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Smoothing techniques are frequently applied in the numerical solution of 
(initial-)boundary-value problems for partial differential equations. Usually, the 
smoothing procedure consists of applying a matrix S to certain grid functions 
appearing in the difference scheme approximating the (initial-)boundary-value 
problem. The aim is the reduction of the magnitude of high frequency components 
occurring in the Fourier expansion of these grid functions without affecting the lower 
frequency components too murh. These high frequencies are often unwanted 
components which enter during the numerical calculations. A simple example of a 
smoothing matrix is the 'averaging' matrix S defined by g = Sf, where 

gl = fl, 

(1) gj = [ fj-1 + fj+ 1 ] / 2, j = 2, ... , m-1, 

gm=fm, 

with fj and gj,j = l, ... , m, denoting the components off and g, respectively. 
We shall give a few examples where smoothing has successfully been applied. 

1.1. Smoothing of the numerical solution 

The most common situation is the case where the numerical solution itself is 
smoothed. We mention the work of Shuman [10] of 1957 who used smoothing 
matrices of type (1) in combination with hyperbolic difference schemes. After each 
integration step, the high frequencies introduced by the difference scheme were 
removed from the numerical solution just by premultiplying the solution vector by 
the matrix S. The matrix S is sometimes called a Shuman filter. 

A more sophisticated example is the Richtmyer scheme for solving the 
initial-value problem for the hyperbolic equation 

(2) au(t,x) I Clt = L(u(t,x)), 

where L is a hyperbolic differential operator with respect to the (one-dimensional) 
space variable x. Richtmyer's scheme can be derived as follows. Let the system of 
ordinary differential equations 

(3) dy(t) I dt = f(t, y(t)) 
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represent a semi-discretization for (2); here, the vector y(t) denotes an approximation 
to u(t,x) on some grid on the x-axis. By applying the two-stage, explicit, second-order 
Runge-Kutta method of Runge (1895) 

we obtain the difference scheme 

It is well known that this scheme is unconditionally unstable when applied to 
hyperbolic equations, because it has a vanishing imaginary stability boundary. Now 
consider the 'smoothed Runge method' 

(4') Y n+l = Yn + ~t f(tn +<it I 2, Syn +<it f(~, Yn) I 2). 

If the smoothing matrix S is defined by (1), then this scheme is just the Richtmyer 
scheme which can be proved to be (conditionally) stable for a class of hyperbolic 
model problems (cf. Wilson [12)). 

Examples of the stabilization of Lax-Wendroff and Runge-Kutta type methods 
by smoothing of intennediate solution values may be found in a paper of de Goede [3]. 

1. 2. Residue-smoothing 

Instead of smoothing the numerical solution, one may consider smoothing of the 
residue of the difference scheme, that is, the high frequency components occurring in 
the residue vector (which is left upon substitution of the current numerical 
approximation into the difference scheme) are damped rather than the high frequency 
components of the solution. This approach is often followed in methods for solving 
elliptic boundary-value problems. A familiar example is the relaxation process 
employed in multigrid methods which is essehtially a smoothing process in order to 
get rid of the high frequencies of the residue. Popular relaxation (or smoothing) 
methods are based on Gauss-Seidel iteration and incomplete LU decompositions. 

The idea of residue-smoothing has also been used in (explicit) time-stepping 
methods for finding the stationary solution of time-dependent partial differential 
equations. In fact, such methods may be considered as iteraµve methods for solving 
boundary-value problems, so that it is not surprising that residue-smoothing is 
effective here too. More or less recent contributions are those of Lerat [7], Jameson 
[6], and Turkel [11]. In these papers, some form of implicit smoothing is applied, i.e., 
if f is the vector to be smoothed, then the vector g is obtained by solving the equation 
Rg = f, where R is a sufficiently simple matrix so that it can 'conveniently' be solved. 

An explicit smoothing process for smoothing the residue in Jacobi-type 
iteration, and thereby accelerating the convergence substantially, is considered in van 
der Houwen, Boon and Wubs [4]. A similar smoothing technique can be applied to the 
residues occurring in predictor-corrector methods for integrating semi-discrete 
parabolic problems. The stability of smoothed predictor-corrector methods is 
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analysed in van der Houwen and Sommeijer [5]. In Section 3, an example of such a 
method is reproduced. 

