi,)1=4µk dt uo(t) for j =2k-I, 

(gi,)1=0 forj=2k-I+I, ... ,2N-2k- 1 -1, 

I d 
(gi,)j = 4µk dt rL(t) for j =2N -2k -I, 

I d 
(gi,)J = -zµk d/L(t) for j = 2N -2k - I+ 1, ... ,2N. D 

(3.25) 

From this example problem with boundary conditions given by (3.21 ), it is 
straightforward to find the smoothing for problems where at both boundaries 
the elevation or the velocity is prescribed or for problems where at the left and 
right boundary the elevation and the velocity are respectively prescribed. A 
suitable choice of µk is given by (3.45). 



32 

Notice that at a closed boundary (i.e. a U-boundary) the column sum of that 
part of Dk operating on the right-hand side of the continuity equation is zero 
(see Figure 3.7). As a consequence the column sum of the matrix Sk is one. 
This means that, in the case that the left as well as the right boundary is 
closed, the sum of the right-hand sides over the grid points is preserved. This 
property of the smoothing is essential for the conservation of mass (see also 
Section 3.4.4). 
The reader mal wonder what the structure of the mat~ Dk will be wh~n k is 
so large that 2 - l becomes of the same order of magmtude as N. In this case, 
the structure can still be found from (3.20) but in addition to its dependence 
on k it will also depend on N. As N varies in the case of a complex geometry 
we use an implicit smoothing operator when q is such that 2q - 1 ;;;;;,: N - 2. This 
operator is, for the one-dimensional problem, defined by 

(3.26) 

where D 1 is given in (3.20) and g,:= g1 in which we choose µ1 = µ, µ being an 
arbitrary parameter. In this case, Q(z) is of the form 

Q(z) 1 
1-1!:.z 

4 

(3.27) 

For the implicit operator a system of equations has to be solved with a tridiag­
onal matrix. 

3.6.3. Two-dimensional problems. For the two-dimensional case we proceed as 
follows. In this case, a simplified Jacobian is given by 

Jx+Jy, (3.28) 

where 

0 0 -go:!" 0 0 0 
J= x 0 0 0 J= y 0 0 -goJ (3.29) 

Hoox 0 0 0 Ho~y 0 

and where the submatrices H oOx and H 0oy follow again from the discretization 
(3.10.b) with constant depth H (i.e. Ho) for the x andy-direction, respectively. 
Starting from this Jacobian, the structure of the smoothing matrix will become 
complicated and consequently an expensive smoothing arises. Therefore, we 
applied one-dimensional smoothing in the x and y-direction, successively. This 
smoothing is defined in terms of Q (see 3.19) by 

S(F)=Q(2 ~Jx)(Q(2 ~]y)F+~)+gy, (3.30) 
gHo gH0 

where ~ and gy are correction terms defined similarly as m the one­
dimensional case (cf. (3.25)). 



33 

3.6.4. Analysis of smoothing procedures. Having developed our explicit smooth­
ing technique for one-dimensional and two-dimensional grid functions, and 
having shown its implementational simplicity, we will now proceed with ana­
lysing the effect of this particular smoothing procedure on the spectral radius 
of the Jacobian matrix associated with the SWEs. We start with a lemma 
characterizing the function Q(z)=Q(z2 ) introduced in (3.19). 

LEMMA 3.6.1. The function Q(z) for the smoothing (3.20) is given by the polyno­
mial 

(3.31) 

where Ti<-• is a Chebyshev polynomial of degree 2k - 1• 

PROOF. The result follows immediately (cf. (3.20)) if we can proof that Dk is 
generated by the polynomial 

1 
Dk =1(T2"-1(/ +2D1)-J), k~l. (3.32) 

This can be shown by induction as follows. Clearly, for k = 1 (3.32) is valid. 
Further, from (3.20) we have 

Dk+1 =4Dk(I+Dk), k~l; 

and consequently, on substitution of (3.32), we obtain 

Tt-•(/ +2D1)-/ Tt-•(l +2D1)-/ 
Dk+I =4 2 (/ + 2 ~ (3.33) 

Using Tt -1 =2(T~._, -1) in (3.33), (3.32) follows. 0 

In the following, we will use the term reduction factor, by which we mean the 
factor by which the spectral radius of the Jacobian matrix is reduced when 
smoothing is applied. A useful lower bound for this reduction factor is given 
in the subsequent lemma. 

LEMMA_ 3.6.2. On application of the smoothing procedure (3.30) with 
Q(z)= Q(z2), the spectral radius of the Jacobian (3.29) is at least reduced by 

1 

max (Q(-z2)z) 
O..:z..:J 

(3.34) 

PROOF. In order to derive the reduction factor, we compare the spectral radius 
of the smoothed Jacobian with the spectral radius of the non-smoothed Jaco­
bian. The smoothed Jacobian can be written in the form 

Q( (2tu)2 1.)Q( (2/:u)2 :f:.)(I +I) 
gH o x gH o y x 1 . 

(3.35) 

For stability, it is enougll. to consider the spectral radius of the smoothed Jaco­
bian as Ix, I1 and Ix +Jy are each similar to a normal matrix by the same 



34 

diagonal transformation matrix A=diag(A1,A2,A3), where 
A 1 =A2=(gH0 )114J and A3 =(gH0 )- 114 J. Here, the size of Ai corresponds 
with the size of the diagonal matrices of (3.29) (or (3.36)). Due to this similar­
ity property, the numerical integration by the Runge-Kutta method is stable in 
the L 2 norm if the eigenvalues of (3.35) multiplied by !1t are within the stabil­
ity domain drawn in Figure 3.5 (see [33, p.75 and p.79]). In the following, we 
will derive the eigenvalues of (3.35). Elaboration of (3.35) yields 

l ~ ~ =::J , (3.36) 

H 0 Q(-(2t:u)2oyoJ)Sx H 0 Q(-(2t:u)2oxo'°I)By O 

where 

Bx= Q(-(2t:u)2oxo'°I)ox, 5Y = Q(-(2t:u)2oyo])oy-

Solving the eigenvalue problem for this matrix, we find that the nonzero eigen­
values are determined by 

det[-gH0{Q(-(2t:u)2oyoJ)Q 2(-(2iix)2oxo'°I)ox8'°I + 

Q(-(2t:u)2oxo'°I)(/(-(2t:u)2oyoJ)oyo]}-r...211 =O. 

The matrices oxoI and oyoJ are normal and they commute. Hence, the eigen­
values are found to be 

/...= (~;;~ {Q(-f...J)Q\-r...;)r...; +Q(-/...;)Q\-A.J)A.J} (3.37) 

where /... and f...y are the eigenvalues of the matrices 2t:u v'o:Sf and 

21'.U M, respectively. These eigenvalues are real and positive and con­
tained in the interval [O, 1 ]. The reductism factor is found by dividing the max­
imum eigenvalue without smoothing (Q = 1 in (3.37)) by the maximum value 
with smoothing. This gives the ratio 

l 

max [/...; +f...JJ2 
0~:\,,\~1 

max [Q(-/...2)Q\-/...2)/...2 +Q(-/...2)Q2(-/...2)/...2]+ · 
O~:\,,A,~l y x x x y y 

As the numerator is equal to Vi. and the denominator is less than 

,/-2 2-.2 -2 2 2 
max V Q (-f...x)Ax +Q (-f...y)Ay, 

0~:\,,\~1 

we have that (3.38) is bounded below by (3.34).0 

(3.38) 

REMARK. The spectral radius of the Jacobian in case of the fourth-order space 
discretization is reduced by the same factor as in the case of second-order 
discretization, which can be shown by the following reasoning. The simplified 
Jacobian of the fourth-order discretization is of the form 



35 

(l -€ (2A.x)2 J2\T +(1- (2Ax)2 J2\-, 
gHo xl"x € gHo Y"Y' (3.39) 

where € = l/ 6 and lx and Iy are given in (3.29). Now, we obtain instead of 
(3.37) 

A=[(~~~ {Q(-A})Q\-1t;)(l +f >.;)2>.; + (3.40) 

Q(-A~)Q2(-Aj)(l +f 1tJ)21tJ }]+ 

A ratio similar to (3.38) can be derived using (3.40). The resulting reduction 
factor is again bounded below by (3.34). Hence, the reduction factor of the 
fourth-order accurate discretization is estimated by the same factor as the 
reduction factor of the second-order accurate discretization. We remark that 
(3.39) is not valid near boundaries. (In order to retain (3.39) near the boun­
daries, we apply (3.10.c) if possible and (3.10.b) otherwise. Furthermore, a 
similar discretization should be used to approximate ~x near the boundaries.) 
However, the influence on the reduction factor of this simplification in the 
analysis was not observed in the problems we have tested. 

THEOREM 3.6. l. Let f3 be the imaginary stability boundary of the classical 
Runge-Kutta method, i.e. /3=2Vl. Let the main terms of the SWEs dominate 
the spectral radius of the Jacobian matrix (i.e. the spectral radius of the Jacobian 
matrix p is given by p::::::::i( V 2gH max ) I 6.x, where H max is the maximum value of 
the depth in the computational domain). Then application of the smoothing gen­
erated by (3.31) to the SWEs leads for µ.k =I to the stability condition 

l::::.t<fi 2q ! VJ/ p. (3.41) 

PROOF. According !O Lemma 3.6.2, we have to find the maximum of Q(-z 2 )z 
for z E [O, l ], where Q is given by (3.31 ). For µ.k = I we have that (3.31) is equal 
to 

(3.42) 

(see [19 . The maximum of P2._ 1(-z 2)z for zE[O,l] is equal to the maximum 
of P , _ - z 2 z 2 for z E[O, l ], which in turn is equal to the maximum of 

-p2._ 1(z)P2."-i(z)z for zE[-1,0]. Substitution of (3.42) in the latter 
expression yields 

max 
-\.;;;;z.;;;;O 

Using the identity T 2• -1 =2(T~·-• -1), we have that (3.43) is equal to 

(3.43) 



36 

where T* =T2"-•(l +2z). The first square root term (cf. (3.42)) is at most one 
(see also [ 19]). The second is less than 4 V3 / 9, which follows from an elemen­
tary analysis. Hence, the reduction of the spectral radius of the smoothed 
Jacobian is at least 3 \13 2q / 4. 
For the full non-linear SWEs, we assume that the method is stable if a linear­
ized numerical model for the SW Es, with constant coefficients, is stable for 
every set of coefficients assumed somewhere in the domain in the non-linear 
numerical model (see also [33]). As the main terms of the SWEs dominate the 
spectral radius, we find, according to this approach, the stability condition 
(3.41) is found. 0 

The arguments given in the preceeding Remark lead us to the following corol­
lary. 

COROLLARY. The stability condition (3.41) holds also when the fourth-order space 
discretization is applied except that the spectral radius is now given by 
p~(7 / 6 V2gH max) / b.x. 

