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Abstract

Cancer is a genetic disorder in the first place. Therefore, next-generation sequencing (NGS) based
discovery of somatically acquired genetic variants has gained widespread attention. Computational pre-
diction of somatic variants, however, is affected by a variety of confounding factors. In addition to the
uncertainties that one commonly encounters also in germline variation prediction, such as misplaced
and/or inaccurate read alignments, cancer heterogeneity and impure samples significantly add to the is-
sues. Overall, this hampers state-of-the-art indel discovery tools to discover somatic indels at operable
performance rates, although they perform excellently when calling germline indels. While affecting all
size ranges, both common and cancer-specific problems interfere in particularly unfavorable ways in the
prediction of somatic midsize (30-150 bp) insertions and deletions.

Here, we present a latent variable model that can take the major confounding factors and uncertainties
into a unifying account. Using this modeling framework, we first demonstrate how to efficiently compute
the probability for a (putative) indel to be somatic, thereby resolving a principled computational runtime
bottleneck in Bayesian uncertainty quantification. Second, we show how to reliably estimate the allele
frequencies for a given list of indels. Third, we also present an intuitive and effective way to control the
false discovery rate, an issue in genetic variant discovery that has been found notoriously hard to deal
with. As a tool that implements all methodology developed, we present PROSIC (PROcessing Somatic
Indel Calls). PROSIC achieves significant improvements in particular in terms of recall when applied
to deletion call sheets, as provided by prevalent state-of-the-art tools, in comparison to their integrated
somatic indel calling routines.

The software is publicly available at https://prosic.github.io and can be easily installed
via https://bioconda.github.io.

*This work was performed while Louis Dijkstra was employed at Centrum Wiskunde & Informatica, Amsterdam.
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1 Introduction

Cancer is a genetic disorder in the first place; somatic mutations turn originally healthy cells into a heteroge-
neous mix of aberrantly evolving cell clones [2]. Empowered by the routine application of newer generation
sequencing technologies [7], global consortia [26] have launched petabyte scale projects concerned with the
discovery and annotation of somatic mutations in cancer genomes [28]. Benefits of such systematic analysis
of somatic mutations include improved diagnosis, staging and therapy protocol selection in the clinic.

Still, the most prevalent approach to somatic mutation discovery are bulk re-sequencing protocols. Next-
generation sequencing (NGS) fragments of a cancer genome and a matched healthy (a.k.a. control) genome
are aligned against the reference genome. Somatic mutations are discovered by comparing variants detected
in the two genomes; those present in the cancer genome, but not in the control genome, are output as somatic.

This at first glance simple looking differential analysis is complicated by several factors, which add to
the usual issues arising in non-differential settings. First, cancer heterogeneity plays a particularly disturbing
role. While in germline variant discovery, variants come at allele frequencies of either 0.0, 0.5 or 1.0, re-
flecting absence, heterozygosity or homozygosity respectively, the usually unknown clonal structure allows
no prior assumptions in somatic variant discovery. Since each of the clones is characterized by their own set
of somatic variants, some of which are shared with other clones and some of which are unique, any allele
frequency between 0 and 1 may apply for the bulk of somatically varied cells. Second, the tumor sample
usually contains a non-negligible amount of healthy cells. Estimating the level of purity or cellularity, i.e.,
the fraction of cancer cells present in the sample, remains difficult, although recent progress has been made
[8]. It is therefore advantageous to take purity into account.

Related complications become particularly disturbing when aiming at the discovery of insertions and
deletions of of 30 - 120 bp in length1. This size range has been termed NGS twilight zone of indels [17, 27].
The reason is that alignment data associated with such indels are particularly uncertain. Thereby, two major
classes of uncertainties apply.

(1) Alignment uncertainty: Alignments of fragments affected by indels longer than 30 bp may easily
be misplaced by short read alignment tools. In particular, the combination of indels and repeat elements
can interfere in unfavorable ways [29]. This adds to traditional issues when dealing with potentially gapped
sequence alignments (see e.g. [16] for prominent artifacts such as gap wander, gap annihilation, and so on).

(2) Typing uncertainty: Even if placed correctly, the alignments may not give rise to clearly discernible
variant signals. For example, fragment length considerations become statistically more involved for midsize
indels [17]. In comparison to short indels, uncertain gap placement within the alignments (see above) plays
a significant role.

So, “twilight zone” indel calling requires particular precautions with respect to uncertain data handling,
as has been noted in various places [12, 17, 18, 27]. There are good tools for the discovery of somatic
single nucleotide variants (see e.g. [1, 9, 11, 25]). Tools presented for discovery of somatic insertions and
deletions, such as [23, DELLY], [24, PLATYPUS], [30, PINDEL] and (most recently) [22, LANCET] are
very conservative, one reason being that they ignore the majority of uncertain data signals, which results in
significantly reduced recall rates.

Here, we present a Bayesian latent variable model that takes the major disturbing data uncertainties
into account. As is usual in uncertain data analysis, the major computational bottleneck of the analysis
is the exponential amount of possibly correct data scenarios. For example, when evaluating n alignments
that provide information about a putative somatic variant at a particular locus, we must take into account
that each of the n alignments could be (a) misplaced, or, if placed correctly could either (b) be affected by
the variant or (c) not be affected—only one of these options is correct. This induces 3n possible scenarios
of correct interpretation of the alignment data; too many, because n, the fragment coverage of the locus,

1Here, we refer to insertions and deletions of all possible sizes, ranging from 1 to several thousands of base pairs.
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typically ranges between 30 and 50. Here, we provide discovery algorithms that run in time linear—and not
exponential—in the coverage, a major methodological contribution of this work.