1.3. Smoothing of the right-hand side function 

An interesting approach for stabilizing explicit time integrators has been 
proposed by Wubs [13]. In this paper, the semi-discrete system of ordinary 
differential equations (3) is replaced by its 'smoothed' version 

(3') dy(t) I dt = Sf(t, y(t)), 

where the matrix S is such that the spectral radius of the matrix SJ := Sof/dy is much 
smaller than the spectral radius of the Jacobian matrix J := of/oy of the original 
system (3). Since the severe stability condition of explicit time integrators when 
applied to parabolic or hyperbolic problems is due to the large magnitude of the 
spectral radius associated with the right-hand side functi0n, the stability condition 
corresponding to tim"' H1tegrators applied to (3 ') is considerably less restrictive than 
the condition corresponding to the same time integrators applied to (3). In the paper 
of Wubs, smoothing matrices are developed which allow an extremely simple 
implementation, and which are particularly efficient on vector computers. 

A drawback of replacing (3) by (3') is a possible error introduced by the matrix 
S. Assuming that along the solution y(t), the right-hand side function is smooth with 
respect to the space variable x (does not contain high frequencies), the matrix S should 
be such that the magnitude of II S - I II, where the norm II II is taken with respect to the 
subspace spanned by the lower frequencies, is sufficiently small. The development of 
explicit smoothing matrices tuned to the two-dimensional shallow water equations and 
a full analysis of stability and accuracy aspects is given in Wubs (14]. 

Certain methods belonging to the class of 'generalized' Runge-Kutta methods 
may also be interpreted as 'smoothed right-hand side' integration methods. 
Generalized Runge-Kutta methods are Runge-Kutta methods of which the parameters 
are replaced by matrices. For example, consider the first-order method 

(5) Y n+ 1 = Y n + Ll.t Q(Ll.tJ) f(tn, Y n), 

where Q(z) is a rational function satisfying the condition 

Q(z) = l + c z + O(z2) as z ~ 0 

with "' some bounded constant , and where J is evaluated at some step point depending 
on the rate of variation with t. In passing we observe that we have second-order 
accuracy for c = 1/2 provided f does not depend on t and J is evaluated at ( t0 ,y 0 ). 

The one-step method (5) may be interpreted as an explicit Euler method applied to the 
smoothed equation (3') with smoothing matrix S = Q(Ll.tJ). The function Q(z) is 
related to the stability function R(z) of the method by the relation 

R(z) = 1 + z Q(z). 

Consider the case where the system (3) originates from a parabolic problem, so that J 
has (more or less) negative eigenvalues, and suppose that an explicit integration 
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method is desired. It is well known that suitable stability functions for explicit 
one-step methods are provided by the shifted Chebyshev polynomials 

R(z) = T k(l + z/k2), T k(x) := cos(k arccos(x)). 

One-step methods of Taylor and Runge-Kutta type employing these polynomials have 
frequently been considered in the literature (cf., e.g.,Yuan'Chzao-Din [ 15], Franklin 
[l], Metzger [9], Lomax [8], Gentzsch & Schlueter [2]). If we introduce these 
polynomials in (5),we obtain 

(6) Q(z) = [R(z) - 1] I z = [Tk(l+ z!k.2) - 1] I z, 

so that the matrix S becomes 

If tit is chosen as large as allowed by the real stability boundary of the stability 
polynomial R(z), i.e. tit= 2k2/p(J), then 

It is easily verified that the spectral radius of the matrix SJ is a factor k2 smaller than 
the spectral radius of the original Jacobian matrix J. The 'smoothed' Euler method 
defined by (5) and (6) is of practical interest if the computation of and the 
premultiplication by the matrix S = Q(titJ) is inexpensive. 

2. Smoothing matrices 

We shall construct smoothing matrices S for vectors f which are discretizations 
of functions f(x), and we briefly discuss their implementation. Furthermore, we 
consider the effect of smoothing matrices when used as preconditioners. 

2.1. Definition and properties 

Let D be a difference matrix with a complete eigensystem. If this system is 
denoted by {ej},then the vector fto be smoothed can be represented in the form 

(8) f= I Cfj· 
j 

Typically, the frequency of the eigenvectors of D is proportional to the magnitude of 
the corresponding eigenvalue. In such cases, we can develop smoothing matrices S = 
P(D) by constructing a polynomial P(z) whose magnitude becomes smaller if 
eigenvalues of D of larger magnitude are substituted, and which satisfies the condition 

(9) P(z) = 1 + O(zr) as z -> 0 with r > 0. 