Due to the simple structure of Dk (cf. Figure 3.7) the number of operations is 
linear in q, whereas the maximum allowed time step increases exponentially 
with q. Thus a very efficient smoothing is constructed. 
In practical computations, P.k is chosen less than 1 in order to obtain diagonal 
dominancy in (3.20) for all k. The values used are given by 

P.k = 1-r<q+I-k>. (3.45) 

For this choice of P.k the constant 3V3 / 4 in (3.41) has to be replaced by 1. 
Explicit methods should satisfy the Courant-Friedrichs-Lewy condition. The 
CFL condition says that for an hyperbolic problem the convex hull of the 
domain of dependence of the exact solution at some point in space and time 
must be contained in the convex hull of the domain of dependence of the 
approximating solution at the same point. From (3.20), it can be shown that 
the influence domain of the explicit method increases exponentially with q. 
According to the CFL condition this increase is optimally exploited if the time 
step is also allowed to increase exponentially. As argued above this is the case, 
so that the numerical domain of dependence is as large as the physical domain 
of dependence of the PDE itself. 
Finally, we give a similar theorem for implicit operators. (The various quanti­
ties are defined in Theorem 3.6.1.) 

THEOREM 3.6.2. Let the main terms of the SWEs dominate the spectral radius of 
the Jacobian matrix. Then application of the implicit smoothing operator gen­
erated by (3.27) yields the stability condition 

flt <PvP. Ip. (3.46) 

PROOF. For the implicit smoothing generated by (3.27) we have to find the 
maximum of the expression z / (1+µ.z 2 /4) for z e[O, l]. This is 



37 

straightforward and leads to a reduction of the spectral radius of the Jacobian 
by a factor Vµ. By a similar reasoning as in the proof of Theorem 3.6.1, we 
arrive at the condition (3.46). D 

For any time step At, the parameters µand q of the implicit and explicit 
smoothing operator, respectively, can be chosen such that a stable method 
results. 
In practice, the bottom profile may change considerably over the domain. 
This may result in a too strong smoothing in shallow regions. Therefore, we 
have made f.Lk and µ (of the explicit and implicit smoothing, respectively) 
dependent on the depth. 

3.6.5. Accuracy. The local error introduced by the smoothing (3.19) can be 
investigated by considering at an internal point the expression 

(3.47) 

where 4> is a _smooth test function and 'l>j = 4>(J D.x ). Let Q (z) again be of the 
form Q(z)=Q(z 2 ), then the error (3.47) can be written as 

((Q(D1)-J)cp)j, (3.48) 

with D 1 given in (3.20). For small z, a Taylor expansion of Q(z) yields 

Q(z)= 1 + ddQ (O)z +f d2~ (O)z 2 + O(z 3). (3.49) 
z dz 

Furthermore, D 1 q, is given by 

(D '/>)·'"" (2ilx)2 ft(jD.x) (3.50) 
I '},...., 4 ax 2 • 

Substitution oJ (3.50) into (3.48) reveals that the error decreases quadratically 
w!_th D.x if dQ(z) / dz=;l=O. For the smoothing operator generated by (3.31), 
dQ(z) / dz is found to be 

dn- .i-, -ilr T •-•(1)-1 
~(0) = -2.i f.Lk(2k-1 )2 11 (1 + P.t 2 ) 
dz k = I I = l,lof.k 2 

= f µk4k-l_ 
k =I 

Hence, for f.Lk = 1 we find the local truncation error 

(3.51) 

((Q(Di)- /)4>)'1· = +(4q - l)(Ax)2 a2! (jb)+ O(Li.x4 ). (3.52) ax 
For the SWEs the magnitude of this error can be expressed in terms of the 
time step if the maximum allowed time step after smoothing is used. Evidently, 
the amount of smoothing needed in order to stabilize the method decreases 
with the time step and as a consequence the error due to smoothing decreases. 
The order by which this error decreases with the time step (see also [49]) 



38 

determines the order of accuracy of the smoothing. For the error (3.52) we 
prOl.."eed as follows. If we use the maximum _allowed time step in (3.41), then 
the resulting relation for /j.t and !:u: can be wntten as 

!:u: = ~t v'3 (p!:u: ), (3.53) 
2q/3-4 3 

where the factor p!:u: is, according to the definition of p in Section 3.6.l, 
independent of !:u:. Substitution of (3.53) into (3.52) yields 

((Q(D 1)-J)qi)1= ~~ 2~; I ( ~ f(pt.x)2 ;:t (j6.x)+0((6t)4). (3.54) 

Hence, the local error decreases quadratically with At and therefore the 
smoothing is second-order accurate in time. According to (3.30) the expression 
(3.54) corresponds to the truncation error introduced by smoothing the first 
momentum equation and the continuity equation. Its analogue for the y­
direction is introduced by smoothing the second momentum equation and 
again the continuity equation. 
In a similar way, the truncation error introduced by the implicit operator gen­
e1ated by (3.27) can be derived. For this operator we find the derivative of 
Q(z) to be simplyµ/ 4. Consequently, the error is 

((Q(D1)-/)</>)1={(t:u:)2 ~:~ (j!:u:)+O((!:u:)4 ). (3.55) 

Using the maximum allowed time step according to (3.46) we obtain 

((Q(D 1)- /)<f>)1 = ~( ~ )2(p!:u: )2 ~) (j!:u:) + O((b.t)4). (3.56) 

Again we observe that the smoothing is second-order accurate in time. This 
truncation error and its analogue for they-direction are introduced by smooth­
ing the respective equations in exactly the same way as the case of the explicit 
smoothing. 

3. 7. Discretization of the weakly-reflective boundary conditions 
In this section, details will be given on the discretization of the weakly­
reftective boundary conditions as given by (2.4) and (2.5). 
The discretization of (2.4) and (2.5) at a left boundary is given by 

and 

unew +y u- - uotd +Vi/ii E(znew - zold) = (<t>Urew 
1new _told (3.57) 

(3.58) 

r~ective~. Here,. E is the shift operator as defined in Section 3.3 and 
cl> and cl> respectively are the value of U and the value of z as given at the 
boundary. The superscripts in (3.57) and (3.58) depend on the stage of the 



39 

four-stage Runge-~utta time integrator in which the various quantities are 
computed (see Section 3.5). For the first stage new is at time level n and old at 
time level n - l. In the other stages new is at time levels n + I / 2, n + I / 2 
and n + 1, respectively, and old is at time level n. 
1:'he weakly-reflective boundary conditions (2.4) and (2.5) have also implica­
t~ons for the boundary treatment of the stabilization. But in the present ver­
s10n we have refrained from implementing this treatment, because of complex­
ity. Nevertheless, we found in the experiments that the implementation of 
(3.57) and (3.58) results in a satisfactory weakly-reflective behaviour of the 
open boundaries. 

3. 8. Drying and flooding 
In many problems, it occurs that during the tide some part of the domain 
becomes dry land. Such dry flats, if not handled correctly may cause numerical 
instabilities. Therefore, following the ideas of Stelling [38, p. 153], prior to 
every time step the following actions with respect to drying and flooding are 
performed: 
1. In all velocity points it is checked whether 

H<Hmin (3.59) 

where H is the total depth and H min is an a-priori given minimum depth. 
2. If the answer of the check in 1. is true at a certain velocity point, then the 

velocity at this point is set to zero and the point will be treated as a closed 
boundary. 

Furthermore, as it is possible that in the performance of the time step (i.e. in 
the second, third or fourth stage of the time integrator, see (3.16)) the depth 
becomes very close to zero or even negative, the following procedure is applied 
throughout the stages. 
a. If after the calculation of H it appears that H <t: at certain velocity points, 

where t: is a small quantity, then we set H=t: at these points. This avoids 
that the depth becomes negative during the time step and furthermore it 
avoids overflow during the division by H in the bottom friction term. This 
approach is different from that of Stelling. In the latter case, such a point is 
treated as a closed boundary point. 

b. In shallow regions, i.e. where H is small, the factor 11tg v U2 + V2 I ( C2 H), 
occurring in the bottom friction term, may become very large. (In that case, 
the flow is slowed down strongly.) The classical Runge-Kutta method is 
unstable if this factor is greater than 2.78 (see Figure 3.5). Therefore, we test 
whether the factor is greater than 2 (below we explain why we use 2 instead 
of 2.78). If at a certain velocity point the outcome of the test is true then 
we set the factor at this point equal to 2. We do not want to set this factor 
equal to 2. 78, because the amplification factor o_f points on the boundary of 
the stability domain (2.78 is on the boundary) is equal to one, whereas the 

amplification factor is almost minimal if we set f,,.tg v U2 + V2 I ( c2 H) 



40 

equal to 2. A minimal amplification factor is to be pref erred because it 
represents better the strong damping behaviour of the bottom friction term 
in very shallow regions. 

4. VECTORIZATION ASPECTS 

In this section, we will describe the vectorization aspects of the SWEs solver. 
The subjects that will be dealt with are: the choice of the time-integration 
method and its stabilization, the boundary treatment, the drying and flooding 
procedure and the data structure. 

4.1. Preliminaries 
On the CYBER 205 we used the language FORTRAN 200 [I], which contain 
(vector) extensions with respect to FORTRAN 77. In this section, some typi­
cal vector programming features of this language will be briefly described. 

Vectors. On the CYBER 205 a vector is defined as a series of values that are 
stored in contiguous memory locations. Vectors can be referenced by so-called 
vector references or by descriptors. A vector reference or descriptor specifies the 
following information: the first element of the vector, which must be an array 
element, the length of the vector, and the data type of the vector. 

ExAMPLE 4.1. Declare an array by DIMENSION AC10). Then the vector refer­
ence, compactly denoted as A(3;5), refers to the vector 
A(3),A(4),A(5),A(6),A(7). 
Furthermore, declare a descriptor by DESCRIPTOR ADESC. Then by the 
assignment ASSIGN ADESC, AC3;5) we achieve that ADESC denotes the same 
vector as AC3;5) .D 

Some "DO-loops" can be rewritten by using these vector references or descrip­
tors. 

EXAMPLE 4.2. The "DO-loop" 

DO 1 !=1,5 
A(I)=A(I)+A(S+I) 

CONTINUE 

can be written in the form 

AC1;5)=AC1;5)+AC6;5> 

using vector references, or in the form 

DESCRIPTOR ADESC1, ADESC2 
ASSIGN ADESC1, AC1;5) 



ASSIGN ADESC2, AC6;5) 
ADESC1=ADESC1+ADESC2 

using descriptors. D 

41 

In some cases, a temporary vector is needed for an intermediate result. Using 
descriptors, it is possible to define this storage dynamically. 

EXAMPLE 4.3. A dynamical vector of length N is defined by 

ASSIGN ADESC, .DYN.N D 

Gather and Scatter operations. "DO-loops" in which indirect addressing is 
used, do not vectorize well on the CYBER 205 as the data are not stored in 
contiguous memory locations. Therefore, there exist optimized gather instruc­
tions which create vectors from these data on which vector operations can be 
performed. Furthermore, optimized instructions exist which scatter elements 
of a vector to non-contiguous memory locations. For our purpose, gather and 
scatter operations are extremely helpful. We will show by some examples what 
the effect of these operations is. 

