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Abstract

This article tackles the Distribution Network Expansion Planning (DNEP) problem that
has to be solved by distribution network operators to decide which, where, and/or
when enhancements to electricity networks should be introduced to satisfy the fu-
ture power demands. Because of many real-world details involved, the structure of
the problem is not exploited easily using mathematical programming techniques, for
which reason we consider solving this problem with evolutionary algorithms (EAs).
We compare three types of EAs for optimizing expansion plans: the classic genetic
algorithm (GA), the estimation-of-distribution algorithm (EDA), and the Gene-pool
Optimal Mixing Evolutionary Algorithm (GOMEA). Not fully knowing the structure
of the problem, we study the effect of linkage learning through the use of three linkage
models: univariate, marginal product, and linkage tree. We furthermore experiment
with the impact of incorporating different levels of problem-specific knowledge in the
variation operators. Experiments show that the use of problem-specific variation op-
erators is far more important for the classic GA to find high-quality solutions. In all
EAs, the marginal product model and its linkage learning procedure have difficulty in
capturing and exploiting the DNEP problem structure. GOMEA, especially when com-
bined with the linkage tree structure, is found to have the most robust performance by
far, even when an out-of-the-box variant is used that does not exploit problem-specific
knowledge. Based on experiments, we suggest that when selecting optimization al-
gorithms for power system expansion planning problems, EAs that have the ability to
effectively model and efficiently exploit problem structures, such as GOMEA, should
be given priority, especially in the case of black-box or grey-box optimization.

Keywords

Power system, capacity planning, linkage learning, variation operators, problem-
specific knowledge.

1 Introduction

A typical power system consists of power plants that generate the electricity, trans-
mission networks that carry the high-voltage (HV) electricity from far-off generating
sites to substations near residential and industrial areas, and distribution networks that
feed the medium-voltage (MV) and low-voltage (LV) electricity from the substations to
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homes and businesses. In this article, the focus is on distribution networks, but the
methodologies can also be extended to transmission networks. In order for distribu-
tion networks to work properly, distribution network operators (DNOs) have to ensure
that the capacities of network cables are sufficient to handle the magnitude of the power
flows that are carried through the cables to satisfy customers’ power demands. Oth-
erwise, bottlenecks can cause overloads, which heat up the cable wires. This is detri-
mental to the normal operation and safety of the networks, and may cause blackouts
or earlier cable replacements. Therefore, DNOs need to perform Distribution Network
Expansion Planning (DNEP) to determine what kinds of network enhancements should
be made and where these enhancements should be made. The dynamic DNEP formu-
lation also involves the question when those reinforcement activities should be started
during the planning period while in the static DNEP formulation this time-dependent
decision making issue is omitted. The goal of DNEP is to find the most economical
expansion plan, in terms of investment and operation costs, for which the network
satisfies the power demand over the planning period.

DNEP is sometimes simplified to be scalably solved by classical mathematical pro-
gramming methods, compromising the true non-linear nature of DNEP that is due to
its complicated properties and constraints, and thus leading to unsatisfactory represen-
tations of the real problem (Ramirez-Rosado and Bernal-Agustin, 1998). On the other
hand, evolutionary algorithms (EAs) have been widely applied and achieved practical
results in DNEP with more realistic formulations, see e.g., (Borges and Martins, 2012;
Diaz-Dorado et al., 2002; Ramirez-Rosado and Bernal-Agustin, 1998). This is mostly
due to the straightforward implementation and broad applicability of EAs. However,
most DNEP studies in literature overlook several important issues. First, experiments
are usually conducted by using only one, arbitrarily chosen, EA with a customized
problem-specific variation operator (VO), omitting both questions why that specific EA
should be chosen over other available EAs and what the advantages that VO has com-
pared to other alternatives. Second, the comparison of how effective various constraint-
handling mechanisms help the solvers traverse the search space is often disregarded.
In this paper, while aiming to solve a formulation of the DNEP problem that captures
many important real-world considerations, we also address these issues. We employ
3 EA solvers: a classic genetic algorithm (GA), a estimation-of-distribution algorithm
(EDA), and a Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) (Bosman
and Thierens, 2013; Thierens and Bosman, 2011). The GA is arguably the most popular
EA in DNEP literature, but it is rarely used out of the box in practice. Practitioners
often customize VOs (i.e., crossover and mutation) with expert and problem-specific
knowledge (PSK) so that important problem structures are respected during variation,
e.g., cables in the same feeder group in the network should be treated together when
constructing new networks. Taking the perspective of black-box optimization, where
such PSK is assumed to be hardly available, linkage learning (LL) can be performed to
identify, during optimization, which variables are inter-dependent and should thus be
jointly considered when generating new solutions. EDAs, such as BOA (Pelikan et al.,
2000) or ECGA (Harik et al., 2006), are well-known examples of EAs that build proba-
bilistic models that exhibit a degree of variable dependency that is aligned with vari-
able linkage to effectively generate high-quality solutions. However, large population
sizes are often required so that probabilistic models can be properly constructed. Build-
ing a high-order probabilistic model also introduces significant additional computation
time requirements. Being a recently-developed LL EA, GOMEA focuses specifically on
linkage, without estimating associated probability distributions, allowing higher-order
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models to be built much more efficiently. GOMEA also has an efficient variation op-
erator that exploits the learned linkage model to create new solutions that are better
or at least equal to existing solutions. GOMEA has been shown to have superior per-
formance and scalability on laboratory benchmarks and recently in power system op-
timization as well (Grond et al., 2014b; Luong et al., 2013). Linkage learning does not
exclude the possibility of combining linkage knowledge with PSK if available. In this
paper, we show how to combine the strength of LL with PSK exploitation.

Population size parameter settings have big impacts on how effective and how
efficient problem instances are solved. Population sizes of EAs are often chosen ar-
bitrarily or are customized to the specific problem instance at hand in DNEP litera-
ture (Borges and Martins, 2012; Diaz-Dorado et al., 2002; Ramirez-Rosado and Bernal-
Agustin, 1998). Practitioners often need to manually try different population sizes to
figure out a suitable population size for each problem instance, which is both time-
consuming and difficult for comparing the performance of different EAs fairly. This
approach is also difficult to generalize to other applications. To get rid of this trou-
blesome parameter, Harik and Lobo (1999) proposed the parameter-less GA with a
population sizing-free scheme. Pelikan et al. (2007) then proposed a simplified imple-
mentation of the original scheme. Recently, Pereira and Lobo (2015) adopted the im-
plementation of (Pelikan et al., 2007) to develop a framework for parameter-less EAs.
The scheme, however, has been mainly applied to unconstrained problems. Here, we
adapt the Harik-Lobo scheme in the context of DNEP, a highly constrained optimiza-
tion problem. We then also employ the adapted population sizing-free scheme as a
framework for comparing the performance of GA, EDA, and GOMEA.

This article is an extension to our previous publication at GECCO 2015 (Luong
et al., 2015). Beside GA and GOMEA, the present manuscript considers the applica-
tion of EDA for solving DNEP. We also present additional results to support our design
choice in adapting the population sizing-free scheme. Moreover, we include a more de-
tailed description and pseudo-code of the employed EAs and their variation operators.

The remainder of this article is organized as follows. Section 2 formulates the
DNEP problem. Section 3 introduces linkage learning and three linkage models: uni-
variate, marginal product, and linkage tree. Section 4 outlines the three optimization
algorithms GA, EDA and GOMEA. In Section 5, we present the adapted Harik-Lobo
population sizing-free scheme for the DNEP problem. Section 6 describes different
variation operators and constraint-handling techniques for DNEP. Section 7 presents
the experimental results on the performance of GA, EDA, and GOMEA when being
combined with different variation operators. Section 8 concludes the article.

2 DNEP Formulation

In this article, we focus on optimizing expansion plans for medium voltage distribu-
tion (MV-D) networks. A typical MV-D network consists of cables branching out from
HV/MV substations connecting MV nodes (MV/LV substations and MV customer
substations) (Grond et al., 2014b). These cables form different feeder (cables) groups
in ring-shaped or meshed structures. However, some cables are opened on one side,
called normally open points (NOPs). Electricity cannot flow through those cables, so
that every node is supplied its power demand through a single feed path. The whole
network thus operates radially in normal situations. Figure 1 shows an example of a
distribution network. We focus on expansion options for network cables as our main
asset category. How the cables are connected and what types of cables are used, deter-
mine the capacity of the network. Increasing power demands in the future can create
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bottlenecks in some parts of the network, where the power flows have magnitudes that
are greater than the nominal capacities of the cables. The goal of capacity planning is to
find the best expansion options to solve these bottlenecks. Possible expansion options
are: replacing existing cables with new cables of higher capacities or adding new ca-
ble connections and thus creating new feed paths to the network (Grond et al., 2014b).
Adding new cables connections requires placements of new NOPs to satisfy the radial-
ity constraint (Grond et al., 2014b). In the following, we formulate the problem in more
detail.
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Figure 1: A distribution network example (Grond et al., 2014b)

2.1 Decision Variables

We specify all the existing and potential cable connections (branches) that we want to
consider for capacity planning. Let l denote the total number of branches. A distribu-
tion network can be represented as a vector of l integer elements:

x = (x1, x2, . . . , xl), |xk| ∈ Ω(k) ∪ {0}, k ∈ {1, 2, . . . , l} (1)

where Ω(k) is the set of cable types that can be installed at the kth branch (Ω(k) ⊆ N).
The value of xk indicates the status and the type of cable installed:

• xk = ID > 0: A cable of type ID ∈ Ω(k) is installed.

• xk = 0: No cable is installed at the kth branch.

• xk = −ID < 0: A cable of type ID ∈ Ω(k) is installed but is out of normal opera-
tion. This is an NOP.

2.2 Constraints

Let n denote the total number of nodes (substations) in an MV network. The following
constraints must be satisfied for any candidate network to be considered feasible:
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1. Connectivity: For each consuming node (i.e., an MV/LV network substation or
MV customer substation), there exists a path of concatenating cables connecting
that consuming node to an HV/MV supplying substation.

2. Power flow constraint: In normal operation, the voltage at each node stays within
allowable limits (i.e., 0.9 · V nom

i ≤ Vi ≤ 1.1 · V nom
i , i ∈ {1, 2, . . . , n}) and the

magnitude of the power flow through each cable stays within the nominal capacity
of that cable (i.e., |Si| ≤ Snom

i , i ∈ {1, 2, . . . , l}).

