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abstract: For reasons of efficiency, in almost all implementations of Pro log the occur check is 
left out. This mechanism should protect the program against introducing circular bindings of 
variables. In practice the occur check is very expensive, however, and it is left to the skills of the 
user, to avoid these circular bindings in the program. In this paper a semantics of Prolog without 
occur check is introduced. The new kind of resolution, i.e. SLD-resolution without occur check, 
is referred to as CSLD-resolution. Important theorems such as soundness and completeness of 
both CSLD-resolution and the 'negation as failure' rule, are established. 

l. INTRODUCTION 

For reasons of efficiency, in almost all implementations of Prolog the occur check is left out, which is a 

mechanism that should protect the program against introducing circular bindings of variables. For 

instance in a substitution { x/f(x)}, the variable x is bound to a term f(x) containing the variable x again. 

The problem is, that any such binding endangers the correct behaviour of a Prolog system. In fact, 

without the occur check we no longer have soundness of SLD-resolution (see LLOYD [12]). For example 

consider the program P: test ..- p(x,x) 

p(y,f(y)) ~ . 

Given the goal f--- test, a Prolog system without occur check will answer 'yes' since p(x,x) will be 

successfully unified with p(y ,f(y)) by the substitution {x/y, y/f(y)}. However, this answer is quite 

wrong, since test is not a logical consequence of P. 

In practice, however, the occur check is very expensive and it is usually left to the skills of the user to 

avoid these circular bindings in the program. For instance in PLAISIBD (14], a method is presented to 

detect circular bindings more efficiently, by preprocessing Prolog programs. 

It would be convenient to develop a theory for SLD-resolution without occur check, and for this reason 

Prolog II (see COLMERAUER [3]) has been studied quite intensively in the past few years. Roughly 

speaking, Prolog II is standard Prolog without occur check and can be regarded as a system which 

manipulates infinite trees (see COLMERAUER [2]). 

The question remains, whether or not Prolog II can be thought of as a logic programming language, 

since the example above shows that Prolog II presents incorrect derivations. This problem was solved by 

VAN EMDEN & LLOYD [6], by formulating a soundness theorem for Prolog II. In the above example, the 

computed substitution { x/y,y/f(y)} can be translated to a set of equations {x=y,y=f(y)}, and clearly test 

is a logical consequence of Pu{x=y,y=f(y) }. There are still many results left to be established, such as 

completeness for instance, to develop a complete theory for Prolog II. 

In this paper a semantics for logic programs without occurcheck is presented by considering circular 

bindings { x/f(x)} as recursive equations {x=f(x)}, and extending the Herbrand universe (consisting of 

all closed terms) by adding all infinite terms {x=f(f(f( ... )))} to it (see COURCELLE [4]). We introduce a 

new kind of resolution, which will be referred to as CSLD-resolution (complete SLD-resolution), which 

is precisely SLD-resolution without occur check. Following this idea, we find that both soundness and 

completeness for CSLD-resolution as well as for the negation as failure rule is obtained. It turns out that 
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due to the new setting, the proof of the completeness theorem for the negation as failure rule becomes much shorter compared with the well-known proofs in [9], [12] and [15]. Then, we conclude as a general result that comp(P)u {A} has a 'complete' Herbrand model iff it has a model, which indicates that we may expect CSLD-resolution to have some nice propenies extra, that we do not have for ordinary SLDresolution. 
Independently from this paper, similar results were stated by JAFFAR & LASSEZ [7] and MAHER [13], on the 'Constraint Logic Programming' scheme, JAFFAR, LASSER & MAHER [8], on PROLOG II as a Logic Programming Language scheme, and JAFFAR & STUCKEY [10], giving a logical semantics to a language without occur check containing both equations and inequations. 
There are a few theoretical differences between these references and the contents of this paper. Consider for example the fact that we will only need a small equational theory for Prolog II, whereas in [6] and [8] this theory contains infinitely many existential formulas, one for every recursive equation. For this reason we do not need to put any constraints on the models of Prolog II programs and the results are more general. Still, apart from the question whether or not the main results are new, we believe to have found a rather elegant formalisation of the theory, making the techniques used in this paper of interest by themselves. The concepts and notations in this paper are quite similar to those from LLOYD [12], which may be considered a contribution to standardising the theory of logic programming without occur check. 