EXAMPLE 4.4. In standard FORTRAN the gather operation reads 

DIMENSION V1(5),U1(4),I1(4) 
DO 1 I=1,4 

U1C O=V1 (11( I)) 

CONTINUE 

Due to the indirect addressing this "DO-loop" does not vectorize automati­
cally. However, there exists an optimized alternative for this "DO-loop": 

DIMENSION V1(5),U1(4),l1(4) 
U1C1;4)=Q8VGATHRCV1C1;4),I1C1;4);U1C1;4)) 

The scatter operation given in standard FORTRAN is 

DIMENSION V1(5),U1(4),l1(4) 
DO 1 1=1,4 

V1C I 1 Cl ))=UH I) 
CONTINUE 

This operation is optimized by 

DIMENSION V1(5),U1C4),I1(4) 
V1C1;5)=Q8VSCATRCU1C1;4),I1C1;4);V1C1;5)) 



42 

Notice that the gather and scatter operations are each others inverse when the 
same index array I 1 is used. D 

Bit vectors An important feature of the FORTRAN 200 language is the availa­
bility of the data type BIT. Bit vectors are important in the handling of "IF 
statements". In this case bit vectors are used in connection with WHERE con­
structions. 

ExAMPLE 4.5. Consider the "DO-loop" 

DIMENSION U1C100),V1C100) 
DO 1 I=1,100 

IF CU1(I) .LT •• 0 ) THEN 
V1CI)=100. 

ELSE 
V1CI)=-100. 

END IF 
1 CONTINUE 

Such a "DO-loop" is not vectorized automatically by the FORTRAN 200 
compiler. However, using a WHERE construction this is vectorized by 

DIMENSION U1C100),V1C100) 
WHERE CU1C1;100) .LT .• 0) 

V1C1;100)=100. 
OTHERWISE 

V1C1; 100 >=-100. 
END WHERE 

An equivalent form is 

DIMENSION U1C100),V1C100) 
BIT BITV(100) 
BITVC1;100)=U1(1;100) .LT .0 
WHERE (BITVC1;100)) 

V1C1;100)=100. 
OTHERWISE 

V1C1;100)=-100. 
END WHERE 

In the latter case the information stored in the bit array BITV can be used 
several times. D 

Timings. To give some impression of the performance of the CYBER 205, tim­
ings and relative costs (with respect to a vector addition) will be given of some 
elementary operations. The timings are given for N=1 OOO in full precision. 



Declaration 
DIMENSION UCN),V(N),W(N),INDCN) 

Instruction 

UC1;N)=VC1;N) + WC1;N) 
UC1;N)=VC1;N) * WC1;N> 
UC1;N>=CVC1;N) + WC1;N))*C 
UC1;N)=VC1;N> I WC1;N) 
UC1;N)=SQRTCVC1;N>;UC1;N)) 
UC1;N)=Q8VGATHRCVC1;N), 

INDC1;N);UC1;N)) 

UC1;N)=Q8VSCATRCVC1;N), 
INDC1;N);UC1;N)) 

timings 
10-5 sec 

2.1 
2.1 
2.1 

12.6 
12.6 

3.6 

3.6 

relative 
costs 

1.0 Cby def.) 
1.0 
1.0 
6.0 
6.0 

1. 7Xnp for F.P. 
3.4Xnp for H.P. 

1. 7X np for F.P. 
3.4Xnp for H.P. 

TABLE 4.1. Timings of some elementary operations. 

43 

In general, a vector instruction speeds up linearly with the number of vector 
pipes used (denoted by np in the table). Furthermore, it speeds up by a factor 
two when changing from full precision (F. P.) representation (14 decimal 
digits representation ) to half precision (H.P.) representation (7 digits 
representation). These properties do not hold for operations acting on non­
contiguous data such as gather and scatter operations. This explains why the 
gather operation in Table 4.1 becomes, relatively, more expensive with respect 
to a vector addition, when changing from full precision to half precision or 
when more vector pipes are used. 

4.2. Explicit or implicit methods 
In this section, we motivate the choice we made for the numerical time integra­
tion of the SWEs. In Table 4.2 we have indicated the vectorizability of the 
various operations occurring in time integration methods. 



44 

type of right-hand side construction of taking linear solving systems 

time integrator evaluation Jacobian matrix combinations of of equations 
right-hand sides 

implicit fully fully fully partly 

(if occurring) 

explicit fully - fully -

TABLE 4.2. Vectorizability of operations in time integration methods. 

The words "fully" and "partly" denote that the operation at hand is fully or 
partly vectorizable, whereas "-" denotes that the operation is not occurring in 
the time integrator. 
In the table it is indicated that solving a system of algebraic equations is only 
partly vectorizable. This is mainly due to the inherent recursiveness of the 
solution process of such systems. Moreover, it is difficult to avoid in such a 
process operations on non-contiguous data and operations on vectors of 
moderate length (say less than 50 elements). On the CYBER 205, these opera­
tions do not accelerate when we change from full precision to half precision 
calculations or when a computer with more vector pipes is used. Hence, it is 
this type of operations which causes an upper limit to the performance of an 
implicit method on a CYBER 205. For this reason, we decided to use an expli­
cit method which does not have such a limit. A drawback of explicit methods 
is that the time step may be restricted for stability reasons. This drawback may 
become important if the variation of the solution in time is small. Therefore, 
we developed the fully vectorizable stabilization technique as discussed in Sec­
tion 3.6 by which the stability condition, as we have shown, is relaxed consid­
erably. From the above discussion it is clear that, on the CYBER 205, the 
explicit approach is to be preferred. 

4.3. Boundary treatment 
As we assume that the solver should be able to handle arbitrary domains, the 
vectorization of the boundary treatment needs special attention. First we will 
describe how the differences are calculated at internal points and thereafter 
how this is done at boundary points. 
Consider the domain given in Figure 4.1, which is covered by a rectangular 
grid. 



45 

2NY ,, 
I~ 

" 

Ji , 
,; " I.' 

2 
2 2NX 

FIGURE 4.1. Example domain. 

The variables defined at position (i,j) on this grid (see also Figure 3.1 ) are 
stored at location {[i / 2]-1 }NY +U / 2] of the associated array, where NY as 
well as NX are given in Figure 4.1 and [.] denotes the integer part function. 
Hence, the points are counted in the y-direction. We will call this storage 
structure a rectangular storage structure (see also Section 4.5). In the following, 
we denote by NN the total number of components of one dependent variable, 
i.e. NN =NXXNY. 
Using this storage structure, the calculation of x and y-differences vectorizes 
well, i.e. the operation can be performed on vectors of length determined by 
the number of grid points NN. Long vectors are to be preferred because 
start-up times of the vector instructions become negligible in this case. An x­
difference of U is calculated by 

DIMENSION UXCNN),UY(NN),U(NN) 
UX(1;NN)=(U(1+NY;NN)-U(1-NY;NN))/(4*DX) 

and a y-difference is calculated by 

UYC1;NN)=(U(1+1;NN)-U(1-1;NN))/(4*DX) 

The boundary treatment is performed using so-called index arrays. Such an 
array contains all locations of points which need the same boundary treat­
ment; for example the locations of all left closed boundaries. Using these 
arrays, the boundary points and, if needed, its neighbours can be gathered 
from the computational array. Thereafter, the boundary operations can be per­
formed with vector instructions on the gathered arrays and, finally, the results 
are scattered into the result array. 
In the following, we will describe the implementation of the discretization of 
(Hu)x given by (3.10). We assume that His already calculated at U-points. 



46 

Due to the staggering (see Figure 3.1) and the way the components of the 
dependent variables are stored in the arrays (see above), a second-order central 
difference is computed in all points by the operation 

DIMENSION HUXCNN),HU(NN) 
HUXC1;NN)=(HU(1+NY;NN)-HUC1;NN))/(2*DX) 

A straightforward implementation of the fourth-order discretization of (Hu)x 
together with its boundary treatment is given by 

c =========================================================== 
C DESCRIPTION OF VARIABLES 
c 
C HUCNN) ARRAY CONTAINING H*U 
C HUX(NN) RESULT ARRAY CONTAINING DCUH)/DX AT EXIT 
c 
c 
c 
c 
c 
c 

HUXH 
HUL1H 
HUR1H 
HUL2H 
HUR2H 
I1CI1T> 

DESCRIPTOR; DUMMY VARIABLE 
DESCRIPTOR; DUMMY VARIABLE 
DESCRIPTOR; DUMMY VARIABLE 
DESCRIPTOR; DUMMY VARIABLE 
DESCRIPTOR; DUMMY VARIABLE 
INDEX ARRAY INDICATING THE 

C HAS TO BE APPLIED 
POINTS WHERE (3.10.b) 

C ILCILT) INDEX ARRAY INDICATING THE POINTS WHERE C3.10.c) 
C HAS TO BE APPLIED 
C IRCIRT) INDEX ARRAY INDICATING THE POINTS WHERE THE 
C RIGHT-HAND ANALOGUE OF (3.10.c) HAS TO BE APPLIED 
c =========================================================== 

C1=27./24. 
C2=-1./24. 
C3=1./C1 
C4=1./C1 
CS=C2/C1 

* 1/C2*DX) 
* 1/C2•DX) 
* 1/C2*DX) 
* 25./24. * 1/C2*DX) 

c -----------------------------------------------------------
c CALCULATION OF CENTRAL DIFFERENCES USING ONLY TWO POINTS 
c -----------------------------------------------------------

HUXC1;NN>=CHU(1+NY;NN)-HUC1;NN))*C1 
c -----------------------------------------------------------
c SAVING OF CENTRAL DIFFERENCES NEAR BOUNDARIES 
c -----------------------------------------------------------

ASSIGN HUXH,.DYN.I1T 
HUXH=Q8VGATHRCHUXC1;NN),I1C1;I1T);HUXH) 
ASSIGN HUL1H,.DYN.ILT 
ASSIGN HUL2H,.DYN.ILT 
HUL1H=Q8VGATHRCHUX(1+NY;NN),ILC1;ILT);HUL1H) 
HUL2H=Q8VGATHRCHUXC1+2*NY;NN),ILC1;ILT);HUL2H) 
ASSIGN HUR1H,.DYN.IRT 



ASSIGN HUR2H,.DYN.IRT 
HUR1H=Q8VGATHRCHUXC1;NN),IR(1;IRT);HUR1H) 
HUR2H=Q8VGATHR(HUX(1-NY;NN),IRC1;IRT);HUR2H) 

c -----------------------------------------------------------
c CALCULATION OF FOURTH-ORDER DIFFERENCES 

c -----------------------------------------------------------
HUX C 1; NN )=HUXC 1 ;NN )+(HU( 1 +2*NY; NN )-HU C 1-NY; NN) )*C2 

c -----------------------------------------------------------
c CALCULATION OF DIFFERENCES NEAR BOUNDARIES USING SAVED 
C CENTRAL DIFFERENCES 

c -----------------------------------------------------------
HUXH=HUXH*C3 
HUXC1;NN)=Q8VSCATR(HUXH,I1C1;I1T);HUXC1;NN)) 
HUL2H=C4*HUL1H+C5*HUL2H 
HUXC1;NN)=Q8VSCATR(HUL2H,ILC1;ILT);HUXC1;NN)) 
HUR2H=C4*HUR1H+C5*HUR2H 
HUXC1;NN)=Q8VSCATR(HUR2H,IRC1;IRT);HUXC1;NN)) 

47 

In this approach, an extra index array I 1 is needed for the application of 
(3.1 O.b ). The index arrays have to be constructed every time step, due to the 
drying and flooding. Hence, it is important to minimize the number of index 
arrays. This can be accomplished by factorizing the discretization, which will 
be described in the subsequent section. Using this factorization, only 12 index 
arrays are needed. These result from the three boundary types, viz. elevation, 
velocity or closed boundary, which can each occur at four boundary locations, 
viz. at the left, at the right, at the bottom or at the top (see Figure 3.2). 