3. Radiality constraint: In normal operation, the power demand of each node is sup-
plied by a single feed path.

4. Reconfigurability constraint: When an active cable (xk > 0) fails, the part of the
feeder group (from an HV/MV substation with circuit breaker to an NOP) contain-
ing the failed cable is disconnected from the network. All customers connected to
that feeder group are then out of service. The DNO has to bring the network back
to operation by closing NOPs to temporarily re-route the power flow through other
paths while the failed cable is being repaired. During this emergency situation, the
radial operation constraint can be compromised and the network is allowed to en-
dure a mild overload of 130% nominal capacity (as in (Grond et al., 2014b)).

5. Substation capacity constraint: Each HV/MV substation has limited physical
space to install new outgoing cables. We assume that at most 3 new outgoing
cables are allowed for each HV/MV substation (as in (Grond et al., 2014b)).

Alternating-current (AC) power flow calculations (PFCs) (Grainger and Stevenson,
2003) are required to check constraints 2 and 4 for each solution plan. PFCs, which
involve solving AC power flow models, are computationally expensive and dominate
the computing time of the optimization process. To compute a full reconfigurability
constraint evaluation, all cables in a network solution need to be checked for failures,
which requires many time-consuming PFCs. There exists a reasonably accurate, but
much more efficient, method for reconfigurability check, named Line Outage Distribu-
tion Factor AC (LODF-AC) (Grond et al., 2014a), which needs to perform only one
true AC-PFC for the base case while each single cable check can be approximately
computed. We employ the true AC-PFC to evaluate the power flow constraint (i.e.,
constraint 2) and the LODF-AC method to verify the reconfigurability constraint (i.e.,
constraint 4).

PFCs can only be performed for connected networks. The connectivity constraint
is thus a crucial constraint that needs to be separately handled so that constraints 2 and
4 can be properly evaluated (see also Section 6). If the network encoded in a solution
plan is unconnected, we do not evaluate other constraints but we quantify its discon-
nectivity by comparing it with the topology of the existing network xnow. Specifically,
we loop through all the decision variables and count the number of positions where
the existing network has a positive value (i.e., an active branch) but the solution has a
negative value (i.e., an NOP) or where the existing network has a non-positive value
(i.e., no cable connection or an NOP) and the solution has a positive value. This num-
ber is considered to be the disconnectivity value. Note that the case when a position
in the existing network has a positive value and that position in the candidate solution
has value 0 does not exist because such a case implies that an existing cable connection
would be removed, which is generally undesirable according to network operators (see
more details in Section 6.1). Connected networks do not need this disconnectivity quan-
tification and are assigned the disconnectivity value 0. Figure 2 shows the pseudo-code
for the disconnectivity quantification procedure.
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DISCONNECTIVITYQUANTIFICATION(x)
1 if CONNECTIVITYCHECK(x) then
2 RETURN( 0 )
3 count← 0
4 for k ∈ {1, 2, . . . , l} do
5 if [xnow

k > 0 and xk < 0] or [xnow
k ≤ 0 and xk > 0] then

6 count← count+ 1
7 RETURN(count)

Figure 2: Disconnectivity Quantification

To deal with solutions that violate constraints, we will, as a basis, consider the
use of constraint domination (Deb, 2000). Because we have a cascade of importance in
the constraints, we modify constraint domination slightly to work as follows. When
comparing two candidate networks, if both networks are unconnected, the one with
a smaller disconnectivity value is the better one. If only one network is unconnected,
then the connected network is the better solution. If both networks are connected,
they can then be compared by using the other evaluated constraint values and their
objective values. The network with smaller total constraint violation is the better one.
If both candidate networks are feasible (i.e., no constraint violation), the one having
smaller cost is preferred. Figure 3 shows the pseudo-code for our implementation of
constraint domination in DNEP. The total constraint violation of a candidate network
is taken as the aggregate of the amounts of violation of constraints 2, 3, 4, and 5. The ra-
diality constraint and the reconfigurability constraint are evaluated as Boolean values,
i.e., 1-value indicates the constraint is satisfied while 0-value indicates the constraint
is violated. More refined methods to quantify DNEP constraint violations are worth
further investigation but are outside the scope of this work.

2.3 Objective Function

Solving DNEP involves finding the feasible expansion plan that minimizes the total
cost, which is typically comprised of the capital expenditure CAPEX and the op-
erational expenditure OPEX . If x0 = (x0

1, x
0
2, x

0
3, . . . , x

0
l ) is the configuration of the

currently existing network, then each x0
k for which k corresponds to a potential cable

connection is assigned the value 0. For the static DNEP problem, in which the time
of investment is disregarded, any x 6= x0 can be seen as a candidate expansion plan.
The element-wise differences between x0 and x indicate which reinforcement activities
need to be carried out to transform the current network x0 into the network x. CAPEX
is then the investment cost that a DNO needs to spend to acquire and construct new
assets. Note that the cost of closing an NOP (i.e., x0

k = −ID < 0 and xk = ID > 0)
or placing an NOP (i.e., x0

k = ID > 0 and xk = −ID < 0) is negligible and can be
disregarded. OPEX is the operational cost of the new network configuration x.

We employ the annuity method (Verzijlbergh et al., 2012) to calculate the capital
expenditures CAPEX for new assets. The investment cost on a new asset is converted
into a series of uniform annual payments, called annuities. We assume the length of
this series to be equal to the (uniform) economic lifetime of the new asset tlife. The
annuity ANa of the asset a with a discount rate i = 4.5% (as in (Grond et al., 2014b))
can be computed as:

ANa = Pricea ·
i

1− (1 + i)
−tlife

(2)
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ISBETTER(x,x′)
1 dq ← DISCONNECTIVITYQUANTIFICATION(x)
2 dq′ ← DISCONNECTIVITYQUANTIFICATION(x′)
3 if dq < dq′ then
4 RETURN (TRUE)
5 else if (dq > dq′ ≥ 0) or (dq = dq′ > 0) then
6 RETURN (FALSE)
7 else
8 con ← CONSTRAINTVIOLATIONCALCULATION(x)
9 con′ ← CONSTRAINTVIOLATIONCALCULATION(x′)

10 if con < con′ then
11 RETURN (TRUE)
12 else if (con > con′ ≥ 0) or (con = con′ > 0) then
13 RETURN (FALSE)
14 else
15 cost ← TOTALCOSTCALCULATION(x)
16 cost′ ← TOTALCOSTCALCULATION(x′)
17 if cost < cost′ then
18 RETURN (TRUE)
19 else
20 RETURN (FALSE)

CONSTRAINTVIOLATIONCALCULATION(x)
// n: number of nodes; l: number of branches
// V = (V1, V2, . . . , Vn): vector of voltage at each node
// S = (S1, S2, . . . , Sl): vector of power flow through each branch

1 con← 0
2 V ,S ← POWERFLOWCALCULATION(x)
3 for i ∈ {1, 2, . . . , n} do
4 con← con+ max(V min

i − Vi, Vi − V max
i , 0)

5 for i ∈ {1, 2, . . . , l} do
6 con← con+ max(Si − Snom

i , 0)
7 if con > 0 then
8 con← con+ 1
9 else

10 con← BOOLEANTOINT(¬RECONFIGURABILITYCHECK(x))
11 con← con+ BOOLEANTOINT(¬RADIALITYCHECK(x))
12 for i ∈ {1, 2, . . . , n} do
13 con← con+ max(NUMBEROFOUTGOINGCABLES(i)− 3, 0)
14 RETURN(con)

Figure 3: Constraint Domination for DNEP

CAPEX for the asset a in a year t can be calculated as:

CAPEXa(t) =

{

ANa if tinsta ≤ t < tinsta + tlife

0 else
(3)

with tinsta is the time of installing the asset a. Let A denote the set of all new assets a’s
that will be installed in the planning period [t0, thorizon]. The total CAPEX on the whole
network in a year t is defined as:

CAPEX(t) =
∑

a∈A

CAPEXa(t) (4)

The operational expenditure OPEX can be calculated by capitalizing the energy
loss. The energy loss of the network in year t can be taken as in (Grond et al., 2014b;

Evolutionary Computation Volume x, Number x 7



N.H. Luong, H. La Poutré and P.A.N. Bosman

Verzijlbergh et al., 2012):
Eloss(t) = Ppeak loss(t) · Tloss(t) (5)

where Ppeak loss(t) is the peak loss which can be obtained from the PFC regarding the
peak loads in year t. Tloss(t) is the service time of peak loss for year t, defined by the area
of the yearly loss profile (Grond et al., 2014b; Verzijlbergh et al., 2012). In this article,
we assume that Tloss(t) = 2000 hours, which is a typically reasonable value for MV
distribution networks in the Netherlands (Grond, 2011). Given the forecast electricity
price in year t, we can capitalize the energy loss and regard it as the OPEX in year t.

OPEX(t) = Eloss(t) ∗ Priceelectricity(t) (6)

In this study, we take the price of electricity for energy loss capitalization as 0.068
EUR/kWh during the planning period.

2.3.1 Total Cost Formulation

We want to minimize the net present value (NPV) (i.e., at time t0) of the total cost of
both investment cost CAPEX and operation cost OPEX over a planning period of
thorizon years with a discount rate i.

COSTNPV =

thorizon
∑

t=t0

CAPEX(t) +OPEX(t)

(1 + i)t−t0
(7)

2.3.2 Static Planning

The goal in static DNEP is to find the most economical solution plan that satisfies the
peak load profile at the final year of the planning period. Static DNEP gives DNOs a
general picture about what kinds of network reinforcements can be expected. However,
the actual total cost objective function includes the important operation cost OPEX ,
which is the capitalized energy loss, that depends on the load profile and the specific
network configuration at each year. We employ the following method, which has been
proposed in (Grond et al., 2014b), to estimate the OPEX for a solution plan. Based
on the (predicted) annual peak load growth rate R, we compute the peak load profile
for each year from the beginning year t0 until the final year thorizon. We determine the
year toverload when the first bottleneck happens in the network. We then assume that
all expansion options in the solution plan are installed at the same time in year toverload,
i.e., tinst = toverload for all new assets. Therefore, to evaluate the total cost, from t0 until
toverload, we use the current network topology, and from toverload until thorizon we switch to
the new network topology.