2. COMPLETE HERBRAND MODELS 
We will assume P to be a set of program clauses V'(B1/\ ... /\Bk-7A), usually written as At-B1, ... ,Bk, where B 1, ... ,Bk,A are atoms not containing '::'.The language of P will be denoted by L(P) or Lp. In this section we will formally introduce complete Herbrand models for P. First we will present a precise definition of a complete term, as can be found in [12], and next establish some general model theoretical results. 
Let (J)* be the set of all finite sequences of non-negative integers. Such a finite sequence will be written as [i1, ... ,ik], for some i1, ... ,ikew. For all m,ne ffi* we write [m,n) for the concatenation of m and n, and for ie (!)we write [m,i] instead of [m,[i)]. For Xe ffi* we write IX I for the cardinality of X. 
definition 2.1 T ~ ffi* is called a tree if T satisfies the following conditions: 

(i) for all ne ffi* and i,jE ro: [ n,i]E T /\ j<i ~ nE T /\ [n,j]E T 
(ii) I ( i: [n,i)E T} I is finite for all ne T. 

So, by definition 2.1 we can interpret [ ] as the root of the tree and [n,0],[n,1], ... ,[n,k] as the descendents of the node n for all nE T, k<W. 
Now let S be a set of symbols and ar: S-+ro be a mapping defining the arity of a symbol. 

definition 2.2 A complete term (over S) is a function t: dom(t)-+S such that: 
(i) the domain oft, dom(t), is a non-empty tree 
(ii) for all ne dom(t): ar(t(n)) = I (i: [n,i]edorn(t)) I. 
In a language L, a complete atom is a complete term t such that t([]) is a predicate symbol. 
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definition 2.3 The depth dp(t) of a term t is defined by: 

(i) dp(t) = =, if t is infinite 

(ii) dp(t) = 1 + max { In I: ne dom(t)), if t is finite. 

The tree dom(t) is called the underlying tree oft. The set of all complete terms over S is denoted by 

Terms; these terms can be looked at as (possibly) infinite terms. By definition a term t is finite if and 

only if dom(t) is finite. Next, we will define a metric on Terms. 

definition 2.4 Let s,te Terms and s;tot then we define ~(s,t) as being the least depth at which s and t 

differ. Then we define: (i) d(s,t) = 0 if s=t 

(ii) d(s,t) = 2-~(s,t) if s;;ot. 

proposition 2.1 (Terms, d) is a (ultra-)metric space. 

The proof is simple, and omitted here. Note that the larger the depth is at which two terms differ, the 

smaller is their distance. Next, we define the truncation of a term, to have finite approximations of 

infinite terms. Assume n to be an extra constant symbol (hence with arity zero), not in S (nor in Terms). 

definition 2.5 The truncation at depth n of a term t, notation an(t), can be found from the complete 

term t by replacing all symbols at depth n by n and leaving out all symbols at greater depth. The 

underlying tree dom(a1i(t)) is adjusted in the same way, by leaving out all nodes without a label. 

definition 2.6 A metric space (X,d) is compact if every sequence in X has a subsequence which 

converges to a point in X. 

proposition 2.2 (Terrns,d) is compact iff S is finite. 

For a proof of this wellknown theorem, see [12]. From definition 2.5 we find: dp(an(t))S:n+l, for all t. 