4.3.1. Factorization of discretizations. For the numerical approximation of a 
term of the equations the location of the computational point, under con­
sideration, in the domain determines which variant of the discretization should 
be used (e.g. the fourth-order, the second-order or the one-sided variant). In 
general, it is needed to know the position of the point with respect to the 
boundaries. However, using the factorized form the only information needed is 
the location of the boundaries themselves. As a consequence the number of 
index arrays can be minimized and the programming of the discretizations is 
simplified. 
For example, we consider again the discretization (3.10.a). This discretization 
can also be written in the factorized form 

[(Hu)x]=(l +aE-2)(1 +aE2)/3(E-E- 1 )HU, 

where a and f3 follow from 

a/3= -1/24X I/ (2~), 

(1 +a2 -a)/3=27/24X1 / (2iix). 

(4.1) 

(4.2) 

Obviously, there are two solutions a±= -13+2 v'42. Here, we choose a=a+, 



48 

because it is small in modulus with respect to 1 and consequently we have 
diagonal dominance in the factors (1 +a£±2). In addition to the factorization 
(4.1), (3.10.c) can be factorized in the form 

[(Hu)xl =((l +a+a2)+aE2)/3(E- E- 1 )HU (4.3) 

with a and f3 as given in (4.2). The factors of (4.1) are applied successively, 
each with a boundary treatment. This treatment is such that at the end we 
have (3.10.a), (3.10.b), (3.10.c) and the analogue of (3.10.c) at the right boun­
dary at the appropriate places. To be more precise, we perform successively 
the operations (R I and R2 are used for intermediate results) 

Rl=/3(E-E- 1)HU, 

R2=(1+aE2)R1. (4.4) 

At the left boundary, we overwrite R 2 by 

R2=(y+l3E2)R 1. 

The values of the constants y, /3 and below of (, 1J, 8, " are given at the end of 
this section and are found by comparing the resulting boundary treatment of 
the factorized form with the discretizations such as given in (3.10). 
Successively, at the right boundary, we overwrite R 2 by 

R2=«:R 1. (4.5) 

The order in these operations is important because the effect of this particular 
sequence is that the last equation holds also in the case where there is only one 
computational point between two boundaries. Thereafter, we perform 

[(Hu)x]=(l +aE-2)R2. 

At the right boundary, this is followed by 

[(Hu)xJ =(11+fJE-2)R 2 

At the left boundary, we finally evaluate 

[(Hu)xJ=icR2. 

After these operations we obtain (4.1) C= (3.10.a)) in the interior. Further­
more, we have at the left boundary 

[(Hu)x]=ic(y+l3E2)R 1, 

and at the right boundary (notice that R2 is given by (4.5) at the right boun­
dary and by (4.4) at a point adjacent to this boundary) 

[(Hu)x]=(11(+8E- 2(1+aE 2 ))R1=(TJ(+8a+8E-2 )R1. 

Furthermore, in the case where there is only one point between two boundaries 
we have 



49 

Comparing these resulting equations with (4.3), its analogue at the right boun­
dary, and with (3.10.b ), the following conditions have to be satisfied: 

K"(= 1 +a+a2 

K8=a 

'l)t+Oa= 1 +a+a2 

O=a 

KE:= l I f3 x 1 I (26.x) 

(4.6) 

A solution of these equations is O=a, y= l +a+a2, 8=a, €= 1 / ({3 26.x), 
1J=(l +a)/€, 1e= 1. We do not know whether there are better choices, but 
for this solution the factors are also diagonal dominant at the boundaries. 

4.4. Drying and flooding 
The drying and flooding procedure, described in Section 3.8, may be rather 
time consuming due to tests which have to be performed to determine the 
location of the boundary. Hence it is important to vectorize this procedure. Bit 
arrays play an important role in this vectorization. We will treat this again by 
an example. For simplicity we consider the one-dimensional case. 
Suppose that, after a certain time step, the geometry is as given in Figure 4.2. 

~->;;;: .... ·.·.·. 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 

FIGURE 4.2. Geometry after a certain time step. 

We assume that at the left boundary (i.e. point 1) the velocity is prescribed 
and at the right boundary the elevation is prescribed (i.e. physically in the 
middle between point 14 and 15 ). Condition (3.59) is checked by the state­
ment 

BITDRC1;NX)=HC1;NX) .LT. HMIN 

where NX = 15 in this example. The bit array BITDR contains the following 
information after this check 

0 0 0 0 1 0 1 0 0 0 0 ? 

where the question mark indicates that the result of the check is undefined. 



50 

The check is undefined for points outside the computational domain such as 
point 15. Furthermore, a bit array BITOUT is constructed which has elements 
1 for velocity-boundary points and for velocity points that are outside the 
computational domain during the complete simulation. The elements of this 
bit array for the geometry drawn in Figure 4.2 are given by 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Combining these two bit arrays, 

BITHC1;NX)=BITDRC1;NX) .OR. BITOUT(1;NX) 

1 0 0 0 

+ * 
1 0 0 0 0 0 

+ * * 
+ 

In this array, we want to determine the location of the left boundaries, indi­
cated by +, and the location of the right boundaries, indicated by *. We per­
form now 

BIT2C1;NX)=BITHC1;NX) .XOR. BITHCO;NX) 

which results in 

?1001000 1 0 0 0 

Combination of BIT2 and BITH gives 

BIT3C1;NX)=BIT2C1;NX) .AND. BITH(1;NX) 

with elements 

? 0 0 0 1 0 0 0 0 1 0 0 0 0 

We have now obtained I bits at right boundary locations. As the first point 
cannot be a right boundary the corresponding first element is set to zero. The 
index array follows from: 



51 

LIND = Q8SCNT(BIT3C1;NX)) 
C LIND=3 

INDRC1;LIND)= Q8VCMPRSCINDC1;NX),BIT3(1;NX);INDRC1;LIND)) 
C CONTENTS OF IND 

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
C CONTENTS OF INDR 
c 5 10 15 

~e first statement counts the number of l bits and stores it in LIND, i.e. 3 in 

this case. The ~econd statement compresses the elements of the array IND indi­

cated by the bit array BIT3 into INDR. 
If we now perform 

BIT3C1;NX)=BIT2(2;NX) .AND. BITH(1;NX) 

then BIT3 contains 

0 0 0 0 0 0 1 0 1 0 0 0 0 ? 

BIT3 has 1 bits at left boundary locations. Again the question mark should be 

replaced by a zero because at this place no left boundary can occur. In the 

same way as before, we now find the index array INDU 1; LIND) with ele­
ments 

8 10 

It should be noticed that INDU I) and INDRC I) respectively give the start 

and end point of a row of "wet" points. Prior to the time integration, index 

arrays are constructed giving the indices of the open boundaries. These index 

arrays are now used to mark the indices in INDL and INDR which correspond 

to open boundaries. Once this is performed, the non-marked indices represent 

closed boundaries which can be derived straightforwardly from INDL and 
INDR. 

4. 5. Data structure 
In order to obtain an optimal performance of the solver on the CYBER 205 it 

is important to consider the data structure carefully. A computation on a rec­

tangular domain (see Section 4.3) is to be preferred from a vectorization 

stand-point. However, often the geometries are very complex, which may lead 

to a substantial overhead in the computational costs if the domain is simply 

covered by a rectangle. Therefore, we considered in [50} a number of tech­

niques to reduce this overhead (see also [41]). The essence of these techniques 

is that an x and any-ordering is constructed for the computational arrays. If 

the arrays are ordered according to the x-ordering, then the x-differences can 

be calculated efficiently. Likewise, if the arrays are ordered according to they­

ordering, then the y-differences can be calculated efficiently. These two 



52 

orderings imply that during the performance of the right-hand side evaluation 
reorderings have to be performed to change from x-ordering to y~ordering ~nd 
vice versa. The x and y-ordering should be such that the reordenng operat10n 
is as efficient as possible. 
We have refrained from implementing such a technique as the geometries 
encountered in many practical problems can be enclosed in rectangular region 
with only introducing a relatively small number of dummy grid points. 
Nevertheless, such a technique can be implemented without much effort. 

4.6. On the computational costs of the CYBER 205 code 
In this section, we discuss the computational costs of the numerical method 
implemented. It appears that the CPU (Central Processing Unit) time per grid 
point per time step depends on the number of grid points in the actual appli­
cation. In order to quantify this dependence, we have performed computations 
on various grids for a square geometry. At the left and right boundary of this 
square the velocity and the elevation are respectively prescribed, whereas the 
upper and lower boundary are closed. The conditions at the open boundaries 
are time dependent. In Table 4.3, we give the timings of the computations 
including smoothing (q =3 in (3.20)). 

type of 

operation 

UPDBC 

CHECK 

ADAP 

TIM EST 

TOTAL 

N=20X20 N=40X40 N =80X80 N ~· 160X 160 

CPT CPT CPT CPT CPT CPT CPT CPT CPT CPT CPT 
V'N N ViV N ViV N 7N 

10-'s 10-•s 10-•s 10-3s 10-•s 10-•s 10· 3s 10·-•s 10-6s 10 3s 10·•_, 

.43 2-1 LI .68 1.7 .4 1.2 1.4 .18 2.2 1.4 

.24 1.2 .6 .28 .7 .2 .44 .55 .07 1.0 .63 

1.85 9.3 4.6 2.6 6.5 1.6 5.0 6.3 .78 11. 6.8 

28.0 14.0 70.0 43.2 !08. 27.0 100. 125. 15.6 320. 200. 

30.5 152. 76-3 46.6 116. 29.1 107. 134. 16.7 334. 208. 

TABLE 4.3. Timings for various grids per time step in case of 
a fourth-order space discretization. 