2.3.3 Dynamic Planning

The question when each expansion option should be carried out is also an important
issue that DNOs have to address. Dynamic DNEP formulations often contain time-
dependent decision variables and complicated problem models that are much more
difficult to solve than those of static DNEP. A general dynamic formulation can, in
principle, encode any expansion plans, even the solutions that are considered imprac-
tical by DNOs such as installing a thin cable first and then upgrading with a different
cable of higher capacity, or removing a previously-upgraded cable during the same
planning period. Network cables (i.e., the main asset category in DNEP) are generally
expensive and have very long lifetimes (e.g., normally 30 years) while planning peri-
ods of more than 30 years are regarded as impractical because it is difficult to properly
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predict power demand scenarios for a very distant future. Therefore, during a practical
planning period, a network branch might require reinforcement only once (e.g., cable
replacement or installation of a new cable connection). These facts motivate an ap-
proach that precludes the aforementioned impractical expansion options while at the
same time can be solved more efficiently than the general dynamic formulation. Here,
we propose a method, called the decomposition heuristic, to find a suitable schedule for
network reinforcement activities in a feasible expansion plan as follows. Similarly to
the static planning, we determine the year toverload when the first bottleneck occurs and
assume that the whole solution plan is carried out in that year. Such simultaneous rein-
forcements might include some asset installations which are required at some later time
t but are not necessary at the year toverload (i.e., t > toverload). If these early investments
can be postponed as further as possible, the net present value (NPV) for the total cost of
the expansion plan might be reduced because investments made at a later time are dis-
counted more (see Equation 7). To this end, we loop through the list of all new assets in
the solution plan in a random order and check if we can delay each expansion option by
one year. If the postponement of an asset investment reduces the NPV of the total cost
and all constraints are still satisfied, then we accept that postponement. Otherwise,
that expansion option cannot be postponed further. We continue this postponement
checking until no expansion option can be postponed any more. Each postponement
checking requires calculations of the changes in CAPEX and OPEX (Equations 4 and
6) and evaluations of network constraints in the related years. Finally, we obtain a so-
lution plan with an investment time for each expansion option and the NPV of the total
cost (i.e., the objective value) is evaluated accordingly. By employing this decomposition
heuristic, we can bring the decision making about investment time into the static DNEP
framework while still satisfying the requirements of DNOs in real-world practice.

3 Problem Structures and Linkage Models

A key part that characterizes an evolutionary algorithm (EA) is its variation operators
(VOs), i.e., how new solutions are generated. VOs can be model-based, meaning that
the way variation is performed is governed by a (learnable) model. Models of partic-
ular interest are linkage models, which are used to match the dependency structure of
the optimization problem instance at hand. A linkage model often contains informa-
tion about groups of inter-dependent decision variables, also known as linkage sets.
Variables in the same linkage set are dependent on each other in the sense that when
being considered together, they have a significant contribution to the quality of a so-
lution (Thierens and Bosman, 2011). These variables should thus be jointly considered
when performing variation. Variation operators can, for instance, make use of the in-
formation in linkage models to juxtapose partial solutions from existing solutions to
generate new solutions. A linkage model that matches correctly with the problem de-
pendency structure is crucial for variation operators to efficiently mix and preserve
good partial solutions (i.e., building blocks) in the population in order to efficiently
create high-quality solutions. Problem-specific knowledge (PSK), if available, can be
used to directly construct the linkage model of the problem. If such valuable PSK is
not available, or difficult to transcribe into linkage information, linkage information
can be inferred from the working population of EAs by linkage learning (LL) proce-
dures (Thierens and Bosman, 2011), in which problem variables having some degree
of dependency are identified. In the following we give a general definition of a link-
age model, called the Family of Subset (FOS) model, and subsequently describe three
variants that can be used in practice.
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3.1 Family of Subset Linkage Model

Let L = {1, 2, . . . , l} be the set of all l decision variables of the problem instance at hand.
We use the Family of Subsets (FOS) concept proposed by (Thierens and Bosman, 2011)
to encode different linkage models. A FOS, denoted F , consists of subsets of the set
L, i.e., F = {F 1,F 2, . . . ,F |F|} where F i ⊆ L, i ∈ {1, 2, . . . |F|}. Thus, F ⊆ P(L),
i.e., F is a subset of the power set of L. Each subset F i is a linkage set containing
decision variables that exhibit some degree of dependency and should thus be jointly
treated when performing variation. A FOS F is said to be complete if every problem
variable is contained in at least one linkage set, i.e., ∀i ∈ L, ∃j ∈ {1, 2, . . . , |F|} : i ∈
F j . The completeness property ensures that all problem variables are considered when
performing variation following linkage sets in F . We here consider 3 complete FOS
models: univariate, marginal product, and linkage tree.

3.2 Univariate Model

The univariate factorization (UF) model contains only singleton sets. It therefore ex-
presses the assumption that all problem variables are independent from each other, i.e.,
F i = {i}, i ∈ L = {1, 2, . . . , l}. Because there is only one possible configuration, the
univariate model does not require any linkage learning.

3.3 Marginal Product Model

The marginal product (MP) model is a partitioning of the set L of all problem variables,
i.e.,

⋃

F i∈F F i = L and ∀F i,F j ∈ F ,F i 6= F j : F i ∩ F j = ∅. Variables in the
same linkage set have some degree of dependency while variables in different linkage
sets are considered to be independent (Thierens and Bosman, 2011). The well-known
Extended Compact Genetic Algorithm (ECGA) (Harik et al., 2006) employs the MP as
its linkage model.

The MP model is often learned from a populationP of n individuals using a greedy
algorithm that optimizes a model scoring metric as follows. First, the FOS F assumes
the univariate structure and is then scored by the chosen metric. Next, all possible
merges of two linkage sets F i and F j are tried out and the merge that improves the
scoring metric the most is chosen. The merged linkage set is added into F , replacing
the two constituent linkage sets, i.e., F ← (F \ {F i,F j}) ∪ {F i ∪ F j}. This procedure
continues until no merging event can improve the scoring metric anymore. The scor-
ing metric employed by ECGA is named the Combined Complexity Criterion (CCC),
which is the sum of the Compressed Population Complexity and the Model Complexity
(Harik et al., 2006). The Compressed Population Complexity (CPC) is the cost of rep-
resenting the whole population of n individuals with FOS model F and is calculated
as

CPC = n

|F|
∑

i=1

H(XF i) (8)

where XF i is a set of random variables, in which each random variable Xk corresponds
with a problem variable xk in the linkage set F i. H(XF i) is the entropy of the marginal
distribution of XF i . We have

H(XF i) = −
∑

x∈Ω(X
F i )

P (XF i = x) log2 P (XF i = x) (9)

where Ω(XF i) is the the sample space for random variables XF i , i.e., all possible string
values of the problem variables in F i when being jointly considered. The probability
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P (XF i = x) can be computed by counting the frequency of x in the population P .
The Model Complexity (MC) is the cost of representing or storing FOS model F and is
calculated as

MC = log2(n+ 1)

|F|
∑

i=1

(|Ω(XF i)| − 1) (10)

The greedy model building algorithm, which has a worst-case runtime O(nl3),
needs to minimize the CCC metric. Instead of computing this scoring metric for the
whole FOS F at every merging trial, the CCC metric improvement (i.e., CCC metric
decrease) can be computed more efficiently considering only problem variables in the
two involved linkage sets F i and F j (Thierens and Bosman, 2011) as

CCC(F i,F j) = n[H(XF i) +H(XF j )−H(XF i∪F j )]+

log2(n+ 1)[(|Ω(XF i)| − 1) + (|Ω(XF j )| − 1)− (|Ω(XF i∪F j )| − 1)]
(11)

3.4 Linkage Tree Model

Because each configuration of the MP model is a partitioning of the set L, every prob-
lem variable can exist in only one linkage set. Therefore, any two variables are either
dependent (if they are in the same linkage set) or independent (if they are in different
linkage sets). In the linkage tree (LT) model, a problem variable can exist in multiple
linkage sets. The LT model is thus more expressive than the MP model in the sense
that any two variables can be both dependent and independent. While the MP model
has a flat structure, the LT model arranges its linkage sets in a hierarchical tree struc-
ture. The lowest level (i.e., leaf nodes) contains univariate linkage sets of each variable
separately, i.e., F i = {i}, i ∈ L = {1, 2, . . . , l}. Higher levels contain multivariate link-
age sets, in which each linkage set F i is formed by merging two mutually exclusive
linkage sets F j and F k at lower levels, i.e., F j ∩ F k = ∅, |F j | < |F i|, |F k| < |F i| and
F j ∪ F k = F i. The highest level (i.e., the root node) contains the set L itself. Thus,
an LT can encode different levels of dependency, from the totally independent state
in the leaf nodes to the all-dependent state in the root node (Bosman and Thierens,
2013). The root node can be removed from the LT because it assumes that variables
should be jointly copied when performing variation, which means no new solution
is created. An LT over a set of problem variables {1, 2, 3, 4, 5} can be, for example,
{{1}, {2}, {3}, {4}, {5}, {1, 3}, {2, 5}, {1, 3, 4}}. An LT model configuration for a set L of
l problem variables is thus a FOS F of exactly 2l − 2 linkage sets.

The LT model can be learned from the population of n individuals by a hierarchi-
cal clustering procedure named the Unweighted Pair Group Method with Arithmetic
Mean (UPGMA). The FOS F is built in a bottom-up manner. First, F is initialized with l
univariate linkage sets F i = {i}, i ∈ L = {1, 2, . . . , l}. Then, UPGMA iteratively merges
the two linkage sets F i and F j that are the most similar. The newly created linkage set
F i∪F j is added to the LT F . The two constituents linkage sets F i and F j are still kept
in the LT F but they are not considered for merging anymore. The merging operations
continue until the root node (i.e., the set L itself) is created. To calculate the similarity
between two linkage sets F i and F j , we take the average of the mutual information
(MI) over all pairs of problem variables (X,Y ) where X ∈ F i and Y ∈ F j (Bosman
and Thierens, 2013) as follows
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MIUPGMA(F i,F j) =
1

|F i||F j |

∑

X∈F i

∑

Y ∈F j

MI(X,Y ) (12)

where MI(X,Y ) = H(X) +H(Y )−H(X,Y ). UPGMA can be optimally implemented
by using the reciprocal nearest-neighbor chain technique such that an LT can be built
in O(nl2) time (Gronau and Moran, 2007).

4 Evolutionary Algorithms

DNEP is difficult for simple k-opt local search (LS) with a small neighborhood k to
solve. For example, adding a new cable connection requires the addition of a new NOP
to make the network radial, which in turn requires relocations of other existing NOPs
to obtain the topology with lowest energy loss. Such multivariate decision making can-
not be found by a typical LS like 1/2/3-opt hillclimbing while higher-order LS would
require a drastic increase in computational effort. Global search meta-heuristics, like
EAs, are therefore potentially more suitable for DNEP.