Moreover, d(an(t),t)Q-n and therefore limn_.~ an(t) = t. Next we will consider complete Herbrand 

models for a program P, having all possibly infinite terrns as its universe. 

definition 2.7 Let P be a program, then the complete Herbrand universe CUp is defined by TermL(P)· 

A complete Herbrand model for Lp is a model Mwith domain CUp, such that 

(i) a M = a, for all constants ae Lp 

(ii) fM(t 1,. . .,tk) = f(t1%,. . .,tkM), for all functions feLp and complete terms t1, .. .,tkeTermL(P)· 

A complete Herbrand model for a program Pisa complete Herbrand model for Lp which satisfies P. 

definition 2.8 The complete Herbrand base CBp, or CBL(P). of a program P is defined by 

CBp = {R(t1,. . .,tk) : Risa relation symbol in Lp and t1,. . .,tke CUp}. 
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The elements of CBp can be represented as trees as well. Moreover, the metric d on CUp can be 
extended to CBp. Informally, we will write Up for the set of all finite terms in Lp and Bp for the set of 
all finite elements from CBp. 
In general any complete Herbrand model for a program P, can be associated with a subset of the complete Herbrand base CBp: such a subset then denotes the complete set of 'ground' atoms, holding in 
the model. For any ground atom A and Herbrand model M, we will use both notations Ae :Mand :MI= 
A, to express that A holds in the model M and I= A to express that A holds in all (possibly non
Herbrand) models. 

3. RECURSIVE SPECIFICATIONS 
In this section we consider so called recursive specifications, which are finite sets of positive equational 
formulas and will be used later instead of the usual notion of a substitution. Returning to Prolog, we will 
need a different unification algorithm, since we will work in complete Herbrand models. 

definition 3.1 Let P be a program. Then the theory Eq(Lp) (or Eq(P)) consists of the axioms: 
1 . c*<i for all pairs of distinct constants c,d from Lp 
2. Vx. f(x)..:g(x) for all pairs of distinct function symbols f,g from Lp 
3. Vx. f(x)#C for all function symbols f and all constants c from Lp 
4. Vxy. x1..=y 1v ... vxk*Yk-+ f(x)..:f(y) for all function symbols ffrom Lp 
5. Vx. x=x 

6. Vxy. x1 =y1 l\ ... /\xk=Yk ~ f(x)=f(y) for all function symbols f from Lp 
7. Vxy. x1 =y1 l\ ... /\Xk=Yk--+ (P(x)-+P(y)) for all predicate symbols P from Lp. 

lemma 3.1 Eq(L) holds in all complete Herbrand models for L. 

The axioms of Eq(Lp) are introduced in [12] to model finite failure: Eq(Lp) forces any two syntactically 
different terms to be different in all its models. In [12] we even find an extra axiom: 

8. Vx. x#t[x] 

for all terms t that are unequal to a variable and contain the variable x. This axiom is needed to express 
that the elements in the Herbrand universe consist of all finite terms from Lp. Since in the complete 
Herbrand universe we do have infinite terms as well, we will omit axiom 8 from ourequational theory. 
It turns out to be convenient to consider substitutions no longer as a syntactical operation of binding 
variables, but directly as equational formulas. 

definition 3.2 A (recursive) specification in a language Lis a set of equations of the form: 
( t1 (x)=s 1 (x), .. .,tk(x)=sk(x)} for (open) terms ti,sie Land variables x = x1,. . .,xn. 

definition 3.3 An open complete term in a language L is obtained by constructing a complete term 
from Lu(xi: i:>n}, where (xi: i~n} denotes a finite set of variable symbols with arity zero. 
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Note that an open complete term only has finitely many variables, called the free variables of the term. 

We will write t(x) for the term t which has variables only from x = x1, ... ,xn (but possibly less) and 

similarly we write p(x) for a specification with variables only from x = x1, ... ,Xn· 

Note that the metric d can simply be generalised to open complete terms, by extending the language L 

with extra variable symbols. 

proposition 3.2 Let L be a language with at least one constant, and let M be a complete Herbrand 

model for L. Then for all open complete terms ti (x), t2(x) we have: 

(Vse UL: Ml= ti (s) = t2(s) ) <=> d(t1 (x),t2(x)) = 0. 

definition 3.4 A specification p (x) is said to be in reduced form if it is of the form 

{x1=s1Cx1, ... ,xn), ... ,xk=sk(xl> ... ,xn)}, where x1, ... ,xk are distinct variables. Moreover, p(x) has a 

reduced form if it is equivalent to a specification which is in reduced form. 