If P(z) satisfies (9), then the smoothing matrix P(D) will be called consistent of order 
r. Since, 
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(10) P(D)f = ~ P(µj)cjej, µj :=eigenvalue of D, 
J 

we see that the higher frequ.encies are increasingly stronger damped; the lower 
frequencies are less damped as r is larger. Ideally, the construction of the smoothing 
matrix P(D) should be simple and inexpensive. This can be achieved if the matrix D 
possesses a simple structure. For example, if f originates from a one-dimensional grid 
function defined on a uniform grid of width h, that is, there exist functions 
interpolating the successive components off which are sufficiently smooth as h -> 0, 
then suitable matrices are the difference matrices defined by 

0 
1 -2 1 

(11) D (1/4) 

0 

0 

1 -2 1 
0 

D = (1/2) 

respectively with eigenvalues in the interval [-1,0] and [-i,i]. 

0 
-1 0 1 

0 

0 

-1 0 1 
0 

The most simple polynomial satisfying the condition of first-order consistency is 
given by P(z) = l+ az. The first difference matrix in (11) then leads to the smoothing 
matrix 

4 0 
a4-2aa 

P(D) = (1/4) 

a 4-2aa 
0 4 

For a=2, this matrix is easily recognized as the smoothing matrix S defined by (1). 
Generally, P(D) has the property that the first and last component of the vector to 
which it is applied remain unchanged, provided that P(O) == I .The generalization to 
more dimensions of the matrices D defined by (ll), and the corresponding smoothing 
matrices P(D), is straightforward. 

The following theorem provides polynomials derived from Chebyshev 
polynomials of the first kind, which can be used in combination with arbitrary 
difference matrices D with real eigenvalues (cf. [ 4 ]). 

Theorem 1. Let P(z) be defined by 

(12) P(z) := [T k(l +2z) - I] I [2zk2], 

and let D has its eigenvalues µj in the interval [-1,0]. Then the following holds: 

(a) The smoothing matrix P(D) is first-order consistent and its eigenvalues satisfy 
the inequality 

0 s; P(µ.) s; min ( l, -1 I k2µ.). 
J J 
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(b) Let the factor matrices Fj be generated by 

(13a) F1 :=I+ D, Fj+l :=(I- 2F/ ,j>O, 

and let k = 2q, then P(D)f can be obtained by the factorization formula 

(13b) P(D)f= Flq-l ... F1 f. n 

Notice that for D =JI p(J), the matrix P(D) defined by (12) becomes identical 
with the smoothing matrix defined by (7). 

The analogue of Theorem 1 for the case where D has imaginary eigenvalues 
employs Chebyshev polynomials of the second kind, and is given by 

Theorem 2. Let P(z) be defined by 

(14) 
U2k(x) := sin((2k+l) arccos(x))/sin(arccos(x)), 

and let D has its eigenvalues µj in the interval [ ·i,i]. Then the following holds: 
(a) The smoothing matrix P(D) is first-order consistent and its eigenvalues satisfy 
the ineqwility 

IP(µj)I :5: min { 1, 1I(2k+1) lµjl}. 

(b) Let the factor matrices Fj be generated by 

(15a) F 1 := 2[1+2D2], Fj+l := (F/- 21, j>O, 

and let 2k = 2q, then P(D)f is recursively defined by 

(15b) 
f 1 =(I+F1)f; fj+l=f+Fj~·j=l, ... ,q-1; 

P(D)f= (2k+I)' 1fq. [! 

Part (a) of these theorems characterizes the damping power of P(D) on the high 
frequencies. Part (b) presents P(D) in factorized fonn which is of importance in the 
implementation of smoothing matrices. 
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2.2. hnplementation of smoothing matrices 

We mention three possibilities for implementing the smoothing matrix P(D). 
For details we refer to [ 4]. 

(i) The most straightforward (but rather storage consuming) way consists of 
computing the elements of the matrix P(D) in advance. This is feasible for simply 
structured D in one spatial dimension, but in more dimensions it is not 
recommendable. However, what one might do in more dimensional problems, is the 
application of the one-dimensional smoothing matrices successively in the spatial 
directions. 

