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Introduction 

Consider the linear system 2 given by 

x(t) =Ax(t) + bu(t), 

y(t) = Cx(t) 

with state x(t) E IR\ control input u(t) E IR and 
measurement output y( t) E IR P. A, b and C are 
real matrices of dimensions n X n, n X 1 and p x 
n, respectively. Assume that the linear system 2 is 
controlled by a linear static output feedback 

u(t) = ky(t) 

with k a real 1 x p matrix. The resulting closed­
loop system 2c1 is described by 

x(t) =(A+ bkC)x(t). 

The poles of the closed-loop system 2c1 are the 
eigenvalues of the matrix A + bkC. It is the pur­
pose of the present note to investigate at which 
locations the poles of the closed-loop system 2c1 

can be placed using static output feedback. 
To this end we assume that the linear system 2 

is controllable, i.e. we assume that q = n, where 
q=rank (b, Ab, ... ,An- 1b] (cf. (3]). Because, if 
the system 2 is not controllable, i.e. if q < n, it is 

possible to find a state-space transformation such 
that the system 2 can be partitioned as 

with A 11 , A 12 , A 22 , b1, C1 and C2 real matrices of 
dimensions q x q, q x (n - q), (n - q) x (n - q), 
q x 1, p x q and p x (n - q), respectively, and 
the pair ( A11 , b1) controllable ( cf. [3]). With re­
spect to this partitioning the closed-loop system 
2c1 obtained by the application of the static out­
put feedback u(t) = ky(t) is given by 

[ i1(t) l =[An+ b1kC1 A 12 + b1kC2 ][x1(t) ]. 
i2(t) 0 A22 X2(t) 

Hence, the poles of the closed-loop system 2c1 

consist of the eigenvalues of A11 + b1 kC1 and the 
eigenvalues of A 22 • The eigenvalues of A 22 are 
known in advance and can not be shifted by static 
output feedback. From this reasoning it is clear 
that for the investigation at which locations the 
poles of the closed-loop system can be placed 
using static output feedback we may focus on 
systems 2 that are controllable. 

Results 

Letting im denote the image and ker the kernel 
of a matrix, we can formulate the following theo­
rem which is the main result of this note. 

Theorem. Let 2 be a controllable system as de­
scribed above and let p(s) be a real monic poly­
nomial of degree n. Then there exists a real 1 X p 
matrix k such that 

p(s) = det(s/ - (A+ bkC)) 
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if and only if 

p(A)kerCcim[b, Ab, ... ,An- 2b]. 

Proof. (only if). From the Cayley-Hamilton theo­
rem it is clear that p(A + bkC) = 0. If x E ker C, 
it follows by induction that for every i, 2:,;;; i ~ n, 
there exist 

w;Eim[b, Ab, .. .,A;-zb] 

such that 

Consequently, for every x E ker C there exists a 
vector 

wEim[b, Ab, .. .,An- 2bl 
such that 

0 = p(A + bkC)x = p(A)x + w. 

Hence, 

p(A)kerCcim[b, Ab, ... ,An-2bl. 
(if). Since the pair (A, b) is controllable there 

exists a real (uniquely determined) 1 x n matrix f 
such that 

p ( s) = det( sf - (A + bf)) 

(cf. [5]). From the Ackermann formula (cf. [1,2]) it 
follows that 

f = e~[b, Ab,. . ., An- 1b r 1p(A) 

where T denotes transposition and e; denotes the 
i-th unit vector in ~n. Now there exists a real 
1 X p matrix k such that f = kC if and only if 
kerC c ker f (cf. [4]). From this it follows that 
there exists a 1 x p matrix k such that 

p(s) = det(s/ - (A+ bkC)) 

if and only if 

ker Cc ker e~[b, Ab, .. ., An-lb l- 1 p (A). 

In tum, the latter is equivalent to 

p(A)ker Ccker e~[b, Ab,. . ., An- 1br 1• 

The proof of the theorem is now completed by the 
observation that 

ker e~[ b, Ab,. . ., An-lb l- 1 

=im[b, Ab, .. .,An-2b]. D 

Using the conditions of the above theorem we 
can investigate the existence of a real 1 x p matrix 
k satisfying 

p ( s) = det( s/ - (A + bkC)), 

whereupon k can be computed in a way as de­
scribed in the proof of the (if) part. By dual 
reasoning a statement about pole placement by 
static output feedback for systems with single 
output and, possibly, multiple input can be de­
rived. We omit this result and we continue with a 
special case of our pole-placement problem in 
which we assume that also the output is a scalar. 
The system, denoted 2', is then given by 

x(t) =Ax(t) + bu(t), 

y(t) = cx(t) 

where x( t ), u( t ), A and b are as described be­
fore, y(t) ER and c is a real 1 x n matrix. For 
i = 1, 2, ... , n let R; and O; be real matrices de­
fined as 

We assume that the single-input/single-output 
system 2' is minimal, i.e. rank Rn = rank On = n. 
The following result is a special case of our main 
theorem and states exactly when there is a scalar 
static output feedback such that the poles of the 
closed-loop system are at prescribed locations 
given by the zeros of the polynomial p(s). 

Corollary. Let 2' be a minimal system as given 
above and let p(s) be a real polynomial of degree n. 
Then there exists a real number k such that 

p ( s) = det( sl - (A + bkc)) 

if and only if there exists an integer t, 1 ~ t < n, 
such that 

Furthermore, if such an integer exists then the latter 
subspace inclusion is valid for all integers t, 1 ~ t < 
n. 

Proof. From the previous theorem and its omitted 
dual version it is clear that the following state­
ments are equivalent. 
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(a) There is a k E ~ such that 

p ( s) = det( sf - (A + bkc)). 

(b) p(A)ker 0 1 C im Rn-I· 

(c) p(A)ker On- IC im R 1• 

Without loss of generality we may assume that 
(cf. [3]) 

0 0 -ro I ho l 
1 0 -r1 bi 

I 0 1 -r2 b2 
A= 'b= I 

I 0 1 0 

0 0 0 1 -rn-1 l bn-1 J 
and c= [O, 0, ... ,0, I]. 

Note that 

ker0,=span{e1 , e2 , ••. ,en_ 1 } 

and e, = A1- 1e 1 for all t, 1:;;;; t < n. Therefore 

p(A)ker 0 1 =p(A)span{ eI, AeI, ... , An-r- 1e1 } 

=span{ h, Ah, ... , An-I-lh} 

for all t, 1 ~ t < n, where we have denoted h = 
p(A)eI. Now suppose that 

p(A)kerO, C imRn-I 

for some t, 1 < t < n. Then it follows that 

p(A)ker 0 1_ 1 =span{ h, Ah, ... , An-rh} 

=span{h, Ah, ... , An-r- 1h} 

+Aspan{h, Ah, ... ,An-r-lh} 

= p(A)ker 0, + Ap (A)ker OI 

C im Rn-I+ Aim R 11 _I 

= im Rn-r+I· 

Hence, for all t, 1 < t < n, p(A)ker 0 1 c im Rn-r 

implies 

p(A)ker q_ 1 C im Rn-I+l· 

By the equivalence of the statements (a), (b) and 
(c) the proof of the corollary is now completed. 
D 
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