A specification is said to be in contradictory form if it contains an equation a=b or 

f(t1, ... ,tn)=g(s1, ... ,sn) for some distinct symbols a,b or f,g respectively. Moreover, it has a 

contradictory form if it is logically equivalent to a specification which is in contradictory form. 

definition 3.5 A variable x is bound in p if p I= x=t for some term t which is not a variable. Otherwise 

it is called free. A specification is called ground if it has no free variables. 

example Let cr(x,y) = {x=f(x), y=x}, then O' has no free variables since cr I= x=f(x) and cr I= y=f(x)}. 

Let cr(x,y ,z) = { x=f(y), y=z}, then x is a bound variable in O', whereas y and z are free. 

definition 3.6 A specification p(x) is called consistent if puEq(p) is satisfiable in a model. 

theorem 3.3 Let L be a language. If p(x,y) is in reduced form, with bound variables x = x1, ... ,xn 

which are distinct and free variables y, then there exist (open) complete terms t1(y), ... ,tn(Y) with 

only free variables from p, such that in every complete Herbrand model M for L: 

M I= Vxy. p(x,y) H ( X1=t1 (y)A ... AXn=tn(Y) ). 

proof Use the fact that for all equations x=t(x,y) in p: MI= Vxy. x=t(x,y) H x=z [z/tro(y)], in every 

complete Herbrand model Mfor Lp and with tOO(y):=t(t(t( ... ,y),y),y). o 

theorem 3.4 (i) A specification in reduced form is consistent. 

(ii) A specification in contradictory form is inconsistent. 

proof (i) Suppose p is in reduced form, with language L. Extend L until it contains at least one 

constant, then Lhasa complete Herbrand model :M. Then from theorem 3.3 and lemma 3.1 it follows 

that: Ml= puEq(p), thus p is consistent. Pa.rt (ii) follows directly from the definition ofEq(p). o 

corollary 3.5 Every specification in reduced form with a constant, has a complete Herbrand model. 
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theorem 3.6 (i) All consistent specifications have a reduced form. 
(ii) All inconsistent specifications have a contradictory form. 

The proof of corollary 3.5 follows from the proof of theorem 3.4. Theorem 3.6 is the reverse of theorem 3.4. In order to prove it, an algorithm can be co'lstructed which actually decides whether a specification is consistent or not, by calculating an equivalent specification in reduced form (if such specification exists). This algorithm consists of the following five steps, defined in COLMERAUER [2] (see also [8]). Suppose p is a specification. 

consistency algorithm 
( l) Delete from p all equations of the form x=x. 
(2) If p contains an equation x=y, where x and y are different variables, then replace x in all its occurences in p by y. 
(3) Replace an equation t=x in p by x=t, where t is not a variable. 
( 4) Replace two equations x=t and x=s in p by the equations x=t and t=s, where t is the smaller (in 

number of symbols) of the two terms t and s. 
(5) Replace an equation of the form f(t1 , ... ,tn)=f(s1, .. .,sn) by the equations ti =s1,. .. ,tn=Sw 

It is well-known that, repeatedly using these five steps, any recursive specification p can be reduced into either a reduced form or a contradictory form, which is equivalent to p. This provides us with a proof of theorem 3.6. 
Furthermore, using the consistency algorithm one can define a new kind of unification which precisely coincides with unification in Prolog Il. Assume p is a predicate symbol and S is a set of atoms. 

unification algorithm 
( 1) If not all atoms in S start with the same predicate symbol, then S is not unifiable. (2) Else: if S = {p(tCi)1, .. .,t(i)n): i~m} then apply the consistency algorithm to 

( r(l) 1 =tC2l1,tC2Ji =tC3l1,. .. ,1(m-1) 1 =t(ml1,. .. ,tClln=t<2ln,t<2ln=t(3)n, ... ,r<m-I)n=t<m)n}. 

corollary 3.7 A specification p is consistent iff it has a reduced form. 

definition 3.7 Let S be a set of (open) atoms. 
A specification p is called complete unifier (cu) for S, if: I= V (p-t /\ (AHB) ). 