4.1 Genetic Algorithm (GA)

GA //population size n
1 for i ∈ {1, 2, . . . , n} do
2 Pi ← CREATERANDOMSOLUTION()
3 EVALUATEFITNESS(Pi)
4 while ¬TERMINATIONCRITERIASATISFIED() do
5 F ← LEARNMODELFROMPOPULATION(P)
6 π ← RANDOMPERMUTATION({1, 2, . . . , n})
7 k ← 1
8 for i ∈ {1, 2, . . . , n} do
9 Oi ← RECOMBINE(Pπk

,Pπk+1
)

10 EVALUATEFITNESS(Oi)
11 k ← k + 2
12 if k ≥ n then
13 k ← 1
14 π ← RANDOMPERMUTATION({1, 2, . . . , n})
15 P ← TOURNAMENTSELECTION(P +O, n, 4)

RECOMBINE(p0,p1)
1 o← p0

2 for i ∈ {1, 2, . . . , |F|} do
3 if RANDOM01() < 0.5 then
4 o← COPYVALUES(o,p1,F i)
5 RETURN(o)

COPYVALUES(x,d,F i)
1 o← x

2 for k ∈ F i do
3 ok ← dk
4 RETURN(o)

Figure 4: Genetic Algorithm

The GA is started with a population P of n randomly generated candidate solu-
tions. Next, for every generation, a FOS F is learned from the current population P .
An offspring population O of n new solutions is created from P by performing recom-
bination (i.e., crossover), guided by the linkage information in F , n times on 2 parent
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solutions that are randomly picked each time, giving 1 offspring solution. Then, both
the parent population P and the offspring population O are combined into a selection
pool P + O of 2n solutions in total. Tournament selection with tournament size 4 is
performed on this pool to select n survivor solutions, which form the new parent pop-
ulation P for the next generation, ensuring convergence by logistic growth of the best
solution (Thierens and Bosman, 2011). If the univariate factorization (UF) model is cho-
sen for linkage learning, we automatically have the simple GA with uniform crossover,
in which all dependencies among problem variables are disregarded. If the MP model
is employed, we have a GA variant with a recombination operator that can exchange
blocks of values at the positions indicated by the linkage sets in F . We do not com-
bine the LT model with GA because the simple crossover operator is not compatible
with the hierarchical structure of an LT FOS. Figure 4 shows pseudo-code for our GA
implementation.

Note that, in our previous work (Luong et al., 2015), we employed a slightly dif-
ferent version of GA, in which two offspring solutions are created from two parent
solutions in every recombination event. In this article, recombining two parent solu-
tions results in one offspring. We use this implementation so that GA can be presented
in sync with both EDA and GOMEA in the sense that one offspring solution is con-
structed each time. There is no significant difference in performance if two offspring
were to be generated in recombination.

4.2 Estimation-of-Distribution Algorithm (EDA)

The EDA starts with a population P of n randomly generated candidate solutions. Ev-
ery generation, a FOSF is learned from the current populationP . The EDA also derives
a probability distribution from the population P following the obtained structure F . In
the case of the univariate model or the MP model, all linkage sets of F are mutually

exclusive, so the probability distribution can be formulated as PF (X) =
∏|F|

i=1 P (XF i)
where a random variable Xi corresponds with each problem variable xi. Each linkage
set F i corresponds to a marginal XF i whose distribution P (XF i) can be estimated by
counting frequencies of all possible value strings of the variables in F i in the popula-
tion P . Note that for the LT model such a joint distribution PF (X) cannot be defined
directly in terms of P (XF i). The EDA does not use the recombination operator (i.e.,
crossover) like the GA to create offspring from existing solutions. Instead, the offspring
population O of n new solutions is generated by sampling the estimated probability
distribution. The selection pool P +O of 2n solutions is again created by combining P
andO. A tournament selection with tournament size 4 is performed on P +O to select
n survivors, forming the new population P for the next generation. If the univariate
model is employed, we have an EDA that corresponds with the UMDA (Mühlenbein,
1997) while an EDA with the MP model can be considered to be similar to the ECGA
(Harik et al., 2006). Figure 5 shows pseudo-code for the EDA.

4.3 Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA)

The GOMEA starts with a population P of n randomly generated candidate solutions.
Every generation, the linkage model building procedure is performed on P to construct
a FOS F . Using the obtained FOS F , GOMEA transforms each existing parent solution
p ∈ P into a new offspring solution o ∈ O whose fitness value is equal to or better than
the fitness value of p. The offspring population O completely replaces P and becomes
the new parent population P for the next generation. Figure 6 shows pseudo-code for
GOMEA.
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EDA //population size n
1 for i ∈ {1, 2, . . . , n} do
2 Pi ← CREATERANDOMSOLUTION()
3 EVALUATEFITNESS(Pi)
4 while ¬TERMINATIONCRITERIASATISFIED() do
5 F , PF (X)← LEARNDISTRIBUTIONFROMPOPULATION(P)
6 for i ∈ {1, 2, . . . , n} do
7 Oi ← SAMPLEDISTRIBUTION()
8 EVALUATEFITNESS(Oi)
9 P ← TOURNAMENTSELECTION(P +O, n, 4)

SAMPLEDISTRIBUTION()
1 for i ∈ {1, 2, . . . , |F|} do
2 oF i ← SAMPLESUBSETDISTRIBUTION(F i, P (XF i))
3 RETURN(o)

Figure 5: Estimation-of-Distribution Algorithm

Instead of fully creating new solutions and then evaluating them like in GA, the
variation operator of GOMEA, called Gene-pool Optimal Mixing (GOM) (Thierens and
Bosman, 2011), uses the learned FOS to evolve each existing parent p into a new off-
spring o in an iterative manner. First, o and a backup b are cloned directly from p.
Then, each linkage set in the FOS F is traversed iteratively in a random order. For
each linkage set, a donor d is randomly selected from the current population P . If the
values of the donor for the variables indicated by the linkage set differ from those in
o in at least one position, these values are copied from d into o. This partially-altered
solution o is evaluated and compared against its backup b. If o is equally good or bet-
ter than b (i.e., fitness[o] ≥ fitness[b]), the changes are accepted (i.e., the values are
copied from d) and updated into b as well. Otherwise, the changes are undone and o

reverts to its backup state b. Note that the acceptance of solutions having equal fitness
can be beneficial to move across a fitness plateau (Bosman and Thierens, 2013). It can
be seen that each linkage set corresponds with a mixing event, in which the current
solution is recombined with a random donor solution and the variables in the same
linkage set are treated together, preserving the building-block structure (insofar such
building blocks exist for the problem at hand and are correctly represented by the FOS).
After traversing the whole FOS, an offspring o is then fully constructed, replacing the
original parent p in the next generation. Note that GOMEA does not need to perform
selection over the combined pool P + O like GA or EDA because the GOM operator
ensures that the quality of the offspring solution is better or at least equal to the parent
solution.

It can happen that GOM cannot improve the current parent solution p or that, be-
cause of a significant plateau, GOM keeps transforming back and forth solutions of
different genotypes but with the same fitness value. To overcome this, if GOM cannot
yield a new offspring or when the number of subsequent generations that the best solu-
tion at the end of generation t xbest(t) does not change, i.e., the no-improvement stretch
(NIS), exceeds a certain threshold, we invoke the Forced Improvement (FI) procedure
(Bosman and Thierens, 2013). In essence, FI is similar to GOM but we always use xelitist

as the only donor solution. xelitist is the best-found-so-far solution, which is constantly
checked for possible updates every time a fitness evaluation is performed. FI only ac-
cepts the mixing event that results in a strict improvement (i.e., fitness[o] > fitness[b])
and FI stops as soon as such mixing event occurs. Previous research on GOMEA sug-
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GOMEA //population size n
1 for i ∈ {1, 2, . . . , n} do
2 Pi ← CREATERANDOMSOLUTION()
3 EVALUATEFITNESS(Pi)
4 xbest(0)← argmin

x∈P{fitness[x]}; t← 0; tNIS ← 0
5 while ¬TERMINATIONCRITERIASATISFIED() do
6 F ← LEARNMODELFROMPOPULATION(P)
7 for i ∈ {1, 2, . . . , n} do
8 Oi ← GENEPOOLOPTIMALMIXING(Pi)
9 P ← O

10 t← t+ 1
11 xbest(t)← argmin

x∈P{fitness[x]}
12 if fitness[xbest(t)] > fitness[xbest(t− 1)] then
13 tNIS ← 0
14 else
15 tNIS ← tNIS + 1

GENEPOOLOPTIMALMIXING(p)
1 b← o← p; fitness[b]← fitness[o]← fitness[p];
2 changed← false
3 for i ∈ {1, 2, . . . , |F|} in a random order do
4 d← RANDOM({P1,P2, . . . ,Pn})
5 o← COPYVALUES(o,d,F i)
6 if o 6= b then
7 EVALUATEFITNESS(o)
8 if fitness[o] ≥ fitness[b] then
9 b← o; fitness[b]← fitness[o]; changed← true

10 else
11 o← b; fitness[o]← fitness[b]
12 if ¬changed or tNIS > 1 + ⌊log10(n)⌋ then
13 changed← false
14 for i ∈ {1, 2, . . . , |F|} in a random order do
15 o← COPYVALUES(o,xelitist,F i)
16 if o 6= b then
17 EVALUATEFITNESS(o)
18 if fitness[o] > fitness[b] then
19 b← o; fitness[b]← fitness[o]; changed← true
20 else
21 o← b; fitness[o]← fitness[b]
22 if changed then breakfor
23 if ¬changed then
24 o← xelitist ; fitness[o]← fitness[xelitist ]
25 RETURN(o)

COPYVALUES(x,d,F i)
1 o← x

2 for k ∈ F i do
3 ok ← dk
4 RETURN(o)

Figure 6: Gene-pool Optimal Mixing Evolutionary Algorithm

gests a threshold for NIS of 1 + ⌊log10(n)⌋ (Bosman and Thierens, 2013). If FI does not
succeed in improving p, xelitist is returned as the new offspring.

The GOMEA with the linkage tree model is the most popular variant of GOMEA,
and is also known as the Linkage Tree Genetic Algorithm (LTGA) (Thierens and
Bosman, 2011). The concept of constructing an offspring in a step-wise manner by
iteratively improving a parent solution is compatible with the hierarchical structure
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of linkage trees. GOMEA can also be straightforwardly combined with the univariate
or marginal product model. Note that the local search-like mechanism of the GOM
operator causes GOMEA to use more fitness evaluations per generation compared to
the GA or the EDA. However, for problems that are efficiently solvable with correctly
detected linkage, it has been shown that GOMEA has population sizing requirements
that are much smaller than those of GA and EDA. GOMEA moreover also requires
far fewer generations, resulting in more efficient overall performance (Thierens and
Bosman, 2011).

