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ABSTRACT: Applications of Dirac's second quantization procedure to the representation theory of 

Virasoro and Kac-Moody algebras are discussed. An abstract picture of boson-fermion correspon­
dence and a concretization in even space-time dimension is sketched. 

I. INTRODUCTION 

The viewpoints and results to be summarized here are detailed in Carey and Ruijsenaars (1987) and in 

Ruijsenaars (1986, 1988). A more geometric approach to the matters at issue can be found in Pressley 
and Segal (1986). 

After recalling fermion second quantization and Dirac's twisted version of it in general terms, we indi­

cate how it can be exploited to construct representations of Virasoro and Kac-Moody algebras. These 

representations are tied up with boson-fermion correspondence in two dimensions. We present an 
abstract picture of this correspondence, and sketch how it can be made concrete in 2N-dimensional 

Minkowski space-time. 

2. SECOND QUANTIZATION FOR FERMIONS 

Let '.lC be a Hilbert space whose unit vectors are physically interpreted as states of a fermion. The fer­

mion Feck space 0'0 ('.JC) then accommodates states of an arbitrary number of fermions. The natural vehi­

cle for getting around in 0',('.JC) are the creation and annihilation operators c1'>(v), ve'.X; which satisfy 

the CAR. One-fermion operators A eE('.lC) can be transported to 'if0 ('.JC) as sum operators df(A) or as 
product operators f(A ), related by f(eA) = edf(A). Since r preserves products and df preserves commu­

tators, one can use r and df to construct faithful group and Lie algebra representations, resp. 

3. DIRAC'S SECOND QUANTIZATION 

The above framework is adequate and useful in a nonrelativistic context. However, it does not get rid of 

the unphysical negative energies associated with the relativistic single particle Dirac operator. Dirac's 

solution to this problem ('filling the Dirac sea') can be formulated as follows. View '.lC as an L 2-space on 

which the Dirac operator D is diagonal, and set '.JC'' 'X+ E!l'.}L, with 'JC+ j'.JC the positive/negative 

energy subspace. Then the smeared free Dirac field <P(v) = c(P + v)+c"(P-v) on g"0 ('.lC) yields a uni­

tarily inequivalent CAR representation, ii:i which the time evolution generated via eitD can be imple­

mented by a unitary group f(ei1D) = eitdl'(DJ, with df(D) the (now positive) many fermion and anti­

ferrnion second-quantized Dirac Hamiltonian. 

More generally, CAR automorphisms <P"(v)--><l>"(Uv), U unitary, (Bogoliubov transformations) can be 
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implemented by a unitary f(U), provided the off-diagonal parts U ±+ are Hilbert-Schmidt (HS). Simi­
larly, there exists an operator df(A) satisfying [df(A),<li.(v)] = <li'(Av) provided A±+ are HS. Fixing 
the arbitrary additive constant in df(A) such that its vacuum expectation value vanishes, one obtains 
the abstract current algebra 

- - -
[dr(A),dr(B)] = dr([A,BJ)+C(A,B)l (1) 

C(A,B)=:Tr(A _ tB +- -B _+A+-). 

Thus, one can exploit f and df to construct projective representations of groups and Lie algebras of 
operators on the one-particle space X, provided these operators have HS off-diagonal parts. 

The framework just sketched arises in the description of charged particles. F~r neutr::I particles one 
needs §'.('.JC+) and the smeared Dirac-Majorana field. This yields operations r and df that are well 
behaved only if the arguments satisfy a reality condition. Moreover, the neutral current algebra has a 
Schwinger term C(A,B)l/2. 

4. REPRESENTATIONS OF VIRASORO AND KAC-MOODY ALGEBRAS 

The Virasoro and (affine) Kac-Moody algebras can be viewed as central extensions of the polynomial 
vector fields on the circle and of loop algebras, resp. These extensions are universal, so that one need 
only construct representations of the latter algeb:as on '.JC that satisfy theA HS condition to be guaranteed 
of representations of the former on '87.('JC) via df, and on '87.('.JC+) via df provided the reality condition 
is satisfied as well. By calculating the cocycle C(A,B) one can read off the (c,h}-value and level of the 
Virasoro and Kac-Moody representation thus obtained, resp. In this way one can get the wedge 
(c,h) =(I+ 12a,(a+,B)/2}, a,,Be[O,oo), in the moduli region {c;;;.J,h;;;.O} and the (I /2,0), 
(I/ 2, I/ 2) ('Ne~eu-Schwarz') and (I/ 2, I/ 16) ('R,_amond') representations of the FQS discrete series; 
for the former dr works, for the latter one needs df. In the Kac-Moody case one can obtain the basic 
and fundamental representations of AW via df, and the basic and a fundamental representation of B\J) 
and D\J) via df. 

All of these representations have been known for quite a while. However, the above method yields them 
with a minimum of effort and is, moreover, analytically clean. The same point of view has also led to 
new representations of Kac-Moody algebras, by using the massive Dirac operator instead of the mass­
less one; the key point is that the Schwinger term turns out not to depend on m. In contrast to the 
m = 0 case, where type J.., factors arise, one obtains hyperfinite type III1 factors for m>O. A rigorous 
version of the 'bosons' -+ fermions half of the boson-fermion correspondence in 2D has been the main 
tool for the structure analysis of the various representations, cf. Carey and Ruijsenaars (1987). 