As for the application of our model in somatic variant discovery, the idea of this work is to turn generic
indel callers into high-performance somatic indel discovery engines on the one hand and to significantly
increase sensitivity for stand-alone somatic indel discovery tools. At this point, we do not aim to devise
stand-alone indel discovery tool. Our idea is to provide a sound statistical framework for enhancing related
performance rates. As one example of the first class consider PINDEL [30] which has turned over the years
into a highly engineered, non-differential indel discovery tool. However, when using this high-performance
discovery machine for somatic indel discovery, performance rates substantially drop. As an example for
the latter class consider DELLY [23], since recently also a high-performance somatic indel discovery tool.
As we will demonstrate, postprocessing somatic indel calls from DELLY with PROSIC leads to a relative
increase of more than 60-70% in recall across all indel size ranges, without loosing precision. We emphasize
another time that this is a statistically involved undertaking. Here, we resolve the inherent issues. To the
best of our knowledge, related statistical machinery—which, as we feel, are of great practical value—has
not yet been presented in the literature.

As our major result, we are indeed able to significantly increase recall rates when discovering somatic
deletions, while being on a par with, if not improving on the precision achieved when making use of ad-hoc
routines for somatic variant discovery implemented by the callers themselves, which sometimes, thanks to
highly engineered (while still ad-hoc) filtering procedures, are truly excellent. Thereby, improvements show
in particular for somatic twilight zone deletions (here: 30-250bp). Last but not least, our framework gives
rise to a natural and intuitive procedure that allows to control the false discovery rate (FDR) in somatic indel
discovery experiments, a notoriously difficult issue in genetic variant discovery in general (see [3, 17] for
controlling FDR in germline indel discovery).

2 Methods

2.1 Notation, Approach and Objectives

We denote observable variables by (Latin) capital letters (e.g.Z). Realizations of these variables are denoted
by small (Latin) letters (e.g. z). Hidden/latent variables are denoted by (small) Greek symbols. Vectors are
denoted by boldface letters (e.g. Z = (Z1, ..., Zk) or z = (z1, ..., zk). We use super-/subscripts h and t
for the healthy and the tumor sample and c to only refer to cancer cells. Note that the tumor sample also
contains healthy cells, which is usually referred to as impurity; let 0 ≤ α < 1 be the fraction of healthy
cells in the tumor sample. Let us fix a particular variant locus; we then denote the relevant alignment data
(encoding alignment length and/or gap content, see subsection 2.2 for details) in the healthy and the tumor
sample by Zh = (Zh1 , ..., Z

h
k ) and Zt = (Zt1, ..., Z

t
l ), where each of the Zhi , Z

t
j , i = 1, ..., k, j = 1, ..., l

represents one alignment covering the fixed variant locus. By variant allele frequency (VAF), we refer to the
fraction of genome copies in the sample affected by the variant. We denote this (unknown) frequency in the
healthy and the tumor sample by θh and θt, respectively. Since healthy cells are diploid, we can restrict θh to
the values 0, 1/2 and 1 corresponding to absence, heterozygosity and homozygosity. Prior such knowledge
about θt is usually unknown at the time of analysis, as it would require to understand the clonal structure
among the cancer cells. So we let θt vary over the entire unit interval [0, 1]. For θc, defined to be the VAF
among only the cancer cells, we obtain the relationship

θt = α · θh + (1− α) · θc (1)

which also varies over the entire unit interval [0, 1].
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We fix a (putative) variant locus and consider the alignment data Zh,Zt of alignments covering the
locus in the healthy and the tumor sample. Our objective is to efficiently compute

L(θh, θc | Zh,Zt), the likelihood of allele frequencies θh, θc given Zh,Zt (2)

To understand the difficulties, consider that each of the alignments Zhi , Z
t
j could either be (a) incorrect, (b)

correct and not affected by the variant or (c) correct and affected by the variant. We recall that there is con-
siderable uncertainty about this for alignments at midsize indel loci in particular. Following a fully Bayesian
approach to inverse uncertainty quantification [15], we attach hyperparameters φh = (φh1 , ..., φ

h
k),φt =

(φt1, ..., φ
t
l) to the alignments Zh,Zt where each of the φhi , φ

t
j is ternary-valued, taking values in {0, 1, 2},

reflecting the above-mentioned three cases (a), (b) and (c). For example, φhi = 2 reflects that Zhi is correct
and associated with the variant, because, for instance, alignment Zhi has a high alignment score and exhibits
a gap agreeing with the coordinates of the putative indel under consideration. Computation of

L(θh, θc | φh,φt,Zh,Zt), the likelihood of θh, θc given Zh,Zt and a realization of φh,φt (3)

is straightforward, because once realizations of φh,φt have been specified, Zh,Zt are no longer uncer-
tain. Note further that probability distributions P (φh,φt) can be obtained from the alignment tool. See
subsection 2.2 below for details on these points.