CPT 
N 
10·•., 

.086 

.039 

.43 

12.5 

13.1 

The number of grid points (N) is chosen 20X20, 40X40, 80X80 and 160X 160 
in these runs. In the first column, the timed operations are specified. UPDBC 
computes the values at the boundaries at the new time level from a sine series 
(see Section 5.2.2), CHECK checks prior to every time step whether the 
~eometry ha~ been changed. since the previous time step, ADAP adapts the 
mdex arrays if the geometry 1s changed, and TIMEST performs the actual time 
~tep. !he next ~our columns give the data corresponding to the grid specified 
m their respective headers. Each of these columns consists of three sub­
columns. In the first subcolumn the observed computation times (indicated by 
CPT) o~ the v~ous operatio~s are_ listed. In order to compare these values for 
the vanous gnds, we have given m the second subcolumn the computation 



53 

times divided by the square root of the number of grid points and in the third 
subcolumn the computation times divided by the total number of grid points. 
(Note that the square root of the total number of grid points gives, up to a 
constant, the number of boundary points.) 
Globally, we observe from this table that the computation speed drops sub­
stantially if the number of grid points decreases; for the grid with 400 points 
the (overall) speed is more than 5 times smaller than for the grid with 25600 
points. Furthermore, we observe that we can distinguish operations whose 
costs increase linearly with Vii (e.g., UPDBC and ADAP), and operations 
whose costs increase linearly with N. 
In accordance with this observation we assume that the total computation time 
of the method per time step is determined by an expression of the form 

a+bVN +cN, (4.7) 

where a,b and c are constants. A least squares fit of (4.7) to the values for the 
total computation times given in the table yields 

a=22576. 10-6 , b=I56.22 10-6 , c=ll.24 10-6• (4.8) 

In Figure 4.3, we have drawn the curve of the CPU time per grid point per 
time step using the coefficients given by ( 4.8). Hence, the generating formula is 
obtained by (4.7) divided by N. Furthermore, the values given in Table 4.3 are 
indicated in Figure 4.3 by the symbol +. 

~ 

~ 
i:: 
0 Ci 
~ 
"' 0 ... 
u 
'§ 
i:: :.::, 
<; 

" h 
t; 
i 

-I '',, 
\ 

i \ 

JI '"--
·1 ------------------·----~----·-

3 18 21 24 ~7 3U 

--> N (in thousands) 

FIGURE 4.3. Plot of the CPU time per time step per grid point. 

This figure shows that the computation speed is close to its maximum if the 
number of grid points is larger than say 4000. For smaller values the start-up 
times slow down the speed significantly. 

Apart from the measurements listed in Table 4.3, the value of c can also be 
obtained by counting all vector operations in the code, which act on vectors of 



54 

length N. As a unit for measuring the costs of the various vector operations 
we used a vector addition (cf. Table 4.1). It turned out that the code con­
tained 1020 of such unit vector instructions per time step. As a unit vector 
instruction in half precision produces one result per 10 nano seconds, we are 
led to the value 10.2 10-6 for c. This value is within 10% of the observed 
value. 
Furthermore, we have computed the megaflop rate of the code. Therefore, we 
counted the number of floating point operations. This number is about 3.3 107 

for the 160X 160 grid. The time needed for these operations is found in the 
table, i.e . .334 seconds. Hence the code runs at about 100 megaflops. 

In addition to the timings in Table 4.3, we performed the following computa­
tions on the 160X 160 grid: 

(i) without smoothing, 
(ii) without smoothing and second-order space discretization, 
(iii) case (ii) on a two-pipe CYBER 205. 

Control Data Corporation is greatly acknowledged for offering us the oppor­
tunity to perform case (iii). The results are given in Table 4.4. 

N = 160X 160 

type of CPT CPT 
N 

run 10-3s 10-6s 

from Table 4.3 334 13.1 
case (i) 177 6.9 
case {ii) 139 5.4 
case (iii) 79 3.1 

TABLE 4.4. Timings per time step for the 160 X 160 grid 

Hence, the method is almost twice as cheap when smoothing is not used. 
However, the time step must be chosen considerably smaller, which offsets the 
advantage. Furthermore, the code speeds up by about 20% when (in addition) 
second-order differences are used. Finally, the speed up of the latter method 
using a two-pipe CYBER 205 (instead of a one-piper) confirms our expectation 
that the method becomes almost twice as fast when changing from a one-pipe 
to a two-pipe CYBER 205 (see Section 4.2). 



55 

5. THE PROGRAM SYSTEM 

5.1. The system parts 
The system consists of three program parts: the INPUT PROCESSOR, the 
SOLVER and the OUTPUT PROCESSOR. The flow chart of the system is 
given schematically in Figure 5.1. 

INPUT 
DATA 

INPUT 
PROCESSOR 

SOL/NP TI NEWDATA SOLVER TIHIS 
IN PREP FLOW 
TERM SOLREP 

FIGURE 5.1. Flow of the system. 

OUTPUT plots 
PROCESSOR 

The INPUT PROCESSOR is an interactive program running on the front end 
of the CYBER 205. By this program part, the user can specify his problem. 
The input for this part is given by means of two files: 
INPUT This file is connected to the terminal by the INPUT PROCES­

SOR. By means of this file the user can give input to the pro­
gram. The input consists of answers to questions written by 
the program to the terminal display by means of the con­
nected file TERM. These questions deal with the data needed 
to define the problem and with the control of the INPUT 
PROCESSOR. 

DAT A This file contains data defining the problem specified by the 
user in a previous run of the INPUT PROCESSOR. The file is 
obtained by renaming the file NEWDATA, which was created 
in the previous run, to DATA. The input on DATA is read by 
the program and written to the terminal display part by part. 
The user can change this data and thereby create a new 
model. It should be noted that the INPUT PROCESSOR can 
be executed without this file giving all input by means of the 
file INPUT. 

The INPUT PROCESSOR generates four files: 
SOL/NP This file contains job control statements and input for the exe-

NEWDATA 

IN PREP 
TERM 

cution of the SOLVER. 
All user-given input is written on this file. It is of the same 
format as the file DATA. On renaming it to DATA, the user 
can create a related model in a convenient way. 
On this file a report of the user-defined problem is written. 
This file is used by the program to write questions and data to 
the terminal display. 

The SOLVER, running at the CYBER 205, performs the actual computation 
and generates three files: 
TIHJS This file contains time-history data at user-specified space 



56 

FLOW 

points. It is only generated if time histories are requested by 
the user. 
This file contains flow-field data from the flow at the end time 
of the simulation and from the flow at user-specified times 
during the simulation. 

SOLREP On this file a report of the simulation is written. 

The OUTPUT PROCESSOR, running at the front end, generates plots of the 
time-history data and vector plots of the flow-field data. 
In the following sections the program parts will be described in more detail. 

5.2. The INPUT PROCESSOR 
The input for the INPUT PROCESSOR consists of six parts: 

the domain definition, 
specification of the boundary conditions, 
initialization of the U, V and Z-field, 
definition of the depth and Manning values, 
definition of problem and integration parameters, 
definition of output parameters. 

The Manning values, which are not mentioned before, are used for the calcula­
tion of the Chezy coefficient C (see Section 5.2.4 and formula (2.1)). 
To some extent the program checks the user-given data on consistency, in 
order to obtain at the end of the input process a well-defined model. However, 
it is a very time consuming task to construct an input processor which guaran­
tees a well-defined model on exit. This is beyond the scope of the project. 
Therefore our aim was to construct an input processor by which a skilled user 
can specify his problem in a convenient way. 
In the following, the six parts of the INPUT PROCESSOR will be discussed in 
more detail. 

5.2.1. Domain definition. The contour of the domain is approximated by a 
polygon. This polygon consists of line pieces which are parallel to either the 
x-axis or the y-axis. The staggering of the grid (see Section 3.1) has some 
consequences for the definition of the polygon. 
The polygon is defined by its angle points, {(Xi, Y;)EN XN Ii= 1, ... ,n}, 
where the integers X; and Yi are the numbers of the grid lines defining the ori­
ginal (i.e. non-staggered) grid (see Figure 3.1). The contour is found from this 
sequence by connecting successive points by straight lines. Furthermore, 
according to Figure 3.1, the type of the boundaries is specified as follows. If 
X; is even (odd) then there is a U-boundary (Z-boundary) in the "vertical" 
direction. Likewise, if Y; is even (odd) then there is a V-boundary (Z­
boundary) in the "horizontal" direction. The Z boundaries are always open 
but a U or V-boundary is open or closed. The type of the velocity boundaries 
is defined by a parameter B;; B; = 0 or 1 means that the boundary between 



57 

(X;, Yi) and (Xi + i, Yi+ i) is open or closed, respectively. For programming rea­
sons, the value of Bi for Z-boundaries, which are always open, should also be 
zero. Furthermore, as will become clear below, we require that the contour is 
passed in clockwise order when passing through the sequence of angle points. 

In the next section, on boundary conditions, it will be pointed out that B; may 
also have the value 100 which means that the next part is open and that at this 
point boundary condition parameters have to be prescribed. Default, the pro­
gram will detect the necessary points at which boundary condition data have 
to be specified in order to have a well-posed problem. If the user wants to 
specify data at other points, then these points should be marked by setting 
Bi= 100. We will return to this matter in the next section. 

Thus, the polygon the program accepts is defined by a set of 3-tuples 
{(X;,Yi,B;)el\IXNX{O,l,lOO}ji=l, ... ,n}. These 3-tuples must have the 
property that either Xi =Xi+I or Y;= Y;+1 for i = 1, ... ,n -1 and Xn =X1 
or Yn = Y 1• If this property does not hold for a closed boundary, then points 
are inserted such that the property holds. In some cases, this insertion may not 
be unique. In such a case, the program chooses that point which is closest to 
the straight line drawn between its two neighbours. From the two points 
resulting from this approach the program will choose the one which is outside 
the domain. The points can only be inserted correctly if the boundary data is 
given in clockwise order. We will clarify the functioning of the insertion rou­
tine by some examples. 

EXAMPLE 5.1. Let the first two points of the input be given by {(0,0),(4,4)}. 
Then the insertion routine starts at the first point and checks whether a point 
should be inserted. This is the case and the unique intermediate result is 
{(0,0),(2,2),(4,4)}. Thereafter, it checks again whether a point should be added 
after the first point. This is again the case and the next intermediate result is 
{(0,0),(0,2),(2,2),(4,4)}. The point (0,2) is the point, outside the domain, which 
is closest to the straight line connecting (0,0) and (2,2). This is known because 
the data is given in clockwise order. Now, the routine checks again whether a 
point should be inserted after the first point. Since,. this is not needed ~d the 
program proceeds to the second point etc.. Fmally the result will be 
{(0,0),(0,2),(2,2),(2,4),(4,4)}. This result is drawn in Figure 5.2.a. 



58 

x user given points 

0 2 

a 

4 0 2 4 

b 
FIGURE 5.2. Insertion of points. 

0 inserted points 

boundary 

Next consider the input {(0,0),(4,2)}. Then the routine generates successively 
{ (0,0),(2,2),(4,2)} and { (0,0),(0,2),(2,2),( 4,2) }. This result is drawn in Figure 
5.2.b. 0 

Below, an example is given of a domain definition. 