5. FERMIONS-+ BOSONS 

Let V ce('X) be a real vector space consisting of commuting self-adjoint operators with off-diagonal HS 
parts. Then the current algebra (I) reduces to 

[df(A),df(B)J = C(A,B)l, 'VA,B E V. (2) 

Thus, if C(·, ') is nondegenerate on V, one gets a representation of the CCR associated with 
< V,C(·,-)>. This is how bosons can arise in a fermionic context. 

Of course, in the abstract picture just sketched it is not at all clear such V exist, since nondegeneracy of 
C seems incompatible with the HS condition. However, this situation does occur for chiral gauge 
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transformations in the one-particle Dirac theory. Specifically, in 2D one can set 

.d 
-1 dx 

m 

Then Vis the transform of V to the spectral representation space '.JC= L 2(R ,dp )2, on which 

[E
P 0 ] 

D = 0 -EP ' EP =(p2 +m2)1;2 
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(3) 

(4) 

The operators in df(V) are then just the smeared time-zero Dirac currents. For m = O the resulting 

CCR representation is the Fock representation. However, for m > O the representation is not quasi­

free, and not much is known concerning the generating functional E if), in spite of its explicitness. For 

instance, it is known that E (tf), t ER, is real-analytic, but not whether it is entire in t. 

For D >2 the HS condition is violated by any non-trivial multiplication operator. Thus, the smeared 

Dirac currents are only quadratic forms, not operators. Formally, they still satisfy (!), C(A,B) now 

being an 'infinite Schwinger term'. 

6. 'BOSONS' - FERMIONS 

As already mentioned, there exists a unitary f( U) satisfying 

f( U)cl>' (v) = ell' ( Uv)T( U), V'v E '.JC (5) 

if (and only if) U is unitary and U ±+ are HS. In particular, if A =A· ef('.JC) and .A±+ are HS, then 

U = e;tA satisfies the requirements, and one can take T(e;'A) = ei•df(A>. Then (5) is an abstract version of 

the physicist's saying; 'The Dirac currents generate the gauge transformations of the Dirac field'. It is 

easily seen that in this case U __ is Fredholm and has vanishing index. The implementer f(U) then 

leaves the charge sectors invariant. 

However, now assume U is unitary and satisfies 

U __ Fredholm, Ker U .. _ = p .. e _ }, Ker U'. _ = {O}. (6) 

Then the implementer can be taken to be 

T(U) = c'(e+)E+Ec(e .), e+ =Ve_. (7) 

Here, E can be written down explicitly, but we shall not do so. We do ~eed to know that when U ±+ 

are HS, E is an operator that leaves the charge sectors invariant; hence, f( U) raises charge by one unit. 

If the HS condition is violated, one can still make rigorous sense of (5) and (7) in terms of quadratic 

forms. Moreover, assuming henceforth that U, is a family of unitaries satisfying (6) for any £>0, and 

also 

s ·lim u, = -1 
• ....o 

(8) 

(and a further technical condition), then one can infer ~ E, = 1 in form sense. Therefore, one expects 

to get the Dirac field 'c'(e0.+)+cfeo.-Y by taking£ to 0 in T(U,). 

This is an abstract picture for the 'bosons' ~ fermions part of the boson-fermion correspondence. It is 

mathematically deficient, since it follows from (8) that e,.± cannot have non-trivial limits eo.± in~ but 
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this can be taken care of in the concrete cases to be described presently. Moreover, the physical picture 

suggested by the terminology needs explanation (and an act of faith): The current standpoint in particle 

physics/string theory appears to be that the Dirac currents 'are' bosons and that an object like f(U,) 
should be viewed as creating 'coherent states' of these bosons from the vacuum. In fact, in 2D there is 

an explicit formula for the Dirac field in terms of boson fields. 

As before, in the abstract context it is far from clear that families with the above properties exist. How­

ever, in 2D one can take the transforms to X of the family of chiral gauge transformations 

ivxJo ['.::i~ =:l ~ 1]• <>0, oER. (9) 

(Note the upper slot has winding number one.) With a suitable choice of multiplicative constant one 

can then prove 

(10) 

a relation which after smearing holds strongly on a dense subspace of '!fu('.JC), cf. Carey and Ruijsenaars 
(1987). 

More generally, such families can be proved to exist in even-dimensional Minkowski space-time, cf. 

Ruijsenaars (1988). However, one must now take recourse to chiral gauge transformations in a nona­
belian context. Specifically, in 2ND one can take as position space L 2(R2N- I ,dx)®Cu. ®C", where 
n = 2N - 1, as Dirac operator 

D = [-~~·: :.; ) ~I., aj = aj, a1ak + akaJ = B1b j,k = 1, · · · ,2N -1 (11) 

and then 

<-ti<+a·(x -a) 
ln® N 

(-) if-a·(x -a) 

0 (12) 

0 

has the required properties. (Note that for N = 2 the upper slot generates 1T3(SU(2)) = Z.) Moreover, 
an analog of (JO) holds true. 
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