Encouraged by these observations, we straightforwardly compute

L(θh, θc | Zh,Zt) =

∫
(φh,φt)

L(θh, θc | φh,φt,Zh,Zt) dP (φh,φt). (4)

However, there are 3k+l different choices for realizations of φh,φt. So, computation of the integral requires
O(3k+l) runtime, meaning that it is exponential in the fragment coverage of the variant locus.

While fully Bayesian approaches to inverse uncertainty quantification are certainly desirable, the inte-
gration over uncertainty hyperparameters constitutes their principled computational bottleneck. Here, we
can overcome this bottleneck; the following is a main result of this treatment.

RESULT: The integral (4) can be evaluated in O(k + l) runtime, with a small constant factor.

This insight renders computing (2) and (4) tractable for all putative indel loci in a cancer genome. The result
follows from Theorem 2.2, see Corollary 1 at the end of subsection 2.2.

Application I: Classification Exploiting the efficiency in computing (2), we can determine posterior prob-
abilities for a given indel to be either somatic, a germline variant or absent. The posterior probabilities of
each of these cases can be translated into a statement about the values of θh and θc, see Figure 1a. In the
case of a somatic indel, the variant does not occur among the healthy cells, i.e. θh = 0, while it is present
among the cancer cells, i.e. θc ∈ (0, 1]. Germline variants are present in the healthy cells, i.e. θh ∈ {1/2, 1}
while the particular choice of θc is irrelevant, i.e. θc ∈ [0, 1]. Finally, if the indel is absent, both VAFs are
zero: θh = 0 and θc = 0. We can compute the posterior probabilities for these three cases as [see also
Subsections 2.2 and Appendix A for further details]

P
{

somatic | Zh,Zt
}

=
1

f(Zh,Zt)

∫ 1

0
h(0, θc)L(0, θc | Zh,Zt)dθc, (5)

P
{

germline | Zh,Zt
}

=
1

f(Zh,Zt)

∫ 1

0
h(1/2, θc)L(1/2, θc | Zh,Zt) + h(1, θc)L(1, θc | Zh,Zt)dθc

(6)

3

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/121954doi: bioRxiv preprint first posted online Mar. 29, 2017; 

http://dx.doi.org/10.1101/121954
http://creativecommons.org/licenses/by/4.0/


and

P
{

absent | Zh,Zt
}

=
1

f(Zh,Zt)
h(0, 0)L(0, 0 | Zh,Zt), (7)

where L(·, · | Zh,Zt) is the likelihood function from eq. (2), h(θh, θc) is a prior probability for the given
combination of allele frequencies, and

f(Zh,Zt) =
∑

θh∈{0,1/2,1}

∫ 1

0
h(θh, θc)L(θh, θc | Zh,Zt)dθc (8)

is the marginal probability of the data. Here, we assume no further information on the clonal structure of the
tumor sample, and use a uniform prior, such that the h(θh, θc) cancels out from above equations. Note that
the prior h(θh, θc) allows to integrate prior knowledge about zygosity rates (for germline variants) and clonal
structure (for somatic variants) if available in the future. The integrals are numerically approximated using
the quadrature rule. Note that key to success of numerical approximation of these integrals is the efficient
computation of L(·, · | Zh,Zc), as warranted by Corollary 1 below. This approach yields a posterior
probability for all three categories. These probabilities can be used for filtering output, e.g. fix a threshold τ
and output all indels as somatic where (5) is greater than τ .

Application II: Variant allele frequency estimation The general model presented in section 2.2 allows
us to estimate the VAFs of the healthy and cancer cells: the maximum a posteriori (MAP) estimate of θh
and θc is that point in the parameter space Θ (see Figure 1a) for which the posterior distribution

h(θh, θc | Zh,Zt) =
P (Zh,Zt | θh, θc)h(θh, θc)

P (Zh,Zt)
=

P (Zh,Zc | θh, θt)h(θh, θc)∑
θh∈{0,1/2,1}

∫ 1
0 P (Zh,Zt | θh, θc)dθc

(9)

attains its maximum. We again assume a uniform prior h(θh, θc) over the parameter space Θ (see Figure
1a). Hence, h(θh, θc | Zh,Zt) agrees with the likelihood function and the maximum(

θ̂h, θ̂c

)
≡ arg max

(θh,θc)∈Θ
h(θh, θc | Zh,Zt) = arg max

(θh,θc)∈Θ
L(θh, θc | Zh,Zt). (10)

is the maximum likelihood estimate (MLE). The likelihood function in eq. (2) is a higher-order polynomial
in θh and θc, as follows from the computations in Appendix A which makes it infeasible to derive its
maximum analytically. We can nevertheless prove the following helpful theorem.

Theorem 2.1. For fixed θh, the logarithm of the likelihood function θc → L(θh, θc | Zh,Zt) is concave on
the unit interval U = [0, 1]. Hence the likelihood function attains a unique global maximum θ̂c on [0, 1].

See Theorem B.1 in Appendix B for a detailed technical exposition, including a proof and a list of extra
conditions for this theorem necessary to hold, all of which apply in practice. Since the loglikelihood function
is strictly concave, the required maxima can be easily determined numerically.