ExAMPLE 5.2. Consider the domain in Figure 5.3, where at the left and right 
boundary the velocity and the elevation are respectively prescribed. 

' ' ' ' ' 

!--~1 --- -----92 km-+~ 
: ] ] i 
U ~ N 1 r--1--- ISO km· - -1-1 

FIGURE 5.3. Example domain. 

closed boundary 
open boundary 

First, the user should determine the mesh width used in the numerical simula­
tion (say 5 km). This defines the grid to be used. In Figure 5.4 the domain of 
Figure 5.3 is covered by the grid in which the grid lines are already numbered. 
The user should be aware of the fact that closed boundaries can only be 
represented by a grid line with an even X; or Y;-grid coordinate. Furthermore, 
a Z-boundary can only be represented by a grid line with an odd X; or Y;­
coordinate. 



-i-1- -,-
-'-.L- .... _ 

I I I 
4- ·- -t-

1 I ' -i-1- -,-

15 ~-f- ~-
-t- ·- 4-

- ,- -r,- -,,-,- ,-,-r,-1-r,- -r,-1-r,-1 
- ..I- -L-'-

1 1 I t I 1 I I I I I I I I I I I 
- .,_ -1--i- - -t-'t- -1--r-t--1--t-1--1- -t-"1--t-t"-I- .. 

- ~- -r~- - ~-i- ~-1-r~-1-r-:- -r-:-i-r-:-~ 
- ..1- -L-'- - ..J.J.- .J-.1-L.J • .1-L...l- -L-LJ.-L-1-J 

I I I l I I I I I I I I I I I I I I 
- .,_ -1--i- -t--t- -t--t-t--i--t-1--t- -1--t--t-1--1-• 

I I I I I I I I I JI I I I l I I I I - ,- -r,- r,-,- ,-,-r,-1-ri- -r,-1-r,-1 
....................... _._......._.._._ ....... ..J_,J. • ...1-.!-L...J-.L-L.J. -L...1-.1.L.J.J 

; I I I I I I I I I I I I I I I I l I I I I I I l I 

i-+- ~-

•-t--t-1--t--t-1--t--t-1--i--t-1--t--t- -t--t-1--1--t-1--t- -t--t--t•t--t-• 

10 ~-:-i-r-:-i-r-:-i-r-l-i-r-:-1- -:-1-r-:-i-r-:- -r-:-1-r-:-~ 
L-1-.1.L..J • .L.L-1-.1-L..J • .1.L..J • .1 • ..J • .1.L.J • .1.L..1- .L.J.J..L-1.J 
I I I I I I I I I I 1 I I I I I I I l I I I I 1 I I 1 I 
•-1--t-1--1-1-1--t--t-1--i--t-1--1--t- -t--t-1--1--t-1--1- -1--1--t-t--t•t 
I I I I I I I I I I I I I I I l I I I I I I I I I I I I ,,-,-r,-,-r,-1-r,-1-r,-1- ,-1-r,-1-r~- -r~-,-r,-1 
L ...I- .L - L ...I • .L - L ...I- .L - L .J- .1.- L ..,I_ .L - ...1- .I. - L-J- .L - L .J- - L .J- .L - L ..1- .t 

5 ~..:-!-~..:-!-~...:-!-~-l-!-~-:-!- ...:-~-~-:-!-~..:- -~...:-!-~..:-: 
·~-+-~~-+-~~-+-~~-+-~~-+- ~-+-~~-+-~~- -~i-+-~i-~ 
L.J-.L.L.J-.L-L...l • .L-L.J.J.L...l • .L- ...l-.L-L-J-.l..L...1- -L...1-~-L..l • .t 
I I l I I I I 1 I I I I I I I Ill I I I I I I I I I I 
~4-•-~4-~-~~-·-~~-·-~-t-•- 4-·-~~-~-~4- -~4-~-~4-4 

0 ·~-+-~~-{-~~-+-~~-+-~~-+- ~-+-~~-+-~~- -~~-+-~~-~ 

0 5 10 15 20 25 

• points which define 
the domain 

FIGURE 5.4. Example domain of Figure 5.3 covered by a 5 km grid. 

59 

In Figure 5.5, the ordered set of angle points defining the numerical domain 
according to Figure 5.4 is given. Furthermore, a picture of the domain is 
drawn as generated by the program. 

0 0 0 
0 12 1 
12 12 1 
12 18 l 
29 18 0 
29 0 1 

oooooz 
0 z 

0 0 0 0 0 z 
u z 
u z 
u z 
0000000000 

FIGURE 5.5. Input example plus resulting domain. 0 

Islands. After the domain is defined, the user can specify islands. Evidently, 
the boundaries of an island are closed. Hence, an island is specified by an 
ordered set of angle points which have always even values, 
{ (Xj, Yi) EN X N I i = 1, ... , n, Xj even, Y; even}. The parameter B;, needed to 
define the type of the boundary, is not requested here by the program. 

ExAMPLE 5.3. In Figure 5.6 an ordered set of angle points of an island is 
given together with the resulting domain when this island is placed in the 
domain of Example 5.2. 



60 

16 10 
16 14 
20 14 
20 10 

000002 
0 z 

0000000 z 
u 0 0 z 
u z 
u z 
0 0 0 0 0 0 0 0 0 0 

FIGURE 5.6. Domain of Example 5.2 with island. 0 

After the definition of the domain, there is a possibility to check the given data 
and to correct them if necessary. After this is completed a simple plot of the 
domain, such as given in Figures 5.5 and 5.6, will be given. Thereafter, there 
is again a possibility to change the data. 

When the domain has been defined the program can generate the so-called 
row-column table. This table which is used in SOL VER specifies on the stag­
gered grid the start and end point of each row and column in the computa­
tional domain. This table is used to construct the index arrays of the boun­
daries. For the construction of this table the sorting routine MOlAQF from 
the NAG library is used. 

5.2.2. Boundary conditions. After the domain has been specified, the program 
detects the points at which boundary condition data have to be prescribed in 
order to make the problem well-posed. These points will be called prescription 
points and are usually the comers of the polygon at which a transition from 
one boundary type to another takes place, i.e. from open to closed or con­
versely. The values at the boundary between two such points are obtained by 
interpolation. 
The user should specify whether the problem is stationary or time dependent. 
Thereafter, the program lists the points at which the boundary condition data 
have to be prescribed. These points also include the points which are given by 
the user during the domain definition by setting Bi = 100. 
In the stationary case, the user should give the values of each prescription 
point separately. If the problem has time-dependent boundary conditions then 
it is assumed that the boundary condition data, i.e. the values of a U, V or Z 
prescription point in time, can be constructed from a series of sine functions, 

n 
~Aisin(W;t + F;). (5.1) 
i=I 

The user should specify the number of terms. Furthermore, at each point the 
user should specify Ai, WI and Fi. After this specification the user is offered 
the opportunity to change the given values. 



61 

5.2.3. Initialization of the U, V and Z-field After the specification of the 
boundary condition data, the values are calculated at each boundary part and 
the program can proceed 'With the initialization of U, V and Z. With respect 
to the initialization of the U and V field, the program checks whether the 
boundary values are zero. If this is the case, then the the initial field is, on 
request of the user, set to zero everywhere. Otherwise, the user can specify 
points, together 'With values at these points, from which the program interpo­
lates values at all other points in the field by using cubic B-splines. Here we 
used the NAG library routines E02ZAF, E02DAF and E02DBF. First the 
program will ask for values at special points needed for a correct interpolation. 
Thereafter, the user may specify additional points and values. 
After the interpolation the field is shown to the user at the points of the stag­
gered grid. If the user is not satisfied 'With the result of the interpolation then 
he can correct or add data. 
For the Z field the situation is the same, except that the initial field can be a 
constant unequal to zero when the initial boundary values are constant. 

5.2.4. Definition of the depth and Manning values. The definition of the depth 
and Manning values proceeds in the same way as the initialization of the Z­
field. The Manning values are needed to calculate the Chezy values using the 
formula (see [3]) 

C =H 116 In, (5.2) 

where n is the space varying Manning field. Again, the user can specify the 
field to be constant or to be space dependent. Additionally, there is a default 
value for the Manning coefficient, which is equal to 0.022. 

5.2.5. Definition of problem and integration parameters. The problem and 
integration parameters which have to be specified are: 

the mesh size (on the unstaggered grid), 
the time step, 
the number of time steps, 
the viscosity coefficient A (see (2.1)), 
the coefficient y for the weakly-reflective boundary conditions (see (2.5)) 
a parameter which specifies whether second-order or fourth-order finite 
differences should be used. 

When asking for the time step the program suggests a realistic value. 

5.2.6. Definition of time history points and flow-field output parameters. In this 
part the user should specify the number of history points_ and th~ir positi?n. 
Furthermore, the user can specify the start time and the tune penod defimng 
the times at which the flow field should be written to the file FLOW during the 
simulation. The start time and the time period have to be multiples of the 
time step. 



62 

5.3. The SOLVER 
The SOL VER, running at the CYBER 205, consists of three_ main parts: the 
part which reads the input given on SOL/NP, the part which performs the 
actual computation and the part which writes the output to TIHIS and 
FLOW. The SOLVER is activated by submitting the file SOL/NP to the 
CYBER 205. 
The computation part performs the user-specified number _of time ~t~ps (see 
Section 5.2.5). Before each time step the drying and floodmg cond1t10ns are 
checked (see Section 3.8 and 4.4). The time step requires four right-hand side 
evaluations (see Section 3.5). After each right-hand side evaluation the stabili­
zation described in Section 3.6 is performed. 
Apart from the computation, at each time step the solution at the time history 
points is written to the file TIHIS {see Section 5.1) and flow fields are written 
to the file FLOW at the user-specified times. 
Finally, we remark that the sorting routine MOlAQF from the NAG library 
has been used for initializing the index arrays. 

5.4. The OUTPUT PROCESSOR 
The OUTPUT PROCESSOR runs at the front-end of the CYBER 205. It gen­
erates plots of the time histories given on TJHIS and of the flow fields given 
on FLOW. For the time histories, the user can choose the type of the plot; 
plots of the following entities can be drawn: 

the U-velocity, 
the V-velocity, 
the elevation, 
the magnitude of the velocity, 
the direction of the velocity. 

The flow field is repr'1!sented by means of vectors positioned at elevation 
points. The length and the direction of such a vector represent the magnitude 
and the direction of the flow, respectively. The length of the vectors can be 
scaled by the user. 

6. NUMERICAL RESULTS 

In this section, results obtained by the described solver will be given. First we 
present ~esults from flow computations in a bay near Taranto in Italy. To 
define this problem the system described in Section 5 is used. Thereafter, we 
give results for a stationary flow in the Anna Friso Polder and for a time­
depen~e~t flow in the _Eems-Dollard estuary. For the last two experiments the 
solver rs mcorporat~ mto the WAQUA system, a large computational system 
used for the s~ulatron of water flow and water quality at Rijkswaterstaat and 
Delft Hydraulics [32]. In~rpo~ation into this system gives the possibility to 
test the model on real engmeenng problems. Furthermore, it provides a wide 
variety of plot facilities. 