A,BeS 
Suppose p is a cu for S. p is called most general complete unifier (mcu) for S, if for all complete unifiers p1 for Sand all complete Herbrand models :M: :MI= V(p1-tp). 

proposition 3.8 For any input set S of atoms, the unification algorithm computes an mcu for S. 

Note that proposition 3.8 does not hold if we change definition 3.7 by requiring V(p1->P) to hold in all models instead of only complete Herbrand models. For instance if S = {p(x),p(f(f(x))} then (x=f(f(x))} is computed by the unification algorithm, although {x=f(x)} is more general. With respect to complete 



720 

Theorem 4.8 is part of a more general result from JAFFAR & STUCKEY [10] on a language with equations 

and inequations. 

So far, we found that the correctness theorem can be restored for CSLD-resolution. Moreover, CT pi ro 

is the least complete Herbrand model which is the intersection of all complete Herbrand models for P, 

and equal to the complete success set. Next we will show we have a completeness theorem as well. 

definition 4.10 (restriction) Let cr(x,y) and p(x,z) be two specifications then we write crS:.xP if 

i=\ixy.(cr(x,y)~:lz.p(x,z)). Furthermore we write cr=xp if both crS:.xP and P~xcr. 

proposition 4.9 Let cr(x) be ground then for all specifications p: either crp=.l or crS:.xP· 

Definition 4.10 is needed to indicate that cr is more specific than p, although p may bind variables not 

occurring in cr. Moreover, cr=xp indicates that cr and p are equivalent with respect to the variables x. 

Note that cr=x.L ~ cr=.L for all variables x. Proposition 4.9 says that ground specifications cannot be 

funher specified with respect to their variables: either crvp is inconsistent, or cr is more specific than p 

with respect to x. For example: let cr(x)={x=f(x,x)) and p(x,y)={x=f(x,y), y=x} then crs:.xp, however 

not cr~p (i.e.: crS:.xyP ), since p has an extra variable y. In fact: <J=xP· 

lemma 4.10 Let A(x) be an atom and cr(x) correct for Pv{ +-A(x),0}, then there exists a CSLD

refutation for Pv{ +-A(x),cr(x)} with p(x,y) as computed answer specification, such that <J=xP· 

proof First, assume O'(x) is ground. Now, let ue cr then A(u)e CT pi co (by theorem 3.9, definition 4.6 

and corollary 4.5). Therefore A(u)e CSp (by theorem 4.8), hence there is a CSLD-refutation 

(Gi,Pi)O~i~n for Pv{ +-A(x),0} with computed answer specification Pn(x,y) such that for some v: 

(u,v)E Pn· Because (u,v)e crpn, crpn is consistent and therefore (Gi,<JPi)O~i~n is a refutation for 

Pv{ +-A(x),cr} with computed answer specification crpn, and by proposition 4.1 we have crpnS:.cr. 

Since cr is ground we find by proposition 4.9: cr~xO"Pn· Hence cr=xcrp0 • 

Next, assume cr is not ground, and let x=(y,z) where y and z=z1,. .. ,zk are the bound and free 

variables respectively of cr. Let a=a1, ... ,ak be new constants not occurring in P,A or cr, and such that 

for i,j: ai=aj <::::} crl=zi=Zj· Next, consider cr'(y,z)={ z1 =a1 , ... ,zn=an) ·cr(y ,z), then it is easily proved 

that cr' is consistent and ground. Hence there exists a CSLD-refutation for Pv { +-A,cr'(y,z)) with 

computed answer specification p'(y,z,z') such that cr'=yzP', or equivalently: cr'=xp'. Now it is easy 

to see, that we can find a new refutation for Pv { +-A,cr) by replacing all constants a by new 

variables, with computed answer specification p, such that <J=xP· D 

Note that lemma 4.10 does not hold if we replace =x by=. For example let P = {A(y,y) +--} and 

consider the goal clause G= +-A(x,f(x)) then one can easily see that cr(x)={x=f(x)) is correct for 