Application III: False Discovery Rate (FDR) Control After annotating all putative indels with a prob-
ability (5) to be somatic, it remains to filter this list to create reasonable output. Thereby, a common goal
is control the false discovery rate, the expected relative amount of mistaken predictions. FDR control in
variant discovery is of importance for various reasons. However, it has been found notoriously difficult to
deal with in the literature so far (see [3, 17] for examples of FDR control procedures in variant discovery);
the vast majority of discovery tools do not allow for such control. Our framework offers an intuitive and
effective remedy.
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θh•
0 1/2 1

0

1
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(a)

θh θc

HEALTHY SAMPLE (h)

ξh
1

. . . ξh
k

Z h
1

. . . Z h
k
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. . . ωh
k
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ξt
1

. . . ξt
l

Z t
1

. . . Z t
l

ωt
1

. . . ωt
l

(b)

Figure 1: (a) A visualization of the parameter space Θ of the VAFs. Orange: somatic variants agree with
(θh, θc) ∈ {0} × (0, 1], which means that no healthy cells have the variant (θh = 0), while some cancer
clones do have the variant (θc > 0). By analogous considerations we find germline variants (blue) described
by θh ∈ {1

2 , 1} and absent variants (green dot) by θh = 0, θc = 0. (b) A diagram of the model presented in
Section 2.2 with all its variables (circles=latent; rectangles=observable). Each column corresponds to one
alignment (Zhi or Ztj) with its hyperparameters ξhi , ω

h
i or ξtj , ω

t
j . Due to (potential) sample impurity (denoted

by α in the text), θh has an influence on the alignments Ztj from the tumor sample.

Namely, we swap the roles of control and cancer genome in all steps of the discovery procedure. This
yields a list of indels (control indels), all of which either reflect germline indels or artifacts, annotated
with probabilities (5) to be somatic (control probabilities). Because none of the indels is a true discovery,
sampling control probabilities reflects to sample probabilities to be somatic from the null hypothesis, that is
for germline indels or alignment artifacts.

Returning to the original indels and their probabilities (5) to be somatic, we can compute p-values for
each indel. We determine this p-value as the probability that a randomly sampled value from the null
hypothesis distribution is at least as large as the probability to be somatic for the indel in question. Upon
computation of a p-value for each original indel, we can sort these p-values and apply the Benjamini-
Hochberg procedure to control for a given FDR β.

In a final remark, we found Bayesian type FDR control (note that our setting is perfectly Bayesian),
as outlined for example in [21], to not work sufficiently well. A likely reason is that the null hypothesis
distribution violates some consistency assumptions necessary to hold, which can be attributed to systematic
alignment artifacts.

2.2 The Model

We present a graphical model that captures all dependency relationships among the variables relating to the
computation of L(θh, θc | Zh,Zt) while taking all major uncertainties into account. See Figure 1 (b) for
this graphical model.

Hyperparameters, Dependencies and Distributions. Beyond observable variables for alignment data
Zhi , i = 1, ..., k, Ztj , j = 1, ..., l and latent variables θh, θc for allele frequencies, we introduce latent vari-
ables ξhi , ξ

t
j ∈ {0, 1} to specify whether alignments Zhi , Z

t
j are associated with the variant (ξhi , ξ

t
j = 1)
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or not (ξhi , ξ
t
j = 0) and ωhi , ω

t
j ∈ {0, 1} to model correct placement of alignments (ωhi , ω

t
j = 1 if correct

and ωhi , ω
t
j = 0 otherwise). Together, the latent variables ωhi , ω

t
j , ξ

h
i , ξ

t
j specify the ternary valued hyper-

parameters φhi , φ
t
j from subsection 2.1 above, where φ = 0, φ = 1 and φ = 2 correspond to {ω = 0},

{ω = 1, ξ = 0} and {ω = 1, ξ = 1}, respectively. For example ξhi = 1, ωhi = 1 translates into φhi = 2,
the case that alignment Zhi is correct and associated with the variant. Note that the case ω = 0, which indi-
cates incorrectness of the alignment, renders specification of other variables obsolete, because this particular
alignment cannot provide information about the variant. Of course, knowledge about realizations of these
hyperparameters is unknown at the time of the analysis, so these variables remain hidden.

As just outlined, we model the two major sources of uncertainty, 1) alignment uncertainty and 2) typing
uncertainty, by associating every observation Zhi , Z

t
j with two binary-valued, latent variables, reflecting

uncertainty hyperparameters, ωhi , ω
t
j and ξhi , ξ

t
j . First,

ωhi ∼ Bernoulli
(
πhi

)
for i = 1, . . . , k and ωtj ∼ Bernoulli

(
πtj
)

for j = 1, . . . , l. (11)

where πhi , π
t
j are posterior probabilities proportional to the respective alignment scores, as provided by the

aligner. Second,

ξhi ∼ Bernoulli (θh) for i = 1, . . . , k and ξtj ∼ Bernoulli (αθh + (1− α)θc) for j = 1, . . . , l. (12)

This reflects that sampling a fragment from the locus that is affected by the variant agrees with the probability
to sample a genome copy affected by the variant from the bulk of cellular DNA. This, in turn, translates into
the VAF θ of the variant in the respective sample2. We recall eq. (1) for the relationship between θt and θc.
Whether ξi is 1 or 0 is generally not evident from the observed Zi, due to typing uncertainty. We formally
define

Zi | ωi = 1, ξi = 0 ∼ ai and Zi | ωi = 1, ξi = 1 ∼ pi (13)

where ai(·) and pi(·) are the probability distributions of correct Zi when the indel is either absent or present.
If ωi = 0, that is the alignment is incorrect, Zi | ωi = 0 ∼ 1 reflects that Zi has no influence on the posterior
probability distribution of θ.