5 Population sizing-free scheme

5.1 The Harik-Lobo scheme

Setting the population size parameter in real-world applications of EAs is hard because
a suitable population size setting depends on the structure of the problem instance at
hand and also on the specific EA being used. Practitioners often need to experiment
with different population sizes in an ad hoc manner to find a setting that works well,
given the amount of time available. Here, we adapt a population sizing-free scheme
that was previously proposed and tested on academic benchmarks (Harik and Lobo,
1999). In essence, we run multiple instances of the EA in parallel. Each instance has a
different population size but larger populations have a slower generational cycle. We
start with the first population P0 of some small size n0. Then, by doubling the popula-
tion size, the next population Pi is twice as large as the previous one, i.e., ni = 2ni−1

for i > 0. All the populations are scheduled with the principle that for every b gener-
ations of population Pi, 1 generation of population Pi+1 is run. If Pi+1 does not exist
yet, it will be initialized before running its first iteration. Having no maximum popu-
lation size, the EA runs and grows its populations until the computing time budget is
used up. Recently, this population sizing-free scheme has been revised with a slightly
simpler implementation (Pelikan et al., 2007; Pereira and Lobo, 2015). We refer to this
population-sizing free mechanism as the Harik-Lobo scheme in reference to the origi-
nal authors that first proposed the idea. The pseudo-code for the Harik-Lobo scheme
is given in Figure 7.

POPULATION SIZING FREE FRAMEWORK

1 P0 ← INITIALIZENEWPOPULATION(n0)
2 generation[0]← 0
3 max population index← 0
4 i← 0
5 while ¬TERMINATIONCRITERIASATISFIED() do
6 EXECUTEONEGENERATION(Pi)
7 generation[i]← generation[i] + 1
8 if generation[i] mod b = 0 then
9 i← i+ 1

10 if i > max population index then
11 Pi ← INITIALIZENEWPOPULATION(2in0)
12 generation[i]← 0
13 max population index← i
14 else
15 i← 0

Figure 7: Harik-Lobo Population Sizing-Free Framework (Pereira and Lobo, 2015)
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5.2 Adaptations of the Harik-Lobo Scheme and Linkage Model Selection for EAs
solving DNEP

5.2.1 Adaptations of the Harik-Lobo Scheme

For reasons of efficiency, the Harik-Lobo scheme terminates old populations of smaller
sizes when they converge or when they are shown to be inefficient in solving the prob-
lem instance at hand. If mutation is not employed, a converged population, in which
all individuals become identical, should be terminated because new offspring cannot
be generated any more. A smaller population Pi always spends the same number of
fitness evaluations (in case b = 2) or more (in case b > 2) than a larger population
Pi+1. Therefore, a smaller population is regarded as inefficient if its average fitness is
worse than the average fitness value of any larger population. Such smaller and ineffi-
cient populations should be terminated as well. However, the Harik-Lobo scheme has
only been tested on unconstrained problems previously. For constrained optimization
problems like DNEP, it is uninformative to compare average fitness values of different
populations when a population contains both feasible and infeasible solutions. There-
fore, we will benchmark two variants of the Harik-Lobo scheme: the original scheme
with the termination of converged or inefficient (smaller) populations and the adapted
scheme with the termination of only converged populations.

We employ Network 3 (see Section 7.1 and the Appendix for more details) as the
benchmark network. We combine different linkage models (see Section 3) with dif-
ferent optimization algorithms (see Section 4) to create 7 EA variants: GA-UF, GA-MP,
EDA-UF, EDA-MP, GOMEA-UF, GOMEA-MP, and GOMEA-LT. Each EA variant is run
30 times separately with a computing budget of 1,000,000 evaluations for solving the
static DNEP problem. Each EA variant is put into the two variants of the Harik-Lobo
scheme (both use the generation base b = 4 as in the original implementation of the
Harik-Lobo scheme (Harik and Lobo, 1999)) so that setting the population size param-
eter is not required. The average results of the elitist solutions over 30 runs are shown
in Figure 8. To support our conclusions from the experimental results, we perform
statistical hypothesis testing. In particular, we perform the Mann-Whitney-Wilcoxon
statistical hypothesis test for equality of medians with p < α = 0.05 to see whether the
final result obtained by one EA is statistically different from that of another EA.

For all GOMEA variants, there is no statistically significant difference in perfor-
mance of the original Harik-Lobo scheme and the adapted scheme (p-values are .665,
.947, and .935 for GOMEA-UF, GOMEA-MP, and GOMEA-LT, respectively). On the
other hand, for GAs and EDAs, regardless of the employed FOS models, the vari-
ants with the adapted scheme always obtain better solutions within the same com-
puting budget. These differences are found to be statistically significant (p < .001).
Because DNEP is a constrained optimization problem, comparing average fitness val-
ues of populations containing both feasible and infeasible solutions might not be an
effective method to determine whether a population is inefficient in solving the prob-
lem instance at hand. Besides, Figure 8 also indicates that, compared to GA and
EDA, GOMEA is the most consistent algorithm, obtaining the same results, regard-
less of which population sizing-free scheme is chosen. The experiment suggests that
the adapted Harik-Lobo scheme is the better population sizing-free framework for EAs
solving our DNEP problem. We will use the adapted Harik-Lobo scheme in all follow-
ing experiments.

Harik and Lobo (1999) employed the generation base b = 4 for their parameter-
less GA. Pelikan et al. (2007) used the generation base b = 2 for their implementation
of the population sizing-free framework. The generation base b = 2 is also used in our
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Figure 8: Benchmarking the original Harik-Lobo population sizing-free scheme and
the adapted scheme on solving DNEP by GA, EDA, and GOMEA. Error bars show the
maximum and minimum values of the Net Present Value of total cost.

previous work (Luong et al., 2015). In this article, we benchmark the adapted Harik-
Lobo scheme with both generation bases 2 and 4 to understand which is the better
setting for DNEP. We also conduct experiments with 7 EA variants on Network 3 as
outlined above. Figure 9 shows the results. The difference between b = 2 and b = 4
is negligible when GOMEA is the employed optimizer together with the UF model
(p = .053 > α) or the MP model (p = .633 > α). For GOMEA-LT, the result obtained
when b = 4 is a little better than the result obtained when b = 2, and this difference is
found to be statistically significant (p = .003 < α). For GAs and EDAs, the Harik-Lobo
scheme always has better performance when b = 4 than when b = 2 regardless of the
employed FOS model, and the differences are statistically significant (p < .001 for the
GA cases, p = .009 < α for the EDA-UF case, and p < .001 for the EDA-MP case).
Therefore, for all following experiments, we employ the adapted Harik-Lobo scheme
with the generation base b = 4 as the population sizing-free framework for EAs solving
our DNEP problem.

5.2.2 Linkage Model Selection

Figure 10 shows that all GOMEA variants, regardless of the chosen linkage models, al-
ways obtain solutions of (statistically significantly) better quality than those found by
all GA and EDA variants within the allowed computing budget (p < .001). This con-
firms that the laboratory-benchmarked superior performance of the Gene-pool Optimal
Mixing operator is retained when solving the real-world optimization DNEP. GOMEA-
UF and GOMEA-MP show no difference in their convergence behavior (p = .09 > α).
The big cardinality of each variable (i.e., much more than 2) causes the complexity term
in Equation 10 to be large and thus prohibits the merging of small linkage sets, espe-
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Figure 9: Benchmarking the adapted population sizing-free scheme with two genera-
tion bases b = 2 and 4 on solving DNEP by GA, EDA, and GOMEA. Error bars show
the maximum and minimum values of the Net Present Value of total cost.
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Figure 10: Performance of GA, EDA, and GOMEA when combined with the UF, MP,
and LT models on solving DNEP. Error bars show the maximum and minimum values
of the Net Present Value of total cost. The adapted Harik-Lobo population sizing-free
scheme is employed with the generation base b = 4 for all EA variants.

cially when population sizes are small. The learned MP FOS therefore contains mostly
univariate linkage sets, which are similar to the UF model. Figure 10 shows that GA-
MP performs slightly better than GA-UF while EDA-UF performs slightly better than
EDA-MP, and these differences are found to be statistically significant (p = .019 < α
for the GA case and p < .001 for the EDA case). The fact that EDA-UF outperforms
EDA-MP, GA-UF, and GA-MP suggests that the objective function of our DNEP for-
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mulation resembles the function OneMax to some degree, i.e., CAPEX is calculated as
the sum of the investment cost of each new asset and OPEX is computed as the sum
of the capitalized energy loss of every asset. However, the DNEP constraints certainly
cause dependencies to exist among problem variables, e.g., the network cables must
form a connected graph such that all demand nodes can be served (the connectivity
constraint), or there must exist enough redundancies in the network so that it can be
reconfigured when some failure occurs (the reconfigurability constraint). These con-
straints are difficult and numerous. Thus, it stands to reason that the DNEP constraints
have a substantial effect on the dependency structures of the feasible space. However,
as said, the marginal product model can only capture dependencies to a very limited
degree, and therefore its added value, if any, compared to the univariate model, is also
limited. The interactions between problem constraints, objective function values, and
the model building procedure are worth further research but are outside the scope of
this study.

Figure 10 shows that GOMEA-LT outperforms all other EA variants, and the re-
sults are found to be statistically significant (p = .001 < α for the comparison between
GOMEA-LT and GOMEA-UF and p < .001 in all the other cases). We argue that the
capability of the LT to model different dependency levels at once, makes the LT much
better suited for the DNEP structure. For example, upgrading a cable in one region
does not affect the power flows through other cables in a different section of the distri-
bution network (i.e., independence in terms of power flows in normal situation), but
those separate cables can be reconfigured to be connected when a network failure hap-
pens (i.e., inter-dependence in terms of reconfigurability).

Selecting the best FOS structure for each EA, in all following experiments, we em-
ploy the MP model for GA, the UF model for EDA, and the LT model for GOMEA.

6 Exploiting Problem-Specific Knowledge

6.1 Population Initialization

Normally, EAs can start with randomly initialized populations. However, because
DNEP is a highly-constrained engineering problem, randomly generated solutions are
typically infeasible and violate many constraints. Therefore, we use a repair procedure
that partially repairs infeasible solutions by comparing them with the current, i.e., start-
ing, network situation. First, each decision variable xk (i.e., a network branch) can only
receive a random non-negative value (i.e., we do not place any NOPs yet) as long as it
does not downgrade the currently existing cable. This also means that currently exist-
ing cables can only be left intact or be replaced with cables of higher capacities. Existing
connections are rarely removed because cable connection removals decrease network
capacity. Solutions that are generated in this way satisfy the connectivity constraint
because the current network is connected. Second, we go through HV/MV substations
and check the number of cables branching out from each substation. If the number
of outgoing cables is more than the allowable capacity of the substation (i.e., violating
constraint 5), we randomly delete outgoing cables until constraint 5 is satisfied. Third,
we go through all variables that have positive values (i.e., active cables) in a random
order. For each positive-value decision variable, we try to place an NOP on that cable
by negating its value. If the network is still connected, then the NOP can be placed;
otherwise, we undo the operation. This procedure returns a network of radial topol-
ogy with random placements of NOPs (i.e., constraint 3 is satisfied). We do not repair
the power flow and reconfigurability constraint (i.e., constraint 2 and 4) because they
involve PFCs, which are computationally expensive. Figure 11 shows the pseudo-code
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for randomly generating a network solution, which can be used in the population ini-
tialization phase.

