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Most expert knowledge is ill-defined and heuristic. Therefore, many present-day 
rule-based expert systems include a mechanism for modeiing and manipulating 
imprecise knowledge. For a long time, probability theory has been the primary 
quantitative approach for handling uncertainty. Other (mathematical) models of 
uncertainty have been proposed during the last decade, several of which depart from 
probability theory. Jn this paper, so-called inference networks are introduced to 
demonstrate the application of such a model for inexact reasoning in a rule-based 
top-down reasoning expert system. This approach enables the formulation of a 
conceptual model for inexact reasoning in rule-based systems. This conceptual 
model is used to show some inadequacies in the certainty factor model, a model that 
has been proposed by the authors of the MYCJN system and that has actually been 
applied in expert systems. A syntactically correct reformulation of the certainty 
factor model is proposed, and this new formalism is used to discuss some of the 
model's properties. 

KEYWORDS: expert systems, inexact reasoning, inference networks, cer
tainty factor model 

1. INTRODUCTION 

When building expert systems one finds that in many real-life domains expert 
knowledge is not precisely defined but of an imprecise nature. To be useful in an 
environment in which such imprecise knowledge has to be employed, an expert 
system has to capture the uncertainties that go with the represented pieces of 
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knowledge. In the recent past, researchers in artificial intelligence have sought 
methods for representing uncertainties and have developed reasoning procedures 
for manipulating uncertain knowledge. The terms plausible and inexact 
reasoning are often used in relation to this field of research. 

For a long time, Bayesian probability theory has been the only quantitative 
approach to modeling and handling uncertainty. Bayesian probability theory. 
however, cannot be applied in a straightforward manner in rule-based expert 
systems. Several other mathematical models of uncertainty have been proposed, 
such as Shafer's belief theory [1] and Zadeh's possibility theory (2, 3]. Quite a 
different approach that has been recently presented is Cohen's theory of 
endorsement [4]. Unfortunately, most of these mathematical models are 
computationally demanding. Many researchers have therefore proposed and 
used empirical models. An example of such an ad hoe model is the certainty 
factor model developed by E. H. Shortliffe and B. G. Buchanan, the authors of 
the MYCIN system [5]. Lee et al. present an introduction to inexact reasoning 
and discuss most of the models mentioned above [6]. 

In this paper, we introduce a conceptual model for plausible reasoning that 
can be used to investigate the suitability of an actual model for application in a 
rule-based expert system. The conceptual model can also be used as a 
framework for comparing different actual models. Here, we use this conceptual 
model to examine the certainty factor model; this latter model is our example 
throughout the paper. Since its introduction in the 1970s, it has enjoyed 
widespread use in rule-based top-down reasoning expert systems, such as 
MYCIN and similar systems. Part of the success of the certainty factor model 
can be accounted for by its computational simplicity. Although the certainty 
factor model is frequently employed in practical situations, it has been subject to 
severe criticism from theoreticians. In this paper we do not address the 
theoretical aspects of the model in detail; the theoretical foundation of the 
certainty factor model is discussed elsewhere (Van der Gaag [7]). Here, we use 
so-called inference networks to demonstrate its application in a rule-based expert 
system using top-down inference as a reasoning technique. This approach 
enables us to show some syntactical inadequacies in the notation by Shortliffe 
and Buchanan. From these observations we arrive at a syntactically correct 
formalism without affecting the intended meaning of the model. 

2. BASIC NOTIONS 

Shortliffe and Buchanan have developed an empirical method for modeling 
~d handling uncertainty in MYCIN, a rule-based expert system using top-down 
inference as a reasoning technique; their method is called the certainty factor 
model. A slightly modified version of this model has been implemented in the 
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expert system shell EMYCIN as has been used in many similar expert _system 
shells. We will discuss only this latter version. 

Although we assume that the reader is acquainted with production rules and 
top-down inference, a short description of these notions is provided in order to 
introduce some terminology. In a rule-based top-down reasoning expert system 
applying the certainty factor model for the manipulation of uncertainty, there are 
three major components: 

1. Production rules and associated certainty factors. Basically, an expert 
in the domain in which the expert system is to be used models his or her 
knowledge of the field in a set of production rules of the form e ~ h. The 
left-hand side e of a production rule is a positive Boolean combination of 
conditions; that is, e does not contain any negations. Without loss of 
generality we assume that e is a conjunction of disjunctions of conditions. 
Throughout this paper, e as well as its constituting parts will be called 
(pieces of) evidence. In general, the right-hand side h of a production rule 
is a conjunction of conclusions. In this paper, we restrict ourselves to 
single-conclusion production rules; note that this restriction is not an 
essential one. Henceforth, a conclusion will be called a hypothesis. 