Observable Data: Split-Read and Internal Segment Alignments. We further specify distributions ai
and pi for paired-end read alignments Zi. Note that, in general, our model does neither depend on paired-
end alignments nor on a particular sequencing technology; see the Discussion for some final remarks on
that point. Paired-end alignments can either overlap the variant locus with one of their read ends (split-read
alignments) or with their unsequenced, internal segment (internal segment alignments).

For internal segment alignments, the Zi are integer-valued, reflecting the length of the alignment. Let
δ denote the length of the indel at the locus in question, where δ is supposed to be negative for deletions
and positive for insertions, and let f(·) specify the fragment length distribution for the sampled fragments.
This distribution often turns out to be approximately Gaussian when following modern sequencing library
protocols (e.g. [6]). Note however that our approach does not depend on the type of this distribution—
any empirical fragment length distribution applies. When the alignment is aligned correctly and is not
affected by the indel, Zi is governed by the fragment length distribution f itself. If the alignment aligns
correctly and is affected by the variant, of length δ, the random variable Zi is governed by by fδ, defined by
fδ(z) := f(z + δ). Note that in case of negative δ (= a deletion of length δ) this shifts f to the right, and
vice versa for insertions. So, overall,

Zi | ωi = 1, ξi = 0 ∼ ai = f and Zi | ωi = 1, ξi = 1 ∼ pi = fδ (14)
2Under the common assumption, of course, that chromosomes harboring and not harboring the indel are equally likely to bring

forth a read.

6

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/121954doi: bioRxiv preprint first posted online Mar. 29, 2017; 

http://dx.doi.org/10.1101/121954
http://creativecommons.org/licenses/by/4.0/


for internal segment alignments Zi. Since fragment length distributions are discrete, we evaluate f and fδ
as

f(z) = Φf (z + 1)− Φf (z) resp. fδ(z) = Φf (z + δ + 1)− Φf (z + δ) (15)

in our experiments, where Φf (·) is the cumulative fragment length distribution function. Note that in our
experiments, f is indeed approximately Gaussian, so we make use of the cumulative standard normal distri-
bution function when evaluating Φ, where the necessary parameters µ and σ can be robustly estimated from
the alignment data, see [14].

Alignments Zi whose ends overlap the variant locus can either show a suitable split (i.e. a gap) or not.
Further, depending on the read mapper, an indel can show up as a soft clip (i.e. a prefix or suffix of the read
is not aligned to the reference). In order to become independent of the read mappers’s decisions, we strive
to determine ai and pi by calculating the probabilty that the read has been sampled from either the reference
or the alternative haplotype. For a given haplotype H and all reasonable offsets O of a read, we define this
probability as

sH =
∑
o∈O

|Zi|∏
j=0

P {Zi,j | Ho+j} . (16)

Here, unlike for segment alignments, Zi denotes the read sequence and P {Zi,j | Ho+j} is the probability
to observe base Zi,j given that base Ho+j is the true allele (as defined by [3]). In other words, we calculate
the probability that the read has been sampled from any position of the haplotype. In principle, an accurate
calculation of ai and pi based on sH would require to consider all possible haplotypes implied by the com-
bination of the variant and reference allele with possible surrounding variants within the range of the read
(which can, e.g., be achieved via pair HMMs [4]). However, here we are only interested in the probability
for the reference or alternative allele at the current locus, i.e., sr and sa. Since surrounding variants would
impact both probabilities, they can be normalized away using the total probability, i.e.,

Zi | ωi = 1, ξi = 0 ∼ ai :=
sr

sr + sa
and Zi | ωi = 1, ξi = 1 ∼ pi :=

sa
sr + sa

. (17)

Statements. We finally obtain the RESULT outlined in the initial subsection 2.1 as a corollary to the
following theorem.

Theorem 2.2. Let Zh = (Zh1 , ..., Z
h
k ),Zt = (Zt1, ..., Z

t
l ) be the observable alignment data from a healthy

and a tumor sample, covering the locus of a putative indel variant of length δ. Then

• (i) The likelihood function

L(θh, θc | Zh,Zt) =
k∏
i=1

L(θh, θc | Zhi )×
l∏

j=1

L(θh, θc | Ztj) (18)

factors into likelihood functions referring to single alignments.

• (ii) Let Zi refer to any of the alignments Zh1 , ..., Z
h
k , Z

t
1, ..., Z

t
l and let ωi, ξi be its latent uncertainty

hyperparameters. Then

L(θh, θc | Zi) = P (Zi | θh, θc) =

∫
ξi,ωi

P (Zi | ξi, ωi)× P (ξi, ωi | θh, θc) d(ξi, ωi) (19)

PROOF. (i) follows immediately from the fact that theZhi , Z
t
j are conditionally independent given θh, θc;

see Figure 1b. (ii) follows from application of the Chapman-Kolmogorov equation, in combination with the
dependency relationships captured by our model, see again Figure 1b.
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healthy cell founder clone 2/3

1/3

intermediate
subclone I

1/2

1/2

intermediate
subclone II

3/4

1/4

subclone I

subclone II

subclone III

subclone IV

(a) Simulated tumour evolution (b) Simulated tumour sample

TUMOUR SAMPLE

cell type prevalence

healthy 25%(= α)

subclone I 25%

subclone II 25%

subclone III 18.75%

subclone IV 6.25%

Figure 2: Simulated Cancer Clones: (a) The evolution of the cancer clones. (b) The simulated tumour
sample. Each cell is assumed to be diploid. Cells of the same type share the same genetic code. The relative
prevalences of the various cell types are shown in the table. The level of impurity (α) is 25%.