DNEP::CREATERANDOMSOLUTION()
// T = set of all cable types (including 0).
// x = (x1, x2, . . . , xl), |xk| ∈ Ω(k), k ∈ {1, 2, . . . , l}

1 xnow ← GETCURRENTNETWORKCONFIGURATION()
2 for k ∈ {1, 2, . . . , l} do
3 Ω(k)← {ID ∈ T | capacity[ID] ≥ capacity[|xnow

k |]}
4 xk ← RANDOM(Ω(k))
5 x← REMOVEREDUNDANTCONNECTIONS(x,xnow)
6 x← RADIALIZENETWORK(x)
7 RETURN(x)

REMOVEREDUNDANTCONNECTIONS(x,xnow)
// S = set of all HV/MV substations.

1 o← x

2 for s ∈ S do
3 Cs = {}
4 for k ∈ {1, 2, . . . , l} do
5 if ISOUTGOINGCABLE(k) and xk 6= 0 and xnow

k = 0 then
6 s← GETSUBSTATIONINDEXOFCABLE(k)
7 Cs ← Cs ∪ {k}
8 for s ∈ S do
9 if |Cs| > maxs then

10 π ← RANDOMPERMUTATION({1, 2, . . . , |Cs|})
11 for i ∈ {1, 2, . . . , |Cs| −maxs} do
12 oπi

← 0
13 RETURN(o)

RADIALIZENETWORK(x)
1 o← x

2 π ← RANDOMPERMUTATION({1, 2, . . . , l})
3 for i ∈ {1, 2, . . . , l} do
4 if oπi

> 0 then
5 oπi

← −oπi

6 if ¬CHECKCONNECTIVITY(o) then
7 oπi

← xπi

8 RETURN(o)

Figure 11: Generating a distribution network configuration.

6.2 Variation Operators

Being popularly applied in black-box optimization, EAs require little problem-specific
knowledge (PSK) and their variation operators (VOs) (i.e., procedures to generate new
offspring solutions) can operate on a wide range of problems. However, in real-world
applications like DNEP, the problems are often highly constrained such that it is dif-
ficult for general-purpose VOs to traverse the search space of feasible solutions effi-
ciently. Efficiently traversing the space of feasible solutions is of high importance be-
cause the evaluations of candidate solutions are typically computationally expensive.
Full constraint evaluations of solution plans for DNEP involve solving PFCs (Grainger
and Stevenson, 2003), which dominates the computing time of the optimization pro-
cess. Thus, it is beneficial to incorporate PSK into VOs of EAs as efficiency enhancement
methods. Local search heuristics can normally be used for efficiency enhancement,
but a typical operator like hillclimbing with some small neighborhood (e.g., 1/2/3-opt
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local search) was not found to be helpful in improving the efficiency of EAs solving
our DNEP model because such local search often fails to reach expansion options that
include inter-dependent activities (e.g., adding new cables and NOPs and relocating
existing NOPs).

Among the constraints of DNEP, the connectivity constraint needs to be handled
separately because PFCs cannot be performed on unconnected networks and the power
flow constraint and reconfigurability constraint cannot be checked without PFCs. Thus,
in order to compare solution plans (e.g., when performing tournament selection), we
need to quantify their disconnectivity and use that as the comparison criterion or we
have to repair the connectivity so that other constraints can be evaluated. Here, we
introduce different VOs for GA, EDA, and GOMEA along with their corresponding
connectivity constraint-handling techniques.

6.2.1 Disconnectivity Quantification

We name the out-of-the-box VO of EAs when solving our DNEP problem DQ1 because
it employs the disconnectivity quantification procedure, which is part of the constraint
evaluation itself. Apart from that, no other connectivity knowledge is assumed when
generating offspring solutions. At every recombination, model sampling, or mixing
event, a new offspring solution (or partially-new solution in case of GOMEA) is created
and is evaluated for its fitness value. The connectivity constraint is checked first, and
only a connected network solution is then evaluated for other constraints and objective
value. Candidate solutions can be compared by the connectivity-constraint domination
mechanism as presented in Section 2.2.

However, even if we recombine two connected parent networks, it is still difficult
for the crossover operator of GA to generate connected offspring networks, especially
for big networks with many cable connections. Thus, we also propose a different VO, in
which we allow each recombination of two parent networks to retry crossover to gen-
erate connected offspring networks. After 100 times, if the offspring networks are still
unconnected, they will be evaluated for the disconnectivity value as above. Similarly,
for EDA, we allow maximum 100 times of model sampling to generate a connected
networks before performing disconnectivity quantification. For GOMEA, during the
process of constructing an offspring, for each mixing event, if the partially-altered so-
lution is an unconnected network, we allow it to randomly select a different donor for
a maximum of 100 times. We call this VO DQ100. Figure 12 shows the pseudo-code for
DQ100 with its corresponding realization in GA, EDA and GOMEA.

6.2.2 Connectivity Repair

Inspired by the Forced Improvement (FI) operator of GOMEA, in which solutions that
cannot be altered by GOM will be mixed with the elitist solution xelitist, we propose
a repair procedure to fix any unconnected network x by matching it with the (overall)
best-found-so-far candidate network xbest = xelitist . For each decision variable k, if
xbest
k > 0 and xk < 0, then xk ← −xk; if xbest

k > 0 and xk = 0, then xk ← xbest
k . On

the other hand, if xbest
k < 0 and xk > 0, then xk ← −xk; if xbest

k = 0 and xk > 0,
then xk ← 0. In other words, we try to transform the topology of the unconnected
network to the best solution’s topology. We call the VO that uses this connectivity
repair procedure CRB (i.e., Connectivity Repair by the Best solution). Figure 13 shows
the pseudo-code for the CRB scheme. CRB can be straightforwardly employed by any
EA.

We propose a second connectivity repair mechanism for unconnected offspring
network by using the parent solution networks. For GA, this VO is much like DQ100,
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GA::RECOMBINE::DQ100(p0,p1)
1 o← RECOMBINE(p0,p1); count← 1
2 while ¬CHECKCONNECTIVITY(o) and count < 100 do
3 o← RECOMBINE(p0,p1)
4 count← count+ 1
5 RETURN(o)

EDA::SAMPLEDISTRIBUTION::DQ100()
1 o← SAMPLEDISTRIBUTION(); count← 1
2 while ¬CHECKCONNECTIVITY(o) and count < 100 do
3 o← SAMPLEDISTRIBUTION()
4 count← count+ 1
5 RETURN(o)

GOMEA::COPYVALUES::DQ100(x,d,F i)
1 o← COPYVALUES(x,d,F i); count← 1
2 while ¬CHECKCONNECTIVITY(o) and count < 100 do
3 d′ ← RANDOM({P1,P2, . . . ,Pn})
4 o← COPYVALUES(x,d′,F i)
5 count← count+ 1
6 RETURN(o)

Figure 12: Disconnnectivity Quantification DQ100

CONNECTIVITYREPAIRBYBESTSOLUTION(x)

1 xbest ← GETCURRENTBESTNETWORKCONFIGURATION()
2 o← x

3 for k ∈ {1, 2, . . . , l} do
4 if xbest

k > 0 and xk < 0 then
5 ok ← −xk

6 else if xbest
k > 0 and xk = 0 then

7 ok ← xbest
k

8 else if xbest
k < 0 and xk > 0 then

9 ok ← −xk

10 else if xbest
k = 0 and xk > 0 then

11 ok ← 0
12 RETURN(o)

Figure 13: Connectivity Repair by the Best Solution.

but after 100 trials, if the networks are still unconnected they will be reverted back to the
parent solutions. Because all the candidate solutions in the initial population are con-
nected networks (due to our solution network generator as presented in Section 6.1),
the use of this VO implies that only connected offspring are allowed to be evaluated
and enter tournament selection. For GOMEA, in each mixing event, if the partially-
altered solution becomes unconnected, this is because there exist some variables whose
positive values are replaced by some non-positive values from the donor. We can sim-
ply revert these decision variables to their backup values. We call the VO that uses
this connectivity repair scheme CRP (i.e., Connectivity Repair by Parent). Note that we
do not combine EDA with CRP because offspring solutions in EDA do not have direct
parent solutions like GA or GOMEA, but are generated by sampling the learned prob-
ability distribution. Figure 14 shows the pseudo-code for the realization of the CRP
scheme in GA and GOMEA.
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GA::CONNECTIVITYREPAIRBYPARENT(p0,p1)
1 o← GA::RECOMBINE:DQ100(p0,p1)
2 if ¬CHECKCONNECTIVITY(o) then
3 o← p0

4 RETURN(o)

GOMEA::COPYVALUES::CONNECTIVITYREPAIRBYPARENT(x,d,F i)
1 o← GOMEA::COPYVALUES(x,d,F i)
2 if ¬CHECKCONNECTIVITY(o) then
3 for k ∈ F i do
4 if xk > 0 and ok ≤ 0 then
5 ok ← xk

6 RETURN(o)

Figure 14: Connectivity Repair by the Best Solution.

6.2.3 Branch Exchanging

This VO aims to directly generate connected offspring networks by following the
principle that during the recombination of two connected networks p0 and p1, if we
bring a cable connection from p1 to p0 (i.e., p0k ← p1k, p

0
k ≤ 0, p1k > 0), we need

to bring the corresponding NOP (or a no-connection branch) from p1 to p0 as well
(i.e., p0j ← p1j , p

0
j > 0, p1j ≤ 0) and vice versa.

For GA, during the recombination of two parents p0 and p1, when we copy val-
ues from p1 according to a linkage set F i in the FOS F (see Figure 4), for variables
whose values are both positive (i.e., both are active cables) or both non-positive (i.e., no-
connection branches or NOPs), we can copy as normal since these positions have the
same structures in both networks. For each variable index k where p0k ≤ 0 and p1k > 0
(or p0k > 0 and p1k ≤ 0), we need to find a different variable j where p0j > 0 and p1j ≤ 0

(or p0j ≤ 0 and p1j > 0) such that copying values at variables k and j from the network

p1 still maintains the connectivity of the network p0. If we cannot find such a variable
j then we do not perform crossover at the variable k. Note that while variable k be-
longs to the current linkage set F i, variable j is searched for over the whole solution.
Because the complicated connectivity structure might not be entirely captured by link-
age learning, an active cable and its corresponding NOP might not always reside in the
same linkage set F i. In (Luong et al., 2015), we employed a slightly different version of
branch exchange for GA, which maintained the connectivity of both networks p0 and
p1. Our previous implementation of GA created two offspring from two parents for
each recombination while in this article, GA creates one offspring from two parents.