(ii) An alternative is the use of the recursive relations satisfied by Chebyshev 
polynomials. If k is the degree of the polynomial P(z), then the generaration of a 
smoothed vector g = P(D)f requires k matrix-vector multiplications with the matrix 
D. This implementation is simple and applies to any matrix D in any number of spatial 
dimensions, but can be rather time-consuming when run on a computer. 

(iii) Finally, we mention the most interesting implementation method which is 
based on the factorization property presented in part (b) of the theorems above. If the 
factor matrices defined in (l 3a) and (15a) are computed in advance, then the 
generation of the smoothed vector P(D)f requires, in both of the cases (13b) and 
(15b) only q = 21og(k) matrix-vector multiplications. The reduced number of 
matrix-vector multiplications is only an advantage if the factor matrices have 
relatively few nonzero elements in each row. For example, this is true if Dis defined 
by the matrices given in (11). For the first matrix, we find the factor matrices 

4 0 4 0 
1 2 1 2 1 0 1 

1 0 2 0 1 

F1 = (1/4) , F2 = (1/4) , etc. 
1 0 2 0 1 

1 2 1 1 0 1 2 

0 4 0 4 

In the case where D is defined by the second matrix given in (11) we obtain the factor 
matrices 

2 0 4 0 

0 1 0 1 0 2 0 1 0 1 

1 0 0 0 1 2010001 

Fi= Fz= 0 1 0 2 0 0 0 1 ,etc. 

10001 1 0 0 0 2 0 0 0 1 

1 0 1 0 0100020001 

0 2 
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Evidently, matrix-vector multiplications with these essentially three-diagonal factor 
matrices is extremely cheap, particularly on vector computers where so-called linked 
triads can be used. 

The precomputation of the factor matrices seems to be feasible only in 
one-dimensional cases. In more dimensional problems, one might follow the 
approach of applying one-dimensional matrices in the successive spatial directions 
mentioned above (see (i)). 

2.3. Preconditioning by smoothing matrices 

Preconditioning by smoothing matrices is here defined as the premultiplication 
of a given vector function f(y) of a vector variable y by a smoothing matrix S 
(preconditioning matrix ) such that the condition of the Jacobian of the new function 
(that is, the matrix SJ) is better than the condition of the Jacobian of the original 
function (the matrix J). Preconditioning by smoothing matrices consists of 
constructing smoothing matrices S such that the spectrum condition number of the 
matrix SJ is substantially reduced. An attractive property of smoothing 
preconditioners is that they are, to a large "'".{tent, independent of the function to which 
they are applied. This is in contrast to most other preconditioners, such as 
preconditioning by SSOR or by incomplete factorization. 

In the case of explicit smoothing procedures, the matrix S may be chosen of the 
form S = P(D), where D is a difference matrix and P(z) is a polynomial of one of the 
forms derived above. Ideally, the matrix D is chosen equal to the Jacobian off and 
normalized by its spectral radius, i.e., 

(16) D = [p(J)] -I J. 

The eigenvalues of SJ are then generated by the polynomial 

p(J) z P(z), 

where z runs through the spectrum of D. In actual computation, however, it is 
generally not attractive to choose Das defined by (16), and one employs some che: .. ti 
approximation to the normalized Jacobian matrix of f. In choosing a cheap difference 
matrix D it seems recommendable to take into account the type of eigenvalue 
spectrum of J. For instance, if f(y) represents the discretization of some second-order 
(nonlinear) differential operator applied to a one-dimensional grid function y, then J 
has often negative eigenvalues, and one may try the difference matrix given by the 
first matrix in (11). Likewise, in the case of first-order differential operators, J has 
often purely imaginary eigenvalues, and one may try the second difference matrix in 
(11). 

In order to see the effect on the spectrum condition number of J when 
premultiplied by a smoothing matrix we shall assume that we are in the ideal situation 
where (16) is satisfied. From Theorem I and 2 we obtain 

Theorem 3. (a) Let D be defined by (16), let the eigenvalues of J be real 
nonpositive, and let S := P(D), where P(z) is defined by (12). Then the eigenvalues of 
SJ are again real nonpositive and, of all first-order consistent polynomials which are 
nonpositive in (-1,0], the polynomial (12) minimizes the spectral radius ~f P(D)D. 
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This spectral radius is given by 

p(SJ) = p(J) /k2. 