Corollary 1. L(θh, θc | Zh,Zt) can be computed in O(k + l) runtime, with a small constant factor.

The proof of Corollary 1 follows because the integral virtually is a sum over the three well-known cases
{ωi = 0}, {ωi = 1, ξi = 0} and {ωi = 1, ξ1 = 1}, reflecting that the alignment Zi is either (1) incorrect, (2)
correct and not affected by the variant, or (3) correct and affected by the variant, as previously mentioned.
Because the proof is somewhat more technical, we have deferred it to subsection A in the Appendix.

3 Results and Discussion

General Workflow. We present PROSIC (PROcessing Somatic Indel Calls) as a tool that implements the
statistical model outlined in the Methods section. PROSIC requires a list of (putative) indel calls as VCF, and
two BAM files, one of the cancer and one of the control genome. PROSIC then extracts somatic indel calls
and estimates their VAF’s by implementing equations (5) [computing the probability of the putative indels
to be somatic] and (10) [computing the maximum likelihood estimate (MLE) of the VAF’s] in subsection
2.1. See Figure 5, Appendix C for an illustration of the steps of PROSIC’s somatic indel calling pipeline:
PROSIC implements 3 [computing probabilities to be somatic, eq. (5) and estimates of VAFs, eq. (10)]
and 4 [FDR control], while 1 [read alignment] and 2 [generic indel calling] rely on existing state of the
art, for which plenty of (often excellent) tools have been presented in the literature. Methods for 3 and 4 ,
however, that transform the excellent generic indel callers into (equally excellent) somatic indel callers have
been missing in so far. PROSIC is implemented in Rust [20], on top of the Rust-Bio library [10].

Data We used a real genome (Venter’s genome [13]), which has already been previously approved for
NGS benchmarking purposes [17, 18] as a control genome and inserted randomly sampled 300,000 somatic
point mutations, 150,000 insertions and 150,000 deletions, of which 279 509, 139 491 and 139 532 in the
autosomes, respectively, following the clonal structure described by Figure 2 to obtain a simulated cancer
genome. In terms of length, insertions and deletions follow the length distribution of Venter’s germline
insertions and deletions. Reads were sampled using the Assemblathon read simulator SimSeq [5], at 30x
and 40x for the control and the cancer genome, respectively. Subsequently, reads were aligned using BWA-
MEM [14].

Tools: Alignments and (Generic) Indel Callers. In our evaluation experiments, we exclusively focus
on deletions. The reason is that none of the state-of-the-art (generic) indel calling tools yielded sufficient
amounts of insertions of 30 bp and longer when applied to our simulated BAM files. Of course, once
reliable insertion callers are available, PROSIC can be applied also there; as for insertions of 1-30 bp,

8

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/121954doi: bioRxiv preprint first posted online Mar. 29, 2017; 

http://dx.doi.org/10.1101/121954
http://creativecommons.org/licenses/by/4.0/


0.0 0.2 0.4 0.6
recall

0.80

0.85

0.90

0.95

1.00
pr

ec
isi

on
1 - 30 (n=136657)

0.0 0.2 0.4
recall

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

30 - 50 (n=1086)

0.2 0.4 0.6
recall

0.5

0.6

0.7

0.8

0.9

1.0

pr
ec

isi
on

50 - 70 (n=384)

0.0 0.2 0.4 0.6
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

70 - 100 (n=311)

0.0 0.2 0.4
recall

0.6

0.7

0.8

0.9

1.0
pr

ec
isi

on
100 - 150 (n=236)

0.0 0.2 0.4 0.6
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

150 - 250 (n=193)
prosic+pindel
prosic+delly
prosic+platypus-assembly
prosic+lancet
pindel
delly
platypus-assembly
lancet
lancet
lancet-agressive
lancet-agressive

Figure 3: Recall and precision for calling somatic deletions. For our approach (prosic+*) we controlled
the FDR at increasing levels between 0.01 and 1.0 (resulting in a curve). For lancet, curves are plotted by
scanning over the provided p-values (dashed curves). Ad-hoc results are shown as single dots. Note that
PLATYPUS did not make considerable amounts of true predictions beyond 30bp, whereas DELLY did not
provide considerable amounts of true positive calls smaller than 30bp.

PROSIC achieves performance rates roughly on a par with those achieved for deletions. For generating lists
of indels in form of VCF files [step 2 in Fig. 5, sec. C], we chose PINDEL 0.2.5 [30], PLATYPUS 0.8.1
[24] in assembly modus [since in default mode PLATYPUS does not discover indels longer than 30 bp],
DELLY 0.7.6 [23] and LANCET 1.0.0 [22]. For PINDEL and PLATYPUS we applied an ad-hoc routine
for discovery of somatic indels: we subtract indels called in the control genome from those called in the
cancer genomes, and keep all those that pass auxiliary filters defined by the tools (PASS in the FILTER
column). Both LANCET and DELLY provide an integrated ad-hoc method for somatic indel discovery. We
provided the BWA-MEM alignments as input for all tools (which is often just the recommended choice of
aligner, see LANCET, for example). When subsequently running PROSIC, we use the output VCF’s of the
tools in combination with the BAM files that were the basis for generating the VCF’s.