For GOMEA, in each mixing event, this procedure works similarly for the current
solution o and a donor d and we need to search for the variable j when ok ≤ 0 and
dk > 0 (or ok > 0 and dk ≤ 0). Also, we only need to maintain the connectivity of
the current solution. Similar to the CRP procedure, we do not employ branch exchange
for EDA because EDA does not create offspring solutions by directly exchanging values
between parent solutions but by sampling the probability distribution instead. This VO
is problem-specific because it employs connectivity knowledge of DNEP when gener-
ating new offspring. We call this VO BX (i.e., branch exchanging). Figure 15 shows the
pseudo-code for the realization of BX in GA and GOMEA.

Furthermore, we here experiment the combination of BX with a DNEP-specific
mutation. After every mixing event with a linkage set, but before the evaluation of the
partially-altered solution, we go through every variable in the linkage set and perform
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COPYVALUES::BRANCHEXCHANGE(x,d,F i)
1 X← {k ∈ {1, 2, . . . , l} | (xk > 0 and dk > 0) or (xk ≤ 0 and dk ≤ 0)}
2 X′ ← {1, 2, . . . , l} \ X
3 Y← {k ∈ F i | (xk > 0 and dk > 0) or (xk ≤ 0 and dk ≤ 0)}
4 Y′ ← F i \Y
5 o← x

6 for k ∈ Y do
7 ok ← dk
8 for k ∈ Y′ do
9 for j ∈ X

′ \ {k} in a random order do
10 if (ok ≤ 0 and dj ≤ 0) or (ok > 0 and dj > 0) then
11 ok ← dk; oj ← dj
12 if CHECKCONNECTIVITY(o) then
13 X′ ← X′ \ {k, j};Y′ ← Y′ \ {k, j}
14 break for
15 else
16 ok ← xk; oj ← xj

17 RETURN(o)

Figure 15: Branch Exchange.

a mutation with probability 1/l (l is the length of the solution). The mutated values
must have the same sign as the original values (i.e., positive or non-positive) so that
the connectivity and radiality of the network are still maintained. We call the branch
exchanging VO with this mutation operator BX-M.

7 Experiments

7.1 Benchmark Problems

We perform experiments on 3 benchmark networks of different sizes that represent
real distribution networks of a DNO in The Netherlands. Figure 16 shows the current
topologies of the 3 networks. More details about current power consumption, potential
locations for installing new cables, and characteristics of different cables types can be
found in the Appendix. The overall sizes of these 3 benchmarks are summarized in
Table 1. The maximum number of evaluations is 50,000 for Network 1, 100,000 for
Network 2, and 1,000,000 for Network 3. The planning period is 30 years, and for each
problem instance and each variation operator, each EA (i.e., GA, EDA or GOMEA) is
run 30 times. For computational reasons, for dynamic DNEP of network 3, the planning
period is 10 years. Figures 17 and 18 show the average convergence graphs of the
elitist solutions obtained by GA, EDA, and GOMEA integrated with different VOs. We
perform the Mann-Whitney-Wilcoxon statistical hypothesis test for equality of medians
with p < α = 0.05 to verify if there exists a statistically significant difference between
the final result achieved by one EA and that of another EA.

ID # Branches # Nodes # HV/MV # Cable
(Variables) Substations types

1 17 10 1 3
2 59 31 1 3
3 190 51 4 12

Table 1: Benchmark Network Size
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Figure 16: 3 benchmark MV distribution networks with existing assets. Potential cable
connections can be found in the Appendix. Legends are explained in Figure 1.

7.2 Results

7.2.1 Static DNEP

Figure 17 shows the performance of GA, EDA and GOMEA integrated with different
VOs solving the static DNEP. For Network 1 (see Figure 17a), almost all EA variants
(except EDA-CRB) exhibit the same effectiveness in obtaining (near-)optimal solutions.
After spending a certain number of evaluations, most solvers have similar convergence
until termination. For Network 2 (see Figure 17b), GOMEA-BX(-M) performs slightly
better than other EA variants, and the difference is found to be statistically significant
(p < .001). EDA-CRB is the worst optimizer when solving Networks 1 and 2. How-
ever, on small networks, these differences between EA variants and between different
VOs are practically negligible (e.g., differences of about 1,000-3,000 EUR for a planning
period of 30 years).
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Figure 17: Static DNEP. Horizontal axis: number of evaluations. Vertical axis: Net Present Value (NPV) of total cost (EUR). Error bars
show the maximum and minimum values of the NPV of total cost.
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In contrast, Figure 17c shows that, when solving DNEP for a larger network, the
performance gaps between different EA variants are considerable. For Network 3, GA-
DQ1 is outperformed by all other EA variants (p < .001). Even though our EDA im-
plementation employs the UF model, EDA-DQ1 has significantly better performance
than GA-DQ1 (p < .001), which suggests that the UF model sampling might be more
effective than the MP model-based crossover operator (see Section 5.2.2). While also as-
suming no connectivity knowledge, within the same number of evaluations, GOMEA-
DQ1 outperforms both GA-DQ1 and EDA-DQ1, and obtains solution plans of much
better quality. On average, the expansion plans obtained by GOMEA-DQ1 costs about
150,000-280,000 EUR less than those obtained by GA-DQ1 and EDA-DQ1. These dif-
ferences are found to be statistically significant (p < .001). DQ100 gives GA multiple
trials of recombination to generate new connected networks, and that indeed helps GA
improve its performance significantly (p < .001, but still worse than GOMEA-DQ1 in
terms of the quality of obtained solutions at termination). DQ100 induces some small
improvements for EDA-DQ1, but the differences are not significant (p = .119 > α).

While the connectivity repair VOs CRP and CRB significantly enhance the effec-
tiveness and efficiency of GA (p < .001), they do not show any improvement over
GOMEA-DQ1. For GOMEA, repairing by parent solutions (CRP) are (statistically sig-
nificantly) better than repairing by the best solutions (CRB) (p < .001). GOMEA-CRB
actually has the worst convergence behavior among all GOMEA variants, and even
GOMEA-DQ1 can significantly outperform GOMEA-CRB (p < .001). This can be be-
cause it is difficult for general-purpose VOs to generate connected networks and keep-
ing matching unconnected offspring networks with the slowly-changing best topology
reduces the beneficial diversity in the population, making the algorithm prone to pre-
mature convergence.

Solving the issue of maintaining connectivity and radiality, the VO BX brings out
significant improvements in efficiency for GA and GOMEA when solving DNEP (p <
.001). GA-BX has excellent performance, obtaining significantly better solutions than
GA-DQ1 (p < .001). BX also has positive impacts on GOMEA but the size of the effect
is much less substantial than on GA. The results here suggest 2 conclusions. First,
DNEP problem-specific VOs are crucial for GAs, to efficiently solve (larger) real-world
networks. Second, GOMEA is the more robust solver, which can be used out-of-the-box
and still obtain solutions of good quality close to those found by EAs customized with
problem-dedicated VOs (i.e., comparing GOMEA-DQ1 in leftmost graphs with GA-BX
and GOMEA-BX in rightmost graphs in Figure 17c). GOMEA-DQ1 is even found to
obtain results that are significantly better than those found by GA-BX (p = .004 < α).

The DNEP mutation operator has no significant influence over GOMEA-BX (p =
.052 > α), but results in a statistically significant improvement for GA-BX (p < .001).
GA-BX-M, however, is still outperformed by GOMEA-BX(-M) (p < .001). On average,
the expansion plans obtained by GOMEA-BX(-M) cost about 30,000 EUR less than the
plans obtained by GA-BX-M at termination. Statistical tests support that the quality
of expansion plans for Network 3 obtained by GOMEA-BX(-M) are significantly better
than those obtained by all other EA variants (p < .001). Thus, GOMEA-BX(-M) is the
best solver in this test case (i.e., the fastest solver given the budget of evaluations used
in our experiments).
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Figure 18: Dynamic DNEP. Horizontal axis: number of evaluations. Vertical axis: Net Present Value (NPV) of total cost (EUR). Error
bars show the maximum and minimum values of the NPV of total cost.
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7.2.2 Dynamic DNEP

Figure 18 shows the convergence performance of GAs, EDAs and GOMEAs solving dy-
namic DNEP. The general performances of all EA variants are similar to those observed
in the case of static DNEP, suggesting that the use of the decomposition heuristic does
not introduce additional complexity to the problem. For Networks 1 and 2 (see Fig-
ure 18a and 18b), the differences in the quality of solutions obtained by different EA
variants are either statistically insignificant or practically negligible.

For Network 3, Figure 18c shows that GOMEA-DQ1 significantly outperforms
both EDA-DQ1 and GA-DQ1 (p < .001). Even when only the simplest VO DQ1 is
used, GOMEA can still obtain solutions of high quality, which are practically close to
the ones found by the DNEP problem-specific EAs, i.e., GA-BX(-M) and GOMEA-BX(-
M). The VO BX, which maintains the connectivity and radiality of offspring networks
during solution recombination, is again shown to be the best VO, resulting in (statis-
tically significantly) better performance when combined with both GA and GOMEA
(p < .001). In general, the more domain knowledge is well-incorporated into variation
operators, the better the performance of EAs. However, the improvement gaps that this
problem-specific VO brings about for GOMEA-DQ1 (on average about 7,000 EUR) are
not as substantial as for GA-DQ1 (on average about 14,000 EUR). For dynamic DNEP,
BX-M (branch exchange with mutation) induces some small improvements for both
GA-BX and GOMEA-BX, in which the differences are found to be statistically signifi-
cant (p < .001 for the GA case, and p = .012 < α for the GOMEA case). GOMEA-BX-M
is the overall best solver in this experiment, which (statistically significantly) outper-
forms other EA variants (p = .012 < α in the case of GOMEA-BX-M versus GOMEA-
BX, and p < .001 in all the other cases). While it might not be necessary for GOMEA
solving many laboratory benchmarks, mutation can still be beneficial when tackling
real-world problems because the linkage structure is not always the only or the most
important structure to be exploited.