An expert associates with the hypothesis h in a production rule e ~ h 
a (real) number CF(h, e, e ~ h), quantifying the degree to which 
the observation of evidence e confirms the hypothesis h. The values 
CF(x, y, z) of the (partial) function CF are called certainty factors; 
CF(x, y, z) should be read as "the certainty factor of x, given y and the 
derivation z of x from y.'' From here on we use the more suggestive 
notation CF(x -1 y, z). Certainty factors range from - l to + l. A positive 
certainty factor is associated with a hypothesis h given some evidence e if 
the hypothesis is confirmed to some degree by the observation of this 
evidence; the certainty factor + 1 indicates that the occurrence of evidence 
e completely proves the hypothesis h. A negative certainty factor is 
suggested if the observation of evidence e disconfirms the hypothesis h. A 
certainty factor equal to zero is suggested by the expert if the observation 
of evidence e does not influence the confidence in the hypothesis h. 

Shortliffe and Buchanan use the two-argument notation CF(h, e); as will 
be discussed shortly, it is necessary to introduce the derivation of h from e 
in the notational convention. 

2. User-supplied data and associated certainty factors. During a consulta
tion of the expert system, the user is asked to supply actual case data. The 
user attaches a certainty factor CF(e -1 u, u -+ e) to every piece of 
evidence e he supplies the system with. In order to be able to treat 
production rules and user-supplied data uniformly, we assume that the set 
of production rules supplied by the expert is augmented with a set of 
fictitious production rules u -+ e, where u represents the user's de facto 
knowledge and e a piece of user-supplied evidence. 
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3. A (top-down) inference engine and a (bottom-up) scheme for 
propagating uncertainty. Top-down inference is a goal-directed reason
ing technique in which the production rules are applied exhaustively to 
prove one or more goal hypotheses. A production rule is said to succeed if 
each of its conditions is fulfilled; otherwise, the rule is said to fail. Due to 
the application of production rules, during the inference process several 
intermediary hypotheses are confirmed to some degree. The certainty 
factor to be associated with an intermediary hypothesis h is calculated 
from the certainty factors associated with the production rules that were 
used in deriving h. For the purpose of thus propagating uncertainty, 
several functions for combining certainty factors are defined. The 
remainder of this paper provides a thorough treatment of the propagation 
of uncertainty prescribed by the model. 

3. RULE-BASED DERIVATIONS AND DERIVATION TREES 

In the foregoing section the basic notions of the certainty factor model have 
been discussed in an informal manner. In this section some formal definitions 
are provided. 

DEFINITION 3 .1. Let a denote a set of atomic propositions. Let 8 denote 
the set of conjunctions of disjunctions of elements of a; that is, 8 
contains elements of the form 

n ( m; ) 6 j"!i au , au E a, n, m; ~ 1. 

A hypothesis is an element h E a. A piece of evidence is an element 
e E 8. Let u be a fixed element of a representing the user's de facto 
knowledge. A production rule is an expression e --> h, where e is a piece of 
evidence and h is a hypothesis. Let (Jl denote a fixed, finite set of 
production rules. 

In Section 2 the notion of a derivation with respect to a set of production rules 
was introduced. This notion is now defined. 

DEFINITION 3.2. Let@ be defined as above. A derivation Di,j of j from i 
with respect to CP is defined recursively as follows. 

1. e --> h is a derivation of h from e with respect to (Jl if e --> h E CP. 
2. If nu.e is a derivation of e from u with respect to (Jl and ne,h is a 

derivation of hfrom e with respect to CP, then ((Du,e) o (De,h)) is a 
derivation of hfrom u with respect to (5>. ((Du, e)o (De, hj) is called the 
(sequential) composition of the derivations nu,e and ne,h. 

3. If Du, e1 is a derivation of e1 from u with respect to <P and nu. e1 is a 
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derivation of eifrom u with respect to(\>, then ((Du,e1) & (Du,e2)) is a 

derivation of (e1 /\ ei) from u with respect to <P. ((Du.e1) & (D"·'Z)) is 

called the conjunction of the derivations nu.e1 and nu.e2. 