Experiments: Performance Rates. In the following, Recall is defined to be the fraction of true variants
discovered, while Precision is the fraction of correctly predicted variants among the variants called over-
all. Figure 3 shows Recall and Precision for the tools from above on the simulated data, both in ad-hoc
somatic variant calling mode and, in juxtaposition to this, when running PROSIC on their calls. PROSIC is
consistently able to improve the recall of the corresponding ad-hoc calling approach, across all size ranges
without impacting the precision. Moreover, because of the statistical framework, PROSIC allows to control
the FDR, a highly favorable feature from a practical point of view, which cannot be warranted by ad-hoc
routines.

Experiments: Consistency of FDR Control. See further Figure 4 for consistency of FDR control levels
in terms of precision achieved: it shows that our FDR control procedure indeed warrants the intended FDR,
indicated by curves being above the dashed diagonal. In particular, FDR control is tight for reasonably small
FDR values. For increasing FDR control levels, control becomes conservative.

9

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/121954doi: bioRxiv preprint first posted online Mar. 29, 2017; 

http://dx.doi.org/10.1101/121954
http://creativecommons.org/licenses/by/4.0/


0.0 0.2 0.4 0.6 0.8 1.0
FDR

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

1 - 30 (n=136657)

0.0 0.2 0.4 0.6 0.8 1.0
FDR

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

30 - 50 (n=1086)

0.0 0.2 0.4 0.6 0.8 1.0
FDR

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

50 - 70 (n=384)

0.0 0.2 0.4 0.6 0.8 1.0
FDR

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

70 - 100 (n=311)

0.0 0.2 0.4 0.6 0.8 1.0
FDR

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

100 - 150 (n=236)

0.0 0.2 0.4 0.6 0.8 1.0
FDR

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

150 - 250 (n=193)
prosic+pindel
prosic+delly
prosic+platypus-assembly
prosic+lancet

Figure 4: FDR control with PROSIC. For each FDR threshold, the corresponding precision is shown. A
perfect FDR control would keep the precision curve exactly on the dashed diagonal. Above the diagonal,
the control is conservative. Curves falling below the diagonal indicate underestimation of the FDR.

Conclusion. We have provided a stastistical framework that allows to efficiently compute the likelihood
of indel VAF’s given observed, yet (often heavily) uncertain alignment data from a cancer and a matched
control genome. The efficiency in computation overcomes a principled computational bottleneck in uncer-
tainty quantification and enables to compute 1) probabilities for indel variants to be somatic, 2) maximum
likelihod estimates for their VAF’s and 3) reasonable, consistent FDR control levels. We have further shown
that PROSIC, the corresponding tool, achieves substantial improvements over somatic indel calling rou-
tines offered by prevalent indel discovery tools. In addition to the improvements achieved, the FDR can be
reliably controlled at all levels, which allows for utmost flexibility in somatic indel discovery experiments.

At last, note that our model also applies for third-generation sequencing (TGS) data—which come with
their own uncertainty characteristics—as long as probabilities of the kind P (Zi | ξi, ωi), P (ωi) can be
obtained from TGS aligners in constant time, through alignment scores and error profiles, which applies,
at least for most prevalent classes of TGS data. In future work of ours, we are focusing on finetuning our
model towards TGS data applications.
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A Proof of Corollary 1

We distinguish between alignments Zhi from the healthy sample and alignments Ztj from the tumor sample.
Making use of the above notation, we compute for Zhi , which does not depend on θc (reflected by P (ξhi , ω

h
i |

θh, θc) = P (ξhi , ω
h
i | θh) leading to the first equation)∫

ξhi ,ω
h
i

P (Zhi | ξhi , ωhi )× P (ξhi , ω
h
i | θh, θc) d(ξhi , ω

h
i ) =

∫
ξhi ,ω

h
i

P (Zhi | ξhi , ωhi )× P (ξhi , ω
h
i | θh) d(ξhi , ω

h
i )

= P (Zhi | ωhi = 1, ξhi = 0)P (ωhi = 1, ξhi = 0 | θh)

+ P (Zhi | ωhi = 1, ξhi = 1)P (ωhi = 1, ξhi = 1 | θh) + P (Zhi | ωhi = 0)P (ωhi = 0)

= ahi

(
Zhi

)
(1− θh)πhi + phi

(
Zhi

)
θhπ

h
i +

(
1− πhi

)
= πhi ×

[
(1− θh)ahi

(
Zhi

)
+ θhp

h
i

(
Zhi

)]
+
(

1− πhi
)

(20)

where in the last summand, the equation P (ωhi = 0 | θh) = P (ωhi = 0) reflects that ωhi and θh are
independent, see Figure 1b. Analogously, while slightly more involved due to impurity considerations
because Ztj depends on both θh and θc, we compute∫

ξtj ,ω
t
j

P (Ztj | ξtj , ωtj)× P (ξtj , ω
t
j | θh, θc) d(ξtj , ω

t
j)

= P (Ztj | ωtj = 1, ξtj = 0)P (ωtj = 1, ξtj = 0 | θh)

+ P (Ztj | ωtj = 1, ξtj = 1)P (ωtj = 1, ξtj = 1 | θh) + P (Ztj | ωtj = 0)P (ωtj = 0)

= πtj ×
{
α×

[
θhp

t
j

(
Ztj
)

+ (1− θh)atj
(
Ztj
)]

+ (1− α)×
[
θcp

t
j

(
Ztj
)

+ (1− θc)atj
(
Ztj
)] }

(21)

Note, at last, that all of the ahi (Zhi ), atj(Z
t
j), p

h
i (Zhi ), ptj(Z

t
j) can be obtained in constant time and the amount

of arithmetic operations required is small.