(b) Let D be defined by (16), let the eigenvalues of J be purely imaginary (zero not 
excluded), and let S := P(D), where P(z) is defined by (14 ). Then the eigenvalues of 
SJ are again purely imaginary and of all first-order consistent polynomials, the 
polynomial (14) minimizes the spectral radius of P(D)D. This spectral radius is given 
by 

p(S()f/()y) = p({)f/()y) I (2k + 1).11 

3. Smoothed predictor-corrector methods 

3 .1. The computational scheme 

One of the many possible applications of the smoothing matrices described 
above is the construction of highly stable predictor-corrector methods for 
semi-discrete parabolic or hyperb< h. ;nitial-value problems. The following P(EC)m 
type method is based on the linear extrapolation predictor and the second-order 
backward differentiation corrector, and is designed for the integration of parabolic 
equations (cf. [5]): 

For all m 

ifm = 1 then 

(17) ifm> 1 then 

Y(O) = 2y -y . 
n n-1' 

y n+ I = y(O) - Sr(y<Ol) 

y(l) = y(O) - cSr(y(O)), 

yGl = 2yG·l) - yG·2) - 2cSr(yG-l>), j =2, ... , m-1, 

Yn+l = [y(O) - 2 y<m-2) + 4y(m-l) - 4cSr(y(m-ll)] /3. 

Here, r(y) is the residue function associated with the corrector: 

(18) r(y) :=[3y - 26t f(tn+l' y) - 4yn + Yn-ll /3, 

and c is a constant given by 

(19) c := 1 -cos (arccos (-1/2)/m) = 1-cos ( 2.094/m). 

We observe that this method reduces to the conventional predictor-corrector method 
in P(EC)m. 6 · 

The following theorem characterizes the method in the model case where (I ) 1s 

satisfied. 
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Theorem 4. Let D be defined by (16) and let S :::: P(D), where P(z) is defined by 
(12). Then the method defined by (17) - (19) is second-order accurate and the real 
stability boundary satisfies the inequality 

l3reai > (3/2 + int (3(2 - c) I 2cJ)k2 - 3 I (1 - cos (1t I k)), 

where int(.) denotes the integer-part function. 11 

For large values of m and k the real stability boundary behaves as 

As m+k increases, this approximation decreases rapidly to the true value of the 
stability boundary. For rn+k:::4, the error is already less than10%. 

We recall that, in actual computation, we do not define the matrix D by (16), 
but, in the case of Jacobian matrices with real eigenvalues, by the first matrix defined 
in (11). Extensive numerical experiments have shown that the stability boundary 
given in the above theorem is still reliable (cf. (5)). Furthennore, we should always 
choose k ::: 2q in order to exploit the factorized implementation of the corresponding 
smoothing matrices (only q three-diagonal matrix-vector multiplications for each 
spatial dimension). Thus, the computational costs required to perform a step 

(21) 6.t = 13real I p(J) = 1.37 m2 4q I p(J) 

are m smoothed right-hand side evaluations. This expression shows that we can take 
any step we want by choosing q and m sufficiently large. Since increasing q is 
relatively inexpensive and increasing m is usually very expensive, it is tempting to set 
m=l and to increase only q. However, in our experiments we observed a systematic 
drop of accuracy for large values of q (cf. (5)). 

3.2. Computational costs 

We conclude this paper with a derivation of the computational costs for a 
d-dimensional parabolic problem defined on the unit box in (t,x)-space and 
discretized on a grid with mesh size h both in the time direction and in all spatial 
directions. Let the spectral radius for this problem be dr/h2, r being a constant, let 6.t 
=hand set m=m*. Then (21) yields 

(22) q :2: q*, q* := 4log(l/h) - 24log(m*) + s, s:= 4log(dr/l.37). 

The total computational costs are given by 

(23) C(h) = rn*[<p + dqe] N, N := h-(d+l), 

where <p and e respectively denote the costs per grid point involved for evaluating f 
and for performing a factor matrix multiplication, and where N denotes the total 
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n~mber of grid points in the (d+l)-dimensional box. Substitution of q = q* into (23) 
yields 

[l) 

[2] 

[3] 

(4) 

[5] 

[6] 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

[131 

[14] 
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