4. If nu. e I is a derivation of e I from 8 with respect to <P and nu. ez is a 

derivation of e1from u with respect to (l>, then ((Du·•i)) I (Du·•2)) is a 

derivation of (e1 V ei) from u with respect to <P. ((Du,e1) I (D"·e2)) is 

called the disjunction of the derivations ou.e1 and nu.e2. 

5. If D~·h and D~·h are derivations of hfrom u with respect to (P, then 

((D~· h) II (D~· h)) is a derivation of h from u with respect to @. 

((D~· h) I (D~· h)) is called the parallel composition of the derivations 
D~·h and D~·h. 

The set of all derivations with respect to CP is denoted by 5). 

In what follows, we will omit parentheses from elements of c; and 5) as long 

as ambiguity cannot occur. 

EXAMPLE 3 .1. Let CP be the set consisting of the following production rules: 

d/\f->b 

a-+d 

b->i 

u-+a 

u-+b 

u-+f 

Then Du,d = (u -> a) o (a -+ d) is a derivation of d from u, and 

Du·;=(((u-+b)l!((((u->a) o (a->d)) & (u->j)) 0 (d /\f->b))) 0 (b-+i)) 

is a derivation of i from u. 

We conclude this section by presenting a graphical representation of 

derivations. A graphical representation of a derivation is called a derivation 

tree. As the notion of derivation tree is rather straightforward, we will confine 

ourselves to loosely introducing the building blocks for derivation trees. The 

derivation tree corresponding to a derivation D is built beginning at the right end 

and using these basic representations. Let p(D) denote the graphical representa

tion of the derivation D. Then 

1. For the representation of a production rule u -> h, 

p(u -> h) = u-+h 

2. For the representation of the composition of two derivations, 
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3. For the representation of the conjunction of two derivations, 

4. For the representation of the disjunction of two derivations, 

5. For the representation of the parallel composition of two derivations of the 

same hypothesis h, 

p(_(Dt") II (D~ 11 )) = h 

where 

T;, 1 

p{Df·") = h 

So we simply join the two derivation trees of h. 
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Figure 1. A Derivation Tree. 

EXAMPLE 3.2. Consider the set of production rules of Example 3.1. The 
derivation tree of the derivation 

Du,b = ((u -+ b)\l((((u -+ a) o (a -+ d)} & (u -+ f)) 0 (d /\. f-+ b))), 

that is, p(Du,b), is shown in Figure 1. 

4. RULE-BASED INFERENCE AND INFERENCE NETWORKS 

In this section we see with the help of an example that an expert system with a 
fixed set of production rules applying the EMYCIN top-down reasoning strategy 
determines a unique derivation in the set of all derivations with respect to this set 
of production rules. We assume that a backward-chaining strategy is used, that 
is, that the production rules are applied in the order in which they have been 
specified. Equally, the conditions in a production rule are evaluated in the 
specified order. Furthermore, the actual inference process is simplified by 
assuming that the user is asked to confirm or disconfirm to some degree each 
piece of evidence that cannot be derived from the production rules. It is left to 
the reader to verify that this simplification is not an essential one. 

EXAMPLE 4.1. Consider the set of production rules consisting of the 
following six elements. Note that the set of rules is not yet supplemented with the 
fictitious production rules representing the user-supplied evidence discussed in 
Section 2. 

e-+ h 

a/\ (b v c) -+ h 

df\f-+b 

f v g-+ h 

a -+ d 
b-+ i 

Suppose for the moment that h is the goal hypothesis of the consultation. First 
the rule e -+ h is selected to be applied; e now becomes the next goal hypothesis 
to be confirmed. As there are no production rules concluding one, the user is 
asked to confirm or disconfirm e. Assume that he disconfirms e; in this case 
the production rule e -+ h fails. Subsequently, the user is asked to confirm or 
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I 
~ ~-~~==·_: ____ ~~ h 

Figure 2. An Inference Network. 

disconfirm a. When a is confirmed, f will be asked, etc. We assume that 
a, c, f, and g are confirmed by the user. Therefore, the production rules 
a /\ (b v c) -> h, d A f--+ b, f v g --+ h, and a --+ d succeed. Note that the 
production rule b --+ i is not used in the derivation of h. 

A top-down inference process as discussed in the foregoing example is often 
depicted in a so-called inference network. An inference network is built from 
the representations of those production rules that actually succeeded during the 
inference process. In this paper, in depicting inference networks we use building 
blocks similar to the ones introduced in Section 3 for the graphical representation 
of derivations. 