B Uniqueness and computation of the maximum likelihood estimate

The likelihood function of θh and θc given the data Zh and Zt as shown in eq. (2) is a higher-order
polynomial, which makes it infeasible to derive its maximum analytically. We show in this section, however,
that under weak conditions (as given in the following theorem) the likelihood function attains a unique global
maximum on the unit interval for each value of θh. We, in addition, show that the loglikelihood function is
strictly concave, which simplifies the numerical maximization.

Theorem B.1. The likelihood function L(θh, θc | zh, zt) (where θh is fixed) attains a unique global maxi-
mum θ̂c on the unit interval U = [0, 1] when

1. the likelihood of θh given the data from the healthy sample must be non-zero, i.e.,

k∏
i=1

ghi (zhi | θh) > 0;

2. the subset
I := {θc ∈ U : gtj(z

t
j | θh, θc) > 0 for j = 1, . . . , l} (22)

is connected and non-empty;
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3. the level of impurity is smaller than 1, i.e., α < 1 (otherwise the ‘tumour’ sample would not contain
any cancer cells);

4. there exists an observation ztj for which the alignment probability πtj is strictly larger than zero and
ptj(zj) 6= atj(zj) (i.e., there must exists an observation that with non-zero probability stems from the
locus of interests and provided information about the presence or absence of the indel of interest).

Proof. The likelihood function with θh fixed can be written in the form

L(θh, θc | zh, zc) = C ×
l∏

j=1

gti
(
ztj | θh, θc

)
(23)

where C is the constant

C ≡
k∏
i=1

ghi

(
zhi | θh

)
.

In the case that condition (1) is not met, C = 0. The likelihood L(θh, θc | zh, zc) equals zero for all θc and,
therefore, does not attain a unique global maximum.

Suppose condition (1) is met (C > 0). Let us consider condition (2). Note that L(θh, θc | zh, zc) =
0 when θc 6∈ I , since for those θc’s there exists an observation for which the likelihood gtj

(
ztj | θh, θc

)
is

equal to zero. The likelihood L is by definition strictly larger than zero when θc ∈ I . Since the function
C ·∏ gtj

(
ztj | θh, θc

)
is a l-th order polynomial and, therefore, continuous, it must attain a global maximum

on the interval I .
Suppose condition (2) is met. The point θ̂c is a maximum of L(θh, · | zh, zc) iff it is a maximum of the

loglikelihood function

`
(
θh, θc | zh, zc

)
≡ logL(θh, θc | zh, zc) = logC +

l∑
j=1

log gtj
(
ztj | θh, θc

)
(24)

(with θh fixed and θc ∈ I) since the logarithm is a monotonic transform. (Note that ` is only defined on the
subset I). The second order derivative of the loglikelihood with respect to θc is found to be

∂2`

∂θ2
c

= −
l∑

j=1

∂gtj
(
ztj | θh, θc

)
/∂θc

gtj

(
ztj | θh, θc

)
2

≤ 0 (25)

indicating that the loglikelihood function is concave. Note that it is strictly concave, i.e., ∂2`/∂θ2
c < 0, iff

there exists an observation ztj for which

∂gtj

(
ztj | θh, θc

)
∂θc

= (1− α)πtj
[
ptj(z

t
j)− atj(ztj)

]
6= 0. (26)

This inequality holds only when α 6= 1, πtj 6= 0 and ptj(z
t
j) 6= atj(z

t
j), which constitutes conditions (3) and

(4).
Suppose I is the non-empty closed set [a, b] on the unit interval. Since the loglikelihood is strictly

concave when conditions (3) and (4) are met, it attains a unique global maximum θ̂c on I . Because the
logarithm is a monotonic transformation, θ̂c must be a unique global maximum of the likelihood function as
well.
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A similar reasoning holds when I is open or half-open. The maximum must lie on the interior of I ,
since the likelihood function is zero for those endpoints not in I . E.g., when I is the open interval (a, b),
then L(θh, a | zh, zc) = L(θh, b | zh, zc) = 0 while L(θh, θc | zh, zc) is strictly positive on I . The
loglikelihood function is under conditions (3) and (4) strictly concave on I , therefore, the likelihood function
attains a unique global maximum.

We approximate the overall maximum of the likelihood function L by numerically maximizing (using
Brent’s method) the likelihood function three times: and 1. We approximate the MLE of the VAFs by
numerically maximizing the likelihood function L(θh, θc | zh, zc) using Brent’s method. where θh takes
the values 0, 1/2 and 1.

C Workflow Figure
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Figure 5: The overall pipeline for somatic indel calling presented in this paper. While (1) (= aligning
short reads) and (2) (= calling indels) rely on existing (and plentiful available) state of the art, steps (3)
[implementing eqs. (5), (10)] and (4) [FDR control] reflect methodology developed here.
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