63 

6.1. A time-dependent flow in the Taranto bay 
In t~s section, we present results from a computation of the time-dependent 
ftow m a bay near Taranto (Mare Piccolo), which is situated in the south of 
Italy; a map of this bay is drawn in Figure 6.1 (for a more detailed figure see 
[30]). The schematization of the bay is adopted from Notarnicola and Pon­
trelli [28]. Currently, there is no data available from the bottom profile of the 
bay. Therefore, a constant value is assumed, viz. 7 meters, which approximates 
the mean depth. 

MARE GRANDE 

FIGURE 6.1. The Taranto bay. 

The boundaries are closed, except for a small open part; here we prescribe the 
elevation, W)=.2cos(2?Tt / (3600X 12)). Furthermore, we set the viscosity 
coefficient A equal to 5 m2 / s and the value of c equals .8 for this problem 
(see Section 3.4.3). In the numerical model, the fourth-order space discretiza­
tions is used with a mesh size of 111 meters (on the unstaggered grid). The 
flow is simulated over the (real time) period of 48 hours, i.e. over 4 full periods 
of the tide. The initial field of the velocity is zero and of the elevation .2 m. 
The flow is computed for three values of the time step, viz. lit= 100, 50 and 25 
seconds. In Figure 6.2, time histories of the magnitude of the velocity are 
drawn at the point indicated by an * and a + in Figure 6.1. 



64 

: 

. 
" 

a. Time history at *. 

At= JOO 
At =50 "/At =25 

;~~.,--~r--~..--~~~..--~-r--~.,--~ • .. .. 
TI It: IM HllJtS 

b. Time history at +. 

FIGURE 6.2. Time histories of the magnitude of the velocities. 

They show that the solution becomes periodic after a few tides. Moreover, we 
observe that the solution depends on the time step, showing the need for small 
time steps in this type of applications. It is interesting to see that the time step 
has a much larger influence on the solution at the point * than at the point +. 
This can be explained by considering the flow fields. In Figure 6.3, these are 
given at times 36, 39, 42 and 45 hours. 



_r-::- - - -
, / --

_.,, . .-·' .- -
__ ,,, ,,..,. .- -

- ..... ' \ I I 1 

I 

\ 
I 

a. Flow field at 36 hours. 

b. Flow field at 39 hours. 

65 



66 

' ' 
"//./.,/.,,... __ ,\\ 
I I I / -" - - ' ' \ 
////-"_,,,, 
j j J I , . ' I 1 I 
l j j l , , , I I I I \ \ \ 

\\\' ___ _....,,111\\ 

\\'- __ ,, 
' -.......~---... ........ -- - .. j __ 

vel01..-ity scale .1 m / s 

c. Flow field at 42 hours. 

-velocity scale . I m / s 

d. Flow field at 45 hours. 

FIGURE 6.3. Flow fields. 

Due to the periodicity of the solution, the flow field at 48 hours is equal to the 
flow field at 36 hours. We observe that the tide gives rise to a recirculating 
flow in that part of the bay where the open boundary is located. It is known 
(see [8] and Section 6.2) that, for stationary problems, the recirculating flow is 
determined by delicate balances. As we expect a similar behaviour in the nons­
tationary case, it is not surprising that the influence of the time integration 
error is much larger in the point indicated by *, since this point is in the recir­
culation zone. 



67 

6.2. A stationary flow in the Anna Friso Polder 
In order to test the spatial discretization we shall consider in this section 
numerical solution of stationary flows in the Anna Friso Polder (AFP). Solu­
tions will be given for various values of the viscosity parameter A. The AFP is 
a small recess at the southern coast of the south-west entrance of the Eastern­
Scheldt estuary, the so-called Roompot (see Figure 6.4). 

FIGURE 6.4 Location of the Roompot. 

The area modelled is about 2.5 X 1.5 km 2 with a complex shore line and a pro­
nounced bottom profile. A typical cross-section normal to the coast of AFP 
shows a rather shallow area with a near shore depth well below 10 m, a steep 
slope region with slopes up to l :5, followed by a rather flat main channel with 
depth up to 35 m. The boundary conditions are taken from a steady-state max­
imum flood situation which was simulated by a hydraulic scale model at the 
Delft Hydraulics. We prescribe at the left and upper boundary of the 
mathematical model the normal velocity component and at the right boundary 
the water level (see Figure 6.5). Furthermore, the mesh width tu of the 
unstaggered grid is 22.5m. This model is extensively discussed in [8]. It is of 
interest for the study of steady recirculating flow. A plot of the computational 
domain is drawn in Figure 6.5. 



68 

u 

FIGURE 6.5. Computational domain. 

In the computations, the time step is 7.5 seconds, the constant c is .24 (see Sec­
tion 3.4.3) and the constant y in (2.4) and (2.5) is set equal to 50. The time 
step used is four times larger than the maximum time step without smoothing 
(see Sections 3.5 and 3.6). It is assumed that the steady-state is reached if the 
amplitude of the elevation has a magnitude less than 1 mm. This requires 
about 6 hours of simulation. As we are only interested in the recirculating 
flow, we will give plots of the indicated area only. In Figure 6.6, vector plots 
are given for A= 10, 1,.1,0 m2 Is, respectively. 



1 f 
'i+ 

: I, 
'i 

i, 

r 

! I 

\ \ 

-·+ 
+ t 

j 
I 

•! 

.., 
' r; 
~ 
~ 
g 
~ 

~ .. ' 
'1: 

0 

. ii 
I"< 

-l.--- +--- - i ; 

' ' 

'/ ' !t I 
i/ /r !/, 

/ r II 
iT 

t 
\ 

,, 
" 
I 

I 
I 

1, 

! 

,_ 
i 

-·· 

"I 

~. 

0 
II 

" 

., 
' 

I;: 
< 
~ 

~ 
ll.l 
> 

II 
"< 

69 

0 -



70 

These plots show a significant change of the flow when A is decreased from 10 
to J but a further decrease of A hardly effects the flow pattern. This is even 
mor~ clear when we consider vertical cross-sections of the magnitude of the 
velocities at M =28, 33, 36 (see Figure 6.7). The variables M and N are the 
cell indices for the horizontal and vertical axis, respectively, as used in the 
plots. 

~ 
"-. 

E 
.s 
'-' 

c-..... 
g 

11 
:> 
(1) 

..c: ... 

..... 
0 
(1) 

'tl .a ·a 
(<) 

s 

i 

I 

:1 ~ 
I :J ~1 .. -- I 
o~ 
0 -.--r---r-r-i 

s s 1 a 9 :o 11 12 13 1-i: 

..... N 

M =28 

N 

~l 

J 
...:1 

I 
ci~ 
I 
I 

;;4 

:J 
f 
I 
I 

~~ 
o! 

i 
I 

"' ci 

0 

+ A=IOm 2 /s 

X A= I m 2 / s 

* A =.I m 2 /s 

ci l "'--~~~~~~~~ o+.-~~~~-~~ 
s 6 7 B 9 10 l l 12 13 11 S 6 7 a 9 10 11 12 13 H 

_, N 

M=33 M=36 

FIGURE 6.7. Cross-sections of the magnitude of the 
velocity at M =28, 33, 36. 

Flokstra et al. [8] explain these results qualitatively by argueing that for 
A = !O m2 / s the dissipation of momentum due to turbulent viscosity is more 
important for the flow pattern than the dissipation due to bottom friction. In 
the cases, A= 1 and .1 m2 / s bottom friction determines largely the flow pat­
tern. Therefore, the pattern does hardly change when the eddy viscosity is 
decreased from l to .I m2 / s. In [8], additional computations are reported for 
the same model, however, (i) with perturbed bottom friction and (ii) with a 
perturbed bottom profile. 
The results given in this section are compared with those reported in [8] 
obtained by the ADI method designed by Stelling. It appeared that the above 
plots are almost indistinguishable for the region of interest. Small differences 
occur near boundaries. This can be traced back to a difference in the 



71 

discretization of vuy and uvx and the viscosity terms near boundaries (see Sec­
tion 3.4.2). 

6.3. A time-def!end~nt problem in the Eems-Dollard estuary 
In many engmeenng problems, flows have to be calculated in estuaries in 
which drying and flooding occurs during the tide. The Eerns-Dollard estuary is 
an ex~ple of such a problem. Hence, this model provides a good case to test 
our drymg and flooding procedure. Details on this model can be found in 
[26]. 
The Eems-Dollard estuary is situated in the north of the Netherlands. In Fig­
ure 6.8, the computational domain is drawn together with the used grid. 

FIGURE 6.8. The Eems-Dollard estuary. 

Closed boundaries are modelled from the coast of Groningen to Rottumeroog 
and from Borkum to Westerbalje. Water level boundaries are modelled at the 
Ranselgat, i.e. the opening between Rottumeroog and Borkum, and from 
Westerbalje to the coast of Germany. The inflows from the rivers Eems and 
Westerwoldse Aa as well as industrial discharges at Delfzijl are modelled as 
sources. The mesh size of this grid is 800 m, whereas the mesh size of the 
unstaggered grid is 400 m. The second-order space discretization is applied. 
The time step in this simulation is 150 seconds, the eddy viscosity 
A =60 m2 / s, and c =.24. The boundary conditions are derived from a 
Fourier analysis of measurements. They are adapted such that the tide is 
purely periodic with period 12 hours and 30 minutes (a motivation for this 
approach is given in [26]). In this computation y (the coefficient in the weakly 
reflective boundary conditions) is zero. 
With respect to drying and flooding, the minimal allowed water depth at a 
velocity point is 9.25 cm. 
At the start of the simulation the elevation is set equal to 1.23 m the velocity 



72 

to zero. 
We first present time histories associated with the elevation and the magnitude 
of the velocity at Reide (see Figure 6.8 for this location). 

2.0 ·--· -···· 1.0 ·-- -.... 

0.8 
LO 

0.6 
0.0 

0.4 

-1.0 
0.2 

-2.0 0.0 
0 8 16 24 8 16 24 0 8 16 24 8 16 24 

0 0 
26APR' 82 27 APR' 82 26 APR' 82 27 APR' 82 

a. Water level (m). b. Magnitude of the velocity (m / s). 

FIGURE 6.9. Time histories at Reide. 

These plots show that the periodic behaviour of this flow is reached very soon 
after the start of the simulation (within one period of the tide). Furthermore, 
we give in Figure 6.10 a vector plot of the flow field at low tide (27-th April, 1 
hrs. 13 min.). The closed boundaries resulting from the drying and flooding 
procedure are drawn as dashed lines. 

FIGURE 6.10. Flow field at low tide. 

This plot shows that significant tidal fiats occur during the tide. From both 
plots (Figures 6.9 and 6.10), we conclude that the drying and flooding 



73 

procedure as used in our method does not give rise to instabilities or unwanted 
phenomena in the solution. 