EXAMPLE 4.2. Consider the inference process described in Example 4.1. The 
inference network corresponding to this process is shown in Fig. 2. 

An inference network is extended with the production rules u --+ e, where e is 
a piece of user-supplied evidence relevant to the production rules that actually 
succeeded during the consultation of the system in deriving one or more of the 
goal hypotheses. Recall that u represents the user's de facto knowledge. 

EXAMPLE 4.3. The inference network of Figure 2 is extended with the 
production rules u --+ a, u --+ c, u --+ f, and u --+ g. The thus extended infer
ence network is depicted in Figure 3. Consider once more the production rule 
a/\ (b v c) --+ h. Up to now we have assumed that a and c were both confirmed 
by the user and that b was derived. The reader can easily verify that this rule also 
succeeds in the case that b has been derived, and the user has confirmed a and 
has disconfirrned c. In this case, the inference network is exactly the same as the 
one shown in Figure 2. Although in this case the user has supplied negative 
information on c, the network is extended in the same way. 

Note that each production rule may be applied at most once during an inference 
process. Furthermore, the networks composed of only those production rules 
that actually succeeded are guaranteed to be acyclic, since the EMYCIN 
reasoning mechanism prevents cyclic reasoning chains. From this latter 
observation, we have that each extended inference network can be transformed 
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"7 
d 

b 

h 
u-g 

Figure 3. The Extended Inference Network. 

in such a way that from each node either one arrow of type - or one arrow of 
type -+ departs by duplicating nodes and arrows if necessary; that is, an 
inference network is transformed into a tree. 

EXAMPLE 4.4. Figure 4 shows the inference network resulting from the 
transformation of the inference network depicted in Figure 3. Notice the 
duplication of nodes a and f. 

Such a transformed inference network equals exactly one derivation tree, 
corresponding to a unique element of the set of all derivations with respect to the 
set of production rules. 

5. MODELING THE PROPAGATION OF UNCERTAINTY 

In the foregoing sections it has been shown that a rule-based inference process 
can be graphically represented as an inference network corresponding to a 
unique derivation tree. In this section, such treelike inference networks are used 
to demonstrate the propagation of uncertainty in inference processes. Hence
forth, the phase "inference network" denotes a transformed inference network 
corresponding to a derivation tree. 

Recall that an expert has attached a certainty factor CF(h -; e, e -+ h) to the 
conclusion h of the production rule e -+ h and that the user has attached a 
certainty factor CF(e -t u, u -+ e) to the conclusion e of the production rule 
u -+ e, representing the fact that he has supplied the system with the 
actual information e. In an inference network, a certainty factor assigned 
to a hypothesis in a production rule is attached to the arrow in the repre
sentation of the rule. Therefore, if an expert has assigned the certainty factor 
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u a 

u-a- ;>---u 

u c 

u f 
h 

u g 

Figure 4. The Transformed Inference Network. 

CF(h -J e1 /\ e2, e1 f\ e2 --> h) to the hypothesis h in the production rule 
e1 f\ e2 --> h, this is represented as shown below: 

h 

The aim of the certainty factor model is to calculate a certainty factor 
CF(h -J u, Du,h) for each goal hypothesis h, where Du,h is the derivation of h 
from u with respect to a fixed set of production rules exhaustively applied in a 
top-down reasoning fashion; it is obvious that such a certainty factor is 
dependent upon the certainty factors attached to the arrows in the inference 
network as well as on the structure of the inference network itself. 

The way the certainty factor CF(h -J u, Du,h) for each goal hypothesis h is 
calculated from other certainty factors is discussed with the help of the inference 
network. We define a number of basic compression steps that are used to 
compress an inference network in a finite number of steps to 

CF(h _, u, ou,h) 
h u 

for each goal hypothesis h. As we will see shortly, in each compression step the 
number of arrows (and certainty factors) in the network is diminished. The 
certainty factors that disappear in a compression step are combined into a new 
certainty factor. For that purpose a combination function is associated with each 
compression step. There are four basic compression steps: 
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1. The inference network 

CF(e-1 u, nu.e) CF(h-1 e, e - h) 
u e h 

representing the compos1t1on of the derivations Du,e and e -+ h, is 
compressed to yield 

u h 

With this compression step, a combination function fo is associated such 
that 

CF(h -I u, (Du·e) 0 (e-->h))=fa(CF(e -1 u, Du,e), CF(h -1 e, e-->h)) 