8 Conclusions

This article contributes guidelines and methodologies for the application of EAs in tack-
ling the real-world optimization DNEP. First, we proposed a decomposition heuristic
that allows available static planning solvers to solve the dynamic DNEP in a practical
manner. Second, we suggested practitioners to employ population sizing-free schemes
to get rid of the notoriously-difficult-to-set population size parameter. Third, we intro-
duced multiple variation operators that can be employed by EAs solving DNEP and
showed their impact on the performance of 3 typical EAs: the classic GA, an EDA,
and the GOMEA, which is capable of learning and exploiting hierarchical linkage re-
lations. GOMEA is shown to be a far more robust solver for solving DNEP on our
benchmark networks. Using the same number of solution evaluations as GA and EDA,
GOMEA obtains better results, even when assuming a minimal amount of problem-
specific knowledge (PSK). Adding PSK to GOMEA improves performance but the im-
provement gap, for a fixed budget of evaluations, is much less substantial than that
for classic GA, which again confirms the usefulness of GOMEA and linkage learning
(LL) to detect problem structure. As the problem size increases, LL is of great impor-
tance to ascertain efficient scalability of EAs. Lastly, based on our results, we suggest
that LL EAs, like GOMEA, should be given priority when selecting EAs for solving
DNEP. While this article focuses on expansion planning for medium voltage distribu-
tion networks, the methodologies presented here can be straightforwardly modified to
apply to both low voltage distribution networks and high voltage transmission net-
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works. Besides traditional asset installations, future works might also include smart
grid technologies (e.g., battery energy storage system and demand side management)
as alternative network reinforcement options, which induce more complex problem
structures, potentially requiring linkage information and problem-specific knowledge
to be effectively exploited to solve the problem in an efficient manner.
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ID Type Inom R X C Cost
(Ω/km) (Ω/km) (µF/km) (e /km)

1 120 mm2 215 A 0.257 0.085 0.38 50 000

2 150 mm2 295 A 0.20858 0.09592 0.3833 59 000

3 240 mm2 370 A 0.13517 0.10823 0.43553 62 000

4 400 mm2 475 A 0.08077 0.09972 0.5344 66 000

5 630 mm2 605 A 0.0511 0.09272 0.64103 73 000
6 N/A 135 A 0.53253 0.09777 0.27072 N/A
7 N/A 160 A 0.3737 0.09367 0.30671 N/A
8 N/A 195 A 0.26756 0.08995 0.34505 N/A
9 N/A 225 A 0.32829 0.10134 0.32667 N/A
10 N/A 320 A 0.13079 0.07757 0.53109 N/A
11 N/A 350 A 0.10193 0.08004 0.48485 N/A
12* N/A N/A N/A N/A N/A N/A

Table A.1: MV cable types. Type 12 (sub-
transmission cable) and types 6-11 (legacy
cables) are not used for new cable installa-
tions in MV DNEP.

Node Information Cable Information
ID Load Customers Existing Potential

P Q Branch Length Type Branch Length
[kW ] [kV AR] [#] [m] [m]

1 0 0 0 1 - 2 654 1 1 - 3 1235
2 271 168 131 1 - 10 710 1 1 - 4 1259
3 924 573 1 2 - 3 610 1 1 - 5 1323
4 394 244 190 3 - 4 163 1 1 - 6 1711
5 409 253 197 4 - 5 511 1 1 - 7 1904
6 394 244 190 5 - 6 496 1 1 - 8 1976
7 370 229 179 6 - 7 420 1 1 - 9 1781
8 117 72 57 7 - 8 297 1
9 259 160 125 8 - 9 336 1
10 431 267 208 9 - 10 690 1

Table A.2: Network 1 Data
Node Information Cable Information

ID Load Customers Existing Potential
P Q Branch Length Type Branch Length

[kW ] [kV AR] [#] [m] [m]
1 0 0 0 1 - 2 481 3 1 - 3 526
2 35 17 25 1 - 16 246 3 1 - 4 469
3 1113 539 1 1 - 31 761 3 1 - 5 989
4 348 216 1 2 - 3 96 2 1 - 6 2062
5 871 286 1 3 - 4 48 2 1 - 7 738
6 332 109 232 4 - 5 498 2 1 - 8 2227
7 132 82 92 5 - 6 86 2 1 - 9 2307
8 170 82 119 6 - 7 288 2 1 - 10 2633
9 22 14 15 7 - 8 935 2 1 - 11 3041
10 202 98 141 8 - 9 200 2 1 - 12 3041
11 120 0 84 9 - 10 470 2 1 - 13 1395
12 88 55 62 10 - 11 851 3 1 - 14 1194
13 284 137 199 10 - 17 736 2 1 - 15 923
14 219 136 153 11 - 12 220 3 1 - 17 2808
15 314 152 220 12 - 13 300 3 1 - 18 2760
16 185 90 130 13 - 14 284 3 1 - 19 2653
17 127 79 1 14 - 15 479 3 1 - 20 1275
18 17 8 12 15 - 16 846 3 1 - 21 1205
19 896 434 1 17 - 18 101 2 1 - 22 1136
20 314 152 220 18 - 19 154 2 1 - 23 1131
21 125 77 88 19 - 20 283 2 1 - 24 1041
22 248 120 174 20 - 21 308 2 1 - 25 950
23 85 41 60 21 - 22 133 2 1 - 26 966
24 123 76 86 22 - 23 132 2 1 - 27 900
25 209 130 146 23 - 24 138 2 1 - 28 804
26 566 274 1 24 - 25 140 2 1 - 29 677
27 266 129 186 25 - 26 103 2 1 - 30 801
28 126 61 88 26 - 27 215 2
29 360 174 1 27 - 28 139 2
30 273 169 191 28 - 29 218 2
31 263 163 1 29 - 30 136 2

30 - 31 160 3

Table A.3: Network 2 Data

Node Information Cable Information
ID Load Cust- Existing Potential

omers
P Q Branch Length Type Branch Length Branch Length

[kW ] [kV AR] [#] [m] [m] [m]
1 0 0 0 1 - 2 1 12 2 - 5 1335 8 - 38 1900
2 67 32 22 1 - 36 1 12 2 - 6 1357 8 - 40 2754
3 185 90 108 2 - 3 670 6 2 - 9 1256 8 - 41 3542
4 112 54 1 2 - 4 280 7 2 - 10 1040 8 - 42 3252
5 194 94 92 2 - 8 1 12 2 - 13 1840 8 - 43 2847
6 61 30 14 2 - 12 1820 7 2 - 14 1987 8 - 44 2696
7 152 73 216 3 - 5 570 6 2 - 15 2123 8 - 45 2510
8 158 76 143 4 - 35 380 9 2 - 16 1948 8 - 46 2148
9 282 136 317 5 - 17 570 6 2 - 17 1541 8 - 47 1900

10 193 94 153 6 - 7 1300 6 2 - 18 2507 8 - 48 1781
11 165 54 39 6 - 38 759 9 2 - 19 2437 8 - 49 1725
12 148 72 1 7 - 8 1421 6 2 - 20 3102 8 - 51 3405
13 91 44 47 7 - 9 610 7 2 - 21 2885 9 - 23 1840
14 119 57 1 8 - 11 360 7 2 - 28 3605 9 - 36 1693
15 311 150 186 8 - 24 570 8 2 - 29 3160 10 - 23 1981
16 314 152 295 8 - 27 570 8 2 - 30 3950 10 - 36 1890
17 333 161 245 9 - 10 250 7 2 - 31 3560 13 - 23 1496
18 351 170 397 10 - 11 340 7 2 - 32 3855 13 - 36 1189
19 236 114 167 12 - 13 320 7 2 - 33 3769 14 - 23 1822
20 297 144 351 13 - 14 380 7 2 - 34 2437 14 - 36 1388
21 253 122 264 14 - 15 150 7 2 - 35 372 15 - 23 1978
22 355 172 9 15 - 16 800 7 2 - 38 372 15 - 36 1496
23 492 238 208 15 - 18 510 7 2 - 40 4483 16 - 23 2726
24 152 74 34 16 - 17 570 7 2 - 41 5283 16 - 36 2277
25 156 75 1 18 - 19 280 7 2 - 42 4969 17 - 23 3063
26 186 90 41 19 - 34 510 7 2 - 43 4632 17 - 36 2704
27 310 150 211 20 - 21 300 7 2 - 44 4487 18 - 23 1887
28 292 141 4 20 - 34 510 7 2 - 45 4291 18 - 36 1321
29 11 6 1 21 - 22 530 7 2 - 46 3972 19 - 23 1524
30 230 111 8 22 - 28 955 8 2 - 47 3726 19 - 36 983
31 136 66 1 22 - 36 313 9 2 - 48 3593 20 - 23 1563
32 287 139 232 23 - 25 400 7 2 - 49 3546 20 - 36 920
33 298 144 186 23 - 26 350 7 2 - 51 5159 21 - 23 1219
34 174 84 167 23 - 27 350 7 5 - 8 1919 21 - 36 583
35 180 87 1 23 - 36 1 12 5 - 23 3038 23 - 28 1951
36 0 0 0 23 - 39 590 5 5 - 36 2718 23 - 29 2217
37 806 500 1 24 - 25 365 7 6 - 8 3086 23 - 30 2029
38 156 75 1 26 - 31 785 7 6 - 23 4250 23 - 31 900
39 259 126 134 28 - 29 465 8 6 - 36 4112 23 - 32 1194
40 281 136 76 29 - 30 740 8 8 - 9 671 23 - 33 1515
41 310 150 69 30 - 33 685 8 8 - 10 819 23 - 34 1524
42 217 105 2 31 - 32 272 7 8 - 13 530 23 - 35 3061
43 153 74 34 32 - 33 671 7 8 - 14 974 23 - 38 3061
44 137 66 1 35 - 38 426 9 8 - 15 1190 23 - 40 1593
45 259 126 62 36 - 37 94 9 8 - 16 1772 23 - 41 2374
46 261 126 121 36 - 50 450 7 8 - 17 1977 23 - 42 2092
47 226 110 50 39 - 40 640 7 8 - 18 1342 23 - 43 1678
48 269 130 139 40 - 51 1251 7 8 - 19 1036 23 - 44 1528
49 218 106 1 41 - 42 430 7 8 - 20 1557 23 - 45 1340
50 136 66 5 41 - 51 229 9 8 - 21 1231 23 - 46 1017
51 240 116 53 42 - 43 387 7 8 - 28 2088 23 - 47 778

43 - 44 130 7 8 - 29 1947 23 - 48 629
44 - 45 520 6 8 - 30 2354 23 - 49 592
45 - 46 350 6 8 - 31 1731 23 - 51 2235
46 - 47 233 6 8 - 32 2033 28 - 36 1328
47 - 48 180 6 8 - 33 2039 29 - 36 1581
48 - 49 150 7 8 - 34 1036 30 - 36 1456
49 - 50 435 7 8 - 35 1900 31 - 36 632

32 - 36 928
33 - 36 1009
34 - 36 983
35 - 36 2945
36 - 38 2945
36 - 40 2006
36 - 41 2721
36 - 42 2489
36 - 43 1973
36 - 44 1818
36 - 45 1672
36 - 46 1204
36 - 47 971
36 - 48 936
36 - 49 850
36 - 51 2567

Table A.4: Network 3 Data
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