REFERENCES 
1. CONTROL DATA CORPORATION (1986). FORTRAN 200 VERSION 

I; Reference manual, Publications and Graphics Division, California. 
2. G. DAHLQUIST (1959). Stability and Error Bounds in the Numerical Integra­

tion of Ordinary Differential Equations, no. 130, Trans. Roy. Inst. Techn .. 
3. J.J. DRONKERS (1964). Tidal Computations, North-Holland Publishing 

Company, Amsterdam. 
4. T. ELVIUS and A. SUNDSTROM (1973). Computational Efficient Schemes 

and Boundary Conditions for a Fine-Mesh Barotropic Model Based on the 
Shallow Water Equations, Tel/us, 25, pp. 132-156. 

5. B. ENGQUIST and A. MAIDA (1977). Absorbing Boundary Conditions for 
the Numerical Simulation of Waves, Math. Comp., 31, pp. 629-651. 

6. B. ENGQUIST and A. MA.lDA ( 1979). Radiation Boundary Conditions for 
Acoustic and Elastic Wave Calculations, Comm. Pure Appl. Math., 32, pp. 
313-357. 

7. G. FISCHER (1956). Ein numerisches Verfahren zur Errechnung von 
Windstau und Gezeiten in Randmeeren (German), Tel/us, 11, pp. 289-300. 

8. C. FLOKSTRA, G.K. VERBOOM, and A.K. WIERSMA (1986). Computation of 
Steady Recirculating Flow, Report Rl 150-II, Delft Hydraulics, Delft. 

9. R. FRANK, J. SCHNEID, and c.w. UEBERHUBER (1981). The Concept of B­
Convergence, SIAM J. Numer. Anal., 18, pp. 753-780. 

10. H. GERRITSEN (1982). Accurate Boundary Treatment in Shallow-Water Flow 
Computations, Thesis, TU Twente. 

11. E.D. DE GOEDE (1986). Stabilization of the Lax-Wendroff Method and a 
Generalized One-Step Runge-Kutta Method for Hyperbolic Initial Value Prob­
lems, Report NM-R8613, to appear in Appl. Numer. Math., CWI, 
Amsterdam. 

12. E.D. DE GOEDE and F.W. WUBS (1987). Explicit-Implicit Methods for 
Time-Dependent Partial Differential Equations, Report NM-R8703, CWI, 
Amsterdam. 

13. B. GusTAFSSON (1975). The Convergence Rate for Difference Approxima­
tions to Mixed Initial Boundary Value Problems, Math. Comp., 29, pp. 
396-406. 

14. W. HANSEN (1956). Theorie zur Errechnung des Wasserstandes und der 
Stromungen in Randmeeren nebst Anwendungen (German), Tel!us, 8, pp. 
289-300. 

15. G.W. HEDSTROM (1976). Nonrefiecting Boundary Conditions for Non-
linear Hyperbolic Systems, J. Comput. Phys., 30, pp. 333-339. 

16. P.J. VAN DER HoUWEN (1987). Stabilization of Explicit Difference Schemes 
by Smoothing Techniques, to appear in Proceedings of. the 4t~ Internati?na/ 
Seminarium on Numerical Analysis of Ordinary Differential Equations, 
Halle. 

17. P.J. VAN DER HOUWEN, c. BOON, and F.W. WUBS (1987). Analysis of 



74 

Smoothing Matrices for the Preconditioning of Elliptic Difference Equations, 
Report NM-R8705, to appear in Z. Angew. Math. Mech .. 

18. P.J. VAN DER HOUWEN, B.P. SOMMEUER, J.G. VERWER, and F.W. WUBS 
(1986.). Numerical Analysis of The Shallow-Water Equations, in 
Mathematics and Computer Science: Proceedings of the CW! symposium, 
November 1983, CWI-Monographs no.I, ed. J.W. de Bakker, M. Hazewinkel 
and J.K. Lenstra, North-Holland, Amsterdam. 

19. P.J. VAN DER HOUWEN, B.P. SOMMEUER, and F.W. WUBS (1986). Analysis 
of Smoothing Operators in the Solution of Partial Differential Equations by 
Explicit Difference Schemes, Report NM-R8617, CWI, Amsterdam. 

20. P.J. VAN DER HOUWEN and F.W. WUBS (1987). The Method of Lines and 
Exponential Fitting, Internal. J. Numer. Methods Engrg., 24, pp. 557-567. 

21. A. JAMESON (1983). The Evolution of Computational Methods in Aero­
dynamics, J. Appl. Mech., 50, pp. 1052-1076. 

22. J. KUIPERS and C.B. VREUGDENHIL (1973). Berekeningen van Twee­
Dimensionale Horizontale Stromingen (Dutch), Report-S163, Delft Hydraul­
ics, Delft. 

23. P.D. LAx (1954). Weak Solutions of Non-Linear Hyperbolic Equations 
and their Numerical Computation, Comm Pure Appl. Math., 7, pp. 159-
193. 

24. J.J. LEENDERTSE (1967). Aspects of a Computational Model for Long-Period 
Water-Wave Propagation, Memorandum RM-5294-PR, Rand Corporation, 
Santa Monica. 

25. A. LERAT (1979). Une Classe de Schemas aux Differences Implicites pour 
les Systemes Hyperboliques de Lois de Conservation (French), C.R. Acad. 
Sci. Paris t. 288 (18 juin 1979) Serie A, pp. 1033-1036. 

26. K.D. MAlwALD, L. POSTMA, and A.K. WIERSMA (1984). 
WA QUA! DELWAQ Berekeningen Berns-Dollard Estuarium (Dutch), 
S296.02, Delft Hydraulics, Delft. 

27. J. MOOIMAN (1987). lmplementatie van Zwak-Reflecterende Randvoorwaar­
den in DELFLO (Dutch), Report Zl 17, Delft Hydraulics, Delft. 

28. F. NOTARNICOLA and G. PONTRELLI (1987). Un Mode/lo ldrodinamico per 
Acque Basse con Termini Sorgenti e sue Integrazione Numerica (Italian), 
Internal Report/1, Institute for Research of Applied Mathematics -CNR-, 
Bari. 

29. J. OLIGER and A. SUNDSTROM (1978). Theoretical and Practical Aspects of 
some Initial Boundary Value Problems in Fluid Dynamics, SIAM J. Appl. 
Math., 35, pp. 419-446. 

30. P. PARENZAN (1984). II Mar Piccolo di Taranto (Italian), C.C.I.A.A., 
Taranto. 

31. N. PRAAGMAN (1979). Numerical Solution of the Shallow Water Equations 
by a Finite Element Method, Thesis, TU Delft, Delft. 

32. M.A.M. RAs and G.S. STELLING (1984). WA QUA, een Simulatie pakket 
voor Twee-Dimensionale Waterbeweging en Waterkwaliteit, DIVISIE 1984-4, 
Rijkswaterstaat, Rijswijk. 

33. R.D. RlCHTMYER and K.W. MORTON (1967). Difference Methods for Initial 



75 

Value P~oblems, Interscience Publishers, Wiley, New York, London. 
34. w. SCHONAUER and w. GENTZSCH (EDs.) (1985). The Efficient Use of Vec­

tor Computers with Emphasis on Computational Fluid Dynamics, Notes on 
Numerical Fluid Mechanics, 12, Friedr. Vieweg & Sohn, 
Braunschweig/Wiesbaden. 

35. A. SEGAL and N. i>RAAGMAN (1986). A Fast Implementation of Explicit 
Time Stepping Algorithms with the Finite Element method for a Class of 
Non-Linear Evolution Problems, Internal. J. Numer. Methods Engrg., 23, 
155-168. 

36. F. SHUMAN (1957). Numerical Methods in Weather Prediction: II, 
Smoothing and Filtering, Monthly Weather Review, 85, pp. 357-361. 

37. A. SIELECKI (1968). An Energy Conserving Difference Scheme for Storm 
Surge Equations, Monthly Weather Review, 96, pp. 150-156. . 

38. G.S. STELLING (1983). On the Construction of Computational Methods for 
Shallow Water Flow Problems, Thesis, TU Delft, Delft. 

39. G.S. STELLING, A.K. WIERSMA, and J.B.T.M. WILLEMSE (1986). Practical 
Aspects of Accurate Tidal Computations, J. Hydr. Engrg., ASCE, 112, pp. 
802-817. 

40. G.S. STELLING and J.B.T.M. WILLEMSE (1984). Remarks about a Compu­
tational Method for the Shallow Water Equations that works in Practice, in 
Colloquium Topics in Applied Numerical Analysis, pp. 337-362, ed. J.G. 
Verwer, CWI, Amsterdam. 

41. G.S. STELLING, J.B.T.M. WILLEMSE, and A. ROOZENDAAL (1986). A Com­
putational Model for Shallow Water Flow Problems on the Cyber 205, 
Supercomputer, 11. 

42. J.C. STRIKWERDA (1976). Initial Boundary Value Problems for Incompletely 
Parabolic Systems, Thesis, Stanford University, Stanford. 

43. L.N. TREFETHEN (1982). Wave Propagation and Stability for Finite 
Difference Schemes, Thesis, Stanford University, Stanford. 

44. E. TuRKEL (1985). Acceleration to a Steady State for the Euler Equations, 
in Numerical Methods for the Euler Equations of Fluid Dynamics, pp. 281-
311, SIAM, Philadelphia, PA. 

45. G.K. VERBOOM and A. SLOB (1984). Weakly-Reflective Boundary Condi­
tions for Two-Dimensional Shallow Water Flow Problems, Adv. Water 
Resources, 7, pp. 192-197. 

46. G.K. VERBOOM, G.S. STELLING, and M.J. OFFICIER (1982). Boundary Con­
ditions for the Shallow Water Equations, in Engineering Applications for 
Computational Hydraulics, ed. M.B. Abbott and J.A. Cunge, Pitman Pub-

lishing. . . . 
47. J.H.A. WIJBENGA (1985). Determination of Flow Patterns m Rivers with 

Curvilinear Coordinates, in Proceedings of the XXI Congress of the Interna­
tional Association for Hydraulic Research, Melbourne. 

48. J.B.T.M. WILLEMSE, G.S. STELLING, and G.K. VERBOOM (1985). Solving 
the Shallow Water Equations with an Orthogonal Coordinate Transforma­
tion, in Proceedings of the International Symposium on Computational Fluid 
Dynamics, Tokyo. 



76 

49. F.W. WUBs (1986). Stabilization of Explicit Methods for Hyperbolic Par­
tial Differential Equations, Internat. J. Numer. Methods Fluids, 6, pp. 641-
657. 

50. F.W. WUBs (1987). An Explicit Shallow-Water Equations Solver for Use 
on the CYBER 205, in Algorithms and Applications on Vector- and Parallel 
Computers, ed. H.J.J. te Riele, Th. J. Dekker and H.A. van der Vorst, 
North-Holland, Amsterdam. 