2. The inference network 

u 

u > 
representing the conjunction of the derivations Du,e1 and Du,e2, is 
compressed to yield 

CF(e111e2 -1 u, (Du,e1 )&(Du,e2)) 
u 

With this compression step, a combination function!& is associated such 
that 

CF(e1 /\ e2 -1 u, (Du,e1) & (Du,e2 )) = 
=f&(CF(e1 -1 u, Du,ei), CF(e2 -1 u, Du,ez)) 

3. The inference network 

u 

u > 
representing the disjunction of the derivations vu.ei and vu,ei, is 

compressed to yield 

CF(e 1 ve2 -1 u,(Du,el)j(Du,ez)) 
u e1 V ez 
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With this compression step, a combination function Ji is associated such 
that 

CF(e v e2 -l u, (Du,ei)\(Du,ez)) = 

=Jj(CF(e1 -i u, nu,e1), CF(e2 -l u, Du,e2)) 

4. The inference network 

u 

h 

u 

representing the parallel composition of the derivations D~·h and D~·h, is 
compressed to yield 

U CF(h -i u,(Df•hJll<D~·h)) h 

With this compression step, a combination function fi1 is associated such 
that 

CF(h 1- u, (Dt·h)\\(D~·h)) =Jj1(CF(h 1- u, D~·h), CF(h f- u, D~·h)) 
Since the application of each of these four compression steps reduces the 

number of arrows in an inference network, termination of the compression is 
guaranteed. 

EXAMPLE 5 .1. The inference network of Figure 4 can be compressed to 

CF(h -i u, nu,h) 
u h 

where 

nu,h=(((u-+a) & (((((u-+a) 0 (a-+d)) & (u-+f)) 0 (d /\f-+b))\ 

\(u-+c))) 0 (a/\ (b v c)-+h))\\(((u-+f)\(u-+g)) o (f v g-+h)) 

6. SOME DESIRABLE PROPERTIES OF THE COMBINATION 
FUNCTIONS 

In the foregoing section the propagation of uncertainty during an inference 
process has been modeled by the compression of the corresponding inference 
network. We have defined four basic compression steps and have introduced 
combination functions corresponding with these compression steps. In this 
section we discuss some desirable properties for each of these combination 
functions. 
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Recall that the certainty factor CF(h -l e, e -+ h) quantifies the degree to 
'Which the occurrence of evidence e confinns the hypothesis h. However, the 
truth of a piece of evidence e (i.e., whether e has actually occurred) may not 
always be determined with absolute certainty; with every piece of evidence e 
supplied by the user, a certainty factor is associated that is not necessarily equal 
to + 1. Furthennore, in using production rules, intermediary hypotheses are 
confirmed to some degree and may in turn be used as evidence in other 
production rules concluding on new hypotheses. Basic compression step 1, 
describing the composition of derivations and its associated combination 
function Jo, deal with this situation. From now on, we will call the functionfo 
the combination function for (propagating) uncertain evidence. 

We have seen that the evidence e in the production rule e -+ h can be an 
intermediary hypothesis that has been confinned to some degree. If the certainty 
factor CF(e -l u, Du·e) of the evidence e given some derivation of e and u is 
known, the combination function for uncertain evidence can handle this 
situation. As we discussed in Section 2, however, the evidence e in a rule e-+ h 
can be a conjunction of disjunctions of pieces of evidence. In order to be able to 
apply the combination function fo for uncertainty evidence, the certainty factor 
CF(e -1 u, Du·e) of the Boolean combination e has to be computed from the 
certainty factors of its constituent parts. Basic compression steps 2 and 3, 
dealing with the conjunction and disjunction of derivations and their associated 
combination functions f& and Ji, refer to this situation. From now on, the 
function f & will be called the combination junction jor conjunctions of 
hypotheses, and the function JI the combination junction for disjunctions of 
hypotheses. When referring to the two functions, we will call them the 
combination functions for composite hypotheses. 