Pv{G,0}. Indeed, there is a computed answer specification p(x,y)={x={y,f(y))} which is equivalent 

to p'(x,y)={x=y, y=f(y)). Clearly ps:.cr, however, since IF \i( x=f(x)~(x=yAy=f(y))) the converse is 

not true. Hence p=<l". 
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The point is, that in a CSLD-refutation new variables are introduced (input clauses have new variables), 
and the correct specification we started with cannot impose any constraints upon variables other than its 
own. In 'common' SLD-resolution, this problem does not occur since computed substitutions are 
restricted to the goal variables automatically. This can be done, because in SLD-resolution new variables 
are bound to finite terms (not containing the variable again), ~ence one can simply carry out the 
substitution. This problem is overcome, however, by introducing ~x as a logical notion of restriction. 

lemma 4.11 (lifting lemma) Let G be a goal clause and cr be a specification. Assume there exists a 
CSLD-refutation for Pu(G,cr} with computed answer specification p. If cr5:cr' then there is a CSLD
refutation for Pu(G,cr'} with computed answer specification p' of the same length such that p~p'. 

theorem 4.12 (completeness of CSLD-resolution) Let (Go(x),cro(x)) be a goal and cr(x) a correct answer 
specification for Pu( G0(x),cr0(x)} then there exists a computation rule R and a R-computed answer 
specification p(x,y) for Pu( Go(x),cr0(x)} such that cr~xP· 

proof Assume Go=( rA 1 (x), ... ,Ak(x)) then P F V(cr~A 1 (x)J\ ... J\Ak(x)Acro) since cr is correct for 
Pu{Go,cr0 }. By lemma 4.10 there exist refutations for Pu( rAi,cr} with Pi as computed answer 
specification, such that Pi=xcr for all i. These refutations can be combined to obtain a new refutation 
for Pu { r A 1 (x), ... ,Ak(x),cr} with answer specification p'=p 1 ···pk, so cr=xp'. Since cr5.cr0 , it 
follows by the lifting lemma that there exists a CSLD-refutation for Pu( rA1(x), ... ,Ak(x),cro} with 
computed answer specification p such that p'5:p. Since cr,p' we have cr5.xP· O 

The proof of the lemma 4.11 is similar to the one in [12]. The completeness theorem presented above, 
can be obtained from MAHER [13] and some additional remarks when applied to the axioms of JAFFAR, 
LASSEZ & MAHER [8). 
It is important to understand how resolution with specifications works. In fact, a computed answer 
specification can be looked at as an extra condition or constraint (see also [7]) that needs to be satisfied 
before a given conclusion may be drawn from P. The completeness theorem simply states that from a 
logic program all such sufficient conditions can be generated. 
The completeness theorem leads almost directly to the following corollary: 

corollary 4.13 Let A(x) be a atom and u=u 1, ... ,uk complete terms, then: 
A(u)e CSp <:::> for some p(x,y) and some v: (u,v)e p and P F V(p(x,y)~A(x)). 

5. FINITE FAILURE 

In this section we will consider the negation as failure rule, for CSLD-resolution. It turns out that all 
'classical' results can be restored; even better: it seems that working in CSLD-semantics can simplify 
some theoretical constructions. Let us start with some definitions. 
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definition 5.1 Let G be a goal. A CSW-tree for Pu{G) with c-rule R, is defined by 

(i) every node of the tree is a goal and the root is equal to G 
(ii) if G'=(t-A 1,. . .,Am, ... ,Ak,cr) is a node for some consistent cr, and R(G')=Am then G' has a 

successor ( t-A 1, .. .,Am-l•B 1, .. .,Bq,Am+ 1,. .. ,Ak,crp) for every clause A+-B 1 .... ,BqE P, where 
p=mcu(( Am,A}); if cr is inconsistent, then G' has no successor goals. 

definition 5.2 A success branch in a CSLD-tree is a branch that ends with (D,cr) for some consistent 

specification cr. A failure branch is a branch (Gi,cri)O'i'k such that crk"'.l. 

definition 5.3 A finitely failed CSLD-tree, or ff-tree for short, for Pu{ G) is a finite CSLD-tree with 

only failure branches. 

definition 5.4 We will use the following notation: 