It will be obvious that it is desirable that the application of the combination 
functions for composite hypotheses render the resulting certainty factor of a 
conjunction of disjunctions of pieces of evidence independent of the order in 
which the constituent parts of each of the disjunctions and the constituent parts 
of each of the conjunctions are specified. For example, the production rules 
e1 /\ e2 -+ h and e2 /\ e1 -+ h should yield the same result. Furthermore, the 
resulting certainty factor of a positive Boolean combination of pieces of evidence 
has to be independent of the way in which the constituent parts of each of the 
disjunctions and the constituent parts of the conjunction are taken together to be 
combined. Therefore, the combination functions for composite hypotheses f & 

and Ji have to respect the property of commutativity, 

f&(X, Y)=f&(Y, x) and Jl(x, y)=fj(y, x) 

for all certainty factors x and y, and the property of associativity, 

f&U&(X, y), z)=f&(X, f&(Y. z)) and fj(fj(x, y), z) =fj(x, fj(y, z)) 

for all certainty factors x, y, and z. 
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When different successful production rules e; ~ h conclude on the same 
hypothesis h, a certainty factor CF(h -1 u, Df·h) is derived from the application 
of each of them. The net certainty factor of h is dependent upon each of these 
partial certainty factors. Basic compression step 4, describing the parallel 
composition of derivations and its associated combination function f11, deal with 
multiple production rules. From now on, we will call the function ./11 the 
combination function for (combining the results of) multiple production 
rules concluding on the same hypothesis. 

Again, it is desirable that the application of the function.f11 render the resulting 
certainty factor of a hypothesis h independent of the order in which the different 
production rules concluding on h are applied. Furthermore, it is desirable that 
the resulting certainty factor be independent of the way in which the results of 
the different rules are taken together to be combined. Therefore, the combina
tion function fu has to respect the property of commutativity, 

fi1(X, y)=Jj1(Y, x) 

for all certainty factors x and y, and the property of associativity, 

Ji1Ui1(x, y), z)=Ji1(x,Ji1(Y, z)) 

for all certainty factors x, y, and z. 
Finally, we want the four combination functions to be monotonic increasing. 

Therefore, the combination functions fo, f&, Ji, and .fli have to respect the 
following property: 

If x ~ x 1 and y ~ y 1 , then 

and 

fo(X, J) ~ fo(X 1
, y'), 

f&(X, y) ~ f&(X 1
, y'), 

Jj(x, y) ~ Jj(x', y'), 

7. THE ACTUAL COMBINATION FUNCTIONS 

Shortliffe and Buchanan introduced four combination functions for combining 
certainty factors in their original paper [5]. In this section we discuss these 
combination functions of Shortliffe and Buchanan and show the correspondence 
to our combination functions fo, f&, Ji, and Ji1· 

The Combination Function for Propagating Uncertain Evidence 

In the situation in which the evidence e in a production rule e ~ h is 
an intermediary hypothesis confirmed to some degree, the certainty factor 
CF(e -I u, Du,e) of the intermediary hypothesis e given some derivation of e 
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from u is used as a weighting factor for the certainty factor CF(h f- e, e --+ h) 
associated with the rule. Adapted to our notational convention, the combination 
function for uncertain evidence described by Shortliffe and Buchanan reads as 
follows: 

CF(h -i U, (Du,e) o (e--+h))= 

=CF(h -i e, e->h) · max{O, CF(e -1 u, D"·e)} 

or using the function fo, 

fo(X, y)=y · max{O, x} 

where x denotes the certainty factor CF(e -i u, Du,e) of the intermediary 
hypothesis e, and y denotes the certainty factor CF(h -i e, e --+ h) associated 
with the production rule e -> h. From this latter formulation the reader can 
easily verify that the combination function respects the property of monotony. 

Shortliffe and Buchanan propose the following formulation of the combination 
function for propagating uncertain evidence (although the function is not stated 
explicitly in the original work, it is the straightforward analog of the 
corresponding functions for their basic measures of uncertainty): 

CF(h, i)= CF'(h, i) · max{O, CF(i, e)} 

where CF' (h, i) is the certainty factor associated with h given that evidence i is 
observed with absolute certainty, that is, the certainty factor the expert has 
assigned to the hypothesis h in the (single-conclusion) production rule i --+ h. 
The certainty factor CF(i, e) denotes the actual certainty factor of i given some 
prior evidence e; similarly, CF(h, i) is the actual certainty factor of h after the 
application of the rule i --+ h. In our opinion, the actual certainty factor of h after 
the application of the production rule, expressed on the left-hand side of the 
formulation given above, is dependent not only upon hand i, but upon e as well. 
The dependency on e is not expressed in the original formulation of the 
combination function. This inadequacy has caused the need to introduce the 
seemingly strange quoted function CF'. The observation that the actual certainty 
factor of the hypothesis h is dependent upon all intermediary hypotheses that 
were used in deriving h has led to the introduction of the notion of derivation 
with respect to a fixed set of production rules in our formulation of the 
uncertainty factor function. Notice that we have not affected the intended 
meaning of the original formulation of the combination function for propagating 
uncertain evidence. 