CTpJ-O = CBp 

CT pJ-k+ 1 = CT p(CT pJ-k)), kE w 
CT pJ-w = n CT pJ-k 

k<w 

A well-known theorem says that CTplw is the greatest fixed point, denoted by gfp(CTp), of the 

continuous mapping CT p. Recall that T plw does not need to be equal to the greatest fixed point of T P· 

lemma 5.1 Let A(x) be an atom and u=u1, ... ,uk be complete terms, then 

A(u)e CT plk+ 1 ~ there is a clause A 1(y)t-B 1 (y), ... ,Bq(Y)E P, such that for some v: 

(u,v)E mcu( { A(x),A 1 (y))) and B 1 (v), ... ,Bq(v)E CTplk. 

theorem 5.2 Suppose R is afair c-rule, i.e.: every atom in a goal clause is selected somewhere in the 
CSLD-tree, and assume (Gi,cri)iE w is an infinite CSLD-derivation for Pu( Go,cro) by R with 
Go=(t-A 1(x), ... ,An(x),cr0). Ifu are complete terms, then: 

\idi. ( (u,v)E crj(x,y) => A 1 (u),. .. ,An(U)E CTplk ). 

proof Let kE w, and u complete terms. Let (Gi,cri)iE w be an infinite derivation for Pu(G0,cr0). Then 

by induction on k: k=O: Immediately. 

k+l: Let hj~n and let mew such that R(Gm)=Aj. This m exists because R is fair. Then there is 

some clause A(y)+-B 1(y), .. .,Bq(Y) such that p(x,y)=mcu((Aj(x),A(y)}) is consistent and 

O'm+J'=O'm·P· Assume Gm=(t-C1,. . .,Aj,. . .,Cr) then Gm+1=(t-C1,. .. ,B 1, .. .,Bq, .. .,Cr) and clearly 

(Gm+i•O'm+i)ill is an infinite derivation for Pu(Gm+l,O'm+J). By induction, let i'E w such that 
(u, v)E ai'(x,y) => C1(u,v), ... ,B 1 (v), ... ,Bq(v), ... ,Cr(u, v)E CT plk, then it follows by definition 

of CT p that for all (u,v)e cri.(x,y) => A(v)E CT plk+ 1. Since O'j•5:.P we have A/u)e CT p..l-k+ 1. So, 

for every j such an index i' exists. Now take the maximum of all n indices. D 

lemma 5.3 If (G,cr) has an ff-tree with depth ~k, then (G,crp) has an ff-tree with depth ~k. 
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lemma 5.4 If for some ground specification o(x), the goal ( f--A 1 (x), ... ,An(x),cr(x)) has an ff-tree with depth S.k, then for some iS.n: (f--Ai(x),cr(x)) has an ff-tree with depth S.k. 

proof By induction on n: n=l: immediately. 
n+l: assume An+1(x) has no ff-tree with depth S.k, then for all c-rules R, Pu{An+i(x),cr(x)} has a CSLD-derivation of length ik+l. Let R be a c-rule such that Pu{rA1(x),. .. ,An+i(x),cr(x)} has an ff-tree with depth S.k, and let (Gi,Pi(x,yi))o~i~k+l be a derivation for Pu{An+l (x),cr(x)} via R with length ik+ 1, then for all derivations (G'i,ti(x,zi))osism for Pu ( rA 1 (x), ... ,An(X),cr(x)} we have (by 4.1 (iii) and 4. 9) that for all ij: tiPj=l. => tj=l. v Pi=.L, since cr(x) is ground and to=Po=cr. Then, there is a finitely failed derivation (Gi,6i)Q~i~q via R for Pu{ rA 1(x), ... ,An+l (x),a(x)} such that 6iltiPi and qs.k (since all derivations via Rare finitely failed with length S.k) we find that tqPq=l.. Because Pq is consistent for all qS.k we have tq=l.. 
Therefore, all derivations for Pu { f--A 1 (x), ... ,An(x),a(x)} are finitely failed with length S.k, hence Pu{ rA1 (x), ... ,An(x),a(x)} has an ff-tree with depth S.k. Now by induction. D 

Lemma 5.3 is easy to prove. Note that in lemma 5.4 o needs to be ground (see also in [12]). 

theorem 5.5 If A1 (u), ... ,An(u)e CT p.Lk for some complete terms ue a(x), then there exists a ground specification p(x,y)S.a(x) such that for (v,w)e p(x,y): A 1 (v), ... ,An(v)e CTp..l.k. 

proof By induction on k. Assume ue cr(x), for some specification a. 
k=O: Immediately, since any ground ps.cr suffices. 
k+l: Suppose A1(u), ... ,An(u)e CTp.Lk+l then by the definition of CTp there exist clauses Ai(yi)f--Bi1 (Yi), ... ,Biq(Yi)e P for all is.n, such that with pi(x,yi)=mcu( { Ai(x),Ai(yj) }), p:pl...pn is consistent. Clearly, crp(x,y 1, ... ,yn) is consistent as well. Writing Y=Y1····.Yn there exist v:v 1, .. .,vn such that (u,v)e crp(x,y) and for all i5.n: Bi 1(vj), ... ,Biq(Vj)E CTp.1k. It follows by induction that there exists a ground specification t(x,y ,z)S.crp(x,y) such that for (w,w',w")e t(x,y): Bi 1(w'), ... ,Biq(w')e CTp.Lk. Since p5.pi we have Aj(w):Ai(w') and therefore A1(w), ... ,Ak(w)e CTp.Lk+l, by definition of CTp. Since crp5.cr we find t5.crps.cr. D 

theorem 5.6 Ifcr(x) is ground and (rA1(x), ... ,An(x),cr(x)) has an ff-tree with depth 5.k, then for 
some iS.n: 'v'u. ( ue cr(x) => Ai(u)e CTp.Lk ). 

proof By induction on k. k=l: directly by lemma 5.1. 
k+l: Suppose Ai(u)e CTp.Lk+ 1, for ue cr, then there is a clause A(y)rB 1 (y), ... ,Bq(y)eP such that p(x,y):mcu( {Ai(x),A(y)}) is consistent and for some v: (u,v)e p and B1 (v), ... ,Bq(v)e CT p.Lk (see lemma 5.1). Clearly crp is consistent and (u,v)e crp(x,y). Then, by theorem 5.5 it follows that there is some ground specification t(x,y,z)S.crp(x,y) such that: B1(v'), ... ,Bq(v')e CTp.1k for all (u', v',w')e t. Since t is ground, it follows by induction that (r B1 (y), ... ,Bq(y),t(x,y ,z)) has no ff. tree with depth 5.k, hence Pu(rAj(X),t(x,y,z)) has no ff-tree with depth 5.k+l. Since tS.cr and both 
t and cr are ground, it follows that t=xcr. Hence Pu(f--Aj(X),cr(x)) has no ff-tree with depth 5.k+l. So we proved that if Ai(u)e CTp.Lk+l, then Pu(rAi(x),a) has no ff-tree with depth 5.k+ 1. Suppose for all hiS.n, Pu(f--Aj(x),cr) has no ff-tree with 5.k+l, then it follows by lemma 5.4 that 
Pu(rA1(x), ... ,An(x),a(x)) has no such ff-tree. D 
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Theorem 5.13 is an immediate consequence of the corresponding theorem in [8]. Its proof is much 

simpler than the proof in [12] for SLD-resolution, due to the fact that the model gfp(CTp) is a complete 

Herbrand model. In the case of SLD-resolution, a completeness theorem for negation as failure was 

proved by JAFFAR, LASSEZ & LLOYD [9] and WOLFRAM, MAHER & LASSEZ [15] by constructing a 

model for comp(P)u { 3(A 1 A ... AAnAOo)) which is not a Herbrand model. This serious complication in 

the proof is overcome by the fact that CT p.l-w=gfp(CT p) (for other interpretations of fixed points see for 

instance LEVI & p ALAMIDESSI [11]). 

We have the following corollary which cannot be obtained in ordinary SLD-semantics: 

corollary 5.14 comp(P)u { AAcr} has a complete Herbrand model iff it has a model. 
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