The Combination Functions for Composite Hypotheses 

If the evidence e in the production rule e --+ h is a conjunction of disjunctions 
of pieces of evidence, the certainty factors of each of the separate pieces of 
evidence are combined into a single certainty factor of e. For this purpose we 
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have introduced the combination functions f & and Ji. Shortliffe and Buchanan 
argue that the belief in a conjunction of hypotheses is only as good as the belief 
in the hypothesis that is believed less strongly. A complementary observation is 
made for the belief in a disjunction of hypotheses. Pursuing his observation, 
their combination function for a conjunction of hypotheses reads as follows: 

CF(e1 /\. e2 -i u, (Du,ei) & (Du,ez)) = 

=min{ CF(e1 -i u, Du,el), CF(e2 -i u, Du,ez)} 

For a combination function for a disjunction of hypotheses they have chosen 

CF(e1 V ez -i u, (Du,ei )i(Du,ez)) = 

=max{CF(e1 -i u, Du,el), CF(e2 -i u, Du,ez)} 

or, using the functions f & and Jj, 

f&(X, y)=min{x, y} and Ji(x, y)=max{x, y} 

where x denotes the certainty factor CF(e1 -i u, Du,e1) and y denotes the 
certainty factor CF(e2 -i u, Du,ez). From this formulation it should be obvious 
that these combination functions respect the properties of commutativity, 
associativity, and monotony. 

Shortliffe and Buchanan propose the following formulation of these combina
tion functions: 

CF(h1 /\. h2 , e)=min{ CF(hi. e), CF(hz, e)} 

CF(h1 v hz, e)=max{ CF(h1, e), CF(h2 , e)} 

These combination functions can be used to combine the certainty factors of 
several hypotheses given the same evidence. In practice, however, the certainty 
factors of the hypotheses to be combined are generally derived along different 
inference paths and differ in the second argument due to the original formulation 
of the combination function for propagating uncertain evidence. The reader can 
verify that the reformulation of the combination functions for composite 
hypotheses has the same meaning as the original formulation. 

The Combination Function for Multiple Production Rules 

The combination function still to be discussed concerns multiple production 
rules concluding on the same hypothesis, that is, our functionjj1. The following 
combination function is given by Shortliffe and Buchanan to deal with this 
situation: 



nceptual Model for Inexact Reasoning 

= 

CF(h -1 u, (Df·h) + CF(h -1 u, D~·h)(l -CF(h -1 u, Df·h)) 

if CF(h -1 u, D~·h), CF(h -1 u, D~·h)>O 

CF(h -1 u, D~·h) + CF(h -1 u, D~·h) 

1- min{ ICF(h -I u, Dr·h)I, \CF(h -I u, D~·h)I} 

if - I< CF(h -1 u, D~·h) · CF(h -1 u, D~·h) ~ 0 

CF(h -1 u, D~·h) + CF(h -1 u, D~·h)(I + CF(h -1 u, D~·h)) 

if CF(h -1 u, D~·h), CF(h -1 u, D~·h)<O 

ng the function fii renders a more perspicuous formulation: 

./i1(x, y)= 

x+y-xy 

x+y 

1-min{\xl, IYI} 

x+y+xy 

if x, y>O 

if -1 <xy ~ 0 

if x, y<O 
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:re x denotes the certainty factor CF(h -1 u, D~· h) and y denotes the certainty 
or CF(h -1 u, D~·h). This combination function respects the properties of 
unutativity and associativity, as shown by Spiegelhalter [8]. 
hortliffe and Buchanan [5] give the following formulation of this combina
function: 

CF(h, ei)+CF(h, e2)(1-CF(h, e1)) 

i= 1, 2 

CF(h, CF(h, e1)+CF(h, ez) 

e1 /\ e2)= 1-min{\CF(h, e1)\, \CF(h, ez)i} 

if one of CF(h, e;)<O, i= 1, 2 

CF(h, ei) + CF(h, e2)(1 + CF(h, ei )) 

if CF(h, e;)<O, i=l,2 

[s noted that this function is mistakenly not defined if at least one of 
(h, ei) and CF(h, e2 ) equals zero. Furthermore, the case in which 
( h, e1) ·CF ( h, e2 ) == - 1 should be excluded explicitly since the combination 
1ction is undefined in this case. A more serious criticism is that in this 
mulation of combining the results of multiple production rules concluding on 
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the same hypothesis the same symbol/\ is used as in describing a conjunction of 

two hypotheses or pieces of evidence. Shortliffe and Buchanan seem to assume 

that the success of a production rule e1 /\ e2 -+ h is equivalent to the success of 

the two production rules e1 -+hand e2 -+ h. As such an equivalence is apt to be 

violated due to inconsistent function values given by the expert (and the user), 

we have introduced another notational convention. Again, the reformulation 

does not change the original meaning of the combination function. 

A Numerical Example 

To conclude, the application of the combination functions is demonstrated by 

means of a numerical example. 

EXAMPLE 7. I. Consider the following three production rules: 

df\f-+b 

a -+ h 

bf\c-+h 

The expert has provided the following certainty factors: 

CF(b _, d /\f, d /\j-+ b) 0.80 

CF(h r- a, a --+ h) = 0.70 

CF(h _, b /\ c, b /\ c-+ h) = 0.50 

We assume that h is the goal hypothesis. The user of the system supplies the 

following information during the consultation: 

CF(a --i u, u -+ a) = 0.50 

CF(c _, u, u -+ c) = 0.40 

CF(d _, u, u -+ d) = 1.00 

CF(/ _, u, u -+ j) = 0.90 

Then it takes the following six computations to arrive at a certainty factor of h: 

1. CF(h _, u, (u -+ a) 0 (a-+ h)) = 0.70 x 0.50 = 0.35 

2. CF(d /\ f --i u, (u -+ d) & (u -+ f)) = min { 1.00, 090} = O. 90 

3. CF(b --i U, ((u -+ d) & (u -+ f)) 0 (d /\ f-+ b )) = 0.80 x 0.90 = 0. 72 

4. CF(b. /\ c --i u, (((u-+ d) & (u -+ f)) o (d /\ f-+ b)) & (u -+ c)) = 
= mm { 0.40, 0.72} = 0.40 

5. CF(h --i u, ((((u -+ d) & (u -+ f)) o (d /\ f -+ b)) & (u -+ c)) 0 

0 (b /\ c-+ h)) = 0.50 x 0.40 = 0.20 

6. CF(h --i u, (((u-+ a) o (a-+ h))IJ((((u-+ d) & (u-+ j)) o (d /\f-+ b)) & 

& (u -+ c)) 0 (b /\ c -+ h))) = 0.35 + 0.20 x 0.65 = 0.48 
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8. CONCLUSION 

We have discussed a conceptual model for inexact reasoning in rule-based 
top-down reasoning expert systems. This conceptual model has been used to 
examine the certainty factor model proposed by Shortliffe and Buchanan. In this 
discussion we have abstracted from several implementation issues, such as the 
discontinuity in the evaluation of the left-hand side of a production rule, that is, 
the 0.2 threshold added to the model for pragmatic reasons. We have modeled 
the scheme of propagating uncertainty by the compression of the inference 
network corresponding to the actual inference process. For this we have defined 
four basic compression steps on an inference network and have associated a 
function with each of these compression steps. The correspondence of these 
functions of the actual combination functions of the certainty factor model has 
been highlighted. 

Furthermore formal definitions of the certainty factor function and its 
combination functions have been introduced. These formal definitions have been 
the point of departure for a discussion of some of the theoretical issues involved 
in the certainty factor model in a subsequent paper (Van der Gaag [7]). In their 
paper Shortliffe and Buchanan suggested a theoretical foundation for the model 
in Bayesian probability theory but did not provide a thorough justification for 
this basis or for the combination functions given the probabilistic definitions. 
The probabilistic basis of the model as well as the combination functions have 
been severely criticized, largely because of the ad hoe character of these parts of 
the model. In [7], we address the question of whether the combination functions 
can be accounted for by the probabilistic basis suggested by Shortliffe and 
Buchanan. 

Although I have used the conceptual model in this paper only in examining the 
certainty factor model, the model has been successfully applied in investigating 
other actual models that have been proposed for inexact reasoning and in 
comparing several actual models. 
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